WorldWideScience

Sample records for hybrid films exhibit

  1. Ants exhibit asymmetric hybridization in a mosaic hybrid zone.

    Science.gov (United States)

    Purcell, Jessica; Zahnd, Sacha; Athanasiades, Anouk; Türler, Rebecca; Chapuisat, Michel; Brelsford, Alan

    2016-10-01

    Research on hybridization between species provides unparalleled insights into the pre- and postzygotic isolating mechanisms that drive speciation. In social organisms, colony-level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping-by-sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single-queen and multiple-queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects.

  2. Modification of TiO2 Nanoparticles with Oleyl Phosphate via Phase Transfer in the Toluene-Water System and Application of Modified Nanoparticles to Cyclo-Olefin-Polymer-Based Organic-Inorganic Hybrid Films Exhibiting High Refractive Indices.

    Science.gov (United States)

    Takahashi, Shiori; Hotta, Shuhei; Watanabe, Akira; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2017-01-18

    Oleyl-phosphate-modified TiO2 nanoparticles (OP_TiO2) were prepared via phase transfer from an aqueous phase containing dispersed TiO2 nanoparticles to a toluene phase containing oleyl phosphate (OP, a mixture of monoester and diester), and employed for the preparation of OP_TiO2/cyclo-olefin polymer (COP) hybrid films with high-refractive indices. The modification of TiO2 by OP was essentially completed by reaction at room temperature for 8 h, and essentially all the TiO2 nanoparticles in the aqueous phase were transferred to the toluene phase. The infrared and solid-state (13)C cross-polarization and magic-angle spinning (CP/MAS) NMR spectrum of OP_TiO2 showed the presence of oleyl groups originating from oleyl phosphate. The solid-state (31)P MAS NMR spectrum of OP_TiO2 exhibited new signals at -1.4, 2.1, and 4.8 ppm, indicating the formation of Ti-O-P bonds. CHN and inductively coupled plasma analyses revealed that the major species bound to the TiO2 surface was tridentate CH3(CH2)7CH═CH(CH2)8P(OTi)3. These results clearly indicate that the surfaces of the TiO2 nanoparticles were modified by OP moieties via phase transfer. OP_TiO2/COP hybrid films exhibited excellent optical transparency up to 19.1 vol % TiO2 loading, and the light transmittance of the hybrid films with 19.1 vol % TiO2 loading was 99.8% at 633 nm. The refractive index of these hybrid films rose to 1.83.

  3. Cinema Film Distribution and Exhibition in Ireland

    OpenAIRE

    O'Donnell, Damien

    1992-01-01

    This study of cinema film distribution and exhibition practices In Ireland examines key aspects of the Industry: firstly, the basic mechanics of the Industry and Its operations: secondly, the various alignments between exhibitors and distributors and consequences of those alignments: thirdly, the impact of the arrival of British multiplex companies: fourthly, the costs of film censorship; and finally, the idea of an 'art-house' circuit In Ireland.

  4. Titanium-zirconium-phosphonate hybrid film on 6061 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Lei WANG; Changsheng LIU

    2011-01-01

    Three titanium-zirconium-phosphonate hybrid films were formed on AA6061 aluminum alloy by immersing in fluorotitanic acid and fluorozirconic acid based solution containing different phosphonic acids for protective coatings of aluminium alloy. The corrosion resistance of three hybrid films as the substitute for chromate film were evaluated and compared. The neutral salt spray test was explored,the immersion test was conducted and electrochemical test was also executed. The hybrid films exhibited well-pleasing corrosion resistance and adhesion to epoxy resin paints. It was found out that the hybrid films could efficiently be a substitute for chromate based primer over aluminium alloy.

  5. Electrochromic performance of hybrid tungsten oxide films with multiwalled-CNT additions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei, E-mail: cklin@fcu.edu.tw [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan (China); Tseng, Sheng-Chung; Cheng, Chin-Hua; Chen, Chin-Yi [Department of Materials Science and Engineering, Feng Chia University, Taichung, Taiwan (China); Chen, Chien-Chon [Department of Energy and Resources, National United University, Miaoli, Taiwan (China)

    2011-12-30

    In this study, tungsten oxide films were prepared by sol-gel technique. Various amounts of multiwalled carbon nanotubes (MWCNTs) were added during sol-gel process to obtain hybrid WO{sub 3}/MWCNT films. The original and hybrid films were characterized by thermogravimetric analysis, X-ray diffraction analysis, and scanning electron microscopy analysis, whereas the electrochromic performance was evaluated by measuring changes in the optical transmittance caused by potentiostatic charge-discharge intercalation. The influence on the structure and properties of tungsten oxide film due to MWCNT addition was also investigated. The results showed that all of the films were amorphous and exhibited porous microstructure. The electrochromic performance of pristine WO{sub 3} film was improved by adding MWCNTs that served as a template for the growth of WO{sub 3} and resulted in more porous microstructure. The hybrid tungsten oxide films with 0.1 wt.% MWCNT addition exhibited the best electrochromic performance.

  6. Zeolite-loaded poly(dimethylsiloxane) hybrid films for highly efficient thin-film microextraction of organic volatiles in water.

    Science.gov (United States)

    Wang, Tao; Ansai, Toshihiro; Lee, Seung-Woo

    2017-01-15

    ZSM-5 zeolite-loaded poly(dimethylsiloxane) (PDMS) hybrid thin films were demonstrated for efficient thin-film microextraction (TFME) coupled with gas chromatography-mass spectrometry for analyzing organic volatiles in water. The extraction efficiency for a series of aliphatic alcohols and two aromatic compounds was significantly improved owing to the presence of ZSM-5 zeolites. The extraction efficiency of the hybrid films was increased in proportion to the content of ZSM-5 in the PDMS film, with 20wt% of ZSM-5 showing the best results. The 20wt% ZSM-5/PDMS hybrid film exhibited higher volatile organic content extraction compared with the single-component PDMS film or PDMS hybrid films containing other types of zeolite (e.g., SAPO-34). Limits of detection and limits of quantitation for individual analytes were in the range of 0.0034-0.049ppb and of 0.010-0.15 ppb, respectively. The effects of experimental parameters such as extraction time and temperature were optimized, and the molecular dispersion of the zeolites in/on the hybrid film matrix was confirmed with scanning electron microscopy and atomic force microscopy. Furthermore, the optimized hybrid film was preliminarily tested for the analysis of organic volatiles contained in commercially available soft drinks.

  7. Exhibition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China[Guangzheu] International Trade Fair for Home Textiles Date:March 18th- March 21st,2011 Venue:China Import and Export Fair Complex(Guangzhou,China) Organizers:China National Textile&Apparel Council China Foreign Trade Center(Group) China Home Textile Association China Foreign Trade Guangzhou Exhibition Corp.

  8. Horizontally-connected ZnO-graphene hybrid films for multifunctional devices

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yi Rang [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Song, Wooseok; Lee, Young Bum; Kim, Seong Ku; Han, Jin Kyu; Myung, Sung; Lee, Sun Sook; An, Ki-Seok [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Choi, Chel-Jong [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lim, Jongsun, E-mail: jslim@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of)

    2016-08-30

    Highlights: • We designed horizontally-connected ZnO and graphene hybrid nanofilms with improved flexibility for multifunctional nanodevices including high performance TFTs. • The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. • The hybrid thin film transistors exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}. - Abstract: Here we designed horizontally-connected ZnO thin films and graphene in order to combine advantages of ZnO thin films, which are high on/off ratio and photo responsivity, and the superior mobility and sensitivity of graphene for applications in thin film transistors (TFTs) and flexible photodetectors. To synthesize the ZnO/graphene hybrid films, a 70-nm-thick ZnO thin film with a uniformly flat surface deposited by the atomic layer deposition process was horizontally connected with highly crystalline monolayer graphene grown by thermal chemical vapor deposition. The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. The hybrid TFT exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}.

  9. Electrodeposition of hybrid ZnO/organic dye films

    Energy Technology Data Exchange (ETDEWEB)

    Moya, Monica; Mari, Bernabe; Mollar, Miquel [Department de Fisica Aplicada-IDF, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain)

    2011-06-15

    The viability of the electrodeposition as a suitable technique for preparing new porous hybrid materials has been tested in this paper. Hybrid ZnO films with two different organic dyes: Eosin-Y and Tetrasulphonated-Cu-phtalocyanine were prepared. Their physical and chemical properties as well as their dependence on the growth conditions were investigated. It is found that the type of dye has a big influence on the morphology and porosity of hybrid films. Open and connected pores are created in hybrid ZnO/Eosin-Y films while both open and closed pores coexist in hybrid ZnO/Tetrasulfonated-Cu-phthalocyanine. As one of the promising applications of hybrid materials is photovoltaic conversion of sunlight, photoelectrochemical characterization of hybrid films is also reported. Photocurrent generation owing to both contributions ZnO and Eosin-Y is observed in ZnO/Eosin-Y films but no photocurrent has been observed in ZnO/Tetrasulfonated-Cu-phthalocyanine films. SEM micrographs of hybrid ZnO films grown in aqueous bath; (Left) ZnO/Eosin-Y films grown at 70 C, -0.9 V (Right) ZnO/Ts-CuPc films grown at 70 C, -0.9 V. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    A Look of Hope Islam Mahmoud Sweity From 19 to 30 June 2017 CERN Meyrin, Main Building Islam Mahmoud Sweity Islam Mahmoud Sweity was born in 1997 at Beit Awwa, Palestine. She is currently following a course to get an Art diploma of Painting at the college of Fine Arts at An-Najah National University under the supervision of Esmat Al As'aad. Her portraits, landscapes and still life paintings are full of life and shining colours. Charged of emotional empathy they catch the attention of the viewer and are reminding us that life is beautiful and worth living in spite of all difficulties we have to go through. She participated in many exhibitions and has exposed her drawings in 2015 at CERN and in France in the framework of the exhibition "The Origin“, and in 2017 in the Former Yugoslav Republic of Macedonia, Palestina and Jordan. In this exhibition the oil paintings made in the past year will be presented. For more information : staff.association@cern.ch | T&eacu...

  11. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    Encounters Hanne Blitz From February 1st to 12th 2016 CERN Meyrin, Main Building What is our reaction to a first encounter with a tourist attraction? Contemporary Dutch painter Hanne Blitz captures visitors' responses to art and architecture, sweeping vistas and symbolic memorials. Encounters, a series of oil paintings curated specially for this CERN exhibition, depicts tourists visiting cultural highlights around the world. A thought-provoking journey not to be missed, and a tip of the hat to CERN's large Hadron Collider.

  12. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  13. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Sintropie Flavio Pellegrini From 13 to 24 March 2017 CERN Meyrin, Main Building Energia imprigionata - Flavio Pellegrini. The exhibition is composed by eleven wood artworks with the expression of movement as theme. The artworks are the result of harmonics math applied to sculpture. The powerful black colour is dominated by the light source, generating reflexes and modulations. The result is a continuous variation of perspective visions. The works generate, at a first approach, an emotion of mystery and incomprehension, only a deeper contemplation lets one discover entangling and mutative details, evidencing the elegance of the lines and letting the meaning emerge. For more information : staff.association@cern.ch | Tél: 022 766 37 38

  14. Structural and mechanical properties of Laponite-PEG hybrid films.

    Science.gov (United States)

    Shikinaka, Kazuhiro; Aizawa, Kazuto; Murakami, Yoshihiko; Osada, Yoshihito; Tokita, Masatoshi; Watanabe, Junji; Shigehara, Kiyotaka

    2012-03-01

    Inorganic/organic hybrids were obtained by the sol-gel type organic modification reaction of Laponite sidewalls with poly(ethylene glycol) (PEG) bearing alkoxysiloxy terminal functionality. By casting an aqueous dispersion of the hybrid, the flexible and transparent hybrid films were obtained. Regardless of the inorganic/organic component ratio, the hybrid film had the ordered structure of Laponite in-plane flat arrays. The mechanical strength of hybrid films was drastically improved by the presence of cross-linking among alkoxysilyl functionalities of PEG terminals and the absence of PEG crystallines. Hybrid films, especially those that consisted of PEG with short chain, showed good mechanical properties that originate from quasi-homogeneous dispersion of components due to anchoring of PEG terminal to Laponite sidewall and interaction of PEG to Laponite surface.

  15. Dielectric properties of PMMA-SiO2 hybrid films

    KAUST Repository

    Morales-Acosta, M. D.

    2010-03-01

    Organic-inorganic hybrid films were synthesized by a modified sol-gel process. PMMASiO2 films were prepared using methylmethacrylate (MMA), tetraethil-orthosilicate (TEOS) as silicon dioxide source, and 3-trimetoxi-silil-propil-methacrylate (TMSPM) as coupling agent. FTIR measurements were performed on the hybrid films to confirm the presence of PMMA-SiO2 bonding. In addition, metal-insulator-metal (MIM) devices were fabricated to study the dielectric constant of the films as function of frequency (1 KHz to 1 MHz). Electrical results show a weak trend of the dielectric constant of the hybrid films with MMA molar ratio. More importantly, the PMMA-SiO2 hybrid films showed a higher dielectric constant than SiO2 and PMMA layers, which is likely due to the presence of additional C-O-C bond. © (2010) Trans Tech Publications.

  16. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence

    Science.gov (United States)

    Wang, Xiaoyu; He, Fang; Zhu, Xi; Tang, Fu; Li, Lidong

    2014-03-01

    Metal-enhanced fluorescence of conjugated polyelectrolytes (CPs) is realized using a simple, green hybrid Ag nanocomposite film. Ag nanoparticles (Ag NPs) are pre-prepared by sodium citrate reduction and incorporated into agarose by mixing to form an Ag-containing agarose film (Ag@agarose). Through variation of the amount of Ag NPs in the Ag@agarose film as well as the thickness of the interlayer between CPs and the Ag@agarose film prepared of layer-by-layer assembly of chitosan and sodium alginate, a maximum 8.5-fold increase in the fluorescence of CPs is obtained. After introducing tyrosinase, this system also can be used to detect phenolic compounds with high sensitivity and good visualization under ultraviolet light.

  17. Comparison of metallization systems for thin film hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Hines, R.A.; Raut, M.K.

    1980-08-01

    Five metallization systems were evaluated for fabricating thin film hybrid microcircuits. The titanium/palladium/electroplated gold system proved superior in terms of thermocompression bondability, corrosion resistance, and solderability.

  18. Electrocatalytic behaviour of hybrid cobalt–manganese hexacyanoferrate film on glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Vinu Mohan, A.M., E-mail: vinumohan756@gmail.com; Rambabu, Gutru, E-mail: chinnu.ram09@gmail.com; Aswini, K.K., E-mail: aswinikk@ymail.com; Biju, V.M., E-mail: vmbiju@ymail.com

    2014-08-28

    A thin film of hybrid cobalt–manganese hexacyanoferrate (CoMnHCF), a redox mediator was electrodeposited on a glassy carbon (GC) electrode and was employed as an amperometric sensor towards L-Tryptophan (L-Trp). The hybrid film was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction technique (XRD), scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDAX), and electrochemical techniques. The atomic absorption spectroscopic analysis provided the stoichiometry of the hybrid film to be K{sub 1.74-y} Co{sub y} Mn{sub 0.78} [Fe(CN){sub 6}], y ≤ 0.68. The electrochemical impedance study revealed the excellent charge transfer properties of GC/CoMnHCF electrode. The voltammetric investigations demonstrated exceptional electrocatalytic properties of the hybrid film modified electrode when compared to that of bare GC, GC/CoHCF and GC/MnHCF electrodes, towards the L-Trp oxidation. The kinetic parameters such as electron transfer coefficient, the electron transfer rate constant, the diffusion coefficient and the catalytic rate constant for the electrooxidation process of L-Trp were investigated. The amperometric detection of L-Trp employing GC/CoMnHCF electrode possessed a good sensitivity of 10 × 10{sup −2} A M{sup −1} cm{sup −2} in a wide range of detection (2–200 μM) at a reduced overpotential of 680 mV. In addition, the proposed amperometric method was applied to the detection of L-Trp in commercial milk samples with reproducible results. - Highlights: • A hybrid cobalt–manganese hexacyanoferrate film was prepared. • The hybrid film possesses excellent charge transfer properties. • The hybrid film exhibits excellent electrocatalytic properties towards Tryptophan. • Tryptophan detection is possible from commercial milk samples.

  19. Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Arzamastseva, G. V. [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch (Russian Federation); Balbashov, A. M. [Moscow Power Institute (Russian Federation); Lisovskii, F. V., E-mail: lisf@rambler.ru; Mansvetova, E. G.; Temiryazev, A. G.; Temiryazeva, M. P. [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch (Russian Federation)

    2015-04-15

    The properties of epitaxial magnetic (LuBi){sub 3}(FeGa){sub 5}O{sub 12} iron garnet films grown on (210) substrates, which exhibit the magnetoelectric effect, are experimentally studied. The induced anisotropy and the behavior of the domain structure in the films are investigated in uniform and nonuniform external fields. The existing hypotheses about the nature of the magnetoelectric coupling in such films are critically analyzed.

  20. Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect

    Science.gov (United States)

    Arzamastseva, G. V.; Balbashov, A. M.; Lisovskii, F. V.; Mansvetova, E. G.; Temiryazev, A. G.; Temiryazeva, M. P.

    2015-04-01

    The properties of epitaxial magnetic (LuBi)3(FeGa)5O12 iron garnet films grown on (210) substrates, which exhibit the magnetoelectric effect, are experimentally studied. The induced anisotropy and the behavior of the domain structure in the films are investigated in uniform and nonuniform external fields. The existing hypotheses about the nature of the magnetoelectric coupling in such films are critically analyzed.

  1. Nanostructured hybrid ZnO thin films for energy conversion

    Directory of Open Access Journals (Sweden)

    Samantilleke Anura

    2011-01-01

    Full Text Available Abstract We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc and Eosin-Y (EoY. Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled.

  2. Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films

    Science.gov (United States)

    Mohan, Ranjini R.; Varma, Sreekanth J.; Sankaran, Jayalekshmi

    2016-04-01

    The present work highlights the remarkably high shielding effectiveness of about 68 dB, exhibited by highly ordered and doped polyaniline films, in the microwave frequency range 4-12 GHz, obtained by self-stabilized dispersion polymerization as the synthesis route. The observed shielding effectiveness is found to depend quite sensitively on the electrical conducting properties, which are predominantly controlled by the nature and concentration of the dopants. The structural and morphological characterization of the films using XRD and TEM techniques reveals surprisingly high extent of crystallinity, which contributes significantly towards enhancing the electrical conductivity of the films. Most of the available reports on the microwave response of conducting polymer film samples deal with much thicker films, compared to the micrometer thick films of the present studies. The shielding effectiveness of acid doped, micrometer thick polyaniline films reported in the present work far exceeds most of the previously reported values and meets the commercial requirements.

  3. Quantitative Proteomics of Zea mays Hybrids Exhibiting Different Levels of Heterosis.

    Science.gov (United States)

    Dahal, Diwakar; Newton, Kathleen J; Mooney, Brian P

    2016-08-01

    Maize hybrids exhibiting heterosis (hybrid vigor) were generated from inbred parents with increasing genetic distance. B73 was used as the common female parent in crosses with N192 (low heterosis), MO17 (high-heterosis 1), and NC350 (high-heterosis 2). Total and mitochondria-enriched proteomes were analyzed from ear shoots of field-grown hybrids and their inbred parents. GeLCMS (1D SDS-PAGE fractionation, trypsin digestion, LTQ Orbitrap nano-RP-LC MS/MS) was used to analyze proteins, and spectral counting was used for quantitation. In total, 3,568 proteins were identified and quantified in hybrids including 2,489 in the mitochondria-enriched fraction and 2,162 in the total protein fraction. Sixty-one proteins were differentially abundant (p hybrids compared with the low-heterosis hybrid. For the total proteome, eight of these showed similar trends in abundance in both of the higher-heterosis hybrids. Nine proteins showed this heterosis-correlated pattern in the mitochondrial proteome, including a mitochondria-associated target of rapamycin (TOR) protein. Although differentially abundant proteins belong to various pathways, protein, and RNA metabolism, and stress responsive proteins were the major classes changed in response to increasing heterosis.

  4. Organic/Inorganic Nano-hybrids with High Dielectric Constant for Organic Thin Film Transistor Applications

    Science.gov (United States)

    Yu, Yang-Yen; Jiang, Ai-Hua; Lee, Wen-Ya

    2016-11-01

    The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore, pentacene-based organic thin film transistors (OTFTs) with PI-BaTiO3/polymethylmethacrylate or cyclic olefin copolymer (COC)-modified gate dielectrics were fabricated and examined. The hybrid materials showed effective dispersion of BaTiO3 nanoparticles in the PI matrix and favorable thermal properties. X-ray diffraction patterns revealed that the BaTiO3 nanoparticles had a perovskite structure. The hybrid films exhibited high formability and planarity. The IBX hybrid dielectric films exhibited tunable insulating properties such as the dielectric constant value and capacitance in ranges of 4.0-8.6 and 9.2-17.5 nF cm-2, respectively. Adding the modified layer caused the decrease of dielectric constant values and capacitances. The modified dielectric layer without cross-linking displayed a hydrophobic surface. The electrical characteristics of the pentacene-based OTFTs were enhanced after the surface modification. The optimal condition for the dielectric layer was 10 wt% hybrid film with the COC-modified layer; moreover, the device exhibited a threshold voltage of 0.12 V, field-effect mobility of 4.32 × 10-1 cm2 V-1 s-1, and on/off current of 8.4 × 107.

  5. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    Directory of Open Access Journals (Sweden)

    Hsiao-Yuan Ma

    2016-03-01

    Full Text Available Organic-inorganic hybrid sols (Ti–O–Si precursor were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA to perform photo-polymerization by ultraviolet (UV irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA film is higher than that of a pure poly(Ti–O–Si precursor film, and that this poly(Ti–O–Si precursor-co-OPPEA hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n of 1.83 corresponding to a thickness of 2.59 μm.

  6. Optical and electrical properties of electrochemically deposited polyaniline/CeO2 hybrid nanocomposite film

    Institute of Scientific and Technical Information of China (English)

    Anees A. Ansari; M. A. M. Khan; M. Naziruddin Khan; Salman A. Alrokayan; M. Alhoshan; M. S. Alsalhi

    2011-01-01

    This paper reports the optical and electrical properties of electrochemically deposited polyaniline (PANI)/cerium oxide (CeO2) hybrid nano-composite film onto indium-fin-oxide (ITO) glass substrate. UV-visible spectroscopy and I-V characteristic were performed to study the optical and electrical parameters of the electrochemically deposited film. The film exhibited a strong absorption below 400 nm (3.10 eV) with a well defined absorbance peak at around 285 nm (4.35 eV). The estimated band gap of the CeO2 sample was 3.44 eV, higher than bulk CeO2 powder (Eg = 3.19 eV) due to the quantum confinement effect. Optical and electrochemical characteristics indicated that the electrical properties of PANI/CeO2 hybrid nanocomposite film are dominated by PANI doping.

  7. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    Science.gov (United States)

    Acharya, Narendra; Wolak, Matthäus A.; Tan, Teng; Lee, Namhoon; Lang, Andrew C.; Taheri, Mitra; Cunnane, Dan; Karasik, Boris. S.; Xi, X. X.

    2016-08-01

    In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc) and high critical current density (Jc). The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  8. Polythiophene-gold nanoparticle hybrid systems: Langmuir-Blodgett assembly of nanostructured films

    Science.gov (United States)

    Jayaraman, Sundaramurthy; Yu, Liew Ting; Srinivasan, M. P.

    2013-03-01

    In this work, we demonstrate a simple method of synthesizing nanoscale polythiophene-gold nanoparticle (AuNP) hybrid systems assembled by the Langmuir-Blodgett (LB) method. Regio-regular poly(3-(2-methoxyethoxy)ethoxymethyl)thiophene-2,5-diyl (PMEEMT) and poly(3-dodecylthiophene) (PDDT) were employed as the polymeric constituents. The presence of PDDT improved the amphiphilicity of PMEEMT by addressing the phase separation that occurred due to convective hydrodynamic instability on the substrate. 4 layer stacks of 90% and 99% PMEEMT films exhibited uniform film structure with a significant reduction in phase separation. A detailed mechanism for minimization of the surface effect has been proposed based on the interaction of polythiophenes with the substrate. For the first time, an ex situ approach has been adopted to incorporate AuNPs into LB films without affecting the film morphology and uniformity. The incorporation of AuNPs into the polythiophene matrix, aided by the affinity of sulphur for gold, was strongly dependent on the molecular arrangement of the matrix, which in turn depended on the composition of the matrix. The hybrid polythiophene films exhibited enhanced conductivity and can be applied in sensors, photovoltaics and memory devices.In this work, we demonstrate a simple method of synthesizing nanoscale polythiophene-gold nanoparticle (AuNP) hybrid systems assembled by the Langmuir-Blodgett (LB) method. Regio-regular poly(3-(2-methoxyethoxy)ethoxymethyl)thiophene-2,5-diyl (PMEEMT) and poly(3-dodecylthiophene) (PDDT) were employed as the polymeric constituents. The presence of PDDT improved the amphiphilicity of PMEEMT by addressing the phase separation that occurred due to convective hydrodynamic instability on the substrate. 4 layer stacks of 90% and 99% PMEEMT films exhibited uniform film structure with a significant reduction in phase separation. A detailed mechanism for minimization of the surface effect has been proposed based on the interaction

  9. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    Directory of Open Access Journals (Sweden)

    Narendra Acharya

    2016-08-01

    Full Text Available In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc and high critical current density (Jc. The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  10. Langmuir and Langmuir-Blodgett films of hybrid amphiphiles with a polyoxometalate headgroup.

    Science.gov (United States)

    Wang, Xiao-Le; Wang, Yong-Liang; Miao, Wen-Ke; Hu, Min-Biao; Tang, Jing; Yu, Wei; Hou, Zhan-Yao; Zheng, Ping; Wang, Wei

    2013-06-04

    A hybrid was at first synthesized by a postfunctionalization of an aminomethane trisalkoxo-functionalized Anderson-type polyoxometalate (POM) encapsulated by three tetrabutylammonium ions using a 3,5-bis(tetradecyloxy)benzoic acid by amidation. Then the three TBA(+) counter cations were programmatically replaced by protons (H(+)) following a molecule-to-amphiphile conversion. In this way one hybrid and three POM-containing hybrid amphiphiles (PCHAs) were acquired by adjusting the number (n) of TBA(+) ions and number (3 - n) of H(+) ions (n = 3, 2, 1, and 0). These compounds can be spread onto a water surface to form a Langmuir monolayer film at the air-water interface. Surface pressure-molecular area measurements exhibit the TBA(+) (H(+)) number playing an important role in the forming ability and stability of Langmuir monolayer films. Also, the Langmuir-Blodgett (LB) technique has been used to transfer the monolayer film onto solid supports to fabricate solid multilayer films. It was found that the PCHA with three H(+) ions had the best Langmuir film-forming ability and thus formed stable LB films with a two-dimensional ordered structure. Our findings are instructive in fabricating and using solid films of the amphiphiles with POM headgroups.

  11. Suspended hybrid films assembled from thiol-capped gold nanoparticles.

    Science.gov (United States)

    Zhang, Yu Xin; Huang, Ming; Hao, Xiao Dong; Dong, Meng; Li, Xin Lu; Huang, Jia Mu

    2012-01-01

    In this work, we explored the formation processes of suspended hybrid thin films of thiol-capped Au nanoparticles (AuNPs) inside metal oxide tubular structures. We found that a balance between in-film interactions of the AuNPs and boundary interactions with metal oxides is a key in making these special organic-inorganic thin films. The hybrid films process many processing advantages and flexibilities, such as controllable film thickness, interfacial shape and inter-AuNPs distance, tuning of particle sizes, thiol population, chain lengths, and other new properties by introducing functional groups to thiol chains. Among their many unique features, the assembly-disassembly property may be useful for future on-off or store-release applications.

  12. Plasmon hybridization in silver nanoislands as semishell arrays coupled to a thin metallic film

    DEFF Research Database (Denmark)

    Maaroof, Abbas; Nygaard, Jens Vinge; Sutherland, Duncan S

    2011-01-01

    interactions for such a nanosystem exhibits two pronounced resonances and interpret the coupling in terms of Fano resonances. The higher energy resonance is identified as a symmetric hybridization mode between localized plasmon resonances in the island semishell array and surface plasmon polaritons...... in the metal film and while the lower energy resonance is identified as a corresponding anti-symmetric hybridization mode. Increasing the size of the particle arrays enhances and red shifts the resonances. We show that adding a dielectric spacer between the semishell island array and the metal film results...... in a red shifting of the resonances and introduce an additional high energy spectral peak. The effect of the spacer layer is interpreted as a reduced hybridization and the generation of additional localized surface plasmon resonances....

  13. Hybrid methyl green/cobalt-polyoxotungstate nanostructured films: Self-assembly, electrochemical and electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Hugo C.; Fernandes, Diana M., E-mail: diana.fernandes@fc.up.pt; Freire, Cristina, E-mail: acfreire@fc.up.pt

    2015-08-30

    Graphical abstract: Hybrid {MG/Co(PW9)2}{sub n} multilayer films were successfully prepared and exhibit W-based electrocatalytic activity towards reduction of nitrite and iodate anions. - Highlights: • Layer-by-layer hybrid films {MG/Co(PW_9)_2}{sub n} were sucessfully prepared. • UV–vis was used to monitor film build-up and showed regular stepwise film growth. • XPS confirmed sucessfull {MG/Co(PW_9)_2}{sub n} film fabrication. • Films showed excellent electrocatalytic activity towards nitrite and iodate reduction. - Abstract: Hybrid multilayer films were prepared by alternately depositing cationic dye methyl green (MG) and anionic sandwich-type polyoxometalate K{sub 10}[Co{sub 4}(H{sub 2}O){sub 2}(PW{sub 9}O{sub 34}){sub 2}] (Co(PW{sub 9}){sub 2}) via electrostatic layer-by-layer (LbL) self-assembly method. Film build-up was monitored by UV–vis spectroscopy which showed a regular stepwise growth. X-ray photoelectron spectroscopy data confirmed the successful fabrication of the hybrid films with MG-Co(PW{sub 9}){sub 2} composition and scanning electron microscopy images revealed a completely covered surface with a non-uniform distribution of the molecular species. Electrochemical characterization of films by cyclic voltammetry revealed two tungsten-based reduction processes in the potential range between −0.9 and −0.5 V due to W{sup VI} → W{sup V} in Co(PW{sub 9}){sub 2}. Studies with the redox probes, [Fe(CN){sub 6}]{sup 3−/4−} and [Ru(NH{sub 3}){sub 6}]{sup 3+/2+}, revealed that not only the electrostatic attractions or repulsions have effects on the kinetics of the probe reactions, but also the film thickness. Additionally, the {MG/Co(PW_9)_2}{sub n} multilayer films exhibit efficient W-based electrocatalytic activity towards reduction of nitrite and iodate.

  14. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    Science.gov (United States)

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  15. TiN films fabricated by reactive gas pulse sputtering: A hybrid design of multilayered and compositionally graded structures

    Science.gov (United States)

    Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning

    2016-12-01

    Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.

  16. Error rate performance of Hybrid QAM-FSK in OFDM systems exhibiting low PAPR

    Institute of Scientific and Technical Information of China (English)

    LATIF Asma; GOHAR Nasir D.

    2009-01-01

    Multicarrier transmission systems like orthogonal frequency division multiplexing (OFDM) support high data rate and generally require no equalization at the receiver, making them simple and efficient. This paper studies the design and performance analysis of a hybrid modulation system derived from multi-frequency and MQAM signals, employed in OFDM. This modulation scheme has better bit error rate (BER) performance and exhibits low PAPR. The proposed hybrid modulator reduces PAPR while keep-ing the OFDM transceiver design simple, as it does not require any side information or a little side Information (only one bit) to be sent and is efficient for arbitrary number of subcarriers. The results of the implementations are compared with those of conventional OFDM system.

  17. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    Science.gov (United States)

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  18. Elaboration of ammonia gas sensors based on electrodeposited polypyrrole--cobalt phthalocyanine hybrid films.

    Science.gov (United States)

    Patois, Tilia; Sanchez, Jean-Baptiste; Berger, Franck; Fievet, Patrick; Segut, Olivier; Moutarlier, Virginie; Bouvet, Marcel; Lakard, Boris

    2013-12-15

    The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to ammonia, polymer-based gas sensors exhibited a decrease in conductance due to the electron exchange between ammonia and sensitive polymer-based layer. The characteristics of the gas sensors (response time, response amplitude, reversibility) were studied for ammonia concentrations varying from 1 ppm to 100 ppm. Polypyrrole/phthalocyanine films exhibited a high sensitivity and low detection limit to ammonia as well as a fast and reproducible response at room temperature. The response to ammonia exposition of polypyrrole films was found to be strongly enhanced thanks to the incorporation of the phthalocyanine in the polypyrrole matrix. © 2013 Elsevier B.V. All rights reserved.

  19. Polythiophene-gold nanoparticle hybrid systems: Langmuir-Blodgett assembly of nanostructured films.

    Science.gov (United States)

    Jayaraman, Sundaramurthy; Yu, Liew Ting; Srinivasan, M P

    2013-04-01

    In this work, we demonstrate a simple method of synthesizing nanoscale polythiophene-gold nanoparticle (AuNP) hybrid systems assembled by the Langmuir-Blodgett (LB) method. Regio-regular poly(3-(2-methoxyethoxy)ethoxymethyl)thiophene-2,5-diyl (PMEEMT) and poly(3-dodecylthiophene) (PDDT) were employed as the polymeric constituents. The presence of PDDT improved the amphiphilicity of PMEEMT by addressing the phase separation that occurred due to convective hydrodynamic instability on the substrate. 4 layer stacks of 90% and 99% PMEEMT films exhibited uniform film structure with a significant reduction in phase separation. A detailed mechanism for minimization of the surface effect has been proposed based on the interaction of polythiophenes with the substrate. For the first time, an ex situ approach has been adopted to incorporate AuNPs into LB films without affecting the film morphology and uniformity. The incorporation of AuNPs into the polythiophene matrix, aided by the affinity of sulphur for gold, was strongly dependent on the molecular arrangement of the matrix, which in turn depended on the composition of the matrix. The hybrid polythiophene films exhibited enhanced conductivity and can be applied in sensors, photovoltaics and memory devices.

  20. Film and Art : On the German Expressionist and the Disney Exhibitions

    Directory of Open Access Journals (Sweden)

    Penny Starfield

    2007-01-01

    Full Text Available Le Cinéma expressionniste allemand, La Cinémathèque française, curators : Marianne de Fleury and Laurent Mannoni, October 26, 2006-January 22, 2007.Il était une fois Walt Disney, aux sources de l’art des studios Disney, curator : Bruno Girveau, Le Grand Palais, September 16, 2006-January 15, 2007 ; Musée des Beaux-Arts, Montréal, 8 March-24 June 2007. Two major exhibitions in Paris delve into the relationship between the artistic and the film worlds. The German Expressionists in Film celebrat...

  1. Sol-gel-derived Hybrid Conductive Films for Electro magnetic Interference (EMI) Shielding

    Institute of Scientific and Technical Information of China (English)

    XIE Jiyuan; GUO Wenfeng; WANG Jianzhong

    2011-01-01

    The conductive nano-sized zinc particles were embedded in an insulating amorphous silica matrix, and the hybrid films were obtained by a sol-gel method. The stable hybrid sol solution was prepared by hydrolysis and condensation of Methyltrimethoxysilane (MTMS) with a one-step acidic catalyst process. Hybrid films were dip-coated on silicon wafer and cured at 120 ℃ for 60minutes. The structural characterization of hybrid films were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray diffraetion (XRD). The electrical properties of the films were examined with four-point probe. Hybrid films showed to be relatively dense, uniform and defect free. The conductivity of hybrid films was varied with the different contents of zinc nanoparticles and the thickness of the film. It was observed that there was the percolation threshold for the film's electrical properties.

  2. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    Science.gov (United States)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  3. Shape changing thin films powered by DNA hybridization

    Science.gov (United States)

    Shim, Tae Soup; Estephan, Zaki G.; Qian, Zhaoxia; Prosser, Jacob H.; Lee, Su Yeon; Chenoweth, David M.; Lee, Daeyeon; Park, So-Jung; Crocker, John C.

    2017-01-01

    Active materials that respond to physical and chemical stimuli can be used to build dynamic micromachines that lie at the interface between biological systems and engineered devices. In principle, the specific hybridization of DNA can be used to form a library of independent, chemically driven actuators for use in such microrobotic applications and could lead to device capabilities that are not possible with polymer- or metal-layer-based approaches. Here, we report shape changing films that are powered by DNA strand exchange reactions with two different domains that can respond to distinct chemical signals. The films are formed from DNA-grafted gold nanoparticles using a layer-by-layer deposition process. Films consisting of an active and a passive layer show rapid, reversible curling in response to stimulus DNA strands added to solution. Films consisting of two independently addressable active layers display a complex suite of repeatable transformations, involving eight mechanochemical states and incorporating self-righting behaviour.

  4. Applications of HTSC films in hybrid optoelectronic devices

    Science.gov (United States)

    Pavuna, Davor

    1992-03-01

    An overview is given of potential applications of high-Tc superconductors (HTSC) in the context of hybrid optoelectronic technology. The main requirements are described for the in situ growth of epitaxial YBa2Cu3O(7-delta) (YBCO) films on SrTiO3 and discuss the properties of YBCO layers grown on Si and GaAs substrates with intermediate, conducting indium-tin-oxide buffer layers. The performances of the microbridge and the meander type of HTSC bolometer are compared, and several concepts are discussed that may become relevant for future hybrid optoelectronic technology.

  5. On hydrophilicity improvement of the porous anodic alumina film by hybrid nano/micro structuring

    Science.gov (United States)

    Wang, Weichao; Zhao, Wei; Wang, Kaige; Wang, Lei; Wang, Xuewen; Wang, Shuang; Zhang, Chen; Bai, Jintao

    2017-09-01

    In both, laboratory and industry, tremendous attention is paid to discover an effective technique to produce uniform, controllable and (super) hydrophilic surfaces over large areas that are useful in a wide range of applications. In this investigation, by combing porous anodic alumina (PAA) film with nano-structures and microarray of aluminum, the hydrophilicity of hybrid nano-micro structure has been significantly improved. It is found some factors can affect the hydrophilicity of film, such as the size and aspect ratio of microarray, the thickness of nano-PAA film etc. Comparing with pure nano-PAA films and microarray, the hybrid nano-micro structure can provide uniform surface with significantly better hydrophilicity. The improvement can be up to 84%. Also, this technique exhibits good stability and repeatability for industrial production. By optimizing the thickness of nano-PAA film and aspect ratio of micro-structures, super-hydrophilicity can be reached. This study has obvious prospect in the fields of chemical industry, biomedical engineering and lab-on-a-chip applications.

  6. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.

    Science.gov (United States)

    Song, Na; Jiao, Dejin; Cui, Siqi; Hou, Xingshuang; Ding, Peng; Shi, Liyi

    2017-01-25

    An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer (LbL) assembly of graphene oxide (GO) and nanofibrillated cellulose (NFC) on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process. The resulting NFC/reduced graphene oxide (RGO) hybrid film reveals an orderly hierarchical structure in which the RGO nanosheets exhibit a high degree of orientation along the in-plane direction. The assembly cycles dramatically increase the in-plane thermal conductivity (λX) of the hybrid film to 12.6 W·m(-1)·K(-1), while the cross-plane thermal conductivity (λZ) shows a lower value of 0.042 W·m(-1)·K(-1) in the hybrid film with 40 assembly cycles. The thermal conductivity anisotropy reaches up to λX/λZ = 279, which is substantially larger than that of similar polymeric nanocomposites, indicating that the LbL assembly on a flexible NFC substrate is an efficient technique for the preparation of polymeric nanocomposites with improved heat conducting property. Moreover, the layered hybrid film composed of 1D NFC and 2D RGO exhibits synergetic mechnical properties with outstanding flexibility and a high tensile strength (107 MPa). The combination of anisotropic thermal conductivity and superior mechanical performance may facilitate the applications in thermal management.

  7. Modelling of an ultra-thin silicatene/silicon-carbide hybrid film

    Science.gov (United States)

    Schlexer, Philomena; Pacchioni, Gianfranco

    2016-09-01

    Recently, a well-ordered silicatene/silicon-carbide hybrid thin-film supported on Ru(0 0 0 1) has been reported (2015 Surf. Sci. 632 9-13). The thin-film consist of a monolayer of corner sharing (SiO4)-tetrahedra on top of a (Si2C3) monolayer supported on the Ru(0 0 0 1) surface. This silicatene/silicon-carbide hybrid system may exhibit interesting properties for nano-technological applications and represents another example of a 2D material. We explore the physical and chemical properties of the silicatene/silicon-carbide thin-film using DFT and compare the vibrational spectra with existing experimental data. The characteristics of the silicatene/silicon-carbide hybrid system are compared with those of the bilayer-silicatene (pure SiO2 film). We found large differences in the adsorption modes of the two thin-films on the Ru(0 0 0 1) support. Whereas the bilayer-silicatene physisorbs on the Ru(0 0 0 1) surface, the silicatene/silicon-carbide layer binds via chemisorption. The chemical properties of the two thin-films were probed by adsorption of H atoms at various positions, as well as by Al-doping and the formation of hydroxyl groups (Al-OH). These results show that despite the similar structure of the top layer and the identical metal support (Ru), the mixed silicatene/silicon-carbide system behaves quite differently from the pure silica two-layer counterpart.

  8. In Situ Carbonized Cellulose-Based Hybrid Film as Flexible Paper Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2016-01-20

    Flexible free-standing carbonized cellulose-based hybrid film is integrately designed and served both as paper anode and as lightweight current collector for lithium-ion batteries. The well-supported heterogeneous nanoarchitecture is constructed from Li4Ti5O12 (LTO), carbonized cellulose nanofiber (C-CNF) and carbon nanotubes (CNTs) using by a pressured extrusion papermaking method followed by in situ carbonization under argon atmospheres. The in situ carbonization of CNF/CNT hybrid film immobilized with uniform-dispersed LTO results in a dramatic improvement in the electrical conductivity and specific surface area, so that the carbonized paper anode exhibits extraordinary rate and cycling performance compared to the paper anode without carbonization. The flexible, lightweight, single-layer cellulose-based hybrid films after carbonization can be utilized as promising electrode materials for high-performance, low-cost, and environmentally friendly lithium-ion batteries.

  9. Electrodeposition of inorganic/organic hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tsukasa [Center of Innovative Photovoltaic Systems, Gifu University (Japan); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Zhang, Jingbo; Komatsu, Daisuke; Sawatani, Seiichi; Minoura, Hideki [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Pauporte, Thierry; Lincot, Daniel [Laboratoire d' Electrochimie et Chimie Analytique, Ecole Nationale Superieure de Chimie de Paris 11 rue P. et M. Curie, 75231 Paris cedex 05 (France); Oekermann, Torsten [Institut fuer Physikalische Chemie und Elektrochemie, Universitaet Hannover (Germany); Schlettwein, Derck [Institut fuer Angewandte Physik, Justus-Liebig-Universitaet Giessen (Germany); Tada, Hirokazu [Institute for Molecular Science, Higashiyama (Japan); Woehrle, Dieter [Institut fuer Organische und Makromolekulare Chemie, Universitaet Bremen (Germany); Funabiki, Kazumasa; Matsui, Masaki [Department of Materials Science and Technology, Faculty of Engineering, Gifu University (Japan); Miura, Hidetoshi [Chemicrea Inc., Tokyo (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology Takayama-cho 8916-5, Ikoma (Japan)

    2009-01-09

    Electrodeposition of inorganic compound thin films in the presence of certain organic molecules results in self-assembly of various hybrid thin films with new properties. Examples of new discoveries by the authors are reviewed, taking cathodic formation of a ZnO/dye hybrid as the leading example. Hybridization of eosinY leads to the formation of highly oriented porous crystalline ZnO as the consequence of dye loading. The hybrid formation is a highly complicated process involving complex chemistry of many molecular and ionic constituents. However, electrochemical analyses of the relevant phenomena indicate the possibility of reaching a comprehensive understanding of the mechanism, giving us the chance to further develop them into industrial technologies. The porous crystals are ideal for photoelectrodes in dye-sensitized solar cells. As the process also permits the use of non-heat-resistant substrates, the technology can be applied for the development of colorful and light-weight plastic solar cells. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  10. Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films.

    Science.gov (United States)

    Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Chao; Lv, Aijie; Zhang, Jingjing; Xu, Guiying; Qin, Menghua

    2014-02-15

    Homogenous cellulose/laponite aqueous dispersions and composite films were respectively prepared from the pre-cooling NaOH/urea aqueous systems. Rheological measurements of aqueous dispersions demonstrated a sol-to-gel transition triggered by loading of laponite, reflecting a cross-linkage effect of cellulose/laponite hybrids. Similarly, based on scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) characterizations, as well as mechanical and thermal measurements, the cross-linkage effect of cellulose/laponite hybrids was also found in solid films, which played an important role in improving the tensile strength (σb) of composite films. For instance, the σb exhibited a largest enhancement up to 75.7% at a critical laponite content of 0.100 wt%, indicating that the property of composite film was closely related with the dispersion and interaction state of laponite, i.e. its content in cellulose matrix. These results were expected to provide significant information for fabrication and utility of cellulose-based materials.

  11. Preparation and characterization of polyimide/silica hybrid films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-yan; ZENG Shu-jin; DONG Tie-quan; ZHOU Sheng; FAN Yong; ZHANG Xiao-hong; LEI Qing-quan

    2006-01-01

    A kind of hybrid polyimide films was prepared by synthesizing poly( amic acid ) /Silica matrix resin through sol-gel technique and then followed by positing it on a silex glass plate and drying at high temperature.The effect of silica content on the corona-resistant property of the films was studied. The miscibility between the organic and inorganic phases and its effect on the corona-resistant property were investigated with aminopropyltriethoxysilane, which served as a coupling agent, added into the polyimide composite system. The chemical structure and the surface morphology of the films were characterized by FTIR and AFM respectively. The corona-resistant property of the films was tested by a rod-plate electrode. It proved that the corona-resistant property was enhanced with silica content. It also turned ont that the improvement of the miscibility between the two phases due to the presence of covalent force as a result of the addition of the coupling agent had, to some extent,effect on the corona-resistant property of the films. Furthermore, a theory on the corona-resistant property was put forward preliminarily.

  12. PMMA–SiO{sub 2} hybrid films as gate dielectric for ZnO based thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, M.D. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, Querétaro, Qro. 76001 (Mexico); Quevedo-López, M.A. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75083 (United States); Ramírez-Bon, R., E-mail: rrbon@qro.cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, Querétaro, Qro. 76001 (Mexico)

    2014-08-01

    In this paper we report a low temperature sol–gel deposition process of PMMA–SiO{sub 2} hybrid films, with variable dielectric properties depending on the composition of the precursor solution, for applications to gate dielectric layers in field-effect thin film transistors (FE-TFT). The hybrid layers were processed by a modified sol–gel route using as precursors Tetraethyl orthosilicate (TEOS) and Methyl methacrylate (MMA), and 3-(Trimethoxysilyl)propyl methacrylate (TMSPM) as the coupling agent. Three types of hybrid films were processed with molar ratios of the precursors in the initial solution 1.0: 0.25, 0.50, 0.75: 1.0 for TEOS: TMSPM: MMA, respectively. The hybrid films were deposited by spin coating of the hybrid precursor solutions onto p-type Si (100) substrates and heat-treated at 90 °C for 24 h. The chemical bonding in the hybrid films was analyzed by Fourier Transform Infrared Spectroscopy to confirm their hybrid nature. The refractive index of the hybrid films as a function of the TMSPM coupling agent concentration, were determined from a simultaneous analysis of optical reflectance and spectroscopic ellipsometry experimental data. The PMMA–SiO{sub 2} hybrid films were studied as dielectric films using metal-insulator-metal structures. Capacitance–Voltage (C–V) and current–voltage (I–V) electrical methods were used to extract the dielectric properties of the different hybrid layers. The three types of hybrid films were tested as gate dielectric layers in thin film transistors with structure ZnO/PMMA–SiO{sub 2}/p-Si with a common bottom gate and patterned Al source/drain contacts, with different channel lengths. We analyzed the output electrical responses of the ZnO-based TFTs to determine their performance parameters as a function of channel length and hybrid gate dielectric layer. - Highlights: • PMMA–SiO{sub 2} hybrid films as dielectric material synthesized by sol–gel process at low temperature. • PMMA–SiO{sub 2

  13. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties

    OpenAIRE

    Aymonier, Cyril; Schlotterbeck, Ulf; Antonietti, Lydie; Zacharias, Philipp; Thomann, Ralf; Till, Joerg C.; Mecking, Stefan

    2002-01-01

    Hybrids of silver particles of 1 to 2 nm in size with highly branched amphiphilically modified polyethyleneimines adhere effectively to polar substrates providing environmentally friendly antimicrobial coatings.

  14. Hybrid enabled thin film metrology using XPS and optical

    Science.gov (United States)

    Vaid, Alok; Iddawela, Givantha; Mahendrakar, Sridhar; Lenahan, Michael; Hossain, Mainul; Timoney, Padraig; Bello, Abner F.; Bozdog, Cornel; Pois, Heath; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Kang, Byung Cheol; Isbester, Paul; Sendelbach, Matthew; Yellai, Naren; Dasari, Prasad; Larson, Tom

    2016-03-01

    Complexity of process steps integration and material systems for next-generation technology nodes is reaching unprecedented levels, the appetite for higher sampling rates is on the rise, while the process window continues to shrink. Current thickness metrology specifications reach as low as 0.1A for total error budget - breathing new life into an old paradigm with lower visibility for past few metrology nodes: accuracy. Furthermore, for advance nodes there is growing demand to measure film thickness and composition on devices/product instead of surrogate planar simpler pads. Here we extend our earlier work in Hybrid Metrology to the combination of X-Ray based reference technologies (high performance) with optical high volume manufacturing (HVM) workhorse metrology (high throughput). Our stated goal is: put more "eyes" on the wafer (higher sampling) and enable move to films on pattern structure (control what matters). Examples of 1X front-end applications are used to setup and validate the benefits.

  15. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, F34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. Black-Right-Pointing-Pointer We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. Black-Right-Pointing-Pointer We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV-visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V{sub oc} and short-circuit current density J{sub sc} are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  16. Active vibration control of hybrid smart structures featuring piezoelectric films and electrorheological fluids

    Science.gov (United States)

    Choi, Seung-Bok; Park, Yong-Kun; Cheong, ChaeCheon

    1996-05-01

    This paper presents a proof-of-concept investigation on an active vibration control of a hybrid smart structure (HSS) consisting of a piezoelectric film actuator (PFA) and an electro- rheological fluid actuator (ERFA). Firstly, an HSS beam is constructed by inserting a starch- based electro-rheological fluid into a hollow composite beam and perfectly bonding two piezoelectric films on the upper and lower surfaces of the structure as an actuator and as a sensor, respectively. As for the PFA, a neuro-sliding mode controller (NSC) incorporating neural networks with the concept of sliding mode control is formulated. On the other hand, the control scheme for the ERFA is developed as a function of excitation frequencies on the basis of field-dependent frequency responses. An experimental implementation for the PFA and ERFA is then established to perform an active vibration control of the HSS in the transient and forced vibrations. Both the increment of damping ratios and the suppression of tip deflections are evaluated in order to demonstrate control effectiveness of the PFA, the ERFA, and the hybrid actuation. The experimental results exhibit a superior ability of the hybrid actuation system to tailor elastodynamic responses of the HSS rather than a single class of actuation system alone.

  17. Multilevel organization in hybrid thin films for optoelectronic applications.

    Science.gov (United States)

    Vohra, Varun; Bolognesi, Alberto; Calzaferri, Gion; Botta, Chiara

    2009-10-20

    In this work we report two simple approaches to prepare hybrid thin films displaying a high concentration of zeolite crystals that could be used as active layers in optoelectronic devices. In the first approach, in order to organize nanodimensional zeolite crystals of 40 nm diameter in an electroactive environment, we chemically modify their external surface and play on the hydrophilic/hydrophobic forces. We obtain inorganic nanocrystals that self-organize in honeycomb electroluminescent polymer structures obtained by breath figure formation. The different functionalizations of the zeolite surface result in different organizations inside the cavities of the polymeric structure. The second approach involving soft-litography techniques allows one to arrange single dye-loaded zeolite L crystals of 800 nm of length by mechanical loading into the nanocavities of a conjugated polymer. Both techniques result in the formation of thin hybrid films displaying three levels of organization: organization of the dye molecules inside the zeolite nanochannels, organization of the zeolite crystals inside the polymer cavities, and micro- or nanostructuration of the polymer.

  18. Environmentally compatible solder materials for thick film hybrid assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Rejent, J.A.; Hernandez, C.L. [Sandia National Labs., Albuquerque, NM (United States). Materials and Process Sciences Center

    1997-02-01

    New soldering materials and processes have been developed over the last several years to address a variety of environmental issues. One of the primary efforts by the electronics industry has involved the development of alternative solders to replace the traditional lead-containing alloys. Sandia National Laboratories is developing such alternative solder materials for printed circuit board and hybrid microcircuit (HMC) applications. This paper describes the work associated with low residue, lead-free soldering of thick film HMC`s. The response of the different materials to wetting, aging, and mechanical test conditions was investigated. Hybrid test vehicles were designed and fabricated with a variety of chip capacitors and leadless ceramic chip carriers to conduct thermal, electrical continuity, and mechanical evaluations of prototype joints. Microstructural development along the solder and thick film interface, after isothermal solid state aging over a range of elevated temperatures and times, was quantified using microanalytical techniques. Flux residues on soldered samples were stressed (temperature-humidity aged) to identify potential corrosion problems. Mechanical tests also supported the development of a solder joint lifetime prediction model. Progress of this effort is summarized.

  19. Preparation and gas sensing properties of novel CdS-supramolecular organogel hybrid films

    Science.gov (United States)

    Xia, Huiyun; Peng, Junxia; Liu, Kaiqiang; Li, Chen; Fang, Yu

    2008-05-01

    A novel CdS-supramolecular organogel hybrid film with unusual morphology has been fabricated by exposing a supramolecular organogel film containing Cd(Ac)2 in an H2S atmosphere at room temperature. The organogel film was prepared by spin-coating a LMOG (low-molecular weight organic gelator) gel of dmethyl sulfoxide onto a glass plate substrate. XRD, SEM, EDS, TG-DTA, UV-vis, PL (photoluminescence) spectroscopy and PL lifetime measurements were employed to characterize the film. It was shown that the organogel film had functioned as a template to control the morphology of the final hybrid film. The quantities and sizes of the CdS particles embedded in the organogel films can be easily altered by varying the initial concentration of Cd(Ac)2. Importantly, the PL of the hybrid film is sensitive to the presence of some volatile organic monoamines and diamines. The selectivity and reversibility of the sensing process were investigated.

  20. 2D Organic-Inorganic Hybrid Thin Films for Flexible UV-Visible Photodetectors

    KAUST Repository

    Velusamy, Dhinesh Babu

    2017-02-13

    Flexible 2D inorganic MoS and organic g-CN hybrid thin film photodetectors with tunable composition and photodetection properties are developed using simple solution processing. The hybrid films fabricated on paper substrate show broadband photodetection suitable for both UV and visible light with good responsivity, detectivity, and reliable and rapid photoswitching characteristics comparable to monolayer devices. This excellent performance is retained even after the films are severely deformed at a bending radius of ≈2 mm for hundreds of cycles. The detailed charge transfer and separation processes at the interface between the 2D materials in the hybrid films are confirmed by femtosecond transient absorption spectroscopy with broadband capability.

