WorldWideScience

Sample records for hybrid encoding method

  1. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization.

    Science.gov (United States)

    Tan, Wui Siew; Lewis, Christina L; Horelik, Nicholas E; Pregibon, Daniel C; Doyle, Patrick S; Yi, Hyunmin

    2008-11-04

    We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.

  2. Hiding a Covert Digital Image by Assembling the RSA Encryption Method and the Binary Encoding Method

    OpenAIRE

    Kuang Tsan Lin; Sheng Lih Yeh

    2014-01-01

    The Rivest-Shamir-Adleman (RSA) encryption method and the binary encoding method are assembled to form a hybrid hiding method to hide a covert digital image into a dot-matrix holographic image. First, the RSA encryption method is used to transform the covert image to form a RSA encryption data string. Then, all the elements of the RSA encryption data string are transferred into binary data. Finally, the binary data are encoded into the dot-matrix holographic image. The pixels of the dot-matri...

  3. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    Science.gov (United States)

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant

  4. An encoding device and a method of encoding

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source...... in the area in the space and may interfere with the light, which interference may be encoded into a position or activation....

  5. Hiding a Covert Digital Image by Assembling the RSA Encryption Method and the Binary Encoding Method

    Directory of Open Access Journals (Sweden)

    Kuang Tsan Lin

    2014-01-01

    Full Text Available The Rivest-Shamir-Adleman (RSA encryption method and the binary encoding method are assembled to form a hybrid hiding method to hide a covert digital image into a dot-matrix holographic image. First, the RSA encryption method is used to transform the covert image to form a RSA encryption data string. Then, all the elements of the RSA encryption data string are transferred into binary data. Finally, the binary data are encoded into the dot-matrix holographic image. The pixels of the dot-matrix holographic image contain seven groups of codes used for reconstructing the covert image. The seven groups of codes are identification codes, covert-image dimension codes, covert-image graylevel codes, pre-RSA bit number codes, RSA key codes, post-RSA bit number codes, and information codes. The reconstructed covert image derived from the dot-matrix holographic image and the original covert image are exactly the same.

  6. A simple component-connection method for building binary decision diagrams encoding a fault tree

    International Nuclear Information System (INIS)

    Way, Y.-S.; Hsia, D.-Y.

    2000-01-01

    A simple new method for building binary decision diagrams (BDDs) encoding a fault tree (FT) is provided in this study. We first decompose the FT into FT-components. Each of them is a single descendant (SD) gate-sequence. Following the node-connection rule, the BDD-component encoding an SD FT-component can each be found to be an SD node-sequence. By successively connecting the BDD-components one by one, the BDD for the entire FT is thus obtained. During the node-connection and component-connection, reduction rules might need to be applied. An example FT is used throughout the article to explain the procedure step by step. Our method proposed is a hybrid one for FT analysis. Some algorithms or techniques used in the conventional FT analysis or the newer BDD approach may be applied to our case; our ideas mentioned in the article might be referred by the two methods

  7. Flipped-Adversarial AutoEncoders

    OpenAIRE

    Zhang, Jiyi; Dang, Hung; Lee, Hwee Kuan; Chang, Ee-Chien

    2018-01-01

    We propose a flipped-Adversarial AutoEncoder (FAAE) that simultaneously trains a generative model G that maps an arbitrary latent code distribution to a data distribution and an encoder E that embodies an "inverse mapping" that encodes a data sample into a latent code vector. Unlike previous hybrid approaches that leverage adversarial training criterion in constructing autoencoders, FAAE minimizes re-encoding errors in the latent space and exploits adversarial criterion in the data space. Exp...

  8. Hybrid Modeling of Intra-DCT Coefficients for Real-Time Video Encoding

    Directory of Open Access Journals (Sweden)

    Li Jin

    2008-01-01

    Full Text Available Abstract The two-dimensional discrete cosine transform (2-D DCT and its subsequent quantization are widely used in standard video encoders. However, since most DCT coefficients become zeros after quantization, a number of redundant computations are performed. This paper proposes a hybrid statistical model used to predict the zeroquantized DCT (ZQDCT coefficients for intratransform and to achieve better real-time performance. First, each pixel block at the input of DCT is decomposed into a series of mean values and a residual block. Subsequently, a statistical model based on Gaussian distribution is used to predict the ZQDCT coefficients of the residual block. Then, a sufficient condition under which each quantized coefficient becomes zero is derived from the mean values. Finally, a hybrid model to speed up the DCT and quantization calculations is proposed. Experimental results show that the proposed model can reduce more redundant computations and achieve better real-time performance than the reference in the literature at the cost of negligible video quality degradation. Experiments also show that the proposed model significantly reduces multiplications for DCT and quantization. This is particularly suitable for processors in portable devices where multiplications consume more power than additions. Computational reduction implies longer battery lifetime and energy economy.

  9. Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly

    Science.gov (United States)

    Mozhdehi, Davoud; Luginbuhl, Kelli M.; Simon, Joseph R.; Dzuricky, Michael; Berger, Rüdiger; Varol, H. Samet; Huang, Fred C.; Buehne, Kristen L.; Mayne, Nicholas R.; Weitzhandler, Isaac; Bonn, Mischa; Parekh, Sapun H.; Chilkoti, Ashutosh

    2018-05-01

    Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials—fatty-acid-modified elastin-like polypeptides—using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.

  10. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    International Nuclear Information System (INIS)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z.

    1990-01-01

    We have synthesized 32 P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies

  11. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. (National Institutes of Health, Bethesda, MD (USA))

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  12. AN ENCODING METHOD FOR COMPRESSING GEOGRAPHICAL COORDINATES IN 3D SPACE

    Directory of Open Access Journals (Sweden)

    C. Qian

    2017-09-01

    Full Text Available This paper proposed an encoding method for compressing geographical coordinates in 3D space. By the way of reducing the length of geographical coordinates, it helps to lessen the storage size of geometry information. In addition, the encoding algorithm subdivides the whole space according to octree rules, which enables progressive transmission and loading. Three main steps are included in this method: (1 subdividing the whole 3D geographic space based on octree structure, (2 resampling all the vertices in 3D models, (3 encoding the coordinates of vertices with a combination of Cube Index Code (CIC and Geometry Code. A series of geographical 3D models were applied to evaluate the encoding method. The results showed that this method reduced the storage size of most test data by 90 % or even more under the condition of a speed of encoding and decoding. In conclusion, this method achieved a remarkable compression rate in vertex bit size with a steerable precision loss. It shall be of positive meaning to the web 3d map storing and transmission.

  13. A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2017-06-01

    Full Text Available SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift–Keying (FSK method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent “Bit 0,” “Bit 1” and “Bit 2” respectively. Different to common BFSK in digital communication, “Bit 0” and “Bit 1” composited the unique identifier of stimuli in binary bit stream form, while “Bit 2” indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2n−1 (n is the length of bit command stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

  14. A novel attack method about double-random-phase-encoding-based image hiding method

    Science.gov (United States)

    Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen

    2018-03-01

    By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.

  15. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    Science.gov (United States)

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  16. Hybrid Methods in Designing Sierpinski Gasket Antennas

    Directory of Open Access Journals (Sweden)

    Mudrik Alaydrus

    2010-12-01

    Full Text Available Sierpinki gasket antennas as example of fractal antennas show multiband characteristics. The computer simulation of Sierpinksi gasket monopole with finite ground needs prohibitively large computer memory and more computational time. Hybrid methods consist of surface integral equation method and physical optics or uniform geometrical theory of diffraction should alleviate this computational burdens. The so-called full hybridization of the different methods with modifying the incoming electromagnetic waves in case of hybrid method surface integral equation method and physical optics and modification of the Greens function for hybrid method surface integral equation method and uniform geometrical theory of diffraction plays the central role in the observation. Comparison between results of different methods are given and also measurements of three Sierpinksi gasket antennas. The multiband characteristics of the antennas still can be seen with some reduction and enhancement of resonances.

  17. Low-complexity video encoding method for wireless image transmission in capsule endoscope.

    Science.gov (United States)

    Takizawa, Kenichi; Hamaguchi, Kiyoshi

    2010-01-01

    This paper presents a low-complexity video encoding method applicable for wireless image transmission in capsule endoscopes. This encoding method is based on Wyner-Ziv theory, in which side information available at a transmitter is treated as side information at its receiver. Therefore complex processes in video encoding, such as estimation of the motion vector, are moved to the receiver side, which has a larger-capacity battery. As a result, the encoding process is only to decimate coded original data through channel coding. We provide a performance evaluation for a low-density parity check (LDPC) coding method in the AWGN channel.

  18. Hybrid Lanczos-type product methods

    Energy Technology Data Exchange (ETDEWEB)

    Ressel, K.J. [Swiss Center for Scientific Computing, Zuerich (Switzerland)

    1996-12-31

    A general framework is proposed to construct hybrid iterative methods for the solution of large nonsymmetric systems of linear equations. This framework is based on Lanczos-type product methods, whose iteration polynomial consists of the Lanczos polynomial multiplied by some other arbitrary, {open_quotes}shadow{close_quotes} polynomial. By using for the shadow polynomial Chebyshev (more general Faber) polynomials or L{sup 2}-optimal polynomials, hybrid (Chebyshev-like) methods are incorporated into Lanczos-type product methods. In addition, to acquire spectral information on the system matrix, which is required for such a choice of shadow polynomials, the Lanczos-process can be employed either directly or in an QMR-like approach. The QMR like approach allows the cheap computation of the roots of the B-orthogonal polynomials and the residual polynomials associated with the QMR iteration. These roots can be used as a good approximation for the spectrum of the system matrix. Different choices for the shadow polynomials and their construction are analyzed. The resulting hybrid methods are compared with standard Lanczos-type product methods, like BiOStab, BiOStab({ell}) and BiOS.

  19. Performance evaluations of hybrid modulation with different optical labels over PDQ in high bit-rate OLS network systems.

    Science.gov (United States)

    Xu, M; Li, Y; Kang, T Z; Zhang, T S; Ji, J H; Yang, S W

    2016-11-14

    Two orthogonal modulation optical label switching(OLS) schemes, which are based on payload of polarization multiplexing-differential quadrature phase shift keying(POLMUX-DQPSK or PDQ) modulated with identifications of duobinary (DB) label and pulse position modulation(PPM) label, are researched in high bit-rate OLS network. The BER performance of hybrid modulation with payload and label signals are discussed and evaluated in theory and simulation. The theoretical BER expressions of PDQ, PDQ-DB and PDQ-PPM are given with analysis method of hybrid modulation encoding in different the bit-rate ratios of payload and label. Theoretical derivation results are shown that the payload of hybrid modulation has a certain gain of receiver sensitivity than payload without label. The sizes of payload BER gain obtained from hybrid modulation are related to the different types of label. The simulation results are consistent with that of theoretical conclusions. The extinction ratio (ER) conflicting between hybrid encoding of intensity and phase types can be compromised and optimized in OLS system of hybrid modulation. The BER analysis method of hybrid modulation encoding in OLS system can be applied to other n-ary hybrid modulation or combination modulation systems.

  20. High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods.

    Science.gov (United States)

    Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio

    2010-01-01

    An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T(2)(*) effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T(2) contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.

  1. Real-time hybrid simulation using the convolution integral method

    International Nuclear Information System (INIS)

    Kim, Sung Jig; Christenson, Richard E; Wojtkiewicz, Steven F; Johnson, Erik A

    2011-01-01

    This paper proposes a real-time hybrid simulation method that will allow complex systems to be tested within the hybrid test framework by employing the convolution integral (CI) method. The proposed CI method is potentially transformative for real-time hybrid simulation. The CI method can allow real-time hybrid simulation to be conducted regardless of the size and complexity of the numerical model and for numerical stability to be ensured in the presence of high frequency responses in the simulation. This paper presents the general theory behind the proposed CI method and provides experimental verification of the proposed method by comparing the CI method to the current integration time-stepping (ITS) method. Real-time hybrid simulation is conducted in the Advanced Hazard Mitigation Laboratory at the University of Connecticut. A seismically excited two-story shear frame building with a magneto-rheological (MR) fluid damper is selected as the test structure to experimentally validate the proposed method. The building structure is numerically modeled and simulated, while the MR damper is physically tested. Real-time hybrid simulation using the proposed CI method is shown to provide accurate results

  2. Hybrid particles and associated methods

    Science.gov (United States)

    Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin

    2015-02-10

    Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.

  3. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  4. 5th Symposium on Hybrid RANS-LES Methods

    CERN Document Server

    Haase, Werner; Peng, Shia-Hui; Schwamborn, Dieter

    2015-01-01

    This book gathers the proceedings of the Fifth Symposium on Hybrid RANS-LES Methods, which was held on March 19-21 in College Station, Texas, USA. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. ...

  5. Key management of the double random-phase-encoding method using public-key encryption

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  6. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  7. New hybrid conjugate gradient methods with the generalized Wolfe line search.

    Science.gov (United States)

    Xu, Xiao; Kong, Fan-Yu

    2016-01-01

    The conjugate gradient method was an efficient technique for solving the unconstrained optimization problem. In this paper, we made a linear combination with parameters β k of the DY method and the HS method, and putted forward the hybrid method of DY and HS. We also proposed the hybrid of FR and PRP by the same mean. Additionally, to present the two hybrid methods, we promoted the Wolfe line search respectively to compute the step size α k of the two hybrid methods. With the new Wolfe line search, the two hybrid methods had descent property and global convergence property of the two hybrid methods that can also be proved.

  8. Development of nondestructive hybrid measuring method for three-dimensional residual stress distribution of thick welded joint. Hybrid measuring method of inherent strain method and neutron diffraction method

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Kasahara, Norifumi; Tamura, Ryota

    2012-01-01

    The measuring methods of the residual stress are classified into destructive one and nondestructive one. The inherent strain method (ISM) is destructive one. The neutron diffraction method (NDM) is nondestructive one. But the measurable depth is limited within about 20 mm and the method cannot measure the weld zone, without destruction of the object. So, in this study, the hybrid measuring method has been developed, by combining the ISM and the NDM. The theory of the hybrid method is the same as the ISM. In the analysis, the strains measured by the NDM without destruction are used. This hybrid measuring method is a true nondestructive measuring method for a thick welded joint. The applicability of the hybrid method has been verified by simulation, using a butt welded joint of thick pipes. In the simulation, the reliable order of the strains measured by the present NDM is very important, and was considered as 10 micro. The measurable regions by the present NDM were assumed. Under the above conditions, the data (the residual elastic strains assumed to be measured by the NDM) were made, and used in the ISM. As a result of such simulation, it has been cleared that the estimated residual stress has very high accuracy, if enough data are used. The required number of data is less than the ISM. (author)

  9. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    Science.gov (United States)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  10. New Methods of Stereo Encoding for FM Radio Broadcasting Based on Digital Technology

    Directory of Open Access Journals (Sweden)

    P. Stranak

    2007-12-01

    Full Text Available The article describes new methods of stereo encoding for FM radio broadcasting. Digital signal processing makes possible to construct an encoder with properties that are not attainable using conventional analog solutions. The article describes the mathematical model of the encoder, on the basis of which a specific program code for DSP was developed. The article further deals with a new method of composite clipping which does not cause impurities in the output spectrum, and at the same time preserves high separation between the left and right audio channels. The application of the new method is useful mainly where there are unwanted signal overshoots on the input of the stereo encoder, e.g., in case of signal transmission from the studio to the transmitter site through a route with psychoacoustic lossy compression of data rate.

  11. A hybrid bit-encoding for SAT planning based on clique-partitioning

    Science.gov (United States)

    Tapia, Cristóbal; San Segundo, Pablo; Galán, Ramón

    2017-09-01

    Planning as satisfiability is one of the most efficient ways to solve classic automated planning problems. In SAT planning, the encoding used to convert the problem to a SAT formula is critical for the performance of the SAT solver. This paper presents a novel bit-encoding that reduces the number of bits required to represent actions in a SAT-based automated planning problem. To obtain such encoding we first build a conflict graph, which represents incompatibilities of pairs of actions, and bitwise encode the subsets of actions determined by a clique partition. This reduces the number of Boolean variables and clauses of the SAT encoding, while preserving the possibility of parallel execution of compatible (non-neighbor) actions. The article also describes an appropriate algorithm for selecting the clique partition for this application and compares the new encodings obtained over some standard planning problems.

  12. Constructing LDPC Codes from Loop-Free Encoding Modules

    Science.gov (United States)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth

    2009-01-01

    A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to

  13. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  14. Multiple-time-stepping generalized hybrid Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, Bruno, E-mail: bescribano@bcamath.org [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); Akhmatskaya, Elena [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Reich, Sebastian [Universität Potsdam, Institut für Mathematik, D-14469 Potsdam (Germany); Azpiroz, Jon M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, Donostia (Spain)

    2015-01-01

    Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.

  15. Method of implementing frequency-encoded NOT, OR and NOR

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 5. Method of implementing frequency-encoded NOT, OR and NOR logic operations using lithium niobate waveguide and reflecting semiconductor optical amplifiers. Sisir Kumar Garai Sourangshu Mukhopadhyay. Volume 73 Issue 5 November 2009 pp 901- ...

  16. Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams

    Science.gov (United States)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2013-02-01

    The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the

  17. Encoding of coordination complexes with XML.

    Science.gov (United States)

    Vinoth, P; Sankar, P

    2017-09-01

    An in-silico system to encode structure, bonding and properties of coordination complexes is developed. The encoding is achieved through a semantic XML markup frame. Composition of the coordination complexes is captured in terms of central atom and ligands. Structural information of central atom is detailed in terms of electron status of valence electron orbitals. The ligands are encoded with specific reference to the electron environment of ligand centre atoms. Behaviour of ligands to form low or high spin complexes is accomplished by assigning a Ligand Centre Value to every ligand based on the electronic environment of ligand centre atom. Chemical ontologies are used for categorization purpose and to control different hybridization schemes. Complexes formed by the central atoms of transition metal, non-transition elements belonging to s-block, p-block and f-block are encoded with a generic encoding platform. Complexes of homoleptic, heteroleptic and bridged types are also covered by this encoding system. Utility of the encoded system to predict redox electron transfer reaction in the coordination complexes is demonstrated with a simple application. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Method for making an improved magnetic encoding device

    Science.gov (United States)

    Fox, Richard J.

    1981-01-01

    A magnetic encoding device and method for making the same are provided for use as magnetic storage mediums in identification control applications which give output signals from a reader that are of shorter duration and substantially greater magnitude than those of the prior art. Magnetic encoding elements are produced by uniformly bending wire or strip stock of a magnetic material longitudinally about a common radius to exceed the elastic limit of the material and subsequently mounting the material so that it is restrained in an unbent position on a substrate of nonmagnetic material. The elements are spot weld attached to a substrate to form a binary coded array of elements according to a desired binary code. The coded substrate may be enclosed in a plastic laminate structure. Such devices may be used for security badges, key cards, and the like and may have many other applications.

  19. An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension

    International Nuclear Information System (INIS)

    Gao Gan

    2015-01-01

    Song [Song D 2004 Phys. Rev. A 69 034301] first proposed two key distribution schemes with the symmetry feature. We find that, in the schemes, the private channels which Alice and Bob publicly announce the initial Bell state or the measurement result through are not needed in discovering keys, and Song’s encoding methods do not arrive at the optimization. Here, an optimized encoding method is given so that the efficiencies of Song’s schemes are improved by 7/3 times. Interestingly, this optimized encoding method can be extended to the key distribution scheme composed of generalized Bell states. (paper)

  20. Optical image encryption method based on incoherent imaging and polarized light encoding

    Science.gov (United States)

    Wang, Q.; Xiong, D.; Alfalou, A.; Brosseau, C.

    2018-05-01

    We propose an incoherent encoding system for image encryption based on a polarized encoding method combined with an incoherent imaging. Incoherent imaging is the core component of this proposal, in which the incoherent point-spread function (PSF) of the imaging system serves as the main key to encode the input intensity distribution thanks to a convolution operation. An array of retarders and polarizers is placed on the input plane of the imaging structure to encrypt the polarized state of light based on Mueller polarization calculus. The proposal makes full use of randomness of polarization parameters and incoherent PSF so that a multidimensional key space is generated to deal with illegal attacks. Mueller polarization calculus and incoherent illumination of imaging structure ensure that only intensity information is manipulated. Another key advantage is that complicated processing and recording related to a complex-valued signal are avoided. The encoded information is just an intensity distribution, which is advantageous for data storage and transition because information expansion accompanying conventional encryption methods is also avoided. The decryption procedure can be performed digitally or using optoelectronic devices. Numerical simulation tests demonstrate the validity of the proposed scheme.

  1. Synthesis and assessment methods for an edge-alignment-free hybrid image

    Science.gov (United States)

    Sripian, Peeraya; Yamaguchi, Yasushi

    2017-07-01

    A hybrid image allows multiple image interpretations to be modulated by the viewing distance. It can be constructed on the basis of the multiscale perceptual mechanisms of the human visual system by combining the low and high spatial frequencies of two different images. The hybrid image was introduced as an experimental tool for visual recognition study in terms of spatial frequency perception. To produce a compelling hybrid image, the original hybrid image synthesis method could only use similar shapes of source images that were aligned in the edges. If any two different images can be hybrid, it would be beneficial as a new experimental tool. In addition, there is no measure for the actual perception of spatial frequency, whether a single spatial frequency or both spatial frequencies are perceived from the hybrid stimulus. This paper describes two methods for synthesizing a hybrid image from dissimilar shape images or unaligned images; this hybrid image is known as an "edge-alignment-free hybrid image." A noise-inserted method can be done by intentionally inserting and enhancing noises into the high-frequency image. With this method, the low-frequency blobs are covered with high-frequency noises when viewed up close. A color-inserted method uses complementary color gratings in the background of the high-frequency image to emphasize the high-frequency image when viewed up close, whereas the gratings disappear when viewed from far away. To ascertain that our approach successfully separates the spatial frequency at each viewing distance, we measured this property using our proposed assessment method. Our proposed method allows the experimenter to quantify the probability of perceiving both spatial frequencies and a single spatial frequency in a hybrid image. The experimental results confirmed that our proposed synthesis methods successfully hid the low-frequency image and emphasized the high-frequency image at a close viewing distance. At the same time, the

  2. Hybrid diffusion–transport spatial homogenization method

    International Nuclear Information System (INIS)

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  3. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    Science.gov (United States)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  4. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    International Nuclear Information System (INIS)

    Yue, X; Zeng, M; Wang, Y; Wang, X; Zeng, Z; Zhao, Z; Cheng, J

    2014-01-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given

  5. Method of generating ploynucleotides encoding enhanced folding variants

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.

    2017-05-02

    The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.

  6. Hybrid Method Simulation of Slender Marine Structures

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye

    This present thesis consists of an extended summary and five appended papers concerning various aspects of the implementation of a hybrid method which combines classical simulation methods and artificial neural networks. The thesis covers three main topics. Common for all these topics...... only recognize patterns similar to those comprised in the data used to train the network. Fatigue life evaluation of marine structures often considers simulations of more than a hundred different sea states. Hence, in order for this method to be useful, the training data must be arranged so...... that a single neural network can cover all relevant sea states. The applicability and performance of the present hybrid method is demonstrated on a numerical model of a mooring line attached to a floating offshore platform. The second part of the thesis demonstrates how sequential neural networks can be used...

  7. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  8. A study on the development of photoelastic experimental hybrid method for colour isochromatics (I)

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Nam, Jeong Hwan; Kim, Kyo Hyoung; Kwon, O Sung; Kwon, Gun; Park, Sung Han

    2010-01-01

    Isochromatics obtained from photoelastic experiment shows the stress distributions of the full field of a structure under load. Therefore, stress distributions of the structure can be read at a glance through isochromatics. Many experimental data can be obtained from isochromatics which are then used in various photoelastic experimental hybrid methods for stress analysis. Monochromatic light has however, until now been used in the photoelastic experimental hybrid method to produce black and white isochromatics. The use of black and white isochromatics in photoelastic experimental hybrid method for black and white isochromatics requires high fringe orders in order to obtain sufficient experimental data for photoelastic hybrid techniques. Accordingly, this paper develops the photoelastic experimental hybrid method for color isochromatics in which a fringe order of 1 is enough to gather the experimental data of the photoelastic experimental hybrid method. The method was applied to validate stress concentration problems. Experimental results from this study indicated that the photoelastic experimental hybrid method for color isochromatics is more precise than the photoelastic experimental hybrid method for black and white isochromatics. The use of few fringe orders in photoelastic experimental hybrid method for color isochromatics can offer significant advantages in stress analysis of real components using reflective-type photoelastic experimental method

  9. Hybrid SN Laplace Transform Method For Slab Lattice Calculations

    International Nuclear Information System (INIS)

    Segatto, Cynthia F.; Vilhena, Marco T.; Zani, Jose H.; Barros, Ricardo C.

    2008-01-01

    In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this paper we describe a hybrid discrete ordinates (S N ) method for slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. We use special fuel-moderator interface conditions based on an approximate angular flux interpolation analytical method and the Laplace transform (LTS N ) numerical method to calculate the neutron flux distribution and the thermal disadvantage factor. We present numerical results for a range of typical model problems. (authors)

  10. Design Method and Cost-Benefit Analysis of Hybrid Fiber Used in Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Haiwei Zhang

    2016-01-01

    Full Text Available Fiber, as an additive, can improve the performance of asphalt concrete and be widely studied, but only a few works have been done for hybrid fiber. This paper presents a new and convenient method to design hybrid fiber and verifies hybrid fiber’s superiority in asphalt pavement engineering. Firstly, this paper expounds the design method used as its applied example with the hybrid fiber composed of lignin, polyester, and polypropylene fibers. In this method, a direct shear device (DSD is used to measure the shear damage energy density (SDED of hybrid fiber modified asphalts, and range and variance statistical analysis are applied to determine the composition proportion of hybrid fiber. Then, the engineering property of hybrid fiber reinforced asphalt concrete (AC-13 is investigated. Finally, a cost-benefit model is developed to analyze the advantage of hybrid fiber compared to single fibers. The results show that the design method employed in this paper can offer a beneficial reference. A combination of 1.8% of lignin fiber and 2.4% of polyester fiber plus 3.0% polypropylene fiber presented the best reinforcement of the hybrid fiber. The cost-benefit model verifies that the hybrid fiber can bring about comprehensive pavement performance and good economy.

  11. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Lin, Ying; Li, Xingqiu

    2018-03-01

    Automatic and accurate identification of rolling bearings fault categories, especially for the fault severities and fault orientations, is still a major challenge in rotating machinery fault diagnosis. In this paper, a novel method called ensemble deep auto-encoders (EDAEs) is proposed for intelligent fault diagnosis of rolling bearings. Firstly, different activation functions are employed as the hidden functions to design a series of auto-encoders (AEs) with different characteristics. Secondly, EDAEs are constructed with various auto-encoders for unsupervised feature learning from the measured vibration signals. Finally, a combination strategy is designed to ensure accurate and stable diagnosis results. The proposed method is applied to analyze the experimental bearing vibration signals. The results confirm that the proposed method can get rid of the dependence on manual feature extraction and overcome the limitations of individual deep learning models, which is more effective than the existing intelligent diagnosis methods.

  12. Encoding methods for B1+ mapping in parallel transmit systems at ultra high field

    Science.gov (United States)

    Tse, Desmond H. Y.; Poole, Michael S.; Magill, Arthur W.; Felder, Jörg; Brenner, Daniel; Jon Shah, N.

    2014-08-01

    Parallel radiofrequency (RF) transmission, either in the form of RF shimming or pulse design, has been proposed as a solution to the B1+ inhomogeneity problem in ultra high field magnetic resonance imaging. As a prerequisite, accurate B1+ maps from each of the available transmit channels are required. In this work, four different encoding methods for B1+ mapping, namely 1-channel-on, all-channels-on-except-1, all-channels-on-1-inverted and Fourier phase encoding, were evaluated using dual refocusing acquisition mode (DREAM) at 9.4 T. Fourier phase encoding was demonstrated in both phantom and in vivo to be the least susceptible to artefacts caused by destructive RF interference at 9.4 T. Unlike the other two interferometric encoding schemes, Fourier phase encoding showed negligible dependency on the initial RF phase setting and therefore no prior B1+ knowledge is required. Fourier phase encoding also provides a flexible way to increase the number of measurements to increase SNR, and to allow further reduction of artefacts by weighted decoding. These advantages of Fourier phase encoding suggest that it is a good choice for B1+ mapping in parallel transmit systems at ultra high field.

  13. Reduction Methods for Real-time Simulations in Hybrid Testing

    DEFF Research Database (Denmark)

    Andersen, Sebastian

    2016-01-01

    Hybrid testing constitutes a cost-effective experimental full scale testing method. The method was introduced in the 1960's by Japanese researchers, as an alternative to conventional full scale testing and small scale material testing, such as shake table tests. The principle of the method...... is performed on a glass fibre reinforced polymer composite box girder. The test serves as a pilot test for prospective real-time tests on a wind turbine blade. The Taylor basis is implemented in the test, used to perform the numerical simulations. Despite of a number of introduced errors in the real...... is to divide a structure into a physical substructure and a numerical substructure, and couple these in a test. If the test is conducted in real-time it is referred to as real time hybrid testing. The hybrid testing concept has developed significantly since its introduction in the 1960', both with respect...

  14. Probabilistic Analysis Methods for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per

    This paper discusses a general approach for the application of probabilistic analysis methods in the design of ventilation systems. The aims and scope of probabilistic versus deterministic methods are addressed with special emphasis on hybrid ventilation systems. A preliminary application...... of stochastic differential equations is presented comprising a general heat balance for an arbitrary number of loads and zones in a building to determine the thermal behaviour under random conditions....

  15. A hybrid measure-correlate-predict method for long-term wind condition assessment

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille; Hodge, Bri-Mathias

    2014-01-01

    Highlights: • A hybrid measure-correlate-predict (MCP) methodology with greater accuracy is developed. • Three sets of performance metrics are proposed to evaluate the hybrid MCP method. • Both wind speed and direction are considered in the hybrid MCP method. • The best combination of MCP algorithms is determined. • The developed hybrid MCP method is uniquely helpful for long-term wind resource assessment. - Abstract: This paper develops a hybrid measure-correlate-predict (MCP) strategy to assess long-term wind resource variations at a farm site. The hybrid MCP method uses recorded data from multiple reference stations to estimate long-term wind conditions at a target wind plant site with greater accuracy than is possible with data from a single reference station. The weight of each reference station in the hybrid strategy is determined by the (i) distance and (ii) elevation differences between the target farm site and each reference station. In this case, the wind data is divided into sectors according to the wind direction, and the MCP strategy is implemented for each wind direction sector separately. The applicability of the proposed hybrid strategy is investigated using five MCP methods: (i) the linear regression; (ii) the variance ratio; (iii) the Weibull scale; (iv) the artificial neural networks; and (v) the support vector regression. To implement the hybrid MCP methodology, we use hourly averaged wind data recorded at five stations in the state of Minnesota between 07-01-1996 and 06-30-2004. Three sets of performance metrics are used to evaluate the hybrid MCP method. The first set of metrics analyze the statistical performance, including the mean wind speed, wind speed variance, root mean square error, and mean absolute error. The second set of metrics evaluate the distribution of long-term wind speed; to this end, the Weibull distribution and the Multivariate and Multimodal Wind Distribution models are adopted. The third set of metrics analyze

  16. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  17. A deep learning method for lincRNA detection using auto-encoder algorithm.

    Science.gov (United States)

    Yu, Ning; Yu, Zeng; Pan, Yi

    2017-12-06

    RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly

  18. Hybrid RANS-LES using high order numerical methods

    Science.gov (United States)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  19. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    International Nuclear Information System (INIS)

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-01-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices

  20. Identification and validation of human papillomavirus encoded microRNAs.

    Directory of Open Access Journals (Sweden)

    Kui Qian

    Full Text Available We report here identification and validation of the first papillomavirus encoded microRNAs expressed in human cervical lesions and cell lines. We established small RNA libraries from ten human papillomavirus associated cervical lesions including cancer and two human papillomavirus harboring cell lines. These libraries were sequenced using SOLiD 4 technology. We used the sequencing data to predict putative viral microRNAs and discovered nine putative papillomavirus encoded microRNAs. Validation was performed for five candidates, four of which were successfully validated by qPCR from cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38 and one by HPV 68. The expression of HPV 16 microRNAs was further confirmed by in situ hybridization, and colocalization with p16INK4A was established. Prediction of cellular target genes of HPV 16 encoded microRNAs suggests that they may play a role in cell cycle, immune functions, cell adhesion and migration, development, and cancer. Two putative viral target sites for the two validated HPV 16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene and one in the LCR region. This is the first report to show that papillomaviruses encode their own microRNA species. Importantly, microRNAs were found in libraries established from human cervical disease and carcinoma cell lines, and their expression was confirmed in additional tissue samples. To our knowledge, this is also the first paper to use in situ hybridization to show the expression of a viral microRNA in human tissue.

  1. Solution of the radiative enclosure with a hybrid inverse method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rogerio Brittes da; Franca, Francis Henrique Ramos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica], E-mail: frfranca@mecanica.ufrgs.br

    2010-07-01

    This work applies the inverse analysis to solve a three-dimensional radiative enclosure - which the surfaces are diffuse-grays - filled with transparent medium. The aim is determine the powers and locations of the heaters to attain both uniform heat flux and temperature on the design surface. A hybrid solution that couples two methods, the generalized extremal optimization (GEO) and the truncated singular value decomposition (TSVD) is proposed. The determination of the heat sources distribution is treated as an optimization problem, by GEO algorithm , whereas the solution of the system of equation, that embodies the Fredholm equation of first kind and therefore is expected to be ill conditioned, is build up through TSVD regularization method. The results show that the hybrid method can lead to a heat flux on the design surface that satisfies the imposed conditions with maximum error of less than 1,10%. The results illustrated the relevance of a hybrid method as a prediction tool. (author)

  2. Hybrid Prediction Method for Aircraft Interior Noise, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is research and development of methods for application of the Hybrid FE-SEA method to aircraft vibro-acoustic problems. This proposal...