  1. Enhanced luminescence properties of hybrid Alq{sub 3}/ZnO (organic/inorganic) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Cuba, M.; Muralidharan, G., E-mail: muraligru@gmail.com

    2014-12-15

    Pristine tris-(8-hydroxyquionoline)aluminum(Alq{sub 3}) and (Alq{sub 3}/ZnO hybrid) composites containing different weight percentages (5 wt%, 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt%) of ZnO in Alq{sub 3} were synthesized and coated on to a glass substrate using the dip coating method. The optimum concentration of ZnO in Alq{sub 3} films to get the best luminescence yield has been identified. XRD pattern reveals the amorphous nature of pure Alq{sub 3} film. The Alq{sub 3} films containing different weight percentages of ZnO show the presence of crystalline ZnO in Alq{sub 3}/ZnO composite films. The FTIR spectrum confirms the formation of quinoline with absorption in the region 600−800 cm{sup −1}. The hybrid Alq{sub 3}/ZnO composite films indicate the presence of Zn−O vibration band along with the corresponding Alq{sub 3} band. The band gap (HOMO–LUMO) of Alq{sub 3} film was calculated using absorption spectra and it is 2.87 eV for pristine films while it is 3.26 eV, 3.21 eV, 3.14 eV, 3.10 eV, 3.13 eV and 3.20 eV for the composite films containing 5–50 wt% of ZnO. The photoluminescence (PL) spectra of Alq{sub 3} films show a maximum PL intensity at 514 nm when excited at 390 nm. The ZnO incorporated composite films (Alq{sub 3}/ZnO) exhibit an emission in 485 nm and 514 nm. The composite films containing 30 wt% of ZnO exhibit maximum luminescence yield. - Highlights: • The pure Alq{sub 3} and Alq{sub 3}/ZnO composite were synthesized and coated on to a glass substrate using dip coating method. • Alq{sub 3}/ZnO composite film containing 30 wt% of ZnO exhibits two fold increases in luminescence intensity. • The shielding effect of ZnO on the Alq{sub 3} material suppresses the interactions among the host molecules in the excited state. • This leads to enhance the luminescence intensity in composite films.

  2. The Impact of Technology on Film Exhibition: the Slow Road to Digital Theatre

    Directory of Open Access Journals (Sweden)

    Dra. Jessica Izquierdo Castillo

    2009-01-01

    Full Text Available Digital Cinema is a demonstrable reality that has been in use for almost a decade. The process of digitalisation in the film industry has been mainly conditioned by technological and economic factors. In the case of the exhibition sector, the abovementioned factors have also caused a significant delay with regard to the first link in the chain and, more specifically, post-production. Through critical examination, this paper analyses the main opportunities and threats that digitalisation entails for the exhibition sector in what is considered to be a weak film industry, the case of the Spanish industry, where despite the advances achieved, caution prevails with regard to technological restructuring in the most important circles. We use empirical methodology to analyse the overall situation in the sector; our results suggest the key factors that explain the slow process followed by cinemas in the transition to digitalisation. Resumen: El cine digital es una realidad demostrable y en uso desde hace casi una década. Factores tecnológicos y económicos, principalmente, han sido los reguladores del proceso de digitalización de la industria cinematográfica. En el caso del sector de la exhibición, éstos han sido también los causantes de un retraso importante con respecto al primer eslabón de la cadena y, más concretamente, la posproducción. Este artículo busca exponer, a través de un examen crítico, un análisis de las principales oportunidades y amenazas que supone la digitalización para el sector de la exhibición en una industria cinematográfica considerada débil, como es la española, donde, a pesar de los avances obtenidos, impera la cautela entre los principales circuitos ante la reconversión tecnológica. A través del empleo de una metodología empírica de análisis del panorama sectorial, los resultados obtenidos sugieren las claves que explican el lento proceso que ha de conducir a la sala en la transición digital.

  3. Field Emission Properties of the Graphene Double-Walled Carbon Nanotube Hybrid Films Prepared by Vacuum Filtration and Screen Printing

    OpenAIRE

    Jinzhuo Xu; Tao Feng; Yiwei Chen; Zhuo Sun

    2013-01-01

    The graphene double-walled carbon nanotube (DWCNT) hybrid films were prepared by vacuum filtration and screen printing. Their electron field emission properties have been studied systematically. The electron emission properties of the hybrid films are much better than those of pure DWCNT films and pure graphene films. Comparing with the screen printed films, the vacuum filtered films have many advantages, such as lower turn-on field, higher emission current density, better uniformity, better ...

  4. Thin Film Solar Cells: Organic, Inorganic and Hybrid

    Science.gov (United States)

    Dankovich, John

    2004-01-01

    Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive

  5. PK20, a new opioid-neurotensin hybrid peptide that exhibits central and peripheral antinociceptive effects

    Directory of Open Access Journals (Sweden)

    Tsuda Yuko

    2010-12-01

    Full Text Available Abstract Background The clinical treatment of various types of pain relies upon the use of opioid analgesics. However most of them produce, in addition to the analgesic effect, several side effects such as the development of dependence and addiction as well as sedation, dysphoria, and constipation. One solution to these problems are chimeric compounds in which the opioid pharmacophore is hybridized with another type of compound to incease antinociceptive effects. Neurotensin-induced antinociception is not mediated through the opioid system. Therefore, hybridizing neurotensin with opioid elements may result in a potent synergistic antinociceptor. Results Using the known structure-activity relationships of neurotensin we have synthesized a new chimeric opioid-neurotensin compound PK20 which is characterized by a very strong antinociceptive potency. The observation that the opioid antagonist naltrexone did not completely reverse the antinociceptive effect, indicates the partial involvement of the nonopioid component in PK20 in the produced analgesia. Conclusions The opioid-neurotensin hybrid analogue PK20, in which opioid and neurotensin pharmacophores overlap partially, expresses high antinociceptive tail-flick effects after central as well as peripheral applications.

  6. Effect of the preparation procedure on the morphology of thin TiO₂ films and their device performance in small-molecule bilayer hybrid solar cells.

    Science.gov (United States)

    Unger, Eva L; Spadavecchia, Francesca; Nonomura, Kazuteru; Palmgren, Pål; Cappelletti, Giuseppe; Hagfeldt, Anders; Johansson, Erik M J; Boschloo, Gerrit

    2012-11-01

    Flat titanium dioxide films, to be used as the acceptor layer in bilayer hybrid solar cell devices, were prepared by spray-pyrolysis and by spin-casting. Both preparation methods resulted in anatase titania films with similar optical and electronic properties but considerably different film morphologies. Spray pyrolysis resulted in dense TiO₂ films grown onto and affected by the surface roughness of the underlying conducting glass substrates. The spin-casting preparation procedure resulted in nanoporous titania films. Hybrid solar cell devices with varying layer thickness of the small-molecule semiconducting dye TDCV-TPA were investigated. Devices built with spray-pyrolyzed titania substrates yielded conversion efficiencies up to 0.47%. Spin-cast titania substrates exhibited short circuits for thin dye layer thickness. For thicker dye layers the performance of these devices was up to 0.6% due to the higher interfacial area for charge separation of these nanoporous TiO₂ substrates.

  7. Optical absorption and electrical transport in hybrid TiO2 and polymer nanocomposite films

    Science.gov (United States)

    Zhou, Xi-Song; Li, Zheng; Wang, Ning; Lin, Yuan-Hua; Nan, Ce-Wen

    2006-06-01

    Hybrid nanofilms of poly(2-methoxy-5-ethylhexyloxy-1,4-phenylene)vinylene (MEH-PPV) and anatase-TiO2 nanoparticles were prepared. The results showed that the optical absorption spectra and electrical transport properties of the TiO2/MEH-PPV nanocomposite films were strongly dependent on the particle size and concentration of TiO2 nanoparticles in the hybrid films. In comparison with pure TiO2 nanofilms, the hybrid TiO2/MEH-PPV films presented a shift of the absorption edge to the lower-energy region, and an obvious nonlinear current-voltage characteristic.

  8. Preparation and characterization of perfluorosulfonic resin/titania hybrid transparent films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanate and perfluorosulfonic resin with the help of acetylacetone. The characterization was carried out by SEM,XRD,FT-IR,UV-Vis and TGA. The results showed that the perfluorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter de-creased with increasing weight ratio of titania to perfluorosulfonic resin.

  9. Preparation and characterization of perfluorosulfonic resin/titania hybrid transparent films

    Institute of Scientific and Technical Information of China (English)

    LI JianMei; XUE MinZhao; ZHANG YongMing; LIU YanGang

    2007-01-01

    Preparation and characterization of perfluoroaulfonic resin/titaniaorganic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanata and perfluorosulfonic resin with the help of acetylacetone. The charactarization was carried out by SEM, XRD, FT-IR, UV-Vis and TGA. The results showed that the perfiuorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter decreased with increasing weight ratio of titania to perfluorosulfonic resin.

  10. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  11. Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors

    Science.gov (United States)

    Zhang, Liling; Huang, Da; Hu, Nantao; Yang, Chao; Li, Ming; Wei, Hao; Yang, Zhi; Su, Yanjie; Zhang, Yafei

    2017-02-01

    A novel three-dimensional (3D) structure of reduced graphene oxide/polyaniline (rGO/PANI) hybrid films has been demonstrated for high-performance supercapacitors. Steamed water in closed vessels with high pressure and moderately high temperature is applied to facilely construct this structure. The as-designed rGO/PANI hybrid films exhibit a highest gravimetric specific capacitance of 1182 F g-1 at 1 A g-1 in the three-electrode test. The assembled symmetric device based on this structure shows both a high capacitance of 808 F g-1 at 1 A g-1 and a high gravimetric energy density (28.06 Wh kg-1 at a power density of 0.25 kW kg-1). Above all, this novel 3D structure constructed by steamed water regulation techniques shows excellent capacitance performance and holds a great promise for high-performance energy storage applications.

  12. An experimental study of nonlinear behaviour of capacitance in graphene/carbon nanotube hybrid films

    Science.gov (United States)

    Alsawafi, Suaad; Wang, Xiao; Jin, Jie; Song, Mo

    2016-06-01

    Graphene (G) and graphene oxide (GO)/carbon nanotubes (CNTs) hybrid films were fabricated as high performance electrode materials by a simple water solution casting method with different contents of single-wall CNT (SWCNT), multi wall CNT (MWCNT) and multi wall CNT with hydroxyl group (MWCNT-OH). The films with MWCNTs showed a layered, interconnected and well entangled structure at nano-scale. With increasing CNT contents, the capacitance of the G/MWCNT and GO/MWCNT films raised almost linearly and their resistance reduced. G/SWCNT and GO/SWCNT films did not form layered structures leading to a very low capacitance. Nonlinear behaviour of the capacitance with voltage has been observed in the G/MWCNT and GO/MWCNT hybrid films. The length and thickness of the hybrid film have significant influences on the capacitance. The capacitance and conductivity increase with increasing the thickness and decrease with increasing the length of the hybrid films. For the application of graphene/CNT hybrid films as electrodes, these characters could be taken into account.

  13. Nanoscale Hybrid Langmuir-Blodgett Films Based on Cerium-Substituted Heteropolymolybdate and Polyquinoline

    Institute of Scientific and Technical Information of China (English)

    王峥; 柳士忠; 杜祖亮; 胡振纲; 张洪杰

    2003-01-01

    Nanoscale hybrid organic/inorganic Langmuir-Blodgett films of cerium-substituted heteropolymolybdates(Ce-HPMo) and π-conjugated macromolecule poly(1,2-dihydro-2,2,4-trimethyl)quinoline(PQ) were obtained with auxiliary film-forming material stearic acid(SA) or octadecylamine(ODA). The surface pressure-area isotherms illuminate the formation of the hybrid LB films of PQ/ODA/Ce-HPMo and P Q/SA/Ce-HPMo. The different film-forming mechanism was discussed when the different auxiliary film-forming materials were used in the system. The absorption spectra indicate that the molecules of PQ and Ce-HPMo are incorporated into the LB films. Tapping-mode AFM image reveals a granular surface texture of nanosized Ce-substituted heteropolymolybdate. STM image shows that the conductivity is greatly improved after Ce-substituted heteropolymolybdates are incorporated in the films.

  14. Elliptical concave microlens arrays built in the photosensitive TiO2/ormosils hybrid films

    Science.gov (United States)

    Zhang, Xuehua; Que, Wenxiu; Javed, Hafiz M. Asif; Wei, Wei

    2014-11-01

    Photosensitive TiO2/organically modified silane hybrid thin films were prepared by a low-temperature sol-gel spin-coating technique. Optical and structural properties of the hybrid films with different titanium contents were characterized by prism coupling technique, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and thermal gravimetric analysis. Advantages for fabrication of elliptical concave micro-lens arrays (MLAs) based on the as-prepared hybrid films were demonstrated by combining polydimethylsiloxane soft mold with a UV-cured imprint technique. Results indicate that the as-prepared hybrid films have great applicability for the fabrication of photonic components, and the fabrication technique provides a simple and cost-effective way for the fabrication of the sol-gel elliptical concave MLAs.

  15. Improved Thermoelectric Performance in Flexible Tellurium Nanowires/Reduced Graphene Oxide Sandwich Structure Hybrid Films

    Science.gov (United States)

    Gao, Jie; Liu, Chengyan; Miao, Lei; Wang, Xiaoyang; Peng, Ying; Chen, Yu

    2016-11-01

    With a high flexibility and an adjustable electronic structure, reduced graphene oxide (RGO) is a potential candidate for flexible thermoelectric materials. Here, we report that flexible RGO/tellurium nanowires (Te NWs)/RGO sandwich structure hybrid films are prepared on glass fabrics through the drop-cast method. The addition of 20 wt.% Te NWs into a RGO matrix remarkably improves the Seebeck coefficient from 15.2 μV/K to 89.7 μV/K while maintaining relatively high electrical conductivity, thus resulting in a one order of magnitude higher power factor value compared with the Te NWs. According to the values of carrier mobility and concentration of hybrid films, the improved thermoelectric properties are presented because of the energy filtering effect on the interfaces in hybrid films. This article suggests that RGO/Te NWs/RGO hybrid films would be promising for fabricating flexible energy sources.

  16. Improved Thermoelectric Performance in Flexible Tellurium Nanowires/Reduced Graphene Oxide Sandwich Structure Hybrid Films

    Science.gov (United States)

    Gao, Jie; Liu, Chengyan; Miao, Lei; Wang, Xiaoyang; Peng, Ying; Chen, Yu

    2017-05-01

    With a high flexibility and an adjustable electronic structure, reduced graphene oxide (RGO) is a potential candidate for flexible thermoelectric materials. Here, we report that flexible RGO/tellurium nanowires (Te NWs)/RGO sandwich structure hybrid films are prepared on glass fabrics through the drop-cast method. The addition of 20 wt.% Te NWs into a RGO matrix remarkably improves the Seebeck coefficient from 15.2 μV/K to 89.7 μV/K while maintaining relatively high electrical conductivity, thus resulting in a one order of magnitude higher power factor value compared with the Te NWs. According to the values of carrier mobility and concentration of hybrid films, the improved thermoelectric properties are presented because of the energy filtering effect on the interfaces in hybrid films. This article suggests that RGO/Te NWs/RGO hybrid films would be promising for fabricating flexible energy sources.

  17. Incorporated W Roles on Microstructure and Properties of W-C:H Films by a Hybrid Linear Ion Beam Systems

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2013-01-01

    Full Text Available W-incorporated diamond-like carbon (W-C:H films were fabricated by a hybrid beams system consisting of a DC magnetron sputtering and a linear ion source. The W concentration (1.08~31.74 at.% in the film was controlled by varying the sputtering current. The cross-sectional topography, composition, and microstructure of the W-C:H films were investigated by SEM, XPS, TEM, and Raman spectroscopy. The mechanical and tribological properties of the films as a function of W concentration were evaluated by a stress-tester, nanoindentation, and ball-on-disk tribometer, respectively. The results showed that films mainly exhibited the feature of amorphous carbon when W concentration of the films was less than 4.38 at.%, where the incorporated W atoms would be bonded with C atoms and resulted in the formation of WC1-x nanoparticles. The W-C:H film with 4.38 at.% W concentration showed a minimum value of residual compressive stress, a higher hardness, and better tribological properties. Beyond this W concentration range, both the residual stress and mechanical properties were deteriorated due to the growth of tungsten carbide nanoparticles in the carbon matrix.

  18. Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties

    Science.gov (United States)

    Chen, Ge-Gu; Qi, Xian-Ming; Li, Ming-Peng; Guan, Ying; Bian, Jing; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2015-11-01

    A facile and environmentally friendly method was introduced to incorporate montmorillonite (MMT) as an inorganic phase into quaternized hemicelluloses (QH) for forming hemicellulose-based films. Two fillers, polyvinyl alcohol (PVA) and chitin nanowhiskers (NCH), were added into the hemicelluloses/MMT hybrid matrices to prepare hybrid films, respectively. The hybrid films were nanocomposites with nacre-like structure and multifunctional characteristics including higher strength and good oxygen barrier properties via the electrostatic and hydrogen bonding interactions. The addition of PVA and NCH could induce changes in surface topography, and effectively enhance mechanical strength, thermal stability, transparency, and oxygen barrier properties. The tensile strengths of the composite films FPVA(0.3), FPVA(0.5), and FNCH(0.8) were 53.7, 46.3, and 50.1 MPa, respectively, which were 171%, 134%, and 153% larger than the FQH-MMT film (19.8 MPa). The tensile strength, and oxygen transmission rate of QH-MMT-PVA film were better than those of quaternized hemicelluloses/MMT films. Thus, the proper filler is very important for the strength of the hybrid film. These results provide insights into the understanding of the structural relationships of hemicellulose-based composite films in coating and packaging application for the future.

  19. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films.

    OpenAIRE

    Cho, N; Li, F; Turedi, B; Sinatra, L; Sarmah, SP; Parida,, B.; Saidaminov, MI; Murali, B; Burlakov, VM; Goriely, Alain; Mohammed, OF; Wu, T; Bakr, OM

    2016-01-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microa...

  20. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    OpenAIRE

    Cho, Namchul; LI Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Murali, Banavoth; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F; Wu, Tom; Bakr, Osman M.

    2016-01-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microa...

  1. Hybrid Luminescent Films Obtained by Covalent Anchoring Terbium Complex to Silica-based Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Tb3+ ion and a sol-gel precursor has been synthesized and characterized by 1H NMR, and MS. Hybrid luminescent thin films consisting of organoterbium covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. Strong line emission of Tb3+ ion was observed from the hybrid luminescent films under UV excitation.

  2. Preparation and Photochromic Properties of Hybrid Thin Films Based on Heteropolyoxometallate and Polyacrylamide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    series of photochromic hybrid films were prepared through entrapping Dawson type tungsten heteropolyoxometallates (P2W18O626-) and molybdenum heteropolyoxometallate (P2Mo18O626-) into polyacrylamide matrix. FTIR results showed that the Dawson geometry of heteropolyoxometallates is still preserved inside the composites and strong coulombic interaction is built between heteropolyoxometallates and polyacrylamide via hydrogen bonding. Irradiated with ultraviolet light, the transparent films change from colorless to blue and show reversible photochromism.The bleaching process occurs when the films are in contact with air or O2 in the dark. The molybdenum heteropolyoxometallate hybrid film has higher photochromic efficiency and slower bleaching reaction than tungsten heteropolyoxometallate hybrid film. ESR results indicated that polyacrylamide is a hydrogen donor and the photoreduced process is in accordance with the radical mechanism.

  3. SnO2/TiO2 bilayer thin films exhibiting superhydrophilic properties

    Science.gov (United States)

    Talinungsang, Nibedita Paul; Purkayastha, Debarun Dhar

    2017-05-01

    Nanostructured thin films of TiO2, SnO2, and SnO2/TiO2 have been deposited by sol-gel method. The films are characterized by X-ray diffraction, wettability and optical properties. In the present work, we have achieved a way of converting hydrophilic to super-hydrophilic state by incorporating TiO2 buffer layer in between substrate and SnO2 film, which has its utility in anti-fogging surfaces. The decrease in contact angle of water over SnO2/TiO2 bilayer is attributed to the increase in roughness of the film as well as surface energy of the substrate.

  4. Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene-TiO2 hybrid films.

    Science.gov (United States)

    Zhu, Jiayi; Cao, Yang; He, Junhui

    2014-04-15

    We reported a novel approach to fabricate graphene-TiO2 hybrid films by combination of the layer-by-layer (LbL) assembly and the surface sol-gel (SSG) process. The reduced graphene oxide (RGO) nanosheets and films were characterized by means of transmission electron microscopy, Raman spectroscopy, UV-visible absorbance spectroscopy, contact angle/interface system, and four-point probe. It was found that the graphene-TiO2 hybrid film showed enhanced photoresponse performance compared with RGO thin film and TiO2 thin film. The photoresponse properties of hybrid films could be manipulated by variation of the cycle numbers of RGO LbL assembly and titanium precursor SSG process. Photoinduced superhydrophility of the hybrid film was shown under broadband light illumination. The obtained transparent, superhydrophilic and conductive graphene-TiO2 hybrid film showed excellent photoresponse, antifogging, and antistatic behaviors.

  5. Tailor-made oxide architectures attained by molecularly permeable metal-oxide organic hybrid thin films.

    Science.gov (United States)

    Sarkar, Debabrata; Taffa, Dereje Hailu; Ishchuk, Sergey; Hazut, Ori; Cohen, Hagai; Toker, Gil; Asscher, Micha; Yerushalmi, Roie

    2014-08-21

    Tailor-made metal oxide (MO) thin films with controlled compositions, electronic structures, and architectures are obtained via molecular layer deposition (MLD) and solution treatment. Step-wise formation of permeable hybrid films by MLD followed by chemical modification in solution benefits from the versatility of gas phase reactivity on surfaces while maintaining flexibility which is more common at the liquid phase.

  6. Preparation and characterization of cellulose acetate organic/inorganic hybrid films

    Science.gov (United States)

    Saeed S. Shojaie; Timothy G. Rials; Stephen S. Kelley

    1995-01-01

    A series of organic/inorganic hybrid (OIH) films were prepared using cellulose acetate (CA) as the organic component and tetraethyl orthosilicate (TEOS) as the inorganic component. The chemical, morphological, and mechanical properties of these films were evaluated with a variety of analytical techniques. The results of these evaluations showed that crosslinked CA OIH...

  7. Electrocatalytic Organic-Inorganic Hybrid Films and Their Applications in Chemical Sensors and Biosensors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ In this report, we will present the organic-inorganic hybrid molecular films prepared in our group and their applications in chemical sensors and biosensors.Many types of multi-layered films have been prepared in an alternatively assembled organic-inorganic and layer-by-layer manner. We will focus on the alternatively organized organic surfactant and metal-complex films and their conversion into electrocatalytically active films. Especially, we will demonstrate the preparation of bifunctional films for the detection of two different but correlated species, such as nitric oxide and oxygen, in biomedia.

  8. Electrocatalytic Organic-Inorganic Hybrid Films and Their Applications in Chemical Sensors and Biosensors

    Institute of Scientific and Technical Information of China (English)

    LI; XiaoYuan

    2001-01-01

    In this report, we will present the organic-inorganic hybrid molecular films prepared in our group and their applications in chemical sensors and biosensors.Many types of multi-layered films have been prepared in an alternatively assembled organic-inorganic and layer-by-layer manner. We will focus on the alternatively organized organic surfactant and metal-complex films and their conversion into electrocatalytically active films. Especially, we will demonstrate the preparation of bifunctional films for the detection of two different but correlated species, such as nitric oxide and oxygen, in biomedia.  ……

  9. Electrical properties of films of zinc oxide nanoparticles and its hybrid with reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, K. Priya; Bramhaiah, K.; John, Neena S., E-mail: jsneena@cnsms.res.in [Center for Nano and Soft Matter Sciences, P. B. No. 1329, Jalahalli, Bangalore-560013 (India)

    2016-05-23

    Free-standing films of ZnO nanoparticles (NPs) and reduced graphene oxide (rGO)-ZnO NPs hybrid are prepared at a liquid/liquid interface. The films are characterized by UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy. ZnO film consists of spherical aggregated NPs while the hybrid film contains folded sheets of rGO with embedded ZnO NPs. Electrical properties of the films and its photoresponse in presence of UV radiation are investigated using current sensing atomic force microscopy (CSAFM) at nanoscale and bulk measurements using two probe methods. Enhancement in photocurrent is observed in both cases and the current imaging reveals an inhomogeneous contribution by different ZnO grains in the film.

  10. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film.

    Science.gov (United States)

    Lin, Kuo Chiang; Lin, Yu Ching; Chen, Shen Ming

    2012-01-07

    A simple method to immobilize poly(neutral red) (PNR) and flavin adenine dinucleotide (FAD) hybrid film (PNR/FAD) by cyclic voltammetry is proposed. The PNR/FAD hybrid film can be easily prepared on an electrode surface involving electropolymerization of neutral red (NR) monomers and the electrostatic interaction between the positively charged PNR and the negatively charged FAD. It exhibits electroactive, stable, surface-confined, pH-dependent, nano-sized, and compatible properties. It provides good electrocatalytic properties to various species. It shows a sensitivity of 5.4 μA mM(-1) cm(-2) and 21.5 μA mM(-1) cm(-2) for hydrogen peroxide (H(2)O(2)) and nicotinamide adenine dinucleotide (NADH) with the linear range of 0.1 μM-39 mM and 5 × 10(-5) to 2.5 × 10(-4) M, respectively. It shows another linear range of 48.8-355.5 mM with the sensitivity of 12.3 μA mM(-1) cm(-2) for H(2)O(2). In particular, the PNR/FAD hybrid film has potential to replace some hemoproteins to be a cathode of biofuel cells and provide the biosensing system for glucose and ethanol.

  11. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  12. Highly Luminescent Hybrid SiO2-Coated CdTe Quantum Dots Retained Initial Photoluminescence Efficiency in Sol-Gel SiO2 Film.

    Science.gov (United States)

    Sun, Hongsheng; Xing, Yugui; Wu, Qinan; Yang, Ping

    2015-02-01

    A highly luminescent silica film was fabricated using tetraethyl orthosilicate (TEOS) and 3-aminopropyltrimethoxysilane (APS) through a controlled sol-gel reaction. The pre-hydrolysis of TEOS and APS which resulted in the mixture of TEOS and APS in a molecular level is a key for the formation of homogenous films. The aminopropyl groups in APS play an important role for obtaining homogeneous film with high photoluminescence (PL). Red-emitting hybrid SiO2-coated CdTe nano-crystals (NCs) were fabricated by a two-step synthesis including a thin SiO2 coating via a sol-gel process and a subsequent refluxing using green-emitting CdTe NCs. The hybrid SiO2-coated CdTe NCs were embedded in a functional SiO2 film via a two-step process including adding the NCs in SiO2 sol with a high viscosity and almost without ethanol and a subsequent spinning coating. The hybrid SiO2-coated CdTe NCs retained their initial PL efficiency (54%) in the film. Being encapsulated with the hybrid NCs in the film, no change on the absorption and PL spectra of red-emitting CdTe NCs (632 nm) was observed. This indicates the hybrid NCs is stable enough during preparation. This phenomenon is ascribed to the controlled sol-gel process and a hybrid SiO2 shell on CdTe NCs. Because these films exhibited high PL efficiency and stability, they will be utilizable for potential applications in many fields.

  13. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  14. Unusual dynamic dewetting behavior of smooth perfluorinated hybrid films: potential advantages over conventional textured and liquid-infused perfluorinated surfaces.

    Science.gov (United States)

    Urata, Chihiro; Masheder, Benjamin; Cheng, Dalton F; Hozumi, Atsushi

    2013-10-08

    From a viewpoint of reducing the burden on the environment and human health, an alternative method for preparing liquid-repellent surfaces without relying on the long perfluorocarbons (C((X-1)/2)F(X), X ≥ 17) has been strongly demanded lately. In this study, we have successfully demonstrated that dynamic dewettability toward various probe liquids (polar and nonpolar liquids with high or low surface tension) can be tuned by not only controlling surface chemistries (surface energies) but also the physical (solid-like or liquid-like) nature of the surface. We prepared smooth and transparent organic-inorganic hybrid films exhibiting unusual dynamic dewetting behavior toward various probe liquids using a simple sol-gel reaction based on the co-hydrolysis and co-condensation of a mixture including a range of perfluoroalkylsilanes (FASX, C((X-1)/2)F(X)CH2CH2Si(OR)3, where X = 3, 9, 13, and 17) and tetramethoxysilane (Si(OCH3)4, TMOS). Dynamic contact angle (CA) and substrate tilt angle (TA) measurements confirmed that our FASX-hybrid films exhibited excellent dynamic dewetting properties and were mostly independent of the length of perfluoroalkyl (Rf) groups. For example, 10 μL droplets of ultralow surface tension liquids (e.g., diethyl ether (γ = 16.26 dyn/cm) and n-pentane (γ = 15.51 dyn/cm)) could move easily on our FAS9-, FAS13-, and FAS17-hybrid film surfaces at low substrate TAs (dynamic dewetting behavior appeared only when TMOS molecules were added to the precursor solutions; we assume this is due to co-condensed TMOS-derived silica species working as spacers between the neighboring Rf chains, enabling them to rotate freely and in doing so provide a surface with liquid-like properties. This led to the distinguished dynamic dewettability of our hybrid films, regardless of the small static CAs. Our FASX-hybrid films also displayed excellent chemical and physical durability against thermal stress (~250 °C), high-temperature (150 °C) oil vapor, and various

  15. Improved performances of AlN/polyimide hybrid film and its application in redistribution layer

    Science.gov (United States)

    Liu, Zhe; Ding, Guifu; Luo, Jiangbo; Lu, Wen; Zhao, Xiaolin; Cheng, Ping; Wang, Yanlei

    2016-09-01

    The AlN/polyimide (PI) hybrid film was studied as the dielectric layer in the redistribution layer (RDL) in this work. The incorporation of the AlN into the PI matrix was achieved by mechanical ball-milling process. The spin-coating process was used to fabricate the AlN/PI hybrid film, which is compatible with micro-electro-mechanical system (MEMS) technology for fabricating RDL. The AlN/PI hybrid film was characterized by Fourier transform infrared (FTIR) spectrum and thermogravimetric analysis (TGA). The effect of the AlN content on the thermal stability, thermal expansion coefficient, hardness and water adsorption of the AlN/PI hybrid film was studied. The results indicated that the addition of AlN nanoparticles improved the thermal stability and hardness, but decreased the thermal expansion coefficient and water absorption of the pure PI film. As an example of its typical application, the AlN/PI hybrid film with 8 wt.% AlN was patterned using micromachining technology and used as the dielectric layer in RDL successfully.

  16. Experimental investigation of circular Bragg phenomenon exhibited by a mirror-backed chiral sculptured thin film

    CERN Document Server

    Erten, Sema; Graham, Christian M; Lakhtakia, Akhlesh

    2015-01-01

    Experimentation with obliquely incident light established that all four circular reflectances of a chiral sculptured thin film backed by a metallic mirror contain strong evidence of the circular Bragg phenomenon. When the mirror is removed, strong evidence of that phenomenon is found only in the spectrum of the co-polarized and co-handed reflectance.

  17. Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films

    Science.gov (United States)

    Tzeng, Yonhua; Yeh, Shoupu; Fang, Wei Cheng; Chu, Yuehchieh

    2014-03-01

    Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form standing carbon platelets. High-resolution transmission electron microscopy and Raman scattering measurements reveal that these carbon platelets are comprised of ultrananocrystalline diamond embedded in multilayer-graphene-like carbon structures. The hybrid carbon films are of low electrical resistivity. UNCD grains in the N-UNCD base layer and the hybrid carbon platelets serve as high-density diamond nuclei for the deposition of an electrically insulating UNCD film on it. Biocompatible carbon-based heaters made of low-resistivity hybrid carbon heaters encapsulated by insulating UNCD for possible electrosurgical applications have been demonstrated.

  18. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties

    Science.gov (United States)

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-06-01

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (108). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices.The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system

  19. Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Coll Ferrer, M. Carme [Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Eckmann, Uriel N. [Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104 (United States); Composto, Russell J. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Eckmann, David M., E-mail: eckmanndm@uphs.upenn.edu [Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2013-11-01

    In previous work, we developed novel antibacterial hybrid coatings based on dextran containing dispersed Ag NPs (∼ 5 nm, DEX-Ag) aimed to offer dual protection against two of the most common complications associated with implant surgery, infections and rejection of the implant. However, their blood-material interactions are unknown. In this study, we assess the hemocompatibility and biocompatibility of DEX-Ag using fresh blood and two cell lines of the immune system, monocytes (THP-1 cells) and macrophages (PMA-stimulated THP-1 cells). Glass, polyurethane (PU) and bare dextran (DEX) were used as reference surfaces. PU, DEX and DEX-Ag exhibited non-hemolytic properties. Relative to glass (100%), platelet attachment on PU, DEX and DEX-Ag was 15%, 10% and 34%, respectively. Further, we assessed cell morphology and viability, pro-inflammatory cytokines expression (TNF-α and IL-1β), pro-inflammatory eicosanoid expression (Prostaglandin E{sub 2}, PGE{sub 2}) and release of reactive oxygen species (ROS, superoxide and H{sub 2}O{sub 2}) following incubation of the cells with the surfaces. The morphology and cell viability of THP-1 cells were not affected by DEX-Ag whereas DEX-Ag minimized spreading of PMA-stimulated THP-1 cells and caused a reduction in cell viability (16% relative to other surfaces). Although DEX-Ag slightly enhanced release of ROS, the expression of pro-inflammatory cytokines remained minimal with similar levels of PGE{sub 2}, as compared to the other surfaces studied. These results highlight low toxicity of DEX-Ag and hold promise for future applications in vivo. - Highlights: • We examined specific blood-contact reactions of dextran doped with Ag NPs coatings. • Biocompatibility was assessed with THP-1 cells and PMA-stimulated THP-1 cells. • Glass, polyurethane and dextran were used as reference surfaces. • Hybrid coatings exhibited non-hemolytic properties. • Low toxicity, inflammatory response and ROS suggest potential for in vivo use.

  20. Hybrid Graphene and Single-Walled Carbon Nanotube Films for Enhanced Phase-Change Heat Transfer.

    Science.gov (United States)

    Seo, Han; Yun, Hyung Duk; Kwon, Soon-Yong; Bang, In Cheol

    2016-02-10

    Nucleate boiling is an effective heat transfer method in power generation systems and cooling devices. In this letter, hybrid graphene/single-walled carbon nanotube (SWCNT), graphene, and SWCNT films deposited on indium tin oxide (ITO) surfaces were fabricated to investigate the enhancement of nucleate boiling phenomena described by the critical heat flux and heat transfer coefficient. The graphene films were grown on Cu foils and transferred to ITO surfaces. Furthermore, SWCNTs were deposited on the graphene layer to fabricate hybrid graphene/SWCNT films. We determined that the hybrid graphene/SWCNT film deposited on an ITO surface is the most effective heat transfer surface in pool boiling because of the interconnected network of carbon structures.

  1. Electret Characteristics of Hybrid Films Consisting of Porous Polytetrafluoroethylene and Teflon Fluoroethylenepropylene with Corona Charging

    Institute of Scientific and Technical Information of China (English)

    陈钢进; 韩高荣; Rudi Danz; Burkhard Elling

    2002-01-01

    We have prepared hybrid films consisting of porous polytetrafluoroethylene (PTFE) and Teflon fluoroethylene-propylene (FEP) and we have investigated their charge dynamics of injection, transport and trapping using corona charging, isothermal and thermally stimulated surface-potential decay measurements. The results indicate that the hybrid film samples show different electret characteristics when charged through side PTFE or side FEP. The samples charged negatively through side porous PTFE show the best charge stability. Their charge dynamics differs very much from a single film. The effect of corona polarity on the electret behaviour in the hybrid film is very large. The experimental results are explained with the three structure level model of charge storage in electrets.

  2. Fabrication of Nonsintered Alumina-Resin Hybrid Films by Inkjet-Printing Technology

    Science.gov (United States)

    Jang, Hun Woo; Kim, Jihoon; Kim, Hyo-tae; Yoon, Youngjoon; Lee, Sung-nam; Hwang, Haejin; Kim, Jonghee

    2010-07-01

    We used the inkjet printing to fabricate alumina-resin hybrid films without a high temperature sintering process. Single- and co-solvent ink systems showing different evaporation behaviors were formulated in order to understand their impacts on the inkjet-printing of the alumina dots, lines, and films. The packing densities of the inkjet-printed alumina films from both ink systems were around 60% which is higher than the value obtained by other conventional methods. Since the high temperature sintering process was avoided, the polymer-resin was infiltrated through the inkjet-printed alumina films by the same inkjet printing as a binder. The microstructures of these hybrid films were investigated in order to confirm if the microvoids in the films were filled with the resin. The dielectric properties of these hybrid films such as relative permittivity and Q-value were measured in order to assess if these hybrid materials is applicable to three-dimensional (3D) system integration as ceramic package substrates.

  3. Probing nanoscale chemical segregation and surface properties of antifouling hybrid xerogel films.

    Science.gov (United States)

    Destino, Joel F; Gatley, Caitlyn M; Craft, Andrew K; Detty, Michael R; Bright, Frank V

    2015-03-24

    Over the past decade there has been significant development in hybrid polymer coatings exhibiting tunable surface morphology, surface charge, and chemical segregation-all believed to be key properties in antifouling (AF) coating performance. While a large body of research exists on these materials, there have yet to be studies on all the aforementioned properties in a colocalized manner with nanoscale spatial resolution. Here, we report colocalized atomic force microscopy, scanning Kelvin probe microscopy, and confocal Raman microscopy on a model AF xerogel film composed of 1:9:9 (mol:mol:mol) 3-aminopropyltriethoxysilane (APTES), n-octyltriethoxysilane (C8), and tetraethoxysilane (TEOS) formed on Al2O3. This AF film is found to consist of three regions that are chemically and physically unique in 2D and 3D across multiple length scales: (i) a 1.5 μm thick base layer derived from all three precursors; (ii) 2-4 μm diameter mesa-like features that are enriched in free amine (from APTES), depleted in the other species and that extend 150-400 nm above the base layer; and (iii) 1-2 μm diameter subsurface inclusions within the base layer that are enriched in hydrogen-bonded amine (from APTES) and depleted in the other species.

  4. Preparation and gas sensing properties of novel CdS-supramolecular organogel hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Xia Huiyun; Peng Junxia; Liu Kaiqiang; Li Chen; Fang Yu [Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)], E-mail: yfang@snnu.edu.cn

    2008-05-21

    A novel CdS-supramolecular organogel hybrid film with unusual morphology has been fabricated by exposing a supramolecular organogel film containing Cd(Ac){sub 2} in an H{sub 2}S atmosphere at room temperature. The organogel film was prepared by spin-coating a LMOG (low-molecular weight organic gelator) gel of dmethyl sulfoxide onto a glass plate substrate. XRD, SEM, EDS, TG-DTA, UV-vis, PL (photoluminescence) spectroscopy and PL lifetime measurements were employed to characterize the film. It was shown that the organogel film had functioned as a template to control the morphology of the final hybrid film. The quantities and sizes of the CdS particles embedded in the organogel films can be easily altered by varying the initial concentration of Cd(Ac){sub 2}. Importantly, the PL of the hybrid film is sensitive to the presence of some volatile organic monoamines and diamines. The selectivity and reversibility of the sensing process were investigated.

  5. Fabrication of molecular hybrid films of gold nanoparticle and polythiophene by covalent assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, Jayaraman, E-mail: jsu2@np.edu.sg [Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Environmental & Water Technology Centre of Innovation, Ngee Ann Polytechnic, 599489 (Singapore); Dharmarajan, Rajarathnam [CERAR, University of South Australia, Mawson Lakes, SA 5095 (Australia); Srinivasan, M.P., E-mail: chesmp@nus.edu.sg [Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore)

    2015-08-31

    This work demonstrates the fabrication of molecular hybrid films comprising gold nanoparticles (AuNPs) incorporated in covalently assembled, substituted polythiophene (poly(3-(2-bromoethoxy)ethoxymethylthiophene-2,5-diyl (PBrEEMT))) films by different surface chemistry routes. AuNPs are incorporated in the immobilized polythiophene matrix due to its affinity for amine and sulfur. The amount of AuNPs present depends on the nature of the incorporation, the extent of film coverage and interaction of thiophene and amine groups. PBrEEMT films functionalized with amine rich polyallylamine immobilize greater numbers of AuNPs due to more extensive gold–amine interactions. Covalent binding between AuNP and PBrEEMT films was accomplished by using pre-functionalised AuNPs (4-aminothiophenol functionalized AuNPs). Atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to study the morphology and chemical constituents of assembled films. These approaches will pave the way for developing facile methods for nanoparticle incorporation and will also facilitate direct interaction of nanoparticles with the conducting polymer matrix and enhance the electrical properties of the films. - Highlights: • Covalent molecular assembly enabled the fabrication of molecular hybrid films. • Monomeric and polymeric species were employed as intermediate linkers. • Adopted approaches facilitated the direct interaction of gold nanoparticle in films. • The amount of nanoparticle incorporation depended on the extent of film coverage.

  6. Structural Variations in Hybrid All-Nanoparticle Gibbsite Nanoplatelet/Cellulose Nanocrystal Multilayered Films.

    Science.gov (United States)

    Martin, Clélia; Barker, Robert; Watkins, Erik B; Dubreuil, Frédéric; Cranston, Emily D; Heux, Laurent; Jean, Bruno

    2017-08-15

    Cellulose nanocrystals (CNCs) are promising biosourced building blocks for the production of high performance materials. In the last ten years, CNCs have been used in conjunction with polymers for the design of multilayered thin films via the layer-by-layer assembly technique. Herein, polymer chains have been replaced with positively charged inorganic gibbsite nanoplatelets (GN) to form hybrid "nanoparticle-only" composite films. A combination of atomic force microscopy and neutron reflectivity experiments was exploited to investigate the growth and structure of the films. Data show that the growth and density of GN/CNC films can be tuned over a wide range during preparation by varying the ionic strength in the CNC suspension and the film drying protocol. Specifically, thin and dense multilayered films or very thick, more porous mixed slabs, as well as intermediate internal structures, could be obtained in a predictable manner. The influence of key physicochemical parameters on the multilayer film buildup was elucidated and the film architecture was linked to the dominating interaction forces between the components. The degree of structural control over these hybrid nanoparticle-only films is much higher than that reported for CNC/polymer films, which offers new properties and potential applications as separation membranes or flame retardant coatings.

  7. Preparation of Cu2ZnSnS4 thin films by hybrid sputtering

    Science.gov (United States)

    Tanaka, Tooru; Nagatomo, Takeshi; Kawasaki, Daisuke; Nishio, Mitsuhiro; Guo, Qixin; Wakahara, Akihiro; Yoshida, Akira; Ogawa, Hiroshi

    2005-11-01

    In order to fabricate Cu2ZnSnS4 thin films, hybrid sputtering system with two sputter sources and two effusion cells is used. The Cu2ZnSnS4 films are fabricated by the sequential deposition of metal elements and annealing in S flux, varying the substrate temperature. The Cu2ZnSnS4 films with stoichiometric composition are obtained at the substrate temperature up to 400 °C, whereas the film composition becomes quite Zn-pool at the substrate temperature above 450 °C. The Cu2ZnSnS4 film shows p-type conductivity, and the optical absorption coefficient and the band gap of the Cu2ZnSnS4 film prepared in this experiment are suitable for fabricating a thin film solar cell.

  8. MgB{sub 2} thin films by hybrid physical-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xi, X.X. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)]. E-mail: xxx4@psu.edu; Pogrebnyakov, A.V. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Xu, S.Y.; Chen, K.; Cui, Y.; Maertz, E.C. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Zhuang, C.G. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Physics, Peking University, Beijing 100871 (China); Li, Qi [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lamborn, D.R. [Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Redwing, J.M. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Liu, Z.K.; Soukiassian, A.; Schlom, D.G.; Weng, X.J.; Dickey, E.C. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Y.B.; Tian, W.; Pan, X.Q. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Cybart, S.A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Dynes, R.C. [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2007-06-01

    Hybrid physical-chemical vapor deposition (HPCVD) has been the most effective technique for depositing MgB{sub 2} thin films. It generates high magnesium vapor pressures and provides a clean environment for the growth of high purity MgB{sub 2} films. The epitaxial pure MgB{sub 2} films grown by HPCVD show higher-than-bulk T {sub c} due to tensile strain in the films. The HPCVD films are the cleanest MgB{sub 2} materials reported, allowing basic research, such as on magnetoresistance, that reveals the two-band nature of MgB{sub 2}. The carbon-alloyed HPCVD films demonstrate record-high H {sub c2} values promising for high magnetic field applications. The HPCVD films and multilayers have enabled the fabrication of high quality MgB{sub 2} Josephson junctions.

  9. Photoelectrochemical Cell of Hybrid Regioregular POLY(3-HEXYLTHIOPHENE-2,5-DIYL) and Molybdenum Disulfide Film

    Science.gov (United States)

    Abdelmola, Fatmaelzahraa M.; Ram, Manoj K.; Takshi, Arash; Stafanakos, Elias; Kumar, Ashok; Goswami, D. Yogi

    The photoelectrochemical cell attracts attention worldwide due to conversion of optical energy into electricity, production of hydrogen through water splitting and use in photodetector and photo-sensor applications. We have been working on the photochemical cell based on regioregular polyhexylthiophenes hybrid-structured films for photoelectrochemical and photovoltaic applications. This paper discusses the hybrid film studies on regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) with 2D molybdenum disulfide (MoS2) for photoelectrochemical cell. The hybrid P3HT/MoS2 films deposited over indium tin oxide (ITO)-coated glass plate or n-type silicon substrates were characterized using FTIR, UV/vis, electrochemical and scanning electron microscopy (SEM) techniques. The optical measurements showed a higher absorption magnitude with low reflection properties of P3HT/MoS2 hybrid films revealing a superior photocurrent compared to both P3HT and MoS2 films. The P3HT/MoS2 hybrid-based photoelectrochemical cell yielded a short-circuit current (Isc) of 183.16μAṡcm-2, open-circuit voltage (Voc) of 0.92V, fill factor (FF) of 25% and power conversion efficiency (η) of 0.18% under the light intensity of 242Wṡm-2. The estimated power conversion efficiency and fill factor are comparable to organic-based photovoltaic devices.

  10. Release of ceria nanoparticles grafted on hybrid organic-inorganic films for biomedical application.

    Science.gov (United States)

    Pinna, Alessandra; Figus, Cristiana; Lasio, Barbara; Piccinini, Massimo; Malfatti, Luca; Innocenzi, Plinio

    2012-08-01

    The controlled release of nanoparticles from a hybrid organic-inorganic surface allows for developing several applications based on a slow delivery of oxygen scavengers into specific environments. We have successfully grafted ceria nanoparticles on a hybrid film surface and tested their release in a buffer solution; the tests have shown that the particles are continuously delivered within a time scale of hours. The hybrid film has been synthesized using 3-glycidoxypropyltrimethoxysilane as precursor alkoxide; the synthesis has been performed in highly basic conditions to control the polycondensation reactions of both organic and inorganic networks via controlled aging of the solution. Only films prepared from aged solutions are able to graft ceria nanoparticles on their surface. The ceria nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy and UV-vis spectroscopy, the hybrid films have been analyzed by Fourier transform infrared spectroscopy, atomic force microscopy and Raman spectroscopy. Raman imaging has been used for the release test. The hybrid film-ceria nanoparticles system fulfils the requirements of optical transparency and stability in buffer solutions which are necessary for biomedical applications.

  11. Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon films fabricated by a hybrid ion beam method

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Ke, Peiling [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Moon, Myoung-Woon; Lee, Kwang-Ryeol [Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-07-31

    Diamond-like carbon (DLC) films with various titanium contents were investigated using a hybrid ion beam system comprising an anode-layer linear ion beam source and a DC magnetron sputtering unit. The film composition and microstructure were characterized carefully by X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy, revealing that the doped Ti atoms had high solubility in the DLC films. The maximum solubility was found to lie between about 7 and 13 at.%. When the Ti content was lower than this solubility, the doped Ti atoms dissolved in the DLC matrix and the films exhibited the typical features of the amorphous DLC structure and displayed low compressive stresses, friction coefficients and wear rates. However, as the doped content exceeded the solubility, Ti atoms bonded with C atoms, resulting in the formation of carbide nano-particles embedded in the DLC matrix. Although the emergence of the carbide nano-particles promoted graphitizing due to a catalysis effect, the film hardness was enhanced to a great extent. On the other hand, the hard carbides particles caused abrasive wear behavior, inducing a high friction coefficient and wear rate. - Highlights: Black-Right-Pointing-Pointer Ti doped DLC films (Ti {approx} 24 at.% )were deposited by a hybrid ion beam system. Black-Right-Pointing-Pointer Solubility of the Ti atoms in the DLC films was found around 7 {approx} 13 at .%. Black-Right-Pointing-Pointer Microstructure evolution from DLC to nanocomposite played key role in film behaviors.

  12. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties.

    Science.gov (United States)

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-07-07

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (10(8)). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices.

  13. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid

    Science.gov (United States)

    Yang, Hao; Pi, Pihui; Yang, Zhuo-ru; Lu, Zhong; Chen, Rong

    2016-12-01

    Recently, considerable efforts have been made on superhydrophobic-superoleophilic filter to satisfy the requirements of the applications to oil/water separation. In this work, we obtained a superhydrophobic and superoleophilic film by coating cured fluoropolymer@silica hybrid on stainless steel mesh. Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric-differential scanning calorimetry (TG-DSC) were used to determine the chemical composition and thermal stability of the sample. The effect of silica nanoparticles (NPs) concentration on the surface property of the hybrid film was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle analyzer. The results indicate that silica NPs not only enhance the thermal stability, but also strengthen the hydrophobicity and oleophilicity of the film. When 20 wt% silica NPs was added into the thermosetting fluoropolymer, the hybrid film shows both superhydrophobicity and superoleophilicity owing to the large surface roughness factor (RMS) and porous structure. Moreover, the hybrid film could be used to separate water from different oils effectively. When the pore size of the mesh is less than 300 μm, the oil/water separation efficiency of the film reaches above 99%, which shows a great potential application to dehydrate fuel oils.

  14. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Ignacio, E-mail: manuel.azocar@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vargas, Esteban [Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Duran, Nicole [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Arrieta, Abel [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Gonzalez, Evelyn [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas, Universidad de Chile, Sergio Livingstone Polhammer 1007, Santiago (Chile); and others

    2012-11-15

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix-polyether glycol was studied. AgNps of 4-6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia-polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20-80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO{sub 3} concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia-polyether glycol hybrid film. Highlights: Black-Right-Pointing-Pointer Antibacterial activity of films (zirconia-polyether glycol) modified with silver nanoparticles. Black-Right-Pointing-Pointer Biofilm formation is prevented. Black-Right-Pointing-Pointer High sensibility against gram positive bacteria.

  15. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.

    Science.gov (United States)

    Kim, Jin-Young; Kim, TaeYoung; Suk, Ji Won; Chou, Harry; Jang, Ji-Hoon; Lee, Jong Ho; Kholmanov, Iskandar N; Akinwande, Deji; Ruoff, Rodney S

    2014-08-27

    The electrical conductivity and the specific surface area of conductive fillers in conductor-insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG-O/CNT). We report the effect of the rG-O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG-O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG-O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.

  16. Robust Measurement of Thin-Film Photovoltaic Modules Exhibiting Light-Induced Transients: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, Michael, G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-09-09

    Light-induced changes to the current-voltage characteristic of thin-film photovoltaic modules (i.e. light-soaking effects) frustrate the repeatable measurement of their operating power. We describe best practices for mitigating, or stabilizing, light-soaking effects for both CdTe and CIGS modules to enable robust, repeatable, and relevant power measurements. We motivate the practices by detailing how modules react to changes in different stabilization methods. We also describe and demonstrate a method for validating alternative stabilization procedures, such as those relying on forward bias in the dark. Reliable measurements of module power are critical for qualification testing, reliability testing, and power rating.

  17. Robust measurement of thin-film photovoltaic modules exhibiting light-induced transients

    Science.gov (United States)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-09-01

    Light-induced changes to the current-voltage characteristic of thin-film photovoltaic modules (i.e. light-soaking effects) frustrate the repeatable measurement of their operating power. We describe best practices for mitigating, or stabilizing, light-soaking effects for both CdTe and CIGS modules to enable robust, repeatable, and relevant power measurements. We motivate the practices by detailing how modules react to changes in different stabilization methods. We also describe and demonstrate a method for validating alternative stabilization procedures, such as those relying on forward bias in the dark. Reliable measurements of module power are critical for qualification testing, reliability testing, and power rating.

  18. Ability of dynamic holography in self-assembled hybrid nanostructured silica films for all-optical switching and multiplexing

    Science.gov (United States)

    Telbiz, German; Bugaychuk, Svitlana; Leonenko, Eugen; Derzhypolska, Liudmyla; Gnatovskyy, Vladimir; Pryadko, Igor

    2015-04-01

    The sol-gel method has been employed in the fabrication of easily processable mesostructured films consisting of a nonionic surfactant and silica as the inorganic component. The ability of the occluded Pluronic P123 mesostructures to solubilize guest molecules made these films ideal host matrices for organic dyes and molecular assemblies, possessing substantial nonlinear susceptibilities. These films were explored for use as the photonic layer in all-optical time-to-space converters and proved successful at increasing the optical response of the intercalated dyes to a point that would make these composite films applicable for use as the photonic layer. Recording of a dynamical grating in a single-pulse regime has been obtained. Since the dynamical grating exhibits the fast relaxation time (up to 10 ns), the nonlinear mechanism represents an electronic excitation of the photosensitive molecules. As far as the dye molecules are distributed in nanoporous silica, a model of `gas of molecular dye' may be rightly used in order to consider nonlinear optical properties in the nanostructured hybrid films. We suppose that further improvement of the nonlinear optical nanomaterials may follow on the way to embed additional inclusions, which will not promote the heat accumulation in the host matrix and will lead to effective dissipation of the heat energy.

  19. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sanju, E-mail: sanju.gupta@wku.edu; Price, Carson [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101-3576 (United States)

    2015-10-15

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO){sub 1}, (PPy/ErGO){sub 1}, (PAni/GO){sub 1} and (PPy/GO){sub 1}. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, C{sub s}, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent C{sub s} of ≥350 F g{sup −1} as compared with constituents (∼70 F g{sup −1}) at discharge current density of 0.3 A g{sup −1} that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine

  20. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2015-10-01

    Full Text Available Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO1, (PPy/ErGO1, (PAni/GO1 and (PPy/GO1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g−1 as compared with constituents (∼70 F g−1 at discharge current density of 0.3 A g−1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting and conducting polymers (semiconducting backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (reactivity of surface ion

  1. Hard X-rays for processing hybrid organic-inorganic thick films.

    Science.gov (United States)

    Jiang, Yu; Carboni, Davide; Pinna, Alessandra; Marmiroli, Benedetta; Malfatti, Luca; Innocenzi, Plinio

    2016-01-01

    Hard X-rays, deriving from a synchrotron light source, have been used as an effective tool for processing hybrid organic-inorganic films and thick coatings up to several micrometres. These coatings could be directly modified, in terms of composition and properties, by controlled exposure to X-rays. The physico-chemical properties of the coatings, such as hardness, refractive index and fluorescence, can be properly tuned using the interaction of hard X-rays with the sol-gel hybrid films. The changes in the microstructure have been correlated especially with the modification of the optical and the mechanical properties. A relationship between the degradation rate of the organic groups and the rise of fluorescence from the hybrid material has been observed; nanoindentation analysis of the coatings as a function of the X-ray doses has shown a not linear dependence between thickness and film hardness.

  2. Nonwettable Thin Films from Hybrid Polymer Brushes can be Hydrophilic

    Science.gov (United States)

    2007-03-30

    2006 Hybrid brushes composed of two liquid polymers, poly(dimethylsiloxane) (PDMS) and a highly branched ethoxylated polyethylenimine (EPEI), were...liquid polymers, poly(dimethylsiloxane) (PDMS) and a highly branched ethoxylated polyethylenimine (EPEI; Figure 1). We demonstrate here that hybrid... ethoxylated (highly branched, symmetrical polymer; about 80% of the primary and secondary amines are ethoxylated ), 37% solution in water (EPEI Mw

  3. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics.

    Science.gov (United States)

    Kim, Younghoon; Yang, Zhenyu; Jain, Ankit; Voznyy, Oleksandr; Kim, Gi-Hwan; Liu, Min; Quan, Li Na; García de Arquer, F Pelayo; Comin, Riccardo; Fan, James Z; Sargent, Edward H

    2016-08-08

    Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.

  4. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film.

    Science.gov (United States)

    Liu, Jilei; Chen, Minghua; Zhang, Lili; Jiang, Jian; Yan, Jiaxu; Huang, Yizhong; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2014-12-10

    The development of portable and wearable electronics has promoted increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features. Here, a new type of flexible Ni/Fe cell is designed and fabricated by employing Ni(OH)2 nanosheets and porous Fe2O3 nanorods grown on lightweight graphene foam (GF)/carbon nanotubes (CNTs) hybrid films as electrodes. The assembled f-Ni/Fe cells are able to deliver high energy/power densities (100.7 Wh/kg at 287 W/kg and 70.9 Wh/kg at 1.4 kW/kg, based on the total mass of active materials) and outstanding cycling stabilities (retention 89.1% after 1000 charge/discharge cycles). Benefiting from the use of ultralight and thin GF/CNTs hybrid films as current collectors, our f-Ni/Fe cell can exhibit a volumetric energy density of 16.6 Wh/l (based on the total volume of full cell), which is comparable to that of thin film battery and better than that of typical commercial supercapacitors. Moreover, the f-Ni/Fe cells can retain the electrochemical performance with repeated bendings. These features endow our f-Ni/Fe cells a highly promising candidate for next generation flexible energy storage systems.

  5. Preparation, characterization and electrocatalytic properties of poly(luminol) and polyoxometalate hybrid film modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Tsern; Lin, Kuo-Chiang; Chen, Shen-Ming [National Taipei University of Technology, Taipei 106 (Taiwan). Department of Chemical Engineering

    2005-10-20

    Hybrid films composed of poly(luminol) and nanometer-sized clusters of polyoxometalate, SiMo{sub 12}O{sub 40}{sup 4-} and PMo{sub 12}O{sub 40}{sup 3-} have been prepared in acidic aqueous solutions. These films are stable and electrochemically active, and produced on glassy carbon, platinum, gold and transparent semiconductor tin oxide electrodes. The electrochemical quartz crystal microbalance and cyclic voltammetry were used to study in situ growth of the hybrid poly(luminol)/SiMo{sub 12}O{sub 40}{sup 4-} and poly(luminol)/PMo{sub 12}O{sub 40}{sup 3-}. Both the poly(luminol)/SiMo{sub 12}O{sub 40}{sup 4-} and poly(luminol)/PMo{sub 12}O{sub 40}{sup 3-} hybrid films showed four redox couples and the electrochemical properties were compared to SiMo{sub 12}O{sub 40}{sup 4-} and PMo{sub 12}O{sub 40}{sup 3-}. When transferred to various acidity aqueous solutions, the four redox couples and the formal potentials of two hybride film were observed to be pH-dependent. The electrocatalytic reduction of ClO{sub 3}{sup -}, BrO{sub 3}{sup -}, IO{sub 3}{sup -}, S{sub 2}O{sub 8}{sup 2-} and NO{sub 2}{sup -}by a poly(luminol)/PMo{sub 12}O{sub 40}{sup 3-} hybrid film in an acidic aqueous solution showed an electrocatalytic reduction activity of IO{sub 3}{sup -} > BrO{sub 3}{sup -} and ClO{sub 3}{sup -}. The electrocatalytic oxidation of dopamine and epinephrine by a poly(luminol)/PMo{sub 12}O{sub 40}{sup 3-} hybrid film was also investigated. (author)

  6. Comparative study of photoinduced wettability conversion between [PW{sub 12}O{sub 40}]{sup 3−}/brookite and [SiW{sub 12}O{sub 40}]{sup 4−}/brookite hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Pruethiarenun, Kunchaya; Isobe, Toshihiro; Matsushita, Sachiko [Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Ye, Jinhua [Environmental Remediation Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nakajima, Akira, E-mail: anakajim@ceram.titech.ac.jp [Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-04-01

    Two tungsten-based Keggin-type heteropolyacids (PW{sub 12}: ([PW{sub 12}O{sub 40}]{sup 3−}) and SiW{sub 12}: ([SiW{sub 12}O{sub 40}]{sup 4−})) were hybridized with brookite-type TiO{sub 2}. Then photocatalytic decomposition activity, photoinduced hydrophilicity, and sustainability of the hydrophilicity in the dark were evaluated using gaseous 2-propanol (IPA) decomposition and sessile drop method. The obtained films were transparent in the visible wavelength range. Both hybrid films exhibited higher photocatalytic decomposition activity and had higher photoinduced hydrophilicizing rates than pure brookite films under UV illumination. The PW{sub 12}/TiO{sub 2} film exhibited better photocatalytic performance than the SiW{sub 12}/TiO{sub 2} film did. Atmosphere dependence, XPS analysis, and electrochemical experiments indicated the cause of these two films' different levels of sustainability of hydrophilicity to be differences in their electron storage capability. Results show that the electron scavenger capability and reoxidation efficiency of the heteropolyacid are key factors affecting the overall performance of wettability conversion of this hybrid film system before and after UV illumination. - Highlights: • Transparent PW{sub 12}/brookite(TTP) and SiW{sub 12}/brookite(TTS) films were prepared. • Both films exhibited better photocatalytic performance than pure brookite film. • The TTP film exhibited more sustainable hydrophilicity than the TTS film did. • Reoxidation efficiency of HPAs is a key factor for wettability conversion.

  7. Transparent and flexible conducting hybrid film combined with 3-Aminopropyltriethoxysilane-coated polymer and graphene

    Science.gov (United States)

    Jung, Daesung; Ko, Yong-Hun; Cho, Jumi; Adhikari, Prashanta Dhoj; Lee, Su Il; Kim, Yooseok; Song, Wooseok; Jung, Min Wook; Jang, Sung Won; Lee, Seung Youb; An, Ki-Seok; Park, Chong-Yun

    2015-12-01

    A simple approach to fabricate graphene hybrid film consisted of Graphene/3-aminopropyltriethoxysilane (APTES)/polyethylene terephthalate (PET) is presented, using self-assembled monolayers (SAMs) for enhancement of conductivity. The SAMs of APTES was prepared on ultraviolet-ozone (UVO)-irradiated PET films via wet chemical technique. The density of APTES was saturated after UV treatment time of 1 h for PET films; the carrier density and the optical transmittance were 9.3 × 10 12/cm2 and 82% for pristine graphene and 1.16 × 1013/cm2 and 86% for graphene hybrid films, respectively, and experienced at inflection point at 30 min in UV treatment time. This behavior can be explained by surface morphology transition due to coalescence or clustering of mobile and low-molecular-weight oxidized components of PET.

  8. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films.

    Science.gov (United States)

    Lee, Duck Hyun; Lee, Jin Ah; Lee, Won Jong; Kim, Sang Ouk

    2011-01-03

    The outstanding flexible field emission properties of carbon hybrid films made of vertically aligned N-doped carbon nanotubes grown on mechanically compliant reduced graphene films are demonstrated. The bottom-reduced graphene film substrate enables the conformal coating of the hybrid film on flexible device geometry and ensures robust mechanical and electrical contact even in a highly deformed state. The field emission properties are precisely examined in terms of the control of the bending radius, the N-doping level, and the length or wall-number of the carbon nanotubes and analyzed with electric field simulations. This high-performance flexible carbon field emitter is potentially useful for diverse, flexible field emission devices.

  9. SYNTHESIS AND CHARACTERIZATION OF AMINO FUNCTIONALIZED LADDER-LIKE POLYSILSESQUIOXANES AND THEIR HYBRID FILMS WITH POLYIMIDE

    Institute of Scientific and Technical Information of China (English)

    Qiu-shuang Gao; Guo-feng Tian; Sheng-li Qi; Zhan-peng Wu; De-zhen Wu

    2013-01-01

    Ladder-like polysilsesquioxanes (LPSQs) with different amino contents have been synthesized by controlling of the dosage of Pd/C catalyst.The concentration and activity of amino groups were investigated by Fourier transform infrared spectroscopy.Polyimide (PI)/LPSQ hybrid films have been prepared by incorporating of the obtained LPSQs with different amino contents into PI matrix,respectively.The interfacial interactions between PI matrix and LPSQ were studied with scanning electron microscopy and X-ray photoelectron spectroscopy,meanwhile the thermal and mechanical properties of the hybrid films were studied using dynamic mechanical analysis and tensile tests.The results indicate that the functionality of LPSQ has great effects on the interfacial interactions and the properties of hybrid films.With the increase of amino content,both the interracial interactions and the cross-linking density of hybrids enhanced,which results in the decline of surface silicon concentration,increase of Young's modulus and drop of elongation at break.Excessive amino content makes the hybrid films brittle and leads to incomplete imidization.

  10. Novel negative tone photodefinable low dielectric constant hybrid films

    Science.gov (United States)

    Markley, Thomas J.; Weigel, Scott J.; Kretz, Chris P.

    2005-05-01

    Multifunctional films have the potential to reduce the number of processing steps to prepare various complex electronic devices and thereby reduce the cost of manufacturing the device and increase the throughput of the process. By combining low dielectric thin film and photoresist technologies into one material, such an advantage could be provided to electronics device markets. Air Products and Chemicals has discovered negative tone photodefinable films having dielectric constant values less than 3.0 that are developable in water and/or aqueous TMAH solutions. The low dielectric films produced via a novel reaction pathway involving the use of photoacid generators (PAGs) provides a versatile link to various feature sizes depending on the choice of radiation source and PAG used. Specific examples of film properties and processing latitude will be presented for these developmental materials.

  11. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases.

    Science.gov (United States)

    Munir, Rahim; Sheikh, Arif D; Abdelsamie, Maged; Hu, Hanlin; Yu, Liyang; Zhao, Kui; Kim, Taesoo; Tall, Omar El; Li, Ruipeng; Smilgies, Detlef-M; Amassian, Aram

    2017-01-01

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  12. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim

    2016-11-07

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  13. Facile room temperature deposition of gold nanoparticle-ionic liquid hybrid film on silica substrate

    Science.gov (United States)

    Krishnamurthy, S.; Reddy, D. Harikishore Kumar; Sankar, G.; Yun, Yeoung-Sang

    2017-01-01

    This work presents facile synthesis of gold nanoparticle (Au NP)-ionic liquid hybrid film of synthesis, and even coating on Si (111) substrate. XRD, XPS, and XAS spectral data confirm the presence of Au(0) while EXAFS data indicated the presence of small particles or incomplete surface species. Cross-sectional analysis using FE-SEM and edge length measurement using AFM showed that the film thickness is ca 10 nm.

  14. Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells.

    Science.gov (United States)

    Zhang, Meng; Yu, Hua; Yun, Jung-Ho; Lyu, Miaoqiang; Wang, Qiong; Wang, Lianzhou

    2015-06-21

    Smooth organolead halide perovskite films for meso/planar hybrid structured perovskite solar cells were prepared by a simple compressed air blow-drying method under ambient conditions. The resultant perovskite films show high surface coverage, leading to a device power conversion efficiency of over 10% with an open circuit voltage up to 1.003 V merely using pristine poly(3-hexylthiophene) (P3HT) as a hole transporter.

  15. Preparation of Oleyl Phosphate-Modified TiO2/Poly(methyl methacrylate Hybrid Thin Films for Investigation of Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Masato Fujita

    2015-01-01

    Full Text Available TiO2 nanoparticles (NPs modified with oleyl phosphate were synthesized through stable Ti–O–P bonds and were utilized to prepare poly(methyl methacrylate- (PMMA- based hybrid thin films via the ex situ route for investigation of their optical properties. After surface modification of TiO2 NPs with oleyl phosphate, IR and 13C CP/MAS NMR spectroscopy showed the presence of oleyl groups. The solid-state 31P MAS NMR spectrum of the product revealed that the signal due to oleyl phosphate (OP shifted upon reaction, indicating formation of covalent Ti–O–P bonds. The modified TiO2 NPs could be homogeneously dispersed in toluene, and the median size was 16.1 nm, which is likely to be sufficient to suppress Rayleigh scattering effectively. The TEM images of TiO2/PMMA hybrid thin films also showed a homogeneous dispersion of TiO2 NPs, and they exhibited excellent optical transparency even though the TiO2 content was 20 vol%. The refractive indices of the OP-modified TiO2/PMMA hybrid thin films changed higher with increases in TiO2 volume fraction, and the hybrid thin film with 20 vol% of TiO2 showed the highest refractive index (n = 1.86.

  16. Deposition of transparent, hydrophobic polydimethylsiloxane - nanocrystalline TiO2 hybrid films on glass substrate

    Directory of Open Access Journals (Sweden)

    On-uma Nimittrakoolchai

    2010-05-01

    Full Text Available Transparent, hydrophobic hybrid films were deposited on glass substrate from solution containing hydroxyl-terminatedpolydimethylsiloxane (PDMS and TiO2 sol by using a dip coating method. The effects of the film heat-treatment temperatureand PDMS/TiO2 component on surface properties of the hybrid films were investigated by water drop contact angle measurement,and by atomic force microscopy (AFM and scanning electron microscope (SEM analyses. Surface morphology of the hybrid film changed from smooth surface containing tiny spikes to rougher surface containing large protrusions during heattreatmenttemperatures of 60 - 300°C and became smooth surface containing very fine spikes at 500°C, corresponding to a change hydrophobicity behavior from contact angle measurement. The suitable condition for preparation of hydrophobic coating from this current recipe was at the PDMS/TiO2 volume ratio of 1.00 - 2.33 and heat-treatment temperature of 60°C. All the films were transparent regardless of post heat-treatment temperature. However, the films containing higher content of PDMS were slightly more transparent.

  17. Recent trends in preparation and application of carbon nanotube-graphene hybrid thin films

    Science.gov (United States)

    Thanh Dang, Van; Dung Nguyen, Duc; Thanh Cao, Thi; Le, Phuoc Huu; Tran, Dai Lam; Phan, Ngoc Minh; Chuc Nguyen, Van

    2016-09-01

    The combination of one-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) graphene materials to generate three-dimensional (3D) carbon nanotube-graphene hybrid thin films (CNGHTFs) has attracted great attention owing to their intriguing properties via the synergistic effects of these two materials on their electrical, optical, and electrochemical properties in comparison with their individual components. This review aims to provide a brief introduction of recent trends in preparation methodologies and some outstanding applications of CNGHTFs. It contains two main scientific subjects. The first of these is the research on preparation techniques of CNGHTFs, including reduction agent-assisted mechanical blending of reduced graphene oxide (rGO) and CNTs, hybridization methods for layer-by-layer (LBL) assembly of CNTs and rGO sheets, multi-step methods using combinations of a solution and chemical vapor deposition (CVD) processing, one-step growth of CNGHTFs by the CVD method, and modified CVD methods via thermal deposition of carbon source on catalyst surfaces. The advantages and disadvantages of the preparation methods of CNGHTFs are presented and discussed in detail. The second scientific subject of the review is the research on some outstanding applications of CNGHTFs in various research fields, including transparent conductors, electron field emitters, field-effect transistors, biosensors and supercapacitors. In most cases, the CNGHTFs showed superior performances than those of the pristine GO/graphene or CNT materials. Therefore, the CNGHTFs exhibit as high-potential materials for various practical applications. Opportunites and challenges in the fields are also presented.

  18. Field Emission Properties of the Graphene Double-Walled Carbon Nanotube Hybrid Films Prepared by Vacuum Filtration and Screen Printing

    Directory of Open Access Journals (Sweden)

    Jinzhuo Xu

    2013-01-01

    Full Text Available The graphene double-walled carbon nanotube (DWCNT hybrid films were prepared by vacuum filtration and screen printing. Their electron field emission properties have been studied systematically. The electron emission properties of the hybrid films are much better than those of pure DWCNT films and pure graphene films. Comparing with the screen printed films, the vacuum filtered films have many advantages, such as lower turn-on field, higher emission current density, better uniformity, better long-term stability, and stronger adhesive strength with conductive substrates. The optimized hybrid films with 20% weight ratio of graphene, which were fabricated by vacuum filtration, show the best electron emission performances with a low turn-on field of 0.50 Vμm−1 (at 1 μAcm−2 and a high field enhancement factor β of 27000.

  19. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment

    Science.gov (United States)

    Wang, Hao; Wang, Jianxiong; Hong, Lei; Tan, Yew Heng; Tan, Chuan Seng; Rusli

    2016-06-01

    SiNW/PEDOT:PSS hybrid solar cells are fabricated on 10.6-μm-thick crystalline Si thin films. Cells with Si nanowires (SiNWs) of different lengths fabricated using the metal-catalyzed electroless etching (MCEE) technique have been investigated. A surface treatment process using oxygen plasma has been applied to improve the surface quality of the SiNWs, and the optimized cell with 0.7-μm-long SiNWs achieved a power conversion efficiency (PCE) of 7.83 %. The surface treatment process is found to remove surface defects and passivate the SiNWs and substantially improve the average open circuit voltage from 0.461 to 0.562 V for the optimized cell. The light harvesting capability of the SiNWs has also been investigated theoretically using optical simulation. It is found that the inherent randomness of the MCEE SiNWs, in terms of their diameter and spacing, accounts for the excellent light harvesting capability. In comparison, periodic SiNWs of comparable dimensions have been shown to exhibit much poorer trapping and absorption of light.

  20. Sporocidic properties of poly(vinyl alcohol)/silver nanoparticles/TEOS thin hybrid films.

    Science.gov (United States)

    Pencheva, Daniela; Bryaskova, Rayna; Lad, Umesh; Kale, Girish M; Kantardjiev, T

    2012-06-01

    The sporocidic activity of hybrid materials based on PVA/AgNps/TEOS thin films has been investigated. Deep Agar Method has been applied to study the sporocidic properties of these hybrid materials with different silver concentrations. This method has been used because of the lack of standard methods for testing the sporocidic activity in such materials and due to the specific characteristics of bacterial spore. Clear and pronounced presence of sporocidic activity of the hybrid materials towards spores of control strains Bacillus subtilis ATCC 6633 and Geobacillus stearothermophilus ATCC 7953 has been established. The use of chromatographic paper disks impregnated with PVA/AgNps/TEOS showed the advantages in testing the biological properties of the hybrid material in comparison to the disks obtained by directly cutting the PVA/AgNps/TEOS films. The highest sporocidic activity, although with small deviation of 0.5-1.0 mm, was established at the PVA/AgNps/TEOS hybrid films with concentration of silver precursor 9.2 mg/mL and 18.3 mg/mL. The experiments were performed with the aim to reveal the opportunities for a practical application of the material.

  1. Synthesis and characterization of polymer-silica hybrid latexes and sol-gel-derived films

    Science.gov (United States)

    Petcu, Cristian; Purcar, Violeta; Ianchiş, Raluca; Spătaru, Cătălin-Ilie; Ghiurea, Marius; Nicolae, Cristian Andi; Stroescu, Hermine; Atanase, Leonard-Ionuţ; Frone, Adriana Nicoleta; Trică, Bogdan; Donescu, Dan

    2016-12-01

    Sol-gel derived organic-inorganic hybrid systems were obtained by applying alkaline-catalyzed co-hydrolysis and copolycondensation reactions of tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), isobutyltriethoxysilane (IBTES), diethoxydimethylsilane (DMDES), and vinyltriethoxysilane (VTES), respectively, into a polymer latex functionalized with vinyltriethoxysilane (VTES). The properties of the latex hybrid materials were analyzed by FTIR, water contact angle, environmental scanning electron microscopy (ESEM), TEM and AFM analysis, respectively. FT-IR spectra confirmed that the chemical structures of the sol-gel derived organic-inorganic materials are changed as function of inorganic precursor and Sisbnd Osbnd Si networks are formed during the co-hydrolysis and copolycondensation reactions. The water contact angle on the sol-gel latex film containing TEOS + VTES increased to 135° ± 2 compared to 65° ± 5 for the blank latex, due VTES incorporation into latex material. TGA curves of hybrid sample modifies against neat polymer, the thermal stability being influenced by the presence of the inorganic partner. ESEM analysis showed that the latex hybrid films prepared with different inorganic precursors were formed and the Si-based polymers were distributed on the surface of the dried sol-gel hybrid films. TEM and AFM photos revealed that the latex emulsion morphology was modified due to the VTES incorporation into system.

  2. Wettability properties of PTFE/ZnO nanorods thin film exhibiting UV-resilient superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, A.; Ebrahimi, M. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Nourmohammadi, A. [Department of Physics, University of Nevada, Reno, NV 89557 (United States); Moshfegh, A.Z., E-mail: moshfegh@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2015-06-30

    Highlights: • Thin layer of Teflon was deposited on ZnO nanorods using RF sputtering technique. • Water contact angle was measured from 3° for ZnO to 160° for the PTFE/ZnO. • Very low contact angle hysteresis of ∼2° and sliding angle of ∼1° was measured. • Excellent stability under UV illumination was observed for the PTFE/ZnO sample. • We have proposed a model to describe wettability property supporting our data. - Abstract: In this research, initially anodization process was used to fabricate ZnO nanorods on Zn substrate and then RF sputtering technique was applied to grow a thin layer of polytetrafluoroethylene (PTFE, Teflon) on the coated ZnO nanorods for producing a superhydrophobic surface. According to scanning electron microscopy (SEM) observations, ZnO nanorods were formed with average diameter and length of about ∼180 nm and 14 μm, respectively. Superhydrophilic property of ZnO nanorods and superhydrophobic property of PTFE/ZnO nanorods was investigated by water contact angle (WCA) measurements. It was found that the contact angle varied with the PTFE deposition time. The highest contact angle measurement was obtained at 160° for the PTFE (60 min coating)/ZnO as optimum sample which indicates its superhydrophobic property. X-ray photoelectron spectroscopy (XPS) determined surface chemical composition and F/C ratio of about 1.27 for this sample. A change of water contact angle from 3° to 160° indicates transition from superhydrophilic to superhydrophobic state. Very low contact angle hysteresis (CAH) of ∼2° and sliding angle (SA) of ∼1° as well as unchanged contact angle under UV illumination was observed for the synthesized optimum PTFE/ZnO sample exhibits an excellent superhydrophobic property. Based on our data analysis, the ZnO nanorods and the PTFE/ZnO nanorods obey Wenzel and Cassie–Baxter model, respectively.

  3. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  4. Study on Polyimide/Silica Hybrid Films via Directly Intermingle Method

    Institute of Scientific and Technical Information of China (English)

    Bin ZHAO; Bao-Lin RAO

    2005-01-01

    @@ 1Introduction In recent years, polyimide hybrid materials have received considerable attention due to the dramatic improvements over their pristine state in thermal stabilities, mechanical properties and other special features by introducing only small fraction inorganic additives[1]. Polyimide/silica hybrid materials were studied mostly by sol-gel route[2]. However the storage stability of the sol resin is a practical problem and has not researched on it so far. On the other hand, nano-sized silica has been produced on a large scale and industrialized. In this paper, polyimide/siliea hybrid films were prepared via directly intermingle method. The storage stability of the sol resin, the thermal and mechanical properties of the resulting films were investigated.

  5. Deoxyribonucleic acid-based hybrid thin films for potential application as high energy density capacitors

    Science.gov (United States)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grabowski, Christopher A.; Terry Murray, P.; Grote, James G.

    2014-03-01

    Deoxyribonucleic acid (DNA) based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA (cetyltrimethylammonium) complex/sol-gel ceramic hybrid thin film devices have demonstrated reproducibility and stability in temperature- and frequency-dependent dielectric properties with dielectric constant k ˜ 5.0 (1 kHz), as well as reliability in DC voltage breakdown measurements, attaining values consistently in the range of 300-350 V/μm. The electrical/dielectric characteristics of DNA-CTMA films with sol-gel-derived ceramics were examined to determine the critical energy storage parameters such as voltage breakdown and dielectric constant.

  6. Study on Ag mesh/conductive oxide hybrid transparent electrode for film heaters

    Science.gov (United States)

    Kwon, Namyong; Kim, Kyohyeok; Heo, Jinhee; Yi, Insook; Chung, Ilsub

    2014-07-01

    Ag mesh-indium tin oxide (ITO) hybrid transparent conductive films were fabricated and evaluated for use in film heaters. PS monolayer templates were prepared using highly mono-dispersed PS spheres (11.2 μm) obtained by a filtering process with micro-sieves. At first, three Ag meshes with different sheet resistances (20, 100, and 300 Ω sq-1) and transmittances (70, 73, and 76%) were evaluated for film heaters in terms of voltage and long-term stability. Subsequently, in an effort to obtain better transmittance, Ag mesh-ITO hybrid heaters were fabricated utilizing finite ITO depositions. At the optimised ITO thickness (15 nm), the sheet resistance and the transmittance were 300 Ω sq-1 and 88%, respectively, which indicates that this material is a good potential candidate for an efficient defroster in vehicles.

  7. Nacre-like hybrid films: Structure, properties, and the effect of relative humidity.

    Science.gov (United States)

    Abba, Mohammed T; Hunger, Philipp M; Kalidindi, Surya R; Wegst, Ulrike G K

    2015-03-01

    Functional materials often are hybrids composed of biopolymers and mineral constituents. The arrangement and interactions of the constituents frequently lead to hierarchical structures with exceptional mechanical properties and multifunctionality. In this study, hybrid thin films with a nacre-like brick-and-mortar microstructure were fabricated in a straightforward and reproducible manner through manual shear casting using the biopolymer chitosan as the matrix material (mortar) and alumina platelets as the reinforcing particles (bricks). The ratio of inorganic to organic content was varied from 0% to 15% and the relative humidities from 36% to 75% to determine their effects on the mechanical properties. It was found that increasing the volume fraction of alumina from 0% to 15% results in a twofold increase in the modulus of the film, but decreases the tensile strength by up to 30%, when the volume fraction of alumina is higher than 5%. Additionally, this study quantifies and illustrates the critical role of the relative humidity on the mechanical properties of the hybrid film. Increasing the relative humidity from 36% to 75% decreases the modulus and strength by about 45% and triples the strain at failure. These results suggest that complex hybrid materials can be manufactured and tailor made for specific applications or environmental conditions.

  8. Preparation, photophysical characterization, and modeling of LDS722/Laponite 2D-ordered hybrid films.

    Science.gov (United States)

    Epelde-Elezcano, Nerea; Duque-Redondo, Eduardo; Martínez-Martínez, Virginia; Manzano, Hegoi; López-Arbeloa, Iñigo

    2014-08-26

    A novel hybrid material with promising optical properties for nonlinear optical applications is presented, as formed by LDS 722 organic dye confined in Laponite clay. Thin films of the hybrid material with different dye loadings have been prepared. The film thickness, the dye and water content, and the clay swelling due to guest molecule incorporation have been characterized. Then, the photophysical properties of the thin films have been studied in detail using experimental methods and molecular simulation. As the dye load increases, the hybrid films present a hypsochromic shift in absorption and a bathochromic shift in emission. The former is attributed to the increasing strength of solvation of the dye donor group, while the latter is ascribed to a switch from an intramolecular to an intermolecular charge-transfer process as the dye load increases. The LDS 722 molecules are preferentially oriented in the host clay almost in parallel to the platelet surfaces, inducing macroscopic order that makes the material responsive to polarized light.

  9. Tuning Structure and Properties of Graded Triblock Terpolymer-Based Mesoporous and Hybrid Films

    KAUST Repository

    Phillip, William A.

    2011-07-13

    Despite considerable efforts toward fabricating ordered, water-permeable, mesoporous films from block copolymers, fine control over pore dimensions, structural characteristics, and mechanical behavior of graded structures remains a major challenge. To this end, we describe the fabrication and performance characteristics of graded mesoporous and hybrid films derived from the newly synthesized triblock terpolymer, poly(isoprene-b-styrene-b-4-vinylpyridine). A unique morphology, unachievable in diblock copolymer systems, with enhanced mechanical integrity is evidenced. The film structure comprises a thin selective layer containing vertically aligned and nearly monodisperse mesopores at a density of more than 1014 per m2 above a graded macroporous layer. Hybridization via homopolymer blending enables tuning of pore size within the range of 16 to 30 nm. Solvent flow and solute separation experiments demonstrate that the terpolymer films have permeabilities comparable to commercial membranes, are stimuli-responsive, and contain pores with a nearly monodisperse diameter. These results suggest that moving to multiblock polymers and their hybrids may open new paths to produce high-performance graded membranes for filtration, separations, nanofluidics, catalysis, and drug delivery. © 2011 American Chemical Society.

  10. Deleuzean hybridity in the films of Leone and Argento

    OpenAIRE

    Brown, Keith Hennessey

    2013-01-01

    In this comparatively brief chapter I begin by introducing my central research proposition. I then introduce my corpus of films and establish their significance both in their own right and as somewhat representative examples of a broader area of cinema. Following this I introduce my corpus of theory. Throughout, I seek to position my research within its wider context, identifying precedents for the approach I will take, alongside the originality of the thesis as a whole. My cen...

  11. Hybrid Organic-Inorganic Films Grown Using Molecular Layer Deposition

    Science.gov (United States)

    2011-03-01

    discussed below for the MLD of the alucone based on TMA and glycerol . Alternatively, a heterobifunctional precursor, such as ethanolamine, HO- CH2...amine-terminated surface functional groups to reform carboxylic groups through a ring-opening reaction in reaction C given by Eqn. 5. The three-step...small amount of cross-linking in the MLD film. These problems with the TMA + EG MLD system led to the recent exploration of the TMA + glycerol system

  12. Deleuzean hybridity in the films of Leone and Argento

    OpenAIRE

    Brown, Keith Hennessey

    2013-01-01

    In this comparatively brief chapter I begin by introducing my central research proposition. I then introduce my corpus of films and establish their significance both in their own right and as somewhat representative examples of a broader area of cinema. Following this I introduce my corpus of theory. Throughout, I seek to position my research within its wider context, identifying precedents for the approach I will take, alongside the originality of the thesis as a whole. My cen...

  13. Electrochemical co-deposition of conductive polymer-silica hybrid thin films.

    Science.gov (United States)

    Raveh, Moran; Liu, Liang; Mandler, Daniel

    2013-07-14

    Conductive polymers, such as polypyrrole (ppy), have been the subject of numerous studies due to their promising applications in organic solar cells, flexible electronics, electrochromic devices, super capacitors, etc. Yet, their application is still limited as a result of poor processability. Silica has been reported to improve the mechanical strength and adhesion of conductive polymer films. In this work, we propose a controllable electrochemical approach for preparing ppy-silica hybrid thin films from a solution containing both pyrrole and silane monomers. It is known that pyrrole can be electropolymerised using anodic potentials, while silica can be electrodeposited under cathodic potentials. Thus, we studied the formation of ppy-silica hybrid thin films on a stainless steel surface by applying alternating potentials, i.e. cathodic followed by anodic pulses (denoted C + A) or anodic followed by cathodic pulses (denoted A + C). We show that by controlling the deposition potential and time for the cathodic and anodic pulses, the film thickness and composition can be manipulated well as analysed using profilometry and EDX. The element depth profile of the films was characterized using secondary ion mass spectroscopy (SIMS). In essence, for the C + A process, pyrrole diffuses through the cathodically electrodeposited wet silica gel layer and undergoes anodic polymerisation on the substrate, while for the A + C process, silane can be electrodeposited both on top of the anodically electrodeposited conductive ppy films as well as on the stainless steel through the pinholes in the ppy film. This offers a simple approach for tuning the structure of conductive polymer-sol-gel composite films.

  14. Self-assembled hybrid films of phosphotungstic acid and aminoalkoxysilanes on SiO{sub 2}/Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Adriano L. [Universidade de Sao Paulo (USP), Instituto de Quimica de Sao Carlos, P.O. Box 780, 13560-970, Sao Carlos, Sao Paulo (Brazil); Marques, Lygia A.; Eberlin, Marcos N. [Universidade Estadual de Campinas (UNICAMP), Instituto de Quimica, Laboratorio Thomson de Espectrometria de Massas, 13083-970, Campinas, Sao Paulo (Brazil); Nascente, Pedro A.P. [Universidade Federal de Sao Carlos (UFSCar), Departamento de Engenharia de Materiais, 13565-905, Sao Carlos, Sao Paulo (Brazil); Herrmann, Paulo S.P. [Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Instrumentacao Agropecuaria, Laboratorio Nacional de Nanotecnologia para o Agronegocio, 13560-970, P.O.Box 741, Sao Carlos, Sao Paulo (Brazil); Leite, Fabio L. [Universidade Federal de Sao Carlos (UFSCar), Campus de Sorocaba, P. O. Box 3031, 18052-780, Sorocaba, Sao Paulo (Brazil); Rodrigues-Filho, Ubirajara P., E-mail: uprf@iqsc.usp.br [Universidade de Sao Paulo (USP), Instituto de Quimica de Sao Carlos, P.O. Box 780, 13560-970, Sao Carlos, Sao Paulo (Brazil)

    2012-02-29

    The present paper describes the influence of the chemical structure of two aminoalkoxysilanes: 3-aminopropyltriethoxysilane (APTS) and N-(3-(trimethoxysilyl)-propyl)-ethylenediamine (TSPEN) on the morphology of thin layer hybrid films with phosphotungstic acid (HPW), a Keggin heteropolyanion. X-ray photoelectron spectroscopy analyses indicated that both silane films showed protonated amine species interacting with the heteropolyanion by electrostatic forces as well as the presence of secondary carbamate anions. The hybrid films have different surface morphology according to atomic force microscopy analyses. The hybrid film with TSPEN forms flatter surfaces than the hybrid film with APTS. This effect is ascribed to higher flexibility and chelating ability of the TSPEN on adsorbed molecules. Ultrasonication effect on surface morphology of the hybrid film with APTS plays a fundamental role on surface roughness delivering enough energy to promote surface diffusion of the HPW heteropolyanions. This diffusion results in agglomerate formation, which corroborates with the assumption of electrostatic bonding between the HPW heteropolyanions and the protonated amine surface. These hybrid films could be used for electrochemical sensor design or to build photochromic and electrochromic multilayers. - Highlights: Black-Right-Pointing-Pointer Formation of phosphotungstate-aminosilylated surfaces. Black-Right-Pointing-Pointer Dependence of the surface roughness on the aminosilane structure. Black-Right-Pointing-Pointer Phosphotungstic acid chelation by N-(3-(trimethoxysilyl)-propyl)-ethylenediamine. Black-Right-Pointing-Pointer Ultrasonic promotion of clustering of phosphotungstic acid.

  15. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    KAUST Repository

    Cho, Nam Chul

    2016-11-10

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm−3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.

  16. MAPLE-based method to obtain biodegradable hybrid polymeric thin films with embedded antitumoral agents.

    Science.gov (United States)

    Dinca, Valentina; Florian, Paula E; Sima, Livia E; Rusen, Laurentiu; Constantinescu, Catalin; Evans, Robert W; Dinescu, Maria; Roseanu, Anca

    2014-02-01

    In this work, antitumor compounds, lactoferrin [recombinant iron-free (Apo-rLf)], cisplatin (Cis) or their combination were embedded within a biodegradable polycaprolactone (PCL) polymer thin film, by a modified approach of a laser-based technique, matrix-assisted pulsed laser evaporation (MAPLE). The structural and morphological properties of the deposited hybrid films were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The in vitro effect on the cells' morphology and proliferation of murine melanoma B16-F10 cells was investigated and correlated with the films' surface chemistry and topography. Biological assays revealed decreased viability and proliferation, lower adherence, and morphological modifications in the case of melanoma cells cultured on both Apo-rLf and Cis thin films. The antitumor effect was enhanced by deposition of Apo-rLf with Cis within the same film. The unique capability of the new approach, based on MAPLE, to embed antitumor active factors within a biodegradable matrix for obtaining novel biodegradable hybrid platform with increased antitumor efficiency has been demonstrated.

  17. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    Science.gov (United States)

    Cho, Namchul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Murali, Banavoth; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tom; Bakr, Osman M.

    2016-11-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm-3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.

  18. Ferromagnetism carried by highly delocalized hybrid states in Sc-doped ZnO thin films

    KAUST Repository

    Benali Kanoun, Mohammed

    2012-05-29

    We present first-principles results for Sc-doped ZnOthin films. Neighboring Sc atoms in the surface and/or subsurface layers are found to be coupled ferromagnetically, where only two of the possible configurations induce spin polarization. In the first configuration, the polarization is carried by the Sc d states as expected for transition metaldoping. However, there is a second configuration which is energetically favorable. It is governed by polarized hybrid states of the Zns, O p, and Sc d orbitals. Such highly delocalized states can be an important ingredient for understanding the magnetism of dopedZnOthin films.

  19. Growth Mechanism and Morphology of ZnO/eosin-Y Hybrid Thin Films

    Institute of Scientific and Technical Information of China (English)

    MAR(I) Bernabé; SINGH Krishan-Chander; MOLLAR Miguel; MOYA Mónica; RANA Ravi

    2012-01-01

    Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at-0.8 and -0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 ℃ with dye concentrations of 100 and 400 μmol· L-1.The films were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),energy-dispersive X-ray analysis (EDX),and absorption spectroscopy.The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface.However,the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO.Preferential growth of the film along the (002) face was observed,and the highest crystallinity was achieved when the film was deposited at 60 ℃.The maximum absorption was achieved for the films grown at 60 to 70 ℃,a deposition potential of-0.9 V,and a dye concentration of 100 μmol· L-1.

  20. Controlled-layer and large-area MoSsub>2sub> films encapsulated Au nanoparticle hybrids for SERS.

    Science.gov (United States)

    Li, Zhen; Jiang, Shouzhen; Huo, Yanyan; Liu, Mei; Yang, Cheng; Zhang, Chao; Liu, Xiaoyun; Sheng, Yingqing; Li, Chonghui; Man, Baoyuan

    2016-11-14

    In this work, a facile and effective method for controlled-layer and large-area MoSsub>2sub> films encapsulated Au nanoparticle hybrids is developed. With accurate Ar plasma treatment time control, the large-area MoSsub>2sub> layers can be obtained from monolayer to trilayer. The fabricated MoSsub>2sub>@Au NPs with higher surface area exhibit excellent Raman enhanced effect for aromatic organic molecules (rhodamine 6G and crystal violet) and achieve the best when the monolayer MoSsub>2sub>@AuNPs was obtained. The limit of detection is found to be as low as 1 × 10-10 M. The MoSsub>2sub>@AuNPs was characterized by SEM, EDS, AFM, Raman spectroscopy, UV-Vis, XRD and HRTEM.

  1. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material

    Directory of Open Access Journals (Sweden)

    Prashanta Dhoj Adhikari

    2014-01-01

    Full Text Available We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT–G. Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT–G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT–G structure and p–n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT–G hybrids with the present technique could provide an efficient, novel route to device fabrication.

  2. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    Science.gov (United States)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  3. Polyhydroxyalkanoate-based natural-synthetic hybrid copolymer films: A small-angle neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Foster, L. John R. [Bio/polymer Research Group and Centre for Advanced Macromolecular Design, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW2052 (Australia)]. E-mail: J.Foster@unsw.edu.au; Knott, Robert [Bragg Institute, Institute for Nuclear Geophysiology, Australian Nucelar Science and Technology Organisation, Menai NSW2234 (Australia); Sanguanchaipaiwong, Vorapat [Bio/polymer Research Group and Centre for Advanced Macromolecular Design, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW2052 (Australia); Holden, Peter J. [Institute for Nuclear Geophysiology, Australian Nucelar Science and Technology Organisation, Menai NSW2234 (Australia)

    2006-11-15

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate-block-diethylene glycol (PHO-b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q{approx}0.12 A{sup -1}. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 A. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  4. Resonant photothermal laser processing of hybrid gold/titania nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lina; Franzka, Steffen; Dzialkowski, Kevin [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hardt, Sebastian; Wiggers, Hartmut [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Verbrennung und Gasdynamik, Universität Duisburg-Essen, 47048 Duisburg (Germany); Reichenberger, Sven [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Institut für Lacke und Oberflächenchemie, Hochschule Niederrhein, 47798 Krefeld (Germany); Wagener, Philipp [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Photothermal processing of TiO{sub 2} and hybrid Au/TiO{sub 2} nanoparticles using continuous-wave lasers is demonstrated. • Processing of TiO{sub 2} nanoparticles at 355 nm results in a transition from anatase to rutile. • Decoration of TiO{sub 2} nanoparticles with Au nanoparticles results in an increased absorbance in the visible range. • Hybrid Au/TiO{sub 2} nanoparticles can be processed at 355 nm and 532 nm in a large laser parameter window. • Processing of hybrid Au/TiO{sub 2} nanoparticles at 532 nm can be carried out at low laser powers and short laser pulse lengths. - Abstract: Photothermal processing of thin anatase TiO{sub 2} and hybrid Au/anatase TiO{sub 2} nanoparticle films on glass supports is investigated using continuous-wave microfocused lasers at λ = 355 nm and λ = 532 nm. UV/Vis spectroscopy, Raman spectroscopy, optical microscopy, atomic force microscopy and scanning electron microscopy are used for characterization. Processing of TiO{sub 2} nanoparticle films is feasible at λ = 355 nm only. In contrast, the addition of Au nanoparticles enhances the overall absorbance of the material in the visible range and enables processing at both wavelengths, i.e. at λ = 355 nm and λ = 532 nm. Generally, laser heating induces a transition from anatase to rutile. The modification degree increases with increasing laser power and laser irradiation time. Resonant laser processing of hybrid Au/TiO{sub 2}-mesoporous films provide promising perspectives in various applications, e.g. in photovoltaics, where embedded nanoparticulate Au could be exploited to enhance light trapping.

  5. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates

    Science.gov (United States)

    Liu, Liping; Yang, Haitao; Ren, Xiao; Tang, Jin; Li, Yongfeng; Zhang, Xiangqun; Cheng, Zhaohua

    2015-03-01

    Flower-shaped Au-ZnO hybrid nanoparticles have been prepared via seeding growth and subsequent wet-chemical etching of Au-ZnO core-shell nanoparticles. The etched Au-ZnO hybrid nanoparticles have shown a stronger surface-enhanced Raman scattering (SERS) signal of the nontotally symmetric (b2) vibrational modes of PATP molecules than Au nanoparticles alone, which is attributed to the chemical enhancement effect of the ZnO layer which is greatly excited by the localized surface plasmon resonance (LSPR) of Au cores. Further, the mechanism of the LSPR-enhanced charge transfer (CT) effect has been proved by the SERS spectra of PATP molecules excited using different laser sources from 325 to 785 nm. Moreover, the photocatalytic experimental results indicated that Au-ZnO hybrid nanoparticles are promising as biologically compatible and recyclable SERS-active platforms for different molecular species.Flower-shaped Au-ZnO hybrid nanoparticles have been prepared via seeding growth and subsequent wet-chemical etching of Au-ZnO core-shell nanoparticles. The etched Au-ZnO hybrid nanoparticles have shown a stronger surface-enhanced Raman scattering (SERS) signal of the nontotally symmetric (b2) vibrational modes of PATP molecules than Au nanoparticles alone, which is attributed to the chemical enhancement effect of the ZnO layer which is greatly excited by the localized surface plasmon resonance (LSPR) of Au cores. Further, the mechanism of the LSPR-enhanced charge transfer (CT) effect has been proved by the SERS spectra of PATP molecules excited using different laser sources from 325 to 785 nm. Moreover, the photocatalytic experimental results indicated that Au-ZnO hybrid nanoparticles are promising as biologically compatible and recyclable SERS-active platforms for different molecular species. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00491h

  6. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  7. Hybrid Solar Cell with TiO2 Film: BBOT Polymer and Copper Phthalocyanine as Sensitizer

    Directory of Open Access Journals (Sweden)

    Saptadip Saha

    2016-01-01

    Full Text Available An organic-inorganic hybrid solar cell was fabricated using Titanium dioxide (TiO2: 2,5-bis(5-tert-butyl-2-benzoxazolyl thiophene (BBOT film and Copper Phthalocyanine (CuPc as a sensitizer. BBOT was used in photodetector in other reported research works, but as per best of our knowledge, it was not implemented in solar cells till date. The blend of TiO2: BBOT blend was used to fabricate the film on ITO-coated glass and further a thin layer of CuPc was coated on the film. This was acted as photoanode and another ITO coated glass with a platinum coating was used as a counter electrode (cathode. An optimal blend of acetonitrile (solvent (50-100%, 1,3-dimethylimidazolium iodide (10-25%, iodine (2.5-10% and lithium iodide, pyridine derivative and thiocyanate was used as electrolytes in the hybrid solar cell. The different structural, optical and electrical characteristics were measured. The Hybrid solar cell showed a maximum conversion efficiency of 6.51%.

  8. Dopamine/TiO{sub 2} hybrid thin films prepared by the liquid phase deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Tauste, David [Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB, Edifici Cn, 08290 Cerdanyola del Valles, Barcelona (Spain)], E-mail: davidg@qf.uab.es; Domenech, Xavier [Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB, Edifici Cn, 08290 Cerdanyola del Valles, Barcelona (Spain); Domingo, Concepcion [Instituto de Ciencia de Materiales (CSIC), Campus UAB, 08290 Cerdanyola del Valles, Barcelona (Spain); Ayllon, Jose A. [Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB, Edifici Cn, 08290 Cerdanyola del Valles, Barcelona (Spain)

    2008-04-30

    Liquid phase deposition method is applied to one-step production of a hybrid material composed by dopamine(DA) and TiO{sub 2} anatase. An optimized amount of the enediol derivative is added to a fluoride titania precursor aqueous solution in order to entrap this modifier within the growing TiO{sub 2}, yielding a DA/TiO{sub 2} nanocomposite material. Uniform, well-adhered and brown-colored thin films are deposited on indium tin oxide covered glass substrate. The DA/TiO{sub 2} hybrid material has been characterized by infrared spectroscopy, electronic microscopy, X-ray diffraction and UV-vis spectroscopy. The formation of the hybrid material seems to be reasonably explained by linkage of different TiO{sub 2} nanocrystallites taking advantage of both enediol and amine groups of DA.

  9. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    Science.gov (United States)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  10. High- T_c superconducting thin film/GaAs MESFET hybrid microwave oscillator

    Institute of Scientific and Technical Information of China (English)

    金飚兵; 康琳; 伍瑞新; 张健羽; 程其恒; 吴培亨; 经东; 焦刚; 邵凯; 蒋明明; 张家宗; 孙敏松; 王蕴仪; 周岳亮; 吕惠宾; 许世发; 何萌; 王小平; 杨秉川; 卢剑; 张其邵

    1997-01-01

    A high- Tc superconducting (HTSC) thin film/GaAs MESFET hybrid microwave oscillator operated at 10 6 GHz has been designed, fabricated and characterized. Microstrip line structures were used throughout the circuit with superconducting thin film YBaiCuiO7 8(YBCO) as the conductor material. The YBCO thin films were deposited on 15 mm×10 mm×0. 5 mm LaAlO3 substrates. The oscillator was common-source, series feedback type using a GaAs-MESFET (NE72084) as the active device and a superconducting microstrip resonator as the frequency stabilizing element. By improving the unloaded quality factor Q0 of the superconducting microstrip resonator and adjusting the coupling coefficient between the resonator and the gate of the MESFET, the phase noise of the oscillator was decreased At 77 K, the phase noise of the oscillator at 10 kHz offset from carrier was - 87 dBc/Hz.

  11. Extended short-wavelength spectral response of organic/(silver nanoparticles/Si nanoholes nanocomposite films) hybrid solar cells due to localized surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixin [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Wengping; Ge, Zhaoyun; Xu, Jun [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Su, Weining; Yu, Yao [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2015-04-15

    Highlights: • The silver nanoparticles (AgNPs)/Si nanoholes (SiNHs) nanocomposite films were fabricated. • An enhancement of total absorption in the AgNPs/SiNHs nanocomposite films at the short wavelength was exhibited. • Prototype solar cell device with AgNPs exhibits an increase of the power conversion efficiency by a factor of 2–3. - Abstract: In this letter, we investigated spectral and opto-electronic conversion properties of the inorganic/organic hybrid cells by using silver nanoparticles (AgNPs)/Si nanoholes (SiNHs) nanocomposite films, which were fabricated by the modified metal-assisted electroless etching (EE) method. It was found that the optical absorption spectra of the films with AgNPs demonstrate a clear peak and show the enhancement of total absorption at the short wavelength. The results of current–voltage (I–V) measurements show that solar cells with AgNPs exhibit an increase of the power conversion efficiency by a factor of 2–3, in comparison with those of the samples without AgNPs. Moreover, higher external quantum efficiency (EQE) values in AgNPs-decorated solar cells were confirmed in the short-wavelength spectral region (400–700 nm), which were essential to achieve high-performance photovoltaic cells. We thought these were mainly attributed to the localized surface plasmon resonance (LSPR) effects and increased light scattering of AgNPs.

  12. Ordered and disordered evolution of the pore mesostructure in hybrid silica anti-reflective films obtained by one-pot self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Ghazzal, Mohamed N., E-mail: g_nawfel@yahoo.fr; Debecker, Damien P.; Gaigneaux, Eric M.

    2016-07-29

    Hybrid mesoporous silica films were prepared in acid-catalysed medium using a one-pot self-assembly method. A gradual content of methyl groups was introduced into the inorganic framework by co-condensation of tetraethyl orthosilicate and methyltriethoxysilane. To better understand how the ordered and disordered transition occurs in mesoporous hybrid organosilica sytem as function of the MTES molar ratio in the starting solution, textural, chemical and optical properties of the films were studied by transmission electronic microscopy (TEM), grazing-incident small angle X-ray scattering (GISAXS), transmission Fourier transformed infrared (FTIR) and UV–visible spectroscopy. Increasing the loading of the incorporated organic groups (up to 40% in the starting solution) led simultaneously to a disorganization of the pore mesostructure and a reduction in the pore diameter. Concomitantly, a disordered domain of the silica rings in the walls was observed, which created bond strains in the silica wall contributing also to the disorganization of the pore mesostructure. Furthermore, an optimal MTES content was identified in order to obtain antireflection coatings, exhibiting low reflection in the visible range. - Highlights: • Mesoporous hybrid silica films where prepared by one-pot co-condensation of MTES and TEOS. • Ordered and disordered mesostructures were studied as function as variable MTES molar ratio. • A rearrangement of the silica cyclic species occurred as the molar ratio of MTES increases. • Transmittance of the silica coatings is affected by the MTES molar ratio.

  13. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High-Performance Flexible Pseudosupercapacitors.

    Science.gov (United States)

    Chen, Hongyuan; Zeng, Sha; Chen, Minghai; Zhang, Yongyi; Zheng, Lianxi; Li, Qingwen

    2016-04-01

    To date, it has been a great challenge to design high-performance flexible energy storage devices for sufficient loading of redox species in the electrode assemblies, with well-maintained mechanical robustness and enhanced electron/ionic transport during charge/discharge cycles. An electrochemical activation strategy is demonstrated for the facile regeneration of carbon nanotube (CNT) film prepared via floating catalyst chemical vapor deposition strategy into a flexible, robust, and highly conductive hydrogel-like film, which is promising as electrode matrix for efficient loading of redox species and the fabrication of high-performance flexible pseudosupercapacitors. The strong and conductive CNT films can be effectively expanded and activated by electrochemical anodic oxygen evolution reaction, presenting greatly enhanced internal space and surface wettability with well-maintained strength, flexibility, and conductivity. The as-formed hydrogel-like film is quite favorable for electrochemical deposition of manganese dioxide (MnO2 ) with loading mass up to 93 wt% and electrode capacitance kept around 300 F g(-1) (areal capacitance of 1.2 F cm(-2) ). This hybrid film was further used to assemble a flexible symmetric pseudosupercapacitor without using any other current collectors and conductive additives. The assembled flexible supercapacitors exhibited good rate performance, with the areal capacitance of more than 300 mF cm(-2) , much superior to other reported MnO2 based flexible thin-film supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hybrid Sol-Gel-Derived Films That Spontaneously Form Complex Surface Topographies.

    Science.gov (United States)

    Destino, Joel F; Jones, Zachary R; Gatley, Caitlyn M; Zhang, Yi; Craft, Andrew K; Detty, Michael R; Bright, Frank V

    2016-10-04

    Surface patterns over multiple length scales are known to influence various biological processes. Here we report the synthesis and characterization of new, two-component xerogel thin films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS). Atomic force microscopy (AFM) reveals films surface with branched and hyper branched architectures that are ∼2 to 30 μm in diameter, that extend ∼3 to 1300 nm above the film base plane with surface densities that range from 2 to 77% surface area coverage. Colocalized AFM and Raman spectroscopy show that these branched structures are COE-rich domains, which are slightly stiffer (as shown from phase AFM imaging) and exhibit lower capacitive force in comparison with film base plane. Raman mapping reveals there are also discrete domains (≤300 nm in diameter) that are rich in COE dimers and densified TEOS, which do not appear to correspond with any surface structure seen by AFM.

  15. Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors.

    Science.gov (United States)

    Deng, Lingjuan; Gu, Yuanzi; Gao, Yihong; Ma, Zhanying; Fan, Guang

    2017-05-15

    The practical application of graphene (GR) has still been hindered because of its unsatisfied physical and chemical properties resulting from the irreversible agglomerates. Preparation of GR-based materials with designed porosities is essential for its practical application. In this work, a facile and scalable method is developed to synthesize carbon nanotubes/holey graphene (CNT/HGR) flexible film using functional CNT and HGR as precursors. Owing to the existence of the small amount CNT, the CNT-5/HGR flexible film with a 3D conductive interpenetrated architecture exhibit significantly improved ion diffusion rate compared to that of the HGR. Moreover, CNT-5/HGR flexible film can be used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 268Fg(-1), excellent rate capabilities, and superior cycling stabilities. CNT-5/HGR flexible film could be used to fabricate high-performance flexible supercapacitors electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Preparation of electrochemically reduced graphene oxide/multi-wall carbon nanotubes hybrid film modified electrode, and its application to amperometric sensing of rutin

    Indian Academy of Sciences (India)

    Uling Yang; Gang Li; Meifang Hu; Lingbo Qu

    2014-07-01

    Through a facile electrochemical method, we prepared an electrochemically reduced graphene oxide (ERGO)/multi-wall carbon nanotubes (MWNTs) hybrid film modified glassy carbon electrode (GCE), and characterized it by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray diffraction (XRD) The experimental results demonstrated that ERGO-MWNTs/GCE exhibited excellent electrocatalytic activity toward rutin as evidenced by the significant enhancement of redox peak currents in comparison with a bare GCE, ERGO/GCE and MWNTs/GCE. This method has been applied for the direct determination of rutin in real samples with satisfactory results.

  17. New approach for fabricating hybrid-structured metal mesh films for flexible transparent electrodes by the combination of electrospinning and metal deposition

    Science.gov (United States)

    Huh, Jin Woo; Lee, Dong Kyu; Jeon, Hwan-Jin; Ahn, Chi Won

    2016-11-01

    In this study, hybrid-structured metal mesh (HMM) films as potential flexible transparent electrodes, composed of aligned micro-sized metal fibers integrated into random network of metal nanofibers, were fabricated by the combination of electrospinning and metal deposition. These naturally fiber-bridged HMMs, with a gold layer thickness of 85 nm, exhibited a high transmittance of around 90% and a sheet resistance of approximately 10 Ω sq-1, as well as favorable mechanical stability under bending stress. These results demonstrate that the approach employed herein is a simple, highly efficient, and facile process for fabricating, uniform, interconnected fiber networks with potential for producing high-performance flexible transparent electrodes.

  18. Resonant photothermal laser processing of hybrid gold/titania nanoparticle films

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Dzialkowski, Kevin; Hardt, Sebastian; Wiggers, Hartmut; Reichenberger, Sven; Wagener, Philipp; Hartmann, Nils

    2015-05-01

    Photothermal processing of thin anatase TiO2 and hybrid Au/anatase TiO2 nanoparticle films on glass supports is investigated using continuous-wave microfocused lasers at λ = 355 nm and λ = 532 nm. UV/Vis spectroscopy, Raman spectroscopy, optical microscopy, atomic force microscopy and scanning electron microscopy are used for characterization. Processing of TiO2 nanoparticle films is feasible at λ = 355 nm only. In contrast, the addition of Au nanoparticles enhances the overall absorbance of the material in the visible range and enables processing at both wavelengths, i.e. at λ = 355 nm and λ = 532 nm. Generally, laser heating induces a transition from anatase to rutile. The modification degree increases with increasing laser power and laser irradiation time. Resonant laser processing of hybrid Au/TiO2-mesoporous films provide promising perspectives in various applications, e.g. in photovoltaics, where embedded nanoparticulate Au could be exploited to enhance light trapping.

  19. Totally embedded hybrid thin films of carbon nanotubes and silver nanowires as flat homogenous flexible transparent conductors

    Science.gov (United States)

    Pillai, Suresh Kumar Raman; Wang, Jing; Wang, Yilei; Sk, Md Moniruzzaman; Prakoso, Ari Bimo; Rusli; Chan-Park, Mary B.