  3. M/T method based incremental encoder velocity measurement error analysis and self-adaptive error elimination algorithm

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Long, Jiang

    2017-01-01

    For motor control applications, the speed loop performance is largely depended on the accuracy of speed feedback signal. M/T method, due to its high theoretical accuracy, is the most widely used in incremental encoder adopted speed measurement. However, the inherent encoder optical grating error...

  4. A modeling method for hybrid energy behaviors in flexible machining systems

    International Nuclear Information System (INIS)

    Li, Yufeng; He, Yan; Wang, Yan; Wang, Yulin; Yan, Ping; Lin, Shenlong

    2015-01-01

    Increasingly environmental and economic pressures have led to great concerns regarding the energy consumption of machining systems. Understanding energy behaviors of flexible machining systems is a prerequisite for improving energy efficiency of these systems. This paper proposes a modeling method to predict energy behaviors in flexible machining systems. The hybrid energy behaviors not only depend on the technical specification related of machine tools and workpieces, but are significantly affected by individual production scenarios. In the method, hybrid energy behaviors are decomposed into Structure-related energy behaviors, State-related energy behaviors, Process-related energy behaviors and Assignment-related energy behaviors. The modeling method for the hybrid energy behaviors is proposed based on Colored Timed Object-oriented Petri Net (CTOPN). The former two types of energy behaviors are modeled by constructing the structure of CTOPN, whist the latter two types of behaviors are simulated by applying colored tokens and associated attributes. Machining on two workpieces in the experimental workshop were undertaken to verify the proposed modeling method. The results showed that the method can provide multi-perspective transparency on energy consumption related to machine tools, workpieces as well as production management, and is particularly suitable for flexible manufacturing system when frequent changes in machining systems are often encountered. - Highlights: • Energy behaviors in flexible machining systems are modeled in this paper. • Hybrid characteristics of energy behaviors are examined from multiple viewpoints. • Flexible modeling method CTOPN is used to predict the hybrid energy behaviors. • This work offers a multi-perspective transparency on energy consumption

  5. Hybrid numerical calculation method for bend waveguides

    OpenAIRE

    Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno

    2017-01-01

    National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...

  6. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  7. A direct hybrid SN method for slab-geometry lattice calculations

    International Nuclear Information System (INIS)

    Silva, Davi J.M.; Barros, Ricardo C.; Zani, Jose H.

    2011-01-01

    In this work we describe a hybrid direct method for calculating the thermal disadvantage factor and the neutron flux distribution in fuel-moderator lattices. For the mathematical model, we use the one-speed slab-geometry discrete ordinates (S N ) transport equation with linearly anisotropic scattering. The basic idea is to use higher order angular quadrature set in the highly absorbing fuel region (S NF ) and lower order angular quadrature set in the diffusive moderator region (S NM ) , i.e., N F > N M . We apply special continuity conditions based on the equivalence of the S N and P N-1 equations, which characterize the hybrid model. Numerical results to a typical model problem are given to illustrate the accuracy and the efficiency of the offered hybrid method. (author)

  8. A hybrid method for evaluating enterprise architecture implementation.

    Science.gov (United States)

    Nikpay, Fatemeh; Ahmad, Rodina; Yin Kia, Chiam

    2017-02-01

    Enterprise Architecture (EA) implementation evaluation provides a set of methods and practices for evaluating the EA implementation artefacts within an EA implementation project. There are insufficient practices in existing EA evaluation models in terms of considering all EA functions and processes, using structured methods in developing EA implementation, employing matured practices, and using appropriate metrics to achieve proper evaluation. The aim of this research is to develop a hybrid evaluation method that supports achieving the objectives of EA implementation. To attain this aim, the first step is to identify EA implementation evaluation practices. To this end, a Systematic Literature Review (SLR) was conducted. Second, the proposed hybrid method was developed based on the foundation and information extracted from the SLR, semi-structured interviews with EA practitioners, program theory evaluation and Information Systems (ISs) evaluation. Finally, the proposed method was validated by means of a case study and expert reviews. This research provides a suitable foundation for researchers who wish to extend and continue this research topic with further analysis and exploration, and for practitioners who would like to employ an effective and lightweight evaluation method for EA projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase II isozymes

    International Nuclear Information System (INIS)

    Chung, T.D.Y.; Drake, F.H.; Tan, K.B.; Per, S.R.; Crooke, S.T.; Mirabelli, C.K.

    1989-01-01

    Several DNA topoisomerase II partial cDNA clones obtained from a human Raji-HN2 cDNA library were sequenced and two classes of nucleotide sequences were found. One member of the first class, SP1, was identical to an internal fragment of human HeLa cell Topo II cDNA described earlier. A member of the second class, SP11, shared extensive nucleotide (75%) and predicted peptide (92%) sequence similarities with the first two-thirds of HeLa Topo II. Each class of cDNAs hybridized to unique, nonoverlapping restriction enzyme fragments of genomic DNA from several human cell lines. Synthetic 24-mer oligonucleotide probes specific for each cDNA class hybridized to 6.5-kilobase mRNAs; furthermore, hybridization of probe specific for one class was not blocked by probe specific for the other. Antibodies raised against a synthetic SP1-encoded dodecapeptide specifically recognized the 170-kDa form of Topo II, while antibodies raised against the corresponding SP11-encoded dodecapeptide, or a second unique SP11-encoded tridecapeptide, selectively recognized the 180-kDa form of Topo II. These data provide genetic and immunochemical evidence for two Topo II isozymes

  10. Hybrid statistics-simulations based method for atom-counting from ADF STEM images

    Energy Technology Data Exchange (ETDEWEB)

    De wael, Annelies, E-mail: annelies.dewael@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); De Backer, Annick [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Jones, Lewys; Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Van Aert, Sandra, E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2017-06-15

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. - Highlights: • A hybrid method for atom-counting from ADF STEM images is introduced. • Image simulations are incorporated into a statistical framework in a reliable manner. • Limits of the existing methods for atom-counting are far exceeded. • Reliable counting results from an experimental low dose image are obtained. • Progress towards reliable quantitative analysis of beam-sensitive materials is made.

  11. An Enhanced Run-Length Encoding Compression Method for Telemetry Data

    Directory of Open Access Journals (Sweden)

    Shan Yanhu

    2017-09-01

    Full Text Available The telemetry data are essential in evaluating the performance of aircraft and diagnosing its failures. This work combines the oversampling technology with the run-length encoding compression algorithm with an error factor to further enhance the compression performance of telemetry data in a multichannel acquisition system. Compression of telemetry data is carried out with the use of FPGAs. In the experiments there are used pulse signals and vibration signals. The proposed method is compared with two existing methods. The experimental results indicate that the compression ratio, precision, and distortion degree of the telemetry data are improved significantly compared with those obtained by the existing methods. The implementation and measurement of the proposed telemetry data compression method show its effectiveness when used in a high-precision high-capacity multichannel acquisition system.

  12. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    Science.gov (United States)

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-06-01

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A hybrid numerical method for orbit correction

    International Nuclear Information System (INIS)

    White, G.; Himel, T.; Shoaee, H.

    1997-09-01

    The authors describe a simple hybrid numerical method for beam orbit correction in particle accelerators. The method overcomes both degeneracy in the linear system being solved and respects boundaries on the solution. It uses the Singular Value Decomposition (SVD) to find and remove the null-space in the system, followed by a bounded Linear Least Squares analysis of the remaining recast problem. It was developed for correcting orbit and dispersion in the B-factory rings

  14. A general method for identifying major hybrid male sterility genes in Drosophila.

    Science.gov (United States)

    Zeng, L W; Singh, R S

    1995-10-01

    The genes responsible for hybrid male sterility in species crosses are usually identified by introgressing chromosome segments, monitored by visible markers, between closely related species by continuous backcrosses. This commonly used method, however, suffers from two problems. First, it relies on the availability of markers to monitor the introgressed regions and so the portion of the genome examined is limited to the marked regions. Secondly, the introgressed regions are usually large and it is impossible to tell if the effects of the introgressed regions are the result of single (or few) major genes or many minor genes (polygenes). Here we introduce a simple and general method for identifying putative major hybrid male sterility genes which is free of these problems. In this method, the actual hybrid male sterility genes (rather than markers), or tightly linked gene complexes with large effects, are selectively introgressed from one species into the background of another species by repeated backcrosses. This is performed by selectively backcrossing heterozygous (for hybrid male sterility gene or genes) females producing fertile and sterile sons in roughly equal proportions to males of either parental species. As no marker gene is required for this procedure, this method can be used with any species pairs that produce unisexual sterility. With the application of this method, a small X chromosome region of Drosophila mauritiana which produces complete hybrid male sterility (aspermic testes) in the background of D. simulans was identified. Recombination analysis reveals that this region contains a second major hybrid male sterility gene linked to the forked locus located at either 62.7 +/- 0.66 map units or at the centromere region of the X chromosome of D. mauritiana.

  15. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Directory of Open Access Journals (Sweden)

    Suyi Li

    2017-01-01

    Full Text Available The noninvasive peripheral oxygen saturation (SpO2 and the pulse rate can be extracted from photoplethysmography (PPG signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  16. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    Science.gov (United States)

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  17. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Science.gov (United States)

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  18. Identification of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Parris, D.S.; Cross, A.; Orr, A.; Frame, M.C.; Murphy, M.; McGeoch, D.J.; Marsden, H.S.; Haarr, L.

    1988-01-01

    Hybrid arrest of in vitro translation was used to localize the region of the herpes simplex virus type 1 genome encoding the 65-kilodalton DNA-binding protein (65K DBP ) to between genome coordinates 0.592 and 0.649. Knowledge of the DNA sequence of this region allowed us to identify three open reading frames as likely candidates for the gene encoding 65K DBP . Two independent approaches were used to determine which of these three open reading frames encoded the protein. For the first approach a monoclonal antibody, MAb 6898, which reacted specifically with 65K DBP , was isolated. This antibody was used, with the techniques of hybrid arrest of in vitro translation and in vitro translation of selected mRNA, to identify the gene encoding 65K DBP . The second approach involved preparation of antisera directed against oligopeptides corresponding to regions of the predicted amino acid sequence of this gene. These antisera reacted specifically with 65K DBP , thus confirming the gene assignment

  19. An efficient method for hybrid density functional calculation with spin-orbit coupling

    Science.gov (United States)

    Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui

    2018-03-01

    In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.

  20. Hybrid design method for air-core solenoid with axial homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-03-15

    In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million)

  1. Hybrid subgroup decomposition method for solving fine-group eigenvalue transport problems

    International Nuclear Information System (INIS)

    Yasseri, Saam; Rahnema, Farzad

    2014-01-01

    Highlights: • An acceleration technique for solving fine-group eigenvalue transport problems. • Coarse-group quasi transport theory to solve coarse-group eigenvalue transport problems. • Consistent and inconsistent formulations for coarse-group quasi transport theory. • Computational efficiency amplified by a factor of 2 using hybrid SGD for 1D BWR problem. - Abstract: In this paper, a new hybrid method for solving fine-group eigenvalue transport problems is developed. This method extends the subgroup decomposition method to efficiently couple a new coarse-group quasi transport theory with a set of fixed-source transport decomposition sweeps to obtain the fine-group transport solution. The advantages of the quasi transport theory are its high accuracy, straight-forward implementation and numerical stability. The hybrid method is analyzed for a 1D benchmark problem characteristic of boiling water reactors (BWR). It is shown that the method reproduces the fine-group transport solution with high accuracy while increasing the computational efficiency up to 12 times compared to direct fine-group transport calculations

  2. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  3. A Laplace transform method for energy multigroup hybrid discrete ordinates

    International Nuclear Information System (INIS)

    Segatto, C.F.; Vilhena, M.T.; Barros, R.C.

    2010-01-01

    In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this work we describe a hybrid discrete ordinates (S N) method for energy multigroup slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. The idea is based on the fact that in weakly absorbing media whose physical size is several neutron mean free paths in extent, even the S 2 method (P 1 approximation), leads to an accurate result. We use special fuel-moderator interface conditions and the Laplace transform (LTS N ) analytical numerical method to calculate the two-energy group neutron flux distributions and the thermal disadvantage factor. We present numerical results for a range of typical model problems.

  4. A hybrid method for accurate star tracking using star sensor and gyros.

    Science.gov (United States)

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  5. Cellulolytic (cel) genes of Clostridium thermocellum F7 and the proteins encoded by them

    International Nuclear Information System (INIS)

    Piruzyan, E.S.; Mogutov, M.A.; Velikodvorskaya, G.A.; Pushkarskaya, T.A.

    1988-01-01

    This study is concerned with genes cell, ce12, and ce13 encoding the endoglucanase of the cellulolytic complex of the anaerobic thermophilic Clostridium thermocellum F7 bacteria, these genes having been closed by us earlier. The authors present the characteristics of proteins synthesized by the cel genes in the minicell system of the strain Escherichia coli K-12 X925. The molecular weights of the proteins encoded by genes cell, ce12, and ce13 are 30,000, 45,000, and 50,000 dalton, respectively. The study of the homology of the cloned section of the C. thermocellum DNA containing the endoglucanase genes, using Southern's blot-hybridization method, did not reveal their physical linkage in the genome. The authors detected a plasmid with a size of about 30 kb in the cells of the C. thermocellum F7 strain investigated

  6. An accelerated hybrid TLM-IE method for the investigation of shielding effectiveness

    Directory of Open Access Journals (Sweden)

    N. Fichtner

    2010-09-01

    Full Text Available A hybrid numerical technique combining time-domain integral equations (TD-IE with the transmission line matrix (TLM method is presented for the efficient modeling of transient wave phenomena. This hybrid method allows the full-wave modeling of circuits in the time-domain as well as the electromagnetic coupling of remote TLM subdomains using integral equations (IE. By using the integral equations the space between the TLM subdomains is not discretized and consequently doesn't contribute to the computational effort. The cost for the evaluation of the time-domain integral equations (TD-IE is further reduced using a suitable plane-wave representation of the source terms. The hybrid TD-IE/TLM method is applied in the computation of the shielding effectiveness (SE of metallic enclosures.

  7. Hybrid methods for airframe noise numerical prediction

    Energy Technology Data Exchange (ETDEWEB)

    Terracol, M.; Manoha, E.; Herrero, C.; Labourasse, E.; Redonnet, S. [ONERA, Department of CFD and Aeroacoustics, BP 72, Chatillon (France); Sagaut, P. [Laboratoire de Modelisation en Mecanique - UPMC/CNRS, Paris (France)

    2005-07-01

    This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions. In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented. Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow. (orig.)

  8. Optimization methods applied to hybrid vehicle design

    Science.gov (United States)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  9. Diamond difference method with hybrid angular quadrature applied to neutron transport problems

    International Nuclear Information System (INIS)

    Zani, Jose H.; Barros, Ricardo C.; Alves Filho, Hermes

    2005-01-01

    In this work we presents the results for the calculations of the disadvantage factor in thermal nuclear reactor physics. We use the one-group discrete ordinates (S N ) equations to mathematically model the flux distributions in slab lattices. We apply the diamond difference method with source iteration iterative scheme to numerically solve the discretized systems equations. We used special interface conditions to describe the method with hybrid angular quadrature. We show numerical results to illustrate the accuracy of the hybrid method. (author)

  10. Least-square NUFFT methods applied to 2-D and 3-D radially encoded MR image reconstruction.

    Science.gov (United States)

    Song, Jiayu; Liu, Yanhui; Gewalt, Sally L; Cofer, Gary; Johnson, G Allan; Liu, Qing Huo

    2009-04-01

    Radially encoded MRI has gained increasing attention due to its motion insensitivity and reduced artifacts. However, because its samples are collected nonuniformly in the k-space, multidimensional (especially 3-D) radially sampled MRI image reconstruction is challenging. The objective of this paper is to develop a reconstruction technique in high dimensions with on-the-fly kernel calculation. It implements general multidimensional nonuniform fast Fourier transform (NUFFT) algorithms and incorporates them into a k-space image reconstruction framework. The method is then applied to reconstruct from the radially encoded k-space data, although the method is applicable to any non-Cartesian patterns. Performance comparisons are made against the conventional Kaiser-Bessel (KB) gridding method for 2-D and 3-D radially encoded computer-simulated phantoms and physically scanned phantoms. The results show that the NUFFT reconstruction method has better accuracy-efficiency tradeoff than the KB gridding method when the kernel weights are calculated on the fly. It is found that for a particular conventional kernel function, using its corresponding deapodization function as a scaling factor in the NUFFT framework has the potential to improve accuracy. In particular, when a cosine scaling factor is used, the NUFFT method is faster than KB gridding method since a closed-form solution is available and is less computationally expensive than the KB kernel (KB griding requires computation of Bessel functions). The NUFFT method has been successfully applied to 2-D and 3-D in vivo studies on small animals.

  11. Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method

    Directory of Open Access Journals (Sweden)

    Majid Shadman Roodposhti

    2016-09-01

    Full Text Available Assessing Landslide Susceptibility Mapping (LSM contributes to reducing the risk of living with landslides. Handling the vagueness associated with LSM is a challenging task. Here we show the application of hybrid GIS-based LSM. The hybrid approach embraces fuzzy membership functions (FMFs in combination with Shannon entropy, a well-known information theory-based method. Nine landslide-related criteria, along with an inventory of landslides containing 108 recent and historic landslide points, are used to prepare a susceptibility map. A random split into training (≈70% and testing (≈30% samples are used for training and validation of the LSM model. The study area—Izeh—is located in the Khuzestan province of Iran, a highly susceptible landslide zone. The performance of the hybrid method is evaluated using receiver operating characteristics (ROC curves in combination with area under the curve (AUC. The performance of the proposed hybrid method with AUC of 0.934 is superior to multi-criteria evaluation approaches using a subjective scheme in this research in comparison with a previous study using the same dataset through extended fuzzy multi-criteria evaluation with AUC value of 0.894, and was built on the basis of decision makers’ evaluation in the same study area.

  12. Accuracy improvement of a hybrid robot for ITER application using POE modeling method

    International Nuclear Information System (INIS)

    Wang, Yongbo; Wu, Huapeng; Handroos, Heikki

    2013-01-01

    Highlights: ► The product of exponential (POE) formula for error modeling of hybrid robot. ► Differential Evolution (DE) algorithm for parameter identification. ► Simulation results are given to verify the effectiveness of the method. -- Abstract: This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial–parallel hybrid robot to improve its accuracy. The robot was designed to perform the assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor (ITER). By employing the product of exponentials (POEs) formula, we extended the POE-based calibration method from serial robot to redundant serial–parallel hybrid robot. The proposed method combines the forward and inverse kinematics together to formulate a hybrid calibration method for serial–parallel hybrid robot. Because of the high nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional iterative linear least-square algorithms cannot be used to identify the parameter errors. This paper employs a global optimization algorithm, Differential Evolution (DE), to identify parameter errors by solving the inverse kinematics of the hybrid robot. Furthermore, after the parameter errors were identified, the DE algorithm was adopted to numerically solve the forward kinematics of the hybrid robot to demonstrate the accuracy improvement of the end-effector. Numerical simulations were carried out by generating random parameter errors at the allowed tolerance limit and generating a number of configuration poses in the robot workspace. Simulation of the real experimental conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given external measurement device

  13. Accuracy improvement of a hybrid robot for ITER application using POE modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongbo, E-mail: yongbo.wang@hotmail.com [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology, FIN-53851 Lappeenranta (Finland)

    2013-10-15

    Highlights: ► The product of exponential (POE) formula for error modeling of hybrid robot. ► Differential Evolution (DE) algorithm for parameter identification. ► Simulation results are given to verify the effectiveness of the method. -- Abstract: This paper focuses on the kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial–parallel hybrid robot to improve its accuracy. The robot was designed to perform the assembling and repairing tasks of the vacuum vessel (VV) of the international thermonuclear experimental reactor (ITER). By employing the product of exponentials (POEs) formula, we extended the POE-based calibration method from serial robot to redundant serial–parallel hybrid robot. The proposed method combines the forward and inverse kinematics together to formulate a hybrid calibration method for serial–parallel hybrid robot. Because of the high nonlinear characteristics of the error model and too many error parameters need to be identified, the traditional iterative linear least-square algorithms cannot be used to identify the parameter errors. This paper employs a global optimization algorithm, Differential Evolution (DE), to identify parameter errors by solving the inverse kinematics of the hybrid robot. Furthermore, after the parameter errors were identified, the DE algorithm was adopted to numerically solve the forward kinematics of the hybrid robot to demonstrate the accuracy improvement of the end-effector. Numerical simulations were carried out by generating random parameter errors at the allowed tolerance limit and generating a number of configuration poses in the robot workspace. Simulation of the real experimental conditions shows that the accuracy of the end-effector can be improved to the same precision level of the given external measurement device.

  14. some generalized two-step block hybrid numerov method for solving ...

    African Journals Online (AJOL)

    Nwokem et al.

    ABSTRACT. This paper proposes a class of generalized two-step Numerov methods, a block hybrid type for the direct solution of general second order ordinary differential equations. Both the main method and additional methods were derived via interpolation and collocation procedures. The basic properties of zero ...

  15. Price forecasting of day-ahead electricity markets using a hybrid forecast method

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Moghaddam, M. Parsa; Sheikh-El-Eslami, M.K.

    2011-01-01

    Research highlights: → A hybrid method is proposed to forecast the day-ahead prices in electricity market. → The method combines Wavelet-ARIMA and RBFN network models. → PSO method is applied to obtain optimum RBFN structure for avoiding over fitting. → One of the merits of the proposed method is lower need to the input data. → The proposed method has more accurate behavior in compare with previous methods. -- Abstract: Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy.

  16. Price forecasting of day-ahead electricity markets using a hybrid forecast method

    Energy Technology Data Exchange (ETDEWEB)

    Shafie-khah, M., E-mail: miadreza@gmail.co [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Moghaddam, M. Parsa, E-mail: parsa@modares.ac.i [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheikh-El-Eslami, M.K., E-mail: aleslam@modares.ac.i [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} A hybrid method is proposed to forecast the day-ahead prices in electricity market. {yields} The method combines Wavelet-ARIMA and RBFN network models. {yields} PSO method is applied to obtain optimum RBFN structure for avoiding over fitting. {yields} One of the merits of the proposed method is lower need to the input data. {yields} The proposed method has more accurate behavior in compare with previous methods. -- Abstract: Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy.

  17. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach

    International Nuclear Information System (INIS)

    Monjoly, Stéphanie; André, Maïna; Calif, Rudy; Soubdhan, Ted

    2017-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at 1 h ahead. We investigated on several techniques of multiscale decomposition of clear sky index K_c data such as Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and Wavelet Decomposition. From these differents methods, we built 11 decomposition components and 1 residu signal presenting different time scales. We performed classic forecasting models based on linear method (Autoregressive process AR) and a non linear method (Neural Network model). The choice of forecasting method is adaptative on the characteristic of each component. Hence, we proposed a modeling process which is built from a hybrid structure according to the defined flowchart. An analysis of predictive performances for solar forecasting from the different multiscale decompositions and forecast models is presented. From multiscale decomposition, the solar forecast accuracy is significantly improved, particularly using the wavelet decomposition method. Moreover, multistep forecasting with the proposed hybrid method resulted in additional improvement. For example, in terms of RMSE error, the obtained forecasting with the classical NN model is about 25.86%, this error decrease to 16.91% with the EMD-Hybrid Model, 14.06% with the EEMD-Hybid model and to 7.86% with the WD-Hybrid Model. - Highlights: • Hourly forecasting of GHI in tropical climate with many cloud formation processes. • Clear sky Index decomposition using three multiscale decomposition methods. • Combination of multiscale decomposition methods with AR-NN models to predict GHI. • Comparison of the proposed hybrid model with the classical models (AR, NN). • Best results using Wavelet-Hybrid model in comparison with classical models.

  18. Designing waveforms for temporal encoding using a frequency sampling method

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    was compared to a linear frequency modulated signal with amplitude tapering, previously used in clinical studies for synthetic transmit aperture imaging. The latter had a relatively flat spectrum which implied that the waveform tried to excite all frequencies including ones with low amplification. The proposed......In this paper a method for designing waveforms for temporal encoding in medical ultrasound imaging is described. The method is based on least squares optimization and is used to design nonlinear frequency modulated signals for synthetic transmit aperture imaging. By using the proposed design method...... waveform, on the other hand, was designed so that only frequencies where the transducer had a large amplification were excited. Hereby, unnecessary heating of the transducer could be avoided and the signal-tonoise ratio could be increased. The experimental ultrasound scanner RASMUS was used to evaluate...

  19. Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation

    Science.gov (United States)

    Pagán Muñoz, Raúl; Hornikx, Maarten

    2017-11-01

    The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.

  20. Groundwater flow analysis using mixed hybrid finite element method for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Aoki, Hiroomi; Shimomura, Masanori; Kawakami, Hiroto; Suzuki, Shunichi

    2011-01-01

    In safety assessments of radioactive waste disposal facilities, ground water flow analysis are used for calculating the radionuclide transport pathway and the infiltration flow rate of groundwater into the disposal facilities. For this type of calculations, the mixed hybrid finite element method has been used and discussed about the accuracy of ones in Europe. This paper puts great emphasis on the infiltration flow rate of groundwater into the disposal facilities, and describes the accuracy of results obtained from mixed hybrid finite element method by comparing of local water mass conservation and the reliability of the element breakdown numbers among the mixed hybrid finite element method, finite volume method and nondegenerated finite element method. (author)

  1. Enhanced performance hybrid-arq

    KAUST Repository

    Fareed, Muhammad Mehboob

    2016-06-16

    Apparatuses, computer readable media, and methods are provided for enhancing hybrid automatic repeat request (ARQ) performance. In an example method, a communication device transmits a first element of a vector, where the vector is selected using the information bits to be transmitted as an index in a code book. In some embodiments, this code book is constructed using Linear Constellation Precoding (LCP). If a NACK is received, the communication device transmits a second element of the vector. The process of transmitting elements of the vector continues until an ACK is received or the maximum number of transmission attempts is reached. If an ACK is received, the communication device transmits a first element of another vector of the code book that encodes a second set of information bits. This procedure may continue until all information bits have been transmitted successfully.

  2. Enhanced performance hybrid-arq

    KAUST Repository

    Fareed, Muhammad Mehboob; Yang, Hong-Chuan; Alouini, Mohamed-Slim

    2016-01-01

    Apparatuses, computer readable media, and methods are provided for enhancing hybrid automatic repeat request (ARQ) performance. In an example method, a communication device transmits a first element of a vector, where the vector is selected using the information bits to be transmitted as an index in a code book. In some embodiments, this code book is constructed using Linear Constellation Precoding (LCP). If a NACK is received, the communication device transmits a second element of the vector. The process of transmitting elements of the vector continues until an ACK is received or the maximum number of transmission attempts is reached. If an ACK is received, the communication device transmits a first element of another vector of the code book that encodes a second set of information bits. This procedure may continue until all information bits have been transmitted successfully.

  3. Hybrid and rogue kinases encoded in the genomes of model eukaryotes.

    Directory of Open Access Journals (Sweden)

    Ramaswamy Rakshambikai

    Full Text Available The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes-S.cerevisiae, D. melanogaster, C.elegans, M.musculus, T.rubripes and H.sapiens-and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P.falciparum sheds light on possible strategies in host-pathogen interactions.

  4. Detection of Protein Interactions in T3S Systems Using Yeast Two-Hybrid Analysis.

    Science.gov (United States)

    Nilles, Matthew L

    2017-01-01

    Two-hybrid systems, sometimes termed interaction traps, are genetic systems designed to find and analyze interactions between proteins. The most common systems are yeast based (commonly Saccharomyces cerevisae) and rely on the functional reconstitution of the GAL4 transcriptional activator. Reporter genes, such as the lacZ gene of Escherichia coli (encodes β-galactosidase), are placed under GAL4-dependent transcriptional control to provide quick and reliable detection of protein interactions. In this method the use of a yeast-based two-hybrid system is described to study protein interactions between components of type III secretion systems.

  5. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes

    Science.gov (United States)

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-01-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements. PMID:25071950

  6. A Hybrid 3D Path Planning Method for UAVs

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2015-01-01

    This paper presents a hybrid method for path planning in 3D spaces. We propose an improvement to a near-optimal 2D off-line algorithm and a flexible normalized on-line fuzzy controller to find shortest paths. Our method, targeted to low altitude domains, is simple and efficient. Our preliminary resu...

  7. A Nodal and Finite Difference Hybrid Method for Pin-by-Pin Heterogeneous Three-Dimensional Light Water Reactor Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Deokjung; Downar, Thomas J.; Kim, Yonghee

    2004-01-01

    An innovative hybrid spatial discretization method is proposed to improve the computational efficiency of pin-wise heterogeneous three-dimensional light water reactor (LWR) core neutronics analysis. The newly developed method employs the standard finite difference method in the x and y directions and the well-known nodal methods [nodal expansion method (NEM) and analytic nodal method (ANM) as needed] in the z direction. Four variants of the hybrid method are investigated depending on the axial nodal methodologies: HYBRID A, NEM with the conventional quadratic transverse leakage; HYBRID B, the conventional NEM method except that the transverse-leakage shapes are obtained from a fine-mesh local problem (FMLP) around the control rod tip; HYBRID C, the same as HYBRID B except that ANM with a high-order transverse leakage obtained from the FMLP is used in the vicinity of the control rod tip; and HYBRID D, the same as HYBRID C except that the transverse leakage is determined using the buckling approximation instead of the FMLP around the control rod tip. Benchmark calculations demonstrate that all the hybrid algorithms are consistent and stable and that the HYBRID C method provides the best numerical performance in the case of rodded LWR problems with pin-wise homogenized cross sections

  8. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Science.gov (United States)

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A novel diagnosis method for a Hall plates-based rotary encoder with a magnetic concentrator.

    Science.gov (United States)

    Meng, Bumin; Wang, Yaonan; Sun, Wei; Yuan, Xiaofang

    2014-07-31

    In the last few years, rotary encoders based on two-dimensional complementary metal oxide semiconductors (CMOS) Hall plates with a magnetic concentrator have been developed to measure contactless absolute angle. There are various error factors influencing the measuring accuracy, which are difficult to locate after the assembly of encoder. In this paper, a model-based rapid diagnosis method is presented. Based on an analysis of the error mechanism, an error model is built to compare minimum residual angle error and to quantify the error factors. Additionally, a modified particle swarm optimization (PSO) algorithm is used to reduce the calculated amount. The simulation and experimental results show that this diagnosis method is feasible to quantify the causes of the error and to reduce iteration significantly.

  10. Hybrid RANS/LES method for wind flow over complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.

    2010-01-01

    for flows at high Reynolds numbers. To reduce the computational cost of traditional LES, a hybrid method is proposed in which the near-wall eddies are modelled in a Reynolds-averaged sense. Close to walls, the flow is treated with the Reynolds-averaged Navier-Stokes (RANS) equations (unsteady RANS...... rough walls. Previous attempts of combining RANS and LES has resulted in unphysical transition regions between the two layers, but the present work improves this region by using a stochastic backscatter model. To demonstrate the ability of the proposed hybrid method, simulations are presented for wind...... the turbulent kinetic energy, whereas the new method captures the high turbulence levels well but underestimates the mean velocity. The presented results are for a relative mild configuration of complex terrain, but the proposed method can also be used for highly complex terrain where the benefits of the new...

  11. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    Science.gov (United States)

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  12. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  13. A flow cytometric assay technology based on quantum dots-encoded beads

    International Nuclear Information System (INIS)

    Wang Haiqiao; Liu Tiancai; Cao Yuancheng; Huang Zhenli; Wang Jianhao; Li Xiuqing; Zhao Yuandi

    2006-01-01

    A flow cytometric detecting technology based on quantum dots (QDs)-encoded beads has been described. Using this technology, several QDs-encoded beads with different code were identified effectively, and the target molecule (DNA sequence) in solution was also detected accurately by coupling to its complementary sequence probed on QDs-encoded beads through DNA hybridization assay. The resolution of this technology for encoded beads is resulted from two longer wavelength fluorescence identification signals (yellow and red fluorescent signals of QDs), and the third shorter wavelength fluorescence signal (green reporting signal of fluorescein isothiocyanate (FITC)) for the determination of reaction between probe and target. In experiment, because of QDs' unique optical character, only one excitation light source was needed to excite the QDs and probe dye FITC synchronously comparing with other flow cytometric assay technology. The results show that this technology has present excellent repeatability and good accuracy. It will become a promising multiple assay platform in various application fields after further improvement

  14. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  15. Power coordinated control method with frequency support capability for hybrid single/three-phase microgrid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Chen, Yandong; Zhou, Leming

    2018-01-01

    storage unit (ESU) are added into hybrid single/three-phase microgrid, and a power coordinated control method with frequency support capability is proposed for hybrid single/three-phase microgrid in this study. PEU is connected with three single-phase microgrids to coordinate power exchange among three...... phases and provide frequency support for hybrid microgrid. Meanwhile, a power coordinated control method based on the droop control is proposed for PEU to alleviate three-phase power imbalance and reduce voltage fluctuation of hybrid microgrid. Besides, ESU is injected into the DC-link to buffer......Due to the intermittent output power of distributed generations (DGs) and the variability of loads, voltage fluctuation and three-phase power imbalance easily occur when hybrid single/three-phase microgrid operates in islanded mode. To address these issues, the power exchange unit (PEU) and energy...