    2016-12-01

    There is a great need for viable alternatives to today’s transparent conductive film using largely indium tin oxide. We report the fabrication of a new type of flexible transparent conductive film using silver nanowires (AgNW) and single-walled carbon nanotube (SWCNT) networks which are fully embedded in a UV curable resin substrate. The hybrid SWCNTs-AgNWs film is relatively flat so that the RMS roughness of the top surface of the film is 3 nm. Addition of SWCNTs networks make the film resistance uniform; without SWCNTs, sheet resistance of the surface composed of just AgNWs in resin varies from 20 Ω/sq to 107 Ω/sq. With addition of SWCNTs embedded in the resin, sheet resistance of the hybrid film is 29 ± 5 Ω/sq and uniform across the 47 mm diameter film discs; further, the optimized film has 85% transparency. Our lamination-transfer UV process doesn’t need solvent for sacrificial substrate removal and leads to good mechanical interlocking of the nano-material networks. Additionally, electrochemical study of the film for supercapacitors application showed an impressive 10 times higher current in cyclic voltammograms compared to the control without SWCNTs. Our fabrication method is simple, cost effective and enables the large-scale fabrication of flat and flexible transparent conductive films.

  20. Nanometric hybrid films of xanthan and magnetite; Filmes hibridos nanometricos de xantana e magnetita

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Magnetite nanoparticles (NMM) were synthesized by co-characterized by means of X-ray diffraction, infrared spectroscopy and potentiometric titration. Xanthan thin films and NMM were deposited alternately onto Si wafers. The attachment of first xanthan layer onto Si wafer was obtained in the presence of Ca{sup 2+} 1 mM and at pH 10. Under these conditions calcium ions interact electrostatically with both silanol groups and xanthan carboxylate groups, yielding stable xanthan (1.5 {+-} 0.5) nm thick films. The deposition of NMM was forced by applying a magnetic field set under the sample. The following bilayers were formed by 'layer-by-layer' electrostatic process and magnetic field action. The bilayers formation was monitored by the variation in the ellipsometric angles values, {Delta} e {psi}, and atomic force microscopy. (author)

  1. Organic-inorganic Hybrids Towards the Preparation of Nanoporous Composite Thin Films for Microelectronic Application

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants(k) near 4. 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric (ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra-low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra-low k from 1.80 to 2.87, and good to high modulus, 1.5 to 5.5 Gpa. Structure property influences on porosity, dielectric constant and modulus will be discussed.

  2. Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials

    Science.gov (United States)

    Berberova, N.; Daskalova, D.; Strijkova, V.; Kostadinova, D.; Nazarova, D.; Nedelchev, L.; Stoykova, E.; Marinova, V.; Chi, C. H.; Lin, S. H.

    2017-02-01

    Recently, a birefringence enhancement effect was observed in azopolymers doped with various nanoparticles. The paper presents comparison between the parameters of polarization holographic gratings recorded in a pure azopolymer PAZO (Poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]) and in a hybrid PAZO-based organic/inorganic material with incorporated ZnO nanoparticles of size less than 50 nm. Laser emitting at 491 nm is used for the holographic recording. Along with the anisotropic grating in the volume of the media, surface relief is also formed. Gratings with different spatial frequencies are obtained by varying the recording angle. The time dependence of the diffraction efficiency is probed at 635 nm and the height of the relief gratings is determined by AFM. Our results indicate that both the diffraction efficiency and the height of the surface relief for the hybrid samples are enhanced with respect to the pure azopolymer films.

  3. Design of hybrid sol gel films for direct x-ray and electron beam nanopatterning

    Science.gov (United States)

    Brusatin, Giovanna; Della Giustina, Gioia; Romanato, Filippo; Guglielmi, Massimo

    2008-04-01

    New epoxy based sol-gel organic inorganic materials, showing lithographic resist-like properties without the addition of any photocatalysts, are presented. To obtain a material sensitive to radiation, specific sol-gel syntheses based on an organically modified alkoxide containing an epoxy ring, 3-glycidoxypropyltrimethoxysilane (GPTMS), have been developed. The synthesis and the patternability of hybrid materials have been obtained controlling the inorganic crosslinking degree and with an almost total absence of organic polymerization. Two examples of directly patternable hybrid films, called GB and GGe, have been synthesized using acidic (GGe) and basic (GB) conditions and obtaining different compositions. After electron beam lithography (EBL) or x-ray synchrotron radiation lithography (XRL) the polymerization of the organic component of the sol-gel film occurs, generating a hardening of the structure after post-exposure baking. The exposed polymerized material becomes insoluble, determining a negative resist-like behaviour of the film: the lithographic process of nanopatterning results from the dissolution of the unexposed areas in proper solvents (developers). Spatial resolution of the order of 200 nm is reported and a contrast of 2.2 is achieved. The novelty of this work is that epoxy based materials, which have enhanced thermomechanical stability with respect to the more usual acrylic based resins, are directly nanopatterned for the first time by electron beam (EB) and/or x-ray beam radiation exposure without the aid of catalysts for polymerization. In contrast to common resists that are sacrificial layers of the fabrication process, direct patternable sol-gel hybrids constitute the final material of the devices. In fact, an example of doping with a light emitting dye is reported together with the achievement of directly patterned structures by EBL and XRL.

  4. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores.

  5. Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications

    Science.gov (United States)

    Wang, Xi; Gao, Kezheng; Shao, Ziqiang; Peng, Xiaoqing; Wu, Xue; Wang, Feijun

    2014-03-01

    Cellulose nanofibers (CNFs) paper with low thermal expansion and electrolyte absorption properties is considered to be a good potential substrate for supercapacitors. Unlike traditional substrates, such as glass or plastic, CNFs paper saves surfaces pretreatment when Layer-by-Layer (LbL) assembly method is used. In this study, negatively charged graphene oxide (GO) nanosheets and poly(3,4-ethylenedioxythiophene: poly(styrene sulfonate)) (PEDOT:PSS) nanoparticles are deposited onto CNFs paper with positively charged polyaniline (PANI) nanowires as agents to prepare multilayer thin film electrodes, respectively. Due to the different nanostructures of reduced graphene oxide (RGO) and PEDOT:PSS, the microstructures of the electrodes are distinguishing. Our work demonstrate that CNFs paper/PANI/RGO electrode provides a more effective pathway for ion transport facilitation compared with CNFs paper/PANI/PEDOT:PSS electrode. The supercapacitor fabricated by CNFs/[PANI-RGO]8 (S-PG-8) exhibits an excellent areal capacitance of 5.86 mF cm-2 at a current density of 0.0043 mA cm-2, and at the same current density the areal capacitance of the supercapacitor fabricated by CNFs/[PANI-PEDOT:PSS]8 (S-PP-8) is 4.22 mF cm-2. S-PG-8 also exhibits good cyclic stability. This study provides a novel method using CNFs as substrate to prepare hybrid electrodes with diverse microstructures that are promising for future flexible supercapacitors.

  6. A Review on the Low-Dimensional and Hybridized Nanostructured Diamond Films

    Directory of Open Access Journals (Sweden)

    Hongdong Li

    2015-01-01

    Full Text Available In the last decade, besides the breakthrough of high-rate growth of chemical vapor deposited single-crystal diamonds, numerous nanostructured diamond films have been rapidly developed in the research fields of the diamond-based sciences and industrial applications. The low-dimensional diamonds of two-dimensional atomic-thick nanofilms and nanostructural diamond on the surface of bulk diamond films have been theoretically and experimentally investigated. In addition, the diamond-related hybrid nanostructures of n-type oxide/p-type diamond and n-type nitride/p-type diamond, having high performance physical and chemical properties, are proposed for further applications. In this review, we first briefly introduce the three categories of diamond nanostructures and then outline the current advances in these topics, including their design, fabrication, characterization, and properties. Finally, we address the remaining challenges in the research field and the future activities.

  7. Organic–Inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits

    Science.gov (United States)

    Brites, Carlos D. S.; Lima, Patrícia P.; Silva, Nuno J. O.; Millán, Angel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luís D.

    2013-01-01

    The continuous decrease on the geometric size of electronic devices and integrated circuits generates higher local power densities and localized heating problems that cannot be characterized by conventional thermographic techniques. Here, a self-referencing intensity-based molecular thermometer involving a di-ureasil organic-inorganic hybrid thin film co-doped with Eu3+ and Tb3+ tris (β-diketonate) chelates is used to obtain the temperature map of a FR4 printed wiring board with spatio-temporal resolutions of 0.42 μm/4.8 ms. PMID:24790938

  8. A new layered nano hybrid perovskite film with enhanced resistance to moisture-induced degradation

    Science.gov (United States)

    Jiang, Wenlong; Ying, Jifei; Zhou, Wei; Shen, Kongchao; Liu, Xing; Gao, Xingyu; Guo, Fuqiang; Gao, Yanmin; Yang, Tieying

    2016-08-01

    In this paper, a new layered hybrid perovskite film ((EDA)(MA)2[Pb3I10]) was synthesized through one-step method. Ethylenediamine (EDA) cation was introduced into the perovskite lattice to synthesize a layered structure with improved resistance to degradation by humidity. The effects of humidity and time on crystal structure, composition, morphology and absorption spectra of (EDA)(MA)2[Pb3I10] were analyzed by in situ grazing incidence X-ray diffraction (GIXRD), scanning electron microscope (SEM), and UV-Vis spectroscope. The results reveal that a (EDA)(MA)2[Pb3I10] film is more moisture resistant than a CH3NH3PbI3 film which is widely used in the perovskite solar cell now. UV-Vis spectroscopy result also shows that the layered structure film is a suitable solar absorber with a bandgap (1.67 eV), which is close to the optimum value for solar photoelectric conversion. Compared to CH3NH3PbI3, the low-cost perovskite structure offers greater tunability on a molecular level for further material optimization and possibility for widely used in the future.

  9. Growth of SrVO{sub 3} thin films by hybrid molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, Craig; Brahlek, Matthew; Engel-Herbert, Roman, E-mail: rue2@psu.edu [Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Moyer, Jarrett A. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Alipour, Hamideh M.; Grimley, Everett D.; LeBeau, James M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-11-15

    The authors report the growth of stoichiometric SrVO{sub 3} thin films on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (001) substrates using hybrid molecular beam epitaxy. This growth approach employs a conventional effusion cell to supply elemental A-site Sr and the metalorganic precursor vanadium oxytriisopropoxide (VTIP) to supply vanadium. Oxygen is supplied in its molecular form through a gas inlet. An optimal VTIP:Sr flux ratio has been identified using reflection high-energy electron-diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy, demonstrating stoichiometric SrVO{sub 3} films with atomically flat surface morphology. Away from the optimal VTIP:Sr flux, characteristic changes in the crystalline structure and surface morphology of the films were found, enabling identification of the type of nonstoichiometry. For optimal VTIP:Sr flux ratios, high quality SrVO{sub 3} thin films were obtained with smallest deviation of the lattice parameter from the ideal value and with atomically smooth surfaces, indicative of the good cation stoichiometry achieved by this growth technique.

  10. Formation mechanism of photo-induced nested wrinkles on siloxane-photomonomer hybrid film

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazumasa [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); International Laboratory of Materials Science and Nanotechnology (iLMNT), Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Laboratorio di Scienz (Italy); Tokudome, Yasuaki, E-mail: masa@photomater.com; Takahashi, Masahide, E-mail: masa@photomater.com [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); International Laboratory of Materials Science and Nanotechnology (iLMNT), Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2014-10-21

    Nested wrinkle structures, hierarchical surface wrinkles of different periodicities of sub-μm and tens-μm, have been fabricated on a siloxane-photomonomer hybrid film via a photo-induced surface polymerization of acrylamide. The formation mechanism of the nested wrinkle structures is examined based on a time-dependent structure observation and chemical composition analyses. In-situ observation of the evolving surface structure showed that sub-μm scale wrinkles first formed, subsequently the tens-μm scale ones did. In-situ FT-IR analysis indicated that the nested wrinkles formation took place along with the development of siloxane network of under layer. A cross sectional observation of the film revealed that the film was composed of three layers. FT-IR spectra of the film revealed that the surface and interior layers were polyacrylamide rich layer and siloxane-polymer rich layer, respectively. The intermediate layer formed as a diffusion layer by migration of acrylamide from interior to the surface. These three layers have different chemical compositions and therefore different mechanical characteristics, which allows the wrinkle formation. Shrinkage of siloxane-polymer interior layers, as a result of polycondensation of siloxane network, induced mechanical instabilities at interlayers, to form the nested wrinkle structures.

  11. High enzymatic activity preservation with carbon nanotubes incorporated in urease-lipid hybrid Langmuir-Blodgett films.

    Science.gov (United States)

    Caseli, Luciano; Siqueira, José Roberto

    2012-03-27

    The search for optimized architectures, such as thin films, for the production of biosensors has been challenged in recent decades, and thus, the understanding of molecular interactions that occur at interfaces is essential to improve the construction of nanostructured devices. In this study, we investigated the possibility of using carbon nanotubes in hybrid Langmuir-Blodgett (LB) films of lipids and urease to improve the catalytic performance of the immobilized enzyme. The molecular interactions were first investigated at the air-water interface with the enzyme adsorbed from the aqueous subphase onto Langmuir monolayers of dimyristoylphosphatidic acid (DMPA). The transfer to solid supports as LB films and the subsequent incorporation of carbon nanotubes in the hybrid film permitted us to evaluate how these nanomaterials changed the physical properties of the ultrathin film. Colorimetric measurments indicated that the presence of nanotubes preserved and enhanced the enzyme activity of the film, even after 1 month. These results show that the use of such hybrid films is promising for the development of biosensors with an optimized performance.

  12. Optical Properties of BDK-Doped Highly Photosensitive Sol-Gel Hybrid Film

    Institute of Scientific and Technical Information of China (English)

    XU Ming; SHEN Wei-Dong; ZHANG Yue-Guang; ZHEN Hong-Yu; LIU Xu

    2011-01-01

    @@ A new organic-inorganic by brid material doped with BDK that exhibits a large photo-induced change in optical properties is prepared by the sol-gel method.The photosensitivity of the film under ultraviolet irradiation is investigated with various exposure times.An increase in refractive index from 1.558 to 1.592 at A=550nm is observed together with a 57.3% expansion in physical thickness.The film's optical thickness exhibits an exponential change with the irradiation time.The photo-decomposition of BDK organic groups confirmed by the infrared absorption spectrum contributes to the photosensitive mechanism.A first example of photo-patterning is finally presented by direct light writing.

  13. PREPARATION OF POLYIMIDE-BaTiO3 HYBRID FILMS BY A DISPERSION PROCESS AND THEIR MICROSTRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Yue-sheng Li; Yue-jin Tong; Kai Jing; Meng-xian Ding

    2001-01-01

    Barium titanate (BaTiO3) powders with particle sizes of 30~50 nm were prepared from barium stearate, titanium alkoxides and stearic acid by stearic acid-gel method. Dispersing the agglomerate of BaTiO3 nanoparticles into poly(amic acid) solution followed by curing led to the formation of polyimide hybrid films. The hybrid films were transparent and well distributed with BaTiO3 nanoparticles when the BaTiO3 content was less than 1 wt%. Highly loaded hybrid film containing 30 wt % BaTiO3 was tough, had a smooth surface and possessed much higher dielectric and piezoelectric constants than the parent polyimide.

  14. Strategic modulation of the photonic properties of conjugated organometallic Pt-Ir polymers exhibiting hybrid CT-excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D

    2015-04-01

    Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes.

  15. Hybrid chitosan–Pluronic F-127 films with BaTiO{sub 3}:Co nanoparticles: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Dubo, J. [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); González, R. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Veloso, E. [Dirección de Investigaciones Científicas y Tecnológicas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-01

    In this study, magnetic BaTiO{sub 3}:Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO{sub 3}:Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO{sub 3}:Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices.

  16. Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO 2 nanocomposite thin films

    Science.gov (United States)

    Talebian, Nasrin; Nilforoushan, Mohammad Reza; Zargar, Elahe Badri

    2011-10-01

    The nano-sized coupled oxides ZnO/SnO 2 thin films in a molar ratio of 2:1 (Z2S), 1:1 (ZS) and 1:2 (ZS2) were prepared using sol-gel dip coating method and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. Escherichia coli ( E. coli, ATCC 25922) was selected as a model for the Gram-negative bacteria to evaluate antibacterial property of composite samples compared with single ZnO (Z) and single SnO 2 (S) films. The antibacterial activity has been studied applying the so-called antibacterial drop test under UV illumination. The bactericidal activity was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The influence of the SnO 2-ZnO nanocomposite composition on the structural features and on the antibacterial properties of the thin films are reported and discussed. It is found that all coatings exhibited a high antibacterial activity. The coupled oxide photocatalyst Z2S has better photocatalytic activity to bacteria inactivation than ZS, ZS2, Z and S films. Furthermore, nanostructured films were active even in the absence of irradiation.

  17. Amorphous indium-gallium-zinc-oxide thin-film transistors using organic-inorganic hybrid films deposited by low-temperature plasma-enhanced chemical vapor deposition for all dielectric layers

    Science.gov (United States)

    Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih

    2017-01-01

    We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.

  18. Properties of MgB{sub 2} films grown at various temperatures by hybrid physical-chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke; Veldhorst, Menno; Li, Qi; Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lee, Che-Hui; Lamborn, Daniel R; DeFrain, Raymond; Redwing, Joan M [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-09-15

    A hybrid physical-chemical vapour deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB{sub 2} thin films and thick films at various temperatures. We are able to grow superconducting MgB{sub 2} thin films at temperatures as low as 350 deg. C with a T{sub c0} of 35.5 K. MgB{sub 2} films up to 4 {mu}m in thickness grown at 550 deg. C have J{sub c} over 10{sup 6} A cm{sup -2} at 5 K and zero applied field. The low deposition temperature of MgB{sub 2} films is desirable for all-MgB{sub 2} tunnel junctions and MgB{sub 2} thick films are important for applications in coated conductors.

  19. Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, E., E-mail: maniphysics@gmail.com [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); Materials Science Group (MSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Sree Balaji Medical College & Hospital (SBMCH), Bharath University, Chrompet, Chennai 600044 (India); Kennedy, J. [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Kavitha, G. [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); PG& Research Dept of Physics, AM Jain College Affiliated to University of Madras, Chennai 600114 (India); and others

    2015-10-25

    We report the observation of hybrid nanostructured thin-films such as diamond-like carbon (DLC) signature on the ZnO epitaxial thin-films grown onto the device silicon/quartz substrate by reactive pulsed laser deposition (r-PLD) under the argon–oxygen (Ar|O{sub 2}) ambient at 573 K. Undoped and Carbon (C) doped epitaxial ZnO thin-film layer formation is revealed by the accelerator based ion-beam analysis (IBA) technique of resonant Rutherford backscattering spectrometry (RRBS), glancing-incidence X-ray diffraction (GIXRD) pattern, micro-Raman spectroscopy (μ-RS) and field-emission (F-E) studies. The RRBS and GIXRD results show the deposition of epitaxial thin-films containing C into ZnO. The μ-RS technique is a standard nondestructive tool (NDT) for the characterization of crystalline, nano-crystalline, and amorphous carbons (a-C). As grown ZnO and C-doped ZnO thin-films μ-RS result reveal the doping effect of C-impurities that appear in the form of DLC evident from Raman peaks at 1357 and 1575 cm{sup −1} along with a wurtzite structure peak at 438 cm{sup −1} with E{sub 2}(h) phonon of ZnO. The electron transport F-E result shows the hybrid thin-films has high conductivity than the un-doped film. Fabricated hybrid nanostructured thin-films materials could be very useful for the emerging applications of micro-nano dosimetry. - Highlights: • Observation of hybrid nanostructured diamond-like carbon (DLC) on ZnO epitaxial thin-films at 573 K. • Carbon doped epitaxial ZnO thin-film layer formation is revealed by RRBS, Micro-Raman. • Field-emission (F-E) study. • DLC formation evident from Raman peaks at 1357 and 1575 cm{sup −1} along with a wurtzite structure peak of ZnO. • The electron transport F-E result shows the hybrid thin-film has high conductivity than the undoped thin-film.

  20. Optical properties of polysiloxane hybrid thin films containing nano-sized Ag-As-Se chalcogenide clusters

    Science.gov (United States)

    Zha, Congji; Osvath, Peter; Wilson, Gerry; Launikonis, Anton

    2009-02-01

    Chalcogenide glasses are attractive for all-optical signal processing due to their outstanding optical properties, including large optical nonlinearity, a high refractive index and high photosensitivity. In device fabrication, a challenge lies in the difficulty of obtaining thin films with a high stability and good uniformity. In this paper, optical thin films containing nano-sized chalcogenide clusters in polysiloxane matrices are fabricated by a modified plasma deposition process. The optical absorption and luminescence emission properties of the hybrid thin films were characterized by UV-Vis-NIR and fluorescence spectroscopy. Luminescent emission from Ag-As-Se nano-sized clusters was observed for the first time in these nano-hybrid thin films, and the mechanism was discussed.

  1. Spectroscopic, morphological and electrochromic characterization of layer-by-layer hybrid films of polyaniline and hexaniobate nanoscrolls

    OpenAIRE

    Silva, Claudio H. B.; Galiote, Nelson A.; Huguenin,Fritz; Teixeira-Neto, Erico; Constantino, Vera R. L.; Marcia L. A. Temperini

    2012-01-01

    The combination of semiconducting oxides and polyaniline in the nanoscale range may result in hybrid materials having enhanced properties, such as electrochromism and charge capacity. This paper reports the spectroscopic, morphological and electrochromic characterization of hybrid films made up of hexaniobate one-dimensional (1D) nanoscrolls and polyaniline prepared by the layer-by-layer assembly technique (LbL). Secondary electron imaging and backscattered electron imaging techniques perform...

  2. In situ self-assembly of polarizing chromogen nanofibers catalyzed with hybrid films of gold nanoparticles and cellulose

    Science.gov (United States)

    Liu, Zhiming; Wu, Wenjian

    2017-09-01

    Hybrid materials of metal nanoparticles and biopolymers with catalytic properties are very promising to be used as detectors in biochemical reactions. In this work, the catalytic properties and relevant in situ self-assembly abilities of hybrid films of gold nanoparticles (GNPs) and cellulose for the oxidation of benign chromogen 3,3‧,5,5‧-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2) are revealed for the first time. The peroxidase-like properties of hybrid films are inherited from those of colloidal GNPs and increase with their contents of GNPs. It is discovered that the oxidized products of TMB grow in situ and assemble into rod-like and tumbleweed-like nanofiber assemblies on hybrid films. The rod-like nanofibers show a magnificent polarizing phenomenon under polarized light because of polycrystalline globular nanoparticles inside. The in situ self-assembly of polarizing nanofibers of chromogen catalyzed with hybrid films creates an opportunity for the synthesis of novel organic nanomaterials and the enhanced detection of biochemical products under polarized light.

  3. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  4. Growth of thick MgB{sub 2} films by impinging-jet hybrid physical-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lamborn, D.R. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Wilke, R.H.T.; Li, Q. [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Xi, X. [Department of Physics, Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16801 (United States); Snyder, D.W. [Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Redwing, J.M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16801 (United States)

    2008-01-18

    Thick MgB{sub 2} films are grown using a novel impinging-jet hybrid physical-chemical vapor deposition process. An increased amount of the boron source gas generates high growth rates. Superconducting properties of the thick films are comparable to previous results from other processes, which indicate that this is a promising new process for MgB{sub 2} deposition for coated conductor applications, such as wires and tapes for MRI magnets. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Conformal organic-inorganic hybrid network polymer thin films by molecular layer deposition using trimethylaluminum and glycidol.

    Science.gov (United States)

    Gong, Bo; Peng, Qing; Parsons, Gregory N

    2011-05-19

    Growing interest in nanoscale organic-inorganic hybrid network polymer materials is driving exploration of new bulk and thin film synthesis reaction mechanisms. Molecular layer deposition (MLD) is a vapor-phase deposition process, based on atomic layer deposition (ALD) which proceeds by exposing a surface to an alternating sequence of two or more reactant species, where each surface half-reaction goes to completion before the next reactant exposure. This work describes film growth using trimethyl aluminum and heterobifunctional glycidol at moderate temperatures (90-150 °C), producing a relatively stable organic-inorganic network polymer of the form (-Al-O-(C(4)H(8))-O-)(n). Film growth rate and in situ reaction analysis indicate that film growth does not initially follow a steady-state rate, but increases rapidly during early film growth. The mechanism is consistent with subsurface species transport and trapping, previously documented during MLD and ALD on polymers. A water exposure step after the TMA produces a more linear growth rate, likely by blocking TMA subsurface diffusion. Uniform and conformal films are formed on complex nonplanar substrates. Upon postdeposition annealing, films transform into microporous metal oxides with ∼5 Å pore size and surface area as high as ∼327 m(2)/g, and the resulting structures duplicate the shape of the original substrate. These hybrid films and porous materials could find uses in several research fields including gas separations and diffusion barriers, biomedical scaffolds, high surface area coatings, and others.

  6. Evolution of microstructure in mixed niobia-hybrid silica thin films from sol-gel precursors.

    Science.gov (United States)

    Besselink, Rogier; Stawski, Tomasz M; Castricum, Hessel L; ten Elshof, Johan E

    2013-08-15

    The evolution of structure in sol-gel derived mixed bridged silsesquioxane-niobium alkoxide sols and drying thin films was monitored in situ by small-angle X-ray scattering. Since sol-gel condensation of metal alkoxides proceeds much faster than that of silicon alkoxides, the incorporation of d-block metal dopants into silica typically leads to formation of densely packed nano-sized metal oxide clusters that we refer as metal oxide building blocks in a silica-based matrix. SAXS was used to study the process of niobia building block formation while drying the sol as a thin film at 40-80°C. The SAXS curves of mixed niobia-hybrid silica sols were dominated by the electron density contrast between sol particles and surrounding solvent. As the solvent evaporated and the sol particles approached each other, a correlation peak emerged. Since TEM microscopy revealed the absence of mesopores, the correlation peak was caused by a heterogeneous system of electron-rich regions and electron poor regions. The regions were assigned to small clusters that are rich in niobium and which are dispersed in a matrix that mainly consisted of hybrid silica. The correlation peak was associated with the typical distances between the electron dense clusters and corresponded with distances in real space of 1-3 nm. A relationship between the prehydrolysis time of the silica precursor and the size of the niobia building blocks was observed. When 1,2-bis(triethoxysilyl)ethane was first hydrolyzed for 30 min before adding niobium penta-ethoxide, the niobia building blocks reached a radius of 0.4 nm. Simultaneous hydrolysis of the two precursors resulted in somewhat larger average building block radii of 0.5-0.6 nm. This study shows that acid-catalyzed sol-gel polymerization of mixed hybrid silica niobium alkoxides can be rationalized and optimized by monitoring the structural evolution using time-resolved SAXS.

  7. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-01

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g-1 at the scan rate of 5 mV s-1. In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  8. Hybrid phototransistors based on bulk heterojunction films of poly(3-hexylthiophene) and zinc oxide nanoparticle.

    Science.gov (United States)

    Nam, Sungho; Seo, Jooyeok; Park, Soohyeong; Lee, Sooyong; Jeong, Jaehoon; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2013-02-01

    Hybrid phototransistors (HPTRs) were fabricated on glass substrates using organic/inorganic hybrid bulk heterojunction films of p-type poly(3-hexylthiophene) (P3HT) and n-type zinc oxide nanoparticles (ZnO(NP)). The content of ZnO(NP) was varied up to 50 wt % in order to understand the composition effect of ZnO(NP) on the performance of HPTRs. The morphology and nanostructure of the P3HT:ZnO(NP) films was examined by employing high resolution electron microscopes and synchrotron radiation grazing angle X-ray diffraction system. The incident light intensity (P(IN)) was varied up to 43.6 μW/cm², whereas three major wavelengths (525 nm, 555 nm, 605 nm) corresponded to the optical absorption of P3HT were applied. Results showed that the present HPTRs showed typical p-type transistor performance even though the n-type ZnO(NP) content increased up to 50 wt %. The highest transistor performance was obtained at 50 wt %, whereas the lowest performance was measured at 23 wt % because of the immature bulk heterojunction morphology. The drain current (I(D)) was proportionally increased with P(IN) due to the photocurrent generation in addition to the field-effect current. The highest apparent and corrected responsivities (R(A) = 4.7 A/W and R(C) = 2.07 A/W) were achieved for the HPTR with the P3HT:ZnO(NP) film (50 wt % ZnO(NP)) at P(IN) = 0.27 μW/cm² (555 nm).

  9. Morphologies and Superhydrophobicity of Hybrid Film Surfaces Based on Silica and Fluoropolymer

    Institute of Scientific and Technical Information of China (English)

    Ailan QU; Xiufang WEN; Pihui PI; Jiang CHENG; Zhuoru YANG

    2008-01-01

    Fluoropolymer and different kinds of silica particles were used for controlling surface chemistry and morphology,respectively. A superhydrophobic surface originated from strawberry-like or quincunx-shaped composite silica particles was obtained. The dual size particles are obtained by utilizing the graft of different modified silica particles with epoxy functional group and amine functional group. This makes the surface of film form a composite interface to have irregular binary structure which plays an essential role in trapping air between the substrate surface and the liquid droplets to be necessary for high contact angle and low contact anglehysteresis. The maximum contact angle for water on the hybrid film is about 174±2° and the contact angle hysteresis is less than 2°. The surface morphologies, roughness and the wettability on the surface of films containing different structural silica particles were compared. It was shown that the hierarchical irregularly structure with a low roughness factor and high air-trapped ratio is indispensable for superhydrophobic surface.Although this structural surfaces based on composite silica particles play a vital role in governing the surface wettability, it is necessary to combine with a low surface energy to make the surface superhydrophobic.

  10. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Science.gov (United States)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  11. Synthesis and electrical characterization of low-temperature thermal-cured epoxy resin/functionalized silica hybrid-thin films for application as gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Moonkyong, E-mail: nmk@keri.re.kr [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); System on Chip Chemical Process Research Center, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 (Korea, Republic of); Kang, Young Taec [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Department of Polymer Science and Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Sang Cheol [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Kim, Eun Dong [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of)

    2013-07-31

    Thermal-cured hybrid materials were synthesized from homogenous hybrid sols of epoxy resins and organoalkoxysilane-functionalized silica. The chemical structures of raw materials and obtained hybrid materials were characterized using Fourier transform infrared spectroscopy. The thermal resistance of the hybrids was enhanced by hybridization. The interaction between epoxy matrix and the silica particles, which caused hydrogen bonding and van der Waals force was strengthened by organoalkoxysilane. The degradation temperature of the hybrids was improved by approximately 30 °C over that of the parent epoxy material. The hybrid materials were formed into uniformly coated thin films of about 50 nm-thick using a spin coater. An optimum mixing ratio was used to form smooth-surfaced hybrid films. The electrical property of the hybrid film was characterized, and the leakage current was found to be well below 10{sup −6} A cm{sup −2}. - Highlights: • Preparation of thermal-curable hybrid materials using epoxy resin and silica. • The thermal stability was enhanced through hybridization. • The insulation property of hybrid film was investigated as gate dielectrics.

  12. Molecular Design of Low-Density Multifunctional Hybrid Materials

    Science.gov (United States)

    2016-01-01

    Structure -Property Relationships of Hybrid Mixed Oxide Organic - Inorganic Films for Multilayer Adhesive Bonding”, MRS 2012 Spring Meeting, San Francisco...AVAILABILITY STATEMENT No distribution limitation. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Low-density hybrid materials, which contain organic and... hybrid materials, which contain organic and inorganic molecular components, can be engineered over a wide range of length scales to exhibit unique

  13. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors

    Science.gov (United States)

    Song, Hao; Fu, Jijiang; Ding, Kang; Huang, Chao; Wu, Kai; Zhang, Xuming; Gao, Biao; Huo, Kaifu; Peng, Xiang; Chu, Paul K.

    2016-10-01

    The hybrid Li-ion electrochemical supercapacitor (Li-HSC) combining the battery-like anode with capacitive cathode is a promising energy storage device boasting large energy and power densities. Orthorhombic Nb2O5 is a good anode material in Li-HSCs because of its large pseudocapacitive Li-ion intercalation capacity. Herein, we report a high-performance, binder-free and flexible anode consisting of long Nb2O5 nanowires and graphene (L-Nb2O5 NWs/rGO). The paper-like L-Nb2O5 NWs/rGO film electrode has a large mass loading of Nb2O5 of 93.5 wt% as well as short solid-state ion diffusion length, and enhanced conductivity (5.1 S cm-1). The hybrid L-Nb2O5 NWs/rGO paper electrode shows a high reversible specific capacity of 160 mA h g-1 at a current density of 0.2 A g-1, superior rate capability with capacitance retention of 60% when the current density increases from 0.2 to 5 A g-1, as well as excellent cycle stability. The Li-HSC device based on the L-Nb2O5/rGO anode and the cathode of biomass-derived carbon nanosheets delivers an energy density of 106 Wh kg-1 at 580 W kg-1 and 32 Wh kg-1 at a large power density of 14 kW kg-1. Moreover, the Li-HSC device exhibits excellent cycling performance without obvious capacitance decay after 1000 cycles.

  14. Structural and optical study of spin-coated camphorsulfonic acid-doped polyaniline/titanium-di-oxide nanoparticles hybrid thin films

    Science.gov (United States)

    Geethalakshmi, D.; Muthukumarasamy, N.; Balasundaraprabhu, R.

    2015-06-01

    Polyaniline (PANI) doped with Camphorsulfonic acid (CSA) has been prepared by chemical oxidative polymerization and blend with titanium-di-oxide (TiO2) nanoparticles prepared by sol-gel method to form CSA-doped PANI/TiO2 hybrid thin films. The properties of as-deposited and heat-treated (100 °C) hybrid thin films having different PANI:TiO2 weight ratios (1:0.5, 1:1, and 1:2) have been compared. FTIR study indicated that chemical bonding between CSA-doped PANI and TiO2 has been formed. XRD studies reveal that the as-deposited hybrid thin films are of amorphous nature and heat-treatment of such films initiates crystallization. SEM study shows that as-deposited hybrid films are rough; increase in TiO2 ratio and heat-treatment increased the roughness due to coalescing and agglomeration. UV-visible absorbance of hybrid films shows its characteristic peak in the visible region along with a peak in UV range and its intensity increased with TiO2 ratio and heat-treatment due to agglomeration of TiO2 particles. Photoluminescence spectra revealed that emission occurs in visible region (495 nm) for as-deposited hybrid thin film and this emission increased with TiO2 ratio and heat-treatment of hybrid films.

  15. Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films.

    Science.gov (United States)

    Ino, Julia M; Sju, Ervi; Ollivier, Véronique; Yim, Evelyn K F; Letourneur, Didier; Le Visage, Catherine

    2013-11-01

    Engineered grafts are still needed for small diameter blood vessels reconstruction. Ideal materials would prevent thrombosis and intimal hyperplasia by displaying hemocompatibility and mechanical properties close to those of native vessels. In this study, poly(vinyl alcohol) (PVA)/gelatin blends were investigated as a potential vascular support scaffold. We modified a chemically crosslinked PVA hydrogel by incorporation of gelatin to improve endothelial cell attachment with a single-step method. A series of crosslinked PVA/gelatin films with specific ratios set at 100:0, 99:1, 95:5, and 90:10 (w/w) were prepared and their mechanical properties were examined by uniaxial tensile testing. Tubes, obtained from sutured films, were found highly compliant (3.1-4.6%) and exhibited sufficient mechanical strength to sustain hemodynamic strains. PVA-based hydrogels maintained low level of platelet adhesion and low thrombogenic potential. Endothelial cell adhesion and proliferation were drastically improved on PVA/gelatin films with a feed gelatin content as low as 1% (w/w), leading to the formation of a confluent endothelium. Hydrogels with higher gelatin content did not sustain complete endothelialization because of modifications of the film surface, including phase segregation and formation of microdomains. Thus, PVA/gelatin (99:1, w/w) hydrogels appear as promising materials for the design of endothelialized vascular materials with long-term patency.

  16. Chemical and mechanical properties of silica hybrid films from NaOH catalyzed sols for micromachining with diamond cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Prenzel, T., E-mail: tprenzel@uni-bremen.de [Stiftung Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen (Germany); Mehner, A. [Stiftung Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen (Germany); Lucca, D.A.; Qi, Y.; Harriman, T.A. [School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078 (United States); Mutlugünes, Y. [Labor für Mikrozerspanung — LFM, Badgasteiner Str. 2, 28359 Bremen (Germany); Shojaee, S.A. [School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078 (United States); Wang, Y.Q.; Williams, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nastasi, M. [Nebraska Center for Energy Sciences Research, University of Nebraska, 230 Whittier Research Center, 2200 Vine Street Lincoln, NE 68583-0857 (United States); Zoch, H.-W. [Stiftung Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen (Germany); Swiderek, P. [Institute of Applied and Physical Chemistry, University of Bremen, Leobener Straße, 28359 Bremen (Germany)

    2013-03-01

    Manufacturing of microstructured mold surfaces was realized by the micromachining of thick sol–gel silica hybrid coatings. The films were deposited onto pre-machined steel molds by spin coating using NaOH-catalyzed sols from organosilicate precursors. The effect of the sol synthesis and the heat treatment on the mechanical and chemical properties of these films was studied in order to develop thick and crack-free films with appropriate properties for micromachining with diamond cutting tools. The hardness was measured by nanoindentation as a function of the heat treatment temperature. The transition from soft organic gel films to hard glass-like films due to the thermal treatment was characterized by X-ray photoelectron spectroscopy, elastic recoil detection, and Raman and infrared spectroscopies. The films from NaOH catalyzed sols showed a complex transition from aliphatic carbon originating from hydrocarbon groups to carbonates, carboxylates and disordered carbon clusters. - Highlights: ► Thick silica hybrid films were micromachined with diamond cutting tools. ► The nanoindentation hardness increased with the heat treatment temperature. ► The role of sodium hydroxide in base catalyzed silica sols was studied. ► Formation of carbonates, carboxylates and disordered carbon was observed.

  17. Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by means of Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F. Y.

    2003-01-01

    and control techniques. The feasibility of influencing the dynamic fluid film coefficients (stiffness and damping) by means of a controllable fluid injection into opposed bearing recesses is investigated. By controlling the pressure and flow injection using servo control systems, it is possible to obtain...... significant modifications of active hybrid forces, which can be useful while reducing vibration and stabilizing rotating machines....

  18. Hybrid chitosan-Pluronic F-127 films with BaTiO3:Co nanoparticles: Synthesis and properties

    Science.gov (United States)

    Fuentes, S.; Dubo, J.; Barraza, N.; González, R.; Veloso, E.

    2015-03-01

    In this study, magnetic BaTiO3:Co (BT:Co) nanoparticles prepared using a combined sol-gel-hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles.

  19. Synthesis of organic-inorganic hybrid sols with nano silica particles and organoalkoxysilanes for transparent and high-thermal-resistance coating films using sol-gel reaction.

    Science.gov (United States)

    Na, Moonkyong; Park, Hoyyul; Ahn, Myeongsang; Lee, Hyeonhwa; Chung, Ildoo

    2010-10-01

    Organic-inorganic hybrid sols were synthesized from nano silica particles dispersed in water and from organoalkoxysilanes, using the sol-gel reaction. This work focuses on the effects of the three multifunctional organoalkoxysilanes dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), and tetramethoxysilane (TMOS) to form a transparent and high-thermal-resistance coating film. The stability of the hybrid sol was evaluated as a function of the reaction time for 10 d through the variation of the viscosity. The viscosity of the silica/DMDMS and silica/MTMS sol was slightly increased for 10 d. The multifunctional organoalkoxysilanes formed dense silica networks through hydrolysis and condensation reaction, which enhanced the thermal resistance of the coating films. No thermal degradation of the silica/DMDMS sample occurred up to 600 degrees C, and none of the silica/MTMS and silica/TMOS samples occurred either up to 700 degrees C. The organic-inorganic hybrid sols were coated on the glass substrate using a spin-coating procedure. The organic-inorganic hybrid sols formed flat coating films without cracks. The transmittance of the hybrid sol coating films using MTMS and DMDMS was shown to be over 90%. The transmittance of the silica/TMOS sol coating film reacted for 10 d abruptly decreased due to faster gelation. The silica/DMDMS and silica/MTMS hybrid sols formed smooth coating films while the surface roughness of the silica/TMOS coating film markedly increased when the hybrid sol reacted for 10 d. The increase of the surface roughness of the silica/TMOS coating film can be attributed to the degradation of the stability of the hybrid sol and to the loss of transmittance of the coating film. It was confirmed in this study that the use of organic-inorganic hybrid sol can yield transparent and high-thermal-resistance coating films.

  20. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pathirane, M., E-mail: minoli.pathirane@uwaterloo.ca; Iheanacho, B.; Lee, C.-H.; Wong, W. S. [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Tamang, A.; Knipp, D. [Research Center for Functional Materials and Nanomolecular Science, Jacobs University Bremen, Bremen 28759 (Germany); Lujan, R. [Electronic Materials and Devices Laboratory, Palo Alto Research Center, Palo Alto, California 93003 (United States)

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  1. Thin-Film Multilayer Filter Designs For Hybrid Solar Energy Conversion Systems

    Science.gov (United States)

    DeSandre, L.; Song, D. Y.; Macleod, H. A.; Jacobson, M. R.; Osborn, D. E.

    1985-12-01

    The efficiency of hybrid photothermal/photovoltaic energy conversion can be increased by separating the solar spectrum into portions matched to the photothermal and photovoltaic processes. Thin-film multilayer filters can implement this concept; five such filters consisting of all-dielectric or metal-dielectric layers have been designed. The transmission profile of each design is calculated by computer, considering dispersion, absorption, and angle of incidence effects. These profiles are compared and evaluated with respect to the desired spectral performance. The most successful candidate design is an optical minus filter consisting of Ti02, Zr02, and Si02. Results show very sharp selection of the targeted photovoltaic spectral region and low ripple in the transmission region outside the bandstop.

  2. N-doped ZnO films grown from hybrid target by the pulsed laser deposition technique

    Science.gov (United States)

    Martín-Tovar, E. A.; Chan y Díaz, E.; Acosta, M.; Castro-Rodríguez, R.; Iribarren, A.

    2016-10-01

    ZnO thin films were grown by the pulsed laser deposition technique on glass substrate using a hybrid target composed of ZnO powder embedded into a poly(ethyl cyanoacrylate) matrix. The resulting thin film presented ZnO wurtzite structure with very low stress and diffractogram very similar to that of the powder pattern. From comparing with ZnO thin films grown from traditional sintered target, it is suggested that the use of this hybrid target with a soft matrix led to ejection of ZnO clusters that conveniently disposed and adhered to substrate and previous deposited layers. Chemical measurements showed the presence of Zn-N bonds, besides Zn-O ones. Optical absorption profile confirmed the presence of low-polymerized zinc oxynitride molecular subunits, besides ZnO.

  3. Monte Carlo simulations of biaxial structure in thin hybrid nematic film based upon spatially anisotropic pair potential

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi-Dong; Chang Chun-Rui; Ma Dong-Lai

    2009-01-01

    Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model,in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals.We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structarc transition from the biaxial to the bent-director structure,which is similar to the result obtained using the Lebwohl-Lasher model.However,the step-like director's profile,characteristic for the biaxial structure,is spatially asymmetric in the film because the pair potential leads to K1≠K3.We estimate the upper cell thickness to be 69 spin layers,in which the biaxial structure can be found.

  4. Formation of hybrid films from perylenediimide-labeled core-shell silica-polymer nanoparticles.

    Science.gov (United States)

    Ribeiro, Tânia; Fedorov, Aleksander; Baleizão, Carlos; Farinha, José Paulo S

    2013-07-01

    We prepared water-dispersible core-shell nanoparticles with a perylenediimide-labeled silica core and a poly(butyl methacrylate) shell, for application in photoactive high performance coatings. Films cast from water dispersions of the core-shell nanoparticles are flexible and transparent, featuring homogeneously dispersed silica nanoparticles, and exhibiting fluorescence under appropriate excitation. We characterized the film formation process using nanoparticles where the polymer shell has been labeled with either a non-fluorescent N-benzophenone derivative (NBen) or a fluorescent phenanthrene derivative (PheBMA). We used Förster resonance energy transfer (FRET) from PheBMA to NBen to follow the interparticle interdiffusion of the polymer anchored to the silica surface that occurs after the dried dispersions are annealing above the glass transition temperature of the polymer. By calculating the evolution of the FRET quantum efficiency with annealing time, we could estimate the approximate fraction of mixing (fm) between polymer from neighbor particles, and from this, the apparent diffusion coefficients (Dapp) for this process. For long annealing times, the limiting values of fm are slightly lower than for films of pure PBMA particles at similar temperatures (go up to 80% of total possible mixing). The corresponding diffusion coefficients are also very similar to those reported for films of pure PBMA, indicating that the fact that the polymer chains are anchored to the silica particles does not significantly hinder the diffusion process during the initial part of the mixing process. From the temperature dependence of the diffusion coefficients, we found an effective activation energy for diffusion of Ea=38 kcal/mol, very similar to the value obtained for particles of the same polymer without the silica core. With these results, we show that, although the polymer is grafted to the silica surface, polymer interdiffusion during film formation is not significantly

  5. Resistive Switching Characteristics of Tantalum Oxide Thin Film and Titanium Oxide Nanoparticles Hybrid Structure.

    Science.gov (United States)

    Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Yoon, Tae-Sik; Choi, Young Jin; Kang, Chi Jung

    2015-11-01

    The fabrication of hybrid structure with TiO2 nanoparticle assembly and Ta2O5 thin film layer was demonstrated. The close-packed nanoparticles could influence the resistive switching behaviors due to the huge numbers of interface states and vacancies in the nanoparticle assembly. The device with hybrid structure presented the typical bipolar resistive switching characteristics in the structure of Ti/TiO2/Ta2O5/Au on SiO2/Si substrate. The set voltage was observed at -0.7 V, and the reset voltage occurred at (-)-0.7 V, which was smaller than that of Ta2O5 layer only. The electrical conduction mechanisms were the ohmic conduction at low resistance state (LRS) and the space charge limited conduction at high resistance state (HRS), respectively. The devices showed stable current ratio of LRS to HRS. The temperature dependent properties of the devices were also investigated. The device with nanoparticle assembly showed better electrical characteristics with low HRS current level and stable LRS current level with respect to the temperature.

  6. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth.

    Science.gov (United States)

    Capeletti, Larissa Brentano; Cardoso, Mateus Borba; Dos Santos, João Henrique Zimnoch; He, Wei

    2016-10-07

    Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.

  7. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub

    2016-01-13

    Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.

  8. Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces.

    Science.gov (United States)

    Tiguntseva, E; Chebykin, A; Ishteev, A; Haroldson, R; Balachandran, B; Ushakova, E; Komissarenko, F; Wang, H; Milichko, V; Tsypkin, A; Zuev, D; Hu, W; Makarov, S; Zakhidov, A

    2017-08-31

    Recently, hybrid halide perovskites have emerged as one of the most promising types of materials for thin-film photovoltaic and light-emitting devices because of their low-cost and potential for high efficiency. Further boosting their performance without detrimentally increasing the complexity of the architecture is critically important for commercialization. Despite a number of plasmonic nanoparticle based designs having been proposed for solar cell improvement, inherent optical losses of the nanoparticles reduce photoluminescence from perovskites. Here we use low-loss high-refractive-index dielectric (silicon) nanoparticles for improving the optical properties of organo-metallic perovskite (MAPbI3) films and metasurfaces to achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally a 50% enhancement of photoluminescence intensity from a perovskite layer with silicon nanoparticles and 200% enhancement for a nanoimprinted metasurface with silicon nanoparticles on top. Strong increase in light absorption is also demonstrated and described by theoretical calculations. Since both silicon nanoparticle fabrication/deposition and metasurface nanoimprinting techniques are low-cost, we believe that the developed all-dielectric approach paves the way to novel scalable and highly effective designs of perovskite based metadevices.

  9. Light trapping in thin-film solar cells with randomly rough and hybrid textures.

    Science.gov (United States)

    Kowalczewski, Piotr; Liscidini, Marco; Andreani, Lucio Claudio

    2013-09-09

    We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and μc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.

  10. Dynamic Analysis of a Hybrid Squeeze Film Damper Mounted Rub-Impact Rotor-Stator System

    Directory of Open Access Journals (Sweden)

    Cai-Wan Chang-Jian

    2012-01-01

    Full Text Available An investigation is carried out on the systematic analysis of the dynamic behavior of the hybrid squeeze-film damper (HSFD mounted a rotor-bearing system with strongly nonlinear oil-film force and nonlinear rub-impact force in the present study. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless rotating speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, bifurcation diagrams, maximum Lyapunov exponents, and fractal dimension of the rotor-bearing system. The dynamic behaviors are unlike the usual ways into chaos (1⇒2⇒4⇒8⇒16⇒32⋯⇒ chaos or periodic ⇒ quasi-periodic ⇒ chaotic, it suddenly gets in chaos from the periodic motion without any transition. The results presented in this study provide some useful insights into the design and development of a rotor-bearing system for rotating machinery that operates in highly rotating speed and highly nonlinear regimes.

  11. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process

    Indian Academy of Sciences (India)

    Majji Venkatesh; Sukru Taktak; Efstathios I Meletis

    2014-12-01

    Silver-doped hydrogenated amorphous carbon (Ag-DLC) films were deposited on Si substrates using a hybrid plasma vapour deposition–plasma enhanced chemical vapour deposition (PVD–PECVD) process combining Ag target magnetron sputtering and PECVD in an Ar–CH4 plasma. Processing parameters (working pressure, CH4/Ar ratio and magnetron current) were varied to obtain good deposition rate and a wide variety of Ag films. Structure and bonding environment of the films were obtained from transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy studies. Variation of processing parameters was found to produce Ag-doped amorphous carbon or diamond-like carbon (DLC) films with a range of characteristics with CH4/Ar ratio exercising a dominant effect. It was pointed out that Ag concentration and deposition rate of the film increased with the increase in d.c. magnetron current. At higher Ar concentration in plasma, Ag content increased whereas deposition rate of the film decreased. FTIR study showed that the films contained a significant amount of hydrogen and, as a result of an increase in the Ag content in the hydrogenated DLC film, $sp^{2}$ bond content also increased. The TEM cross sectional studies revealed that crystalline Ag particles were formed with a size in the range of 2–4 nm throughout an amorphous DLC matrix.

  12. Nanostructured films of inorganic-organic hybrid materials for application in photovoltaics; Nanostrukturierte Filme aus anorganisch-organischen Hybridmaterialien fuer die Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Perlich, Jan

    2009-06-25

    Nanostructured thin films of crystalline TiO{sub 2} for applications in photovoltaics were studied. The fabrication of the thin films is based on a hybrid approach. The anorganic metal oxide prepared via a sol-gel synthesis is structurated by the template properties of the applied organic block-copolymer. Via the film epitaxy by means of centrifugal coating first hybrid films (polymer-nanocomposite films) were fabricated, which were changed by calcination into crystalline TiO{sub 2} films with taylored morphology. The successful development of novel preparation approaches to the adaption to consisting conditions in the application field of photovoltaics contains a route to the fine-tuning of the morphology as well as the fabrication of hierarchical morphologies in different configurations. The structural study of the single nanostructurated TiO{sub 2} films up to the functional multilayer arrangement as photovoltaic demonstration cell was performed with conventionally imaging methods, as for instance scanning force microscopy and electron microscopy as well as the special small-angle X-ray scattering method under rigid incident angle (GISAXS). [German] Es wurden nanostrukturierte duenne Filme aus kristallinem TiO{sub 2} fuer Anwendungen in der Photovoltaik untersucht. Die Herstellung der duennen Filme basiert auf einem Hybridansatz. Das ueber eine Sol-Gel-Synthese bereitgestellte anorganische Metalloxid wird durch die Template-Eigenschaften des eingesetzten organischen Block-Copolymers strukturiert. Ueber die Filmaufbringung mittels Schleuderbeschichtung wurden zunaechst Hybridfilme (Polymer-Nanokompositfilme) hergestellt, die durch Kalzinierung in kristalline TiO{sub 2}-Filme mit massgeschneiderter Morphologie umgewandelt werden. Die erfolgreiche Entwicklung von neuartigen Praeparationsansaetzen zur Adaption an bestehende Gegebenheiten im Anwendungsgebiet der Photovoltaik beinhaltet eine Route zur Feineinstellung der Morphologie sowie die Herstellung von

  13. Erosion effects of atomic oxygen on polyhedral oligomeric silsesquioxane-polyimide hybrid films in low earth orbit space environment.

    Science.gov (United States)

    Duo, Shuwang; Song, Mimi; Liu, Tingzhi; Hu, Changyuan; Li, Meishuan

    2013-02-01

    A novel polyimide (PI) hybrid nanocomposite containing polyhedral oligomeric silsesquioxane (POSS) had been prepared by copolymerization of trisilanolphenyl-POSS, 4,4'-oxydianiline (ODA), and pyromellitic dianhydride (PMDA). The AO resistance of these PI/POSS hybrid films was tested in the ground-based AO simulation facility. Exposed and unexposed surfaces were characterized by SEM and X-ray photoelectron spectroscopy. SEM images showed that the surface of the 20 wt% PI/POSS became much less rough than that of the pristine polyimide. Mass measurements of the samples showed that the erosion yield of the PI/POSS (20 wt.%) hybrid film was 1.2 x 10(-25) cm3/atom, and reduced to 4% of the polyimide film. The XPS data indicated that the carbon content of the near-surface region was decreased from 60.1 to 13.2 at% after AO exposure. The oxygen and silicon concentrations in the near-surface region increased to 1.96 after AO exposure. The nanometer-sized structure of POSS, with its large surface area, had led AO-irradiated samples to form a SiO2 passivation layer, which protected the underlying polymer from further AO attack. The incorporation of POSS into the polyimide could dramatically improve the AO resistance of polyimide films in low earth orbit environment.

  14. Direct spectroscopic evidence of ultrafast electron transfer from a low band gap polymer to CdSe quantum dots in hybrid photovoltaic thin films.

    Science.gov (United States)

    Couderc, Elsa; Greaney, Matthew J; Brutchey, Richard L; Bradforth, Stephen E

    2013-12-11

    Ultrafast transient absorption spectroscopy is used to study charge transfer dynamics in hybrid films composed of the low band gap polymer PCPDTBT and CdSe quantum dots capped with tert-butylthiol ligands. By selectively exciting the polymer, a spectral signature for electrons on the quantum dots appears on ultrafast time scales (≲ 65 fs), which indicates ultrafast electron transfer. From this time scale, the coupling between the polymer chains and the quantum dots is estimated to be J ≳ 17 meV. The reduced quantum dot acceptors exhibit an unambiguous spectral bleach signature, whose amplitude allows for the first direct calculation of the absolute electron transfer yield in a hybrid solar cell (82 ± 5%). We also show that a limitation of the hybrid system is rapid and measurable geminate recombination due to the small separation of the initial charge pair. The fast recombination is consistent with the internal quantum efficiency of the corresponding solar cell. We therefore have identified and quantified a main loss mechanism in this type of third generation solar cell.

  15. Fabrication and characterization of polymer/nanoclay hybrid ultrathin multilayer film by spin self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Chul; Lee, Tae-Woo; Kim, Tae-Ho; Park, O.Ok

    2004-06-30

    We have prepared ultrathin multilayer nanostructural films by a layer-by-layer spin self-assembly method using poly (p-phenylene vinylene) (PPV)/layered silicate and characterized them by contact angle measurement, surface dying technique, UV/Vis spectroscopy, photoluminescent (PL) spectroscopy, X-ray reflectivity (XRR), and model-fitting. The hybrid ultrathin multilayer film was stepwisely deposited using the electrostatic forces between the cationic PPV precursor and the negatively charged surface of layered silicate, and finally thermally converted to (PPV/Laponite RD){sub n} film. The surface coverage of the PPV precursor onto layered silicate and vice versa could be clearly observed using the contact angle measurement and surface dying technique. The continuous increase of UV/Vis absorbance and PL intensity of the films with each bilayer demonstrated the regular and reproducible deposition of this system, and the Kiessig fringes and Bragg peaks in XRR spectra indicated the well-ordered internal structure.