  16. Comparison between implicit and hybrid solvation methods for the ...

    Indian Academy of Sciences (India)

    Administrator

    Both implicit solvation method (dielectric polarizable continuum model, DPCM) and hybrid ... the free energy change (ΔGsol) as per the PCM ... Here the gas phase change is written as ΔGg = ΔEelec + ..... bution to the field of electrochemistry.

  17. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...

  18. Assignment of electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) to human chromosome 4q33 by fluorescence in situ hybridization and somatic cell hybridization.

    Science.gov (United States)

    Spector, E B; Seltzer, W K; Goodman, S I

    1999-08-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a nuclear-encoded protein located in the inner mitochondrial membrane. Inherited defects of ETF-QO cause glutaric acidemia type II. We here describe the localization of the ETF-QO gene to human chromosome 4q33 by somatic cell hybridization and fluorescence in situ hybridization. Copyright 1999 Academic Press.

  19. Improved magnetic encoding device and method for making the same. [Patent application

    Science.gov (United States)

    Fox, R.J.

    A magnetic encoding device and method for making the same are provided for use as magnetic storage media in identification control applications that give output signals from a reader that are of shorter duration and substantially greater magnitude than those of the prior art. Magnetic encoding elements are produced by uniformly bending wire or strip stock of a magnetic material longitudinally about a common radius to exceed the elastic limit of the material and subsequently mounting the material so that it is restrained in an unbent position on a substrate of nonmagnetic material. The elements are spot weld attached to a substrate to form a binary coded array of elements according to a desired binary code. The coded substrate may be enclosed in a plastic laminate structure. Such devices may be used for security badges, key cards, and the like and may have many other applications. 7 figures.

  20. Solution of the generalized Emden-Fowler equations by the hybrid functions method

    International Nuclear Information System (INIS)

    Tabrizidooz, H R; Marzban, H R; Razzaghi, M

    2009-01-01

    In this paper, we present a numerical algorithm for solving the generalized Emden-Fowler equations, which have many applications in mathematical physics and astrophysics. The method is based on hybrid functions approximations. The properties of hybrid functions, which consist of block-pulse functions and Lagrange interpolating polynomials, are presented. These properties are then utilized to reduce the computation of the generalized Emden-Fowler equations to a system of nonlinear equations. The method is easy to implement and yields very accurate results.

  1. Least Square NUFFT Methods Applied to 2D and 3D Radially Encoded MR Image Reconstruction

    Science.gov (United States)

    Song, Jiayu; Liu, Qing H.; Gewalt, Sally L.; Cofer, Gary; Johnson, G. Allan

    2009-01-01

    Radially encoded MR imaging (MRI) has gained increasing attention in applications such as hyperpolarized gas imaging, contrast-enhanced MR angiography, and dynamic imaging, due to its motion insensitivity and improved artifact properties. However, since the technique collects k-space samples nonuniformly, multidimensional (especially 3D) radially sampled MRI image reconstruction is challenging. The balance between reconstruction accuracy and speed becomes critical when a large data set is processed. Kaiser-Bessel gridding reconstruction has been widely used for non-Cartesian reconstruction. The objective of this work is to provide an alternative reconstruction option in high dimensions with on-the-fly kernels calculation. The work develops general multi-dimensional least square nonuniform fast Fourier transform (LS-NUFFT) algorithms and incorporates them into a k-space simulation and image reconstruction framework. The method is then applied to reconstruct the radially encoded k-space, although the method addresses general nonuniformity and is applicable to any non-Cartesian patterns. Performance assessments are made by comparing the LS-NUFFT based method with the conventional Kaiser-Bessel gridding method for 2D and 3D radially encoded computer simulated phantoms and physically scanned phantoms. The results show that the LS-NUFFT reconstruction method has better accuracy-speed efficiency than the Kaiser-Bessel gridding method when the kernel weights are calculated on the fly. The accuracy of the LS-NUFFT method depends on the choice of scaling factor, and it is found that for a particular conventional kernel function, using its corresponding deapodization function as scaling factor and utilizing it into the LS-NUFFT framework has the potential to improve accuracy. When a cosine scaling factor is used, in particular, the LS-NUFFT method is faster than Kaiser-Bessel gridding method because of a quasi closed-form solution. The method is successfully applied to 2D and

  2. A direct hybrid S{sub N} method for slab-geometry lattice calculations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Davi J.M.; Barros, Ricardo C., E-mail: rcbarros@pq.cnpq.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Programa de Pos-graduacao em Modelagem Computacional; Zani, Jose H. [Fundacao Educacional Serra dos Orgaos, Teresopolis, RJ (Brazil). Ciencia da Computacao

    2011-07-01

    In this work we describe a hybrid direct method for calculating the thermal disadvantage factor and the neutron flux distribution in fuel-moderator lattices. For the mathematical model, we use the one-speed slab-geometry discrete ordinates (S{sub N}) transport equation with linearly anisotropic scattering. The basic idea is to use higher order angular quadrature set in the highly absorbing fuel region (S{sub NF}) and lower order angular quadrature set in the diffusive moderator region (S{sub NM}) , i.e., N{sub F} > N{sub M}. We apply special continuity conditions based on the equivalence of the S{sub N} and P{sub N-1} equations, which characterize the hybrid model. Numerical results to a typical model problem are given to illustrate the accuracy and the efficiency of the offered hybrid method. (author)

  3. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1991-01-01

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  4. A Fifth Order Hybrid Linear Multistep method For the Direct Solution ...

    African Journals Online (AJOL)

    A linear multistep hybrid method (LMHM)with continuous coefficients isconsidered and directly applied to solve third order initial and boundary value problems (IBVPs). The continuous method is used to obtain Multiple Finite Difference Methods (MFDMs) (each of order 5) which are combined as simultaneous numerical ...

  5. Hybrid radical energy storage device and method of making

    Science.gov (United States)

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  6. Overview of hybrid subspace methods for uncertainty quantification, sensitivity analysis

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Bang, Youngsuk; Wang, Congjian

    2013-01-01

    Highlights: ► We overview the state-of-the-art in uncertainty quantification and sensitivity analysis. ► We overview new developments in above areas using hybrid methods. ► We give a tutorial introduction to above areas and the new developments. ► Hybrid methods address the explosion in dimensionality in nonlinear models. ► Representative numerical experiments are given. -- Abstract: The role of modeling and simulation has been heavily promoted in recent years to improve understanding of complex engineering systems. To realize the benefits of modeling and simulation, concerted efforts in the areas of uncertainty quantification and sensitivity analysis are required. The manuscript intends to serve as a pedagogical presentation of the material to young researchers and practitioners with little background on the subjects. We believe this is important as the role of these subjects is expected to be integral to the design, safety, and operation of existing as well as next generation reactors. In addition to covering the basics, an overview of the current state-of-the-art will be given with particular emphasis on the challenges pertaining to nuclear reactor modeling. The second objective will focus on presenting our own development of hybrid subspace methods intended to address the explosion in the computational overhead required when handling real-world complex engineering systems.

  7. Hybrid methods for cybersecurity analysis :

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Warren Leon,; Dunlavy, Daniel M.

    2014-01-01

    Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling and analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months and

  8. A Numerical Method for Lane-Emden Equations Using Hybrid Functions and the Collocation Method

    Directory of Open Access Journals (Sweden)

    Changqing Yang

    2012-01-01

    Full Text Available A numerical method to solve Lane-Emden equations as singular initial value problems is presented in this work. This method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method transforms the differential equation into a system of algebraic equations. It also has application in a wide area of differential equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

  9. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    Directory of Open Access Journals (Sweden)

    Wen-Yeau Chang

    2013-09-01

    Full Text Available High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO based hybrid forecasting method for short-term wind power forecasting. The hybrid forecasting method combines the persistence method, the back propagation neural network, and the radial basis function (RBF neural network. The EPSO algorithm is employed to optimize the weight coefficients in the hybrid forecasting method. To demonstrate the effectiveness of the proposed method, the method is tested on the practical information of wind power generation of a wind energy conversion system (WECS installed on the Taichung coast of Taiwan. Comparisons of forecasting performance are made with the individual forecasting methods. Good agreements between the realistic values and forecasting values are obtained; the test results show the proposed forecasting method is accurate and reliable.

  10. Hybrid vortex simulations of wind turbines using a three-dimensional viscous-inviscid panel method

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Hejlesen, Mads Mølholm; Sørensen, Jens Nørkær

    2017-01-01

    adirect calculation, whereas the contribution from the large downstream wake is calculated using a mesh-based method. Thehybrid method is first validated in detail against the well-known MEXICO experiment, using the direct filament method asa comparison. The second part of the validation includes a study......A hybrid filament-mesh vortex method is proposed and validated to predict the aerodynamic performance of wind turbinerotors and to simulate the resulting wake. Its novelty consists of using a hybrid method to accurately simulate the wakedownstream of the wind turbine while reducing...

  11. Analysis of subgrid scale mixing using a hybrid LES-Monte-Carlo PDF method

    International Nuclear Information System (INIS)

    Olbricht, C.; Hahn, F.; Sadiki, A.; Janicka, J.

    2007-01-01

    This contribution introduces a hybrid LES-Monte-Carlo method for a coupled solution of the flow and the multi-dimensional scalar joint pdf in two complex mixing devices. For this purpose an Eulerian Monte-Carlo method is used. First, a complex mixing device (jet-in-crossflow, JIC) is presented in which the stochastic convergence and the coherency between the scalar field solution obtained via finite-volume methods and that from the stochastic solution of the pdf for the hybrid method are evaluated. Results are compared to experimental data. Secondly, an extensive investigation of the micromixing on the basis of assumed shape and transported SGS-pdfs in a configuration with practical relevance is carried out. This consists of a mixing chamber with two opposite rows of jets penetrating a crossflow (multi-jet-in-crossflow, MJIC). Some numerical results are compared to available experimental data and to RANS based results. It turns out that the hybrid LES-Monte-Carlo method could achieve a detailed analysis of the mixing at the subgrid level

  12. Fabrication of Hybrid Organic Photovoltaic Devices Using Electrostatic Spray Method

    Directory of Open Access Journals (Sweden)

    Zhe-Wei Chiu

    2014-01-01

    Full Text Available Hybrid organic photovoltaic devices (OPVDs are fabricated using the electrostatic spray (e-spray method and their optical and electrical properties are investigated. E-spray is used to deposit a hybrid film (P3HT: PCBM/nanodiamond with morphology and optical characteristics onto OPVDs. The root-mean-square roughness and optical absorption increase with increasing nanodiamond content. The performance of e-spray is comparable to that of the spin-coating method under uniform conditions. The device takes advantage of the high current density, power conversion efficiency, and low cost. Nanodiamond improves the short-circuit current density and power conversion efficiency. The best performance was obtained with 1.5 wt% nanodiamond content, with a current density of 7.28 mA/cm2 and a power conversion efficiency of 2.25%.

  13. A new method of equalizing the optical power by a liquid crystal-based tunable encoder/decoder in SAC-OCDMA PON

    Science.gov (United States)

    Chen, He; Qiao, Yang; Zhao, Yanbin; Liu, Yang; Liu, Meilin; Liu, Lijun; Zhou, Bilei

    2015-11-01

    A new method of equalizing the optical power is proposed to enhance the performance in the SAC OCDMA PON. The method is to use a tunable liquid crystal-based tunable encoder for further development by voltage controlling individually, so it is achieved in one device for encoding and power equalization, the experimental results show that the system BER and eye diagram are greatly improved. Since the method does not use additional devices in the condition, the system are lower complexity and cost-effective.

  14. Low Complexity HEVC Encoder for Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhaoqing Pan

    2015-12-01

    Full Text Available Visual sensor networks (VSNs can be widely applied in security surveillance, environmental monitoring, smart rooms, etc. However, with the increased number of camera nodes in VSNs, the volume of the visual information data increases significantly, which becomes a challenge for storage, processing and transmitting the visual data. The state-of-the-art video compression standard, high efficiency video coding (HEVC, can effectively compress the raw visual data, while the higher compression rate comes at the cost of heavy computational complexity. Hence, reducing the encoding complexity becomes vital for the HEVC encoder to be used in VSNs. In this paper, we propose a fast coding unit (CU depth decision method to reduce the encoding complexity of the HEVC encoder for VSNs. Firstly, the content property of the CU is analyzed. Then, an early CU depth decision method and a low complexity distortion calculation method are proposed for the CUs with homogenous content. Experimental results show that the proposed method achieves 71.91% on average encoding time savings for the HEVC encoder for VSNs.

  15. A scalable hybrid multi-robot SLAM method for highly detailed maps

    NARCIS (Netherlands)

    Pfingsthorn, M.; Slamet, B.; Visser, A.

    2008-01-01

    Recent successful SLAM methods employ hybrid map representations combining the strengths of topological maps and occupancy grids. Such representations often facilitate multi-agent mapping. In this paper, a successful SLAM method is presented, which is inspired by the manifold data structure by

  16. A Four-Step Block Hybrid Adams-Moulton Methods For The Solution ...

    African Journals Online (AJOL)

    This paper examines application of the Adam-Moulton's Method and proposes a modified self-starting continuous formula Called hybrid Adams-Moulton methods for the case k=4. It allows evaluation at both grid and off grid points to obtain the discrete schemes used in the block methods. The order, error constant and ...

  17. Quantum photonics hybrid integration platform

    Energy Technology Data Exchange (ETDEWEB)

    Murray, E.; Floether, F. F. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ellis, D. J. P.; Meany, T.; Bennett, A. J., E-mail: anthony.bennet@crl.toshiba.co.uk; Shields, A. J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Lee, J. P. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  18. Finite Element Methods On Very Large, Dynamic Tubular Grid Encoded Implicit Surfaces

    DEFF Research Database (Denmark)

    Nemitz, Oliver; Nielsen, Michael Bang; Rumpf, Martin

    2009-01-01

    dynamic tubular grid encoding format for a narrow band. A reaction diffusion model on a fixed surface and surface evolution driven by a nonlinear geometric diffusion approach, by isotropic or truly anisotropic curvature motion, are investigated as characteristic model problems. The proposed methods...

  19. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Leblanc, F. [LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris (France); Hess, S. [ONERA, Toulouse (France); Mancini, M. [LUTH, Observatoire Paris-Meudon (France)

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  20. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  1. Irrigation method does not affect wild bee pollinators of hybrid sunflower

    Directory of Open Access Journals (Sweden)

    Hillary Sardiñas

    2016-09-01

    Full Text Available Irrigation method has the potential to directly or indirectly influence populations of wild bee crop pollinators nesting and foraging in irrigated crop fields. The majority of wild bee species nest in the ground, and their nests may be susceptible to flooding. In addition, their pollination of crops can be influenced by nectar quality and quantity, which are related to water availability. To determine whether different irrigation methods affect crop pollinators, we compared the number of ground-nesting bees nesting and foraging in drip- and furrow-irrigated hybrid sunflower fields in the Sacramento Valley. We found that irrigation method did not impact wild bee nesting rates or foraging bee abundance or bee species richness. These findings suggest that changing from furrow irrigation to drip irrigation to conserve water likely will not alter hybrid sunflower crop pollination.

  2. Hybrid immersed boundary method for airfoils with a trailing-edge flap

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Behrens, Tim; Shen, Wen Zhong

    2013-01-01

    In this paper, a hybrid immersed boundary technique has been developed for simulating turbulent flows past airfoils with moving trailing-edge flaps. Over the main fixed part of the airfoil, the equations are solved using a standard body-fitted finite volume technique, whereas the moving trailing......-edge flap is simulated using the immersed boundary method on a curvilinear mesh. An existing in-house-developed flow solver is employed to solve the incompressible Reynolds-Averaged Navier-Stokes equations together with the k-ω turbulence model. To achieve consistent wall boundary conditions at the immersed...... boundaries the k-ωturbulence model is modified and adapted to the local conditions associated with the immersed boundary method. The obtained results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing-edge flap and that flow control...

  3. Lack of specific hybridization between the lep genes of Salmonella typhimurium and Bacillus licheniformis

    NARCIS (Netherlands)

    van Dijl, J M; Jong, de Anne; Smith, H; Bron, Sierd; Venema, G

    1991-01-01

    This paper describes an attempt to clone the Bacillus licheniformis lep gene, encoding signal peptidase, using the Salmonella typhimurium lep gene as a hybridization probe. Although a hybridizing fragment was obtained, DNA sequence analysis indicated that it did not contain the lep gene. Instead,

  4. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV...... in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  5. Hybrid transfer-matrix FDTD method for layered periodic structures.

    Science.gov (United States)

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  6. A hybrid method combining the Time-Domain Method of Moments, the Time-Domain Uniform Theory of Diffraction and the FDTD

    Directory of Open Access Journals (Sweden)

    A. Becker

    2007-06-01

    Full Text Available In this paper a hybrid method combining the Time-Domain Method of Moments (TD-MoM, the Time-Domain Uniform Theory of Diffraction (TD-UTD and the Finite-Difference Time-Domain Method (FDTD is presented. When applying this new hybrid method, thin-wire antennas are modeled with the TD-MoM, inhomogeneous bodies are modelled with the FDTD and large perfectly conducting plates are modelled with the TD-UTD. All inhomogeneous bodies are enclosed in a so-called FDTD-volume and the thin-wire antennas can be embedded into this volume or can lie outside. The latter avoids the simulation of white space between antennas and inhomogeneous bodies. If the antennas are positioned into the FDTD-volume, their discretization does not need to agree with the grid of the FDTD. By using the TD-UTD large perfectly conducting plates can be considered efficiently in the solution-procedure. Thus this hybrid method allows time-domain simulations of problems including very different classes of objects, applying the respective most appropriate numerical techniques to every object.

  7. A modeling method of semiconductor fabrication flows with extended knowledge hybrid Petri nets

    Institute of Scientific and Technical Information of China (English)

    Zhou Binghai; Jiang Shuyu; Wang Shijin; Wu bin

    2008-01-01

    A modeling method of extended knowledge hybrid Petri nets (EKHPNs), incorporating object-oriented methods into hybrid Petri nets (HPNs), was presented and used for the representation and modeling of semiconductor wafer fabrication flows. To model the discrete and continuous parts of a complex semiconductor wafer fabrication flow, the HPNs were introduced into the EKHPNs. Object-oriented methods were combined into the EKHPNs for coping with the complexity of the fabrication flow. Knowledge annotations were introduced to solve input and output conflicts of the EKHPNs.Finally, to demonstrate the validity of the EKHPN method, a real semiconductor wafer fabrication case was used to illustrate the modeling procedure. The modeling results indicate that the proposed method can be used to model a complex semiconductor wafer fabrication flow expediently.

  8. Extension of a hybrid particle-continuum method for a mixture of chemical species

    Science.gov (United States)

    Verhoff, Ashley M.; Boyd, Iain D.

    2012-11-01

    Due to the physical accuracy and numerical efficiency achieved by analyzing transitional, hypersonic flow fields with hybrid particle-continuum methods, this paper describes a Modular Particle-Continuum (MPC) method and its extension to include multiple chemical species. Considerations that are specific to a hybrid approach for simulating gas mixtures are addressed, including a discussion of the Chapman-Enskog velocity distribution function (VDF) for near-equilibrium flows, and consistent viscosity models for the individual CFD and DSMC modules of the MPC method. Representative results for a hypersonic blunt-body flow are then presented, where the flow field properties, surface properties, and computational performance are compared for simulations employing full CFD, full DSMC, and the MPC method.

  9. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  10. Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality

    International Nuclear Information System (INIS)

    Cabello, Adan; D'Ambrosio, Vincenzo; Nagali, Eleonora; Sciarrino, Fabio

    2011-01-01

    Quantum cryptographic protocols based on complementarity are not secure against attacks in which complementarity is imitated with classical resources. The Kochen-Specker (KS) theorem provides protection against these attacks, without requiring entanglement or spatially separated composite systems. We analyze the maximum tolerated noise to guarantee the security of a KS-protected cryptographic scheme against these attacks and describe a photonic realization of this scheme using hybrid ququarts defined by the polarization and orbital angular momentum of single photons.

  11. The structure and control method of hybrid power source for electric vehicle

    International Nuclear Information System (INIS)

    Li, Maobing; Xu, Hui; Li, Weimin; Liu, Yin; Li, Fade; Hu, Yue; Liu, Li

    2016-01-01

    In this paper, an electric vehicle powertrain configuration is presented, which the lithium-ion battery integrated with ultracapacitors is developed as the hybrid power system to improve the transient performance of an electric vehicle, and to decrease the damage to the battery pack. In the proposed system, a bidirectional direct current/direct current converter is used to couple the ultracapacitors bank to the main battery pack. The energy management strategy based on fuzzy logic for hybrid power system has been proposed to promote the performance of energy flow in the electric vehicle. The experiment results in urban driving cycles show remarkable advantages of the proposed hybrid system configuration and energy management strategy. About 30% of the battery capacity energy is saved while using the hybrid power source. Besides, the voltage and current curves of battery become smoother than that with the single power. - Highlights: • A hybrid power source electric vehicle powertrain configuration is presented. • The energy management strategy based on fuzzy logic is proposed. • The experiment results show remarkable advantages of the configuration and method.

  12. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pilatti, Marcia M.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marciapilatti@yahoo.com.br, e-mail: antero@cdtn.br; Ferreira, Sidney A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with {sup 32}P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  13. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    International Nuclear Information System (INIS)

    Pilatti, Marcia M.; Andrade, Antero S.R.; Ferreira, Sidney A.

    2009-01-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with 32 P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  14. Solving Optimal Control Problem of Monodomain Model Using Hybrid Conjugate Gradient Methods

    Directory of Open Access Journals (Sweden)

    Kin Wei Ng

    2012-01-01

    Full Text Available We present the numerical solutions for the PDE-constrained optimization problem arising in cardiac electrophysiology, that is, the optimal control problem of monodomain model. The optimal control problem of monodomain model is a nonlinear optimization problem that is constrained by the monodomain model. The monodomain model consists of a parabolic partial differential equation coupled to a system of nonlinear ordinary differential equations, which has been widely used for simulating cardiac electrical activity. Our control objective is to dampen the excitation wavefront using optimal applied extracellular current. Two hybrid conjugate gradient methods are employed for computing the optimal applied extracellular current, namely, the Hestenes-Stiefel-Dai-Yuan (HS-DY method and the Liu-Storey-Conjugate-Descent (LS-CD method. Our experiment results show that the excitation wavefronts are successfully dampened out when these methods are used. Our experiment results also show that the hybrid conjugate gradient methods are superior to the classical conjugate gradient methods when Armijo line search is used.

  15. Hybrid modelling framework by using mathematics-based and information-based methods

    International Nuclear Information System (INIS)

    Ghaboussi, J; Kim, J; Elnashai, A

    2010-01-01

    Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.

  16. Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes

    International Nuclear Information System (INIS)

    Tender, T.F.; Streuli, M.; Schlossman, S.F.; Saito, H.

    1988-01-01

    The B1 (CD20) molecule is a M/sub r/ 33,000 phosphoprotein on the surface of human B lymphocytes that may serve a central role in the homoral immune response by regulating B-cell proliferation and differentiation. In this report, a cDNA clone that encodes the B1 molecule was isolated and the amino acid sequence of B1 was determined. B-cell-specific cDNA clones were selected from a human tonsillar cDNA library by differential hybridization with labeled cDNA derived from either size-fractionated B-cell mRNA or size-fractionated T-cell mRNA. Of the 261 cDNA clones isolated, 3 cross-hybridizing cDNA clones were chosen as potential candidates for encoding B1 based on their selective hybridization to RNA from B1-positive cell lines. The longest clone, pB1-21, contained a 2.8-kilobase insert with an 891-base-pair open reading frame that encodes a protein of 33 kDa. mRNA synthesized from the pB1-21 cDNA clone in vitro was translated into a protein of the same apparent molecular weight as B1. Limited proteinase digestion of the pB1-21 translation product and B1 generated peptides of the same sizes, indicating that the pB1-21 cDNA encodes the B1 molecule. Gel blot analysis indicated that pB1-21 hybridized with two mRNA species of 2.8 and 3.4 kilobases only in B1-positive cell lines. The amino acid sequence deduced from the pB1-21 nucleotide sequence apparently lacks a signal sequence and contains three extensive hydrophobic regions. The deduced B1 amino acid sequence shows no significant homology with other known patients

  17. A Novel Method for Rapid Hybridization of DNA to a Solid Support

    Science.gov (United States)

    Pettersson, Erik; Ahmadian, Afshin; Ståhl, Patrik L.

    2013-01-01

    Here we present a novel approach entitled Magnetic Forced Hybridization (MFH) that provides the means for efficient and direct hybridization of target nucleic acids to complementary probes immobilized on a glass surface in less than 15 seconds at ambient temperature. In addition, detection is carried out instantly since the beads become visible on the surface. The concept of MFH was tested for quality control of array manufacturing, and was combined with a multiplex competitive hybridization (MUCH) approach for typing of Human Papilloma Virus (HPV). Magnetic Forced Hybridization of bead-DNA constructs to a surface achieves a significant reduction in diagnostic testing time. In addition, readout of results by visual inspection of the unassisted eye eliminates the need for additional expensive instrumentation. The method uses the same set of beads throughout the whole process of manipulating and washing DNA constructs prior to detection, as in the actual detection step itself. PMID:23950946

  18. Hybrid ICA-Seed-Based Methods for fMRI Functional Connectivity Assessment: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Robert E. Kelly

    2010-01-01

    Full Text Available Brain functional connectivity (FC is often assessed from fMRI data using seed-based methods, such as those of detecting temporal correlation between a predefined region (seed and all other regions in the brain; or using multivariate methods, such as independent component analysis (ICA. ICA is a useful data-driven tool, but reproducibility issues complicate group inferences based on FC maps derived with ICA. These reproducibility issues can be circumvented with hybrid methods that use information from ICA-derived spatial maps as seeds to produce seed-based FC maps. We report results from five experiments to demonstrate the potential advantages of hybrid ICA-seed-based FC methods, comparing results from regressing fMRI data against task-related a priori time courses, with “back-reconstruction” from a group ICA, and with five hybrid ICA-seed-based FC methods: ROI-based with (1 single-voxel, (2 few-voxel, and (3 many-voxel seed; and dual-regression-based with (4 single ICA map and (5 multiple ICA map seed.

  19. EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.

    Science.gov (United States)

    Hadinia, M; Jafari, R; Soleimani, M

    2016-06-01

    This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.

  20. New hybrid frequency reuse method for packet loss minimization in LTE network.

    Science.gov (United States)

    Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H

    2015-11-01

    This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.

  1. The frequency of genes encoding three putative group B streptococcal virulence factors among invasive and colonizing isolates

    Directory of Open Access Journals (Sweden)

    Borchardt Stephanie M

    2006-07-01

    Full Text Available Abstract Background Group B Streptococcus (GBS causes severe infections in very young infants and invasive disease in pregnant women and adults with underlying medical conditions. GBS pathogenicity varies between and within serotypes, with considerable variation in genetic content between strains. Three proteins, Rib encoded by rib, and alpha and beta C proteins encoded by bca and bac, respectively, have been suggested as potential vaccine candidates for GBS. It is not known, however, whether these genes occur more frequently in invasive versus colonizing GBS strains. Methods We screened 162 invasive and 338 colonizing GBS strains from different collections using dot blot hybridization to assess the frequency of bca, bac and rib. All strains were defined by serotyping for capsular type, and frequency differences were tested using the Chi square test. Results Genes encoding the beta C protein (bac and Rib (rib occurred at similar frequencies among invasive and colonizing isolates, bac (20% vs. 23%, and rib (28% vs. 20%, while the alpha (bca C protein was more frequently found in colonizing strains (46% vs, invasive (29%. Invasive strains were associated with specific serotype/gene combinations. Conclusion Novel virulence factors must be identified to better understand GBS disease.

  2. Dual beam encoded extended fractional Fourier transform security ...

    Indian Academy of Sciences (India)

    This paper describes a simple method for making dual beam encoded extended fractional Fourier transform (EFRT) security holograms. The hologram possesses different stages of encoding so that security features are concealed and remain invisible to the counterfeiter. These concealed and encoded anticounterfeit ...

  3. Extending the subspace hybrid method for eigenvalue problems in reactor physics calculation

    International Nuclear Information System (INIS)

    Zhang, Q.; Abdel-Khalik, H. S.

    2013-01-01

    This paper presents an innovative hybrid Monte-Carlo-Deterministic method denoted by the SUBSPACE method designed for improving the efficiency of hybrid methods for reactor analysis applications. The SUBSPACE method achieves its high computational efficiency by taking advantage of the existing correlations between desired responses. Recently, significant gains in computational efficiency have been demonstrated using this method for source driven problems. Within this work the mathematical theory behind the SUBSPACE method is introduced and extended to address core wide level k-eigenvalue problems. The method's efficiency is demonstrated based on a three-dimensional quarter-core problem, where responses are sought on the pin cell level. The SUBSPACE method is compared to the FW-CADIS method and is found to be more efficient for the utilized test problem because of the reason that the FW-CADIS method solves a forward eigenvalue problem and an adjoint fixed-source problem while the SUBSPACE method only solves an adjoint fixed-source problem. Based on the favorable results obtained here, we are confident that the applicability of Monte Carlo for large scale reactor analysis could be realized in the near future. (authors)

  4. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  5. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2017-05-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  6. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    Science.gov (United States)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  7. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques

    Science.gov (United States)

    Bellos, Vasilis; Tsakiris, George

    2016-09-01

    The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.

  8. The Ion Cyclotron, Lower Hybrid, and Alfven Wave Heating Methods

    International Nuclear Information System (INIS)

    Koch, R.

    2004-01-01

    This lecture covers the practical features and experimental results of the three heating methods. The emphasis is on ion cyclotron heating. First, we briefly come back to the main non-collisional heating mechanisms and to the particular features of the quasilinear coefficient in the ion cyclotron range of frequencies (ICRF). The specific case of the ion-ion hybrid resonance is treated, as well as the polarisation issue and minority heating scheme. The various ICRF scenarios are reviewed. The experimental applications of ion cyclotron resonance heating (ICRH) systems are outlined. Then, the lower hybrid and Alfven wave heating and current drive experimental results are covered more briefly. Where applicable, the prospects for ITER are commented

  9. Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media

    KAUST Repository

    Hou, Jiangyong

    2016-02-05

    In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.

  10. Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media

    KAUST Repository

    Hou, Jiangyong; Chen, Jie; Sun, Shuyu; Chen, Zhangxin

    2016-01-01

    In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.

  11. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    Science.gov (United States)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-09-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.

  12. Encoding plaintext by Fourier transform hologram in double random phase encoding using fingerprint keys

    International Nuclear Information System (INIS)

    Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2012-01-01

    It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method. (paper)

  13. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    Science.gov (United States)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS

  14. Block Hybrid Collocation Method with Application to Fourth Order Differential Equations

    Directory of Open Access Journals (Sweden)

    Lee Ken Yap

    2015-01-01

    Full Text Available The block hybrid collocation method with three off-step points is proposed for the direct solution of fourth order ordinary differential equations. The interpolation and collocation techniques are applied on basic polynomial to generate the main and additional methods. These methods are implemented in block form to obtain the approximation at seven points simultaneously. Numerical experiments are conducted to illustrate the efficiency of the method. The method is also applied to solve the fourth order problem from ship dynamics.

  15. A new method of hybrid frequency hopping signals selection and blind parameter estimation

    Science.gov (United States)

    Zeng, Xiaoyu; Jiao, Wencheng; Sun, Huixian

    2018-04-01

    Frequency hopping communication is widely used in military communications at home and abroad. In the case of single-channel reception, it is scarce to process multiple frequency hopping signals both effectively and simultaneously. A method of hybrid FH signals selection and blind parameter estimation is proposed. The method makes use of spectral transformation, spectral entropy calculation and PRI transformation basic theory to realize the sorting and parameter estimation of the components in the hybrid frequency hopping signal. The simulation results show that this method can correctly classify the frequency hopping component signal, and the estimated error of the frequency hopping period is about 5% and the estimated error of the frequency hopping frequency is less than 1% when the SNR is 10dB. However, the performance of this method deteriorates seriously at low SNR.

  16. An Efficient Hybrid Conjugate Gradient Method with the Strong Wolfe-Powell Line Search

    Directory of Open Access Journals (Sweden)

    Ahmad Alhawarat

    2015-01-01

    Full Text Available Conjugate gradient (CG method is an interesting tool to solve optimization problems in many fields, such as design, economics, physics, and engineering. In this paper, we depict a new hybrid of CG method which relates to the famous Polak-Ribière-Polyak (PRP formula. It reveals a solution for the PRP case which is not globally convergent with the strong Wolfe-Powell (SWP line search. The new formula possesses the sufficient descent condition and the global convergent properties. In addition, we further explained about the cases where PRP method failed with SWP line search. Furthermore, we provide numerical computations for the new hybrid CG method which is almost better than other related PRP formulas in both the number of iterations and the CPU time under some standard test functions.