  16. Purple-bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films.

    Science.gov (United States)

    Lukashev, Eugeny P; Knox, Petr P; Gorokhov, Vladimir V; Grishanova, Nadezda P; Seifullina, Nuranija Kh; Krikunova, Maria; Lokstein, Heiko; Paschenko, Vladimir Z

    2016-11-01

    Quantum dots (QDs) absorb ultraviolet and long-wavelength visible light energy much more efficiently than natural bacterial light-harvesting proteins and can transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion of RCs combined with QDs as antennae into liposomes opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components or inorganic components alone. RCs from Rhodobacter sphaeroides and QDs (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent. The efficiency of RC and QD interaction within the liposomes was estimated using fluorescence excitation spectra of the photoactive bacteriochlorophyll of the RCs and by measuring the fluorescence decay kinetics of the QDs. The functional activity of the RCs in hybrid complexes was fully maintained, and their stability was even increased. The efficiency of energy transfer between QDs and RCs and conditions of long-term stability of function of such hybrid complexes in film preparations were investigated as well. It was found that dry films containing RCs and QDs, maintained at atmospheric humidity, are capable of maintaining their functional activity for at least some months as judged by measurements of their spectral characteristics, efficiency of energy transfer from QDs to RCs and RC electron transport activity. Addition of trehalose to the films increases the stability further, especially for films maintained at low humidity. These stable hybrid film structures are promising for further studies towards developing new phototransformation devices for biotechnological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors

    Science.gov (United States)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M. João; Montemor, M. Fátima

    2017-01-01

    Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g−1 at the specific current of 1 A g−1. The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g−1 and 37.8 W h g−1 at specific powers of 0.2 W g−1 and 2.45 W g−1, respectively. PMID:28051143

  18. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    Science.gov (United States)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g(-1) at the specific current of 1 A g(-1). The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g(-1) and 37.8 W h g(-1) at specific powers of 0.2 W g(-1) and 2.45 W g(-1), respectively.

  19. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres.

    Science.gov (United States)

    Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-08-01

    Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CSmicrospheres face the highest shrinkage, resulting in a lowest specific surface area compared to CS-HNT and CS-MMT. Chitosan-clay exhibits enhanced thermal properties with the degradation delayed in the order CSmicrospheres, which is attributed again to their increased hydrophilicity compared to the native polymeric microspheres. In this framework, a peculiar behavior was observed for CS-MMT, with the microspheres standing both against contraction during CO2 gel drying and under hydrothermal conditions. The knowledge gained from this rational design will constitute a guideline toward the preparation of ultra-stable, practically-optimized food-packaging films and commercially scalable porous bio-based adsorbents.

  20. Hybrid organotin and tin oxide-based thin films processed from alkynylorganotins: synthesis, characterization, and gas sensing properties.

    Science.gov (United States)

    Renard, Laetitia; Brötz, Joachim; Fuess, Hartmut; Gurlo, Aleksander; Riedel, Ralf; Toupance, Thierry

    2014-10-08

    Hydrolysis-condensation of bis(triprop-1-ynylstannyl)butylene led to nanostructured bridged polystannoxane films yielding tin dioxide thin layers upon UV-treatment or annealing in air. According to Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) data, the films were composed of a network of aggregated "pseudo-particles", as calcination at 600 °C is required to form cassiterite nanocrystalline SnO2 particles. In the presence of reductive gases such as H2 and CO, these films gave rise to highly sensitive, reversible, and reproducible responses. The best selectivity toward H2 was reached at 150 °C with the hybrid thin films that do not show any response to CO at 20-200 °C. On the other hand, the SnO2 films prepared at 600 °C are more sensitive to H2 than to CO with best operating temperature in the 300-350 °C range. This organometallic approach provides an entirely new class of gas-sensing materials based on a class II organic-inorganic hybrid layer, along with a new way to include organic functionality in gas sensing metal oxides.

  1. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  2. Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction

    Science.gov (United States)

    Shen, Po-Shen; Chiang, Yu-Hsien; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-01

    With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP) thin films, this new class of photovoltaic (PV) technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  3. Influence of particles on the loading capacity and the temperature rise of water film in Ultra-high speed hybrid bearing

    Science.gov (United States)

    Zhu, Aibin; Li, Pei; Zhang, Yefan; Chen, Wei; Yuan, Xiaoyang

    2015-04-01

    Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.

  4. Influence of Particles on the Loading Capacity and the Temperature Rise of Water Film in Ultra-high Speed Hybrid Bearing

    Institute of Scientific and Technical Information of China (English)

    ZHU Aibin; LI Pei; ZHANG Yefan; CHEN Wei; YUAN Xiaoyang

    2015-01-01

    Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.

  5. Direct Electrochemistry of Cytochrome c on EDTA-ZrO2 Organic-inorganic Hybrid Film Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    徐静娟; 彭影; 刘守清; 陈洪渊

    2004-01-01

    A composite film of ethylenediamine tetraacetic acid (EDTA)-ZrO2 organic-inorganic hybrid was prepared based on the chelation between Zr(Ⅳ) and EDTA. The direct electrochemical behavior of cytochrome c (cyt. c) at the hybrid film modified glassy carbon electrodes was investigated. The immobilized EDTA can promote the redox of heme in horse heart cyt. c which gives rise to a pair of reversible redox peaks with a formal potential of 40 mV (vs. SCE). The peak current increased linearly with the increase of cyt. c concentration in the range of 1.6 × 10-6_the electron transfer of cyt. c. The impediment capability of metal ions depends on their coordination capability with EDTA and their valence number.

  6. The influence of adding corrosion inhibitor and pH on the electrochemical properties of hybrid films applied to galvanised steel

    Directory of Open Access Journals (Sweden)

    Sandra Raquel Kunst

    2012-10-01

    Full Text Available This study was aimed at coating galvanised steel with a hybrid film obtained from a sol consisting of silane precursors 3 - (trimetoxisil-ilpropil methacrylate (TMSPMA and tetraethoxysilane (TEOS. The pH of the hydrolysed-silane solution was 1 and 3. The influence of adding corrosion inhibitor (i.e. 0.01M cerium nitrate was evaluated for all samples. The hybrid films were deposited by dip-coating. The film was characterised scanning electron microscopy (SEM, profilometry, contact angle measurement, potentiodynamic polarisation and electrochemical impedance spectroscopy. The results showed that solution pH influenced hybrid film formation and final surface properties. Additionally, cerium nitrate as corrosion inhibitor addition enhances corrosion resistance of the films.

  7. Deposition of Layer-by-layer Inorganic-organic Nano-hybrid Ultrathin Films onto SBA-15

    Institute of Scientific and Technical Information of China (English)

    Han Ming DING; Li Ping WANG; Yong Kui SHAN; Ming Yuan HE

    2003-01-01

    Deposition of inorganic-organic nano-hybrid ultrathin films onto mesoporous silicate materials has been proven possible by using layer-by-layer assembly method. In combination with sol-gel method, titania, subsequently dye molecules (or polymer) were successfully fabricated onto the inner wall of SBA-15. Their structures were preliminarily characterized by FTIR and solid-state UV-Vis spectroscopy, thermal analysis, and BET surface area measurements, respectively.

  8. Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au(nano)-CNT/PAN(nano) films.

    Science.gov (United States)

    Zhou, Na; Yang, Tao; Jiang, Chen; Du, Meng; Jiao, Kui

    2009-01-15

    A polyaniline nanofibers (PAN(nano))/carbon paste electrode (CPE) was prepared via dopping PAN(nano) in the carbon paste. The nanogold (Au(nano)) and carbon nanotubes (CNT) composite nanoparticles were bound on the surface of the PAN(nano)/CPE. The immobilization and hybridization of the DNA probe on the Au(nano)-CNT/PAN(nano) films were investigated with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) using methylene blue (MB) as indicator, and electrochemical impedance spectroscopy (EIS) using [Fe(CN)(6)](3-/4-) as redox probe. The voltammetric peak currents of MB increased dramatically owing to the immobilization of the probe DNA on the Au(nano)-CNT/PAN(nano) films, and then decreased obviously owing to the hybridization of the DNA probe with the complementary single-stranded DNA (cDNA). The electron transfer resistance (R(et)) of the electrode surface increased after the immobilization of the probe DNA on the Au(nano)-CNT/PAN(nano) films and rose further after the hybridization of the probe DNA. The remarkable difference between the R(et) value at the DNA-immobilized electrode and that at the hybridized electrode could be used for the label-free EIS detection of the target DNA. The loading of the DNA probe on Au(nano)-CNT/PAN(nano) films was greatly enhanced and the sensitivity for the target DNA detection was markedly improved. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene and the polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from transgenically modified beans were determined with this label-free EIS DNA detection method. The dynamic range for detecting the PAT gene sequence was from 1.0 x 10(-12)mol/L to 1.0 x 10(-6)mol/L with a detection limit of 5.6 x 10(-13)mol/L.

  9. In-Situ Composition and Luminescence of Europium and Terbium Coordination Polymers/PEMA Hybrid Thick Films

    Institute of Scientific and Technical Information of China (English)

    YAN Bing; WANG Qianming

    2005-01-01

    Europium and terbium coordination polymers of pyridine- 3-carboxylic acid were in-situ composed with ethyl methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordination polymers of pyridine- 3-carboxylic acid, the transparent hybrid thick films composed of [Eu( NIC)3 ]n ( [ Tb( NIC)3 ]n ) and poly ethyl methacrylate ( PEMA ) have been prepared. The luminescence properties and energy transfer of these polymeric composites were studied with absorption spectra, fluorescent excitation and emission spectra in detail. All the hybrid thick films composed of terbium coordination polymer show the characteristic strong green emission of terbium ions, which implies the same energy transfer mechanism as the pure complex and the hybrid composite film is a suitable substrate for the luminescence of terbium ions. In the range of composing concentration of luminescent species (0.01,0.025,0.05,0.1 mmol/15 mL EMA ) , emission intensities increase with the increasing of corresponding composing concentration and the concentration quenching effect does not take place.

  10. High quality MgB{sub 2} thick films and large-area films fabricated by hybrid physical-chemical vapor deposition with a pocket heater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S F; Chen, Ke; Li, Qi; Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lee, C-H; Soukiassian, A; DeFrain, R; Redwing, J M; Schlom, D G [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Lamborn, D R [Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: suw16@psu.edu

    2008-08-15

    A hybrid physical-chemical vapor deposition process using a pocket heater was developed for the growth of high quality epitaxial large-area MgB{sub 2} thin films and c-axis textured MgB{sub 2} thick films. This technique is able to independently control the substrate and Mg source temperatures and maintain sufficient Mg overpressure to ensure phase stability. The two-inch large-area MgB{sub 2} thin films showed uniform superconducting properties with the superconducting transition temperature T{sub c} of about 40 K, residual resistivity ratio (RRR) of about 10, and critical current density J{sub c} of about 10{sup 7} A cm{sup -2} (0 T, 5 K). The thick films ({approx}10 {mu}m) on sapphire substrates showed a maximum T{sub c} of 40 K and RRR of 15, and a J{sub c} of 1.6 x 10{sup 6} A cm{sup -2} at low applied magnetic fields even at 20 K. High quality thick films also have been obtained on metal substrates.

  11. In Situ Growth of In2S3 Nanorods in Poly(3-Hexylthiophene) Hybrid Films

    Science.gov (United States)

    Cota-Leal, M.; Sotelo-Lerma, M.; Corona-Corona, I.; Quevedo-Lopez, M. A.

    2016-04-01

    A novel and efficient gas-liquid method for the in situ synthesis of In2S3 nanorods in a poly(3-hexylthiophene) (P3HT) matrix is demonstrated. The method involves a self-contained reaction between Na2S and HCl that produces H2S, which reacts with a P3HT/InCl3 solution resulting in hybrid P3HT/In2S3 films. The Na2S solution is regenerated for further use. The method yielded results in In2S3 nanoparticles and nanorods in a P3HT matrix, as observed by transmission electron microscopy. The In2S3 nanorods are 3 nm wide and ~30 nm long. The size of the nanorods is dependent on the P3HT concentration. The band gap (E g) of the resulting In2S3/P3HT is in the range of 2.97-3.71 eV, as measured by UV-visible spectroscopy (UV-Vis) Charge transfer in the In2S3/P3HT was demonstrated by the presence of quenching in the fluorescence spectra of the composite. Chemical composition was investigated by energy dispersive x-ray spectroscopy analysis, as well as x-ray photoelectron spectroscopy. Both techniques demonstrated the formation of In2S3.

  12. Removal of Pb(II) from aqueous solution on chitosan/TiO(2) hybrid film.

    Science.gov (United States)

    Tao, Yugui; Ye, Lianbin; Pan, Jun; Wang, Yaoming; Tang, Bin

    2009-01-30

    This paper presents the adsorption of Pb(II) from aqueous solution using chitosan/TiO(2) hybrid film (CTF) adsorbent. Batch experiments were carried out as a function of solution pH, adsorption time, Pb(II) concentration and temperature. The equilibrium data fitted well with the linear Freundlich model. The adsorption process was proved to be the second grade reaction and the theoretically maximum adsorption amount at equilibrium was 36.8 mg-Pb/g. The influence parameters were optimized by response surface method (RSM), such as initial metal concentration, pH and temperature. The extreme points were gained by the Statistical Analysis System software: initial metal concentration is 50-55 mg/l, pH is 3-4 and temperature is 60 degrees C. Very high regression coefficient (R(2)=0.9689) indicates excellent evaluation of experimental data by second-order polynomial regression model. Under this condition the theoretical adsorption efficiency is 90.6%. It illuminates that this model is reliable to optimize the adsorption process and CTF is suitable for adsorbing Pb(II) from aqueous solution.

  13. Mechanical properties of Pb-free solder alloys on thick film hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.; Hosking, F.M.

    1998-03-10

    The technology drivers of the electronics industry continue to be systems miniaturization and reliability, in addition to addressing a variety of important environmental issues. Although the Sn-Pb eutectic alloy is widely used as a joining material in the electronics industry, it has drawn environmental concern due to its Pb content. The solder acts both as an electrical and mechanical connection within the different packaging levels in an electronic device. New Pb-free solders are being developed at Sandia National Laboratories. The alloys are based on the Sn-Ag alloy, having Bi and Au additions. Prototype hybrid microcircuit (HMC) test vehicles have been assembled to evaluate Pb-free solders for Au-Pt-Pd thick film soldering. The test components consist of a variety of dummy chip capacitors and leadless ceramic chip carriers (LCCC`s). The mechanical properties of the joints were evaluated. The reflow profiles and the solid state intermetallic formation reaction will also be presented. Improved solder joint manufacturability and increased fatigue resistance solder alloys are the goals of these materials.

  14. Mesoporous TiO₂ thin films exhibiting enhanced thermal stability and controllable pore size: preparation and photocatalyzed destruction of cationic dyes.

    Science.gov (United States)

    Wang, Jinshu; Li, Hui; Li, Hongyi; Zou, Chen; Wang, Hong; Li, Dasheng

    2014-02-12

    Ordered mesostructured TiO2 thin films were constructed through a method that combined sol-gel with evaporation-induced self-assembly (EISA). It was found that the calcination temperature, as well as the type of block copolymer, could vary the TiO2 mesoporous structure. Based on tension stress calculated by the surface energy of crystallites and the compression calculated by interface energy between the crystallites, the thermodynamic study for the sample had been carried out and the critical crystallite size expression of the mesoporous film was presented for the prediction of the thermal stability of the mesoporous structure at high temperature. It was also found that varying the mass ratio of templating agent to inorganic precursor could adjust the pore size of mesoporous TiO2. The pore size regulating mechanism had been discussed. The sample calcined at 450-500 °C, which had a higher specific surface area and larger pore size, exhibited higher photocatalyzed destruction capability of Methylene Blue.

  15. Quasi-analytical solutions of hybrid platform and the optimization of highly sensitive thin-film sensors for terahertz radiation

    CERN Document Server

    Tapsanit, Piyawath; Ishihara, Teruya; Otani, Chiko

    2016-01-01

    We present quasi-analytical solutions (QANS) of hybrid platform (HP) comprising metallic grating (MG) and stacked-dielectric layers for terahertz (THz) radiation. The QANS are validated by finite difference time domain simulation. It is found that the Wood anomalies induce the high-order spoof surface plasmon resonances in the HP. The QANS are applied to optimize new perfect absorber for THz sensing of large-area thin film with ultrahigh figure of merit reaching fifth order of magnitude for the film thickness 0.0001p (p: MG period). The first-order Wood's anomaly of the insulator layer and the Fabry-Perot in the slit's cavity account for the resonance of the perfect absorber. The QANS and the new perfect absorber may lead to highly sensitive and practical nano-film refractive index sensor for THz radiation.

  16. In-situ spectroscopy and nanoscale electronics in superconductor-topological insulator hybrid devices: a combined thin film growth and quantum transport study

    NARCIS (Netherlands)

    Ngabonziza, Prosper

    2016-01-01

    In this dissertation, we presented a combined thin film growth and quantum transport study on superconductor topological insulator hybrid devices. Understanding of the electronic properties of topological insulators (TIs), their preparation in high quality thin film form and their interaction with o

  17. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, S.R.; Cardoso, H.R.P. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Oliveira, C.T. [ICET, University Feevale, RS-239, 2755 Novo Hamburgo, RS (Brazil); Santana, J.A.; Sarmento, V.H.V. [Department of Chemistry, Federal University of Sergipe – UFS, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil); Muller, I.L. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Malfatti, C.F., E-mail: celia.malfatti@ufrgs.br [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2014-04-01

    Highlights: • Siloxane–PMMA film was produced by dip-coating on tin plate substrate. • It was evaluated the influence of (TEOS) addition on siloxane–PMMA hybrid films. • Siloxane–PMMA films without TEOS presented a regular coverage and lowest roughness. • The TEOS addition decrease the corrosion resistance of siloxane–PMMA films. • Siloxane–PMMA without TEOS presented is higher durability in the film wear test. - Abstract: The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane–poly (methyl methacrylate) (PMMA) hybrid film prepared by sol–gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane–PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase

  18. Fabrication and Investigation of Two-Component Film of 2,5-Diphenyloxazole and Octafluoronaphthalene Exhibiting Tunable Blue/Bluish Violet Fluorescence Based on Low Vacuum Physical Vapor Deposition Method

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhai

    2016-01-01

    Full Text Available Organic luminescent materials play an important role in the fields of light-emitting diodes and fluorescent imaging. Moreover, new synthetic approaches towards π-conjugated molecular systems with high fluorescence quantum efficiency are highly desired. Herein, different 2,5-diphenyloxazole-octafluoronaphthalene (DPO-OFN films with tunable fluorescence have been prepared by Low Vacuum Physical Vapor Deposition (LVPVD method. DPO-OFN films showed some changed properties, such as molecular vibration and fluorescence. All films exhibited blue/bluish violet fluorescence and showed blue shift, in comparison with pristine DPO. This work introduced a new method to fabricate two-component molecular materials with tunable blue/bluish violet luminescence properties and provided a new perspective to prepare organic luminescent film materials, layer film materials, cocrystal materials, and cocrystal film materials. Importantly, these materials have potential applications in the fields of next generation of photofunctional materials.

  19. Improving the organic/Si heterojunction hybrid solar cell property by optimizing PEDOT:PSS film and with amorphous silicon as back surface field

    Science.gov (United States)

    Wen, Hongbin; Cai, Hongkun; Du, Yangyang; Dai, Xiaowan; Sun, Yun; Ni, Jian; Li, Juan; Zhang, Dexian; Zhang, Jianjun

    2017-01-01

    Organic/Si hybrid heterojunction hybrid solar cells have got a great progress. The hybrid device may be promising in terms of reducing cost due to its simple technological process. It is crucial for high efficiency solar cells to form better coating films on the Si substrate. Here, the performance of organic/Si heterojunction hybrid solar cells is obviously enhanced by adding surfactant (FS300) into poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) film and the device with amorphous silicon as back surface field is successfully fabricated. The proper amount of surfactant addition improves the uniformity and homogeneous of the polymer film that can be reflected by scanning electron microscope and atomic force microscope, which allows good contact on the texture-Si substrate resulting in excellent device property. Also, the power conversion efficiency of cells is boosted to 9.37 from 7.31% displayed a 28% enhancement by embedding amorphous silicon thin film layer at rear interface as holes blocking layer. The insertion layer of amorphous silicon enhances the extraction of photon-generated carrier and suppresses the recombination of hole-electron at the rear cathode. Which results all improvement in the short-circuit current density, the open-circuit voltage and the fill factor. By optimizing the polymer film property and inserting the hole blocking layer, the performance of hybrid Si/organic hybrid solar cells is greatly improved.

  20. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  1. CdS/CdSe Co-sensitized Solar Cells Based on Hierarchically Structured SnO2/TiO2 Hybrid Films

    Science.gov (United States)

    Chen, Zeng; Wei, Chaochao; Li, Shengjun; Diao, Chunli; Li, Wei; Kong, Wenping; Zhang, Zhenlong; Zhang, Weifeng

    2016-06-01

    SnO2 nanosheet-structured films were prepared on a fluorine-doped tin oxide (FTO) substrate using ZnO nanosheet as template. The as-prepared SnO2 nanosheets contained plenty of nano-voids and were generally vertical to the substrate. TiO2 nanoparticles were homogeneously deposited into the intervals between the SnO2 nanosheets to prepare a hierarchically structured SnO2/TiO2 hybrid film. The hybrid films were co-sensitized with CdS and CdSe quantum dots. The sensitized solar cells assembled with the SnO2/TiO2 hybrid film showed much higher photoelectricity conversion efficiency than the cells assembled with pure TiO2 films. The lifetime of photoinduced electron was also investigated through electrochemical impedance spectroscopy, which showed that the SnO2/TiO2 hybrid film electrode is as long as the TiO2 film electrode.

  2. CdS/CdSe Co-sensitized Solar Cells Based on Hierarchically Structured SnO2/TiO2 Hybrid Films.

    Science.gov (United States)

    Chen, Zeng; Wei, Chaochao; Li, Shengjun; Diao, Chunli; Li, Wei; Kong, Wenping; Zhang, Zhenlong; Zhang, Weifeng

    2016-12-01

    SnO2 nanosheet-structured films were prepared on a fluorine-doped tin oxide (FTO) substrate using ZnO nanosheet as template. The as-prepared SnO2 nanosheets contained plenty of nano-voids and were generally vertical to the substrate. TiO2 nanoparticles were homogeneously deposited into the intervals between the SnO2 nanosheets to prepare a hierarchically structured SnO2/TiO2 hybrid film. The hybrid films were co-sensitized with CdS and CdSe quantum dots. The sensitized solar cells assembled with the SnO2/TiO2 hybrid film showed much higher photoelectricity conversion efficiency than the cells assembled with pure TiO2 films. The lifetime of photoinduced electron was also investigated through electrochemical impedance spectroscopy, which showed that the SnO2/TiO2 hybrid film electrode is as long as the TiO2 film electrode.

  3. MgB2UltrathinFilms Fabricated by Hybrid Physical Chemical Vapor Deposition and Subsequent Ion Milling

    Science.gov (United States)

    Acharya, Narendra; Wolak, Matthaeus; Tan, Teng; Cunnane, Daniel; Karasik, Boris; Xi, Xiaoxing

    Hot electron bolometer (HEB) mixers are a great tool for measuring high-resolution spectroscopy at Terahertz frequencies. MgB2offers a higher critical temperature (39 K) compared to commonly used Nb and NbN and boasts a shorter intrinsic electron-phonon relaxation time, giving rise to a broader intermediate frequency (IF) bandwidth. We have fabricated high quality ultrathin MgB2films using hybrid physical-chemical vapor deposition (HPCVD) and employing ion milling to achieve thickness down to 2 nm. The thinnest achieved films show high Tc of 28 K with residual resistivity below 28 µ Ωcm and high critical current Jcof 1x106 A/cm2at 20 K. As a result of the employed low angle ion milling process, the films remain well connected even after being thinned down since the initial thick films offer a better connectivity than as-grown thin films. The established process offers a way to realize MgB2 based HEB mixers of extremely low thickness and therefore small local oscillator power requirements and increased IF bandwidth.

  4. Synthesis and structural characterization of polyoxometalates incorporating with anilinium cations and facile preparation of hybrid film

    Science.gov (United States)

    Fukaya, Keisuke; Srifa, Atthapon; Isikawa, Eri; Naruke, Haruo

    2010-08-01

    The self-assembly reaction of tungstate and copper(II) in the presence of aniline (ANI) and phosphoric acid led to the formation of an anilinium (ANIH +) salt of mono-substituted Keggin-type polyoxotungstophosphate (ANIH) 5[PCu(H 2O)W 11O 39](ANI)·8H 2O ( 1), while the reaction of heptamolybdate in the coexistence of copper(II), phosphoric acid and ANI yielded an ANIH + salt of Strandberg-type pentamolybdodiphosphate, (ANIH) 2[(PO 4) 2Mo 5O 15{Cu(ANI) 2(H 2O)} 2](ANI)·2H 2O ( 2). These compounds were characterized by elemental analysis, infrared spectroscopy and X-ray single-crystal analysis. The compound 1, crystallizing in trigonal, P3¯,a = 13.883(4), c = 10.187(3) Å, Z = 1, consists of copper mono-substituted Keggin-typed [PCu(H 2O)W 11O 39] 5- anion surrounded by six ANI molecules, of which five are protonated (ANIH +). The compound 2, crystallizing in triclinic, P1¯,a = 13.98(2), b = 14.73(1), c = 16.24(1) Å, α = 111.27(3), β = 97.42(3), γ = 99.54(4)°, Z = 2, consists of Strandberg-type pentamolybdodiphospate [(PO 4) 2Mo 5O 15] 6- anions interconnected by two Cu(ANI) 2(H 2O) linkers to form a 1D-chain structure. A potentiostatic electrolysis of 1 in aqueous solution gave rise to electropolymerization of the ANIH + cations (and ANI) and deposition with the [PCu(H 2O)W 11O 39] 5- anion on an ITO electrode, forming a nano-structured polyaniline/[PCu(H 2O)W 11O 39] 5- hybrid thin film.

  5. Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor.

    Science.gov (United States)

    Alluri, Nagamalleswara Rao; Saravanakumar, Balasubramaniam; Kim, Sang-Jae

    2015-05-13

    We demonstrate a flexible piezoelectric nanogenerator (PNG) constructed using a hybrid (or composite) film composed of highly crystalline BaTi(1-x)Zr(x)O3 (x = 0, 0.05, 0.1, 0.15, and 0.2) nanocubes (abbreviated as BTZO) synthesized using a molten-salt process embedded into a poly(vinylidene fluoride) (PVDF) matrix solution via ultrasonication. The potential of a BTZO/PVDF hybrid film is realized in fabricating eco-friendly devices, active sensors, and flexible nanogenerators to interpret its functionality. Our strategy is based on the incorporation of various Zr(4+) doping ratios into the Ti(4+) site of BaTiO3 nanocubes to enhance the performance of the PNG. The flexible nanogenerator (BTZO/PVDF) exhibits a high electrical output up to ∼11.9 V and ∼1.35 μA compared to the nanogenerator (BTO/PVDF) output of 7.99 V and 1.01 μA upon the application of cyclic pushing-releasing frequencies with a constant load (11 N). We also demonstrate another exciting application of the PNG as a self-powered sensor to measure different water velocities at an outlet pipe. The average maximum peak power of the PNG varies from 0.2 to 15.8 nW for water velocities ranging from 31.43 to 125.7 m/s during the water ON condition. This study shows the compositional dependence approach, fabrication of nanostructures for energy harvesting, and self-powered devices in the field of monitoring for remote area applications.

  6. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors.

    Science.gov (United States)

    Chen, Haitian; Cao, Yu; Zhang, Jialu; Zhou, Chongwu

    2014-06-13

    Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates).

  7. Hybrid artificial pinning centers of elongated-nanorods and segmented-nanorods in YBa2Cu3O7 films

    Science.gov (United States)

    Horide, Tomoya; Sakamoto, Nobuhiro; Ichinose, Ataru; Otsubo, Koji; Kitamura, Takanori; Matsumoto, Kaname

    2016-10-01

    To control the anisotropy of critical current density (J c), hybrid artificial pinning centers (APCs) of elongated-nanorods and segmented-nanorods were incorporated into YBa2Cu3O7 films. The elongated-nanorods and segmented-nanorods were formed by fabricating multilayer films using YBa2Cu3O7+BaSnO3 targets with a different BaSnO3 content. According to the elastic calculation, the BaSnO3-free YBa2Cu3O7 regions between BaSnO3 segmented-nanorods were highly strained, resulting in their alignment along the c-axis. Pinning of the vortex kinks and straight vortices by the nanorod ends improved J c in a wide range around B//ab. The angular dependence of J c systematically varied with the multilayer structure of layer thickness and BSO content. J c depended on the layer thickness even with keeping the constant average BSO content, showing that the BaSnO3 distribution, as well as the average BaSnO3 content, affected the J c. The hybrid pinning effect of elongated-nanorods and nanorod ends improved the J c anisotropy although the effect was not so large in the present films. The control of strain and interface is expected to lead to further improvement of J c.

  8. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    ) a synthesis of the findings from the first two studies with findings from the literature to generate two types of results: a coherent series of suggestions for a design iteration of the studied exhibit as well as a more general normative model for exhibit engineering. Finally, another perspective...

  9. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells

    Science.gov (United States)

    Tune, Daniel D.; Shapter, Joseph G.

    2013-01-01

    The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs) on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2.

  10. The Effects of Coupling Agents on the Properties of Polyimide/Nano-Al2O3 Three-Layer Hybrid Films

    Directory of Open Access Journals (Sweden)

    Lizhu Liu

    2010-01-01

    Full Text Available PI/nano-Al2O3 hybrid films were prepared by ultrasonic-mechanical method. Before addition, nano-Al2O3 particles were firstly modified with different coupling agents. The micromorphology, thermal stability, mechanical properties, and electric breakdown strength of hybrid films were characterized and investigated. Results indicated that nano-Al2O3 particles were homogeneously dispersed in the PI matrix by the addition of coupling agents. The thermal stability and mechanical properties of PI/nano-Al2O3 composite films with KH550 were the best. The tensile strength and elongation at break of PI composite film were 119.1 MPa and 19.1%, which were 14.2% and 78.5% higher than unmodified PI composite film, respectively.

  11. Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface.

    Science.gov (United States)

    Thiyagu, Subramani; Hsueh, Chen-Chih; Liu, Chien-Ting; Syu, Hong-Jhang; Lin, Tzu-Ching; Lin, Ching-Fuh

    2014-03-21

    This paper reports an organic-inorganic hybrid solar cell with a hierarchical surface composed of high density silicon nanoholes and micro-desert textures. High-efficiency organic-inorganic hybrid solar cell Si/PEDOT-PSS with a hierarchical surface, showing a power conversion efficiency of 12%. The structure provides excellent light absorption over 97% for the spectral range of 300 to 1100 nm with a thickness of 60 μm due to internal multiple reflections caused by subwavelength features of high density silicon nanoholes and micro-desert textures. In addition, from the angle of incidence (AOI) observed, even at the large angle of 75°, the reflectance value still exhibits less than 1%. With the advantage of very thin silicon material and inexpensive processing, hybrid silicon/polymer solar cells are promising for various applications and thus could be an economically feasible alternative energy solution in the future.

  12. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    From 1870s to 1910s, more than 50 exhibitions of so-called exotic people took place in Denmark. Here large numbers of people of Asian and African origin were exhibited for the entertainment and ‘education’ of a mass audience. Several of these exhibitions took place in Copenhagen Zoo. Here different...... light on the staging of exhibitions, the daily life of the exhibitees, the wider connections between shows across Europe and the thinking of the time on matters of race, science, gender and sexuality. A window onto contemporary racial understandings, the book presents interviews with the descendants...... of displayed people, connecting the attitudes and science of the past with both our (continued) modern fascination with ‘the exotic’, and contemporary language and popular culture. As such, it will be of interest to scholars of sociology, anthropology and history working in the areas of gender and sexuality...

  13. Optical Properties of Hybrid Inorganic/Organic Thin Film Encapsulation Layers for Flexible Top-Emission Organic Light-Emitting Diodes.

    Science.gov (United States)

    An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun

    2015-10-01

    Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.

  14. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Threshold voltage manipulation of ZnO-graphene oxide hybrid thin film transistors via Au nanoparticles doping

    Science.gov (United States)

    Song, Wooseok; Kim, Ki Woong; Kim, Seong Jun; Min, Bok Ki; Rang Lim, Yi; Myung, Sung; Lee, Sun Sook; Lim, Jongsun; An, Ki-Seok

    2015-12-01

    In order to fabricate a complementary inverter, precise control of the threshold voltages for n-type semiconductor based thin film transistors (TFTs) is highly required. Here we provided a facile methodology for controlling the threshold voltage of ZnO-based TFTs. Chemically-derived graphene oxide (GO) and Au-decorated GO (Au-GO) flakes were hybridized with solution-processed ZnO thin films to control electron injection determined by the workfunction difference between ZnO and GO or Au-GO. As a result, the threshold voltages for the ZnO, GO/ZnO, and Au-GO/ZnO TFTs were 24 ± 3 V, -11 ± 4 V, and 63 ± 5 V, respectively, which determine depletion or enhancement mode TFTs without any significant change in the field effect mobility and on/off ratio.

  16. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    Science.gov (United States)

    Kunst, S. R.; Cardoso, H. R. P.; Oliveira, C. T.; Santana, J. A.; Sarmento, V. H. V.; Muller, I. L.; Malfatti, C. F.

    2014-04-01

    The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane-poly (methyl methacrylate) (PMMA) hybrid film prepared by sol-gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane-PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase and irregular surface coverage.

  17. Amorphous silicon carbon films prepared by hybrid plasma enhanced chemical vapor/sputtering deposition system: Effects of r.f. power

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Maisarah Abdul, E-mail: nurmaisarahrashid@gmail.com [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ritikos, Richard; Othman, Maisara; Khanis, Noor Hamizah; Gani, Siti Meriam Ab. [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Muhamad, Muhamad Rasat [Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Rahman, Saadah Abdul, E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2013-02-01

    Silicon carbon films were deposited using a hybrid radio frequency (r.f.) plasma enhanced chemical vapor deposition (PECVD)/sputtering deposition system at different r.f. powers. This deposition system combines the advantages of r.f. PECVD and sputtering techniques for the deposition of silicon carbon films with the added advantage of eliminating the use of highly toxic silane gas in the deposition process. Silicon (Si) atoms were sputtered from a pure amorphous silicon (a-Si) target by argon (Ar) ions and carbon (C) atoms were incorporated into the film from C based growth radicals generated through the discharge of methane (CH{sub 4}) gas. The effects of r.f. powers of 60, 80, 100, 120 and 150 W applied during the deposition process on the structural and optical properties of the films were investigated. Raman spectroscopic studies showed that the silicon carbon films contain amorphous silicon carbide (SiC) and amorphous carbon (a-C) phases. The r.f. power showed significant influence on the C incorporation in the film structure. The a-C phases became more ordered in films with high C incorporation in the film structure. These films also produced high photoluminescence emission intensity at around 600 nm wavelength as a result of quantum confinement effects from the presence of sp{sup 2} C clusters embedded in the a-SiC and a-C phases in the films. - Highlights: ► Effects of radio frequency (r.f.) power on silicon carbon (SiC) films were studied. ► Hybrid plasma enhanced chemical vapor deposition/sputtering technique was used. ► r.f. power influences C incorporation in the film structure. ► High C incorporation results in higher ordering of the amorphous C phase. ► These films produced high photoluminescence emission intensity.

  18. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    Science.gov (United States)

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  19. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel D. Tune

    2013-12-01

    Full Text Available The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2.

  20. An amphidynamic inorganic-organic hybrid crystal of bromoplumbate with 1,5-bis(1-methylimidazolium)pentane exhibiting multi-functionality of a dielectric anomaly and temperature-dependent dual band emissions.

    Science.gov (United States)

    Tong, Yuan-Bo; Ren, Li-Te; Duan, Hai-Bao; Liu, Jian-Lan; Ren, Xiao-Ming

    2015-10-28

    Organic-inorganic hybrid crystals, [1,5-bis(1-methylimidazolium)pentane][PbBr3]2 (1), were achieved through the mutual diffusion of a bi-imidazolium based ionic liquid and PbBr2 solution of DMF in a glass tube. The hybrid solid crystallizes in the orthorhombic space group Fdd2 at room temperature; and is composed of one-dimensional [PbBr3]∞ chains where the neighbouring PbBr6 coordination octahedra are linked together via the face-sharing mode and the inorganic chains are surrounded by organic cations. The hybrid solid exhibits a dielectric anomaly around 443 K and dielectric relaxation above 400 K, the dielectric response mechanism was investigated using variable-temperature X-ray single crystal and powder diffraction as well as DSC techniques. Fascinatingly, this hybrid solid shows dual band emissions, moreover, the fluorescence nature of the two emission bands exhibits a distinct response to temperature, leading to a temperature-dependent fluorescence color, this feature has promising application in the emission temperature-sensing field.

  1. Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO{sub 2} nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Nasrin, E-mail: nasrin_talebian@yahoo.com [Department of Chemistry, Shahreza branch, Islamic Azad University, Razi Chemistry Research Centre, Women Research Council, 86145-311, Shahreza, Isfahan 86145-311 (Iran, Islamic Republic of); Nilforoushan, Mohammad Reza [Engineering Department, Sharekord University, Sharekord P.B. 115 (Iran, Islamic Republic of); Zargar, Elahe Badri [Department of Chemistry, Shahreza branch, Islamic Azad University, Razi Chemistry Research Centre, Women Research Council, 86145-311, Shahreza, Isfahan 86145-311 (Iran, Islamic Republic of)

    2011-10-15

    The nano-sized coupled oxides ZnO/SnO{sub 2} thin films in a molar ratio of 2:1 (Z2S), 1:1 (ZS) and 1:2 (ZS2) were prepared using sol-gel dip coating method and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. Escherichia coli (E. coli, ATCC 25922) was selected as a model for the Gram-negative bacteria to evaluate antibacterial property of composite samples compared with single ZnO (Z) and single SnO{sub 2} (S) films. The antibacterial activity has been studied applying the so-called antibacterial drop test under UV illumination. The bactericidal activity was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The influence of the SnO{sub 2}-ZnO nanocomposite composition on the structural features and on the antibacterial properties of the thin films are reported and discussed. It is found that all coatings exhibited a high antibacterial activity. The coupled oxide photocatalyst Z2S has better photocatalytic activity to bacteria inactivation than ZS, ZS2, Z and S films. Furthermore, nanostructured films were active even in the absence of irradiation.

  2. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets Functionalized Thin Film Nanocomposite Membrane for Enhanced Antimicrobial Performance.

    Science.gov (United States)

    Wang, Jing; Wang, Yuanming; Zhang, Yatao; Uliana, Adam; Zhu, Junyong; Liu, Jindun; Van der Bruggen, Bart

    2016-09-28

    Inspired by the rational design concept, a novel antimicrobial agent zeolitic imidazolate framework-8 (ZIF-8)/graphene oxide (GO) was synthesized and utilized as a novel and efficient bactericidal agent to fabricate antimicrobial thin film nanocomposite (TFN) membranes via interfacial polymerization. The resultant hybrid nanosheets not only integrates the merits of both ZIF-8 and GO but also yields a uniform dispersion of ZIF-8 onto GO nanosheets simultaneously, thus effectively eliminating the agglomeration of ZIF-8 in the active layer of membranes. A ZIF-8/GO thin film nanocomposite (TFN-ZG) membrane with typical water permeability (40.63 L m(-2) h(-1) MPa(-1)) allows for efficient bivalent salt removal (rejections of Na2SO4 and MgSO4 were 100% and 77%, respectively). Furthermore, the synthesized ZIF-8/GO nanocomposites were verified to have an optimal antimicrobial activity (MIC,128 μg/mL) in comparison with ZIF-8 and GO separately, which sufficiently endowed the TFN-ZG membrane with excellent antimicrobial activity (84.3% for TFN-ZG3). Besides, the antimicrobial mechanisms of ZIF-8/GO hybrid nanosheets and TFN-ZG membranes were proposed. ZIF-8/GO functionalized membrane with high antimicrobial activity and salt retention denoted its great potential in water desalination, and we suggest that ZIF-8 based crystal may offer a new pathway for the synthesis of a multifunctional bactericide.

  3. Multifunctional alumina/titania hybrid blocking layer modified nanocrystalline titania films as efficient photoanodes in dye sensitized solar cells

    Science.gov (United States)

    Wang, Changlei; Yu, Zhenhua; Bu, Chenghao; Liu, Pei; Bai, Sihang; Liu, Chang; Kondamareddy, Kiran Kumar; Sun, Weiwei; Zhan, Kan; Zhang, Kun; Guo, Shishang; Zhao, Xingzhong

    2015-05-01

    A facile way of fabricating efficient blocking layer on mesoporous TiO2 film of dye-sensitized solar cells (DSSCs) is demonstrated here for the first time. Al2O3 and TiO2 are combined together to form a blocking layer. A simple spin coating technique is employed which is a versatile and low-cost method over the atomic layer deposition (ALD) technique. Multifunctional alumina/titania (Al2O3/TiO2) hybrid overlayer is prepared on traditional TiO2 nanocrystalline thin film surface, through sequential deposition of AlCl3·6H2O and TiCl4 precursor solutions followed by sintering at 500 °C for 30 min. Al2O3 effectively plays its role in retarding interfacial recombination of electrons and improving open circuit potential (Voc), while the tiny TiO2 clusters synthesized from TiCl4 treatment act as electron transporting channels to facilitate electron diffusion which leads to enhanced photocurrent (Jsc). Compared to the device without blocking layer, the DSSCs assembled with Al2O3/TiO2 hybrid blocking layer showed improvement in Jsc (from 13.09 mA/cm2 to 16.90 mA/cm2) as well as in Voc (from 0.72 V to 0.73 V) resulting a much better conversion efficiency of 8.60%.

  4. Synthesis, structural and field emission properties of multiwall carbon nanotube-graphene-like nanocarbon hybrid films grown by microwave plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chockalingam, Sreekumar, E-mail: sreekuc@nplindia.org [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Bisht, Atul [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Kesarwani, A.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Singh, B.P. [Physics and Engineering of Carbon, Materials Physics and Engineering Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Chand, Jagdish [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India)

    2015-04-15

    Multiwall carbon nanotube (MWCNT)-graphene-like nanocarbon hybrid films were directly deposited on nickel substrate without any pre-treatment in a single-step by microwave plasma enhanced chemical vapor deposition (MW PECVD) technique at 600 °C. The effects of hydrogen partial pressure on the growth of MWCNT-graphene-like nanocarbon hybrid films and their structural, morphological and field emission properties were investigated. High resolution scanning electron microscope revealed MWCNT structure. High resolution transmission electron microscope images and Raman spectra revealed graphene-like nanocarbon film. Raman spectra showed 2D, G, D and D + G peaks at approximately 2690, 1590, 1350 and 2930 cm{sup −1}, respectively. The minimum threshold field for electron emission was found to be 3.6 V/μm corresponding to 1 μA/cm{sup 2} current density for the MWCNT-graphene-like nanocarbon hybrid film deposited at 20 Torr pressure whereas the maximum current density of 0.12 mA/cm{sup 2} and field enhancement factor of ∼3356 was obtained for the sample deposited at 5 Torr pressure. - Highlights: • MWCNT-graphene-like nanocarbon hybrid films were synthesized by MWPECVD technique. • Effect of pressure on the structural and field emission properties has been studied. • FESEM revealed MWCNT and HRTEM revealed graphene-like nanocarbon film structure. • Minimum E{sub T} = 3.6 V/μm with β = 3164 has been obtained in the film deposited at 20 Torr. • Maximum J = 0.12 mA/cm{sup 2} with β = 3356 has been obtained in the film deposited at 5 Torr.

  5. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    of tools and processes to guide the design of educational science exhibits. The guiding paradigm for this development is design-based research, which is characterised by an iterative cycle of design, enactment, and analysis. In the design phase, an educational intervention is planned and carried out based...... on a hypothesised learning process and the means of supporting it. In the enactment phase, the educational intervention is implemented (i.e. the planned lesson is taught, or the museum exhibit is opened to the public). Finally, the analysis phase establishes causality between emergent characteristics...... of the learning outcomes and the design characteristics of the intervention. The analysis process can yield two types of outcomes: Suggestions for the refinement of the specific design in question, and “humble” theory, which is theory that can guide the design of a category of educational interventions...

  6. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    Science.gov (United States)

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  7. Photophysical Behavior of Modified Xanthenic Dyes Embedded into Silsesquioxane Hybrid Films: Application in Photooxidation of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Carolina V. Waiman

    2017-01-01

    Full Text Available Polymeric materials based on a bridged silsesquioxane with pendant dodecyl chains were synthesized and modified with different xanthenic dyes with the aim of developing a material with potential application in photooxidation of organic compounds. The employed dyes constitute a family of novel xanthenic chromophores with outstanding properties as singlet oxygen photosensitizers. The hybrid matrix was chosen for its enhanced properties such as flexibility and chemical resistance. The employed dyes were easily incorporated into the hybrid polymer obtaining homogeneous, transparent, and low-refractive-index materials. The polymeric films were characterized using UV-Vis absorption, fluorescence, and laser flash photolysis techniques. The ability of these materials to produce singlet oxygen was tested following the photooxidation of 9,10-dimethylanthracene which is a well-known chemical trap for singlet oxygen. High photooxidation efficiencies were observed for these materials, which present the advantage of being easily removed/collected from the solution where photooxidation takes place. While photobleaching of the incorporated dyes is commonly observed in the solution, it takes place very slowly when dyes are embedded in the hybrid matrix. These properties bode well for the potential use of these materials in novel wastewater purification strategies.

  8. Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its Dye-Sensitized Photocathodic Properties

    Science.gov (United States)

    2014-01-01

    Nanostructured hybrid thin films of CuSCN and rhodamine B (RB) are electrochemically self-assembled (ESA) by cathodic electrolysis in an ethanol/water mixture containing Cu2+, SCN–, and RB. By selecting the solvent, Cu2+/SCN– ratio, and the concentration of RB, we demonstrate several control parameters in the film formation. High loading of RB into the film has been achieved to reach a CuSCN:RB volume ratio of approximately 2:1. The RB solid could almost completely be extracted from the hybrid film by soaking the film in dimethylacetamide (DMA), leading to a large increase of the surface area. The crystallographic orientation of the nanostructure with respect to the substrate can be controlled. Efficient quenching of fluorescence of RB has been observed for the CuSCN/RB hybrid film, implying hole injection from RB excited state to CuSCN. Photoelectrochemical study on the porous crystalline CuSCN obtained after the DMA treatment and sensitized with RB revealed sensitized photocathodic action under visible light illumination, indicating the potential usefulness of the porous CuSCN electrodes for construction of tandem dye-sensitized solar cells. PMID:25101148

  9. Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Hwang, Soo Min; Sun, Ziqi; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2014-05-12

    Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties.

    Science.gov (United States)

    Zaitsev, Sergei Yu; Solovyeva, Daria O; Nabiev, Igor

    2012-11-15

    The development and study of nano-bio hybrid materials engineered from membrane proteins (the key functional elements of various biomembranes) and nanoheterostructures (inorganic colloidal nanoparticles, transparent electrodes, and films) is a rapidly growing field at the interface of materials and life sciences. The mainspring of the development of bioinspired materials and devices is the fact that biological evolution has solved many problems similar to those that humans are attempting to solve in the field of light-harvesting and energy-transferring inorganic compounds. Along this way, bioelectronics and biophotonics have shown considerable promise. A number of proteins have been explored in terms of bioelectronic device applications, but bacteriorhodopsin (bR, a photosensitive membrane protein from purple membranes of the bacterium Halobacterium salinarum) and bacterial photosynthetic reaction centres have received the most attention. The energy harvesting in plants has a maximum efficiency of 5%, whereas bR, in the absence of a specific light-harvesting system, allows bacteria to utilize only 0.1-0.5% of the solar light. Recent nano-bioengineering approaches employing colloidal semiconductor and metal nanoparticles conjugated with biosystems permit the enhancement of the light-harvesting capacity of photosensitive proteins, thus providing a strong impetus to protein-based device optimisation. Fabrication of ultrathin and highly oriented films from biological membranes and photosensitive proteins is the key task for prospective bioelectronic and biophotonic applications. In this review, the main advances in techniques of preparation of such films are analyzed. Comparison of the techniques for obtaining thin films leads to the conclusion that the homogeneity and orientation of biomembrane fragments or proteins in these films depend on the method of their fabrication and increase in the following order: electrophoretic sedimentation advances in the techniques of

  11. Ultrahigh Carrier Mobility Achieved in Photoresponsive Hybrid Perovskite Films via Coupling with Single-Walled Carbon Nanotubes

    KAUST Repository

    Li, Feng

    2017-02-22

    Organolead trihalide perovskites have drawn substantial interest for photovoltaic and optoelectronic applications due to their remarkable physical properties and low processing cost. However, perovskite thin films suffer from low carrier mobility as a result of their structural imperfections such as grain boundaries and pinholes, limiting their device performance and application potential. Here we demonstrate a simple and straightforward synthetic strategy based on coupling perovskite films with embedded single-walled carbon nanotubes. We are able to significantly enhance the hole and electron mobilities of the perovskite film to record-high values of 595.3 and 108.7 cm(2) V(-1) s(-1) , respectively. Such a synergistic effect can be harnessed to construct ambipolar phototransistors with an ultrahigh detectivity of 3.7 × 10(14) Jones and a responsivity of 1 × 10(4) A W(-1) , on a par with the best devices available to date. The perovskite/carbon nanotube hybrids should provide a platform that is highly desirable for fields as diverse as optoelectronics, solar energy conversion, and molecular sensing.

  12. Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids.

    Directory of Open Access Journals (Sweden)

    Christina Schütz

    Full Text Available The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young's modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces.

  13. Solution-processed copper phthalocyanine–gold nanoparticle hybrid nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khurana, Parul; Thatai, Sheenam [Chemistry Department, Banasthali University, Rajasthan (India); Chaure, Nandu B., E-mail: n.chaure@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India); Mahamuni, Shailaja [Department of Physics, University of Pune, Pune 411007 (India); Kulkarni, Sulabha, E-mail: s.kulkarni@iiserpunr.ac.in [Department of Physics, Indian Institute of Science Education and Research, Pune 411021 (India)

    2014-08-28

    Copper phthalocyanine (CuPc) thin film and gold nanoparticles (Au NPs) of size ∼ 20 nm were deposited on conducting indium tin oxide coated glass substrates. Thin films were ∼ 500 nm thick having crystalline nature determined by surface profilometer and X-ray diffraction technique. The concentration of Au NPs in the films was varied whereas the concentration of CuPc was constant. It was observed that surface morphology varied with Au NP concentration increase in the films accompanied by changes in the optical spectra over 300-1000 nm range and increase in the electrical conduction but no changes in the Fourier transform infra-red spectra. Such nanocomposite films would be useful in the fabrication of organic solar cells. - Highlights: • Optical and electrical properties of CuPc film are enhanced upon loading of Au NPs. • Upon loading of Au NPs in CuPc the surface morphology changes from sheets to fibers. • The systematic enhancement in current is observed by increasing Au NPs in CuPc film. • The XRD peak intensity of CuPc reduced with an increase in the concentration of Au NPs.

  14. Ultrahigh Aspect Ratio Copper-Nanowire-Based Hybrid Transparent Conductive Electrodes with PEDOT:PSS and Reduced Graphene Oxide Exhibiting Reduced Surface Roughness and Improved Stability.

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A; Mansuripur, Masud; Falco, Charles M

    2015-08-05

    Copper nanowires (CuNWs) with ultrahigh aspect ratio are synthesized with a solution process and spray-coated onto select substrates to fabricate transparent conductive electrodes (TCEs). Different annealing methods are investigated and compared for effectiveness and convenience. The CuNWs are subsequently combined with the conductive polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ( PSS) or with reduced graphene oxide (rGO) platelets in order to reduce the surface roughness and improve the durability of the fabricated TCEs. Our best-performing PSS/CuNW films have optical transmittance T550 = 84.2% (at λ = 550 nm) and sheet resistance Rs = 25 Ω/sq, while our best CuNW/rGO films have T550 = 84% and Rs = 21.7 Ω/sq.

  15. Preparation of Poly (ethylene oxide) (PEO) Modified Tungsten Oxide Hybrid Films via Sol-Gel Processing

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Poly (ethylene axide) (PEO) modified WO3 thin films were prepared on glass substrates with special temperature.The sol-gel transition proess was investigated by using DTA-TG,SEM and XRD.The electrochemical characteristic of the films was studied by cyclic voltmmetry measurement.The results show that PEO has heavy effects on the crystallization of WO3 during structure evolution because of the interaction between PEO and WO3.It increases the crystallization temperature of the gels and thus improves the electrochemical properties and cyclic life of WO3 film as electrochromic materials.

  16. Semitransparent ZnO/poly(3,4-ethylenedioxythiophene) based hybrid inorganic/organic heterojunction thin film diodes prepared by combined radio-frequency magnetron-sputtering and electrodeposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Moreno, Jorge; Navarrete-Astorga, Elena; Martin, Francisco [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Schrebler, Ricardo [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Ramos-Barrado, Jose R. [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Dalchiele, Enrique A., E-mail: dalchiel@fing.edu.uy [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)

    2012-12-15

    n-ZnO/p-poly(3,4-ethylenedioxythiophene) (PEDOT) semitransparent inorganic-organic hybrid vertical heterojunction thin film diodes have been fabricated with PEDOT and ZnO thin films grown by electrodeposition and radio-frequency magnetron-sputtering respectively, onto a tin doped indium oxide coated glass substrate. The diode exhibited an optical transmission of {approx} 40% to {approx} 50% in the visible region between 450 and 700 nm. The current-voltage (I-V) characteristics of the heterojunction show good rectifying diode characteristics, with a ratio of forward current to the reverse current as high as 35 in the range - 4 V to + 4 V. The I-V characteristic was examined in the framework of the thermionic emission model. The ideality factor and barrier height were obtained as 4.0 and 0.88 eV respectively. - Highlights: Black-Right-Pointing-Pointer Semitransparent inorganic-organic heterojunction thin film diodes investigated Black-Right-Pointing-Pointer n-ZnO/p-poly(3,4-ethylenedioxythipohene) used for the heterojunction Black-Right-Pointing-Pointer Diodes exhibited an optical transmission of {approx} 40%-{approx} 50% in the visible region Black-Right-Pointing-Pointer Heterojunction current-voltage features show good rectifying diode characteristics Black-Right-Pointing-Pointer A forward to reverse current ratio as high as 35 (- 4 V to + 4 V range) was attained.

  17. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film

    Science.gov (United States)

    Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar

    2017-08-01

    Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS2. Furthermore, two kinds of MoS2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.

  18. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy

    Science.gov (United States)

    Li, Guang-Can; Zhang, Yong-Liang; Lei, Dang Yuan

    2016-03-01

    Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film-coupled nanosphere monomers and dimers. Together with full-wave numerical simulation results, it is found that while the monomer-film system supports two hybridized dipole-like plasmon modes having different oscillating orientations and resonance strengths, the scattering spectrum of the dimer-film system features two additional peaks, one strong yet narrow resonant mode corresponding to a bonding dipolar moment and one hybridized higher order resonant mode, both polarized along the dimer axis. In particular, we demonstrate that the polarization dependent scattering radiation of the film-coupled nanosphere dimer can be used to optically distinguish from monomers and concurrently determine the spatial orientation of the dimer with significantly improved accuracy at the single-particle level, illustrating a simple yet highly sensitive plasmon resonance based nanometrology method.Plasmonic gap modes sustained by metal film-coupled nanostructures have recently attracted extensive research attention due to flexible control over their spectral response and significantly enhanced field intensities at the particle-film junction. In this work, by adopting an improved dark field spectroscopy methodology - polarization resolved spectral decomposition and colour decoding - we are able to ``visualize'' and distinguish unambiguously the spectral and far field radiation properties of the complex plasmonic gap modes in metal film

  19. Tuning of Ag-SPR band position in refractive index controlled inorganic-organic hybrid SiO2-PEO-TiO2 films

    Indian Academy of Sciences (India)

    Samar Kumar Medda; Moumita Mitra; Goutam De

    2008-11-01

    Inorganic (silica-titania)-organic (polyethylene oxide) hybrid films with variable refractive index (RI) values were synthesized and Ag nanoparticles were generated in situ inside such hybrid films to develop coloured coatings specially on plastic substrates. The hybrid films and the corresponding Agincorporated films were prepared from sols derived from a mixture of silicon tetraethoxide (STE), 3-(glycidoxypropyl)trimethoxysilane (GPTMS), titanium tetraisopropoxide (TTIP) and silver nitrate following a sol-gel dip-coating method and cured at low temperature (90°C), followed by UV treatment with an energy equivalent to 5.3 ± 0.1 J cm-2. The equivalent SiO2: SiO1.5(CH2)3OCH2CH(CH2)O : TiO2: Ag molar ratios (nominal) of the final cured films are varied in the ranges (67.9-0) : 29.1 : (0-67.9) : 3. The refractive index values of the cured hybrid films were found to be increased systematically from 1.475 to 1.710 with increasing Ti-component. The Ag-SPR peak, in case of silica-polyethylene oxide host (RI = 1.475), observed at 419 nm, gradually red-shifted to 497 nm upon increasing the Ticomponent (equivalent TiO2 content 67.9 mol%; RI = 1.710) of the film. As a consequence, a systematic change of Ag-SPR position yielded yellow, yellowish-orange, orange, brownish-orange and orangish-brown coloured coatings.