  17. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  18. Functional efficiency comparison between split- and parallel-hybrid using advanced energy flow analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, Philipp; Lin, Mengyan [Romax Technology, Nottingham (United Kingdom)

    2009-07-01

    The following paper presents a comparative efficiency analysis of the Toyota Prius versus the Honda Insight using advanced Energy Flow Analysis methods. The sample study shows that even very different hybrid concepts like a split- and a parallel-hybrid can be compared in a high level of detail and demonstrates the benefit showing exemplary results. (orig.)

  19. Sequencing of megabase plus DNA by hybridization: Method development ENT. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-01-31

    Sequencing by hybridization (SBH) is the only sequencing method based on the experimental determination of the content of oligonucleotide sequences. The data acquisition relies on the natural process of base pairing. It is possible to determine the content of complementary oligosequences in the target DNA by the process of hybridization with oligonucleotide probes of known sequences.

  20. Investigation of crack origin in hybrid components with twocolor digital Fresnel holography

    Directory of Open Access Journals (Sweden)

    Moisson E.

    2010-06-01

    Full Text Available The paper presents a two-color digital holographic interferometer. The set-up is devoted to the investigation of crack origin in hybrid industrial electronic components. Optical configuration and algorithms to recover the optical phase of two-color digitally encoded holograms are described. The method is based on a spatial-color-multiplexing scheme in which holographic reconstruction is performed using a spectral scanning algorithm. Experimental results exhibit in-plane and out-of-plane non uniform deformations that are the probable cause of the cracking of the component.

  1. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  2. Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus.

    Directory of Open Access Journals (Sweden)

    Daniel A Barbash

    2004-06-01

    Full Text Available Interspecific hybrid lethality and sterility are a consequence of divergent evolution between species and serve to maintain the discrete identities of species. The evolution of hybrid incompatibilities has been described in widely accepted models by Dobzhansky and Muller where lineage-specific functional divergence is the essential characteristic of hybrid incompatibility genes. Experimentally tractable models are required to identify and test candidate hybrid incompatibility genes. Several Drosophila melanogaster genes involved in hybrid incompatibility have been identified but none has yet been shown to have functionally diverged in accordance with the Dobzhansky-Muller model. By introducing transgenic copies of the X-linked Hybrid male rescue (Hmr gene into D. melanogaster from its sibling species D. simulans and D. mauritiana, we demonstrate that Hmr has functionally diverged to cause F1 hybrid incompatibility between these species. Consistent with the Dobzhansky-Muller model, we find that Hmr has diverged extensively in the D. melanogaster lineage, but we also find extensive divergence in the sibling-species lineage. Together, these findings implicate over 13% of the amino acids encoded by Hmr as candidates for causing hybrid incompatibility. The exceptional level of divergence at Hmr cannot be explained by neutral processes because we use phylogenetic methods and population genetic analyses to show that the elevated amino-acid divergence in both lineages is due to positive selection in the distant past-at least one million generations ago. Our findings suggest that multiple substitutions driven by natural selection may be a general phenomenon required to generate hybrid incompatibility alleles.

  3. Supervised segmentation of phenotype descriptions for the human skeletal phenome using hybrid methods.

    Science.gov (United States)

    Groza, Tudor; Hunter, Jane; Zankl, Andreas

    2012-10-15

    Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. In order to fully capture the intrinsic value and knowledge expressed within them, we need to take advantage of their inner structure, which implicitly combines qualities and anatomical entities. The first step in this process is the segmentation of the phenotype descriptions into their atomic elements. We present a two-phase hybrid segmentation method that combines a series individual classifiers using different aggregation schemes (set operations and simple majority voting). The approach is tested on a corpus comprised of skeletal phenotype descriptions emerged from the Human Phenotype Ontology. Experimental results show that the best hybrid method achieves an F-Score of 97.05% in the first phase and F-Scores of 97.16% / 94.50% in the second phase. The performance of the initial segmentation of anatomical entities and qualities (phase I) is not affected by the presence / absence of external resources, such as domain dictionaries. From a generic perspective, hybrid methods may not always improve the segmentation accuracy as they are heavily dependent on the goal and data characteristics.

  4. SFC Optimization for Aero Engine Based on Hybrid GA-SQP Method

    Science.gov (United States)

    Li, Jie; Fan, Ding; Sreeram, Victor

    2013-12-01

    This study focuses on on-line specific fuel consumption (SFC) optimization of aero engines. For solving this optimization problem, a nonlinear pneumatic and thermodynamics model of the aero engine is built and a hybrid optimization technique which is formed by combining the genetic algorithm (GA) and the sequential quadratic programming (SQP) is presented. The ability of standard GA and standard SQP in solving this type of problem is investigated. It has been found that, although the SQP is fast, very little SFC reductions can be obtained. The GA is able to solve the problem well but a lot of computational time is needed. The presented hybrid GA-SQP gives a good SFC optimization effect and saves 76.6% computational time when compared to the standard GA. It has been shown that the hybrid GA-SQP is a more effective and higher real-time method for SFC on-line optimization of the aero engine.

  5. Application of the X-in-the-Loop Testing Method in the FCV Hybrid Degree Test

    Directory of Open Access Journals (Sweden)

    Haiyu Gao

    2018-02-01

    Full Text Available With the development of fuel cell vehicle technology, an effective testing method that can be applied to develop and verify the fuel cell vehicle powertrain system is urgently required. This paper presents the X-in-the-Loop (XiL testing method in the fuel cell vehicle (FCV hybrid degree test to resolve the first and key issues for the powertrain system design, and the test process and scenarios were designed. The hybrid degree is redefined into the static hybrid degree for system architecture design and the dynamic hybrid degree for vehicle control strategy design, and an integrated testing platform was introduced and a testing application was implemented by following the designed testing flowchart with two loops. Experimental validations show that the sizing of the FCE (Fuel Cell Engine, battery pack, and traction motor with the powertrain architecture can be determined, the control strategy can be evaluated seamlessly, and a systematic powertrain testing solution can be achieved through the whole development process. This research has developed a new testing platform and proposed a novel testing method on the fuel cell vehicle powertrain system, which will be a contribution to fuel cell vehicle technology and its industrialization.

  6. Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method

    DEFF Research Database (Denmark)

    Goo, Seongyeol; Wang, Semyung; Kook, Junghwan

    2017-01-01

    This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...

  7. Indirect Encoding in Neuroevolutionary Ship Handling

    Directory of Open Access Journals (Sweden)

    Miroslaw Lacki

    2018-03-01

    Full Text Available In this paper the author compares the efficiency of two encoding schemes for artificial intelligence methods used in the neuroevolutionary ship maneuvering system. This may be also be seen as the ship handling system that simulates a learning process of a group of artificial helmsmen - autonomous control units, created with an artificial neural network. The helmsman observes input signals derived form an enfironment and calculates the values of required parameters of the vessel maneuvering in confined waters. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of this project is to evolve a population of helmsmen with indirect encoding and compare results of simulation with direct encoding method.

  8. GeoNeoLogical novel and other hybrimedia experiments: or how to use hybrid methods such as Hybrid Discourse Analysis (HDA within a knowledge base

    Directory of Open Access Journals (Sweden)

    Andrade, Pedro

    2016-07-01

    Full Text Available In this essay I will present some results of the project Public Communication of Art, which developed a seminal theory and methodology intended to cope with hybridity and new media literacy in our globalized and inter/transcultural world. Some of the methods used blend vision with touch and are called ‘hybrid methods’ or ‘hybrimethods’. Examples of these are, for instance, a Multitouch Interactive Table, a Multitouch Questionnaire, Trichotomies Game and GeoNeoLogic Novel, this last one being a hybrid novel activated by fusion of vision, touch and GPS coordinates. Another hybrimethod is a sort of discursive analysis, named Hybrid Discourse Analysis (HDA, which uses ‘semantic-logical networks’ organized by concepts and ‘relation-concepts’. HDA is here articulated with Critical Sociology and applied to the analysis of a text on Magic Realism, which is also a hybrid genre within the social field of literature.

  9. Hybrid finite element and Brownian dynamics method for charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2016-04-28

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  10. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    International Nuclear Information System (INIS)

    Cruz, Roberto de la; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-01-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction–diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction–diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge

  11. A Hybrid Method for Modeling and Solving Supply Chain Optimization Problems with Soft and Logical Constraints

    Directory of Open Access Journals (Sweden)

    Paweł Sitek

    2016-01-01

    Full Text Available This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP and constraint logic programming (CLP, were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems. The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent.

  12. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    Science.gov (United States)

    Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078

  13. A modified hybrid uncertain analysis method for dynamic response field of the LSOAAC with random and interval parameters

    Science.gov (United States)

    Zi, Bin; Zhou, Bin

    2016-07-01

    For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .

  14. Hybrid electrokinetic method applied to mix contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, H.; Maria, E. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    Several industrials and municipal areas in North America are contaminated with heavy metals and petroleum products. This mix contamination presents a particularly difficult task for remediation when is exposed in clayey soil. The objective of this research was to find a method to cleanup mix contaminated clayey soils. Finally, a multifunctional hybrid electrokinetic method was investigated. Clayey soil was contaminated with lead and nickel (heavy metals) at the level of 1000 ppm and phenanthrene (PAH) of 600 ppm. Electrokinetic surfactant supply system was applied to mobilize, transport and removal of phenanthrene. A chelation agent (EDTA) was also electrokinetically supplied to mobilize heavy metals. The studies were performed on 8 lab scale electrokinetic cells. The mix contaminated clayey soil was subjected to DC total voltage gradient of 0.3 V/cm. Supplied liquids (surfactant and EDTA) were introduced in different periods of time (22 days, 42 days) in order to optimize the most excessive removal of contaminants. The ph, electrical parameters, volume supplied, and volume discharged was monitored continuously during each experiment. At the end of these tests soil and cathalyte were subjected to physico-chemical analysis. The paper discusses results of experiments including the optimal energy use, removal efficiency of phenanthrene, as well, transport and removal of heavy metals. The results of this study can be applied for in-situ hybrid electrokinetic technology to remediate clayey sites contaminated with petroleum product mixed with heavy metals (e.g. manufacture Gas Plant Sites). (orig.)

  15. Disinfection of Escherichia coli bacteria using hybrid method of ozonation and hydrodynamic cavitation with orifice plate

    Science.gov (United States)

    Karamah, Eva F.; Ghaudenson, Rioneli; Amalia, Fitri; Bismo, Setijo

    2017-11-01

    This research aims to evaluate the performance of hybrid method of ozonation and hydrodynamic cavitation with orifice plate on E.coli bacteria disinfection. In this research, ozone dose, circulation flowrate, and disinfection method were varied. Ozone was produced by commercial ozonator with ozone dose of 64.83 mg/hour, 108.18 mg/hour, and 135.04 mg/hour. Meanwhile, hydrodynamic cavitation was generated by an orifice plate. The disinfection method compared in this research were: hydrodynamic cavitation, ozonation, and the combination of both. The best result on each method was achieved on the 60th minutes and with a circulation flowrate of 7 L/min. The hybrid method attained final concentration of 0 CFU/mL from the initial concentration of 2.10 × 105 CFU/mL. The ozonation method attained final concentration of 0 CFU/mL from the initial concentration of 1.32 × 105 CFU/mL. Cavitation method gives the least disinfection with final concentration of 5.20 × 104 CFU/mL from the initial concentration of 2.17 × 105 CFU/mL. In conclusion, hybrid method gives a faster and better disinfection of E.coli than each method on its own.

  16. Hybrid perturbation methods based on statistical time series models

    Science.gov (United States)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  17. Evaluation of integration methods for hybrid simulation of complex structural systems through collapse

    Science.gov (United States)

    Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto

    2017-10-01

    This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.

  18. New method of steganalysis for text data obtained by synonym run-length encoding

    Directory of Open Access Journals (Sweden)

    Ivan V. Nechta

    2018-05-01

    Full Text Available In this article, we present a new stegoanalysis method for detecting a text obtained by the synonym Run-Length Encoding. The analyzed RLE-method allows us to keep some statistical properties of the text after a secret message embedding. In particular, the probabilities distribution of the bits in the extracted message and the probabilities distribution of using text synonyms keep unchanged, that ensures a high secrecy degree of the considered embedding method. In this paper we show that the embedded message changes the probabilities distribution of bit-series lengths in the extracted message, and this fact is used for our stegoanalysis. It was shown that the embedded message breaks the statistical structure of the container, and this fact is used for the stegoanalysis. The constructed stegotest compares the probability distribution of runs (with length no more than 5 bits in the message extracted from the container with reference distributions corresponding to an empty and embedded containers.  Reference distributions were obtained by analysing of 1000 natural-text containers taken from the Gutenberg Project library. In this paper we consider two approaches for obtaining reference distributions. The first approach deals with analyzing the statistic of the message extracted from the container in the usual way (using the Tyrannosaurus Lex program. The second approach involves an additional decoding of the message in accordance with the analyzed run-length encoding algorithm. Experimental results allow us to assert that the first approach is more effective. The Kullback-Leibler measure is used as a divergence measure of two probability distributions. It was shown that the proposed method makes it possible to detect presence of the secret message in the container with a number of synonyms equal to 500, while false negative error is 1.5% and false positive error is 1.3%. In comparison with the known analogs, the proposed method demonstrates higher

  19. A novel method of developing all optical frequency encoded Fredkin gates

    Science.gov (United States)

    Garai, Sisir Kumar

    2014-02-01

    All optical reversible logic gates have significant applications in the field of optics and optoelectronics for developing different sequential and combinational circuits of optical computing, optical signal processing and in multi-valued logic operations and quantum computing. Here the author proposes a method for developing all optical three-input-output Fredkin gate and modified Fredkin gate using frequency encoded data. For this purpose the author has exploited the properties of efficient frequency conversion and faster switching speed of semiconductor optical amplifiers. Simulation results of the three input-output Fredkin gate testifies to the feasibility of the proposed scheme. These Fredkin gates are universal logic gates, and can be used to develop different all-optical logic and data processors in communication network.

  20. Research on a Novel Exciting Method for a Sandwich Transducer Operating in Longitudinal-Bending Hybrid Modes

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2017-06-01

    Full Text Available A novel exciting method for a sandwich type piezoelectric transducer operating in longitudinal-bending hybrid vibration modes is proposed and discussed, in which the piezoelectric elements for the excitations of the longitudinal and bending vibrations share the same axial location, but correspond to different partitions. Whole-piece type piezoelectric plates with three separated partitions are used, in which the center partitions generate the first longitudinal vibration, while the upper and lower partitions produce the second bending vibration. Detailed comparisons between the proposed exciting method and the traditional one were accomplished by finite element method (FEM calculations, which were further verified by experiments. Compared with the traditional exciting method using independent longitudinal ceramics and bending ceramics, the proposed method achieves higher electromechanical coupling factors and larger vibration amplitudes, especially for the bending vibration mode. This novel exciting method for longitudinal-bending hybrid vibrations has not changed the structural dimensions of the sandwich transducer, but markedly improves the mechanical output ability, which makes it very helpful and meaningful in designing new piezoelectric actuators operated in longitudinal-bending hybrid vibration modes.

  1. Interior Noise Prediction of the Automobile Based on Hybrid FE-SEA Method

    Directory of Open Access Journals (Sweden)

    S. M. Chen

    2011-01-01

    created using hybrid FE-SEA method. The modal density was calculated using analytical method and finite element method; the damping loss factors of the structural and acoustic cavity subsystems were also calculated with analytical method; the coupling loss factors between structure and structure, structure and acoustic cavity were both calculated. Four different kinds of excitations including road excitations, engine mount excitations, sound radiation excitations of the engine, and wind excitations are exerted on the body of automobile when the automobile is running on the road. All the excitations were calculated using virtual prototype technology, computational fluid dynamics (CFD, and experiments realized in the design and development stage. The interior noise of the automobile was predicted and verified at speed of 120 km/h. The predicted and tested overall SPLs of the interior noise were 73.79 and 74.44 dB(A respectively. The comparison results also show that the prediction precision is satisfied, and the effectiveness and reliability of the hybrid FE-SEA model of the automobile is verified.

  2. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Directory of Open Access Journals (Sweden)

    Benjamin C Hitz

    Full Text Available The Encyclopedia of DNA elements (ENCODE project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data has been released as a separate Python package.

  3. Supervised segmentation of phenotype descriptions for the human skeletal phenome using hybrid methods

    Directory of Open Access Journals (Sweden)

    Groza Tudor

    2012-10-01

    Full Text Available Abstract Background Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. In order to fully capture the intrinsic value and knowledge expressed within them, we need to take advantage of their inner structure, which implicitly combines qualities and anatomical entities. The first step in this process is the segmentation of the phenotype descriptions into their atomic elements. Results We present a two-phase hybrid segmentation method that combines a series individual classifiers using different aggregation schemes (set operations and simple majority voting. The approach is tested on a corpus comprised of skeletal phenotype descriptions emerged from the Human Phenotype Ontology. Experimental results show that the best hybrid method achieves an F-Score of 97.05% in the first phase and F-Scores of 97.16% / 94.50% in the second phase. Conclusions The performance of the initial segmentation of anatomical entities and qualities (phase I is not affected by the presence / absence of external resources, such as domain dictionaries. From a generic perspective, hybrid methods may not always improve the segmentation accuracy as they are heavily dependent on the goal and data characteristics.

  4. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  5. Chemical Space of DNA-Encoded Libraries.

    Science.gov (United States)

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  6. SVC Planning in Large–scale Power Systems via a Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Yang, Guang ya; Majumder, Rajat; Xu, Zhao

    2009-01-01

    The research on allocation of FACTS devices has attracted quite a lot interests from various aspects. In this paper, a hybrid model is proposed to optimise the number, location as well as the parameter settings of static Var compensator (SVC) deployed in large–scale power systems. The model...... utilises the result of vulnerability assessment for determining the candidate locations. A hybrid optimisation method including two stages is proposed to find out the optimal solution of SVC in large– scale planning problem. In the first stage, a conventional genetic algorithm (GA) is exploited to generate...... a candidate solution pool. Then in the second stage, the candidates are presented to a linear planning model to investigate the system optimal loadability, hence the optimal solution for SVC planning can be achieved. The method is presented to IEEE 300–bus system....

  7. Hybrid B-Spline Collocation Method for Solving the Generalized Burgers-Fisher and Burgers-Huxley Equations

    Directory of Open Access Journals (Sweden)

    Imtiaz Wasim

    2018-01-01

    Full Text Available In this study, we introduce a new numerical technique for solving nonlinear generalized Burgers-Fisher and Burgers-Huxley equations using hybrid B-spline collocation method. This technique is based on usual finite difference scheme and Crank-Nicolson method which are used to discretize the time derivative and spatial derivatives, respectively. Furthermore, hybrid B-spline function is utilized as interpolating functions in spatial dimension. The scheme is verified unconditionally stable using the Von Neumann (Fourier method. Several test problems are considered to check the accuracy of the proposed scheme. The numerical results are in good agreement with known exact solutions and the existing schemes in literature.

  8. Cloning of cDNA encoding steroid 11β-hydroxylase (P450c11)

    International Nuclear Information System (INIS)

    Chua, S.C.; Szabo, P.; Vitek, A.; Grzeschik, K.H.; John, M.; White, P.C.

    1987-01-01

    The authors have isolated bovine and human adrenal cDNA clones encoding the adrenal cytochrome P-450 specific for 11β-hydroxylation (P450c11). A bovine adrenal cDNA library constructed in the bacteriophage λ vector gt10 was probed with a previously isolated cDNA clone corresponding to part of the 3' untranslated region of the 4.2-kilobase (kb) mRNA encoding P450c11. Several clones with 3.2-kb cDNA inserts were isolated. Sequence analysis showed that they overlapped the original probe by 300 base pairs (bp). Combined cDNA and RNA sequence data demonstrated a continuous open reading frame of 1509 bases. P450c11 is predicted to contain 479 amino acid residues in the mature protein in addition to a 24-residue amino-terminal mitochondrial signal sequence. A bovine clone was used to isolate a homologous clone with a 3.5-kb insert from a human adrenal cDNA library. A region of 1100 bp was 81% homologous to 769 bp of the coding sequence of the bovine cDNA except for a 400-bp segment presumed to be an unprocessed intron. Hybridization of the human cDNA to DNA from a panel of human-rodent somatic cell hybrid lines and in situ hybridization to metaphase spreads of human chromosomes localized the gene to the middle of the long arm of chromosome 8. These data should be useful in developing reagents for heterozygote detection and prenatal diagnosis of 11β-hydroxylase deficiency, the second most frequent cause of congenital adrenal hyperplasia

  9. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    Directory of Open Access Journals (Sweden)

    Jouventin Pierre

    2010-05-01

    Full Text Available Abstract Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions.

  10. Applications of hybrid time-frequency methods in nonlinear structural dynamics

    International Nuclear Information System (INIS)

    Politopoulos, I.; Piteau, Ph.; Borsoi, L.; Antunes, J.

    2014-01-01

    This paper presents a study on methods which may be used to compute the nonlinear response of systems whose linear properties are determined in the frequency or Laplace domain. Typically, this kind of situation may arise in soil-structure and fluid-structure interaction problems. In particular three methods are investigated: (a) the hybrid time-frequency method, (b) the computation of the convolution integral which requires an inverse Fourier or Laplace transform of the system's transfer function, and (c) the identification of an equivalent system defined in the time domain which may be solved with classical time integration methods. These methods are illustrated by their application to some simple, one degree of freedom, non-linear systems and their advantages and drawbacks are highlighted. (authors)

  11. Diffusion and dispersion characteristics of hybridized discontinuous Galerkin methods for under-resolved turbulence simulations

    Science.gov (United States)

    Moura, Rodrigo; Fernandez, Pablo; Mengaldo, Gianmarco

    2017-11-01

    We investigate the dispersion and diffusion characteristics of hybridized discontinuous Galerkin (DG) methods. This provides us with insights to develop robust and accurate high-order DG discretizations for under-resolved flow simulations. Using the eigenanalysis technique introduced in (Moura et al., JCP, 2015 and Mengaldo et al., Computers & Fluids, 2017), we present a dispersion-diffusion analysis for the linear advection-diffusion equation. The effect of the accuracy order, the Riemann flux and the viscous stabilization are investigated. Next, we examine the diffusion characteristics of hybridized DG methods for under-resolved turbulent flows. The implicit large-eddy simulation (iLES) of the inviscid and viscous Taylor-Green vortex (TGV) problems are considered to this end. The inviscid case is relevant in the limit of high Reynolds numbers Re , i.e. negligible molecular viscosity, while the viscous case explores the effect of Re on the accuracy and robustness of the simulations. The TGV cases considered here are particularly crucial to under-resolved turbulent free flows away from walls. We conclude the talk with a discussion on the connections between hybridized and standard DG methods for under-resolved flow simulations.

  12. Graph Regularized Auto-Encoders for Image Representation.

    Science.gov (United States)

    Yiyi Liao; Yue Wang; Yong Liu

    2017-06-01

    Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.

  13. Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Guerrero, Josep M.; Oraee, Hashem

    2016-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method takes into account the available PV power...... and battery conditions of the units to share the load among them and power flow among different phases is performed automatically through three-phase units. Modified active power-frequency droop functions are used according to operating states of each unit and the frequency level is used as trigger...... for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  14. A Hybrid Optimization Method for Solving Bayesian Inverse Problems under Uncertainty.

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    Full Text Available In this paper, we investigate the application of a new method, the Finite Difference and Stochastic Gradient (Hybrid method, for history matching in reservoir models. History matching is one of the processes of solving an inverse problem by calibrating reservoir models to dynamic behaviour of the reservoir in which an objective function is formulated based on a Bayesian approach for optimization. The goal of history matching is to identify the minimum value of an objective function that expresses the misfit between the predicted and measured data of a reservoir. To address the optimization problem, we present a novel application using a combination of the stochastic gradient and finite difference methods for solving inverse problems. The optimization is constrained by a linear equation that contains the reservoir parameters. We reformulate the reservoir model's parameters and dynamic data by operating the objective function, the approximate gradient of which can guarantee convergence. At each iteration step, we obtain the relatively 'important' elements of the gradient, which are subsequently substituted by the values from the Finite Difference method through comparing the magnitude of the components of the stochastic gradient, which forms a new gradient, and we subsequently iterate with the new gradient. Through the application of the Hybrid method, we efficiently and accurately optimize the objective function. We present a number numerical simulations in this paper that show that the method is accurate and computationally efficient.

  15. #JeSuisCharlie: Towards a Multi-Method Study of Hybrid Media Events

    Directory of Open Access Journals (Sweden)

    Johanna Sumiala

    2016-10-01

    Full Text Available This article suggests a new methodological model for the study of hybrid media events with global appeal. This model, developed in the project on the 2015 Charlie Hebdo attacks in Paris, was created specifically for researching digital media—and in particular, Twitter. The article is structured as follows. Firstly, the methodological scope is discussed against the theoretical context, e.g. the theory of media events. In the theoretical discussion, special emphasis is given to i disruptive, upsetting, or disintegrative media events and hybrid media events and ii the conditions of today’s heterogeneous and globalised media communication landscape. Secondly, the article introduces a multi-method approach developed for the analysis of hybrid media events. In this model, computational social science—namely, automated content analysis (ACA and social network analytics (SNA—are combined with a qualitative approach—specifically, digital ethnography. The article outlines three key phases for research in which the interplay between quantitative and qualitative approaches is played out. In the first phase, preliminary digital ethnography is applied to provide the outline of the event. In the second phase, quantitative social network analytics are applied to construct the digital field for research. In this phase, it is necessary to map a what is circulating on the websites and b where this circulation takes place. The third and final phase applies a qualitative approach and digital ethnography to provide a more nuanced, in-depth interpretation of what (substance/content is circulating and how this material connects with the ‘where’ in the digital landscape, hence constituting links and connections in the hybrid media landscape. In conclusion, the article reflects on how this multi-method approach contributes to understanding the workings of today’s hybrid media events: how they create and maintain symbolic battles over certain imagined

  16. Present and future of the hybrid imaging method SPECT/CT

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2013-01-01

    Full text: Introduction: Based on the data in the literature and on our 4 year clinical experience applied for the first time in our country hybrid imaging - single photon emission tomography combined with computed tomography (SPECT / CT) it is clear that to obtain comprehensive information about the function and structure of the studied organ; the time for the diagnosis and thus the start of adequate treatment become shorter. The resulting scintigraphic image is with better quality due to CT correction of ‘diffusion’ gamma radiation, which leads to greater diagnostic accuracy. What you will learn: complex imaging method is used mainly in the field of endocrinology, cardiology, oncology, orthopedics, pulmology, neurology, and neurosurgery. It can be prove a given disease by visualization and localization of the organ lesions and determine the stage of the tumor process, to plan the type of subsequent treatment, to follow the effects of the therapy, and to predict the effect of an interventional or miniinvasive surgical procedure. Discussion: The result of the application of the hybrid imaging method is a change in the interpretation of more than half of the studied patients and in the treatment in more than a quarter of them. Conclusion: The clinical indications for SPECT/CT, and evidence of increased diagnostic accuracy compared with self- administered scintigraphic or CT methods are continuous expanded

  17. The structural and energetic aspects of substrate binding and the mechanism of action of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) investigated using a hybrid QM/MM method.

    Science.gov (United States)

    Dutta, Debodyuti; Mishra, Sabyashachi

    2014-12-21

    With increasing cases of fatal bacterial infections and growing antibiotic resistance, unrelenting efforts are necessary for identification of novel antibiotic targets and new drug molecules. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a di-nuclear Zn containing enzyme in the lysine biosynthetic pathway which is indispensable for bacterial survival and absent in the human host, thus a potential antibiotic target. The DapE enzyme catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP) to give rise to succinic acid and L,L-diaminopimelic acid. The mechanism of action of the DapE catalyzed SDAP hydrolysis is investigated employing a hybrid QM/MM computational method. The DapE side chains, such as, Arg178, Thr325, Asn345, are found to play a role in substrate identification and stabilization of the enzyme active site. Furthermore, a glycine rich loop (Gly322-Ser326) is found to facilitate tight binding of the substrate in the enzyme active site. The catalytic reaction progresses via a general acid-base hydrolysis mechanism where Glu134 first acts as a Lewis base by activating the catalytic water molecule in the active site, followed by guiding the resulting hydroxyl ion for a nucleophilic attack on the substrate, and finally acts as a Lewis acid by donating a proton to the substrate. The intermediates and transition states along the reaction pathway have been structurally and energetically characterized. A conformational change in the side chain of Asp100, which bridges the two Zn centers of the enzyme, is observed which facilitates the enzymatic action by lowering the activation energy and leads to the formation of a new intermediate during the catalytic reaction. The nucleophilic attack is found to be the rate determining step.

  18. Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice

    Directory of Open Access Journals (Sweden)

    Giao Ngoc Nguyen

    2017-08-01

    Full Text Available Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1 on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara. Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras and the DGS2 allele from O. sativa (DGS2-T65s were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP III subunit C4 (RPC4. RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.

  19. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review.

    Science.gov (United States)

    Uhde, Britta; Hahn, W Andreas; Griess, Verena C; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.

  20. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review

    Science.gov (United States)

    Uhde, Britta; Andreas Hahn, W.; Griess, Verena C.; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.

  1. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  2. Analysis of Epstein Barr Virus Encoded RNA Expression in Nasopharyngeal Carcinoma in North-Eastern India: A Chromogenic in Situ Hybridization Based Study

    Directory of Open Access Journals (Sweden)

    Anjan Saikia

    2016-05-01

    Full Text Available Introduction: Nasopharyngeal carcinoma (NPC is a common cancer in the North-East region of India. Though the role of environmental contributors of NPC in the North-Eastern part of India is firmly established, EBV as an etiological agent in the region remains unexplored. Material and Methods: Fifty-one patients, who presented at the department of ENT, NEIGRIHMS and were confirmed as NPC upon histopathological examination, were included in the study. Chromogenic in-situ hybridization (CISH was used for the evaluation of EBER (Epstein Barr Virus Encoded RNA. Presence of nuclear signals was taken as positive for EBER expression. EBER status was correlated with various clinicopathological parameters like age, sex, dietary habits, histological types of NPC, and ethnicity of the patients. Results: The age range of the study group was 25 to 70 years with a mean age of 44.64 years and a male:female ratio of 3:2. Non-keratinizing undifferentiated type of NPC was the most common histological type. EBV was positive in 59% (30/51 of our cases. It showed a statistically significant correlation with the Naga community (P=0.01, with consumption of smoked food (P=0.02, and cigarette smoking (P=0.02. There was no correlation of EBV with age, sex, lymph node metastasis, stage, and histology. Conclusion: Our result indicates that EBV may be an additional risk factor in the pathogenesis of NPC in this region of India. So apart from lifestyle modification, a future study for a screening test for EBV viral load even in asymptomatic patients may be considered, for determination of disease susceptibility, early diagnosis, and proper management.

  3. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  4. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  5. A Novel Audio Cryptosystem Using Chaotic Maps and DNA Encoding

    Directory of Open Access Journals (Sweden)

    S. J. Sheela

    2017-01-01

    Full Text Available Chaotic maps have good potential in security applications due to their inherent characteristics relevant to cryptography. This paper introduces a new audio cryptosystem based on chaotic maps, hybrid chaotic shift transform (HCST, and deoxyribonucleic acid (DNA encoding rules. The scheme uses chaotic maps such as two-dimensional modified Henon map (2D-MHM and standard map. The 2D-MHM which has sophisticated chaotic behavior for an extensive range of control parameters is used to perform HCST. DNA encoding technology is used as an auxiliary tool which enhances the security of the cryptosystem. The performance of the algorithm is evaluated for various speech signals using different encryption/decryption quality metrics. The simulation and comparison results show that the algorithm can achieve good encryption results and is able to resist several cryptographic attacks. The various types of analysis revealed that the algorithm is suitable for narrow band radio communication and real-time speech encryption applications.

  6. Gravity Search Algorithm hybridized Recursive Least Square method for power system harmonic estimation

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2017-06-01

    Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.

  7. A Hybrid Scheme Based on Pipelining and Multitasking in Mobile Application Processors for Advanced Video Coding

    Directory of Open Access Journals (Sweden)

    Muhammad Asif

    2015-01-01

    Full Text Available One of the key requirements for mobile devices is to provide high-performance computing at lower power consumption. The processors used in these devices provide specific hardware resources to handle computationally intensive video processing and interactive graphical applications. Moreover, processors designed for low-power applications may introduce limitations on the availability and usage of resources, which present additional challenges to the system designers. Owing to the specific design of the JZ47x series of mobile application processors, a hybrid software-hardware implementation scheme for H.264/AVC encoder is proposed in this work. The proposed scheme distributes the encoding tasks among hardware and software modules. A series of optimization techniques are developed to speed up the memory access and data transferring among memories. Moreover, an efficient data reusage design is proposed for the deblock filter video processing unit to reduce the memory accesses. Furthermore, fine grained macroblock (MB level parallelism is effectively exploited and a pipelined approach is proposed for efficient utilization of hardware processing cores. Finally, based on parallelism in the proposed design, encoding tasks are distributed between two processing cores. Experiments show that the hybrid encoder is 12 times faster than a highly optimized sequential encoder due to proposed techniques.

  8. Paternal inheritance of plastid-encoded transgenes in Petunia hybrida in the greenhouse and under field conditions.

    Science.gov (United States)

    Horn, Patricia; Nausch, Henrik; Baars, Susanne; Schmidtke, Jörg; Schmidt, Kerstin; Schneider, Anja; Leister, Dario; Broer, Inge

    2017-12-01

    As already demonstrated in greenhouse trials, outcrossing of transgenic plants can be drastically reduced via transgene integration into the plastid. We verified this result in the field with Petunia , for which the highest paternal leakage has been observed. The variety white 115 (W115) served as recipient and Pink Wave (PW) and the transplastomic variant PW T16, encoding the uid A reporter gene, as pollen donor. While manual pollination in the greenhouse led to over 90% hybrids for both crossings, the transgenic donor resulted only in 2% hybrids in the field. Nevertheless paternal leakage was detected in one case which proves that paternal inheritance of plastid-located transgenes is possible under artificial conditions. In the greenhouse, paternal leakage occurred in a frequency comparable to published results. As expected natural pollination reduced the hybrid formation in the field from 90 to 7.6% and the transgenic donor did not result in any hybrid.

  9. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor.

    Science.gov (United States)

    Zhang, Danfeng; Wu, Suowei; An, Xueli; Xie, Ke; Dong, Zhenying; Zhou, Yan; Xu, Liwen; Fang, Wen; Liu, Shensi; Liu, Shuangshuang; Zhu, Taotao; Li, Jinping; Rao, Liqun; Zhao, Jiuran; Wan, Xiangyuan

    2018-02-01

    Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. A hybrid multiscale kinetic Monte Carlo method for simulation of copper electrodeposition

    International Nuclear Information System (INIS)

    Zheng Zheming; Stephens, Ryan M.; Braatz, Richard D.; Alkire, Richard C.; Petzold, Linda R.

    2008-01-01

    A hybrid multiscale kinetic Monte Carlo (HMKMC) method for speeding up the simulation of copper electrodeposition is presented. The fast diffusion events are simulated deterministically with a heterogeneous diffusion model which considers site-blocking effects of additives. Chemical reactions are simulated by an accelerated (tau-leaping) method for discrete stochastic simulation which adaptively selects exact discrete stochastic simulation for the appropriate reaction whenever that is necessary. The HMKMC method is seen to be accurate and highly efficient

  11. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping; Shi, Yifei; Jiang, Lijun; Bagci, Hakan

    2014-01-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer's shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  12. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  13. A method for minimum risk portfolio optimization under hybrid uncertainty

    Science.gov (United States)

    Egorova, Yu E.; Yazenin, A. V.

    2018-03-01

    In this paper, we investigate a minimum risk portfolio model under hybrid uncertainty when the profitability of financial assets is described by fuzzy random variables. According to Feng, the variance of a portfolio is defined as a crisp value. To aggregate fuzzy information the weakest (drastic) t-norm is used. We construct an equivalent stochastic problem of the minimum risk portfolio model and specify the stochastic penalty method for solving it.

  14. MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    K. Vidhya

    2011-02-01

    Full Text Available Medical imaging techniques produce prohibitive amounts of digitized clinical data. Compression of medical images is a must due to large memory space required for transmission and storage. This paper presents an effective algorithm to compress and to reconstruct medical images. The proposed algorithm first extracts edge information of medical images by using fuzzy edge detector. The images are decomposed using Cohen-Daubechies-Feauveau (CDF wavelet. The hybrid technique utilizes the efficient wavelet based compression algorithms such as JPEG2000 and Set Partitioning In Hierarchical Trees (SPIHT. The wavelet coefficients in the approximation sub band are encoded using tier 1 part of JPEG2000. The wavelet coefficients in the detailed sub bands are encoded using SPIHT. Consistent quality images are produced by this method at a lower bit rate compared to other standard compression algorithms. Two main approaches to assess image quality are objective testing and subjective testing. The image quality is evaluated by objective quality measures. Objective measures correlate well with the perceived image quality for the proposed compression algorithm.

  15. Construction of a restriction map and gene map of the lettuce chloroplast small single-copy region using Southern cross-hybridization.

    Science.gov (United States)

    Mitchelson, K R

    1996-01-01

    The small single-copy region (SSCR) of the chloroplast genome of many higher plants typically contain ndh genes encoding proteins that share homology with subunits of the respiratory-chain reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase complex of mitochondria. A map of the lettuce chloroplast SSCR has been determined by Southern cross-hybridization, taking advantage of the high degree of homology between a tobacco small single-copy fragment and a corresponding lettuce chloroplast fragment. The gene order of the SSCR of lettuce and tobacco chloroplasts is similar. The cross-hybridization method can rapidly create a primary gene map of unknown chloroplast fragments, thus providing detailed information of the localization and arrangement of genes and conserved open reading frame regions.

  16. A hybrid method of prediction of the void fraction during depressurization of diabatic systems

    International Nuclear Information System (INIS)

    Inayatullah, G.; Nicoll, W.B.; Hancox, W.T.

    1977-01-01

    The variation in vapour volumetric fraction during transient pressure, flow and power is of considerable importance in water-cooled nuclear power-reactor safety analysis. The commonly adopted procedure to predict the transient void is to solve the conservation equations using finite differences. This present method is intermediate between numerical and analytic, hence 'hybrid'. Space and time are divided into discrete intervals. Their size, however, is dictated by the imposed heat flux and pressure variations, and not by truncation error, stability or convergence, because within an interval, the solutions applied are analytic. The relatively simple hybrid method presented here can predict the void distribution in a variety of transient, diabatic, two-phase flows with simplicity, accuracy and speed. (Auth.)

  17. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  18. A hybrid method for provincial scale energy-related carbon emission allocation in China.

    Science.gov (United States)

    Bai, Hongtao; Zhang, Yingxuan; Wang, Huizhi; Huang, Yanying; Xu, He

    2014-01-01

    Achievement of carbon emission reduction targets proposed by national governments relies on provincial/state allocations. In this study, a hybrid method for provincial energy-related carbon emissions allocation in China was developed to provide a good balance between production- and consumption-based approaches. In this method, provincial energy-related carbon emissions are decomposed into direct emissions of local activities other than thermal power generation and indirect emissions as a result of electricity consumption. Based on the carbon reduction efficiency principle, the responsibility for embodied emissions of provincial product transactions is assigned entirely to the production area. The responsibility for carbon generation during the production of thermal power is borne by the electricity consumption area, which ensures that different regions with resource endowments have rational development space. Empirical studies were conducted to examine the hybrid method and three indices, per capita GDP, resource endowment index and the proportion of energy-intensive industries, were screened to preliminarily interpret the differences among China's regional carbon emissions. Uncertainty analysis and a discussion of this method are also provided herein.

  19. HyDEn: A Hybrid Steganocryptographic Approach for Data Encryption Using Randomized Error-Correcting DNA Codes

    Directory of Open Access Journals (Sweden)

    Dan Tulpan

    2013-01-01

    Full Text Available This paper presents a novel hybrid DNA encryption (HyDEn approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach.

  20. Encoder designed to work in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2007-05-15

    Dynapar has developed the Acuro AX71 absolute encoder for use on offshore or land-based oil rig operations. It provides feedback on the operation of automated systems such as draw works, racking systems, rotary tables and top drives. By ensuring that automated systems function properly, this encoder responds to a need by the oil and gas industry to keep workers safe and improve efficiency, particularly for operations in rugged situations. The encoder provides feedback from motor systems to controllers, giving information about position and speed of downhole drill bits. This newly developed encoder is better than commonly used incremental encoders which are not precise in strong electrical noise environments. Rather, the absolute encoder uses a different method of reporting to the controller. A digital signal is transmitted constantly as the device operates. It is less susceptible to noise issues. It is highly accurate, tolerant of noise and is not affected by power outages. However, the absolute encoder is generally more delicate in drilling applications with high ambient temperatures and shock levels. Dynapar addressed this issue by developing compact stainless steel housing that is useful for corrosion resistance in marine applications. The AX71 absolute encoder can withstand up to 100 G of mechanical shock and ambient temperatures of up to 60 degrees C. The encoder is ATEX certified without barriers, and offers the high resolution feedback of 4,000 counts of multiturn rotation and 16,000 counts of position. 1 fig.

  1. Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method.

    Science.gov (United States)

    Gao, Jian; Guildenbecher, Daniel R; Reu, Phillip L; Chen, Jun

    2013-11-04

    In the detection of particles using digital in-line holography, measurement accuracy is substantially influenced by the hologram processing method. In particular, a number of methods have been proposed to determine the out-of-plane particle depth (z location). However, due to the lack of consistent uncertainty characterization, it has been unclear which method is best suited to a given measurement problem. In this work, depth determination accuracies of seven particle detection methods, including a recently proposed hybrid method, are systematically investigated in terms of relative depth measurement errors and uncertainties. Both synthetic and experimental holograms of particle fields are considered at conditions relevant to particle sizing and tracking. While all methods display a range of particle conditions where they are most accurate, in general the hybrid method is shown to be the most robust with depth uncertainty less than twice the particle diameter over a wide range of particle field conditions.

  2. Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)

    2016-06-15

    The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.

  3. A Hybrid Method for the Modelling and Optimisation of Constrained Search Problems

    Directory of Open Access Journals (Sweden)

    Sitek Pawel

    2014-08-01

    Full Text Available The paper presents a concept and the outline of the implementation of a hybrid approach to modelling and solving constrained problems. Two environments of mathematical programming (in particular, integer programming and declarative programming (in particular, constraint logic programming were integrated. The strengths of integer programming and constraint logic programming, in which constraints are treated in a different way and different methods are implemented, were combined to use the strengths of both. The hybrid method is not worse than either of its components used independently. The proposed approach is particularly important for the decision models with an objective function and many discrete decision variables added up in multiple constraints. To validate the proposed approach, two illustrative examples are presented and solved. The first example is the authors’ original model of cost optimisation in the supply chain with multimodal transportation. The second one is the two-echelon variant of the well-known capacitated vehicle routing problem.

  4. A comparison of generalized hybrid Monte Carlo methods with and without momentum flip

    International Nuclear Information System (INIS)

    Akhmatskaya, Elena; Bou-Rabee, Nawaf; Reich, Sebastian

    2009-01-01

    The generalized hybrid Monte Carlo (GHMC) method combines Metropolis corrected constant energy simulations with a partial random refreshment step in the particle momenta. The standard detailed balance condition requires that momenta are negated upon rejection of a molecular dynamics proposal step. The implication is a trajectory reversal upon rejection, which is undesirable when interpreting GHMC as thermostated molecular dynamics. We show that a modified detailed balance condition can be used to implement GHMC without momentum flips. The same modification can be applied to the generalized shadow hybrid Monte Carlo (GSHMC) method. Numerical results indicate that GHMC/GSHMC implementations with momentum flip display a favorable behavior in terms of sampling efficiency, i.e., the traditional GHMC/GSHMC implementations with momentum flip got the advantage of a higher acceptance rate and faster decorrelation of Monte Carlo samples. The difference is more pronounced for GHMC. We also numerically investigate the behavior of the GHMC method as a Langevin-type thermostat. We find that the GHMC method without momentum flip interferes less with the underlying stochastic molecular dynamics in terms of autocorrelation functions and it to be preferred over the GHMC method with momentum flip. The same finding applies to GSHMC

  5. Hybrid methods to represent incomplete and uncertain information

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-12-31

    Decision making is cast in the semiotic context of perception, decision, and action loops. Towards the goal of properly grounding hybrid representations of information and uncertainty from this semiotic perspective, we consider the roles of and relations among the mathematical components of General Information Theory (GIT), particularly among fuzzy sets, possibility theory, probability theory, and random sets. We do so by using a clear distinction between the syntactic, mathematical formalism and the semantic domains of application of each of these fields, placing the emphasis on available measurement and action methods appropriate for each formalism, to which and from which the decision-making process flows.

  6. Carboxylesterase 1A2 encoding gene with increased transcription and potential rapid drug metabolism in Asian populations

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Madsen, Majbritt Busk; Lyauk, Yassine Kamal

    2017-01-01

    The carboxylesterase 1 gene (CES1) encodes a hydrolase implicated in the metabolism of commonly used drugs. CES1A2, a hybrid of CES1 and a CES1-like pseudogene, has a promoter that is weak in most individuals. However, some individuals harbor a promoter haplotype of this gene with two overlapping...

  7. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  8. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    Directory of Open Access Journals (Sweden)

    Hai An

    2016-08-01

    Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.

  9. Selection of hybrid vehicle for green environment using multi-attributive border approximation area comparison method

    Directory of Open Access Journals (Sweden)

    Tapas Kumar Biswas

    2018-02-01

    Full Text Available The mobility sector including all kinds of transportation systems are facing global challenges in re-spect of green environmental issues. There has been a paradigm shift in the concept of design and manufacturing of automotive vehicles keeping in mind the scarcity of fossil fuel and the impact of emission on environment due to burning of it. The addition of hybrid and electric vehicles in pas-senger car segment has got significant momentum to address the global challenges. This research investigates the performance of a group of hybrid vehicles from customers’ perspective. Among the different brands that are available in the hybrid vehicle market, smart customers have given pri-ority to vehicle cost, mileage, tail pipe emission, comfortness and high tank size volume for long drive. Considering these attributes, selection strategy for hybrid vehicles has been developed using entropy based multi-attributive border approximation area comparison (MABAC method. This research highlights the best hybrid vehicle which reduces air pollution in cities with other significant environmental benefits, reduces dependence on foreign energy imports and minimizes the annual fuel cost.

  10. Hybrid method based on embedded coupled simulation of vortex particles in grid based solution

    Science.gov (United States)

    Kornev, Nikolai

    2017-09-01

    The paper presents a novel hybrid approach developed to improve the resolution of concentrated vortices in computational fluid mechanics. The method is based on combination of a grid based and the grid free computational vortex (CVM) methods. The large scale flow structures are simulated on the grid whereas the concentrated structures are modeled using CVM. Due to this combination the advantages of both methods are strengthened whereas the disadvantages are diminished. The procedure of the separation of small concentrated vortices from the large scale ones is based on LES filtering idea. The flow dynamics is governed by two coupled transport equations taking two-way interaction between large and fine structures into account. The fine structures are mapped back to the grid if their size grows due to diffusion. Algorithmic aspects of the hybrid method are discussed. Advantages of the new approach are illustrated on some simple two dimensional canonical flows containing concentrated vortices.

  11. MR imaging of ore for heap bioleaching studies using pure phase encode acquisition methods

    Science.gov (United States)

    Fagan, Marijke A.; Sederman, Andrew J.; Johns, Michael L.

    2012-03-01

    Various MRI techniques were considered with respect to imaging of aqueous flow fields in low grade copper ore. Spin echo frequency encoded techniques were shown to produce unacceptable image distortions which led to pure phase encoded techniques being considered. Single point imaging multiple point acquisition (SPI-MPA) and spin echo single point imaging (SESPI) techniques were applied. By direct comparison with X-ray tomographic images, both techniques were found to be able to produce distortion-free images of the ore packings at 2 T. The signal to noise ratios (SNRs) of the SESPI images were found to be superior to SPI-MPA for equal total acquisition times; this was explained based on NMR relaxation measurements. SESPI was also found to produce suitable images for a range of particles sizes, whereas SPI-MPA SNR deteriorated markedly as particles size was reduced. Comparisons on a 4.7 T magnet showed significant signal loss from the SPI-MPA images, the effect of which was accentuated in the case of unsaturated flowing systems. Hence it was concluded that SESPI was the most robust imaging method for the study of copper ore heap leaching hydrology.

  12. Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps

    Science.gov (United States)

    Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.

    2018-04-01

    Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.

  13. A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks.

    Science.gov (United States)

    Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo

    2011-03-28

    We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s.

  14. Compass: A hybrid method for clinical and biobank data mining

    DEFF Research Database (Denmark)

    Krysiak-Baltyn, Konrad; Petersen, Thomas Nordahl; Audouze, Karine Marie Laure

    2014-01-01

    We describe a new method for identification of confident associations within large clinical data sets. The method is a hybrid of two existing methods; Self-Organizing Maps and Association Mining. We utilize Self-Organizing Maps as the initial step to reduce the search space, and then apply...... Association Mining in order to find association rules. We demonstrate that this procedure has a number of advantages compared to traditional Association Mining; it allows for handling numerical variables without a priori binning and is able to generate variable groups which act as “hotspots” for statistically...... significant associations. We showcase the method on infertility-related data from Danish military conscripts. The clinical data we analyzed contained both categorical type questionnaire data and continuous variables generated from biological measurements, including missing values. From this data set, we...

  15. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  16. Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjin; Jeong, Myunggeun; Ha, Man Yeong [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-06-15

    A molecular-continuum hybrid method was developed to simulate microscale and nanoscale fluids where continuum fluidic cannot be used to predict Couette flow. Molecular dynamics simulation is used near the solid surface where the flow cannot be predicted by continuum fluidic, and Navier-Stokes equations are used in the other regions. Numerical simulation of Couette flow was performed using the hybrid method to investigate the effect of solid-liquid interaction and surface roughness in a nanochannel. It was found that the solid-liquid interaction and surface roughness influence the boundary condition. When the surface energy is low, slippage occurs near the solid surface, and the magnitude of slippage decreases with increase in surface energy. When the surface energy is high, a locking boundary condition is formed. The roughness disturbs slippage near the solid surface and promotes the locking boundary condition.

  17. Hybrid classifiers methods of data, knowledge, and classifier combination

    CERN Document Server

    Wozniak, Michal

    2014-01-01

    This book delivers a definite and compact knowledge on how hybridization can help improving the quality of computer classification systems. In order to make readers clearly realize the knowledge of hybridization, this book primarily focuses on introducing the different levels of hybridization and illuminating what problems we will face with as dealing with such projects. In the first instance the data and knowledge incorporated in hybridization were the action points, and then a still growing up area of classifier systems known as combined classifiers was considered. This book comprises the aforementioned state-of-the-art topics and the latest research results of the author and his team from Department of Systems and Computer Networks, Wroclaw University of Technology, including as classifier based on feature space splitting, one-class classification, imbalance data, and data stream classification.

  18. Detecting Android Malwares with High-Efficient Hybrid Analyzing Methods

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2018-01-01

    Full Text Available In order to tackle the security issues caused by malwares of Android OS, we proposed a high-efficient hybrid-detecting scheme for Android malwares. Our scheme employed different analyzing methods (static and dynamic methods to construct a flexible detecting scheme. In this paper, we proposed some detecting techniques such as Com+ feature based on traditional Permission and API call features to improve the performance of static detection. The collapsing issue of traditional function call graph-based malware detection was also avoided, as we adopted feature selection and clustering method to unify function call graph features of various dimensions into same dimension. In order to verify the performance of our scheme, we built an open-access malware dataset in our experiments. The experimental results showed that the suggested scheme achieved high malware-detecting accuracy, and the scheme could be used to establish Android malware-detecting cloud services, which can automatically adopt high-efficiency analyzing methods according to the properties of the Android applications.

  19. Multistep Hybrid Extragradient Method for Triple Hierarchical Variational Inequalities

    Directory of Open Access Journals (Sweden)

    Zhao-Rong Kong

    2013-01-01

    Full Text Available We consider a triple hierarchical variational inequality problem (THVIP, that is, a variational inequality problem defined over the set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational inequalities (SHVI, that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.

  20. A device, a system and a method of encoding a position of an object

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a device for encoding a position of an object, comprising a first light source; a first collimating element adapted to form first collimated light from the first light source; a carrier adapted to guide light and comprising a first primary light redirecting...... structure and a second primary light redirecting structure; and a detector device for encoding the position of an object with respect to an active area of an encoding plane; wherein the first primary light redirecting structure is adapted to redirect at least a part of a first light beam through the active...

  1. Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available Different configurations of coupling strategies influence greatly the accuracy and convergence of the simulation results in the hybrid atomistic-continuum method. This study aims to quantitatively investigate this effect and offer the guidance on how to choose the proper configuration of coupling strategies in the hybrid atomistic-continuum method. We first propose a hybrid molecular dynamics- (MD- continuum solver in LAMMPS and OpenFOAM that exchanges state variables between the atomistic region and the continuum region and evaluate different configurations of coupling strategies using the sudden start Couette flow, aiming to find the preferable configuration that delivers better accuracy and efficiency. The major findings are as follows: (1 the C→A region plays the most important role in the overlap region and the “4-layer-1” combination achieves the best precision with a fixed width of the overlap region; (2 the data exchanging operation only needs a few sampling points closer to the occasions of interactions and decreasing the coupling exchange operations can reduce the computational load with acceptable errors; (3 the nonperiodic boundary force model with a smoothing parameter of 0.1 and a finer parameter of 20 can not only achieve the minimum disturbance near the MD-continuum interface but also keep the simulation precision.

  2. Hybrid teaching method for undergraduate student in Marine Geology class in Indonesia

    Science.gov (United States)

    Yusuf Awaluddin, M.; Yuliadi, Lintang

    2016-04-01

    Bridging Geosciences to the future generations in interesting and interactive ways are challenging for lecturers and teachers. In the past, one-way 'classic' face-to-face teaching method has been used as the only alternative for undergraduate's Marine Geology class in Padjadjaran University, Indonesia. Currently, internet users in Indonesia have been increased significantly, among of them are young generations and students. The advantage of the internet as a teaching method in Geosciences topic in Indonesia is still limited. Here we have combined between the classic and the online method for undergraduate teaching. The case study was in Marine Geology class, Padjadjaran University, with 70 students as participants and 2 instructors. We used Edmodo platform as a primary tool in our teaching and Dropbox as cloud storage. All online teaching activities such as assignment, quiz, discussion and examination were done in concert with the classic one with proportion 60% and 40% respectively. We found that the students had the different experience in this hybrid teaching method as shown in their feedback through this platform. This hybrid method offers interactive ways not only between the lecturers and the students but also among students. Classroom meeting is still needed to expose their work and for general discussion.Nevertheless, the only problem was the lack of internet access in the campus when all our students accessing the platform at the same time.

  3. Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice.

    Science.gov (United States)

    Shen, Rongxin; Wang, Lan; Liu, Xupeng; Wu, Jiang; Jin, Weiwei; Zhao, Xiucai; Xie, Xianrong; Zhu, Qinlong; Tang, Huiwu; Li, Qing; Chen, Letian; Liu, Yao-Guang

    2017-11-03

    Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.

  4. A hybrid filtering method based on a novel empirical mode decomposition for friction signals

    International Nuclear Information System (INIS)

    Li, Chengwei; Zhan, Liwei

    2015-01-01

    During a measurement, the measured signal usually contains noise. To remove the noise and preserve the important feature of the signal, we introduce a hybrid filtering method that uses a new intrinsic mode function (NIMF) and a modified Hausdorff distance. The NIMF is defined as the difference between the noisy signal and each intrinsic mode function (IMF), which is obtained by empirical mode decomposition (EMD), ensemble EMD, complementary ensemble EMD, or complete ensemble EMD with adaptive noise (CEEMDAN). The relevant mode selecting is based on the similarity between the first NIMF and the rest of the NIMFs. With this filtering method, the EMD and improved versions are used to filter the simulation and friction signals. The friction signal between an airplane tire and the runaway is recorded during a simulated airplane touchdown and features spikes of various amplitudes and noise. The filtering effectiveness of the four hybrid filtering methods are compared and discussed. The results show that the filtering method based on CEEMDAN outperforms other signal filtering methods. (paper)

  5. Error-free holographic frames encryption with CA pixel-permutation encoding algorithm

    Science.gov (United States)

    Li, Xiaowei; Xiao, Dan; Wang, Qiong-Hua

    2018-01-01

    The security of video data is necessary in network security transmission hence cryptography is technique to make video data secure and unreadable to unauthorized users. In this paper, we propose a holographic frames encryption technique based on the cellular automata (CA) pixel-permutation encoding algorithm. The concise pixel-permutation algorithm is used to address the drawbacks of the traditional CA encoding methods. The effectiveness of the proposed video encoding method is demonstrated by simulation examples.

  6. Detection of biomarkers for Hepatocellular Carcinoma using a hybrid univariate gene selection methods

    Directory of Open Access Journals (Sweden)

    Abdel Samee Nagwan M

    2012-08-01

    Full Text Available Abstract Background Discovering new biomarkers has a great role in improving early diagnosis of Hepatocellular carcinoma (HCC. The experimental determination of biomarkers needs a lot of time and money. This motivates this work to use in-silico prediction of biomarkers to reduce the number of experiments required for detecting new ones. This is achieved by extracting the most representative genes in microarrays of HCC. Results In this work, we provide a method for extracting the differential expressed genes, up regulated ones, that can be considered candidate biomarkers in high throughput microarrays of HCC. We examine the power of several gene selection methods (such as Pearson’s correlation coefficient, Cosine coefficient, Euclidean distance, Mutual information and Entropy with different estimators in selecting informative genes. A biological interpretation of the highly ranked genes is done using KEGG (Kyoto Encyclopedia of Genes and Genomes pathways, ENTREZ and DAVID (Database for Annotation, Visualization, and Integrated Discovery databases. The top ten genes selected using Pearson’s correlation coefficient and Cosine coefficient contained six genes that have been implicated in cancer (often multiple cancers genesis in previous studies. A fewer number of genes were obtained by the other methods (4 genes using Mutual information, 3genes using Euclidean distance and only one gene using Entropy. A better result was obtained by the utilization of a hybrid approach based on intersecting the highly ranked genes in the output of all investigated methods. This hybrid combination yielded seven genes (2 genes for HCC and 5 genes in different types of cancer in the top ten genes of the list of intersected genes. Conclusions To strengthen the effectiveness of the univariate selection methods, we propose a hybrid approach by intersecting several of these methods in a cascaded manner. This approach surpasses all of univariate selection methods when

  7. Hybrid and Parallel Domain-Decomposition Methods Development to Enable Monte Carlo for Reactor Analyses

    International Nuclear Information System (INIS)

    Wagner, John C.; Mosher, Scott W.; Evans, Thomas M.; Peplow, Douglas E.; Turner, John A.

    2010-01-01

    This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform real commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the gold standard for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method, which

  8. Hybrid and parallel domain-decomposition methods development to enable Monte Carlo for reactor analyses

    International Nuclear Information System (INIS)

    Wagner, J.C.; Mosher, S.W.; Evans, T.M.; Peplow, D.E.; Turner, J.A.

    2010-01-01

    This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform 'real' commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the 'gold standard' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method

  9. Characterization of cDNA encoding human placental anticoagulant protein (PP4): Homology with the lipocortin family

    International Nuclear Information System (INIS)

    Grundmann, U.; Abel, K.J.; Bohn, H.; Loebermann, H.; Lottspeich, F.; Kuepper, H.

    1988-01-01

    A cDNA library prepared from human placenta was screened for sequences encoding the placental protein 4 (PP4). PP4 is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. Partial amino acid sequence information from PP4-derived cyanogen bromide fragments was used to design three oligonucleotide probes for screening the library. From 10 6 independent recombinants, 18 clones were identified that hybridized to all three probes. These 18 recombinants contained cDNA inserts encoding a protein of 320 amino acid residues. In addition to the PP4 cDNA the authors identified 9 other recombinants encoding a protein with considerable similarity (74%) to PP4, which was termed PP4-X. PP4 and PP4-X belong to the lipocortin family, as judged by their homology to lipocortin I and calpactin I

  10. Hybrid Steepest-Descent Methods for Triple Hierarchical Variational Inequalities

    Directory of Open Access Journals (Sweden)

    L. C. Ceng

    2015-01-01

    Full Text Available We introduce and analyze a relaxed iterative algorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method, and Mann’s iteration method. We prove that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inclusions, and the solution set of general system of variational inequalities (GSVI, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm for solving a hierarchical variational inequality problem with constraints of finitely many GMEPs, finitely many variational inclusions, and the GSVI. The results obtained in this paper improve and extend the corresponding results announced by many others.

  11. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    Science.gov (United States)

    Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.

    2012-09-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  12. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    International Nuclear Information System (INIS)

    Zhang, L.; Zhao, J.M.; Liu, L.H.; Wang, S.Y.

    2012-01-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  13. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  14. New Method of Selecting Efficient Project Portfolios in the Presence of Hybrid Uncertainty

    Directory of Open Access Journals (Sweden)

    Bogdan Rębiasz

    2016-01-01

    Full Text Available A new methods of selecting efficient project portfolios in the presence of hybrid uncertainty has been presented. Pareto optimal solutions have been defined by an algorithm for generating project portfolios. The method presented allows us to select efficient project portfolios taking into account statistical and economic dependencies between projects when some of the parameters used in the calculation of effectiveness can be expressed in the form of an interactive possibility distribution and some in the form of a probability distribution. The procedure for processing such hybrid data combines stochastic simulation with nonlinear programming. The interaction between data are modeled by correlation matrices and the interval regression. Economic dependences are taken into account by the equations balancing the production capacity of the company. The practical example presented indicates that an interaction between projects has a significant impact on the results of calculations. (original abstract

  15. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  16. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    Science.gov (United States)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  17. Design of time interval generator based on hybrid counting method

    International Nuclear Information System (INIS)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-01-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  18. Design of time interval generator based on hybrid counting method

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yuan [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Zhaoqi [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lu, Houbing [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei Electronic Engineering Institute, Hefei 230037 (China); Chen, Lian [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jin, Ge, E-mail: goldjin@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  19. Paternal inheritance of plastid-encoded transgenes in Petunia hybrida in the greenhouse and under field conditions

    Directory of Open Access Journals (Sweden)

    Patricia Horn

    2017-12-01

    Full Text Available As already demonstrated in greenhouse trials, outcrossing of transgenic plants can be drastically reduced via transgene integration into the plastid. We verified this result in the field with Petunia, for which the highest paternal leakage has been observed. The variety white 115 (W115 served as recipient and Pink Wave (PW and the transplastomic variant PW T16, encoding the uidA reporter gene, as pollen donor. While manual pollination in the greenhouse led to over 90% hybrids for both crossings, the transgenic donor resulted only in 2% hybrids in the field. Nevertheless paternal leakage was detected in one case which proves that paternal inheritance of plastid-located transgenes is possible under artificial conditions. In the greenhouse, paternal leakage occurred in a frequency comparable to published results. As expected natural pollination reduced the hybrid formation in the field from 90 to 7.6% and the transgenic donor did not result in any hybrid. Keywords: Paternal plastid inheritance, Transgene confinement, Greenhouse, Field trial, Pollen mediated gene flow

  20. Simplified Model for the Hybrid Method to Design Stabilising Piles Placed at the Toe of Slopes

    Directory of Open Access Journals (Sweden)

    Dib M.

    2018-01-01

    Full Text Available Stabilizing precarious slopes by installing piles has become a widespread technique for landslides prevention. The design of slope-stabilizing piles by the finite element method is more accurate comparing to the conventional methods. This accuracy is because of the ability of this method to simulate complex configurations, and to analyze the soil-pile interaction effect. However, engineers prefer to use the simplified analytical techniques to design slope stabilizing piles, this is due to the high computational resources required by the finite element method. Aiming to combine the accuracy of the finite element method with simplicity of the analytical approaches, a hybrid methodology to design slope stabilizing piles was proposed in 2012. It consists of two steps; (1: an analytical estimation of the resisting force needed to stabilize the precarious slope, and (2: a numerical analysis to define the adequate pile configuration that offers the required resisting force. The hybrid method is applicable only for the analysis and the design of stabilizing piles placed in the middle of the slope, however, in certain cases like road constructions, piles are needed to be placed at the toe of the slope. Therefore, in this paper a simplified model for the hybrid method is dimensioned to analyze and design stabilizing piles placed at the toe of a precarious slope. The validation of the simplified model is presented by a comparative analysis with the full coupled finite element model.

  1. Hybrid Instruments and the Indirect Credit Method - Does it work?

    OpenAIRE

    Wiedermann-Ondrej, Nadine

    2007-01-01

    This paper analyses the possibility of double non-taxation of hybrid instruments in cross border transactions where the country of the investor has implemented the indirect credit method for mitigation or elimination of double taxation. From an isolated perspective a double non-taxation cannot be obtained because typically no taxes are paid in the foreign country due to the classification as debt and therefore even in the case of a classification as a dividend in the country of the investor n...

  2. The acylphosphatase (Acyp) alleles associate with male hybrid sterility in Drosophila.

    Science.gov (United States)

    Michalak, Pawel; Ma, Daina

    2008-06-15

    Hybrid defects are believed to result from genetic incompatibilities between genes that have evolved in separate parental lineages. These genetic dysfunctions on the hybrid genomic background, also known as Dobzhansky-Muller incompatibilities, can be an incipient signature of speciation, and as such - a subject of active research. Here we present evidence that Acyp locus (CG16870) that encodes acylphosphatase, a small enzyme that catalyzes the hydrolysis of acylphosphates and participates in ion transport across biological membranes, is involved in genetic incompatibilities leading to male sterility in hybrids between Drosophila simulans and D. mauritiana. There is a strong association between Acyp alleles (genotype) and the sterility/fertility pattern (phenotype), as well as between the phenotype, the genotype and its transcriptional activity. Allele-specific expression in hybrids heterozygous for Acyp suggests a cis-type regulation of this gene, where an allele from one of the parental species (D. simulans) is consistently overexpressed.

  3. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    OpenAIRE

    Hai An; Ling Zhou; Hui Sun

    2016-01-01

    Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new...

  4. Course on hybrid calculation

    International Nuclear Information System (INIS)

    Weill, J.; Tellier; Bonnemay; Craigne; Chareton; Di Falco

    1969-02-01

    After a definition of hybrid calculation (combination of analogue and digital calculation) with a distinction between series and parallel hybrid computing, and a description of a hybrid computer structure and of task sharing between computers, this course proposes a description of hybrid hardware used in Saclay and Cadarache computing centres, and of operations performed by these systems. The next part addresses issues related to programming languages and software. The fourth part describes how a problem is organised for its processing on these computers. Methods of hybrid analysis are then addressed: resolution of optimisation problems, of partial differential equations, and of integral equations by means of different methods (gradient, maximum principle, characteristics, functional approximation, time slicing, Monte Carlo, Neumann iteration, Fischer iteration)

  5. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting

    International Nuclear Information System (INIS)

    Azimi, R.; Ghayekhloo, M.; Ghofrani, M.