  20. Electronic Tongue Based on Nanostructured Hybrid Films of Gold Nanoparticles and Phthalocyanines for Milk Analysis

    Directory of Open Access Journals (Sweden)

    Luiza A. Mercante

    2015-01-01

    Full Text Available The use of gold nanoparticles combined with other organic and inorganic materials for designing nanostructured films has demonstrated their versatility for various applications, including optoelectronic devices and chemical sensors. In this study, we reported the synthesis and characterization of gold nanoparticles stabilized with poly(allylamine hydrochloride (Au@PAH NPs, as well as the capability of this material to form multilayer Layer-by-Layer (LbL nanostructured films with metal tetrasulfonated phthalocyanines (MTsPc. Film growth was monitored by UV-Vis absorption spectroscopy, atomic force microscopy (AFM, and Fourier transform infrared spectroscopy (FTIR. Once LbL films have been applied as active layers in chemical sensors, Au@PAH/MTsPc and PAH/MTsPc LbL films were used in an electronic tongue system for milk analysis regarding fat content. The capacitance data were treated using Principal Component Analysis (PCA, revealing the role played by the gold nanoparticles on the LbL films electrical properties, enabling this kind of system to be used for analyzing complex matrices such as milk without any prior pretreatment.

  1. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  2. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L‑1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g‑1 for As(V) and 143.6 mg g‑1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy.

  3. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  4. Influence of the Sol pH on Electrochemical and Mechanical Behaviors of Siloxane-PMMA Hybrid Films Combined with UV Ink

    Science.gov (United States)

    Kunst, Sandra Raquel; Longhi, Marielen; Baldin, Estela Knopp Kerstner; Boniatti, Rosiana; Beltrami, Lilian Vanessa Rossa; de Fraga Malfatti, Célia

    2017-01-01

    Pre-treatments with a siloxane-PMMA base have shown promising results when combined with the new ink technology with curing by ultraviolet (UV) radiation. Tinplate sheets were coated with a hybrid film obtained from a sol with alkoxides precursors consisting of 3-(trimethoxysilylpropyl) methacrylate and tetraethoxysilane and adding an organic phase composed of poly(methyl methacrylate). The hydrolysis reactions were catalyzed with a nitric acid solution (pH = 1 and pH = 3). The hybrid films were obtained by a dip-coating process, coated with red-colored paint UV curing and characterized for their electrochemical and mechanical behavior. The results showed that a more acidic pH (pH = 1) promotes the formation of a hybrid film with better protective properties, presented a better electrochemical performance and higher values of layer thickness. However, the hybrid film obtained with pH = 3 combined with the UV coating presented the best performance. This result is probably due to a better anchorage and adhesion verified in this sample.

  5. Influence of the Sol pH on Electrochemical and Mechanical Behaviors of Siloxane-PMMA Hybrid Films Combined with UV Ink

    Science.gov (United States)

    Kunst, Sandra Raquel; Longhi, Marielen; Baldin, Estela Knopp Kerstner; Boniatti, Rosiana; Beltrami, Lilian Vanessa Rossa; de Fraga Malfatti, Célia

    2016-11-01

    Pre-treatments with a siloxane-PMMA base have shown promising results when combined with the new ink technology with curing by ultraviolet (UV) radiation. Tinplate sheets were coated with a hybrid film obtained from a sol with alkoxides precursors consisting of 3-(trimethoxysilylpropyl) methacrylate and tetraethoxysilane and adding an organic phase composed of poly(methyl methacrylate). The hydrolysis reactions were catalyzed with a nitric acid solution (pH = 1 and pH = 3). The hybrid films were obtained by a dip-coating process, coated with red-colored paint UV curing and characterized for their electrochemical and mechanical behavior. The results showed that a more acidic pH (pH = 1) promotes the formation of a hybrid film with better protective properties, presented a better electrochemical performance and higher values of layer thickness. However, the hybrid film obtained with pH = 3 combined with the UV coating presented the best performance. This result is probably due to a better anchorage and adhesion verified in this sample.

  6. Top-down and bottom-up approaches to transparent, flexible and luminescent nitrogen-doped carbon nanodot-clay hybrid films

    NARCIS (Netherlands)

    Dimos, Konstantinos; Arcudi, Francesca; Kouloumpis, Antonios; Koutselas, Ioannis B.; Rudolf, Petra; Prato, Maurizio

    2017-01-01

    Two easy approaches are successfully employed for the preparation of nitrogen-doped carbon nanodot (NCND)-clay hybrids (bulk solids and thin films). Fluorescent and small NCNDs are intercalated within the interlayer space of LAPONITE (R) clay with a simple ion exchange reaction in bulk or embedded

  7. 30.1 8b thin-film microprocessor using a hybrid oxide-organic complementary technology with inkjet-printed P2ROM memory

    NARCIS (Netherlands)

    Myny, K.; Smout, S.; Rockelé, M.; Bhoolokam, A.; Ke, T.H.; Steudel, S.; Obata, K.; Marinkovic, M.; Pham, D.V.; Hoppe, A.; Gulati, A.; Rodriguez, F.G.; Cobb, B.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2014-01-01

    We present an 8b general-purpose microprocessor realized in a hybrid oxide-organic complementary thin-film technology. The n-type transistors are based on a solution-processed n-type metal-oxide semiconductor, and the p-type transistors use an organic semiconductor. As compared to previous work util

  8. 30.1 8b thin-film microprocessor using a hybrid oxide-organic complementary technology with inkjet-printed P2ROM memory

    NARCIS (Netherlands)

    Myny, K.; Smout, S.; Rockelé, M.; Bhoolokam, A.; Ke, T.H.; Steudel, S.; Obata, K.; Marinkovic, M.; Pham, D.V.; Hoppe, A.; Gulati, A.; Rodriguez, F.G.; Cobb, B.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2014-01-01

    We present an 8b general-purpose microprocessor realized in a hybrid oxide-organic complementary thin-film technology. The n-type transistors are based on a solution-processed n-type metal-oxide semiconductor, and the p-type transistors use an organic semiconductor. As compared to previous work

  9. Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization.

    Science.gov (United States)

    Roiban, L; Hartmann, L; Fiore, A; Djurado, D; Chandezon, F; Reiss, P; Legrand, J-F; Doyle, S; Brinkmann, M; Ersen, O

    2012-11-21

    Highly oriented and nanostructured hybrid thin films made of regioregular poly(3-hexylthiophene) and colloidal CdSe nanocrystals are prepared by a zone melting method using epitaxial growth on 1,3,5-trichlorobenzene oriented crystals. The structure of the films has been analyzed by X-ray diffraction using synchrotron radiation, electron diffraction and 3D electron tomography to afford a multi-scale structural and morphological description of the highly structured hybrid films. A quantitative analysis of the reconstructed volumes based on electron tomography is used to establish a 3D map of the distribution of the CdSe nanocrystals in the bulk of the films. In particular, the influence of the P3HT-CdSe ratio on the 3D structure of the hybrid layers has been analyzed. In all cases, a bi-layer structure was observed. It is made of a first layer of pure oriented semi-crystalline P3HT grown epitaxially on the TCB substrate and a second P3HT layer containing CdSe nanocrystals uniformly distributed in the amorphous interlamellar zones of the polymer. The thickness of the P3HT layer containing CdSe nanoparticles increases gradually with increasing content of NCs in the films. A growth model is proposed to explain this original transversal organization of CdSe NCs in the oriented matrix of P3HT.

  10. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    Science.gov (United States)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  11. Hybridizing Poly(ε-caprolactone) and Plasmonic Titanium Nitride Nanoparticles for Broadband Photoresponsive Shape Memory Films.

    Science.gov (United States)

    Ishii, Satoshi; Uto, Koichiro; Niiyama, Eri; Ebara, Mitsuhiro; Nagao, Tadaaki

    2016-03-01

    Plasmonic nanoparticles can confine light in nanoscale and locally heat the surrounding. Here we use titanium nitride (TiN) nanoparticles as broadband plasmonic light absorbers and synthesized a highly photoresponsive hybrid cross-linked polymer from shape memory polymer poly(ε-caprolactone) (PCL). The TiN-PCL hybrid is responsive to sunlight and the threshold irradiance was among the lowest when compared with other photoresponsive shape memory polymers studied previously. Sunlight heating with TiN NPs can be applied to other heat responsive smart polymers, thereby contributing to energy-saving smart polymers research for a sustainable society.

  12. Synthesis of waterborne polyurethane containing alkoxysilane side groups and the properties of the hybrid coating films

    Science.gov (United States)

    Li, Qi; Guo, Longhai; Qiu, Teng; Xiao, Weidong; Du, Dianxing; Li, Xiaoyu

    2016-07-01

    A series of waterborne polyurethane (WPU) containing alkoxysilane side groups were synthesized by using the dihydroxy functionalized alkoxysilane. The diol with trimethoxysilane groups at the side chains was synthesized via Michael addition between 3-(methacryloxypropyl)trimethoxysilane (MAPTS) and diethanolamine (DEA). The silane diol was applied as the chain extender for the NCO-endcapped prepolymer of isophorone diisocyanate, polycarbonate diol, 2,2-bis(hydroxymethyl) butyric acid and 1,4-butanediol. The products with the silane content varied from 1.2 to 16.5 wt% were dispersed in water after neutralization. The effect of the silane diol on the particle size and morphology of the WPU dispersion was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. X-ray photoelectron spectroscopy (XPS) characterization was carried out on the coating film of the WPU, revealing that the long flexible side chain is favorable for the silane components to emigrate toward the film surface and crosslink during the film formation process. As a result, both the surface contact angle to water and water adsorption of the WPU coating films increased with the silane content. Furthermore, the mechanical properties including the modulus and tensile strength of the films were also improved by the incorporation of silane diol.

  13. Controlling the morphology of thin titania films for applications in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rawolle, Monika; Ruderer, Matthias A.; Prams, Stefan; Zhong, Qi; Mueller-Buschbaum, Peter [TU Muenchen, Physik-Department LS E13, Garching (Germany); Memesa, Mine; Gutmann, Jochen S. [Max-Planck Institute for Polymer Research, Mainz (Germany)

    2010-07-01

    Nanostructured thin films of titania have a variety of applications. For applications in photovoltaics a high absorption coefficient and a large surface area are desirable. A sponge structure is a promising morphology for titania to meet these demands. Block copolymers can be used in a good-poor solvent pair induced phase separation process coupled with sol-gel chemistry to create structured titania films in a reproducible way. We use the amphiphilic diblock copolymer Poly(dimethyl siloxane)-block-methyl methacrylate poly(ethylene oxide)[PDMS-b-MA(PEO)] as templating agent. Different well defined mixing procedures of sol-gel components (Tetrahydrofuran, 2-Propanol, HCl and titania precursor in addition to the PDMS-b-MA(PEO)) of same weight fractions result in small changes in the morphology of the film. The thin films are prepared via spin-coating on silicon substrates. The surface structure is studied with SEM. Information on the morphology in the volume of the film is gained from GISAXS. The layer thickness and structure are studied with XRR, the optical properties with UV/Vis spectroscopy.

  14. THE STRUCTURE AND PROPERTIES OF CHITOSAN/PPLYETHYLENE GLYCOL/SILICA TERNARY HYBRID ORGANIC-NORGANIC FILMS

    Institute of Scientific and Technical Information of China (English)

    Rui Song; Rui Xue; Ling-hao He; Ying Liu; Qiao-ling Xiao

    2008-01-01

    The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized by attenuation total reflection-infrared spectroscopy(ATR-IR),X-ray diffraction(XRD),optical microscopy(OM)and differential scanning calorimetry (DSC).The results showed that the addition of silica affected not only the distribution and crystallinity of PEG on the sample surface.but also the phase coarseness and the crystalline structure of chitosan in the blend system.Moreover,PEG changed the crystalline structure of chitosan.Upon annealing(at 100℃ for 1 h),the blends would show the altered crystalline structure of chitosan,the reinforced phase coarseness.as well as the decreased miscibility and interaction between chitosan and PEG.

  15. Degradation of Pollutant and Antibacterial Activity of Waterborne Polyurethane/Doped TiO2 Nanoparticle Hybrid Films

    Institute of Scientific and Technical Information of China (English)

    QIU Shan; DENG Fengxia; XU Shanwen; LIU Peng; MIN Xinmin; MA Fang

    2015-01-01

    The waterborne polyurethane/doped TiO2 nanoparticle hybrid films were prepared. Nd, I doped TiO2 was prepared with a 50 nm particle sizefi rstly. The hybridfi lm was prepared by mixing doped TiO2 with waterborne polyurethane, followed by heat treatment. The presence and nanometric distribution of doped TiO2 nanoparticles in prepared membranes is evident according to SEM images. The photocatalytic activities of doped TiO2 were signifi cantly enhanced compared with pure TiO2 powders. After the hybridfi lm fabrication, the photocatalytic activities were almost the same as the pure catalysts withkMB of 0.046. In the antibacterial testing, the hybridfi lms can inhibitE. coli growth. A signifi cant decrease in membranefl uidity and increase of permeability ofE. coli were observed.

  16. Synthesis of waterborne polyurethane containing alkoxysilane side groups and the properties of the hybrid coating films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qi; Guo, Longhai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qiu, Teng, E-mail: qiuteng@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Xiao, Weidong; Du, Dianxing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Xiaoyu, E-mail: lixy@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-07-30

    Highlights: • A diol with side-chain trimethoxysilane (DEA-Si) was synthesized using 3-(methacryloxypropyl)trimethoxysilane (MAPTS) and diethanolamine (DEA). • The crosslinking structure could in situ formed within the WPU matrix through sol-gel process. • The Si tends to shift to the polymer-air interface due to the flexible long alkyl-ester side chain. • The incorporation of DEA-Si enhanced mechanical and surface hydrophobic properties of WPU films. - Abstract: A series of waterborne polyurethane (WPU) containing alkoxysilane side groups were synthesized by using the dihydroxy functionalized alkoxysilane. The diol with trimethoxysilane groups at the side chains was synthesized via Michael addition between 3-(methacryloxypropyl)trimethoxysilane (MAPTS) and diethanolamine (DEA). The silane diol was applied as the chain extender for the NCO-endcapped prepolymer of isophorone diisocyanate, polycarbonate diol, 2,2-bis(hydroxymethyl) butyric acid and 1,4-butanediol. The products with the silane content varied from 1.2 to 16.5 wt% were dispersed in water after neutralization. The effect of the silane diol on the particle size and morphology of the WPU dispersion was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. X-ray photoelectron spectroscopy (XPS) characterization was carried out on the coating film of the WPU, revealing that the long flexible side chain is favorable for the silane components to emigrate toward the film surface and crosslink during the film formation process. As a result, both the surface contact angle to water and water adsorption of the WPU coating films increased with the silane content. Furthermore, the mechanical properties including the modulus and tensile strength of the films were also improved by the incorporation of silane diol.

  17. Facile preparation of electroactive amorphous α-ZrP/PANI hybrid film for potential-triggered adsorption of Pb{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Quan [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Du, Xiao [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813 (Japan); Ma, Xuli [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Hao, Xiaogang, E-mail: tyutxghao@hotmail.com [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guan, Guoqing [North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813 (Japan); Wang, Zhongde; Xue, Chunfeng; Zhang, Zhonglin; Zuo, Zhijun [Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-05-30

    Highlights: • Amorphous α-ZrP/PANI film was first synthesized in aqueous solution by CV method. • The obtained hybrid film had excellent cation exchange property. • Rapid ion exchange process was controlled by the potential-triggered mechanism. • α-ZrP could provide acid micro-environment for PANI’s electroactivity. • Exfoliated α-ZrP enhanced the adsorption capability towards Pb{sup 2+} ions. - Abstract: An electroactive hybrid film composed of amorphous α-zirconium phosphate and polyaniline (α-ZrP/PANI) is controllably synthesized on carbon nanotubes (CNTs) modified Au electrodes in aqueous solution by cyclic voltammetry method. Electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM) and X-ray power diffraction (XRD) analysis are applied for the evaluation of the synthesis process. It is found that the exfoliated amorphous α-ZrP nanosheets are well dispersed in PANI and the hydrolysis of α-ZrP is successfully suppressed by controlling the exfoliation temperature and adding appropriate supporting electrolyte. The insertion/release of heavy metals into/from the film is reversibly controlled by a potential-triggered mechanism. Herein, α-ZrP, a weak solid acid, can provide an acidic micro-environment for PANI to promote the electroactivity in neutral aqueous solutions. Especially, the hybrid film shows excellent potential-triggered adsorption of Pb{sup 2+} ion due to the selective complexation of Pb{sup 2+} ion with oxygen derived from P−O−H of α-ZrP. Also, it shows long-term cycle stability and rapid potential-responsive adsorption/desorption rate. This kind of novel hybrid film is expected to be a promising potential-triggered ESIX material for separation and recovery of heavy metal ions from wastewater.

  18. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lim, Joo Ho; Yu, Jae Su

    2016-11-09

    We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

  19. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells

    KAUST Repository

    Peng, Wei

    2016-03-02

    High-quality perovskite monocrystalline films are successfully grown through cavitation-triggered asymmetric crystallization. These films enable a simple cell structure, ITO/CH3NH3PbBr3/Au, with near 100% internal quantum efficiency, promising power conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.5%, the highest among other similar-structured CH3NH3PbBr3 solar cells to date.

  20. Micro-mechanics of nanostructured carbon/shape memory polymer hybrid thin film

    NARCIS (Netherlands)

    Lei, M.; Xu, B.; Pei, Yutao T.; Lu, H.B.; Fu, Y.Q.

    2016-01-01

    This paper investigates the mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeletal structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) with CNF/MWCNT concentrations instead of a decrease of Tg in n

  1. Free-standing hybrid film of less defective graphene coated with mesoporous TiO2 for flexible lithium ion batteries with fast charging/discharging capabilities

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Zhang, Yingqi; Shan, Xuyi; Liu, Min; Li, Feng; Guo, Jinghua; Feng, Jun; Fang, Hai-Tao

    2017-03-01

    Benefiting from extremely high conductivity, graphene sheets (GS) with very low defect density are preferable to reduced graphene oxide sheets for constructing the free-standing hybrid electrodes of flexible electrochemical energy storage devices. However, due to the hydrophobic nature and deficiency of nucleation sites, how to uniformly and intimately anchor electrochemically active materials onto less defective GS is a challenge. Herein, a free-standing and mechanically flexible hybrid film with two-layer structure, mesoporous TiO2 anchored less defective GS hybrid (mTiO2-GS) upper-layer and graphene under-layer, denoted as mTiO2-GS/G, is fabricated. The hydrolysis of a Ti glycolate aqueous sol solution were applied to form mTiO2. The decoration of less defective GS with sodium lignosulfonate (SLS) surfactant is crucial for anchoring TiO2 nanoparticles (NPs). The aromatic rings of SLS favor a non-destructive functionalization of GS through the π-π stacking interaction. The sulfonic acid groups and hydroxyl groups of SLS, respectively, greatly improve the dispersity of GS in water and trigger the nucleation of TiO2 through the oxolation in the hydrolysis of Ti glycolate sol solution. The following characteristics of free-standing mTiO2-GS/G electrode benefit the fast charging/discharging capabilities: highly conductive graphene framework, ultra-small NPs (˜5.0 nm) in mTiO2 anchored, high specific surface area (202.5 m2 g-1), abundant mesopores (0.32 cm3 g-1), intimate interfacial interaction between mTiO2 and GS, robust contact between the mTiO2-GS upper-layer and an under-layer of bare graphene as the current collector. In coin half-cells, the mTiO2-GS/G electrode delivers a capacity of 130 mA h g-1 at 50 C, and 71 mA h g-1 at 100 C, and it also exhibits excellent cycle stability up to 10 000 cycles under 10 C, with a degradation rate of 0.0033% per cycle. When packed in flexible cells, the mTiO2-GS/G electrode maintains fast charging/discharging capabilities

  2. Photocatalytic degradation of dimethoate using LbL fabricated TiO2/polymer hybrid films.

    Science.gov (United States)

    Priya, D Neela; Modak, Jayant M; Trebše, Polonca; Zabar, Romina; Raichur, Ashok M

    2011-11-15

    Degradation of dimethoate under UV irradiation using TiO(2)/polymer films prepared by the layer-by-layer (LbL) method was investigated. The thin films were fabricated on glass slides and the surface morphology and roughness of the thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of lamp intensity, catalyst loading in the layers, number of bilayers, pH and initial dimethoate concentration on the degradation of dimethoate was systematically studied. The degradation was monitored using high performance liquid chromatography (HPLC) analysis and total organic carbon (TOC) measurements as a function of irradiation time, to see the change in concentration of dimethoate and mineralization, respectively. Complete degradation of dimethoate was achieved under TiO(2) optimum loading of 4 g/L at an UV irradiation time of 180 min. Increase in the lamp intensity, catalyst loading and number of bilayers increased the rate of degradation. At a pH of 4.62, complete degradation of dimethoate was observed. The degradation efficiency decreased with increase in initial dimethoate concentration. The degradation byproducts were analyzed and confirmed by gas chromatography-mass spectra (GC-MS). Toxicity of the irradiated samples was measured using the luminescence of bacteria Vibrio fischeri after 30 min of incubation and the results showed more toxicity than the parent compound. Catalyst reusability studies revealed that the fabricated thin films could be repeatedly used for up to ten times without affecting the photocatalytic activity of the films. The findings of the present study are very useful for the treatment of wastewaters contaminated with pesticides.

  3. Thermodynamic theory of strain-mediated direct magnetoelectric effect in multiferroic film-substrate hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kukhar, V G [Visual Trading Systems LLC, St Petersburg Branch, 194044 St Petersburg (Russian Federation); Pertsev, N A [A F Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St Petersburg (Russian Federation); Kholkin, A L, E-mail: pertsev.domain@mail.ioffe.ru [Center for Research in Ceramics and Composite Materials (CICECO) and Department of Ceramics and Glass Engineering, University of Aveiro, 3810-193 Aveiro (Portugal)

    2010-07-02

    A nonlinear thermodynamic theory is developed for the strain-mediated direct magnetoelectric (ME) effect displayed by ferroelectric-ferromagnetic nanostructures. This effect results from transmission of magnetic-field-induced deformations of a thick ferromagnetic substrate to a thin ferroelectric overlayer, where the polarization changes due to lattice strains. The strain-dependent polarization and permittivity of an epitaxial nanolayer (few tens of nm thick) are calculated using the thermodynamic theory of single-domain ferroelectric films. The substrate magnetostrictive deformations are described phenomenologically, taking into account their nonlinear variation with magnetic field. The calculations show that ME polarization and voltage coefficients strongly depend on the initial strain state of the film. For BaTiO{sub 3} and PbTiO{sub 3} films deposited on Co{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}, the out-of-plane polarization and related ME coefficients are calculated numerically as a function of magnetic field parallel to the interface. For films stabilized in the monoclinic phase, this transverse ME response depends on the orientation of magnetic field relative to their in-plane crystallographic axes. The longitudinal ME coefficient is also evaluated and, for a substrate geometry minimizing the demagnetizing field, predicted to be comparable to the transverse one. For BaTiO{sub 3} and PbTiO{sub 3} films deposited on Terfenol-D, the calculations yield high ME polarization coefficients {approx} 10{sup -7} s m{sup -1} and giant ME voltage coefficients {approx} 50 V cm{sup -1} Oe{sup -1}.

  4. Thermodynamic theory of strain-mediated direct magnetoelectric effect in multiferroic film-substrate hybrids.

    Science.gov (United States)

    Kukhar, V G; Pertsev, N A; Kholkin, A L

    2010-07-02

    A nonlinear thermodynamic theory is developed for the strain-mediated direct magnetoelectric (ME) effect displayed by ferroelectric-ferromagnetic nanostructures. This effect results from transmission of magnetic-field-induced deformations of a thick ferromagnetic substrate to a thin ferroelectric overlayer, where the polarization changes due to lattice strains. The strain-dependent polarization and permittivity of an epitaxial nanolayer (few tens of nm thick) are calculated using the thermodynamic theory of single-domain ferroelectric films. The substrate magnetostrictive deformations are described phenomenologically, taking into account their nonlinear variation with magnetic field. The calculations show that ME polarization and voltage coefficients strongly depend on the initial strain state of the film. For BaTiO(3) and PbTiO(3) films deposited on Co(0.8)Zn(0.2)Fe(2)O(4), the out-of-plane polarization and related ME coefficients are calculated numerically as a function of magnetic field parallel to the interface. For films stabilized in the monoclinic phase, this transverse ME response depends on the orientation of magnetic field relative to their in-plane crystallographic axes. The longitudinal ME coefficient is also evaluated and, for a substrate geometry minimizing the demagnetizing field, predicted to be comparable to the transverse one. For BaTiO(3) and PbTiO(3) films deposited on Terfenol-D, the calculations yield high ME polarization coefficients approximately 10(-7) s m(-1) and giant ME voltage coefficients approximately 50 V cm(-1) Oe(-1).

  5. Stably superhydrophobic (IL/TiO{sub 2}){sub n} hybrid films: Intelligent self-cleaning materials

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Bingwei, E-mail: bingweixin2@163.com; Wang, Limei; Jia, Chunxiao

    2015-12-01

    Graphical abstract: - Highlights: • Stably superhydrophobic hybrid nanocomposite films. • Ionic liquids mediated thin film with controlled wetting property. • Layer-by-layer self-assembled nanostructures. • Synergistic effect between ionic liquids and titanium dioxide nanoparticles. • Self-cleaning surfaces. - Abstract: Stably self-cleaning (IL/TiO{sub 2}){sub n} nanocomposites were prepared via electrostatic layer-by-layer (LbL) self-assembly technique. Positively charged [C{sub 12}mim]Br and negatively charged TiO{sub 2} nanoparticles were alternatively adsorbed on the negative glass substrates to form (IL/TiO{sub 2}){sub n} layers. They were characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. Under the synergistic action of ionic liquids and TiO{sub 2} P25, in which TiO{sub 2} nanoparticles provided surface roughness while [C{sub 12}mim]Br acted as lower surface tension material, glass coated with 13 bilayers of [C{sub 12}mim]Br/TiO{sub 2} film arrived to superhydrophobicity with 151.7 ± 2°. Owing to the photoresponsive and photocatalytic properties of TiO{sub 2}, (IL/TiO{sub 2}){sub n} nanocomposites achieved the reversible superhydrophobic and superhydrophilic transition upon alternating UV irradiation and storage in the dark, and presented good performance for photocatalytic degradation of methyl orange with ultraviolet (UV) illumination. Significantly, they could be recycled for several times without obvious fatigue.

  6. Manipulating hybrid structures of polymer/a-Si for thin film solar cells

    Science.gov (United States)

    Peng, Ying; He, Zhiqun; Diyaf, Adel; Ivaturi, Aruna; Zhang, Zhi; Liang, Chunjun; Wilson, John I. B.

    2014-03-01

    A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200 nm)/i-Si(450 nm)/n-Si(200 nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

  7. Manipulating hybrid structures of polymer/a-Si for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying; He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk; Zhang, Zhi; Liang, Chunjun [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Diyaf, Adel; Ivaturi, Aruna; Wilson, John I. B., E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2014-03-10

    A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200 nm)/i-Si(450 nm)/n-Si(200 nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

  8. Complexes of carbon nanotubes with oligonucleotides in thin Langmuir-Blodgett films to detect electrochemically hybridization

    Science.gov (United States)

    Egorov, A. S.; Egorova, V. P.; Krylova, H. V.; Lipnevich, I. V.; Orekhovskaya, T. I.; Veligura, A. A.; Govorov, M. I.; Shulitsky, B. G.

    2014-10-01

    Self-assembled complexes consisting of thin multi-walled carbon nanotubes (MWCNTs) and DNA-oligonucleotides which are able to a cooperative binding to complementary oligonucleotides have been investigated. It was establised a high-performance charge transport in nanostructured Langmuir-Blodgett complexes thin MWCNTs/DNA. A method to electrochemically detect DNA hybridization on the self-organized structures has been proposed.

  9. Production of CaCO3/hyperbranched polyglycidol hybrid films using spray-coating technique.

    Science.gov (United States)

    Malinova, Kalina; Gunesch, Manfred; Montero Pancera, Sabrina; Wengeler, Robert; Rieger, Bernhard; Volkmer, Dirk

    2012-05-15

    Biomineralizing organisms employ macromolecules and cellular processing strategies in order to produce highly complex composite materials such as nacre. Bionic approaches translating this knowledge into viable technical production schemes for a large-scale production of biomimetic hybrid materials have met with limited success so far. Investigations presented here thus focus on the production of CaCO(3)/polymer hybrid coatings that can be applied to huge surface areas via reactive spray-coating. Technical requirements for simplicity and cost efficiency include a straightforward one-pot synthesis of low molecular weight hyperbranched polyglycidols (polyethers of 2,3-epoxy-1-propanol) as a simple mimic of biological macromolecules. Polymers functionalized with phosphate monoester, sulfate or carboxylate groups provide a means of controlling CaCO(3) particle density and morphology in the final coatings. We employ reactive spray-coating techniques to generate CaCO(3)/hybrid coatings among which vaterite composites can be prepared in the presence of sulfate-containing hyperbranched polyglycidol. These coatings show high stability and remained unchanged for periods longer than 9 months. By employing carboxylate-based hyperbranched polyglycidol, it is possible to deposit vaterite-calcite composites, whereas phosphate-ester-based hyperbranched polyglycidol leads to calcite composites. Nanoindentation was used to study mechanical properties, showing that coatings thus obtained are slightly harder than pure calcite. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  11. Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure.

    Science.gov (United States)

    Kim, Ran; Kang, Boseok; Sin, Dong Hun; Choi, Hyun Ho; Kwon, Soon-Ki; Kim, Yun-Hi; Cho, Kilwon

    2015-01-28

    Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains, serving as solubilizing groups, are designed and introduced into naphthalene-diimide-based n-channel copolymers. The synthesized polymers exhibit unipolar n-type operation with an electron mobility of up to 1.64 cm(2) V(-1) s(-1), which demonstrates the usefulness of the hybrid side chains in polymer electronics applications.

  12. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    Science.gov (United States)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  13. High Seebeck effects from conducting polymer: Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) based thin-film device with hybrid metal/polymer/metal architecture

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Michael G [ORNL; Wang, Hsin [ORNL; Ivanov, Ilia N [ORNL; Hu, Bin [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Conductive polymers are of particular interest for thermoelectric applications due to their low thermal conductivity and relatively high electrical conductivity. In this study, commercially available conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) was used in a hybrid metal/polymer/metal thin film design in order to achieve a high Seebeck coefficient with the value of 252lV/k on a relatively low temperature scale. Polymer film thickness was varied in order to investigate its influence on the Seebeck effect. The high Seebeck coefficient indicates that the metal/polymer/metal design can develop a large entropy difference in internal energy of charge carriers between high and low-temperature metal electrodes to develop electrical potential due to charge transport in conducting polymer film through metal/polymer interface. Therefore, the metal/polymer/metal structure presents a new design to combine inorganic metals and organic polymers in thin-film form to develop Seebeck devices

  14. Sol-gel hybrid films based on organosilane and montmorillonite for corrosion inhibition of AA2024.

    Science.gov (United States)

    Dalmoro, V; dos Santos, J H Z; Armelin, E; Alemán, C; Azambuja, D S

    2014-07-15

    The present work reports the production of films on AA2024-T3 composed of vinyltrimethoxysilane (VTMS)/tetraethylorthosilicate (TEOS) with incorporation of montmorillonite (sodium montmorillonite and montmorillonite modified with quaternary ammonium salt, abbreviated Na and 30B, respectively), generated by the sol-gel process. According to FT-IR analyses the incorporation of montmorillonite does not affect silica network. Electrochemical characterization was performed by electrochemical impedance spectroscopy measurement in 0.05 mol L(-1) NaCl solution. Results indicate that montmorillonite incorporation improves the corrosion protection compared to the non-modified system. Scanning electron microscopy micrographs reveal that high concentrations of montmorillonite provide agglomerations on the metallic surface, which is in detriment of the anticorrosive performance. The VTMS/TEOS/30B films with the lowest concentration (22 mg L(-1)) of embedded clay provide the highest corrosion protection.

  15. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Huenuman, Nilton E.L.; Santos, Priscila M. dos [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Dept. of Microbiologia; Riella, Humberto G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2013-07-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  16. Fabrication and characterization of nanostructured titania films with integrated function from inorganic-organic hybrid materials.

    Science.gov (United States)

    Rawolle, Monika; Niedermeier, Martin A; Kaune, Gunar; Perlich, Jan; Lellig, Philipp; Memesa, Mine; Cheng, Ya-Jun; Gutmann, Jochen S; Müller-Buschbaum, Peter

    2012-08-07

    Nanostructured titania films are of growing interest due to their application in future photovoltaic technologies. Therefore, a lot of effort has been put into the controlled fabrication and tailoring of titania nanostructures. The controlled sol-gel synthesis of titania, in particular in combination with block copolymer templates, is very promising because of its high control on the nanostructure, easy application and cheap processing possibilities. This tutorial review gives a short overview of the structural control of titania films gained by using templated sol-gel chemistry and shows how this approach is extended by the addition of further functionality to the films. Different expansions of the sol-gel templating are possible by the fabrication of gradient samples, by the addition of a homopolymer, by the combination with micro-fluidics and also by the application of novel precursors for low-temperature processing. Moreover, hierarchically structured titania films can be fabricated via the subsequent application of several sol-gel steps or via the inclusion of colloidal templates in a one-step process. Integrated function in the block copolymer used in the sol-gel synthesis allows for the fabrication of an integrated blocking layer or an integrated hole-conductor. Both approaches grant a one-step fabrication of two components of a working solar cell, which make them very promising towards a cheap solar cell production route. Looking to the complete solar cell, the top contact is also of great importance as it influences the function of the whole solar cell. Thus, the mechanisms acting in the top contact formation are also reviewed. For all these aspects, characterization techniques that allow for a structural investigation of nanostructures inside the active layers are important. Therefore, the characterization techniques that are used in real space as well as in reciprocal space are explained shortly as well.

  17. Successful entrapment of carbon dots within flexible free-standing transparent mesoporous organic-inorganic silica hybrid films for photonic applications

    Science.gov (United States)

    Vassilakopoulou, Anastasia; Georgakilas, Vasilios; Vainos, Nikolaos; Koutselas, Ioannis

    2017-04-01

    The effective entrapment of Carbon dots (CDs) into a polymer-silica hybrid matrix, formed as free standing transparent flexible films, is presented. The composite's synthesis, characterization, device application and properties -mechanical, thermal and optical- are being provided and discussed. CDs of 3 nm mean size with strong photoluminescence are embedded into a silica matrix during the sol-gel procedure, using tetraethyl orthosilicate as the precursor and F127 triblock copolymer as the structure directing agent under acidic conditions. The final hybrid nanostructure forms free standing transparent films that show high flexibility and long term stable CDs luminescence indicating the protective character of the hybrid matrix. It is crucial that the photoluminescence of the hybrid's CDs is not seriously affected after thermal treatment at 550 °C for 30 min. Moreover, the herein reported hybrid is demonstrated to be suitable for the fabrication of advanced photonic structures using soft lithography processes due to its low shrinkage and distortion upon drying, both attributable to its porosity. Finally, it is reported that addition of F127 ethanolic solution in aqueous solution of CDs induces a blue-shift of their photoluminescence.

  18. Hybrid structure comprised of SnO{sub 2}, ZnO and Cu{sub 2}S thin film semiconductors with controlled optoelectric and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Enesca, Alexandru, E-mail: aenesca@unitbv.ro; Isac, Luminita, E-mail: isacluminita@unitbv.ro; Duta, Anca, E-mail: ancaduta@unitbv.ro

    2013-09-02

    Monocomponent, bicomponent and hybrid thin films containing metal oxides (SnO{sub 2}, ZnO, CuO) and copper sulfide were obtained by spray pyrolysis deposition. The crystalline structure (X-ray diffraction), morphology (atomic force microscopy) and surface energy (contact angle) were correlated with the opto-electrical properties (transmittance, current density vs voltage, photocurrent, band energy diagrams). The samples show a predominant dispersive component of the surface energy and photosensitivity response under illumination. The photocatalytic activity was tested in methylene blue and methyl orange solutions and the highest value (around 45%) corresponds to the hybrid samples. Comparative adsorption studies in dark using similar dye solutions are presented. - Highlights: • Complex hybrid structure was obtained at different temperatures. • Bicomponent film has granular morphology and hybrid layer have fractal morphology. • The samples have a predominant dispersive component of the surface energy. • The samples present photocurrent without bias. • Two hybrid samples have a suitable position of the valence and conduction bands.

  19. One-step inkjet printing of tungsten oxide-poly(3,4-ethylenedioxythiophene):polystyrene sulphonate hybrid film and its applications in electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi-Thuy-Nga, E-mail: thuysnga@gmail.com; Chan, Chih-Yu; He, Ju-Liang

    2016-03-31

    Hybrid film comprised tungsten oxide and poly (3,4-ethylenedioxythiophene):polystyrene sulphonate (WO{sub 3}–PEDOT:PSS) was developed by applying one-step inkjet printing from an office inkjet printer. The WO{sub 3} nanoparticles were synthesized from commercial crystalline WO{sub 3} powder through a wet ball-milling process, which is a simple, environmentally friendly, and cost-effective method of using water as a green solvent and low-energy milling. The WO{sub 3}–PEDOT:PSS inkjet ink was prepared by dispersing the as-milled WO{sub 3} and PEDOT:PSS in n-propanol and deionized water. The inkjet-printed WO{sub 3}–PEDOT:PSS thin films show marked improvements of cathodic electrochromism over WO{sub 3} films: the transmittance change of 20% at 550 nm (visible region) and 35% at 900 nm (infrared region) along with the response time of 5.67/0.30 s in their colored/bleached state, and the electrochromic coloration efficiency of 27.86 cm{sup 2}/C at 550 nm and 69.64 cm{sup 2}/C at 900 nm. - Highlights: • WO{sub 3} nanoparticles were synthesized by milling commercial crystalline WO{sub 3}. • Wet ball-milling was carried out by using water as a green solvent and low energy. • WO{sub 3}–PEDOT:PSS hybrid ink was simply prepared by adding n-propanol and DI water. • WO{sub 3}–PEDOT:PSS hybrid films were inkjet-printed via an office inkjet printer. • WO{sub 3}–PEDOT:PSS films show better electrochromic performances than WO{sub 3} films.

  20. Hybrid polymer/TiO{sub 2} films by in situ hydrolysis condensation of titanium alkoxide precursors for photovoltaic transparent windows

    Energy Technology Data Exchange (ETDEWEB)

    Davenas, Joel; Barlier, Vincent; Legare, Veronique-Bounor [Polymer Engineering, Universite Lyon 1, CNRS UMR 5223, 43 Bd du 11 novembre, 69622 Villeurbanne (France); Canut, Bruno [Lyon Institute of Nanotechnology, INSA de Lyon, CNRS UMR 5270, 20 Av. A. Einstein, 69621 Villeurbanne (France); Rybak, Andrzej [Polymer Engineering, Universite Lyon 1, CNRS UMR 5223, 43 Bd du 11 novembre, 69622 Villeurbanne (France); Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Slazak, Agnieszka; Jung, Jaroslaw [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland)

    2010-07-15

    Poly(vinylcarbazole)/TiO{sub 2} hybrid thin films have been produced by the hydrolysis condensation of titanium alkoxide precursors dispersed in a polymer layer deposited on ITO substrates. Common alkoxide precursors like titanium isopropoxide [Ti({sup i}OPr){sub 4}] show a fast hydrolysis beginning during film deposition, which leads to early phase separation. A new TiO{sub 2} precursor precursor bearing carbazole groups: titanium tetrakis 9H-carbazole-9-yl-ethyl-oxy [Ti(OeCarb){sub 4}] has been used to slow down the reactivity of the precursor by a steric hindrance effect. Improved precursor dispersion in the polymer solution is obtained for this new precursor leading to an homogeneous dispersion of the TiO{sub 2} phase at the nanoscale in the hybrid film. Rutherford Backscattering Spectrometry has shown that the hydrolysis condensation was effective with the production of carbazol alcohol remaining trapped in the bulk of the film. This residual alcohol leads to an increase of the UV optical absorption of the PVK/TiO{sub 2} hybrid films. Improvement of the balance between the two types of photogenerated charges has been shown by surface potential decay experiments upon the formation of a TiO{sub 2} conduction network for the transport of electrons. The film is almost transparent above 350 nm opening a new route for the elaboration of semi-transparent photovoltaic glasses, which can find application on the growing market of energy efficient buildings. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization

    Science.gov (United States)

    Martín, Santiago; Cea, Pilar; Lafuente, Carlos; Royo, Félix M.; López, María. C.

    2004-08-01

    Hybrid Langmuir and Langmuir-Blodgett (LB) films containing two moieties of great chemical and electrochemical interest, namely a viologen derivative and tetracyanoquinodimethane (TCNQ) in a mixed valence state, were fabricated. To do so, positively ionized monolayers of 1,1 '-dioctadecyl 4,4 '-bipyridilium were prepared onto aqueous solutions of tetracyanoquinodimethane in a mixed valence state. Surface pressure vs. area ( π- A), surface potential vs. area (Δ V- A), and Brewster angle microscope (BAM) images were recorded and interpreted in terms of molecular interactions as well as the incorporation of the hydrophobic anions into the monolayer. After a comprehensive study, a 10 -6 M TCNQ aqueous solution was chosen as the best one to build hybrid LB films. Thus, the floating films were transferred onto solid substrates that were characterized using several techniques including ultraviolet-visible (UV-vis), infrared (IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM) proving the incorporation of the TCNQ onto the film. These films show a good optical conductivity as well as a high degree of order and layers with a constant architecture.

  2. Surface plasmon coupled emission studies on engineered thin film hybrids of nano α−Al{sub 2}O{sub 3} on silver

    Energy Technology Data Exchange (ETDEWEB)

    Mulpur, Pradyumna; Chunduri, Avinash; Rattan, Tanu Mimani; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India 515134 (India); Lingam, Kiran; Rao, Apparao M. [Department of Physics and Astronomy, 202C Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States)

    2014-01-28

    We report the first time engineering and fabrication of a novel thin film hybrid of nano α-alumina doped in a polyvinyl alcohol (PVA) matrix along with rhodamine b (Rh.B) on a silver thin film. Silver films of 50 nm thickness on glass slides were fabricated by thermal evaporation. Nano α-alumina was synthesized through the combustion route and characterized by XRD. The α-alumina was dispersed in the PVA-Rh.B matrix by tip sonication. The resultant solution was spin coated on the Ag thin film at 3000 rpm to generate an overcoat of ∼30 nm. We have designed and constructed an opto-mechanical setup for performing the SPCE studies. Excitation with a 532 nm continuous laser, led to the coupling of the energy of Rh.B emission to the surface plasmon modes of silver. The emission @ 580 nm was recorded using an Ocean Optics(copyright, serif) fiber optic spectrometer. Calculation of the ratio of signal intensity between the directional SPCE and isotropic fluorescence gives us the factor of signal enhancements which SPCE offers. We report an '8 fold' signal enhancement attributed to SPCE arising from the metal oxide doped thin film hybrid. We observed only a '5 fold' signal enhancement in the case of a thin film hybrid without α-alumina. The emission was also 92% P-polarized which is in coherence with the theory of SPCE. The greater degree of signal enhancement observed in the α-alumina doped thin film substrate can be attributed to the surface roughness which alumina offers to silver, which along with the porous nature of alumina enables a greater degree of adsorption of Rh.B which results in a higher emission intensity. Computational modeling was also performed, based on surface plasmon resonance (SPR) calculations to provide theoretical background to observed experimental data. The α-alumina thin film hybrid can be extended as an economical sensing platform towards the high sensitive detection of analytes.

  3. Preparation and Photochromic Behavior of Novel Hybrid Inorganic-Organic Thin Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel photochromic complex comprising of Keggin type tungstophosphate acid (PW12) and polyacrylamide (PAM) was prepared. FT-IR results showed that the Keggin geometry of PW12 was still preserved inside the composite, and a charge-transfer bridge was built between PW12 and PAM via hydrogen bond. AFM images indicated that surface topography of polymer matrix changed after adding PW12. Under UV irradiation, the film was reduced photochemically to yield a blue species, which was reversible in the present of oxygen in polymeric network.

  4. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chang Jin; Wan, Qing, E-mail: wanqing@nju.edu.cn, E-mail: yshi@nju.edu.cn [School of Electronic Science & Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhu, Li Qiang [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wan, Xiang; Shi, Yi, E-mail: wanqing@nju.edu.cn, E-mail: yshi@nju.edu.cn [School of Electronic Science & Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-25

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.

  5. Hybrid Materials for Thermal Management in Thin Films and Bulk Composites

    Science.gov (United States)

    2012-02-01

    perfumed   coatings   [3],   and   antireflective   coatings   [4,5].  Porosity  in  subcoats  is  also  a  well  known...film  rupture.  Commercial  Latex  4   is   marketed   specifically   for   aluminum   substrate   applications.   Commercial...Latex   5   is   marketed   for   difficult  to  adhere  substrates  and  is  a

  6. The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids

    Science.gov (United States)

    Petcu, Cristian; Purcar, Violeta; Spătaru, Cătălin-Ilie; Alexandrescu, Elvira; Şomoghi, Raluca; Trică, Bogdan; Niţu, Sabina Georgiana; Panaitescu, Denis Mihaela; Donescu, Dan; Jecu, Maria-Luiza

    2017-01-01

    Ultra-hydrophobic bilayer coatings on a glass surface were fabricated by sol–gel process using hexadecyltrimethoxysilane (C16TMS) and tetramethoxysilane (TMOS) (1:4 molar ratio) as precursors. After coating, silica nanoparticles (SiO2 NPs) functionalized with different mono-alkoxy derivatives (methoxytrimethylsilane, TMeMS; ethoxydimethylvinylsilane, DMeVES; ethoxydimethylphenylsilane, DMePhES; and methoxydimethyloctylsilane, DMeC8MS) were added, assuring the microscale roughness on the glass surface. Influences of the functionalized SiO2 NPs and surface morphology on the hydrophobicity of the hybrid films were discussed. The successful functionalization of SiO2 NPs with hydrophobic alkyl groups were confirmed by Fourier transform infrared spectroscopy (FTIR). The thermal stability of hydrophobic SiO2 NPs showed that the degradation of the alkyl groups takes place in the 200–400 °C range. Bilayer coating with C16TMS/TMOS and SiO2 NPs modified with alkoxysilane substituted with C8 alkyl chain (SiO2 NP-C8) has micro/nano structure. Hydrophobicity of functionalized SiO2 NPs-C8 and its higher degree of nanometer-scale roughness gave rise to ultra-hydrophobicity performance for bilayer coating C16TMS/TMOS + SiO2 NPs-C8 (145°), compared to other similar hybrid structures. Our synthesis method for the functionalization of SiO2 NPs is useful for the modification of surface polarity and roughness.

  7. The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids

    Directory of Open Access Journals (Sweden)

    Cristian Petcu

    2017-02-01

    Full Text Available Ultra-hydrophobic bilayer coatings on a glass surface were fabricated by sol–gel process using hexadecyltrimethoxysilane (C16TMS and tetramethoxysilane (TMOS (1:4 molar ratio as precursors. After coating, silica nanoparticles (SiO2 NPs functionalized with different mono-alkoxy derivatives (methoxytrimethylsilane, TMeMS; ethoxydimethylvinylsilane, DMeVES; ethoxydimethylphenylsilane, DMePhES; and methoxydimethyloctylsilane, DMeC8MS were added, assuring the microscale roughness on the glass surface. Influences of the functionalized SiO2 NPs and surface morphology on the hydrophobicity of the hybrid films were discussed. The successful functionalization of SiO2 NPs with hydrophobic alkyl groups were confirmed by Fourier transform infrared spectroscopy (FTIR. The thermal stability of hydrophobic SiO2 NPs showed that the degradation of the alkyl groups takes place in the 200–400 °C range. Bilayer coating with C16TMS/TMOS and SiO2 NPs modified with alkoxysilane substituted with C8 alkyl chain (SiO2 NP-C8 has micro/nano structure. Hydrophobicity of functionalized SiO2 NPs-C8 and its higher degree of nanometer-scale roughness gave rise to ultra-hydrophobicity performance for bilayer coating C16TMS/TMOS + SiO2 NPs-C8 (145°, compared to other similar hybrid structures. Our synthesis method for the functionalization of SiO2 NPs is useful for the modification of surface polarity and roughness.

  8. Hybrid AgNP–TiO2 thin film based photoanode for dye sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Jayraj V. Vaghasiya

    2016-09-01

    Full Text Available This article addresses two major issues in the plasmonic dye solar cell; (i protection of plasmonic nanoparticles from electrolyte attack and (ii design of appropriate molecular dye to harvest photon near the plasmonic resonance. This report reveals the synthesis of D-π-A carbazole dye and incorporation of plasmonic Ag nanoparticles (AgNPs into TiO2 film using Ag–TiO2 gel. We have designed and synthesized an efficient D-π-A carbazole dye molecule whose absorption maxima matches the plasmonic resonance of AgNPs leading to augmented near field effect, enhancing photon harvesting property of dye molecule. This article also describes a strategy to incorporate AgNPs into the TiO2 photoelectrode by Ag–TiO2 gel. The plasmonic photoanode was characterized using SEM and optical spectroscopy. Dye solar cells were characterized by J–V characteristics and electrochemical impedance technique in order to take insight into photovoltaic performance and electron transfer kinetic. This engineered DSSC achieves 45% enhancement in current due to the plasmon enhanced near field effect at thin film (3 μm.

  9. Hybrid p-type ZnO film and n-type ZnO nanorod p-n homo-junction for efficient photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyun; Lee, Jun Seok; Lee, Sang Hyo; Nam, Hye Won [Novel Functional Materials and Device Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.k [Novel Functional Materials and Device Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Cha, Seoung Nam; Park, Young Jun; Kim, Jong Min [Samsung Advanced Institute of Technology, P.O. Box 11, 1 Suwon 440-600 (Korea, Republic of)

    2010-09-01

    Simple hybrid p-n homo-junctions using p-type ZnO thin films and n-type nanorods grown on fluorine tin oxide (FTO) substrates for photovoltaic applications are described. The ZnO nanorods (1.5 {mu}m) were synthesized via an aqueous solution method with zinc nitrate hexahydrate and hexamethylenetetramine on ZnO seed layers. The 10-nm-thick ZnO seed layers showed n-type conductivity on FTO substrates and were deposited with a sputtering-based method. After synthesizing ZnO nanorods, aluminum-nitride co-doped p-type ZnO films (200 nm) were efficiently grown using pre-activated nitrogen (N) plasma sources with an inductively-coupled dual-target co-sputtering system. The structural and electrical properties of hybrid p-n homo-junctions were investigated by scanning electron microscopy, transmittance spectrophotometry, and I-V measurements.

  10. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films

    KAUST Repository

    Wu, Kewei

    2014-01-01

    Organometal halide perovskites have recently attracted tremendous attention due to their potential for photovoltaic applications, and they are also considered as promising materials in light emitting and lasing devices. In this work, we investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3-xClx. The evolution of the characteristics of two excitonic peaks coincides with the structural phase transition around 160 K. Our results further revealed an exciton binding energy of 62.3 ± 8.9 meV and an optical phonon energy of 25.3 ± 5.2 meV, along with an abnormal blue-shift of the band gap in the high-temperature tetragonal phase. This journal is

  11. A Hybrid Model for Supplier Selection in Outsourcing: Evidence from Shima Film Company in Iran

    Directory of Open Access Journals (Sweden)

    Arefe Fadavi

    2013-04-01

    Full Text Available Outsourcing is one of the important strategies acknowledged by firms recently. However, outsourcing needs a more intelligent and informed decisions in the organizations. In this study, we propose a new hybrid Multiple Criteria Decision-Making (MCDM model, which addresses the dependent relationships between the various criteria. Decision-makers tend to hold diverse opinions about their preferences due to incomplete information and knowledge, or inherent conflict between various departments. We further used the fuzzy preference programming and the Analytic Network Process (ANP to form a model for the selection of partners for outsourcing providers. The proposed model can help practitioners improve their decision making process, especially when criteria are numerous and inter-related. Finally, regarding the importance of subject, we will analyze the results while conducting a case study.

  12. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g(-1) during the 200th cycle at current density of 100 mA g(-1) indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optical properties of self-organized gold nanorod-polymer hybrid films.

    Science.gov (United States)

    Tritschler, Ulrich; Zlotnikov, Igor; Keckeis, Philipp; Schlaad, Helmut; Cölfen, Helmut

    2014-11-25

    High fractions of gold nanorods were locally aligned by means of a polymeric liquid crystalline phase. The gold nanorods constituting >80 wt % of the thin organic-inorganic composite films form a network with side-by-side and end-to-end combinations. Organization into these network structures was induced by shearing gold nanorod-LC polymer dispersions via spin-coating. The LC polymer is a polyoxazoline functionalized with pendent cholesteryl and carboxyl side groups enabling the polymer to bind to the CTAB stabilizer layer of the gold nanorods via electrostatic interactions, thus forming the glue between organic and inorganic components, and to form a chiral nematic lyotropic phase. The self-assembled locally oriented gold nanorod structuring enables control over collective optical properties due to plasmon resonance coupling, reminiscent of enhanced optical properties of natural biomaterials.

  14. Flexible SiInZnO thin film transistor with organic/inorganic hybrid gate dielectric processed at 150 °C

    Science.gov (United States)

    Choi, J. Y.; Kim, S.; Hwang, B.-U.; Lee, N.-E.; Lee, S. Y.

    2016-12-01

    Silicon indium zinc oxide (SIZO) thin film transistors (TFTs) have been fabricated on a flexible polyimide (PI) substrate by using organic/inorganic hybrid gate dielectrics of poly-4vinyl phenol (PVP) and Al2O3. To improve the mechanical stability, Al2O3 has been used as a buffer layer on the flexible substrate. The Al2O3 layer of hybrid gate dielectrics protected the organic gate dielectric and improved mechanical flexibility. The different surface roughness of the gate dielectrics is investigated. The performance of the device with smooth surface roughness was significantly improved. Finally, the electrical characteristics of the TFTs with hybrid gate dielectrics were measured as well as the promising electrical endurance characteristics at the bending radius of 5 mm.

  15. Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte

    Science.gov (United States)

    Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun

    2017-02-01

    A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.

  16. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition

    Science.gov (United States)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.

    2017-04-01

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm‑2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.

  17. The Development of Photocatalyst with Hybrid Material CNT/TiO2 Thin Films for Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Yong Woo Kim

    2013-01-01

    Full Text Available Dye-sensitized solar cell (DSSC has big merits of simple manufacturing, low cost, and good applications. However, efficiency of DSSC is quite low compared with other solar cells based on silicon. Ability of electron delivery is important for improving the efficiency; therefore, CNT used as an electrode and transferring electrons and heat significantly easily can be highly expected to contribute to increase conversion efficiency of DSSC. In this paper, CNT was loaded on the photocatalyst of TiO2 thin films in the range from 0 wt% to 0.01 wt%. CNT was treated with 60% nitric acid at 120°C for 6 hrs and performed on ball milling process for 3 hrs. Hybrid material was made of TiO2 paste and CNT predispersed by mixing. To demonstrate the property of each sample, the analytical techniques including a spectrometer for transmission and surface resistance were used. The sample of higher concentration of CNT has low transmission but low resistance, besides we have researched a proper amount of CNT 0.001 wt% that can increase 1.5% conversion efficiency of DSSC.

  18. Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality

    Energy Technology Data Exchange (ETDEWEB)

    LU,YUNFENG; FAN,HONGYOU; DOKE,NILESH; LOY,DOUGLAS A.; ASSINK,ROGER A.; LAVAN,DAVID A.; BRINKER,C. JEFFREY

    2000-06-12

    Since the discovery of surfactant-templated silica mesophases, the development of organic modification schemes to impart functionality to the pore surfaces has received much attention. Most recently, using the general class of compounds referred to as bridged silsesquioxanes (RO){sub 3}Si-R{prime}-Si(OR){sub 3} (Scheme 1), three research groups have reported the formation of a new class of poly(bridgedsilsesquioxane) mesophases BSQMs with integral organic functionality. In contrast to previous hybrid mesophases where organic ligands or molecules are situated on pore surfaces, this class of materials necessarily incorporates the organic constituents into the framework as molecularly dispersed bridging ligands. Although it is anticipated that this new mesostructural organization should result in synergistic properties derived from the molecular scale mixing of the inorganic and organic components, few properties of BSQMs have been measured. In addition samples prepared to date have been in the form of granular precipitates, precluding their use in applications like membranes, fluidics, and low k dielectric films needed for all foreseeable future generations of microelectronics.

  19. Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, Christelle; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)], E-mail: zineb.mekhalif@fundp.ac.be

    2008-07-20

    Titanium and its alloys are base materials used in the dental and orthopaedic fields owing to suitable intrinsic properties: good biocompatibility, high corrosion resistance and excellent mechanical properties. However, the bonding between titanium and bone tissue is not always strong enough and can become a critical problem. In this context, the two main objectives of this paper are the increase of the corrosion resistance and the improvement of the hydroxyapatite (HAp) growth. The surface modification considered here is achieved in three main steps and consists in the elaboration of different inorganic and organic coatings. The first step is the elaboration of electrodeposition of tantalum on the titanium oxide film of a titanium substrate. The second step is the modification of the tantalum oxide coating with organophosphonic acids. The last step is the nucleation and growth of HAP on the outermost layer of the system by immersion in a simulated body fluid. The hybrid coating tantalum oxide/organophosphonic acids/molecular layer is shown to be promising for orthopaedic implants.

  20. Layer-by-layer self-assembled mesoporous PEDOT-PSS and carbon black hybrid films for platinum free dye-sensitized-solar-cell counter electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Koji; Shiratori, Seimei [School of Integrated Design Engineering, Keio University, Yokohama 223-8522 (Japan)

    2011-05-13

    A thin film of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonic acid) (PEDOT-PSS), which is an alternative cathodic catalyst for Pt in dye-sensitized solar cells, was prepared using the layer-by-layer self-assembly method (LbL). The film is highly adhesive to the substrate and has a controllable thickness. Therefore, the PEDOT-PSS film prepared using LbL is expected have high performance and durability as a counter electrode. Moreover, when carbon black was added to the PEDOT-PSS solution, highly mesoporous PEDOT-PSS and carbon black hybrid films were obtained. These films showed high cathodic activity. In this study, we investigated the change in morphology in the obtained film with increasing carbon black content, and the influence of the porosity and thickness on the performance of the cells. In this study, a Pt-free counter electrode with performance similar to that of Pt-based counter electrodes was successfully fabricated. The achieved efficiency of 4.71% was only a factor of 8% lower than that of the cell using conventional thermally deposited Pt on fluorine-doped tin oxide glass counter electrodes.

  1. Layer-by-layer self-assembled mesoporous PEDOT-PSS and carbon black hybrid films for platinum free dye-sensitized-solar-cell counter electrodes.

    Science.gov (United States)

    Kitamura, Koji; Shiratori, Seimei

    2011-05-13

    A thin film of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonic acid) (PEDOT-PSS), which is an alternative cathodic catalyst for Pt in dye-sensitized solar cells, was prepared using the layer-by-layer self-assembly method (LbL). The film is highly adhesive to the substrate and has a controllable thickness. Therefore, the PEDOT-PSS film prepared using LbL is expected have high performance and durability as a counter electrode. Moreover, when carbon black was added to the PEDOT-PSS solution, highly mesoporous PEDOT-PSS and carbon black hybrid films were obtained. These films showed high cathodic activity. In this study, we investigated the change in morphology in the obtained film with increasing carbon black content, and the influence of the porosity and thickness on the performance of the cells. In this study, a Pt-free counter electrode with performance similar to that of Pt-based counter electrodes was successfully fabricated. The achieved efficiency of 4.71% was only a factor of 8% lower than that of the cell using conventional thermally deposited Pt on fluorine-doped tin oxide glass counter electrodes.

  2. Structural, optical, and adsorption properties of ZnO(2)/poly(acrylic acid) hybrid thin porous films prepared by ionic strength controlled layer-by-layer method.

    Science.gov (United States)

    Pál, Edit; Sebok, Dániel; Hornok, Viktória; Dékány, Imre

    2009-04-01

    ZnO(2)/poly(acrylic acid) sandwich structures were prepared by layer-by-layer (LbL) self-assembly. The structure and optical behavior of the hybrid films were controlled by changing the surface charge and conformation of the poly(acrylic acid). The buildup of the films was followed by UV-vis absorption and reflection spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), and quartz crystal microbalance (QCM) measurements. It was found that the ionic strength of the polymer solution had a great influence on the film thickness which, in turn, affected the optical properties. The water vapor adsorption isotherms of the films determined by QCM showed an adsorption hysteresis characteristic of porous thin layer structures. The adsorption of water molecules inside the films changed the effective refractive index resulting in a change of the reflection properties. This phenomenon is shown to be exploited for the application of the films as optical sensors. The polarizability of water molecules in the adsorption layer was also determined. It was found that polarization of water molecules in the adsorption layer is much lower than in the liquid water when the surface coverage (Theta) is low.

  3. Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dC18bpy)]2+ hybrid film

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+ (denoted as Clay-Ru) was closely packed at a surface pressure of 25 mN-m-1 and had a thickness of 3.4±0.5 nm. Cyclic voltammograms showed that the redox current of Ru(Ⅱ) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5′-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(Ⅱ) modified ITO electrode at the external potential above 900 mV (vs. Ag|AgCl|KCl ) and, more significantly, this response was further enhanced by light irradiation (λ>360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(Ⅲ) complex in the Clay-Ru film by GMP.

  4. Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dC 18bpy)]2+hybrid film

    Institute of Scientific and Technical Information of China (English)

    CHANG Xue-Qin; WANG Shun; LIN Da-Jie; GUAN Wei-Peng; ZHOU Huan; HUANG Shao-Ming

    2009-01-01

    An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4'-dioctsdecyl-2,2' bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+. (denoted as Clay-Ru) was closely packed at a surface pressure of 25 Ru(Ⅱ) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5'-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(Ⅱ) modified ITO electrode at the external potential above 900 mV (vs. AglAgCIlKCI) and, more significantly, this response was further enhanced by light irradiation (λ360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(Ⅲ) complex in the Clay-Ru film by GMP.

  5. Effect of reduced graphene oxide-hybridized ZnO thin films on the photoinactivation of Staphylococcus aureus and Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Teh, Swe Jyan; Yeoh, Soo Ling; Lee, Kian Mun; Lai, Chin Wei; Abdul Hamid, Sharifah Bee; Thong, Kwai Lin

    2016-08-01

    The immobilization of photocatalyst nanoparticles on a solid substrate is an important aspect for improved post-treatment separation and photocatalyst reactor design. In this study, we report the simple preparation of reduced graphene oxide (rGO)-hybridized zinc oxide (ZnO) thin films using a one-step electrochemical deposition, and investigated the effect of rGO-hybridization on the photoinactivation efficiency of ZnO thin films towards Staphylococcus aureus (S. aureus) and Salmonella enterica serovar Typhi (S. Typhi) as target bacterial pathogens. Field-emission scanning electron microscopy (FESEM) revealed the formation of geometric, hexagonal flakes of ZnO on the ITO glass substrate, as well as the incorporation of rGO with ZnO in the rGO/ZnO thin film. Raman spectroscopy indicated the successful incorporation of rGO with ZnO during the electrodeposition process. Photoluminescence (PL) spectroscopy indicates that rGO hybridization with ZnO increases the amount of oxygen vacancies, evidenced by the shift of visible PL peak at 650 to 500nm. The photoinactivation experiments showed that the thin films were able to reduce the bacterial cell density of Staph. aureus and S. Typhi from an initial concentration of approximately 10(8) to 10(3)CFU/mL within 15min. The rGO/ZnO thin film increased the photoinactivation rate for S. aureus (log[N/No]) from -5.1 (ZnO) to -5.9. In contrast, the application of rGO/ZnO thin film towards the photoinactivation of S. Typhi did not improve its photoinactivation rate, compared to the ZnO thin film. We may summarise that (1) rGO/ZnO was effective to accelerate the photoinactivation of S. aureus but showed no difference to improve the photoinactivation of S. Typhi, in comparison to the performance of ZnO thin films, and (2) the photoinactivation in the presence of ZnO and rGO/ZnO was by ROS damage to the extracellular wall.

  6. AN UNCONDITIONALLY STABLE HYBRID FE-FD SCHEME FOR SOLVING A 3-D HEAT TRANSPORT EQUATION IN A CYLINDRICAL THIN FILM WITH SUB-MICROSCALE THICKNESS

    Institute of Scientific and Technical Information of China (English)

    Wei-zhong Dai; Raja Nassar

    2003-01-01

    Heat transport at the microscale is of vital importance in microtechnology applications.The heat transport equation is different from the traditional heat transport equation sincea second order derivative of temperature with respect to time and a third-order mixedderivative of temperature with respect to space and time are introduced. In this study,we develop a hybrid finite element-finite difference (FE-FD) scheme with two levels intime for the three dimensional heat transport equation in a cylindrical thin film with sub-microscale thickness. It is shown that the scheme is unconditionally stable. The scheme isthen employed to obtain the temperature rise in a sub-microscale cylindrical gold film. Themethod can be applied to obtain the temperature rise in any thin films with sub-microscalethickness, where the geometry in the planar direction is arbitrary.

  7. Micro-mechanics of nanostructured carbon/shape memory polymer hybrid thin film.

    Science.gov (United States)

    Lei, Ming; Xu, Ben; Pei, Yutao; Lu, Haibao; Fu, Yong Qing

    2016-01-01

    This paper investigates the mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeletal structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) with CNF/MWCNT concentrations instead of a decrease of Tg in nanocomposites filled by spherical particles, and an increase in mechanical properties on both macro- and μm-scales. Compared with CNFs, MWCNTs showed a better mechanical enhancement for PS nanocomposites due to their uniform distribution in the nanocomposites. In nanoindentation tests using the Berkovich tips, indentation size effects and pile-up effects appeared obviously for the nanocomposites, but not for pure PS. Experimental results revealed the enhancement mechanisms of CNFs/MWCNTs related to the secondary structures formed by nanofillers, including two aspects, i.e., filler-polymer interfacial connections and geometrical factors of nanofillers. The filler-polymer interfacial connections were strongly dependent on temperature, thus leading to the opposite changing trend of loss tangent with nanofiller concentrations, respectively, at low and high temperature. The geometrical factors of nanofillers were related to testing scales, further leading to the appearance of pile-up effects for nanocomposites in the nanoindentation tests, in which the size of indents was close to the size of the nanofiller skeleton.

  8. Solution processed SiN{sub x}C{sub y}O{sub z} thin films thermally transformed from silicon oxide/melamine hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jaehun [Department of Polymer Science and Engineering, Sungkyunkwan University, 300, Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Fujihara, Kan [KANEKA Corporation, 5-1-1 Torikai-Nishi, Settsu, Osaka 566-007 (Japan); Pu, Lyongsun [KANEKA Corporation, 5-1-1 Torikai-Nishi, Settsu, Osaka 566-007 (Japan); School of Advanced Materials Science and Engineering, Sungkyunkwan University 300, Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yoo, Ji-Beom [School of Advanced Materials Science and Engineering, Sungkyunkwan University 300, Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Lee, Jun Young; Cho, Sung M.; Lee, Youngkwan [Department of Chemical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Kim, Seong Woo [Department of Chemical Engineering, Kyonggi University, 94-6 yiui-dong Yeongton-gu, Suwon, Gyeonggi-do 443-760 (Korea, Republic of); Hwang, Taeseon, E-mail: Taeseon.Hwang@unlv.edu [Department of Polymer Science and Engineering, Sungkyunkwan University, 300, Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Mechanical Engineering, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154 (United States); Nam, Jae-Do, E-mail: jdnam@skku.edu [Department of Polymer Science and Engineering, Sungkyunkwan University, 300, Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, 300, Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2013-07-31

    In this study, a solution-processable precursor of melamine and silicon oxide, was prepared and thermally converted into inorganic thin films of SiN{sub x}C{sub y}O{sub z}. Using tetra-ethoxysilane and hydroxyl-methyl-melamine, a transparent coating with a high loading content of silica of up to 50% was achieved through the hydrolysis/condensation reactions, which provided a transmittance of 85.1% (thickness of 1.5 ± 0.2 μm) and hard coating grade of 4H pencil test. When the silica/melamine coating was further heat-treated up to 900 °C in an inert environment, the organic melamine was converted into an inorganic compound composed of Si, N, C, and O atoms in the form of SiN{sub x}C{sub y}O{sub z}. The relative compositions of films varied with the heat-treatment temperature, e.g., providing SiN{sub 0.03}C{sub 0.59}O{sub 1.87} for the thin film heat-treated at 700 °C. The resulting inorganic thin films were mechanically strong and optically shiny with a low root mean square of roughness (< 1.0 nm) giving dielectric constants varying from 2.75 to 1.82 with heat treatment temperature that could be used as low-k materials in commercialized optoelectronic devices. - Highlights: • A solution-processable dielectric layer was fabricated through sol–gel process. • A fabricated hybrid film has an excellent optical transmittance and hardness. • The hybrid film was converted into an inorganic compound in the form of SiN{sub x}C{sub y}O{sub z}. • The dielectric constant of heat-treated specimen was measured lower than 2.0.

  9. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    Science.gov (United States)

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-02

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  10. Stably superhydrophobic (IL/TiO2)n hybrid films: Intelligent self-cleaning materials

    Science.gov (United States)

    Xin, Bingwei; Wang, Limei; Jia, Chunxiao

    2015-12-01

    Stably self-cleaning (IL/TiO2)n nanocomposites were prepared via electrostatic layer-by-layer (LbL) self-assembly technique. Positively charged [C12mim]Br and negatively charged TiO2 nanoparticles were alternatively adsorbed on the negative glass substrates to form (IL/TiO2)n layers. They were characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy. Under the synergistic action of ionic liquids and TiO2 P25, in which TiO2 nanoparticles provided surface roughness while [C12mim]Br acted as lower surface tension material, glass coated with 13 bilayers of [C12mim]Br/TiO2 film arrived to superhydrophobicity with 151.7 ± 2°. Owing to the photoresponsive and photocatalytic properties of TiO2, (IL/TiO2)n nanocomposites achieved the reversible superhydrophobic and superhydrophilic transition upon alternating UV irradiation and storage in the dark, and presented good performance for photocatalytic degradation of methyl orange with ultraviolet (UV) illumination. Significantly, they could be recycled for several times without obvious fatigue.

  11. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    Science.gov (United States)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  12. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    Science.gov (United States)

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-05-26

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system.

  13. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: alasbahibandar@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2013-10-15

    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  14. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  15. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane.

    Science.gov (United States)

    Kwak, S Y; Kim, S H; Kim, S S

    2001-06-01

    Hybrid organic/inorganic reverse osmosis (RO) membranes composed of aromatic polyamide thin films underneath titanium dioxide (TiO2) nanosized particles have been fabricated by a self-assembly process, aiming at breakthrough of biofouling problems. First, positively charged particles of the colloidal TiO2 were synthesized by a sol-gel process, and the diameter of the resulting particles in acidic aqueous solution was estimated to be approximately 2 nm by analyzing the UV-visible absorption characteristics with a quantum mechanical model developed by Brus. Transmission electron microscopy (TEM) further confirmed the formation of the quantum-sized TiO2 particles (approximately 10 nm or less). The TiO2 particles appeared to exist in the crystallographic form of anatase as observed with the X-ray diffraction (XRD) pattern in comparison with those of commercial 100% rutile and commercial 70:30% anatase-to-rutile mixture. The hybrid thin-film-composite (TFC) aromatic polyamide membranes were prepared by self-assembly of the TiO2 nanoparticles on the polymer chains with COOH groups along the surface. They showed improved RO performance in which the water flux even increased, though slightly. Field-emission scanning electron microscopy (FESEM) exhibited the TiO2 nanoparticles well adsorbed onto the surface. X-ray photoelectron spectroscopy (XPS) demonstrated quantitatively that a considerable amount of the adsorbed particles were tightly self-assembled at the expense of the initial loss of those that were loosely bound, and became stabilized even after exposure to the various washing and harsh RO operating conditions. The antibacterial fouling potential of the TiO2 hybrid membrane was examined and verified by measuring the viable numbers and determining the survival ratios of the Escherichia coli (E. coli) as a model bacterium, both with and without UV light illumination. The photocatalytic bactericidal efficiency was remarkably higher for the TiO2 hybrid membrane under UV

  16. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    Directory of Open Access Journals (Sweden)

    Junsheng Wu

    2017-04-01

    Full Text Available A layered double hydroxide (LDH film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM. The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS, scanning electrochemical microscopy (SECM, and a salt-spray test (SST.The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film.

  17. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2015-12-08

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  18. Degradation of TiO{sub 2} and/or SiO{sub 2} hybrid films doped with different cationic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Purcar, Violeta, E-mail: violetapurcar@yahoo.com [University of Bucharest, Faculty of Physics, 3Nano-SAE Research Centre, P.O. Box MG-38, 077125 Magurele (Romania); National R and D Institute for Chemistry and Petrochemistry ICECHIM – Polymers Department, Splaiul Independentei 202-6, PO Box 174/35 Bucharest (Romania); Caprarescu, Simona, E-mail: scaprarescu@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu St., 011061, Bucharest (Romania); Donescu, Dan, E-mail: ddonescu@chimfiz.icf.ro [National R and D Institute for Chemistry and Petrochemistry ICECHIM – Polymers Department, Splaiul Independentei 202-6, PO Box 174/35 Bucharest (Romania); Petcu, Cristian, E-mail: cpetcu@chimfiz.icf.ro [National R and D Institute for Chemistry and Petrochemistry ICECHIM – Polymers Department, Splaiul Independentei 202-6, PO Box 174/35 Bucharest (Romania); Stamatin, Ioan, E-mail: istarom@3nanosae.org [University of Bucharest, Faculty of Physics, 3Nano-SAE Research Centre, P.O. Box MG-38, 077125 Magurele (Romania); Ianchis, Raluca, E-mail: ralumoc@yahoo.com [National R and D Institute for Chemistry and Petrochemistry ICECHIM – Polymers Department, Splaiul Independentei 202-6, PO Box 174/35 Bucharest (Romania); Stroescu, Hermine, E-mail: hermine25@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania)

    2013-05-01

    Hybrid thin films, silica–titanium oxides and silica–aluminum oxides, designed based on the sol–gel process are evaluated as catalysts in the photo-degradation of the cationic dyes. Silica matrices from different precursors with various organic functional groups and cross-linked with titanium or aluminum agents (tetraisopropyl orthotitanate and aluminum sec-butoxide) allow the surface property tailoring related to the high capacity of the dye adsorption respective, high photo-degradation activity. The cationic dyes (methylene blue, rhodamine B, crystal violet, malachite green) embedded on the hybrid silica matrix, under ultraviolet light, have a first order kinetics of photodegradation. The cross-linking agents play a key role in the photocatalytic degradation and silica matrix as dye absorbent. The photo-degradation rate for the binary system derived from methyltriethoxysilane/vinyltriethoxysilane precursors with both cross linkers showed a significant improvement by comparison with other hybrid materials. The significant increasing in the photodecomposition rate is related to the capacity to generate additional oxidizing species by each silica hybrid compounds. - Highlights: ► Dyes display different electrostatic interactions to the silica matrix. ► Cross-linking agent influences the photocatalytic degradation of dyes. ► Photodegradation reaction obeyed the rules of a pseudo-first-order kinetic reaction. ► UV radiation can be the origin of the photodegradation.

  19. Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode.

    Science.gov (United States)

    Jia, Dong; Dai, Jianyuan; Yuan, Hongyan; Lei, Ling; Xiao, Dan

    2011-10-15

    Gold nanoparticles-poly(luminol) (Plu-AuNPs) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode (β-CD-MWCNTs/Plu-AuNPs/GCE) was successfully prepared for simultaneous determination of dopamine (DA) and uric acid (UA). The surface of the modified electrode has been characterized by X-ray photo-electron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) have been used to investigate the β-CD-MWCNTs/Plu-AuNPs composite film. Gold nanoparticles anchored into poly(luminol) film exhibited catalytic activity for DA. MWCNTs with incorporated β-CD can greatly promote the direct electron transfer. In 0.10 M phosphate buffer solution (PBS, pH 7.0), the DPV response of the β-CD-MWCNTs/Plu-AuNPs/GCE sensor to DA is about 8-fold as compared with the Plu-AuNPs/GCE sensor, and the detection limit for DA is about one order of magnitude lower than the Plu-AuNPs/GCE sensor. The steady-state current response increases linearly with DA concentration from 1.0 × 10(-6) to 5.6 × 10(-5)M with a low detection limit (S/N=3) of 1.9 × 10(-7)M. Moreover, the interferences of ascorbic acid (AA) and uric acid (UA) are effectively diminished. The applicability of the prepared electrode has been demonstrated by measuring DA contents in dopamine hydrochloride injection.

  20. Electrochemical fabrication of TiO{sub 2} nanoparticles/[BMIM]BF{sub 4} ionic liquid hybrid film electrode and its application in determination of p-acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin; Li, Yuan; Qin, Xianjing; Zhan, Guoqing [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); Ma, Ming [Ningbo Entry-Exit Inspection and Quarantine Bureau of P. R. C., Ningbo 315012 (China); Li, Chunya, E-mail: lcychem@yahoo.com [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2012-12-01

    A water soluble ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF{sub 4}), was incorporated into TiO{sub 2} nanoparticles to fabricate a hybrid film modified glassy carbon electrode (nano-TiO{sub 2}/[BMIM]BF{sub 4}/GCE) through electrochemical deposition in a tetrabutyltitanate sol solution containing [BMIM]BF{sub 4}. The obtained nano-TiO{sub 2}/[BMIM]BF{sub 4}/GCEs were characterized scanning electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical behaviors of p-acetaminophen at the nano-TiO{sub 2}/[BMIM]BF{sub 4}/GCEs were thoroughly investigated. Compared to the redox reaction of p-acetaminophen using an unmodified electrode under the same conditions, a new reduction peak was observed clearly at 0.26 V with the modified electrode. In addition, the peak potential for the oxidation of p-acetaminophen was found to shift negatively about 90 mV and the current response increased significantly. These changes indicate that the nano-TiO{sub 2}/[BMIM]BF{sub 4} hybrid film can improve the redox reactions of p-acetaminophen in aqueous medium. Under optimum conditions, a linear relationship was obtained for the p-acetaminophen solutions with concentration in the range from 5.0 Multiplication-Sign 10{sup -8} to 5.0 Multiplication-Sign 10{sup -5} M. The estimated detection limit was 1.0 Multiplication-Sign 10{sup -8} M (S/N = 3). The newly developed method was applied for the determination of p-acetaminophen in urine samples. - Highlights: Black-Right-Pointing-Pointer Nano-TiO{sub 2}/[BMIM]BF{sub 4} hybrid film electrode was fabricated with electrodeposition. Black-Right-Pointing-Pointer Voltammetric behavior of p-acetaminophen at the obtained electrode was investigated. Black-Right-Pointing-Pointer The hybrid film electrode shows good electrocatalytic response to p-acetaminophen. Black-Right-Pointing-Pointer p-acetaminophen in urine samples was successfully determined.

  1. Flexible Pb(Zr0.52Ti0.48)O3 Films for a Hybrid Piezoelectric-Pyroelectric Nanogenerator under Harsh Environments.

    Science.gov (United States)

    Ko, Young Joon; Kim, Dong Yeong; Won, Sung Sik; Ahn, Chang Won; Kim, Ill Won; Kingon, Angus I; Kim, Seung-Hyun; Ko, Jae-Hyeon; Jung, Jong Hoon

    2016-03-01

    In spite of extremely high piezoelectric and pyroelectric coefficients, there are few reports on flexible ferroelectric perovskite film based nanogenerators (NGs). Here, we report the successful growth of a flexible Pb(Zr0.52Ti0.48)O3 (PZT) film and its application to hybrid piezoelectric-pyroelectric NG. A highly flexible Ni-Cr metal foil substrate with a conductive LaNiO3 bottom electrode enables the growth of flexible PZT film having high piezoelectric (140 pC/N) and pyroelectric (50 nC/cm(2)K) coefficients at room temperature. The flexible PZT-based NG effectively scavenges mechanical vibration and thermal fluctuation from sources ranging from the human body to the surroundings such as wind. Furthermore, it stably generates electric current even at elevated temperatures of 100 °C, relative humidity of 70%, and pH of 13 by virtue of its high Curie temperature and strong resistance for water and base. As proof of power generation under harsh environments, we demonstrate the generation of extremely high current at the exhaust pipe of a car, where hot CO and CO2 gases are rapidly expelled to air. This work expands the application of flexible PZT film-based NG for the scavenging mechanical vibration and thermal fluctuation energies even at extreme conditions.

  2. Novel organic–inorganic amorphous photoactive hybrid films with rare earth (Eu{sup 3+}, Tb{sup 3+}) covalently embedded into silicon–oxygen network via sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang; Sheng, Ye; Zheng, Keyan; Qin, Xuming; Ma, Pingchuan; Zou, Haifeng, E-mail: haifengzou0431@gmail.com

    2015-10-15

    Highlights: • The hybrids are prepared through the hydrolysis and condensation process. • The hybrids are amorphous and heat stabilized. • The hybrids containing Eu{sup 3+} and Tb{sup 3+} show the typical red and green emissions. - Abstract: Novel organic–inorganic hybrid amorphous thin films were synthesized by linking lanthanide (Tb{sup 3+}, Eu{sup 3+}) complexes through 3,4-bis(3-(triethoxysilyl)propylcarbamoyloxy)benzoic acid using sol–gel method. These inorganic–organic hybrids were characterized in detail by Fourier transform infrared spectroscopy, wide angle X-ray diffraction, themogravimetric analysis, scanning electron microscope, and fluorescence spectra. The above research results indicate that the hybrids possess high thermal-stability, amorphous structure features and especially favorable luminescent performances, such as long luminescent decay lifetime, high quantum yield etc.

  3. SnO{sub 2} films: In-situ template-sacrificial growth and photovoltaic property based on SnO{sub 2}/poly(3-hexyl-thiophene) for hybrid solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yange, E-mail: zhangygzhang@163.com [Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000 (China); Li, Pinjiang [Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000 (China); Xu, Xiaoyun [Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000 (China); School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Min [Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000 (China); College of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Shen, Jinfeng [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhang, Fujuan; Zheng, Zhi [Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000 (China)

    2015-10-15

    Highlights: • SnO{sub 2} nanocrystals/thin films were fabricated on ITO glass substrate from preformed SnS thin film as sacrificial template. • The SnO{sub 2} film and SnO{sub 2}/P3HT was characterized by several techniques. • The new hybrid solar cell device was based on the hybrid thin film of SnO{sub 2} NCs and P3HT composites. - Abstract: we described a facile in-situ wet chemical method to prepare SnO{sub 2} thin film on ITO glass substrate from preformed SnS thin film as sacrificial template. The chemical conversion process of SnS to SnO{sub 2} was studied. The SnO{sub 2} film and SnO{sub 2}/P3HT was characterized by several techniques, such as powder X-ray diffract meter (XRD), Raman spectrometer, scanning electron microscope (SEM), atomic force microscope (AFM) and UV–vis spectrophotometer in detail. The new SnO{sub 2}/P3HT hybrid solar cell device showed an open-circuit voltage of 0.185 V, a short-circuit current density of 0.366 mA/cm{sup 2} and a fill factor of 0.247, corresponding to a power conversion efficiency of 0.0167%.

  4. Hybrid graphene nematic liquid crystal light scattering device

    Science.gov (United States)

    Qasim, M. M.; Khan, A. A.; Kostanyan, A.; Kidambi, P. R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Gardiner, D. J.; Hofmann, S.; Wilkinson, T. D.

    2015-08-01

    A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04094a

  5. Temperature-responsive polymer/carbon nanotube hybrids: smart conductive nanocomposite films for modulating the bioelectrocatalysis of NADH.

    Science.gov (United States)

    Zhao, Xin; Liu, Yang; Lu, Jin; Zhou, Jianhua; Li, Jinghong

    2012-03-19

    A temperature-sensitive polymer/carbon nanotube interface with switchable bioelectrocatalytic capability was fabricated by self-assembly of poly(N-isopropylacrylamide)-grafted multiwalled carbon nanotubes (MWNT-g-PNIPAm) onto the PNIPAm-modified substrate. Electron microscopy and electrochemical measurements revealed that these fairly thick (>6 μm) and highly porous nanocomposite films exhibited high conductivity and electrocatalytic activity. The morphological transitions in both the tethered PNIPAm chains on a substrate and those polymers wrapping around the MWNT surface resulted in the opening, closing, or tuning of its permeability, and simultaneously an electron-transfer process took place through the channels formed in the nanostructure in response to temperature change. By combining the good electron-transfer and electrochemical catalysis capabilities, the large surface area, and good biocompatibility of MWNTs with the responsive features of PNIPAm, reversible temperature-controlled bioelectrocatalysis of 1,4-dihydro-β-nicotinamide adenine dinucleotide with improved sensitivity has been demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The mechanism behind this approach was studied by Raman spectroscopy, in situ attenuated total reflection FTIR spectroscopy, and contact angle measurements. The results also suggested that the synergetic or cooperative interactions of PNIPAm with MWNTs gave rise not only to an increase in surface wettability, but also to the enhancement of the interfacial thermoresponsive behavior. This bioelectrocatalytic "smart" system has potential applications in the design of biosensors and biofuel cells with externally controlled activity. Furthermore, this concept might be proposed for biomimetics, interfacial engineering, bioelectronic devices, and so forth.

  6. All-optical logic gate based on transient grating from disperse red 1 doped organic-inorganic hybrid films with an improved figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Tianxi; Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn; Shao, Jinyou [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Wang, Yushu [School of Materials Science and Engineering, Georgia Institute of Technology, 500 Tenth Street NW, Atlanta, Georgia 30318 (United States)

    2015-10-21

    Azobenzene dyes have large refractive index near their main resonance, but the poor figure of merit (FOM) limits their potential for all-optical applications. To improve this situation, disperse red 1 (DR1) molecules were dispersed in a sol-gel germanium/Ormosil organic-inorganic hybrid matrix. Z-scan measurement results showed a good compatibility between the dopant and the matrix, and also, an improved FOM was obtained as compared to the DR1/polymer films reported previously. To demonstrate the all-optical signal processing effect, a cw Nd:YAG laser emitting at 532 nm and a He-Ne laser emitting at 632.8 nm were used as pump and probe beams, respectively. DR1 acts as an initiator of the photo-induced transient holographic grating, which is attributed to the trans-cis-trans photoisomerization. Thus, a three inputs AND all-optical logic gate was achieved by using choppers with different frequencies. The detailed mechanism of operation is discussed. These results indicate that the DR1 doped germanium/Ormosil organic-inorganic hybrid film with an improved FOM has a great potential in all-optical devices around its main resonance.

  7. Novel hybrid polymeric materials for barrier coatings

    Science.gov (United States)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  8. One-step electrochemically co-assembled redox-active [Ru(bpy)2(tatp)]2+-BSA-SWCNTs hybrid film for non-redox protein biosensors.

    Science.gov (United States)

    Ji, Shi-Bo; Yan, Zhi-Hong; Wu, Jun-Wen; Chen, Lin-Lin; Li, Hong

    2013-01-15

    A redox-active [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs (bpy=2,2'-bipyridine, tatp=1,4,8,9-tetra-aza-triphenylene, BSA=bovine serum albumin, SWCNTs=single-walled carbon nanotubes) hybrid film is fabricated on an indium-tin oxide (ITO) electrode via one-step electrochemical co-assembly approach. BSA is inherently dispersive and therefore served as the linking mediator of SWCNTs, which facilitate the redox reactions of [Ru(bpy)(2)(tatp)](2+) employed as a reporter of BSA. The evidences from differential pulse voltammetry, cyclic voltammetry, scanning electron microscope, emission spectroscopy and fluorescence microscope reveal that the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid can be electrochemically co-assembled on the ITO electrode, showing two pairs of well-defined Ru(II)-based redox waves. Furthermore, the electrochemical co-assembly of the [Ru(bpy)(2)(tatp)](2+)-BSA-SWCNTs hybrid is found to be strongly dependent on the simultaneous presence of BSA and SWCNTs, indicating a good linear response to BSA in the range from 6 to 50mgL(-1). The results from this study provide an electrochemical co-assembly method for the development of non-redox protein biosensors.

  9. Synthesis, characterizations and electro-optical properties of nonlinear optical polyimide/silica hybrid

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available Transparent Nonlinear Optical (NLO inorganic/organic (polyimide/silica hybrid composites with covalent links between the inorganic and the organic networks were prepared by the sol-gel method. The silica content in the hybrid films was varied from 0 to 22.5/wt%. The prepared PI hybrids were characterized by IR, UV-Vis, Thermogravimetric analysis (TGA, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. They exhibited fair good optical transparency. The SiO2 phase was well dispersed in the polymer matrix. DSC and TGA results showed that these hybrid materials had excellent thermal stability. The polymer solutions could be spin coated on the indium-tin-oxide (ITO glass to form optical quality thin films. The electro-optic coefficients (γ33 at the wavelength of 832 nm for polymer thin films poled were in the range of 19-27 pm/V.

  10. Parallel Exhibits: Combining Physical and Virtual Exhibits

    NARCIS (Netherlands)

    L. Lischke; T. Dingler; S. Schneegaß; A. Schmidt; M. van der Vaart; P. Wozniak

    2014-01-01

    People have a special fascination for original physical objects, their texture, and visible history. However, the digitization of exhibits and the use of these data is a current challenge for museums. We believe that museums need to capitalize on the affordances of physical exhibits to help users na

  11. Structural, vibrational, and gasochromic properties of porous WO sub 3 films templated with a sol-gel organic-inorganic hybrid

    CERN Document Server

    Opara-Krasovec, U; Orel, B; Grdadolnik, J; Drazic, G

    2002-01-01

    The structure and the gasochromic properties of sol-gel-derived WO sub 3 films with a monoclinic structure (m-WO sub 3) were studied by focusing attention on the size of the monoclinic grains. The size of the m-WO sub 3 grains is modified by the addition of an organic-inorganic hybrid to the initial peroxopolytungstic acid (W-PTA) sols which are based on chemically bonded poly-(propylene glycol) to triethoxysilane end-capping groups (ICS-PPG). The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the heat treatment (500 sup o C) of WO sub 3 /ICS- IPG (0.5, 1, 2, 5, and 10 mol%) composite films results in a change of their morphology, and nanodimensional pores are formed between the grains. High-resolution TEM (HRTEM) analysis revealed the presence of an amorphous phase on the outside of the m-WO sub 3 grains, whereas energy-dispersive x-ray spectra (EDXS) showed that this amorphous phase contained W and Si. Impregnation of the WO sub 3 /ICS-PPG film ...

  12. Hybrid perovskite solar cells: In situ investigation of solution-processed PbI2 reveals metastable precursors and a pathway to producing porous thin films

    KAUST Repository

    Barrit, Dounya

    2017-04-17

    The successful and widely used two-step process of producing the hybrid organic-inorganic perovskite CH3NH3PbI3, consists of converting a solution deposited PbI2 film by reacting it with CH3NH3I. Here, we investigate the solidification of PbI2 films from a DMF solution by performing in situ grazing incidence wide angle X-ray scattering (GIWAXS) measurements. The measurements reveal an elaborate sol–gel process involving three PbI2⋅DMF solvate complexes—including disordered and ordered ones—prior to PbI2 formation. The ordered solvates appear to be metastable as they transform into the PbI2 phase in air within minutes without annealing. Morphological analysis of air-dried and annealed films reveals that the air-dried PbI2 is substantially more porous when the coating process produces one of the intermediate solvates, making this more suitable for subsequent conversion into the perovskite phase. The observation of metastable solvates on the pathway to PbI2 formation open up new opportunities for influencing the two-step conversion of metal halides into efficient light harvesting or emitting perovskite semiconductors.

  13. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  14. Growth and characterization of MMA/SiO2 hybrid low- thin films for interlayer dielectric applications

    Indian Academy of Sciences (India)

    Bhavana N Joshi; M A More; A M Mahajan

    2010-06-01

    The methylmethacrylate (MMA) incorporated SiO2 thin films having low dielectric constant ( = 2.97) were deposited successfully to realize new interlayer material for the enhancement of electrical performance of on-chip wiring in very large scale integrated (VLSI) circuits. We have successfully incorporated MMA monomer and eliminated the polymerization step to lower the dielectric constant of deposited thin film. The presence of peak of C=C bond in Fourier transform infrared (FTIR) spectra and carbon peak in energy dispersive (EDAX) spectra confirms the incorporation of carbon in the film due to MMA. The concentration of MMA has great impact on the peak area and full width at half maxima (FWHM) of the Si–O–Si bond, which decreases the density by low atomic weight elements and consequently decreases the dielectric constant. The surface morphology analysed by scanning electron microscopic (SEM) image shows excellent uniformity of the film. The refractive index of 1.31 was measured by ellipsometer for 0.5 ml MMA concentration film. These deposited thin films having low refractive index and dielectric constant are widely applicable for the optical interconnects and interlayer applications in integrated optical circuits and VLSI circuits.

  15. 化学还原法制备聚酰亚胺/银复合薄膜%Preparation of PI/Ag Hybrid Films by Chemical Reduction

    Institute of Scientific and Technical Information of China (English)

    董云飞; 蒋里锋; 俞娟; 王晓东; 黄培

    2013-01-01

    聚酰亚胺(PI)薄膜通过碱液水解、离子交换、还原性溶液处理后,制备出具有反射性和导电性能的聚酰亚胺/银(PI/Ag)复合薄膜.采用傅立叶变换衰减全反射红外光谱(ATR/FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见分光光度计(UV-vis)和RTS-8型四探针测试仪等对PI/Ag复合薄膜的结构和性能进行表征,并对PI/Ag复合薄膜表面银层微结构与反射性和导电性能的关系进行了研究,探索了多种因素对复合薄膜性能的影响.结果表明,随着水解时间的延长,复合薄膜的载银量增大,所制得的PI/Ag复合薄膜表面银层厚度增加,反射率及导电性能更好.实验中当薄膜在经过KOH(2.5mol/L)水解1.5h处理,并在硝酸银溶液(0.4mol/L)中离子交换120min,且经NaBH4溶液还原约120min时,PI/Ag复合薄膜的反射率可以达到70.15%.表面方块电阻可达到1.6Ω/□.%Silver metalized polyimide films with reflectivity and conductivity were fabricated by the incorporation of silver ions in surface-modified polyimide,and subsequently by the reduction of silver ions in reducing solution.The hybrid films were characterized by ATR/FT-IR,XRD,SEM,UV-vis,the four probe tester RTS-8.The relationship between the silver layer microstructure of PI/Ag hybrid films surface and reflective and conductive properties was studied to explore effect of various factors on the properties of the composite films.Along with the increase of the hydrolysis time,the mass fraction and the surface thickness of silver of the hybrid films increase,the reflectivity and conductive performance become better.It is found that the surface reflectivity of silvered film can be detected upmost to 71.5% and surface resistance at ca.1.6 Ω/□ after treatment of the conditions,such as:KOH (2.5mol/L) treatment time of 1.5h,ion exchange time of 120min,NaBH4 (2g/L) reduction time of about 120 minutes.

  16. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly.

    Science.gov (United States)

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-06-27

    A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples.

  17. The (Zn(0.95)Mn(0.05)S)2·L (L = hexylamine and octylamine) inorganic/organic hybrid luminescence films by a spin-coating method.

    Science.gov (United States)

    Wei, Shuo; Peng, Jing; Wang, Meng; Fang, Xiuhua; Fan, Yunxiao; Li, Xinxin; Lu, Jun

    2012-05-14

    The (Zn(0.95)Mn(0.05)S)(2)·L (L = hexylamine and octylamine) hybrids show the optimal Mn(2+) luminescence and their thin films were fabricated on the quartz substrate layer by layer by a spin coating method, which revealed the linear relationship of the UV optical absorption and the Mn(2+) luminescence intensity with the layer numbers.

  18. Hybrid Films Based on a Bridged Silsesquioxane Doped with Goethite and Montmorillonite Nanoparticles as Sorbents of Wastewater Contaminants

    Directory of Open Access Journals (Sweden)

    Carolina V. Waiman

    2016-01-01

    Full Text Available The synthesis and characterization of silsesquioxane (SSO films with pendant dodecyl groups and doped with goethite (Gt or montmorillonite (MMT nanoparticles were carried out and the new materials tested as sorbents of diverse contaminants. The synthetic method used yielded SSO films with the inorganic substrates homogeneously distributed within the polymeric matrices. The new materials were characterized by SEM, FTIR, XRD, and DSC and tested to evaluate their capability for adsorbing metallic cations, organic dyes, and phosphate, frequent contaminants of industrial effluents. All films were found suitable for removing metallic cations. Results also showed that the SSO films undoped and doped with Gt are primarily apt for anionic compounds removal. Although the SSO films doped with MMT are capable of removing cationic contaminants from aqueous samples, the stiffness of the SSO matrix hinders MMT properties as an adsorbent. The possibility of dispersing nanoparticulate systems in the stable and chemically inert SSO matrices simplifies their application for contaminant removal, particularly because it makes the separation process of the absorbed pollutant from the treated medium easier.

  19. Mapping the Photoresponse of CH3NH3PbI3 Hybrid Perovskite Thin Films at the Nanoscale.

    Science.gov (United States)

    Kutes, Yasemin; Zhou, Yuanyuan; Bosse, James L; Steffes, James; Padture, Nitin P; Huey, Bryan D

    2016-06-08

    Perovskite solar cells (PSCs) based on thin films of organolead trihalide perovskites (OTPs) hold unprecedented promise for low-cost, high-efficiency photovoltaics (PVs) of the future. While PV performance parameters of PSCs, such as short circuit current, open circuit voltage, and maximum power, are always measured at the macroscopic scale, it is necessary to probe such photoresponses at the nanoscale to gain key insights into the fundamental PV mechanisms and their localized dependence on the OTP thin-film microstructure. Here we use photoconductive atomic force microscopy spectroscopy to map for the first time variations of PV performance at the nanoscale for planar PSCs based on hole-transport-layer free methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) thin films. These results reveal substantial variations in the photoresponse that correlate with thin-film microstructural features such as intragrain planar defects, grains, grain boundaries, and notably also grain-aggregates. The insights gained into such microstructure-localized PV mechanisms are essential for guiding microstructural tailoring of OTP films for improved PV performance in future PSCs.

  20. Single-wall carbon nanotube hybridized graphene films:self assembly and electrical properties%单壁碳纳米管-石墨烯杂化材料的自组装及其电学性能

    Institute of Scientific and Technical Information of China (English)

    Prashanta Dhoj Adhikari; Yong-hun Ko; Daesung Jung; Chung-Yun Park

    2015-01-01

    A SWCNT-G/Si hybrid film was fabricated from graphene ( G) film by chemical vapor deposition and single-walled carbon nanotubes ( SWCNTs) by an immobilization method, in which a 3-aminopropyltriethoxysilane monolayer was formed on a UV irradiated graphene film by self-assembly, and acid-oxidized SWCNTs were chemisorbed on it. The G/Si, 3-aminopropyltrie-thoxysilane immobilized G/Si and SWCNT-G/Si hybrid films were characterized by SEM, Raman spectroscopy, XPS, and conduc-tivity and electrochemical tests. Results indicate that the immobilization changes the p-type G/Si into n-type by electron donation from a lone electron pair on the amine and the chemisorption reduces the n-type behavior. The SWCNT-G/Si hybrid film has a high-er specific capacitance than the G/Si film. This approach could be of great use in the fabrication of supercapacitors, flexible hybrid electrodes and other devices.%以Si为基底,采用气相沉积法制备出石墨烯( G/Si)薄膜。将含1%APTES的苯溶液与G/Si密封,在115℃下加热2 h,G薄膜上自组装单层APTES膜( SAM-G/Si)。将SAM-G/Si浸渍于酸处理后的单壁碳纳米管氯仿液中,45℃干燥即得到单壁碳纳米管-石墨烯杂化材料( SWCNT-G/Si)。结果表明,具有p-型电学性能的G/Si经表面改性后呈现出n-型性能,电容性能得到提高。

  1. New Magnetic Thin Film Hybrid Materials Built by the Incorporation of Octanickel(II)-oxamato Clusters Between Clay Mineral Platelets

    NARCIS (Netherlands)

    Toma, Luminita M.; Gengler, Regis Y. N.; Cangussu, Danielle; Pardo, Emilio; Lloret, Francesc; Rudolf, Petra

    2011-01-01

    We report on a new method based on the combination of Langmuir-Schaefer deposition with self-assembly to insert highly anisotropic Ni(8) molecules in a hybrid organic-inorganic nanostructure. Spectroscopic, crystallographic, and magnetic data prove the successful insertion of the guest cationic mole

  2. Flexible Transparent Electrode of Hybrid Ag-Nanowire/Reduced-Graphene-Oxide Thin Film on PET Substrate Prepared Using H2/Ar Low-Damage Plasma

    Directory of Open Access Journals (Sweden)

    Chi-Hsien Huang

    2017-01-01

    Full Text Available We employ H2/Ar low-damage plasma treatment (H2/Ar-LDPT to reduce graphene oxide (GO coating on a polymer substrate—polyethylene terephthalate (PET—with the assistance of atomic hydrogen (Hα at low temperature of 70 °C. Four-point probing and ultraviolet-visible (UV-Vis spectroscopy demonstrate that the conductivity and transmittance can be controlled by varying the H2/Ar flow rate, treatment time, and radio-frequency (RF power. Optical emission spectroscopy reveals that the Hα intensity depends on these processing parameters, which influence the removal of oxidative functional groups (confirmed via X-ray photoelectron spectroscopy to yield reduced GO (rGO. To further improve the conductivity while maintaining high transmittance, we introduce silver nanowires (AgNWs between rGO and a PET substrate to obtain a hybrid rGO/AgNWs/PET with a sheet resistance of ~100 Ω/sq and 81% transmittance. In addition, the hybrid rGO/AgNWs thin film also shows high flexibility and durability and is suitable for flexible and wearable electronics applications.

  3. Flexible, cathodoluminescent and free standing mesoporous silica films with entrapped quasi-2D perovskites

    Science.gov (United States)

    Vassilakopoulou, Anastasia; Papadatos, Dionysios; Koutselas, Ioannis

    2017-04-01

    The effective entrapment of hybrid organic-inorganic semiconductors (HOIS) into mesoporous polymer-silica hybrid matrices, formed as free standing flexible films, is presented for the first time. A blend of quasi-2D HOIS, simply synthesized by mixing two-dimensional (2D) and three dimensional (3D) HOIS, exhibiting strong photoluminescence, is embedded into porous silica matrices during the sol-gel synthesis, using tetraethylorthosilicate as precursor and Pluronic F-127 triblock copolymer as structure directing agent, under acidic conditions. The final nanostructure hybrid forms flexible, free standing films, presenting high cathodoluminescence and long stable excitonic luminescence, indicating the protective character of the hybrid matrix towards the entrapped perovskite. A significant result is that the photoluminescence of the entrapped HOIS is not affected even after films' prolonged exposure to water.

  4. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H. (NGA); (Bordeaux)

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  5. A direct assay of carboxyl-containing small molecules by SALDI-MS on a AgNP/rGO-based nanoporous hybrid film.

    Science.gov (United States)

    Hong, Min; Xu, Lidan; Wang, Fangli; Geng, Zhirong; Li, Haibo; Wang, Huaisheng; Li, Chen-Zhong

    2016-04-25

    Silver nanoparticles (AgNPs) and reduced graphene oxide (rGO) hybrid nanoporous structures fabricated by the layer-by-layer (LBL) electrostatic self-assembly have been applied as a simple platform for the rapid analysis of carboxyl-containing small molecules by surface-assisted laser desorption/ionization (D/I) mass spectrometry (SALDI-MS). By the simple one-step deposition of analytes onto the (AgNP/rGO)9 multilayer film, the MS measurements of various carboxyl-containing small molecules (including amino acids, fatty acids and organic dicarboxylic acids) can be done. In contrast to other energy transfer materials relative to AgNPs, the signal interferences of a Ag cluster (Agn(+) or Agn(-)) and a C cluster (Cn(+) or Cn(-)) have been effectively reduced or eliminated. The effects of various factors, such as the pore structure and composition of the substrates, on the efficiency of D/I have been investigated by comparing with the (AgNP)9 LBL nanoporous structure, (AgNP/rGO)9/(SiO2NP)6 LBL multilayer film and AgNP/prGO nanocomposites.

  6. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors.

    Science.gov (United States)

    Renard, Laetitia; Babot, Odile; Saadaoui, Hassan; Fuess, Hartmut; Brötz, Joachim; Gurlo, Aleksander; Arveux, Emmanuel; Klein, Andreas; Toupance, Thierry

    2012-11-07

    Nanocrystalline tin dioxide (SnO(2)) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO(2) films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H(2) and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases.

  7. Digital collections and exhibits

    CERN Document Server

    Denzer, Juan

    2015-01-01

    Today's libraries are taking advantage of cutting-edge technologies such as flat panel displays using touch, sound, and hands-free motions to design amazing exhibits using everything from simple computer hardware to advanced technologies such as the Microsoft Kinect. Libraries of all types are striving to add new interactive experiences for their patrons through exciting digital exhibits, both online and off. Digital Collections and Exhibits takes away the mystery of designing stunning digital exhibits to spotlight library trea

  8. Fabrication of Cellulose ZnO Hybrid Nanocomposite and Its Strain Sensing Behavior

    Directory of Open Access Journals (Sweden)

    Hyun-U Ko

    2014-10-01

    Full Text Available This paper reports a hybrid nanocomposite of well-aligned zinc oxide (ZnO nanorods on cellulose and its strain sensing behavior. ZnO nanorods are chemically grown on a cellulose film by using a hydrothermal process, termed as cellulose ZnO hybrid nanocomposite (CEZOHN. CEZOHN is made by seeding and growing of ZnO on the cellulose and its structural properties are investigated. The well-aligned ZnO nanorods in conjunction with the cellulose film shows enhancement of its electromechanical property. Strain sensing behaviors of the nanocomposite are tested in bending and longitudinal stretching modes and the CEZOHN strain sensors exhibit linear responses.

  9. Etruscan Culture Exhibition

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    EARLY this year an exhibition on the ancient civilization of Etruria was held at the Beijing-based China Millennium Monument.The theme of the exhibition was Etruscan Culture and on show were the most representative cultural and historical relics of this ancient civilization unearthed in the past 20 years. The 349 exhibits from various

  10. Ethics on Exhibit

    Science.gov (United States)

    Vick, Randy M.

    2011-01-01

    This article discusses ethical questions raised by an exhibition of work by an artist with a history of mental illness and the exhibition's relevance to art therapy and “outsider art” discourse on the subject. Considerations for how such an exhibit could be handled had the circumstances included an art therapist and art therapy client are…

  11. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Tao Yang; Da Ming Huang; Kui Jiao

    2008-01-01

    A novel electrochemical DNA biosensor based on zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs)for DNA immobilization and enhanced hybridization detection is presented. The MWNTs/nano ZnO/chitosan composite filmmodified glassy carbon electrode (MWNTs/ZnO/CHIT/GCE) was fabricated and DNA probes were immobilized on the electrodesurface. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as anindicator. The sensor can effectively discriminate different DNA sequences related to PAT gene in the.transgenic corn, with adetection limit of 2.8×10-12 mol/L of target sequence.2008 Kui Jiao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  12. Photocatalytic degradation of dimethoate using LbL fabricated TiO{sub 2}/polymer hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Priya, D. Neela [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Modak, Jayant M. [Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012 (India); Trebse, Polonca; Zabar, Romina [Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, P.O. Box 301, 5000 Nova Gorica (Slovenia); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2011-11-15

    Highlights: {yields} The LbL-TiO{sub 2} thin films offer many advantages unlike TiO{sub 2} used in powder form. {yields} TiO{sub 2} can be immobilized using low concentrations on polymer on any substrate using a simple method. {yields} The solution, after the completion of the reaction, can be disposed directly into the environment. {yields} Degradation of organics is complete with no harmful intermediates being produced in the process. {yields} Immobilization is inexpensive and catalysts can be reused making it a cost effective method. - Abstract: Degradation of dimethoate under UV irradiation using TiO{sub 2}/polymer films prepared by the layer-by-layer (LbL) method was investigated. The thin films were fabricated on glass slides and the surface morphology and roughness of the thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of lamp intensity, catalyst loading in the layers, number of bilayers, pH and initial dimethoate concentration on the degradation of dimethoate was systematically studied. The degradation was monitored using high performance liquid chromatography (HPLC) analysis and total organic carbon (TOC) measurements as a function of irradiation time, to see the change in concentration of dimethoate and mineralization, respectively. Complete degradation of dimethoate was achieved under TiO{sub 2} optimum loading of 4 g/L at an UV irradiation time of 180 min. Increase in the lamp intensity, catalyst loading and number of bilayers increased the rate of degradation. At a pH of 4.62, complete degradation of dimethoate was observed. The degradation efficiency decreased with increase in initial dimethoate concentration. The degradation byproducts were analyzed and confirmed by gas chromatography-mass spectra (GC-MS). Toxicity of the irradiated samples was measured using the luminescence of bacteria Vibrio fischeri after 30 min of incubation and the results showed more

  13. Dielectric Properties of Polyimide Hybrid Film Doped with Nano Zirconium/Aluminum Oxide%纳米锆/铝氧化物杂化聚酰亚胺薄膜的介电性能

    Institute of Scientific and Technical Information of China (English)

    袁征; 范勇; 陈昊; 韩笑笑

    2011-01-01

    采用热液法制备了一系列不同Zr和Al比例的纳米粒子分散液,用原位聚合法分别制备了无机纳米杂化聚酰亚胺薄膜,并进行了SEM分析、电气强度和耐电晕测试.结果表明:Zr和A1的掺杂比例对杂化薄膜的耐电晕寿命及击穿场强影响较大,其耐电晕寿命最大可达Kapton100CR薄膜的4倍.%A series of nano-dispersions with different ratio of Zr and Al was prepared by hydrothermal method, and the corresponding inorganic nano-hybrid polyimide films were prepared through in-situ polymerization method. The hybrid film was characterized by SEM, electric strength and corona-resistant test. The results show that the doping ratio of Al and Zr has great effects on the corona-resistant life and breakdown strength of the hybrid film, and the maximum corona-resistant life is 4 times of that of Kapton 100 CR film.

  14. Effect of negative substrate bias on the microstructure and mechanical properties of Ti-Si-N films deposited by a hybrid filtered cathodic arc and ion beam sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yujuan, E-mail: cnzhangyujuan@yahoo.com.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475004 (China); Yang Yingze; Zhai Yuhao; Zhang Pingyu [Laboratory of Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2012-07-01

    A hybrid cathodic arc and ion beam sputtering method was employed to synthesize Ti-Si-N films. The influence of negative substrate bias on the structure and mechanical properties was investigated by using XRD, XPS, HRTEM, nanoindentor and so on. With the increasing of negative bias there is a decrease in the TiN crystallite size from 36 nm to 10 nm. Negative substrate bias promoted the conformation of nc-TiN/a-Si{sub 3}N{sub 4} nanocomposite structure with complete phase separation and uniform crystallite size. Superhard TiSiN films with a maximum hardness of 46 GPa were successfully synthesized under 100 V negative bias. Severe oxidation occurred in films deposited under 200 V and 300 V negative substrate bias due to the decreasing of deposition rate, which led to the hardness of films reduced to the value of 26 GPa and 22 GPa respectively.