    2016-01-01

    Highlights: • A novel clustering approach is proposed based on the data transformation approach. • A novel cluster selection method based on correlation analysis is presented. • The proposed hybrid clustering approach leads to deep learning for MLPNN. • A hybrid forecasting method is developed to predict solar radiations. • The evaluation results show superior performance of the proposed forecasting model. - Abstract: Accurate forecasting of renewable energy sources plays a key role in their integration into the grid. This paper proposes a hybrid solar irradiance forecasting framework using a Transformation based K-means algorithm, named TB K-means, to increase the forecast accuracy. The proposed clustering method is a combination of a new initialization technique, K-means algorithm and a new gradual data transformation approach. Unlike the other K-means based clustering methods which are not capable of providing a fixed and definitive answer due to the selection of different cluster centroids for each run, the proposed clustering provides constant results for different runs of the algorithm. The proposed clustering is combined with a time-series analysis, a novel cluster selection algorithm and a multilayer perceptron neural network (MLPNN) to develop the hybrid solar radiation forecasting method for different time horizons (1 h ahead, 2 h ahead, …, 48 h ahead). The performance of the proposed TB K-means clustering is evaluated using several different datasets and compared with different variants of K-means algorithm. Solar datasets with different solar radiation characteristics are also used to determine the accuracy and processing speed of the developed forecasting method with the proposed TB K-means and other clustering techniques. The results of direct comparison with other well-established forecasting models demonstrate the superior performance of the proposed hybrid forecasting method. Furthermore, a comparative analysis with the benchmark solar

  6. Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry

    DEFF Research Database (Denmark)

    Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik

    2004-01-01

    n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....

  7. Use of the Streaming Matrix Hybrid Method for discrete-ordinates fusion reactor calculations

    International Nuclear Information System (INIS)

    Battat, M.E.; Davidson, J.W.; Dudziak, D.J.; Thayer, G.R.

    1984-01-01

    The use of the discrete-ordinates method for solving two-dimensional, neutral-particle transport in fusion reactor blankets and shields is often limited by inherent inaccuracies due to the ray-effect. This effect presents a particular problem in the case of neutron streaming in the large internal void regions of a fusion reactor. A deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) has been incorporated in the two-dimensional discrete-ordinates code TRIDENT-CTR. Calculations have been performed for an actual inertial-confinement fusion (ICF) reactor design using TRIDENT-CTR both with and without the SMHM. Comparisons of the calculated fluxes indicate that substantial mitigation of the ray effect can be achieved with the SMHM. Calculations were performed for the Los Alamos FIRST STEP hybrid ICF reactor designed for tritium production. Conventional 238 U fuel rod assemblies surround the spherical steel target chamber to form an annular cylindrical blanket. An axial fuel region is included to complete the blanket

  8. Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Golsorkhi, Mohammad

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units......, the operation of each unit is divided into five states and modified active power-frequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions...... and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid...

  9. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    Energy Technology Data Exchange (ETDEWEB)

    Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu [Department of Mechanical Engineering (United States); University of California Santa Barbara, Santa Barbara, CA, 93106 (United States); Department of Computer Science (United States); Department of Mathematics (United States)

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  10. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    International Nuclear Information System (INIS)

    Detrixhe, Miles; Gibou, Frédéric

    2016-01-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  11. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold.

    Science.gov (United States)

    Hutchison, N J; Langer-Safer, P R; Ward, D C; Hamkalo, B A

    1982-11-01

    In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average

  12. Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2008-01-01

    In a competitive electricity market, forecast of energy prices is a key information for the market participants. However, price signal usually has a complex behavior due to its nonlinearity, nonstationarity, and time variancy. In spite of all performed researches on this area in the recent years, there is still an essential need for more accurate and robust price forecast methods. In this paper, a combination of wavelet transform (WT) and a hybrid forecast method is proposed for this purpose. The hybrid method is composed of cascaded forecasters where each forecaster consists of a neural network (NN) and an evolutionary algorithms (EA). Both time domain and wavelet domain features are considered in a mixed data model for price forecast, in which the candidate input variables are refined by a feature selection technique. The adjustable parameters of the whole method are fine-tuned by a cross-validation technique. The proposed method is examined on PJM electricity market and compared with some of the most recent price forecast methods. (author)

  13. Improved entropy encoding for high efficient video coding standard

    Directory of Open Access Journals (Sweden)

    B.S. Sunil Kumar

    2018-03-01

    Full Text Available The High Efficiency Video Coding (HEVC has better coding efficiency, but the encoding performance has to be improved to meet the growing multimedia applications. This paper improves the standard entropy encoding by introducing the optimized weighing parameters, so that higher rate of compression can be accomplished over the standard entropy encoding. The optimization is performed using the recently introduced firefly algorithm. The experimentation is carried out using eight benchmark video sequences and the PSNR for varying rate of data transmission is investigated. Comparative analysis based on the performance statistics is made with the standard entropy encoding. From the obtained results, it is clear that the originality of the decoded video sequence is preserved far better than the proposed method, though the compression rate is increased. Keywords: Entropy, Encoding, HEVC, PSNR, Compression

  14. Pulse shape discrimination and classification methods for continuous depth of interaction encoding PET detectors

    International Nuclear Information System (INIS)

    Roncali, Emilie; Phipps, Jennifer E; Marcu, Laura; Cherry, Simon R

    2012-01-01

    In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm 3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors. (paper)

  15. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles

    Science.gov (United States)

    Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.

    2015-07-01

    The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well

  16. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-01-01

    Full Text Available Abstract Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs. Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.

  17. Hybrid-DFT  +  V w method for band structure calculation of semiconducting transition metal compounds: the case of cerium dioxide.

    Science.gov (United States)

    Ivády, Viktor; Gali, Adam; Abrikosov, Igor A

    2017-11-15

    Hybrid functionals' non-local exchange-correlation potential contains a derivative discontinuity that improves on standard semi-local density functional theory (DFT) band gaps. Moreover, by careful parameterization, hybrid functionals can provide self-interaction reduced description of selected states. On the other hand, the uniform description of all the electronic states of a given system is a known drawback of these functionals that causes varying accuracy in the description of states with different degrees of localization. This limitation can be remedied by the orbital dependent exact exchange extension of hybrid functionals; the hybrid-DFT  +  V w method (Ivády et al 2014 Phys. Rev. B 90 035146). Based on the analogy of quasi-particle equations and hybrid-DFT single particle equations, here we demonstrate that parameters of hybrid-DFT  +  V w functional can be determined from approximate theoretical quasi-particle spectra without any fitting to experiment. The proposed method is illustrated on the charge self-consistent electronic structure calculation for cerium dioxide where itinerant valence states interact with well-localized 4f atomic like states, making this system challenging for conventional methods, either hybrid-DFT or LDA  +  U, and therefore allowing for a demonstration of the advantages of the proposed scheme.

  18. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method

    International Nuclear Information System (INIS)

    Mostafapour Asl, A.; Khandani, S.T.

    2013-01-01

    Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nanocomposites of Al5083/Graphite p /Al 2 O 3p with different hybrid ratios were fabricated by friction stir processing method. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nanocomposite was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples. Hardness value measurements, tensile and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nanocomposites. Microstructural investigations displayed better distribution with less agglomeration of reinforcement for lower volume fraction of reinforcement for both alumina and graphite particles. Hardness value, yield strength, ultimate tensile strength and wear rate of the nanocomposites revealed a two stage form along with hybrid ratio variation. The results are discussed based on microstructural observations of the nanocomposites and worn surface analyses.

  19. Dopamine/TiO{sub 2} hybrid thin films prepared by the liquid phase deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Tauste, David [Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB, Edifici Cn, 08290 Cerdanyola del Valles, Barcelona (Spain)], E-mail: davidg@qf.uab.es; Domenech, Xavier [Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB, Edifici Cn, 08290 Cerdanyola del Valles, Barcelona (Spain); Domingo, Concepcion [Instituto de Ciencia de Materiales (CSIC), Campus UAB, 08290 Cerdanyola del Valles, Barcelona (Spain); Ayllon, Jose A. [Departament de Quimica, Universitat Autonoma de Barcelona, Campus UAB, Edifici Cn, 08290 Cerdanyola del Valles, Barcelona (Spain)

    2008-04-30

    Liquid phase deposition method is applied to one-step production of a hybrid material composed by dopamine(DA) and TiO{sub 2} anatase. An optimized amount of the enediol derivative is added to a fluoride titania precursor aqueous solution in order to entrap this modifier within the growing TiO{sub 2}, yielding a DA/TiO{sub 2} nanocomposite material. Uniform, well-adhered and brown-colored thin films are deposited on indium tin oxide covered glass substrate. The DA/TiO{sub 2} hybrid material has been characterized by infrared spectroscopy, electronic microscopy, X-ray diffraction and UV-vis spectroscopy. The formation of the hybrid material seems to be reasonably explained by linkage of different TiO{sub 2} nanocrystallites taking advantage of both enediol and amine groups of DA.

  20. Effect of sample storage time on detection of hybridization signals in Checkerboard DNA-DNA hybridization.

    Science.gov (United States)

    do Nascimento, Cássio; Muller, Katia; Sato, Sandra; Albuquerque Junior, Rubens Ferreira

    2012-04-01

    Long-term sample storage can affect the intensity of the hybridization signals provided by molecular diagnostic methods that use chemiluminescent detection. The aim of this study was to evaluate the effect of different storage times on the hybridization signals of 13 bacterial species detected by the Checkerboard DNA-DNA hybridization method using whole-genomic DNA probes. Ninety-six subgingival biofilm samples were collected from 36 healthy subjects, and the intensity of hybridization signals was evaluated at 4 different time periods: (1) immediately after collecting (n = 24) and (2) after storage at -20 °C for 6 months (n = 24), (3) for 12 months (n = 24), and (4) for 24 months (n = 24). The intensity of hybridization signals obtained from groups 1 and 2 were significantly higher than in the other groups (p  0.05). The Checkerboard DNA-DNA hybridization method was suitable to detect hybridization signals from all groups evaluated, and the intensity of signals decreased significantly after long periods of sample storage.

  1. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    Science.gov (United States)

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Multiple-stage pure phase encoding with biometric information

    Science.gov (United States)

    Chen, Wen

    2018-01-01

    In recent years, many optical systems have been developed for securing information, and optical encryption/encoding has attracted more and more attention due to the marked advantages, such as parallel processing and multiple-dimensional characteristics. In this paper, an optical security method is presented based on pure phase encoding with biometric information. Biometric information (such as fingerprint) is employed as security keys rather than plaintext used in conventional optical security systems, and multiple-stage phase-encoding-based optical systems are designed for generating several phase-only masks with biometric information. Subsequently, the extracted phase-only masks are further used in an optical setup for encoding an input image (i.e., plaintext). Numerical simulations are conducted to illustrate the validity, and the results demonstrate that high flexibility and high security can be achieved.

  3. Physics-based hybrid method for multiscale transport in porous media

    Science.gov (United States)

    Yousefzadeh, Mehrdad; Battiato, Ilenia

    2017-09-01

    Despite advancements in the development of multiscale models for flow and reactive transport in porous media, the accurate, efficient and physics-based coupling of multiple scales in hybrid models remains a major theoretical and computational challenge. Improving the predictivity of macroscale predictions by means of multiscale algorithms relative to classical at-scale models is the primary motivation for the development of multiscale simulators. Yet, very few are the quantitative studies that explicitly address the predictive capability of multiscale coupling algorithms as it is still generally not possible to have a priori estimates of the errors that are present when complex flow processes are modeled. We develop a nonintrusive pore-/continuum-scale hybrid model whose coupling error is bounded by the upscaling error, i.e. we build a predictive tightly coupled multiscale scheme. This is accomplished by slightly enlarging the subdomain where continuum-scale equations are locally invalid and analytically defining physics-based coupling conditions at the interfaces separating the two computational sub-domains, while enforcing state variable and flux continuity. The proposed multiscale coupling approach retains the advantages of domain decomposition approaches, including the use of existing solvers for each subdomain, while it gains flexibility in the choice of the numerical discretization method and maintains the coupling errors bounded by the upscaling error. We implement the coupling in finite volumes and test the proposed method by modeling flow and transport through a reactive channel and past an array of heterogeneously reactive cylinders.

  4. Inheritance of spike length in F3, F4 and F5 wheat hybrids obtained by different selection methods

    Directory of Open Access Journals (Sweden)

    Janković Snežana

    2012-01-01

    Full Text Available This study analyses the mode of inheritance of spike length in F3, F4 and F5 wheat hybrids obtained by pedigree, bulk and modified pedigree method of selection. Wheat hybrids were produced after crossing five varieties by M x N method. Three varieties were used as a female parent (Briscard, Carifen 12 and Rescler and two as a male component (Francuska and PKB-Prelivka. Descendents in F2 generation were produced from 6 F1 hybrids (3 x 2. Selection after F2 generation were undertaken from 1996 to 1999, while in 2000 the field experiments with complete breeding material were set up at the Institute 'PKB INI Agroekonomik' in Padinska Skela near Belgrade. Spike length was measured in progeny generations, from F3 to F5. It was observed that progenies had higher values for spike length than better parent (BP, with longer spikes in 5 out of 6 analyzed hybrids: Briscard x PKB-Prelivka, Carifen 12 x Francuska, Carifen 12 x PKB-Prelivka, Rescler x Francuska, and Rescler x PKB-Prelivka. From the above mentioned hybrid combinations, only Rescler x Francuska descendents in F5 generation obtained by pedigree and bulk selection inherited the spike length from the parent with lower value. High significant interaction was observed for spike length between genotype and generation of progenies in each of the applied selection methods.

  5. A Vector Printing Method for High-Speed Electrohydrodynamic (EHD Jet Printing Based on Encoder Position Sensors

    Directory of Open Access Journals (Sweden)

    Thanh Huy Phung

    2018-02-01

    Full Text Available Electrohyrodynamic (EHD jet printing has been widely used in the field of direct micro-nano patterning applications, due to its high resolution printing capability. So far, vector line printing using a single nozzle has been widely used for most EHD printing applications. However, the application has been limited to low-speed printing, to avoid non-uniform line width near the end points where line printing starts and ends. At end points of line vector printing, the deposited drop amount is likely to be significantly large compared to the rest of the printed lines, due to unavoidable acceleration and deceleration. In this study, we proposed a method to solve the printing quality problems by producing droplets at an equally spaced distance, irrespective of the printing speed. For this purpose, an encoder processing unit (EPU was developed, so that the jetting trigger could be generated according to user-defined spacing by using encoder position signals, which are used for the positioning control of the two linear stages.

  6. Hybrid Control Method for a Single Phase PFC using a Low Cost Microcontroller

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Nielsen, Nils; Wolf, Christian

    2005-01-01

    This paper presents a hybrid control method for single phase boost PFCs. The high bandwidth current loop is analog while the voltage loop is implemented in an 8-bit microcontroller. The design focuses on minimizing the number of calculations done in the microcontroller. A 1kW prototype has been...

  7. A Study on Efficiency Improvement of the Hybrid Monte Carlo/Deterministic Method for Global Transport Problems

    International Nuclear Information System (INIS)

    Kim, Jong Woo; Woo, Myeong Hyeon; Kim, Jae Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung

    2017-01-01

    In this study hybrid Monte Carlo/Deterministic method is explained for radiation transport analysis in global system. FW-CADIS methodology construct the weight window parameter and it useful at most global MC calculation. However, Due to the assumption that a particle is scored at a tally, less particles are transported to the periphery of mesh tallies. For compensation this space-dependency, we modified the module in the ADVANTG code to add the proposed method. We solved the simple test problem for comparing with result from FW-CADIS methodology, it was confirmed that a uniform statistical error was secured as intended. In the future, it will be added more practical problems. It might be useful to perform radiation transport analysis using the Hybrid Monte Carlo/Deterministic method in global transport problems.

  8. A simple encoding method for Sigma-Delta ADC based biopotential acquisition systems.

    Science.gov (United States)

    Guerrero, Federico N; Spinelli, Enrique M

    2017-10-01

    Sigma Delta analogue-to-digital converters allow acquiring the full dynamic range of biomedical signals at the electrodes, resulting in less complex hardware and increased measurement robustness. However, the increased data size per sample (typically 24 bits) demands the transmission of extremely large volumes of data across the isolation barrier, thus increasing power consumption on the patient side. This problem is accentuated when a large number of channels is used as in current 128-256 electrodes biopotential acquisition systems, that usually opt for an optic fibre link to the computer. An analogous problem occurs for simpler low-power acquisition platforms that transmit data through a wireless link to a computing platform. In this paper, a low-complexity encoding method is presented to decrease sample data size without losses, while preserving the full DC-coupled signal. The method achieved a 2.3 average compression ratio evaluated over an ECG and EMG signal bank acquired with equipment based on Sigma-Delta converters. It demands a very low processing load: a C language implementation is presented that resulted in an 110 clock cycles average execution on an 8-bit microcontroller.

  9. NEURAL NETWORKS CONTROL OF THE HYBRID POWER UNIT BASED ON THE METHOD OF ADAPTIVE CRITICS

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2012-01-01

    Full Text Available The formal statement of the optimization problem of hybrid vehicle power unit control is given. Its solving by neural networks method application on the basis of adaptive critic is considered.

  10. Displacement encoder

    International Nuclear Information System (INIS)

    Hesketh, T.G.

    1983-01-01

    In an optical encoder, light from an optical fibre input A is encoded by means of the encoding disc and is subsequently collected for transmission via optical fibre B. At some point in the optical path between the fibres A and B, the light is separated into component form by means of a filtering or dispersive system and each colour component is associated with a respective one of the coding channels of the disc. In this way, the significance of each bit of the coded information is represented by a respective colour thereby enabling the components to be re-combined for transmission by the fibre B without loss of information. (author)

  11. Construction and expression of immunogenic hybrid enterotoxigenic Escherichia coli CFA/I and CS2 colonization fimbriae for use in vaccines.

    Science.gov (United States)

    Tobias, Joshua; Svennerholm, Ann-Mari; Holmgren, Jan; Lebens, Michael

    2010-07-01

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrheal morbidity in developing countries, especially in children and also of traveler's diarrhea. Colonization factors (CFs) of ETEC, like CFA/I and CS2 which are genetically and structurally related, play a substantial role in pathogenicity, and since intestinal-mucosal immune responses against CFs appear to be protective, much effort has focused on the development of a CF-based ETEC vaccine. We have constructed hybrid operons in which the major CS2 subunit-encoding cotA gene was inserted into the CFA/I operon, either replacing (hybrid I) or being added to the major CFA/I subunit-encoding cfaB gene (hybrid II). Using specific monoclonal antibodies against the major subunits of CFA/I and CS2, high levels of surface expression of both fimbrial subunits were shown in E. coli carrying the hybrid II operon. Oral immunization of mice with formalin-killed bacteria expressing hybrid II fimbriae induced strong CFA/I- and CS2-specific serum IgG + IgM and fecal IgA antibody responses, which were higher than those achieved by similar immunization with the reference strains. Bacteria expressing hybrid fimbriae are potential candidate strains in an oral-killed CF-ETEC vaccine, and the approach represents an attractive and novel means of producing a broad-spectrum ETEC vaccine.

  12. Encoding and decoding messages with chaotic lasers

    International Nuclear Information System (INIS)

    Alsing, P.M.; Gavrielides, A.; Kovanis, V.; Roy, R.; Thornburg, K.S. Jr.

    1997-01-01

    We investigate the structure of the strange attractor of a chaotic loss-modulated solid-state laser utilizing return maps based on a combination of intensity maxima and interspike intervals, as opposed to those utilizing Poincare sections defined by the intensity maxima of the laser (I=0,Ie<0) alone. We find both experimentally and numerically that a simple, intrinsic relationship exists between an intensity maximum and the pair of preceding and succeeding interspike intervals. In addition, we numerically investigate encoding messages on the output of a chaotic transmitter laser and its subsequent decoding by a similar receiver laser. By exploiting the relationship between the intensity maxima and the interspike intervals, we demonstrate that the method utilized to encode the message is vital to the system close-quote s ability to hide the signal from unwanted deciphering. In this work alternative methods are studied in order to encode messages by modulating the magnitude of pumping of the transmitter laser and also by driving its loss modulation with more than one frequency. copyright 1997 The American Physical Society

  13. Encoding information using laguerre gaussian modes

    CSIR Research Space (South Africa)

    Trichili, A

    2015-08-01

    Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...

  14. A Prediction Method of Airport Noise Based on Hybrid Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Tao XU

    2014-05-01

    Full Text Available Using monitoring history data to build and to train a prediction model for airport noise is a normal method in recent years. However, the single model built in different ways has various performances in the storage, efficiency and accuracy. In order to predict the noise accurately in some complex environment around airport, this paper presents a prediction method based on hybrid ensemble learning. The proposed method ensembles three algorithms: artificial neural network as an active learner, nearest neighbor as a passive leaner and nonlinear regression as a synthesized learner. The experimental results show that the three learners can meet forecast demands respectively in on- line, near-line and off-line. And the accuracy of prediction is improved by integrating these three learners’ results.

  15. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  16. Evaluation of color encodings for high dynamic range pixels

    Science.gov (United States)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  17. Towards predicting the encoding capability of MR fingerprinting sequences.

    Science.gov (United States)

    Sommer, K; Amthor, T; Doneva, M; Koken, P; Meineke, J; Börnert, P

    2017-09-01

    Sequence optimization and appropriate sequence selection is still an unmet need in magnetic resonance fingerprinting (MRF). The main challenge in MRF sequence design is the lack of an appropriate measure of the sequence's encoding capability. To find such a measure, three different candidates for judging the encoding capability have been investigated: local and global dot-product-based measures judging dictionary entry similarity as well as a Monte Carlo method that evaluates the noise propagation properties of an MRF sequence. Consistency of these measures for different sequence lengths as well as the capability to predict actual sequence performance in both phantom and in vivo measurements was analyzed. While the dot-product-based measures yielded inconsistent results for different sequence lengths, the Monte Carlo method was in a good agreement with phantom experiments. In particular, the Monte Carlo method could accurately predict the performance of different flip angle patterns in actual measurements. The proposed Monte Carlo method provides an appropriate measure of MRF sequence encoding capability and may be used for sequence optimization. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Performance study of large area encoding readout MRPC

    Science.gov (United States)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  19. Methods for fabrication of flexible hybrid electronics

    Science.gov (United States)

    Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos

    2017-08-01

    Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.

  20. New Hybrid Monte Carlo methods for efficient sampling. From physics to biology and statistics

    International Nuclear Information System (INIS)

    Akhmatskaya, Elena; Reich, Sebastian

    2011-01-01

    We introduce a class of novel hybrid methods for detailed simulations of large complex systems in physics, biology, materials science and statistics. These generalized shadow Hybrid Monte Carlo (GSHMC) methods combine the advantages of stochastic and deterministic simulation techniques. They utilize a partial momentum update to retain some of the dynamical information, employ modified Hamiltonians to overcome exponential performance degradation with the system’s size and make use of multi-scale nature of complex systems. Variants of GSHMCs were developed for atomistic simulation, particle simulation and statistics: GSHMC (thermodynamically consistent implementation of constant-temperature molecular dynamics), MTS-GSHMC (multiple-time-stepping GSHMC), meso-GSHMC (Metropolis corrected dissipative particle dynamics (DPD) method), and a generalized shadow Hamiltonian Monte Carlo, GSHmMC (a GSHMC for statistical simulations). All of these are compatible with other enhanced sampling techniques and suitable for massively parallel computing allowing for a range of multi-level parallel strategies. A brief description of the GSHMC approach, examples of its application on high performance computers and comparison with other existing techniques are given. Our approach is shown to resolve such problems as resonance instabilities of the MTS methods and non-preservation of thermodynamic equilibrium properties in DPD, and to outperform known methods in sampling efficiency by an order of magnitude. (author)

  1. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  2. Using XML to encode TMA DES metadata

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  3. Some methods of encoding simple visual images for use with a sparse distributed memory, with applications to character recognition

    Science.gov (United States)

    Jaeckel, Louis A.

    1989-01-01

    To study the problems of encoding visual images for use with a Sparse Distributed Memory (SDM), I consider a specific class of images- those that consist of several pieces, each of which is a line segment or an arc of a circle. This class includes line drawings of characters such as letters of the alphabet. I give a method of representing a segment of an arc by five numbers in a continuous way; that is, similar arcs have similar representations. I also give methods for encoding these numbers as bit strings in an approximately continuous way. The set of possible segments and arcs may be viewed as a five-dimensional manifold M, whose structure is like a Mobious strip. An image, considered to be an unordered set of segments and arcs, is therefore represented by a set of points in M - one for each piece. I then discuss the problem of constructing a preprocessor to find the segments and arcs in these images, although a preprocessor has not been developed. I also describe a possible extension of the representation.

  4. Signal encoding method for a time-of-flight PET detector using a silicon photomultiplier array

    Science.gov (United States)

    Kwon, Sun Il; Lee, Jae Sung

    2014-10-01

    The silicon photomultiplier (SiPM) is a promising photosensor for magnetic resonance (MR) compatible time-of-flight (TOF) positron emission tomography (PET) scanners. The compact size of the SiPM allows direct one-to-one coupling between the scintillation crystal and the photosensor, yielding better timing and energy resolutions than the light sharing methods that have to be used in photomultiplier tube (PMT) PET systems. However, the one-to-one coupling scheme requires a huge volume of readout and processing electronics if no electric signal multiplexing or encoding scheme is properly applied. In this paper, we develop an electric signal encoding scheme for SiPM array based TOF PET detector blocks with the aim of reducing the complexity and volume of the signal readout and processing electronics. In an M×N SiPM array, the output signal of each channel in the SiPM array is divided into two signal lines. These output lines are then tied together in row and column lines. The row and column signals are used to measure the energy and timing information (or vice versa) of each incident gamma-ray event, respectively. Each SiPM channel was directly coupled to a 3×3×20 mm3 LGSO crystal. The reference detector, which was used to measure timing, consisted of an R9800 PMT and a 4×4×10 mm3 LYSO crystal and had a single time resolution of ~200 ps (FWHM). Leading edge discriminators were used to determine coincident events. Dedicated front-end electronics were developed, and the timing and energy resolutions of SiPM arrays with different array sizes (4×4, 8×8, and 12×12) were compared. Breakdown voltage of each SiPM channel was measured using energy spectra within various bias voltages. Coincidence events were measured using a 22Na point source. The average coincidence time resolution of 4×4, 8×8, and 12×12 SiPM arrays were 316 ps, 320 ps, and 335 ps (FWHM), respectively. The energy resolution of 4×4, 8×8, and 12×12 SiPM arrays were 11.8%, 12.5%, and 12.8% (FWHM

  5. Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite

    Science.gov (United States)

    Hashim, N.; Majid, D. L.; Uda, N.; Zahari, R.; Yidris, N.

    2017-12-01

    The vacuum assisted resin transfer moulding (VaRTM) or Vacuum Infusion (VI) is one of the fabrication methods used for composite materials. Compared to other methods, this process costs lower than using prepregs because it does not need to use the autoclave to cure. Moreover, composites fabricated using this VI method exhibit superior mechanical properties than those made through hand layup process. In this study, the VI method is used in fabricating woven carbon/Kevlar fibre cloth with epoxy matrix. This paper reports the detailed methods on fabricating the hybrid composite using VI process and several precautions that need to be taken to avoid any damage to the properties of the composite material. The result highlights that the successfully fabricated composite has approximately 60% of fibres weight fraction. Since the composites produced by the VI process have a higher fibre percentage, this process should be considered for composites used in applications that are susceptible to the conditions where the fibres need to be the dominant element such as in tension loading.

  6. Customer churn prediction using a hybrid method and censored data

    Directory of Open Access Journals (Sweden)

    Reza Tavakkoli-Moghaddam

    2013-05-01

    Full Text Available Customers are believed to be the main part of any organization’s assets and customer retention as well as customer churn management are important responsibilities of organizations. In today’s competitive environment, organization must do their best to retain their existing customers since attracting new customers cost significantly more than taking care of existing ones. In this paper, we present a hybrid method based on neural network and Cox regression analysis where neural network is used for outlier data and Cox regression method is implemented for prediction of future events. The proposed model of this paper has been implemented on some data and the results are compared based on five criteria including prediction accuracy, errors’ type I and II, root mean square error and mean absolute deviation. The preliminary results indicate that the proposed model of this paper performs better than alternative methods.

  7. Development of quadruped walking locomotion gait generator using a hybrid method

    International Nuclear Information System (INIS)

    Jasni, F; Shafie, A A

    2013-01-01

    The earth, in many areas is hardly reachable by the wheeled or tracked locomotion system. Thus, walking locomotion system is becoming a favourite option for mobile robot these days. This is because of the ability of walking locomotion to move on the rugged and unlevel terrains. However, to develop a walking locomotion gait for a robot is not a simple task. Central Pattern Generator (CPGs) method is a biological inspired method that is introduced as a method to develop the gait for the walking robot recently to tackle the issue faced by the conventional method of pre-designed trajectory based method. However, research shows that even the CPG method do have some limitations. Thus, in this paper, a hybrid method that combines CPG and the pre-designed trajectory based method is introduced to develop a walking gait for quadruped walking robot. The 3-D foot trajectories and the joint angle trajectories developed using the proposed method are compared with the data obtained via the conventional method of pre-designed trajectory to confirm the performance

  8. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  9. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  10. Hybrid finite element method for describing the electrical response of biological cells to applied fields.

    Science.gov (United States)

    Ying, Wenjun; Henriquez, Craig S

    2007-04-01

    A novel hybrid finite element method (FEM) for modeling the response of passive and active biological membranes to external stimuli is presented. The method is based on the differential equations that describe the conservation of electric flux and membrane currents. By introducing the electric flux through the cell membrane as an additional variable, the algorithm decouples the linear partial differential equation part from the nonlinear ordinary differential equation part that defines the membrane dynamics of interest. This conveniently results in two subproblems: a linear interface problem and a nonlinear initial value problem. The linear interface problem is solved with a hybrid FEM. The initial value problem is integrated by a standard ordinary differential equation solver such as the Euler and Runge-Kutta methods. During time integration, these two subproblems are solved alternatively. The algorithm can be used to model the interaction of stimuli with multiple cells of almost arbitrary geometries and complex ion-channel gating at the plasma membrane. Numerical experiments are presented demonstrating the uses of the method for modeling field stimulation and action potential propagation.

  11. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-06-24

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique nonoverlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Because the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is comparable to conventional RTM for the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved by suppressing migration artifacts, balancing reflector amplitudes, and enhancing the spatial resolution. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM. © 2013 Society of Exploration Geophysicists.

  12. Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method

    Directory of Open Access Journals (Sweden)

    Peipei You

    2017-12-01

    Full Text Available Electricity market reform is in progress in China, and the operational performance of power grid enterprises are vital for its healthy and sustainable development in the current electricity market environment. In this paper, a hybrid multi-criteria decision-making (MCDM framework for operational performance evaluation of a power grid enterprise is proposed from the perspective of sustainability. The latest MCDM method, namely the best-worst method (BWM was employed to determine the weights of all criteria, and the technique for order preference by similarity to an ideal solution (TOPSIS was applied to rank the operation performance of a power grid enterprise. The evaluation index system was built based on the concept of sustainability, which includes three criteria (namely economy, society, and environment and seven sub-criteria. Four power grid enterprises were selected to perform the empirical analysis, and the results indicate that power grid enterprise A1 has the best operation performance. The proposed hybrid BWM-TOPSIS-based framework for operation performance evaluation of a power grid enterprise is effective and practical.

  13. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE.

    Science.gov (United States)

    Trinh, Quang M; Jen, Fei-Yang Arthur; Zhou, Ziru; Chu, Kar Ming; Perry, Marc D; Kephart, Ellen T; Contrino, Sergio; Ruzanov, Peter; Stein, Lincoln D

    2013-07-22

    Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.

  14. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    Science.gov (United States)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond

  15. Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems

    International Nuclear Information System (INIS)

    Turati, Pietro; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.

  16. Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Mizrahi Joseph

    2006-11-01

    Full Text Available Abstract Background Hybrid muscle activation is a modality used for muscle force enhancement, in which muscle contraction is generated from two different excitation sources: volitional and external, by means of electrical stimulation (ES. Under hybrid activation, the overall EMG signal is the combination of the volitional and ES-induced components. In this study, we developed a computational scheme to extract the volitional EMG envelope from the overall dynamic EMG signal, to serve as an input signal for control purposes, and for evaluation of muscle forces. Methods A "synthetic" database was created from in-vivo experiments on the Tibialis Anterior of the right foot to emulate hybrid EMG signals, including the volitional and induced components. The database was used to evaluate the results obtained from six signal processing schemes, including seven different modules for filtration, rectification and ES component removal. The schemes differed from each other by their module combinations, as follows: blocking window only, comb filter only, blocking window and comb filter, blocking window and peak envelope, comb filter and peak envelope and, finally, blocking window, comb filter and peak envelope. Results and conclusion The results showed that the scheme including all the modules led to an excellent approximation of the volitional EMG envelope, as extracted from the hybrid signal, and underlined the importance of the artifact blocking window module in the process. The results of this work have direct implications on the development of hybrid muscle activation rehabilitation systems for the enhancement of weakened muscles.

  17. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-08-20

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the en- coded shots have unique non-overlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Since the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is compara- ble to conventional RTM for both the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM.