  15. Synchronized metal-ion irradiation as a way to control growth of transition-metal nitride alloy films during hybrid HIPIMS/DCMS co-sputtering

    Science.gov (United States)

    Greczynski, Grzegorz

    2016-09-01

    High-power pulsed magnetron sputtering (HIPIMS) is particularly attractive for growth of transition metal (TM) nitride alloys for two reasons: (i) the high ionization degree of the sputtered metal flux, and (ii) the time separation of metal- and gas-ion fluxes incident at the substrate. The former implies that ion fluxes originating from elemental targets operated in HIPIMS are distinctly different from those that are obtained during dc magnetron sputtering (DCMS), which helps to separate the effects of HIPIMS and DCMS metal-ion fluxes on film properties. The latter feature allows one to minimize compressive stress due to gas-ion irradiation, by synchronizing the pulsed substrate bias with the metal-rich-plasma portion of the HIPIMS pulse. Here, we use pseudobinary TM nitride model systems TiAlN, TiSiN, TiTaN, and TiAlTaN to carry out experiments in a hybrid configuration with one target powered by HIPIMS, the other operated in DCMS mode. This allows us to probe the roles of intense and metal-ion fluxes (n = 1 , 2) from HIPIMS-powered targets on film growth kinetics, microstructure, and physical properties over a wide range of M1M2N alloy compositions. TiAlN and TiSiN mechanical properties are shown to be determined by the average metal-ion momentum transfer per deposited atom. Irradiation with lighter metal-ions (M1 =Al+ or Si+ during M1-HIPIMS/Ti-DCMS) yields fully-dense single-phase cubic Ti1-x (M1)x N films. In contrast, with higher-mass film constituent ions such as Ti+, easily exceeds the threshold for precipitation of second phase w-AlN or Si3N4. Based on the above results, a new PVD approach is proposed which relies on the hybrid concept to grow dense, hard, and stress-free thin films with no external heating. The primary targets, Ti and/or Al, operate in DCMS mode providing a continuous flux of sputter-ejected metal atoms to sustain a high deposition rate, while a high-mass target metal, Ta, is driven by HIPIMS to serve as a pulsed source of energetic

  16. Hybrid cross-linked polyaniline-WO3 nanocomposite thin film for NO(x) gas sensing.

    Science.gov (United States)

    Kaushik, Ajeet; Khan, Raju; Gupta, Vinay; Malhotra, B D; Ahmad, Sharif; Singh, S P

    2009-03-01

    Nanocomposite thin film of cross-linked polyaniline [CLPANI, derived from polyaniline and aniline formaldehyde condensate (AFC)] and WO3 has been fabricated using vacuum thermal evaporation technique. X-ray diffraction pattern of as-grown film shows broad reflections of polymer along with mixed reflection of nonhydrated and hydrated WO3 nanoparticles. The scanning electron microscopy studies reveal uniform dispersion of WO3 nanoparticles in CLPANI network. The broadening of the absorption band at 320 nm corresponding to PANI and AFC-WO3 nanocomposite is attributed to cross-linking between the polymeric units. The NO(x) gas sensing characteristics of vacuum deposited CLPANI-WO3 thin film have been studied by measuring the change in resistance with respect to time. The sensor can be operated at room temperature, resulting in extended shelf life of the sensor. The response time and recovery time of the sensor operated at room temperature have been experimentally determined as 30 s and 11 minutes respectively.

  17. UV photodetectors based on 3D periodic Au-decorated nanocone ZnO films

    Science.gov (United States)

    Fan, Haowen; Sun, Mengwei; Ma, Pengsha; Yin, Min; Lu, Linfeng; Xue, Xinzhong; Zhu, Xufei; Li, Dongdong; Ma, Jing

    2016-09-01

    Thermal nanoimprinting technology was employed to fabricate 3D periodic nanocone ZnO films with different height/pitch values for photodetectors to optimize their light capturing property. The photocurrents of patterned film photodetectors increase with the height/pitch values. The patterned ZnO-Au hybrid film further boosts the ultraviolet (UV) response. Due to the co-contribution of the light trapping of 3D periodic structures and the driving force of the Schottky barrier in the Au/ZnO interface, the patterned ZnO-Au hybrid films with height/pitch of 40 nm/866 nm exhibit the best UV photoresponse (I on/I off = 779.927), which is 3.8 times higher than its film counterpart (I on/I off = 164.1).

  18. Exhibiting Mozart: Rethinking Biography

    OpenAIRE

    Spring, Ulrike

    2010-01-01

    Abstract: The article analyses the new permanent exhibition in the composer Wolfgang A. Mozart’s apartment in Vienna, opened in 2006, from the curator’s perspective. The exhibition presents an approach to biographical display in which the exhibited person becomes part of a multifaceted web of contexts, and the article argues for the active deployment of the polysemic character of objects as a means of grasping the complexity of a person’s biography. Presenting a concept for the...

  19. The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics.

    Science.gov (United States)

    Grancini, Giulia; Marras, Sergio; Prato, Mirko; Giannini, Cinzia; Quarti, Claudio; De Angelis, Filippo; De Bastiani, Michele; Eperon, Giles E; Snaith, Henry J; Manna, Liberato; Petrozza, Annamaria

    2014-11-06

    We investigate the relationship between structural and optical properties of organo-lead mixed halide perovskite films as a function of the crystallization mechanism. For methylammonium lead tri-iodide, the organic cations rearrange within the inorganic cage, moving from crystals grown in a mesoporous scaffold to larger, oriented crystals grown on a flat substrate. This reduces the strain felt by the bonds forming the cage and affects the motion of the organic cation in it, influencing the electronic transition at the onset of the optical absorption spectrum of the semiconductor. Moreover, we demonstrate that in mixed-halide perovskite, though Cl(-) ions are not present in a detectable concentration in the unit cell, they drive the crystallization dynamics. This induces a preferential order during crystallization, from a molecular, i.e., organic-inorganic moieties arrangement, to a nano-mesoscopic level, i.e., larger crystals with anisotropic shape. Finally, we show that while Cl is mainly expelled from flat films made of large crystals, in the presence of an oxide mesoporous scaffold they are partially retained in the composite.

  20. Amino-functionalized breath-figure cavities in polystyrene-alumina hybrid films: effect of particle concentration and dispersion.

    Science.gov (United States)

    V, Lakshmi; Raju, Annu; V G, Resmi; Pancrecious, Jerin K; T P D, Rajan; C, Pavithran

    2016-03-14

    We report the formation of breath-figure (BF) patterns with amino-functionalized cavities in a BF incompatible polystyrene (PS) by incorporating functionalized alumina nanoparticles. The particles were amphiphilic-modified and the modifier ratio was regulated to achieve a specific hydrophobic/hydrophilic balance of the particles. The influence of the physical and chemical properties of the particles like particle concentration, the hydrophobic/hydrophilic balance, etc., on particle dispersion in solvents having different polarity and the corresponding changes in the BF patterns have been studied. The amphiphilic-modified alumina particles could successfully assist the BF mechanism, generating uniform patterns in polystyrene films with the cavity walls decorated with the functionalized alumina particles, even from water-miscible solvents like THF. The possibility of fabricating free-standing micropatterned films by casting and drying the suspension under ambient conditions was also demonstrated. The present method opens up a simple route for producing functionalized BF cavities, which can be post-modified by a chemical route for various biological applications.

  1. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    Science.gov (United States)

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10-15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  2. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si.

    Science.gov (United States)

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-07

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10(-15) M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  3. "Big Science" exhibition at Balexert

    CERN Multimedia

    2008-01-01

    CERN is going out to meet those members of the general public who were unable to attend the recent Open Day. The Laboratory will be taking its "Big Science" exhibition from the Globe of Science and Innovation to the Balexert shopping centre from 19 to 31 May 2008. The exhibition, which shows the LHC and its experiments through the eyes of a photographer, features around thirty spectacular photographs measuring 4.5 metres high and 2.5 metres wide. Welcomed and guided around the exhibition by CERN volunteers, shoppers at Balexert will also have the opportunity to discover LHC components on display and watch films. "Fun with Physics" workshops will be held at certain times of the day. Main hall of the Balexert shopping centre, ground floor, from 9.00 a.m. to 7.00 p.m. Monday to Friday and from 10 a.m. to 6 p.m. on the two Saturdays. Call for volunteers All members of the CERN personnel are invited to enrol as volunteers to help welcom...

  4. Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition.

    Science.gov (United States)

    Zhang, Hao; Ding, He; Wei, Mengjie; Li, Chunya; Wei, Bin; Zhang, Jianhua

    2015-01-01

    A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%. The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

  5. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles

    Directory of Open Access Journals (Sweden)

    Federico Brivio

    2013-10-01

    Full Text Available The performance of perovskite solar cells recently exceeded 15% solar-to-electricity conversion efficiency for small-area devices. The fundamental properties of the active absorber layers, hybrid organic-inorganic perovskites formed from mixing metal and organic halides [e.g., (NH4PbI3 and (CH3NH3PbI3], are largely unknown. The materials are semiconductors with direct band gaps at the boundary of the first Brillouin zone. The calculated dielectric constants and band gaps show an orientation dependence, with a low barrier for rotation of the organic cations. Due to the electric dipole of the methylammonium cation, a photoferroic effect may be accessible, which could enhance carrier collection.

  6. Effects of Film-Degraded Rice Controlled Release Fertilizer on the Nitrogen Uptake and Yield of the Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Field experiment was carried out to nitrogen release characteristics of rice controlled release fertilizer (RCRF) coated with natural and half natural high molecular materials, and to thereof effects on the nitrogen uptake and yield of early and late hybrid rice from 1999 to 2000, with urea as control.In experimental fields regardless of early and late seasons, the amount of N in the plants increased exponentially at the early growth stage (y=abx) and nonlinearly at the middle and late growth stages (y=a+bx+cx2).Rice controlled release fertilizer lengthened the exponential phase and increased the parameter -b/c during the nonlinear phase. Although the N amount of plants was less in rice controlled release fertilizer plots than in urea plots within 20 days after transplanting, at the heading and maturity stages, the N amount of plants in rice controlled release fertilizer plots was above two times greater than in the urea plots due to the higher N recovery, and the high absorption density of N in the nonlinear phase. Tillers pattern and achievement of the maximum tillering stage varied with fertilizer types. The maximum tillering stage in the urea plots occurred a week earlier than in the rice controlled release fertilizer plots. Yield sink size and potential sink size of the plants reflected the N absorption pattern and the amount of N in the plants. The yields of early and late rice with 90 kg N ha-1of rice controlled release fertilizer were respectively increased by 832.7 kg ha-1 and 412.8 kg ha-1 than those with 90 kg N ha-1 of urea, almost equivalent to the yield of early and late hybrid rice with 180 kg N ha-1 of urea.

  7. Enrico Fermi exhibition at CERN

    CERN Document Server

    2002-01-01

    A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...

  8. Test Control Center exhibit

    Science.gov (United States)

    2000-01-01

    Have you ever wondered how the engineers at John C. Stennis Space Center in Hancock County, Miss., test fire a Space Shuttle Main Engine? The Test Control Center exhibit at StenniSphere can answer your questions by simulating the test firing of a Space Shuttle Main Engine. A recreation of one of NASA's test control centers, the exhibit explains and portrays the 'shake, rattle and roar' that happens during a real test firing.

  9. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    Science.gov (United States)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.

  10. Synthesis of a Novel Core-shell Type Acrylic-polyurethane Hybrid Emulsion Containing Siloxane and Fluorine as well as Water and the Oil Resistances of Cured Film

    Institute of Scientific and Technical Information of China (English)

    Jing CHAO; Xing Yuan ZHANG; Jia Bing DAI; Zhen GE; Lin Lin FENG

    2006-01-01

    Siliconated polyurethane (Si-PU) was synthesized using isophorone diisocyanate (IPDI), hydroxybutyl-terminated polydimethylsiloxane (PDMS), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), 1,6-hexanediol (HDO), dimethylol propionic acid (DMPA) and triethylamine (TEA). Based on butyl acrylate (BA), 2, 2, 2-trifluoroethylmethacrylate (TFEMA) and Si-PU as a seed emulsion, a novel core-shell type acrylic-polyurethane hybrid emulsion, containing siloxane and fluorine (F-Si-PU), was prepared by seeded emulsion polymerization. The contents of siloxane and fluorine were determined according to the feed ratio. Fourier transform infrared spectroscopy (FTIR) was used to identify the chain structures of Si-PU and F-Si-PU. Investigation of transmission electron microscopy (TEM) confirmed the core-shell structure of F-Si-PU emulsion. Measurement results of water contact angle and the swelling ratio in water and n-octane for cured film showed that the water and the oil resistances for F-Si-PU had been significantly improved at a suitable content of fluorine and siloxane.

  11. Domestic film festival exhibition development present situation and its business model to explore%国内影视节展发展现状及其商业模式探究

    Institute of Scientific and Technical Information of China (English)

    荣章歆; 范俊敏

    2013-01-01

    With the deepening of cultural industry development and the increasing consumer demand of folk culture, China’s domestic film festivals have sprung up in recent decade. In the process of booming and prospering culture, Domestic Film Festival is being an important capital integration platform, cultural transmission platform, the market trading platform. Focusing on this historical period of Film Festival development and current status of development can contribute to further reflections on the overall development trend and commercial mode of the future film festivals. With the classification of mainstream film festivals from government, social tributaries film and independent film festival, this paper discusses the different types of film festivals in the country's development path and future trends, and study the operating mechanism of the main festivals. Whereby, it provides the new route to explore business model for the film festival, where cultural capital, economic capital, social capital can be replaced by each other.%  随着国家文化产业发展的深入以及民间文化消费需求的增长,近十年国内影视节展如雨后春笋般出现。国内影视节展作为文化大繁荣过程中重要的资本整合平台、文化传播平台、市场交易平台,聚焦这一历史时期影视节展的发展历程和现状,有助于进一步思考影展未来的总体发展走向和商业模式。通过对政府主流影展、社会支流影展、民间独立影展的分类梳理,论述了不同类型影展在国内的发展路径及未来趋势,并研究了主要影展的运作机制。借此,为影视节展商业模式的探索提供了文化资本、经济资本、社会资本相互置换的新路径。

  12. Effect of BaZrO3/Ag hybrid doping to the microstructure and performance of fluorine-free MOD method derived YBa2Cu3O7−x superconducting thin films

    DEFF Research Database (Denmark)

    Tang, Xiao; Yue, Zhao; Wu, W.

    2015-01-01

    It is known that BaZrO3 and Ag can improve the magnetic and transport performance of YBCO thin film through totally disparate ways. BaZrO3 plays the role of flux pinning centers and Ag improves the transparency of the YBCO grain boundaries. However, similar research is rare on the fluorine......-free derived YBCO films. In this research, BaZrO3-doped, Ag-doped and BaZrO3/Ag hybrid-doped YBCO films were synthesized through a fluorine-free metal–organic deposition method. BaZrO3 was found to deteriorate the microstructure and performance of YBCO, while Ag-doping was found to enhance the crystallization...... of YBCO and resulted in a high Jc of 3.87 MA/cm2 in self-field at 77 K. However, the microstructure and performance of the BaZrO3/Ag hybrid-doped YBCO film showed that the positive impact of Ag-doping was totally overwhelmed by that of BaZrO3....

  13. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  14. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  15. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

    Science.gov (United States)

    Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X

    2010-12-01

    Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.

  16. Electroactive functional hybrid layered nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Destri, Giovanni Li; Torrisi, Vanna; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN) - University of Catania and CSGI - Catania (Italy)

    2012-07-11

    Two methodologies to build new nanostructured hybrid layered nanocomposites are presented. The first one involves the preparation of hybrid metal/polymer nanolayers (NLs) by combining two monolayer preparation techniques: Horizontal Precipitation Langmuir Blodgett method (HP-ML), for copolymer monolayers and sputter deposition technique, for Au NLs deposition. The second methodology is aimed to prepare regular arrays of nanopores, with diameter ranging between 40-100 nm, in ultra-thin films of electroactive polymers, to obtain embedded regular arrays of nanopores filled by a further electroactive organic component. The produced hybrid MLs have been characterized by means of X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Grazing Incidence X-ray Diffraction (GI-XRD). In the first case, current-voltage (I-V) measurements demonstrate that the multilayers exhibit a bipolar conduction behaviour (electrons and holes carriers), with a peculiar transition in the nature of the majority carriers (from holes to electrons) above a threshold number of bilayers. In the second case, it is found that the degree of pore filling, as well as the polymer crystallinity can be easily modulated, prompting the tuning of the photoresponse of the nanocomposites.

  17. Exhibition in Sight

    Science.gov (United States)

    Wasserman, Burton

    1978-01-01

    Ludwig Mies van der Rohe is known primarily as an architect. However, he also designed chairs and tables. Discusses an exhibit held in New York City a few months ago which showed how well the famous architect achieved his goals in the area of furniture design. (Author/RK)

  18. Exhibitions in Sight

    Science.gov (United States)

    Wasserman, Burton

    1977-01-01

    Today, few artists make serving vessels on a monumental scale. Here artists compete in this unique area of specialization prompted by the Campbell Museum in Camden, New Jersey, which is dedicated to collecting and exhibiting the very best in soup tureens. (Author/RK)

  19. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  20. 聚酰亚胺纳米杂化薄膜的透光率与光击穿特性%Research on transmittance and characteristics of optical breakdown of Al2O3/PI hybrid films

    Institute of Scientific and Technical Information of China (English)

    刘晓旭; 阎凯; 朱波; 殷景华

    2011-01-01

    为了研究无机组分的添加对复合材料抗光击穿能力的影响,采用溶胶--凝胶法制备不同组分的AlO/PI复合薄膜,利用半导体激光照射不同组分的AlO/PI薄膜,研究其透光率、光击穿区域的形貌及不同区域的元素分布、击穿孔区的有效面积.数据分析表明:随AlO含量的增加,杂化薄膜的透光率、光击穿孔区的破坏程度、孔区的面积逐渐下降.实验结果表明:纳米AlO颗粒可以减小复合薄膜击穿孔的有效面积,从而提高复合薄膜耐击穿性.杂化薄膜的透光率可以表征其光击穿情况.%Aimed at investigating the effect of addition of inorganic content( Al203 ) on the anti-optical breakdown of hybrid films, this paper introduces the preparation of the Al2O3/PI composition films with different content by Sol-Gel method, the irradiation of the Al2O3/PI films using semiconductor laser,and the identification of the transmittance of hybrid films, the morphology of optical breakdown region,element distribution in different regions, and the effective area of optical breakdown hole. The data analysis show that the light transmittance of the films and the size of the breakdown hole decrease with the increase of Al2O3. The results show that the nano-Al2O3 can reduce the effective area of breakdown hole in the films, thus increasing breakdown-resistance performance, and characterizing the optical breakdown situation by transmittance of hybrid films.

  1. High dielectric, dynamic mechanical and thermal properties of polyimide composite film filled with carbon-coated silver nanowires

    Science.gov (United States)

    Wang, Lisi; Piao, Xiaoyu; Zou, Heng; Wang, Ya; Li, Hengfeng

    2015-01-01

    High dielectric permittivity materials are much desirable in the electric industry. Filling polymer matrix with conductive powders to form percolative composites is one of the most promising methods to achieve high dielectric permittivity. However, they do not always provide high mechanical properties and thermal stability, which seriously limit their applications. In this study, we present the preparation of functional core-shell structured silver nanowires/polyimide (AgNWs/PI) hybrid film with high dielectric permittivity and low loss dielectric. The core-shell structure of AgNWs was characterized by transmission electric microscopy. The dynamical mechanical analysis showed that AgNWs/PI hybrid films had relative high dynamic mechanical properties with storage modules over 1 Gpa. Moreover, the hybrid films exhibited excellent thermal stability with 5 % weight-loss temperature above 500 °C. The dielectric properties of the carbon-coated AgNWs hybrid films were remarkably improved. The maximum dielectric permittivity of hybrid films is 126 at 102 Hz, which was 39 times higher than that of pure PI matrix, while the dielectric loss of that is still remained at a low value. This study showed a new method to improve the dielectric, dynamic mechanical and thermal properties of films.

  2. Fabrication of mechanically robust, self-cleaning and optically high-performance hybrid thin films by SiO2&TiO2 double-shelled hollow nanospheres

    Science.gov (United States)

    Yao, Lin; He, Junhui; Geng, Zhi; Ren, Tingting

    2015-07-01

    Low-cost antireflection (AR) thin films on large-area optical surfaces are important for high-performance optical devices, display devices and photovoltaic cells. In the current work, SiO2&TiO2 double-shell hollow nanospheres (DSHNs) were designed, synthesized and utilized as building blocks for fabricating multifunctional AR thin films. By optimizing the porosity of SiO2&TiO2 DSHN and thin film structure, substrates with DSHN thin films attained transmittance as high as 99.4% and average transmittance up to 98.5% in the visible region. The nano-composite SiO2-TiO2 films exhibited intrinsic superhydrophilicity, anti-fogging and high photocatalytic activity. Tape peeling test, sponge washing test, and high temperature and moisture proof test showed favorable robustness and functional durability of the thin films, which make them extremely attractive for applications in lenses, photovoltaic cells and windows of high-rise buildings.Low-cost antireflection (AR) thin films on large-area optical surfaces are important for high-performance optical devices, display devices and photovoltaic cells. In the current work, SiO2&TiO2 double-shell hollow nanospheres (DSHNs) were designed, synthesized and utilized as building blocks for fabricating multifunctional AR thin films. By optimizing the porosity of SiO2&TiO2 DSHN and thin film structure, substrates with DSHN thin films attained transmittance as high as 99.4% and average transmittance up to 98.5% in the visible region. The nano-composite SiO2-TiO2 films exhibited intrinsic superhydrophilicity, anti-fogging and high photocatalytic activity. Tape peeling test, sponge washing test, and high temperature and moisture proof test showed favorable robustness and functional durability of the thin films, which make them extremely attractive for applications in lenses, photovoltaic cells and windows of high-rise buildings. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02467f

  3. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  4. Active graphene–silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596

  5. Giant magnetocapacitance of strained ferroelectric-ferromagnetic hybrids

    Science.gov (United States)

    Pertsev, N. A.; Prokhorenko, S.; Dkhil, B.

    2012-04-01

    We report a theoretical calculation of the strain-mediated magnetocapacitance of ferroelectric-ferromagnetic heterostructures. Our nonlinear theory predicts that this magnetocapacitance strongly depends on the strain state of a ferroelectric constituent. For multiferroic hybrids comprising a BaTiO3 or Pb(Zr0.5Ti0.5)O3 film and a FeBSiC, Terfenol-D, or FeGa substrate, the magnetocapacitive coefficient generally has a giant value ˜10-4 Oe-1. Remarkably, its magnitude further increases drastically near the strain-induced phase transition at which the out-of-plane polarization appears in the ferroelectric film. As a result, the magnetocapacitance of hybrids including Terfenol-D may exceed 100% already at the magnetic field of about 600 Oe. These theoretical results provide guidelines for the fabrication of multiferroic heterostructures exhibiting a strong magnetodielectric effect.

  6. Active graphene-silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  7. CERN permanent exhibitions

    CERN Multimedia

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  8. Droplet Lamp Design exhibition

    OpenAIRE

    Unver, Ertu; Dean, Lionel Theodore

    2011-01-01

    This paper describes experiments in the use of digital fluid simulation techniques within a\\ud product design context. It discusses the adoption and adaptation of virtual modelling tools in\\ud 3D creative practice. This work is exhibited at EuroMold, the world-wide fair in Germany for\\ud mold making, tooling, design and application development with around 60.000 visitors and lasts\\ud 4 days. The fair brings together professionals from design, prototyping and manufacturing.

  9. Ion beam codeposition of HTSC films on SrTiO3 and ITO/Si

    Science.gov (United States)

    Pavuna, Davor; Kellett, Bruce J.; Dwir, Benjamin; James, Jonathan H.; Gauzzi, Andrea; Faulkner, James R., Jr.; Affronte, M.; Reinhardt, F. K.

    1990-10-01

    Superconducting YBa2C u 3 0 7 (YBCO) thin films were grown on Si with transparent, conducting Indium Tin Oxide (ITO) buffer layers The onset temperature at 92K and zero resistance at 68K were measured. Both, ITO and YBCO films were deposited by ion beam co-deposition. The YBCO/ITO films exhibit metallic resistivity with positive slopes (r0.055 1K). The YBCO is uniform, textured and polycrystalline. The relevance for hybrid opto-electronic device structures is briefly discussed.

  10. Upcycling CERN Exhibitions

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Summer is coming - and with it, a new Microcosm exhibition showcasing CERN (see here). But while the new exhibit is preparing to enchant visitors, many have been asking about the site's former content. Will it simply be out with the old and in with the new? Not as such!   The plasma ball from Microcosm is now on display at the LHCb site. As Microcosm's new content is moving in, its old content is moving up. From LHCb to IdeaSquare, former Microcosm displays and objects are being installed across the CERN site. "Microcosm featured many elements that were well suited to life outside of the exhibition," says Emma Sanders, Microcosm project leader in the EDU group. "We didn't want this popular content to go to waste, and so set out to find them new homes across CERN." The LHCb experiment has received a number of Microcosm favourites, including the Rutherford experiment, the cosmic ray display and the Thomson experiment. "We&...

  11. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array.

    Science.gov (United States)

    Xu, Huiren; Wang, Li; Luo, Jinping; Song, Yilin; Liu, Juntao; Zhang, Song; Cai, Xinxia

    2015-01-08

    It is difficult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV) at -80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10(-6) M to 2 × 10(-4) M for DA (r = 0.996) and in the range of 1 × 10(-5) M to 3 × 10(-4) M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10(-4) M AA, the linear responses were obtained in the range of 1 × 10(-5) M to 3 × 10(-4) M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments.

  12. Selective Recognition of 5-Hydroxytryptamine and Dopamine on a Multi-Walled Carbon Nanotube-Chitosan Hybrid Film-Modified Microelectrode Array

    Directory of Open Access Journals (Sweden)

    Huiren Xu

    2015-01-01

    Full Text Available It is difficult to determine dopamine (DA and 5-hydroxytryptamine (5-HT accurately because of the interference of ascorbic acid (AA in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs were modified onto the microelectrode array (MEA. The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV at −80 mV, 105 mV and 300 mV (versus Ag|AgCl, respectively. The linear responses were obtained in the range of 5 × 10−6 M to 2 × 10−4 M for DA (r = 0.996 and in the range of 1 × 10−5 M to 3 × 10−4 M for 5-HT (r = 0.999 using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10−4 M AA, the linear responses were obtained in the range of 1 × 10−5 M to 3 × 10−4 M for selective molecular recognition of DA (r = 0.997 and 5-HT (r = 0.997 using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments.

  13. Tratamiento Superficial de Acero Galvanizado con Películas Híbridas formadas por 3-(trimetoxisililpropil metacrilato (TMSPMA y Tetraetoxisilano (TEOS Surface Treatment of Galvanized Steel with Hybrid Films formed by 3-(trimethoxysilyl methacrylate (TMSPMA and Tetraethoxysilane (TEOS

    Directory of Open Access Journals (Sweden)

    Sandra R Kunst

    2012-01-01

    Full Text Available Acero galvanizado fue revestido con una película híbrida a partir de una solución formada por los precursores silanos 3-(trimetoxisililpropil metacrilato (TMSPMA y tetraetoxisilano (TEOS con adición de cerio. El uso de capas hibridas orgánico-inorgánico representa una alternativa ambientalmente aceptable para mejorar la resistencia de una serie de materiales metálicos frente a los procesos corrosivos. Se emplearon tres tiempos de inmersión (2, 10 y 15 minutos y se caracterizaron las películas mediante microscopia electrónica de barrido, evaluando también el carácter hidrofóbico de las películas. El comportamiento electroquímico de los revestimientos obtenidos fue determinado por el monitoreo del potencial de circuito abierto, polarización potenciodinámica e impedancia electroquímica. Los resultados que se obtuvo evidenciaron el efecto del tiempo de permanencia dentro de la solución en la uniformidad de la película y consecuentemente sobre la resistencia a la corrosión del mismo.Galvanized steel was coated with a hybrid film obtained from a solution formed by silane precursor 3-(trimethoxysilyl methacrylate (TMSPMA and tetraethoxysilane (TEOS with addition of cerium. The use of hybrid organic-inorganic layers represents an environmentally friendly alternative to improve resistance against corrosion of a series of metallic materials. Three immersion times (2, 10 and 15 minutes were used and the films were characterized by scanning electron microscope evaluating film wetability was at the same time. The electrochemical behavior of the coatings obtained was evaluated by open circuit potential, potentiodynamic polarization and electrochemical impedance. The results showed the effect of immersion time in the solution on the film uniformity and consequently on the corrosion resistance of these films.

  14. Online Exhibits & Concept Maps

    Science.gov (United States)

    Douma, M.

    2009-12-01

    Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors

  15. Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters

    Directory of Open Access Journals (Sweden)

    Xin He

    2017-02-01

    Full Text Available A transparent and flexible film heater was fabricated; based on a hybrid structure of poly(3,4-ethylenedioxythiophene poly(styrenesulfonate (PEDOT:PSS and silver nanowires (Ag NWs using a screen printing; which is a scalable production technology. The resulting film integrates the advantages of the two conductive materials; easy film-forming and strong adhesion to the substrate of the polymer PEDOT:PSS; and high conductivity of the Ag NWs. The fabricated composite films with different NW densities exhibited the transmittance within the range from 82.3% to 74.1% at 550 nm. By applying 40 V potential on the films; a stable temperature from 49 °C to 99 °C was generated within 30 s to 50 s. However; the surface temperature of the pristine PEDOT:PSS film did not increase compared to the room temperature. The composite film with the transmittance of 74.1% could be heated to the temperatures from 41 °C to 99 °C at the driven voltages from 15 V to 40 V; indicating that the film heater exhibited uniform heating and rapid thermal response. Therefore; the PEDOT:PSS/Ag NW composite film is a promising candidate for the application of the transparent and large-scale film heaters.

  16. Space Shuttle Cockpit exhibit

    Science.gov (United States)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  17. Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l-cysteine.

    Science.gov (United States)

    Wang, Lei; Tricard, Simon; Yue, Pengwei; Zhao, Jihua; Fang, Jian; Shen, Weiguo

    2016-03-15

    A novel polypyrrole (PPy) and graphene quantum dots (GQDs) @ Prussian Blue (PB) nanocomposite has been grafted on a graphite felt (GF) substrate (PPy/GQDs@PB/GF), and has been proven to be an efficient electrochemical sensor for the determination of l-cysteine (l-cys). GQDs, which were fabricated by carbonization of citric acid and adsorbed on GF surface ultrasonically, played an important role for promoting the synthesis process of PB via a spontaneous redox reaction between Fe(3+) and [Fe(CN)6](3-). The PPy film has been electro-polymerized to improve the electrochemical stability of the PPy/GQDs@PB/GF electrode. The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and electrochemical methods. It exhibited an excellent activity for the electrocatalytic oxidation of l-cys, with a detection sensitivity equal to 0.41 Amol(-1) L for a concentration range of 0.2-50 μmolL(-1), and equal to 0.15 Amol(-1) L for a concentration range of 50-1000 μmolL(-1). A low detection limit of 0.15 μmolL(-1), as well as a remarkable long-time stability and a negligible sensitivity to interfering analytes, were also ascertained. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    Science.gov (United States)

    Dutta, Shibsankar; De, Sukanta

    2016-05-01

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  19. PLATE: Product Lifetimes And The Environment Exhibition

    OpenAIRE

    Hanson, Maria

    2015-01-01

    The PLATE (Product Lifetimes And The Environment) Exhibition explored critical themes related to how long products last in contemporary society. The topic of product longevity is examined in innovative ways through prototypes, objects, artefacts, posters, photographs and films produced by designers, social businesses, artists, researchers, lecturers and students.\\ud \\ud Featuring household products, furniture, lighting, fashion, jewellery and artworks, this collection of visual work embraced ...

  20. Anniversary Exhibition. Nechvolodov.

    Directory of Open Access Journals (Sweden)

    - -

    2006-03-01

    Full Text Available On the 10th of August, 2005 in Tartu (the second biggest educational and cultural city in Estonia Stanislav Nechvolodov's exhibition was opened to show the 5-year cycle of his work, traditional for the author and his admirers. At the opening ceremony Nechvolodov said that the exhibition was the last one and appointed on his 70th anniversary.The architectural and building society in Irkutsk remembers Stanislav Nechvolodov as an architect working on dwelling and civil buildings in 1960-70s. Below are some extracts from the Estonian press.«Postimees» newspaper, December 1993. The interview «Expressionistic naturalist, conservative Nechvolodov» by journalist Eric Linnumyagi. He asks about all the details and describes the troubles experienced by Nechvolodov during the perestroika period in Estonia, for example: the Tartu University refused to install the sculpture of Socrat, the art school refused to engage him as an instructor, the sculpture of Socrat moved to Vrotzlav, Poland, and Nechvolodov moved to Poland to read lectures there.«Tartu» newspaper, November 2000. Mats Oun, artist, says in the article «Nechvolodov: a man of Renaissance»: «Nechvolodov works in Estonia, his works are placed in many local and foreign museums. Regardless some insignificant faults, he deserves a high estimation, and his manysided open exhibition can be an example for other artists. He is a man of Renaissance».

  1. Low-voltage operation of ZrO2-gated n-type thin-film transistors based on a channel formed by hybrid phases of SnO and SnO2.

    Science.gov (United States)

    Chu, Hsin-Chueh; Shen, Yung-Shao; Hsieh, Ching-Heng; Huang, Jia-Hong; Wu, Yung-Hsien

    2015-07-22

    With SnO typically regarded as a p-type oxide semiconductor, an oxide semiconductor formed by hybrid phases of mainly SnO and a small amount of SnO2 with an average [O]/[Sn] ratio of 1.1 was investigated as a channel material for n-type thin-film transistors (TFTs). Furthermore, an appropriate number of oxygen vacancies were introduced into the oxide during annealing at 400 °C in ambient N2, making both SnO and SnO2 favorable for current conduction. By using high-κ ZrO2 with a capacitance equivalent thickness of 13.5 nm as the gate dielectric, the TFTs processed at 400 °C demonstrated a steep subthreshold swing (SS) of 0.21 V/dec, and this can be ascribed to the large gate capacitance along with a low interface trap density (Dit) value of 5.16 × 10(11) cm(-2) eV(-1). In addition, the TFTs exhibit a relatively high electron mobility of 7.84 cm(2)/V·s, high ON/OFF current ratios of up to 2.5 × 10(5), and a low gate leakage current at a low operation voltage of 3 V. The TFTs also prove its high reliability performance by showing negligible degradation of SS and threshold voltage (VT) against high field stress (-10 MV/cm). When 3% oxygen annealing is combined with a thinner channel thickness, TFTs with even higher ION/IOFF ratios exceeding 10(7) can also be obtained. With these promising characteristics, the overall performance of the TFTs displays competitive advantages compared with other n-type TFTs formed on binary or even some multicomponent oxide semiconductors and paves a promising and economic avenue to implement an n-type oxide semiconductor without doping for production-worthy TFT technology. Most importantly, when combined with the typical SnO-based p-type oxide semiconductor, it would usher in a new era in achieving high-performance complementary metal oxide semiconductor circuits by using the same SnO-based oxide semiconductor.

  2. 耐电晕PI/无机纳米氧化物复合薄膜设计及性能%Preparation and corona resistant properties of nano-inorganic oxide hybrid PI films

    Institute of Scientific and Technical Information of China (English)

    陈昊; 范勇; 周宏; 杨瑞宵; 王春平; 韩笑笑

    2012-01-01

    The nano-dispersion of inorganic oxide is prepared by using the hydrothermal method and the water needed for the experiment is obtained from the process of the condensation reaction from alcohol into ether. The dispersion is composite with PI to make the inorganic nano-oxides hybrid PI films (PI/ Al2O3-SiO2 and PI/A12O3). As the sample is 25 fun in thickness, the test parameters are chosen as below; the waveform is bipolar square, wave pulse voltage is 2 500 V peak to peak, frequency is 20 kHz, and duty cycle is 50% , the test temperature is 155 X, ,the corona-resistant life of DuPont Kapton 100 CR film, PI/Al2O3-SiO2 film and PI/A12O3 films are measured respectively. The results show that the corona-resistance life of the modified nano-alumina hybrid PI films is the longest of all, which is more than 6 times as that of Kapton 100 CR films and 12 times more than that of the unmodified nano-alumina hybrid PI films. From the resulting SEM images, a conclusion can be made that the inorganic nano-composite structure of the modified nano-alumina hybrid PI films protects the PI substrate more effectively.%采用热液法制备了纳米无机氧化物分散液,其中水解所需的水由醇缩水成醚反应提供.所得的MTES改性的纳米氧化铝与聚酰亚胺复合制成杂化聚酰亚胺复合薄膜(PI/Al2O3 - SiO2),另外还制备了未改性的纳米氧化铝杂化聚酰亚胺复合薄膜(PI/Al2O3),在试样厚度均为25 μm的情况下,采用双极性脉冲方波电压、峰-峰值2500V、频率20 kHz、占空比50%、测试温度155℃的条件下,分别测试上述两种薄膜以及Kapton 100 CR薄膜的耐电晕时间,结果表明,PI/Al2O3 - SiO2薄膜的耐电晕寿命最长,是Kapton 100 CR薄膜的6倍以上,是PI/Al2O3薄膜的12倍以上.由SEM的测试结果分析表明,PI/Al2O3 - SiO2薄膜中的无机纳米复合结构可以更有效地保护PI基体,从而提高材料的耐电晕性.

  3. 纳米锆-铝复合氧化物杂化聚酰亚胺耐电晕薄膜的研究%Study on Nano Zr-Al Composite Oxide Hybrid Polyimide Corona Resistant Films

    Institute of Scientific and Technical Information of China (English)

    范勇; 赵伟; 杨瑞宵; 陈昊; 张树龙

    2015-01-01

    采用微乳化-热液法制备了一系列经自制偶联剂处理的纳米锆-铝复合氧化物分散液,采用原位聚合法制备了纳米锆-铝复合氧化物杂化聚酰亚胺复合薄膜,对纳米分散液及复合薄膜的掺杂层进行透射电镜测试,并对复合薄膜的高温耐电晕性能、电气强度、力学性能进行测试及分析。结果表明:分散液中纳米粒子的尺寸达到纳米级,纳米锆-铝复合氧化物杂化PI薄膜的耐电晕性能大幅提高;在固定无机物掺杂量为22%,Zr与Al的物质的量之比为1.2∶9时,PI薄膜的耐电晕寿命达到10.35 h,电气强度达到274.91 MV/m,拉伸强度为146.4 MPa,断裂伸长率为43.0%。%A series of nano Zr-Al composite oxide dispersions were preprared by microemulsion-hydrother-mal method and treated with homemade coupling agent, and then nano Zr-Al complex oxide hybrid poly-imide composite films were prepared via in-situ polymerization. The nano-dispersion and doped layer of the composite films were tested by TEM, and the corona resistance at high temperature, electric strength, and mechanical properties of the composite films were tested and analyzed. The results show that the size of nanoparticles in dispersion reaches nanometer, and the corona resistance of the nano Zr-Al com-posite oxide hybrid PI films is greatly improved. When the doping amount of inorganic compounds is 22% and the molar ratio between Zr and Al is 1.2∶9, the corona resistance life of the hybrid PI film reaches 10.35 h, the electric strength reaches 274.91 MV/m, the tensile strength is 146.4 MPa, and the elongation at break is 43.0%.

  4. Solid mesostructured polymer-surfactant films at the air-liquid interface.

    Science.gov (United States)

    Pegg, Jonathan C; Eastoe, Julian

    2015-08-01

    Pioneering work by Edler et al. has spawned a new sub-set of mesostructured materials. These are solid, self-supporting films comprising surfactant micelles encased within polymer hydrogel; composite polymer-surfactant films can be grown spontaneously at the air-liquid interface and have defined and controllable mesostructures. Addition of siliconalkoxide to polymer-surfactant mixtures allows for the growth of mesostructured hybrid polymer-surfactant silica films that retain film geometry after calcinations and exhibit superior mechanical properties to typically brittle inorganic films. Growing films at the air-liquid interface provides a rapid and simple means to prepare ordered solid inorganic films, and to date the only method for generating mesostructured films thick enough (up to several hundred microns) to be removed from the interface. Applications of these films could range from catalysis to encapsulation of hydrophobic species and drug delivery. Film properties and mesostructures are sensitive to surfactant structure, polymer properties and polymer-surfactant phase behaviour: herein it will be shown how film mesostructure can be tailored by directing these parameters, and some interesting analogies will be drawn with more familiar mesostructured silica materials.

  5. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng

    2015-09-08

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

  6. Hybrid functional IrO2-TiO2 thin film resistor prepared by atomic layer deposition for thermal inkjet printheads

    Institute of Scientific and Technical Information of China (English)

    Won-Sub KWACK; Hyoung-Seok MOON; Seong-Jun JEONG; Qi-min WANG; Se-Hun KWON

    2011-01-01

    IrO2-TiO2 thin films were prepared by atomic layer deposition using Ir(EtCp)(COD) and titanium isopropoxide (TTIP).in the IrO2-TiO2 thin films. The low temperature coefficient of resistance(TCR) values can be obtained by adopting IrO2-TiO2 composite thin films. Moreover, the change in the resistivity of lrO2-TiO2 thin films was below 10% even after O2 annealing process at 600 ℃. The step stress test results show that IrO2-TiO2 films have better characteristics than conventional TaN08 heater resistor.Therefore, IrO2-TiO2 composite thin films can be used as a heater resistor material in thermal inkjet printhead.

  7. Photochromic mesoporous hybrid coatings

    Science.gov (United States)

    Raboin, L.; Matheron, M.; Gacoin, T.; Boilot, J.-P.

    2008-09-01

    Spirooxazine (SO) photochromic molecules were trapped in sol-gel matrices. In order to increase the colourability and improve mechanical properties of sol-gel photochromic films, we present an original strategy in which SO photochromic molecules were dispersed in mesoporous organized films using the impregnation technique. Well-ordered organosilicate mesoporous coatings with the 3D-hexagonal symmetry were prepared by the sol-gel technique. These robust mesoporous films, which contain high amounts of hydrophobic methyl groups at the pore surface, offer optimized environments for photochromic dyes dispersed by impregnation technique. After impregnation by a spirooxazine solution, the photochromic response is only slightly slower when compared with mesostructured or soft sol-gel matrices, showing that mesoporous organized hybrid matrix are good host for photochromic dyes. Moreover, the molecular loading in films is easily adjustable in a large range using multi-impregnation procedure and increasing the film thickness leading to coatings for optical switching devices.

  8. Hybrid printed electronics

    NARCIS (Netherlands)

    Koetse, M.; Smits, E.; Rubingh, E.; Teunissen, P.; Kusters, R.; Abbel, R.; Brand, J. van den

    2016-01-01

    Although many electronic functionalities can be realized by printed or organic electronics, short-term marketable products often require robust, reproducible, and nondisturbing technologies. In this chapter we show how hybrid electronics, a combination of printed circuitry, thin-film electronics,

  9. Multi-Impact Durability and Processing of Thick-Section Carbon-Glass/Epoxy Hybrid Composites Toughened With Thermoplastic Polyurethane Inter-Layer Films

    Science.gov (United States)

    2012-09-01

    2 2.2 Standard Vacuum Assisted Resin Transfer Molding ( VARTM ) with SC-15 Resin .......2... VARTM ). ................................................9 Figure 7. Force vs. displacement for Hybrid no. 5...12. C-scan image showing progression of delamination in Hybrid no. 4 (PA- VARTM ). 12 Figure 13. C-scan image showing progression of delamination in

  10. Conjugated Polymer Chains Confined in Vertical Nanocylinders of a Block-Copolymer Film: Preparation, Characterization, and Optoelectronic Function

    KAUST Repository

    Dong, Ban Xuan

    2013-01-15

    Hybrid materials composed of phase-separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block-copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one-dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light-emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 2007Fairs & Exhibitions in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The 6th China (Guangzhou) International Seasoning Exhibition Date: May 11-13 Founded in: 2003.05 Venues: Guangzhou Int'l Convention &Exhibition Center (Pazhou) Exhibits: Seasonings, food additives, relevant material,equipment, service and publications

  12. 2005 Fairs & Exhibitions in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Harbin China International Winter Goods Exhibition DATE: Jan. 5-9 FREQUENCY: Annual FOUNDED TIME: Dec. 2001 VENUE: Harbin China International Conference & Exhibition Center EXHIBITS: winter sports goods and outdoor devices

  13. Formation of a hybrid plasmonic waveguide mode probed by dispersion measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H. [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152-8551 (Japan); Kurata, H., E-mail: kurata@eels.kuicr.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2015-04-07

    Hybrid waveguides, i.e., dielectric waveguides combined with plasmonic waveguides, have great potential for concomitantly exhibiting subwavelength confinement and long range propagation, enabling a highly integrated photonic circuit. We report the characterization of hybrid waveguide modes excited in Si/SiO{sub 2}/Al films, by dispersion measurement using angle-resolved electron energy-loss spectroscopy. This experiment directly verifies the formation of the hybrid waveguide mode with a strongly localized electromagnetic field in a 6-nm-thick SiO{sub 2} layer. The results clearly describe the characteristic behavior of the hybrid waveguide mode, which depends on the effective index of the constituent dielectric waveguide and the surface plasmon-polariton modes.

  14. Visible-light photochromic nanocomposite thin films based on polyvinylpyrrolidone and polyoxometalates supported on clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang-yu; Dong, Qi [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Meng, Qing-ling [Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118 (China); Yang, Jun-Yan [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Feng, Wei, E-mail: weifeng@jlu.edu.cn [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Han, Xiang-kui [Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118 (China)

    2014-10-15

    Graphical abstract: - Highlights: • Hybrid film was synthesized by entrapping PMoA supported on the Na-MMT into PVPd. • Na-MMT performed the function of excellent dispersion. • The hybrid film had good visible-light photochromic properties. • The photo-reduction process occurred according to the proton transfer mechanism. - Abstract: A novel reversible photochromic nanocomposite film was prepared by entrapping phosphomolybdic acid supported on the sodium bentonite (PMoA/Na-MMT) into polyvinylpyrrolidone (PVPd). The microstructure, thermal stability, photochromic behavior and mechanism of the hybrid film were investigated. Fourier transform infrared spectroscopy (FT-IR) results illustrated that the Keggin geometry of polyoxometalates (PMoA) and organic groups of PVPd were still preserved inside the composites and non-covalent bond interaction was built between PMoA/Na-MMT and PVPd polymer matrix. Transmission electron microscopy (TEM) image showed that PMoA nanoparticles were finely dispersed in Na-MMT which exhibited fine stratified structure. Atomic force microscopy (AFM) images indicated that the surface topography of polymeric matrix changed after adding PMoA/Na-MMT, and the surface appearance of nanocomposite film was different before and after visible-light irradiation. The stability of the hybrid film and the effect of the perturbation of Na-MMT on the stability were determined by means of the thermogravimetric analysis (TG) and differential thermal analysis (DTA). Irradiated with visible light, the ultraviolet-–visible spectra (UV–vis) showed that the hybrid films changed from colorless to blue and could recover the colorless state gradually in air, where oxygen played an important role during the bleaching process. The hybrid films exhibited excellent bleaching ability during the heating. According to the X-ray photoelectron spectroscopy (XPS) analysis, the appearance of Mo{sup 5+} species indicated the photo-reduction reaction between PMo

  15. Ambient Filtration Method To Rapidly Prepare Highly Conductive, Paper-Based Porous Gold Films for Electrochemical Biosensing.

    Science.gov (United States)

    Guntupalli, Bhargav; Liang, Pingping; Lee, Jung-Hoon; Yang, Yuehai; Yu, Haixiang; Canoura, Juan; He, Jin; Li, Wenzhi; Weizmann, Yossi; Xiao, Yi

    2015-12-16

    Thin gold films offer intriguing material properties for potential applications including fuel cells, supercapacitors, and electronic and photonic devices. We describe here an ambient filtration method that provides a simple and novel way to generate rapidly porous and thin gold films without the need for sophisticated instruments, clean-room environments, and any postgrowth process or sintering steps. Using this approach, we can fabricate highly conductive gold films composed of gold nanoparticles layered atop a matrix of metallic single-walled carbon nanotubes on mixed cellulose ester filter paper within 20 min. These hybrid films (thickness ∼40 nm) exhibit fast electron transfer and excellent electrocatalytic properties that are similar to purchased gold films, but with a larger electroactive surface that lends itself to more sensitive analyte detection. We used the neurotransmitters dopamine and serotonin as benchmark analytes to demonstrate that our hybrid gold films can clearly discriminate the presence of both molecules in a mixture with resolution that greatly exceeds that of either purchased gold slides or electrodeposited gold films. Importantly, we postulate that this new approach could readily be generalized for the rapid fabrication of films from various other metals under ambient conditions, and could also be used as a prelude to transferring the resulting films onto glass or other flexible substrates.

  16. 聚酰亚胺/碳纳米管杂化薄膜电性能的研究%Electrical Properties of Polyimide/Carbon Nano-tube Hybrid Film

    Institute of Scientific and Technical Information of China (English)

    朱小影; 张明艳; 刁鹏鹤; 王文佳; 李晓东

    2011-01-01

    A kind of polyamide acid/carbon nano-tube hybrid liquid cement was fabricated by means of ultrasonic dispersion and in-situ polymerization.Then the polyimide/carbon nano-tube hybrid film was prepared according to filming technology.The surface morphology of the film was characterized by SEM.And the effects of incorporation of carbon nano-tube on the electrical property were researched.The results show that with the increase of CNTs content, the dielectric strength decreases gradually and has a sharp drop when the doped content is close to 0.6%, the dielectric constant and dielectric loss factor increase obviously.With the rise of test frequency, the dielectric constant declines slowly and the dielectric loss factor increases.The corona resistance time of the hybrid film is longer than that of pure polyimide.When the doped content of MWNTs is near to 0.38%, the time of corona resistance reaches a maximum of 10.2 h.%采用超声分散-原位聚合的方法制备聚酰胺酸/碳纳米管(CNTs)杂化胶液,并按一定成膜工艺制备出聚酰亚胺/碳纳米管杂化薄膜.利用扫描电子显微镜(SEM)对薄膜的表面形貌进行表征,讨论了碳纳米管的加入对杂化薄膜电性能的影响.结果表明:随着碳纳米管含量的增加,介电强度降低,介电常数与介质损耗因数均呈上升趋势,且随着测试频率的增加,介电常数缓慢下降,介质损耗因数增加;杂化薄膜的耐电晕性能均高于纯PI,且含量为0.38%时,耐电晕时间达到最大值10.2h.

  17. PROPIEDADES MECÁNICAS DE PELÍCULAS HÍBRIDAS (ORGÁNICO-INORGÁNICO SOBRE ACERO INOXIDABLE 304 Mechanical Properties of Hybrid Films (Organic-Inorganic on Stainless Steel 304

    Directory of Open Access Journals (Sweden)

    Jorge H. Bautista-Ruiz

    2011-12-01

    Full Text Available This article shows the creation of ceramic films of the SiO2-TiO2 Organic Polymer hybrid system from Tetraethyl-Orthosilicate (Si (OC2H54 and Titanium Tetrabutoxide (Ti(OBu4 synthesized through the sol-gel method in several volumetric concentrations of precursors. This hybrid system was deposited on AISI 304 stainless steel substrates through the dip-coating technique. Feasibility for obtaining hybrid and homogeneous coatings on this type of substrate and evaluating the surface properties was studies. For such a purpose, the coating microhardness and adhesion were studies. Additionally, the film surface was characterized through the SEM (Scanning Electron Microscopy. The study concluded that characteristics of films change in function of the volumetric amount of precursors used for creating films.Este trabajo muestra la conformación de películas cerámicas del sistema híbrido SiO2-TiO2-Polímero Orgánico, a partir de tetraetil-ortosilicato (Si (OC2H54, y tetra-butoxido de titanio (Ti(OBu4 y sintetizado por el método sol-gel en diferentes concentraciones volumétricas de los precursores. Este sistema híbrido se depositó sobre sustratos de acero inoxidable AISI 304 mediante la técnica de inmersión (dip-coating. Se estudió la viabilidad de obtener recubrimientos híbridos homogéneos sobre este tipo de sustrato y evaluar las propiedades superficiales. Para tal efecto, se estudió microdureza y adhesión del recubrimiento. Adicionalmente, se caracterizó la superficie de las películas por microscopía electrónica de barrido (MEB. Del estudio se concluye que las características de las películas cambian en función de la cantidad volumétrica de los precursores utilizados en la conformación de las mismas.

  18. Fabrication of a Homogeneous, Integrated, and Compact Film of Organic-Inorganic Hybrid Ni(en)3Ag2I4 with Near-Infrared Absorbance and Semiconducting Features.

    Science.gov (United States)

    Chen, Tian-Yu; Shi, Lei; Yang, Hao; Ren, Xiao-Ming; Xiao, Chen; Jin, Wanqin

    2016-02-01

    The organic-inorganic hybrid crystal Ni(en)3Ag2I4 (where en represents 1,2-ethylenediamine) crystallizes in hexagonal space group P63, in which the AgI4(3-) tetrahedra connect into a diamondlike inorganic framework via sharing of the vertex and the Ni(en)3(2+) octahedra fill in the pores of the framework. UV-vis-near-IR (NIR) spectroscopy disclosed that this hybrid shows intense NIR absorbance centered at ca. 870 nm, and the variable-temperature conductivity measurement revealed that the hybrid is a semiconductor with Ea = 0.46 eV. The electronic band structure of Ni(en)3Ag2I4 was calculated using the density functional theory method, indicating that the NIR absorbance arises from d-d transition within the Ni(2+) cation of Ni(en)3(2+). The homogeneous, compact, and transparent crystalline film of Ni(en)3Ag2I4 was fabricated via a secondary seed growth strategy, which has promising application in NIR devices.

  19. Quantum capacitance of an ultrathin topological insulator film in a magnetic field

    KAUST Repository

    Tahir, M.

    2013-02-12

    We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.

  20. Dielectric Property Study of Zirconia/Nano-alumina Hybrid Polyimide Film%氧化锆复配纳米氧化铝杂化聚酰亚胺薄膜的介电性能研究

    Institute of Scientific and Technical Information of China (English)

    范勇; 韩笑笑; 陈昊; 杨瑞宵

    2013-01-01

      采用微乳化-热液法制备了一系列氧化锆(ZrO2)改性的纳米氧化铝分散液,然后用原位聚合法制备了相应的氧化锆复配纳米氧化铝杂化聚酰亚胺复合薄膜,并对其进行了TEM表征、电气强度和电导电流测试以及电老化阈值分析。结果表明:掺杂氧化锆复配纳米氧化铝的杂化聚酰亚胺复合薄膜的电气强度大幅提高,当ZrO2的掺杂量为7%时,电气强度达到最高为396.8 MV/m;其电导电流密度、电老化阈值均高于只掺杂纳米氧化铝的聚酰亚胺薄膜,且随ZrO2含量增加均出现先增大后减小的趋势。%A series of nano-alumina dispersed solution modified by zirconia were prepared by micro emul-sion-hydrothermal method, and a zirconia/nano-alumina hybrid polyimide(PI) film was prepared through in-situ polymerization method, and then the films were characterized by TEM, and its electric strength, conduction current density and electric degradation threshold were analyzed. The results show that the doping of zirconia/nano-alumina can increase the electric strength of the film. When the ZrO2 doping con-tent is 7%, the electric strength attain maximum which is 396.8 kV/mm. The conduction current density and electric degradation threshold of the zirconia/nano-alumina hybrid PI films are higher than that of the PI film doped by nano-alumina only, and they increase first and then decrease with the increase of ZrO2 content.

  1. Microlandscaping on a graphene oxide film via localized decoration of Ag nanoparticles.

    Science.gov (United States)

    Teoh, Hao Fatt; Dzung, Pham; Lim, Wan Qi; Chua, Jun Hui; Lee, Kian Keat; Hu, Zhibin; Tan, Huiru; Tok, Eng Soon; Sow, Chorng Haur

    2014-03-21

    A direct and facile method for micro-landscaping of Ag nanoparticles on reduced graphene oxide (rGO) is presented. This method employs a focused laser beam to achieve local reduction of Ag(+) ions to Ag NPs by laser irradiation on a GO film that is submerged in AgNO3 solution. Using this method, the Ag nanoparticles can be directly anchored on a rGO film, creating a microlandscape of Ag nanoparticles on the rGO film. In addition, varying the intensity of the laser beam can control the shapes, sizes and distributions of Ag nanoparticles. The resulting hybrid materials exhibit surface enhanced Raman scattering of up to 16 times depending on the size and number density of silver nanoparticles. In addition, the hybrid Ag-rGO material shows superior photoresponse when compared to rGO.

  2. Effect of Silane Flow Rate on Structure and Corrosion Resistance of Ti-Si-N Thin Films Deposited by a Hybrid Cathodic Arc and Chemical Vapour Process

    Institute of Scientific and Technical Information of China (English)

    YIN Long-Cheng; LUAN Sen; LV Guo-Hua; WANG Xing-Quan; HUANG Jun; JIN Hui; FENG Ke-Cheng; YANG Si-Ze

    2008-01-01

    Ti-Si-N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from2.0 at. % to 12.2 at.%. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase.The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the flow rate of 14 sccm.