  18. A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available Since a representative dataset of the climatological features of a location is important for calculations relating to many fields, such as solar energy system, agriculture, meteorology and architecture, there is a need to investigate the methodology for generating a typical meteorological year (TMY. In this paper, a hybrid method with mixed treatment of selected results from the Danish method, the Festa-Ratto method, and the modified typical meteorological year method is proposed to determine typical meteorological years for 35 locations in six different climatic zones of China (Tropical Zone, Subtropical Zone, Warm Temperate Zone, Mid Temperate Zone, Cold Temperate Zone and Tibetan Plateau Zone. Measured weather data (air dry-bulb temperature, air relative humidity, wind speed, pressure, sunshine duration and global solar radiation, which cover the period of 1994–2015, are obtained and applied in the process of forming TMY. The TMY data and typical solar radiation data are investigated and analyzed in this study. It is found that the results of the hybrid method have better performance in terms of the long-term average measured data during the year than the other investigated methods. Moreover, the Gaussian process regression (GPR model is recommended to forecast the monthly mean solar radiation using the last 22 years (1994–2015 of measured data.

  19. Encoding specificity manipulations do affect retrieval from memory.

    Science.gov (United States)

    Zeelenberg, René

    2005-05-01

    In a recent article, P.A. Higham (2002) [Strong cues are not necessarily weak: Thomson and Tulving (1970) and the encoding specificity principle revisited. Memory &Cognition, 30, 67-80] proposed a new way to analyze cued recall performance in terms of three separable aspects of memory (retrieval, monitoring, and report bias) by comparing performance under both free-report and forced-report instructions. He used this method to derive estimates of these aspects of memory in an encoding specificity experiment similar to that reported by D.M. Thomson and E. Tulving (1970) [Associative encoding and retrieval: weak and strong cues. Journal of Experimental Psychology, 86, 255-262]. Under forced-report instructions, the encoding specificity manipulation did not affect performance. Higham concluded that the manipulation affected monitoring and report bias, but not retrieval. I argue that this interpretation of the results is problematic because the Thomson and Tulving paradigm is confounded, and show in three experiments using a more appropriate design that encoding specificity manipulations do affect performance in forced-report cued recall. Because in Higham's framework forced-report performance provides a measure of retrieval that is uncontaminated by monitoring and report bias it is concluded that encoding specificity manipulations do affect retrieval from memory.

  20. a permutation encoding te algorithm solution of reso tation encoding

    African Journals Online (AJOL)

    eobe

    Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.

  1. A Hybrid Optimization Method for Reactive Power and Voltage Control Considering Power Loss Minimization

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Bak, Claus Leth

    2015-01-01

    This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...

  2. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  3. A hybrid computation method for determining fluctuations of temperature in branched structures

    International Nuclear Information System (INIS)

    Czomber, L.

    1982-01-01

    A hybrid computation method for determining temperature fluctuations at discrete points of slab like geometries is developed on the basis of a new formulation of the finite difference method. For this purpose, a new finite difference method is combined with an exact solution of the heat equation within the range of values of the Laplace transformation. Whereas the exact solution can be applied to arbitraryly large ranges, the finite difference formulation is given for structural ranges which need finer discretization. The boundary conditions of the exact solution are substituted by finite difference terms for the boundary residual flow or an internal heat source, depending on the problem. The resulting system of conditional equations contains only the node parameters of the finite difference method. (orig.) [de

  4. Hybrid High-Order methods for finite deformations of hyperelastic materials

    Science.gov (United States)

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  5. A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

    Directory of Open Access Journals (Sweden)

    S. Falahieh Hamidpour

    2007-06-01

    Full Text Available Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models (GDM in combination with an advanced region growing and thresholding methods is proposed. GDM are found to be an attractive tool for structural based image segmentation particularly for extracting the objects with complicated topology. There are two main parameters influencing the overall performance of GDM algorithm; the distance between the initial contour and the actual object’s contours and secondly the stopping term which controls the deformation. To overcome these limitations, a two stage hybrid based segmentation method is suggested to extract the rough but precise initial contours at the first stage of the segmentation. The extracted boundaries are smoothed and improved using a modified GDM algorithm by improving the stopping terms of the algorithm based on the gradient value of image voxels. Results: The proposed algorithm was implemented on forty data sets each containing 400-480 slices. The results show an improvement in the accuracy and smoothness of the extracted boundaries. The improvement obtained for the accuracy of segmentation is about 6% in comparison to the one achieved by the methods based on thresholding and region growing only. Discussion and Conclusion: The extracted contours using modified GDM are smoother and finer. The improvement achieved in this work on the performance of stopping function of GDM model together with applying two stage segmentation of boundaries have resulted in a great improvement on the computational efficiency of GDM algorithm while making smoother and finer colon borders.

  6. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    Science.gov (United States)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of

  7. Systematic hybrid LOH: a new method to reduce false positives and negatives during screening of yeast gene deletion libraries

    DEFF Research Database (Denmark)

    Alvaro, D.; Sunjevaric, I.; Reid, R. J.

    2006-01-01

    We have developed a new method, systematic hybrid loss of heterozygosity, to facilitate genomic screens utilizing the yeast gene deletion library. Screening is performed using hybrid diploid strains produced through mating the library haploids with strains from a different genetic background......, to minimize the contribution of unpredicted recessive genetic factors present in the individual library strains. We utilize a set of strains where each contains a conditional centromere construct on one of the 16 yeast chromosomes that allows the destabilization and selectable loss of that chromosome. After...... complementation of any spurious recessive mutations in the library strain, facilitating attribution of the observed phenotype to the documented gene deletion and dramatically reducing false positive results commonly obtained in library screens. The systematic hybrid LOH method can be applied to virtually any...

  8. Hybrid-secondary uncluttered permanent magnet machine and method

    Science.gov (United States)

    Hsu, John S.

    2005-12-20

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  9. Power calculation of linear and angular incremental encoders

    Science.gov (United States)

    Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.

    2016-04-01

    Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and

  10. Short Communication Quick method for identifying horse (Equus caballus) and donkey (Equus asinus) hybrids.

    Science.gov (United States)

    Franco, M M; Santos, J B F; Mendonça, A S; Silva, T C F; Antunes, R C; Melo, E O

    2016-09-23

    The domestication of the Equus genus 5000-6000 years ago has influenced the history of human civilization. As soon as horse and donkey species had been domesticated, they were crossbred, producing humanity's first documented attempt at animal genome manipulation. Since then, the mule (male donkey x female horse) and the reciprocal cross (the hinny, male horse x female donkey) have been the most common equine hybrids in the world. Due to their hybrid vigor, mules and hinnies have been intensively used for carrying loads and people and for tilling the land. Despite their importance, visual distinction of mules and hinnies is difficult due to high phenotypic resemblance. However, the distinction between these two hybrids is of pivotal importance for equid breeders and ranchers. In this study, an easy, low-cost, effective, and fast multiplex-polymerase chain reaction method was developed to distinguish the maternal origin of mules and hinnies, targeting the hyper-variable mitochondrial DNA D-loop region. This methodology can help breeders, ranchers, animal science professionals, and researchers manage their equine herds with more confidence and precision.

  11. The role of spatial frequency information in the decoding of facial expressions of pain: a novel hybrid task.

    Science.gov (United States)

    Wang, Shan; Eccleston, Christopher; Keogh, Edmund

    2017-11-01

    Spatial frequency (SF) information contributes to the recognition of facial expressions, including pain. Low-SF encodes facial configuration and structure and often dominates over high-SF information, which encodes fine details in facial features. This low-SF preference has not been investigated within the context of pain. In this study, we investigated whether perpetual preference differences exist for low-SF and high-SF pain information. A novel hybrid expression paradigm was used in which 2 different expressions, one containing low-SF information and the other high-SF information, were combined in a facial hybrid. Participants are instructed to identify the core expression contained within the hybrid, allowing for the measurement of SF information preference. Three experiments were conducted (46 participants in each) that varied the expressions within the hybrid faces: respectively pain-neutral, pain-fear, and pain-happiness. In order to measure the temporal aspects of image processing, each hybrid image was presented for 33, 67, 150, and 300 ms. As expected, identification of pain and other expressions was dominated by low-SF information across the 3 experiments. The low-SF preference was largest when the presentation of hybrid faces was brief and reduced as the presentation duration increased. A sex difference was also found in experiment 1. For women, the low-SF preference was dampened by high-SF pain information, when viewing low-SF neutral expressions. These results not only confirm the role that SF information has in the recognition of pain in facial expressions but suggests that in some situations, there may be sex differences in how pain is communicated.

  12. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  13. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lian, Jijian; He, Longjun; Ma, Bin; Peng, Wenxiang; Li, Huokun

    2013-01-01

    Research on optimal sensor placement (OSP) has become very important due to the need to obtain effective testing results with limited testing resources in health monitoring. In this study, a new methodology is proposed to select the best sensor locations for large structures. First, a novel fitness function derived from the nearest neighbour index is proposed to overcome the drawbacks of the effective independence method for OSP for large structures. This method maximizes the contribution of each sensor to modal observability and simultaneously avoids the redundancy of information between the selected degrees of freedom. A hybrid algorithm combining the improved discrete particle swarm optimization (DPSO) with the clonal selection algorithm is then implemented to optimize the proposed fitness function effectively. Finally, the proposed method is applied to an arch dam for performance verification. The results show that the proposed hybrid swarm intelligence algorithm outperforms a genetic algorithm with decimal two-dimension array encoding and DPSO in the capability of global optimization. The new fitness function is advantageous in terms of sensor distribution and ensuring a well-conditioned information matrix and orthogonality of modes, indicating that this method may be used to provide guidance for OSP in various large structures. (paper)

  14. TSOS and TSOS-FK hybrid methods for modelling the propagation of seismic waves

    Science.gov (United States)

    Ma, Jian; Yang, Dinghui; Tong, Ping; Ma, Xiao

    2018-05-01

    We develop a new time-space optimized symplectic (TSOS) method for numerically solving elastic wave equations in heterogeneous isotropic media. We use the phase-preserving symplectic partitioned Runge-Kutta method to evaluate the time derivatives and optimized explicit finite-difference (FD) schemes to discretize the space derivatives. We introduce the averaged medium scheme into the TSOS method to further increase its capability of dealing with heterogeneous media and match the boundary-modified scheme for implementing free-surface boundary conditions and the auxiliary differential equation complex frequency-shifted perfectly matched layer (ADE CFS-PML) non-reflecting boundaries with the TSOS method. A comparison of the TSOS method with analytical solutions and standard FD schemes indicates that the waveform generated by the TSOS method is more similar to the analytic solution and has a smaller error than other FD methods, which illustrates the efficiency and accuracy of the TSOS method. Subsequently, we focus on the calculation of synthetic seismograms for teleseismic P- or S-waves entering and propagating in the local heterogeneous region of interest. To improve the computational efficiency, we successfully combine the TSOS method with the frequency-wavenumber (FK) method and apply the ADE CFS-PML to absorb the scattered waves caused by the regional heterogeneity. The TSOS-FK hybrid method is benchmarked against semi-analytical solutions provided by the FK method for a 1-D layered model. Several numerical experiments, including a vertical cross-section of the Chinese capital area crustal model, illustrate that the TSOS-FK hybrid method works well for modelling waves propagating in complex heterogeneous media and remains stable for long-time computation. These numerical examples also show that the TSOS-FK method can tackle the converted and scattered waves of the teleseismic plane waves caused by local heterogeneity. Thus, the TSOS and TSOS-FK methods proposed in

  15. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    OpenAIRE

    Wen-Yeau Chang

    2013-01-01

    High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO) based hybrid forecasting method for short-term wi...

  16. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2017-08-15

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  17. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Science.gov (United States)

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  18. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  19. A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2008-01-01

    addition fragmentation chain transfer (RAFT polymerization as dispersant. Then, the resulting dispersion is engaged in a radical emulsion polymerization process whereby a hydrophobic organic monomer (styrene and butyl acrylate is polymerized to form the shell of the hybrid nanoparticle. This method is extremely versatile, allowing the preparation of a variety of nanocomposites with metal oxides (alumina, rutile, anatase, barium titanate, zirconia, copper oxide, metals (Mo, Zn, and even inorganic nitrides (Si3N4.

  20. A Hybrid Finite Element-Fourier Spectral Method for Vibration Analysis of Structures with Elastic Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-01-01

    Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.

  1. A hybrid approach for efficient anomaly detection using metaheuristic methods

    Directory of Open Access Journals (Sweden)

    Tamer F. Ghanem

    2015-07-01

    Full Text Available Network intrusion detection based on anomaly detection techniques has a significant role in protecting networks and systems against harmful activities. Different metaheuristic techniques have been used for anomaly detector generation. Yet, reported literature has not studied the use of the multi-start metaheuristic method for detector generation. This paper proposes a hybrid approach for anomaly detection in large scale datasets using detectors generated based on multi-start metaheuristic method and genetic algorithms. The proposed approach has taken some inspiration of negative selection-based detector generation. The evaluation of this approach is performed using NSL-KDD dataset which is a modified version of the widely used KDD CUP 99 dataset. The results show its effectiveness in generating a suitable number of detectors with an accuracy of 96.1% compared to other competitors of machine learning algorithms.

  2. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  3. Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Shin Young Heo

    2015-10-01

    Full Text Available This paper presents a hybrid intelligent control method that enables frequency support control for permanent magnet synchronous generators (PMSGs wind turbines. The proposed method for a wind energy conversion system (WECS is designed to have PMSG modeling and full-scale back-to-back insulated-gate bipolar transistor (IGBT converters comprising the machine and grid side. The controller of the machine side converter (MSC and the grid side converter (GSC are designed to achieve maximum power point tracking (MPPT based on an improved hill climb searching (IHCS control algorithm and de-loaded (DL operation to obtain a power margin. Along with this comprehensive control of maximum power tracking mode based on the IHCS, a method for kinetic energy (KE discharge control of the supporting primary frequency control scheme with DL operation is developed to regulate the short-term frequency response and maintain reliable operation of the power system. The effectiveness of the hybrid intelligent control method is verified by a numerical simulation in PSCAD/EMTDC. Simulation results show that the proposed approach can improve the frequency regulation capability in the power system.

  4. Model validation of solar PV plant with hybrid data dynamic simulation based on fast-responding generator method

    Directory of Open Access Journals (Sweden)

    Zhao Dawei

    2016-01-01

    Full Text Available In recent years, a significant number of large-scale solar photovoltaic (PV plants have been put into operation or been under planning around the world. The model accuracy of solar PV plant is the key factor to investigate the mutual influences between solar PV plants and a power grid. However, this problem has not been well solved, especially in how to apply the real measurements to validate the models of the solar PV plants. Taking fast-responding generator method as an example, this paper presents a model validation methodology for solar PV plant via the hybrid data dynamic simulation. First, the implementation scheme of hybrid data dynamic simulation suitable for DIgSILENT PowerFactory software is proposed, and then an analysis model of solar PV plant integration based on IEEE 9 system is established. At last, model validation of solar PV plant is achieved by employing hybrid data dynamic simulation. The results illustrate the effectiveness of the proposed method in solar PV plant model validation.

  5. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    International Nuclear Information System (INIS)

    Thomas, S.M.; Sedgwick, S.G.

    1989-01-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli

  6. A Hybrid Vision-Map Method for Urban Road Detection

    Directory of Open Access Journals (Sweden)

    Carlos Fernández

    2017-01-01

    Full Text Available A hybrid vision-map system is presented to solve the road detection problem in urban scenarios. The standardized use of machine learning techniques in classification problems has been merged with digital navigation map information to increase system robustness. The objective of this paper is to create a new environment perception method to detect the road in urban environments, fusing stereo vision with digital maps by detecting road appearance and road limits such as lane markings or curbs. Deep learning approaches make the system hard-coupled to the training set. Even though our approach is based on machine learning techniques, the features are calculated from different sources (GPS, map, curbs, etc., making our system less dependent on the training set.

  7. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  8. Interspecific somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum.

    Science.gov (United States)

    Guri, A; Sink, K C

    1988-10-01

    Mesophyll protoplasts of eggplant (cv Black Beauty) and of Solanum torvum (both 2n=2x=24) were fused using a modification of the Menczel and Wolfe PEG/DMSO procedure. Protoplasts post-fusion were plated at 1 × 10(5)/ml in modified KM medium, which inhibited division of S. torvum protoplasts. One week prior to shoot regeneration, ten individual calluses had a unique light-green background and were verified as cell hybrids by the presence of the dimer isozyme patterns for phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT). Hybridity was also confirmed at the plant stage by DNA-DNA hybridization to a pea 45S ribosomal RNA gene probe. The ten somatic hybrid plants were established in the greenhouse and exhibited intermediate morphological characteristics such as leaf size and shape, flower size, shape, color and plant stature. Their chromosome number ranged from 46-48 (expected 2n=4x=48) and pollen viability was 5%-70%. In vitro shoots taken from the ten hybrid plants exhibited resistance to a verticillium wilt extract. Total DNA from the ten hybrids was restricted and hybridized with a 5.9 kb Oenothera chloroplast cytochrome f gene probe, a 2.4 kb EcoRI clone encoding mitochondrial cytochrome oxidase subunit II from maize and a 22.1 kb Sal I mitochondrial clone from Nicotiana sylvestris. Southern blot hybridization patterns showed that eight of ten somatic hybrids contained the eggplant cpDNA, while two plants contained the cpDNA hybridization patterns of both parents. The mtDNA analysis revealed the presence of novel bands, loss of some specific parental bands and mixture of specific bands from both parents in the restriction hybridization profiles of the hybrids.

  9. A hybrid multiple attribute decision making method for solving problems of industrial environment

    Directory of Open Access Journals (Sweden)

    Dinesh Singh

    2011-01-01

    Full Text Available The selection of appropriate alternative in the industrial environment is an important but, at the same time, a complex and difficult problem because of the availability of a wide range of alternatives and similarity among them. Therefore, there is a need for simple, systematic, and logical methods or mathematical tools to guide decision makers in considering a number of selection attributes and their interrelations. In this paper, a hybrid decision making method of graph theory and matrix approach (GTMA and analytical hierarchy process (AHP is proposed. Three examples are presented to illustrate the potential of the proposed GTMA-AHP method and the results are compared with the results obtained using other decision making methods.

  10. Encoding qubits into oscillators with atomic ensembles and squeezed light

    Science.gov (United States)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  11. Efficient Text Encryption and Hiding with Double-Random Phase-Encoding

    Directory of Open Access Journals (Sweden)

    Mohammad S. Alam

    2012-10-01

    Full Text Available In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level.

  12. A hybrid method for forecasting the energy output of photovoltaic systems

    International Nuclear Information System (INIS)

    Ramsami, Pamela; Oree, Vishwamitra

    2015-01-01

    Highlights: • We propose a novel hybrid technique for predicting the daily PV energy output. • Multiple linear regression, FFNN and GRNN artificial neural networks are used. • Stepwise regression is used to select the most relevant meteorological parameters. • SR-FFNN reduces the average dispersion and overall bias in prediction errors. • Accuracy metrics of hybrid models are better than those of single-stage models. - Abstract: The intermittent nature of solar energy poses many challenges to renewable energy system operators in terms of operational planning and scheduling. Predicting the output of photovoltaic systems is therefore essential for managing the operation and assessing the economic performance of power systems. This paper presents a new technique for forecasting the 24-h ahead stochastic energy output of photovoltaic systems based on the daily weather forecasts. A comparison of the performances of the hybrid technique with conventional linear regression and artificial neural network models has also been reported. Initially, three single-stage models were designed, namely the generalized regression neural network, feedforward neural network and multiple linear regression. Subsequently, a hybrid-modeling approach was adopted by applying stepwise regression to select input variables of greater importance. These variables were then fed to the single-stage models resulting in three hybrid models. They were then validated by comparing the forecasts of the models with measured dataset from an operational photovoltaic system. The accuracy of the each model was evaluated based on the correlation coefficient, mean absolute error, mean bias error and root mean square error values. Simulation results revealed that the hybrid models perform better than their corresponding single-stage models. Stepwise regression-feedforward neural network hybrid model outperformed the other models with root mean square error, mean absolute error, mean bias error and

  13. Grid impedance estimation based hybrid islanding detection method for AC microgrids

    DEFF Research Database (Denmark)

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem

    2017-01-01

    This paper focuses on a hybrid islanding detection algorithm for parallel-inverters-based microgrids. The proposed algorithm is implemented on the unit ensuring the control of the intelligent bypass switch connecting or disconnecting the microgrid from the utility. This method employs a grid...... to avoid interactions with other units. The selected inverter will be the one closest to the controllable distributed generation system or to a healthy grid side in case of meshed microgrid with multiple-grid connections. The detection algorithm is applied to quickly detect the resonance phenomena, so...

  14. Hybrid Multicriteria Group Decision Making Method for Information System Project Selection Based on Intuitionistic Fuzzy Theory

    Directory of Open Access Journals (Sweden)

    Jian Guo

    2013-01-01

    Full Text Available Information system (IS project selection is of critical importance to every organization in dynamic competing environment. The aim of this paper is to develop a hybrid multicriteria group decision making approach based on intuitionistic fuzzy theory for IS project selection. The decision makers’ assessment information can be expressed in the form of real numbers, interval-valued numbers, linguistic variables, and intuitionistic fuzzy numbers (IFNs. All these evaluation pieces of information can be transformed to the form of IFNs. Intuitionistic fuzzy weighted averaging (IFWA operator is utilized to aggregate individual opinions of decision makers into a group opinion. Intuitionistic fuzzy entropy is used to obtain the entropy weights of the criteria. TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate IS project in group decision making environment. Finally, a numerical example for information system projects selection is given to illustrate application of hybrid multi-criteria group decision making (MCGDM method based on intuitionistic fuzzy theory and TOPSIS method.

  15. Transient Response of Thin Wire above a Layered Half-Space Using TDIE/FDTD Hybrid Method

    Directory of Open Access Journals (Sweden)

    Bing Wei

    2012-01-01

    Full Text Available The TDIE/FDTD hybrid method is applied to calculate the transient responses of thin wire above a lossy layered half-space. The time-domain reflection of the layered half space is computed by one-dimensional modified FDTD method. Then, transient response of thin wire induced by two excitation sources (the incident wave and reflected wave is calculated by TDIE method. Finally numerical results are given to illustrate the feasibility and high efficiency of the presented scheme.

  16. Atypical haemolytic uraemic syndrome associated with a hybrid complement gene.

    Directory of Open Access Journals (Sweden)

    Julian P Venables

    2006-10-01

    Full Text Available BACKGROUND: Sequence analysis of the regulators of complement activation (RCA cluster of genes at chromosome position 1q32 shows evidence of several large genomic duplications. These duplications have resulted in a high degree of sequence identity between the gene for factor H (CFH and the genes for the five factor H-related proteins (CFHL1-5; aliases CFHR1-5. CFH mutations have been described in association with atypical haemolytic uraemic syndrome (aHUS. The majority of the mutations are missense changes that cluster in the C-terminal region and impair the ability of factor H to regulate surface-bound C3b. Some have arisen as a result of gene conversion between CFH and CFHL1. In this study we tested the hypothesis that nonallelic homologous recombination between low-copy repeats in the RCA cluster could result in the formation of a hybrid CFH/CFHL1 gene that predisposes to the development of aHUS. METHODS AND FINDINGS: In a family with many cases of aHUS that segregate with the RCA cluster we used cDNA analysis, gene sequencing, and Southern blotting to show that affected individuals carry a heterozygous CFH/CFHL1 hybrid gene in which exons 1-21 are derived from CFH and exons 22/23 from CFHL1. This hybrid encodes a protein product identical to a functionally significant CFH mutant (c.3572C>T, S1191L and c.3590T>C, V1197A that has been previously described in association with aHUS. CONCLUSIONS: CFH mutation screening is recommended in all aHUS patients prior to renal transplantation because of the high risk of disease recurrence post-transplant in those known to have a CFH mutation. Because of our finding it will be necessary to implement additional screening strategies that will detect a hybrid CFH/CFHL1 gene.

  17. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparisons with Other Methods

    International Nuclear Information System (INIS)

    Wu, Liyou; Yi, T.Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-01-01

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site (Hanford Reach of the Columbia River (HRCR), 11 strains), Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  18. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  19. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  20. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Institute of Scientific and Technical Information of China (English)

    Zhu Hao; Tian Hui; Cai Guobiao

    2017-01-01

    Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO) method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncer-tainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO), probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM) used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  1. Development of real-time PCR and hybridization methods for detection and identification of thermophilic Campylobacter spp. in pig faecal samples

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Andersen, M. T.; Dalsgaard, Anders

    2005-01-01

    species-specific detection of Campylobacter spp. in naturally infected pig faecal samples after an enrichment step, whereas the hybridization approach enhanced the specific isolation of C. jejuni (present in minority to C. coli) from pigs. Conclusions: The rt-PCR was specific for Campylobacter jejuni, C...... by phenotypic methods and the developed rt-PCR provides an easy and fast method for such differentiation. Detection of C. jejuni by colony hybridization may increase the isolation rate of this species from pig faeces....

  2. Method of converting an existing vehicle powertrain to a hybrid powertrain system

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    2001-12-25

    A method of converting an existing vehicle powertrain including a manual transmission to a hybrid powertrain system with an automated powertrain transmission. The first step in the method of attaching a gear train housing to a housing of said manual transmission, said gear train housing receiving as end of drive shaft of said transmission and rotatably supporting a gear train assembly. Secondly, mounting an electric motor/generator to said gear train housing and attaching a motor/generator drive shaft of said electric motor/generator to said gear train assembly. Lastly, connecting an electro-mechanical clutch actuator to a friction clutch mechanism of said manual transmission.

  3. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  4. Impulse Hydroforming Method for Very Thin Sheets from Metallic or Hybrid Materials

    OpenAIRE

    Beerwald, C.; Beerwald, M.; Dirksen, U.; Henselek, A.

    2010-01-01

    Forming of very thin metallic and hybrid material foils is a demanding task in several application areas as for example in food or pharmaceutical packaging industries. Narrow forming limits of very thin sheet metals as well as minor process reliability due to necessary exact tool manufacturing (small punch-die clearance), both, causes abiding interest in new and innovative forming processes. In this contribution a new method using high pressure pulses will be introduced to form small geometry...

  5. Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Elnahrawy, Amany Mohamed [Department of Solid State, Physics Division, National Research Center (NRC), Giza 12622, Cairo (Egypt); Kim, Yong Soo, E-mail: yskim2@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Ali, Ahmed I., E-mail: Ahmed_ali_2010@helwan.edu.eg [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Basic Science Department, Faculty of Industrial Education & Technology, Helwan University, Cairo 11281 (Egypt)

    2016-08-15

    Hybrid chitosan (CS)/calcium aluminosilicate nanocomposites thin films and membranes were prepared using a sol–gel method with three different concentrations of Al{sub 2}O{sub 3} (5, 7 and 10 mol. %). The prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and Fourier Transform Infrared spectroscopy. The optical properties of the prepared samples were analyzed by UV/Vis spectrophotometry and photoluminescence (PL) spectroscopy. The optical parameters revealed an increase in both the refractive index and band gap of the nanocomposites with increasing Al concentration. In addition, the PL spectra revealed a blue shift that was consistent with an increase in the optical band gap. These results suggest that CS/calcium aluminosilicate in two different forms can be a good candidate for optical sensors applications. - Highlights: • We show a large specific surface area of hybrid CS/calcium aluminosilicate thin films and membranes using sol-gel method. • Inorganic SiO{sub 2}-based phase are perfectly embedded onto chitosan matrix has a reliable stability. • CS/calcium aluminosilicate could be usable for optical sensors, planar waveguide, and bio-sensing.

  6. The hybridized Discontinuous Galerkin method for Implicit Large-Eddy Simulation of transitional turbulent flows

    Science.gov (United States)

    Fernandez, P.; Nguyen, N. C.; Peraire, J.

    2017-05-01

    We present a high-order Implicit Large-Eddy Simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.

  7. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  8. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method

    KAUST Repository

    Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Saha, Bidyut Baran; Chun, Wongee

    2014-01-01

    This paper presents an advanced desalination cycle that hybridizes a conventional multi-effect distillation (MED) and an emerging yet low-energy adsorption cycle (AD). The hybridization of these cycles, known as MED + AD or MEDAD in short, extends

  9. Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces

    DEFF Research Database (Denmark)

    Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham

    2017-01-01

    A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...

  10. Active semi-supervised learning method with hybrid deep belief networks.

    Science.gov (United States)

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  11. Hybrid Methods for Muon Accelerator Simulations with Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Josiah [Anderson U.; Snopok, Pavel [Fermilab; Berz, Martin [Michigan State U.; Makino, Kyoko [Michigan State U.

    2018-03-28

    Muon ionization cooling involves passing particles through solid or liquid absorbers. Careful simulations are required to design muon cooling channels. New features have been developed for inclusion in the transfer map code COSY Infinity to follow the distribution of charged particles through matter. To study the passage of muons through material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map--Monte-Carlo approach in which transfer map methods describe the deterministic behavior of the particles, and Monte-Carlo methods are used to provide corrections accounting for the stochastic nature of scattering and straggling of particles. The advantage of the new approach is that the vast majority of the dynamics are represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects. The gains in speed are expected to simplify the optimization of cooling channels which is usually computationally demanding. Progress on the development of the required algorithms and their application to modeling muon ionization cooling channels is reported.

  12. A new supply chain management method with one-way time window: A hybrid PSO-SA approach

    Directory of Open Access Journals (Sweden)

    Reza Tavakkoli-Moghaddam

    2012-01-01

    Full Text Available In this paper, we study a supply chain problem where a whole seller/producer distributes goods among different retailers. The proposed model of this paper is formulated as a more general and realistic form of traditional vehicle routing problem (VRP. The main advantages of the new proposed model are twofold. First, the time window does not consider any lower bound and second, it treats setup time as separate cost components. The resulted problem is solved using a hybrid of particle swarm optimization and simulated annealing (PSO-SA. The results are compared with other hybrid method, which is a combination of Ant colony and Tabu search. We use some well-known benchmark problems to compare the results of our proposed model with other method. The preliminary results indicate that the proposed model of this paper performs reasonably well.

  13. A data processing method for determining instantaneous angular speed and acceleration of crankshaft in an aircraft engine-propeller system using a magnetic encoder

    Science.gov (United States)

    Yu, S. D.; Zhang, X.

    2010-05-01

    This paper presents a method for determining the instantaneous angular speed and instantaneous angular acceleration of the crankshaft in a reciprocating engine and propeller dynamical system from electrical pulse signals generated by a magnetic encoder. The method is based on accurate determination of the measured global mean angular speed and precise values of times when leading edges of individual magnetic teeth pass through the magnetic sensor. Under a steady-state operating condition, a discrete deviation time vs. shaft rotational angle series of uniform interval is obtained and used for accurate determination of the crankshaft speed and acceleration. The proposed method for identifying sub- and super-harmonic oscillations in the instantaneous angular speeds and accelerations is new and efficient. Experiments were carried out on a three-cylinder four-stroke Saito 450R model aircraft engine and a Solo propeller in connection with a 64-teeth Admotec KL2202 magnetic encoder and an HS-4 data acquisition system. Comparisons with an independent data processing scheme indicate that the proposed method yields noise-free instantaneous angular speeds and is superior to the finite difference based methods commonly used in the literature.

  14. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    Science.gov (United States)

    Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this

  15. Generalized hybrid Monte Carlo - CMFD methods for fission source convergence

    International Nuclear Information System (INIS)

    Wolters, Emily R.; Larsen, Edward W.; Martin, William R.

    2011-01-01

    In this paper, we generalize the recently published 'CMFD-Accelerated Monte Carlo' method and present two new methods that reduce the statistical error in CMFD-Accelerated Monte Carlo. The CMFD-Accelerated Monte Carlo method uses Monte Carlo to estimate nonlinear functionals used in low-order CMFD equations for the eigenfunction and eigenvalue. The Monte Carlo fission source is then modified to match the resulting CMFD fission source in a 'feedback' procedure. The two proposed methods differ from CMFD-Accelerated Monte Carlo in the definition of the required nonlinear functionals, but they have identical CMFD equations. The proposed methods are compared with CMFD-Accelerated Monte Carlo on a high dominance ratio test problem. All hybrid methods converge the Monte Carlo fission source almost immediately, leading to a large reduction in the number of inactive cycles required. The proposed methods stabilize the fission source more efficiently than CMFD-Accelerated Monte Carlo, leading to a reduction in the number of active cycles required. Finally, as in CMFD-Accelerated Monte Carlo, the apparent variance of the eigenfunction is approximately equal to the real variance, so the real error is well-estimated from a single calculation. This is an advantage over standard Monte Carlo, in which the real error can be underestimated due to inter-cycle correlation. (author)

  16. Performance comparison of a new hybrid conjugate gradient method under exact and inexact line searches

    Science.gov (United States)

    Ghani, N. H. A.; Mohamed, N. S.; Zull, N.; Shoid, S.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is one of iterative techniques prominently used in solving unconstrained optimization problems due to its simplicity, low memory storage, and good convergence analysis. This paper presents a new hybrid conjugate gradient method, named NRM1 method. The method is analyzed under the exact and inexact line searches in given conditions. Theoretically, proofs show that the NRM1 method satisfies the sufficient descent condition with both line searches. The computational result indicates that NRM1 method is capable in solving the standard unconstrained optimization problems used. On the other hand, the NRM1 method performs better under inexact line search compared with exact line search.

  17. Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.

    Science.gov (United States)

    Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras

    2018-05-01

    The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.

  18. MODELLING AND CONTROL OF POWER-SPLIT HYBRID ELECTRIC VEHICLE USING FUZZY LOGIC METHOD

    OpenAIRE

    Mohammadpour, Ebrahim; Khajavi, Mehrdad Nouri

    2014-01-01

    Nowadays, automotive manufactures increasingly have lead to development of hybrid vehicles due to energy consumption growing and increased emissions. the power-split hybrids due to the simultaneous using of speed and torque couplings has integrated advantage of series and parallel hybrid systems and minimize their disadvantages , however the power-split hybrids control strategy is far more complex than other types. Generally the control strategy tries to use the optimize operating point of HE...

  19. Short term load forecasting of anomalous load using hybrid soft computing methods

    Science.gov (United States)

    Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.

    2016-04-01

    Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.

  20. Hybrid Polling Method for Direct Link Communication for IEEE 802.11 Wireless LANs

    Directory of Open Access Journals (Sweden)

    Woo-Yong Choi

    2008-10-01

    Full Text Available The direct link communication between STAtions (STAs is one of the techniques to improve the MAC performance of IEEE 802.11 infrastructure networks. For the efficient direct link communication, in the literature, the simultaneous polling method was proposed to allow the multiple direct data communication to be performed simultaneously. However, the efficiency of the simultaneous polling method is affected by the interference condition. To alleviate the problem of the lower polling efficiency with the larger interference range, the hybrid polling method is proposed for the direct link communication between STAs in IEEE 802.11 infrastructure networks. By the proposed polling method, we can integrate the sequential and simultaneous polling methods properly according to the interference condition. Numerical examples are also presented to show the medium access control (MAC performance improvement by the proposed polling method.

  1. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  2. A novel hybrid stress-function finite element method immune to severe mesh distortion

    International Nuclear Information System (INIS)

    Cen Song; Zhou Mingjue; Fu Xiangrong

    2010-01-01

    This paper introduces a hybrid stress-function finite element method proposed recently for developing 2D finite element models immune to element shapes. Deferent from the first version of the hybrid-stress element constructed by Pian, the stress function φ of 2D elastic or fracture problem is regarded as the functional variable of the complementary energy functional. Then, the basic analytical solutions of φ are taken as the trial functions for finite element models, and meanwhile, the corresponding unknown stress-function constants are introduced. By using the principle of minimum complementary energy, these unknown stress-function constants can be expressed in terms of the displacements along element edges. Finally, the complementary energy functional can be rewritten in terms of element nodal displacement vector, and thus, the element stiffness matrix of such hybrid-function element can be obtained. As examples, two (8- and 12-node) quadrilateral plane elements and an arbitrary polygonal crack element are constructed by employing different basic analytical solutions of different stress functions. Numerical results show that, the 8- and 12-node plane models can produce the exact solutions for pure bending and linear bending problems, respectively, even the element shape degenerates into triangle and concave quadrangle; and the crack element can also predict accurate results with very low computational cost in analysis of stress-singularity problems.

  3. The Solution of Two-Phase Inverse Stefan Problem Based on a Hybrid Method with Optimization

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2015-01-01

    Full Text Available The two-phase Stefan problem is widely used in industrial field. This paper focuses on solving the two-phase inverse Stefan problem when the interface moving is unknown, which is more realistic from the practical point of view. With the help of optimization method, the paper presents a hybrid method which combines the homotopy perturbation method with the improved Adomian decomposition method to solve this problem. Simulation experiment demonstrates the validity of this method. Optimization method plays a very important role in this paper, so we propose a modified spectral DY conjugate gradient method. And the convergence of this method is given. Simulation experiment illustrates the effectiveness of this modified spectral DY conjugate gradient method.

  4. ELV Recycling Service Provider Selection Using the Hybrid MCDM Method: A Case Application in China

    Directory of Open Access Journals (Sweden)

    Fuli Zhou

    2016-05-01

    Full Text Available With the rapid depletion of natural resources and undesired environmental changes globally, more interest has been shown in the research of green supply chain practices, including end-of-life vehicle (ELV recycling. The ELV recycling is mandatory for auto-manufacturers by legislation for the purpose of minimizing potential environmental damages. The purpose of the present research is to determine the best choice of ELV recycling service provider by employing an integrating hybrid multi-criteria decision making (MCDM method. In this research, economic, environmental and social factors are taken into consideration. The linguistic variables and trapezoidal fuzzy numbers (TFNs are applied into this evaluation to deal with the vague and qualitative information. With the combined weight calculation of criteria based on fuzzy aggregation and Shannon Entropy techniques, the normative multi-criteria optimization technique (FVIKOR method is applied to explore the best solution. An application was performed based on the proposed hybrid MCDM method, and sensitivity analysis was conducted on different decision making scenarios. The present study provides a decision-making approach on ELV recycling business selection under sustainability and green philosophy with high robustness and easy implementation.

  5. Design of Passive Power Filter for Hybrid Series Active Power Filter using Estimation, Detection and Classification Method

    Science.gov (United States)

    Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.

    2016-06-01

    This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.

  6. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  7. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  8. Polynucleotides encoding polypeptides having beta-glucosidase activity

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  9. Genetic analysis of the pelA-pelE cluster encoding the acidic and basic pectate lyases in Erwinia chrysanthemi EC16.

    Science.gov (United States)

    Barras, F; Chatterjee, A K

    1987-10-01

    In Erwinia chrysanthemi (EC16) the clustered pelA and pelE genes encode an acidic (pI 4.2) and a basic (pI 10.0) pectate lyase (Pel), respectively. The pelA gene has been isolated on a 1.2 kb restriction fragment and the direction of transcription determined. DNA hybridization analysis showed that the pelE sequence shares DNA homology with pelA but not with pelB or pelC, two genes encoding other Pel species in EC16. Since Pel A and Pel E enzymes showed little similarity in terms of catalytic properties, it is proposed that pelA and pelE are duplicates which have highly diverged.

  10. Hybrid precoding based on matrix-adaptive method for multiuser large-scale antenna arrays.

    Directory of Open Access Journals (Sweden)

    Yongpan Feng

    Full Text Available Massive multiple-input multiple-output (MIMO is envisioned to offer a considerable improvement in capacity, but it has a high cost and the radio frequency (RF chain components have a high power consumption at high frequency. To address this problem, a hybrid analog and digital precoding scheme has been studied recently, which restricts the number of RF chains to far less than the number of antenna elements. In this paper, we consider the downlink communication of a massive multiuser multiple-input single-output (MU-MISO system and propose an iterative hybrid precoding algorithm to approach the capacity performance of the traditional full digital precoding scheme. We aim to attain a large baseband gain by zero-forcing (ZF digital precoding on the equivalent channel and then minimize the total power to obtain the optimal RF precoder. Simulation results show that the proposed method can approach the performance of the conventional fully digital precoding with a low computational complexity.

  11. Novel RNA hybridization method for the in situ detection of ETV1, ETV4, and ETV5 gene fusions in prostate cancer.

    Science.gov (United States)

    Kunju, Lakshmi P; Carskadon, Shannon; Siddiqui, Javed; Tomlins, Scott A; Chinnaiyan, Arul M; Palanisamy, Nallasivam

    2014-09-01

    The genetic basis of 50% to 60% of prostate cancer (PCa) is attributable to rearrangements in E26 transformation-specific (ETS) (ERG, ETV1, ETV4, and ETV5), BRAF, and RAF1 genes and overexpression of SPINK1. The development and validation of reliable detection methods are warranted to classify various molecular subtypes of PCa for diagnostic and prognostic purposes. ETS gene rearrangements are typically detected by fluorescence in situ hybridization and reverse-transcription polymerase chain reaction methods. Recently, monoclonal antibodies against ERG have been developed that detect the truncated ERG protein in immunohistochemical assays where staining levels are strongly correlated with ERG rearrangement status by fluorescence in situ hybridization. However, specific antibodies for ETV1, ETV4, and ETV5 are unavailable, challenging their clinical use. We developed a novel RNA in situ hybridization-based assay for the in situ detection of ETV1, ETV4, and ETV5 in formalin-fixed paraffin-embedded tissues from prostate needle biopsies, prostatectomy, and metastatic PCa specimens using RNA probes. Further, with combined RNA in situ hybridization and immunohistochemistry we identified a rare subset of PCa with dual ETS gene rearrangements in collisions of independent tumor foci. The high specificity and sensitivity of RNA in situ hybridization provides an alternate method enabling bright-field in situ detection of ETS gene aberrations in routine clinically available PCa specimens.

  12. Tag-KEM from Set Partial Domain One-Way Permutations

    Science.gov (United States)

    Abe, Masayuki; Cui, Yang; Imai, Hideki; Kurosawa, Kaoru

    Recently a framework called Tag-KEM/DEM was introduced to construct efficient hybrid encryption schemes. Although it is known that generic encode-then-encrypt construction of chosen ciphertext secure public-key encryption also applies to secure Tag-KEM construction and some known encoding method like OAEP can be used for this purpose, it is worth pursuing more efficient encoding method dedicated for Tag-KEM construction. This paper proposes an encoding method that yields efficient Tag-KEM schemes when combined with set partial one-way permutations such as RSA and Rabin's encryption scheme. To our knowledge, this leads to the most practical hybrid encryption scheme of this type. We also present an efficient Tag-KEM which is CCA-secure under general factoring assumption rather than Blum factoring assumption.

  13. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  14. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  15. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  16. An electrophysiological investigation of memory encoding, depth of processing, and word frequency in humans.

    Science.gov (United States)

    Guo, Chunyan; Zhu, Ying; Ding, Jinhong; Fan, Silu; Paller, Ken A

    2004-02-12

    Memory encoding can be studied by monitoring brain activity correlated with subsequent remembering. To understand brain potentials associated with encoding, we compared multiple factors known to affect encoding. Depth of processing was manipulated by requiring subjects to detect animal names (deep encoding) or boldface (shallow encoding) in a series of Chinese words. Recognition was more accurate with deep than shallow encoding, and for low- compared to high-frequency words. Potentials were generally more positive for subsequently recognized versus forgotten words; for deep compared to shallow processing; and, for remembered words only, for low- than for high-frequency words. Latency and topographic differences between these potentials suggested that several factors influence the effectiveness of encoding and can be distinguished using these methods, even with Chinese logographic symbols.

  17. FE Model Updating on an In-Service Self-Anchored Suspension Bridge with Extra-Width Using Hybrid Method

    Directory of Open Access Journals (Sweden)

    Zhiyuan Xia

    2017-02-01

    Full Text Available Nowadays, many more bridges with extra-width have been needed for vehicle throughput. In order to obtain a precise finite element (FE model of those complex bridge structures, the practical hybrid updating method by integration of Gaussian mutation particle swarm optimization (GMPSO, Kriging meta-model and Latin hypercube sampling (LHS was proposed. By demonstrating the efficiency and accuracy of the hybrid method through the model updating of a damaged simply supported beam, the proposed method was applied to the model updating of a self-anchored suspension bridge with extra-width which showed great necessity considering the results of ambient vibration test. The results of bridge model updating showed that both of the mode frequencies and shapes had relatively high agreement between the updated model and experimental structure. The successful model updating of this bridge fills in the blanks of model updating of a complex self-anchored suspension bridge. Moreover, the updating process enables other model updating issues for complex bridge structures

  18. Optimal generation and reserve dispatch in a multi-area competitive market using a hybrid direct search method

    International Nuclear Information System (INIS)

    Chun Lung Chen

    2005-01-01

    With restructuring of the power industry, competitive bidding for energy and ancillary services are increasingly recognized as an important part of electricity markets. It is desirable to optimize not only the generator's bid prices for energy and for providing minimized ancillary services but also the transmission congestion costs. In this paper, a hybrid approach of combining sequential dispatch with a direct search method is developed to deal with the multi-product and multi-area electricity market dispatch problem. The hybrid direct search method (HDSM) incorporates sequential dispatch into the direct search method to facilitate economic sharing of generation and reserve across areas and to minimize the total market cost in a multi-area competitive electricity market. The effects of tie line congestion and area spinning reserve requirement are also consistently reflected in the marginal price in each area. Numerical experiments are included to understand the various constraints in the market cost analysis and to provide valuable information for market participants in a pool oriented electricity market. (author)

  19. Optimal generation and reserve dispatch in a multi-area competitive market using a hybrid direct search method

    International Nuclear Information System (INIS)

    Chen, C.-L.

    2005-01-01

    With restructuring of the power industry, competitive bidding for energy and ancillary services are increasingly recognized as an important part of electricity markets. It is desirable to optimize not only the generator's bid prices for energy and for providing minimized ancillary services but also the transmission congestion costs. In this paper, a hybrid approach of combining sequential dispatch with a direct search method is developed to deal with the multi-product and multi-area electricity market dispatch problem. The hybrid direct search method (HDSM) incorporates sequential dispatch into the direct search method to facilitate economic sharing of generation and reserve across areas and to minimize the total market cost in a multi-area competitive electricity market. The effects of tie line congestion and area spinning reserve requirement are also consistently reflected in the marginal price in each area. Numerical experiments are included to understand the various constraints in the market cost analysis and to provide valuable information for market participants in a pool oriented electricity market

  20. Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission

    Science.gov (United States)

    Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.; Naqvi, Ali K.; Heap, Anthony H.; Sah, Jy-Jen F.

    2014-08-12

    A hybrid transmission includes first and second electric machines. A method for operating the hybrid transmission in response to a command to execute a shift from an initial continuously variable mode to a target continuously variable mode includes increasing torque of an oncoming clutch associated with operating in the target continuously variable mode and correspondingly decreasing a torque of an off-going clutch associated with operating in the initial continuously variable mode. Upon deactivation of the off-going clutch, torque outputs of the first and second electric machines and the torque of the oncoming clutch are controlled to synchronize the oncoming clutch. Upon synchronization of the oncoming clutch, the torque for the oncoming clutch is increased and the transmission is operated in the target continuously variable mode.

  1. Hybrid simulation methods to perform grid integration studies for large scale offshore wind power connected through VSC-HVDC

    NARCIS (Netherlands)

    Meer, van der A.A.; Hendriks, R.L.; Gibescu, M.; Ferreira, J.A.; Kling, W.L.

    2011-01-01

    This paper deals with the inclusion of VSC-HVdc transmission schemes into stability-type simulations by hybrid methods. These methods allow selected parts of the network to be simulated in detail by including electro-magnetic behaviour of devices and network elements whereas the remainder of the

  2. Hybrid Modeling Method for a DEP Based Particle Manipulation

    Directory of Open Access Journals (Sweden)

    Mohamad Sawan

    2013-01-01

    Full Text Available In this paper, a new modeling approach for Dielectrophoresis (DEP based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results.

  3. Accelerated radial Fourier-velocity encoding using compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)

    2014-10-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  4. Accelerated radial Fourier-velocity encoding using compressed sensing

    International Nuclear Information System (INIS)

    Hilbert, Fabian; Han, Dietbert

    2014-01-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  5. Fluorescence-Based Multiplex Protein Detection Using Optically Encoded Microbeads

    Directory of Open Access Journals (Sweden)

    Dae Hong Jeong

    2012-03-01

    Full Text Available Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.

  6. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  7. Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    V. D. Sulimov

    2014-01-01

    Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search

  8. A Hybrid Data Compression Scheme for Improved VNC

    Directory of Open Access Journals (Sweden)

    Xiaozheng (Jane Zhang

    2007-04-01

    Full Text Available Virtual Network Computing (VNC has emerged as a promising technology in distributed computing environment since its invention in the late nineties. Successful application of VNC requires rapid data transfer from one machine to another over a TCP/IP network connection. However transfer of screen data consumes much network bandwidth and current data encoding schemes for VNC are far from being ideal. This paper seeks to improve screen data compression techniques to enable VNC over slow connections and present a reasonable speed and image quality. In this paper, a hybrid technique is proposed for improving coding efficiency. The algorithm first divides a screen image into pre-defined regions and applies encoding schemes to each area according to the region characteristics. Second, correlation of screen data in consecutive frames is exploited where multiple occurrences of similar image contents are detected. The improved results are demonstrated in a dynamic environment with various screen image types and desktop manipulation.

  9. Evaluation and Comparison of Environmental Indicators of Hybrid Corn (Zea mays L. Production by Three Different Harvesting Methods in Alborz Province using Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Majid Khanali

    2018-02-01

    Full Text Available Introduction Agriculture itself serves a dual role as an energy user and also energy supplier in the form of bio-energy. Recently, the energy use in agriculture has been intensified in response to the rising population, the increasing of standards of living and the limitation sources of energy. Efficient use of energy is a possible pathway for reducing the environmental impacts of energy inputs in agriculture, and providing sustainable agricultural production, since it brings financial savings, fossil resources preservation and air pollution reduction. Life cycle assessment (LCA is defined as the compilation and evaluation of the inputs, outputs and potential environmental impacts of a product system throughout its life cycle. Hybrid seed in agriculture is produced by cross-pollinated plants. Hybrid seed production is one of the main contributors to the dramatic rise in agricultural output during the last half of the 20th century. The alternatives to hybridization are open pollination and cloonal propagation. All of the hybrid seeds planted by the farmer will produce similar plants while the seeds of the next generation from those hybrids will not consistently have the desired characteristics. Controlled hybrids provide very uniform characteristics because they are produced by crossing two inbred strains. Materials and Methods The purpose of this study was to compare the energy consumption pattern and environmental consequences caused by the use of agricultural inputs in the production of seed corn harvested by hand, combine and picker husker. Information required was prepared by the questionnaire method in Alborz Province using census the total producers of hybrid corn in the Province. The investigated inputs were labor, agricultural machinery, diesel fuel, chemical pesticides, fertilizers, gas, electricity, water and seed. The energy of each input was calculated by multiplying the amount of that input with its energy equivalent. The ten

  10. A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets

    Science.gov (United States)

    Porwal, A.; Carranza, J.; Hale, M.

    2004-12-01

    A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.

  11. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...

  12. Polypeptides having catalase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Duan, Junxin; Zhang, Yu; Tang, Lan

    2017-05-02

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Chakkrid Klin-eam

    2009-01-01

    Full Text Available We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space.

  14. Modeling and simulation of surfactant-polymer flooding using a new hybrid method

    Science.gov (United States)

    Daripa, Prabir; Dutta, Sourav

    2017-04-01

    Chemical enhanced oil recovery by surfactant-polymer (SP) flooding has been studied in two space dimensions. A new global pressure for incompressible, immiscible, multicomponent two-phase porous media flow has been derived in the context of SP flooding. This has been used to formulate a system of flow equations that incorporates the effect of capillary pressure and also the effect of polymer and surfactant on viscosity, interfacial tension and relative permeabilities of the two phases. The coupled system of equations for pressure, water saturation, polymer concentration and surfactant concentration has been solved using a new hybrid method in which the elliptic global pressure equation is solved using a discontinuous finite element method and the transport equations for water saturation and concentrations of the components are solved by a Modified Method Of Characteristics (MMOC) in the multicomponent setting. Numerical simulations have been performed to validate the method, both qualitatively and quantitatively, and to evaluate the relative performance of the various flooding schemes for several different heterogeneous reservoirs.

  15. 1998 Annual Study Report. Standardization of methods for measuring fuel economy of hybrid electric vehicles; 1998 nendo seika hokokusho. Hybrid denki jidosha no nenpi sokutei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The hybrid electric vehicle (HEV) has been attracting attention as a clean energy vehicle, because it will potentially show higher fuel economy and release smaller quantities of exhaust emissions than the conventional internal combustion engine, and also will be potentially advantageous over the electric vehicle in that it needs no charging infrastructures and less cost. However, there are many types of hybrid vehicle systems, and, for them to be commercialized on a large scale, it is urgently necessary to establish the fuel economy measurement method. The 1998 R and D efforts were directed to analysis of the effects of the hybrid-characteristic factors (SOC of the propulsion battery and regenerative braking) on fuel economy and exhaust emissions. As a result, it is found that changed SOC before and after the tests must be corrected to determine fuel economy and that it is possible. The method for measuring the effects of regenerative braking should be further developed, because the data collected while the vehicle is running on road and on a two-wheel chassis dynamometer are not clearly distinguished from each other. The exhaust emissions are also sensitive to the changed SOC, correction for which, however, is not as easy as that for fuel economy. (NEDO)

  16. A two-hybrid assay to study protein interactions within the secretory pathway.

    Directory of Open Access Journals (Sweden)

    Danielle H Dube

    Full Text Available Interactions of transcriptional activators are difficult to study using transcription-based two-hybrid assays due to potent activation resulting in false positives. Here we report the development of the Golgi two-hybrid (G2H, a method that interrogates protein interactions within the Golgi, where transcriptional activators can be assayed with negligible background. The G2H relies on cell surface glycosylation to report extracellularly on protein-protein interactions occurring within the secretory pathway. In the G2H, protein pairs are fused to modular domains of the reporter glycosyltransferase, Och1p, and proper cell wall formation due to Och1p activity is observed only when a pair of proteins interacts. Cells containing interacting protein pairs are identified by selectable phenotypes associated with Och1p activity and proper cell wall formation: cells that have interacting proteins grow under selective conditions and display weak wheat germ agglutinin (WGA binding by flow cytometry, whereas cells that lack interacting proteins display stunted growth and strong WGA binding. Using this assay, we detected the interaction between transcription factor MyoD and its binding partner Id2. Interfering mutations along the MyoD:Id2 interaction interface ablated signal in the G2H assay. Furthermore, we used the G2H to detect interactions of the activation domain of Gal4p with a variety of binding partners. Finally, selective conditions were used to enrich for cells encoding interacting partners. The G2H detects protein-protein interactions that cannot be identified via traditional two-hybrid methods and should be broadly useful for probing previously inaccessible subsets of the interactome, including transcriptional activators and proteins that traffic through the secretory pathway.

  17. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  18. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis.

    Science.gov (United States)

    Kühn, Jens-Peter; Hernando, Diego; Mensel, Birger; Krüger, Paul C; Ittermann, Till; Mayerle, Julia; Hosten, Norbert; Reeder, Scott B

    2014-06-01

    To compare the accuracy of liver fat quantification using a three-echo chemical shift-encoded magnetic resonance imaging (MRI) technique without and with correction for confounders with spectroscopy (MRS) as the reference standard. Fifty patients (23 women, mean age 56.6 ± 13.2 years) with fatty liver disease were enrolled. Patients underwent T2-corrected single-voxel MRS and a three-echo chemical shift-encoded gradient echo (GRE) sequence at 3.0T. MRI fat fraction (FF) was calculated without and with T2* and T1 correction and multispectral modeling of fat and compared with MRS-FF using linear regression. The spectroscopic range of liver fat was 0.11%-38.7%. Excellent correlation between MRS-FF and MRI-FF was observed when using T2* correction (R(2)  = 0.96). With use of T2* correction alone, the slope was significantly different from 1 (1.16 ± 0.03, P fat were addressed, the results showed equivalence between fat quantification using MRI and MRS (slope: 1.02 ± 0.03, P = 0.528; intercept: 0.26% ± 0.46%, P = 0.572). Complex three-echo chemical shift-encoded MRI is equivalent to MRS for quantifying liver fat, but only with correction for T2* decay and T1 recovery and use of spectral modeling of fat. This is necessary because T2* decay, T1 recovery, and multispectral complexity of fat are processes which may otherwise bias the measurements. Copyright © 2013 Wiley Periodicals, Inc.

  19. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    Science.gov (United States)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  20. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  1. Genome reorganization in Nicotiana asymmetric somatic hybrids analysed by in situ hybridization

    International Nuclear Information System (INIS)

    Parokonny, A.S.; Kenton, A.Y.; Gleba, Y.Y.; Bennett, M.D.

    1992-01-01

    In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro

  2. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  3. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  4. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  5. Landscape encodings enhance optimization.

    Directory of Open Access Journals (Sweden)

    Konstantin Klemm

    Full Text Available Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.

  6. Landscape Encodings Enhance Optimization

    Science.gov (United States)

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  7. Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method

    Science.gov (United States)

    Verhoff, Ashley Marie

    Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches. The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy. In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a

  8. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress.

    Science.gov (United States)

    Ritchey, Maureen; McCullough, Andrew M; Ranganath, Charan; Yonelinas, Andrew P

    2017-01-01

    Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding "tags" for determining the impact of consolidation manipulations on memory. Here, we used functional magnetic resonance imaging in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.

    Science.gov (United States)

    Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B

    2017-09-20

    Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In

  10. Identification of warm day and cool night conditions induced flowering-related genes in a Phalaenopsis orchid hybrid by suppression subtractive hybridization.

    Science.gov (United States)

    Li, D M; Lü, F B; Zhu, G F; Sun, Y B; Xu, Y C; Jiang, M D; Liu, J W; Wang, Z

    2014-02-14

    The influence of warm day and cool night conditions on induction of spikes in Phalaenopsis orchids has been studied with respect to photosynthetic efficiency, metabolic cycles and physiology. However, molecular events involved in spike emergence induced by warm day and cool night conditions are not clearly understood. We examined gene expression induced by warm day and cool night conditions in the Phalaenopsis hybrid Fortune Saltzman through suppression subtractive hybridization, which allowed identification of flowering-related genes in warm day and cool night conditions in spikes and leaves at vegetative phase grown under warm daily temperatures. In total, 450 presumably regulated expressed sequence tags (ESTs) were identified and classified into functional categories, including metabolism, development, transcription factor, signal transduction, transportation, cell defense, and stress. Furthermore, database comparisons revealed a notable number of Phalaenopsis hybrid Fortune Saltzman ESTs that matched genes with unknown function. The expression profiles of 24 genes (from different functional categories) have been confirmed by quantitative real-time PCR in induced spikes and juvenile apical leaves. The results of the real-time PCR showed that, compared to the vegetative apical leaves, the transcripts of genes encoding flowering locus T, AP1, AP2, KNOX1, knotted1-like homeobox protein, R2R3-like MYB, adenosine kinase 2, S-adenosylmethionine synthetase, dihydroflavonol 4-reductase, and naringenin 3-dioxygenase accumulated significantly higher levels, and genes encoding FCA, retrotransposon protein Ty3 and C3HC4-type RING finger protein accumulated remarkably lower levels in spikes of early developmental stages. These results suggested that the genes of two expression changing trends may play positive and negative roles in the early floral transition of Phalaenopsis orchids. In conclusion, spikes induced by warm day and cool night conditions were complex in

  11. A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Yuyang Gao

    2016-09-01

    Full Text Available With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data processing, but the individual back-propagation artificial neural network cannot always satisfy the time series forecasting needs. Thus, a hybrid forecasting approach has been proposed in this study, which consists of data preprocessing, parameter optimization and a neural network for advancing the accuracy of short-term wind speed forecasting. According to the case study, in which the data are collected from Peng Lai, a city located in China, the simulation results indicate that the hybrid forecasting method yields better predictions compared to the individual BP, which indicates that the hybrid method exhibits stronger forecasting ability.

  12. A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2015-10-01

    In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e. , internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature.

  13. Quantum control mechanism analysis through field based Hamiltonian encoding

    International Nuclear Information System (INIS)

    Mitra, Abhra; Rabitz, Herschel

    2006-01-01

    Optimal control of quantum dynamics in the laboratory is proving to be increasingly successful. The control fields can be complex, and the mechanisms by which they operate have often remained obscure. Hamiltonian encoding (HE) has been proposed as a method for understanding mechanisms in quantum dynamics. In this context mechanism is defined in terms of the dominant quantum pathways leading to the final state of the controlled system. HE operates by encoding a special modulation into the Hamiltonian and decoding its signature in the dynamics to determine the dominant pathway amplitudes. Earlier work encoded the modulation directly into the Hamiltonian operators. This present work introduces the alternative scheme of field based HE, where the modulation is encoded into the control field and not directly into the Hamiltonian operators. This distinct form of modulation yields a new perspective on mechanism and is computationally faster than the earlier approach. Field based encoding is also an important step towards a laboratory based algorithm for HE as it is the only form of encoding that may be experimentally executed. HE is also extended to cover systems with noise and uncertainty and finally, a hierarchical algorithm is introduced to reveal mechanism in a stepwise fashion of ever increasing detail as desired. This new hierarchical algorithm is an improvement over earlier approaches to HE where the entire mechanism was determined in one stroke. The improvement comes from the use of less complex modulation schemes, which leads to fewer evaluations of Schroedinger's equation. A number of simulations are presented on simple systems to illustrate the new field based encoding technique for mechanism assessment

  14. A hybrid computational method for the discovery of novel reproduction-related genes.

    Science.gov (United States)

    Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Guohua; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Uncovering the molecular mechanisms underlying reproduction is of great importance to infertility treatment and to the generation of healthy offspring. In this study, we discovered novel reproduction-related genes with a hybrid computational method, integrating three different types of method, which offered new clues for further reproduction research. This method was first executed on a weighted graph, constructed based on known protein-protein interactions, to search the shortest paths connecting any two known reproduction-related genes. Genes occurring in these paths were deemed to have a special relationship with reproduction. These newly discovered genes were filtered with a randomization test. Then, the remaining genes were further selected according to their associations with known reproduction-related genes measured by protein-protein interaction score and alignment score obtained by BLAST. The in-depth analysis of the high confidence novel reproduction genes revealed hidden mechanisms of reproduction and provided guidelines for further experimental validations.

  15. A hybrid method for in-core optimization of pressurized water reactor reload core design

    International Nuclear Information System (INIS)

    Stevens, J.G.

    1995-05-01

    The objective of this research is the development of an accurate, practical, and robust method for optimization of the design of loading patterns for pressurized water reactors, a nonlinear, non-convex, integer optimization problem. The many logical constraints which may be applied during the design process are modeled herein by a network construction upon which performance objectives and safety constraints from reactor physics calculations are optimized. This thesis presents the synthesis of the strengths of previous algorithms developed for reload design optimization and extension of robustness through development of a hybrid liberated search algorithm. Development of three independent methods for reload design optimization is presented: random direct search for local improvement, liberated search by simulated annealing, and deterministic search for local improvement via successive linear assignment by branch and bound. Comparative application of the methods to a variety of problems is discussed, including an exhaustive enumeration benchmark created to allow comparison of search results to a known global optimum for a large scale problem. While direct search and determinism are shown to be capable of finding improvement, only the liberation of simulated annealing is found to perform robustly in the non-convex design spaces. The hybrid method SHAMAN is presented. The algorithm applies: determinism to shuffle an initial solution for satisfaction of heuristics and symmetry; liberated search through simulated annealing with a bounds cooling constraint treatment; and search bias through relational heuristics for the application of engineering judgment. The accuracy, practicality, and robustness of the SHAMAN algorithm is demonstrated through application to a variety of reload loading pattern optimization problems

  16. A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties

    International Nuclear Information System (INIS)

    Lv, Y.; Yan, X.D.; Sun, W.; Gao, Z.Y.

    2015-01-01

    Emergencies involved in a bus–subway corridor system are associated with many processes and factors with social and economic implications. These processes and factors and their interactions are related to a variety of uncertainties. In this study, an interval chance-constrained integer programming (EICI) method is developed in response to such challenges for bus–subway corridor based evacuation planning. The method couples a chance-constrained programming with an interval integer programming model framework. It can thus deal with interval uncertainties that cannot be quantified with specified probability distribution functions. Meanwhile, it can also reflect stochastic features of traffic flow capacity, and thereby help examine the related violation risk of constraint. The EICI method is applied to a subway incident based evacuation case study. It is solved through an interactive algorithm that does not lead to more complicated intermediate submodels and has a relatively low computational requirement. A number of decision alternatives could be directly generated based on results from the EICI method. It is indicated that the solutions cannot only help decision makers identify desired population evacuation and vehicle dispatch schemes under hybrid uncertainties, but also provide bases for in-depth analyses of tradeoffs among evacuation plans, total evacuation time, and constraint-violation risks. - Highlights: • An inexact model is developed for the bus–subway corridor evacuation management. • It tackles stochastic and interval uncertainties in an integer programming problem. • It can examine violation risk of the roadway flow capacity related constraint. • It will help identify evacuation schemes under hybrid uncertainties

  17. Simulation of wing-body junction flows with hybrid RANS/LES methods

    International Nuclear Information System (INIS)

    Fu Song; Xiao Zhixiang; Chen Haixin; Zhang Yufei; Huang Jingbo

    2007-01-01

    In this paper, flows past two wing-body junctions, the Rood at zero angle of attack and NASA TN D-712 at 12.5 o angle of attack, are investigated with two Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES) hybrid methods. One is detached eddy simulation (DES) and the other is delayed-DES, both are based on a weakly nonlinear two-equation k-ω model. While the RANS method can predict the mean flow behaviours reasonably accurately, its performance for the turbulent kinetic energy and shear stress, as compared with available experimental data, is not satisfactory. DES, through introducing a length scale in the dissipation terms of the turbulent kinetic energy equation, delivers flow separation, a vortex or the onset of vortex breakdown too early. DDES, with its delayed effect, shows a great improvement in flow structures and turbulence characteristics, and agrees well with measurements

  18. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  19. Joint-layer encoder optimization for HEVC scalable extensions

    Science.gov (United States)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  20. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  1. Analysis on applicable error-correcting code strength of storage class memory and NAND flash in hybrid storage

    Science.gov (United States)

    Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken

    2018-04-01

    A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.

  2. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3 Encoded MicroRNAs.

    Directory of Open Access Journals (Sweden)

    Owen H Donohoe

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3 is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio and koi (Cyprinus carpio koi worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA-offset RNAs (moRNAs derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.

  3. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs

    Science.gov (United States)

    Donohoe, Owen H.; Henshilwood, Kathy; Way, Keith; Hakimjavadi, Roya; Stone, David M.; Walls, Dermot

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3. PMID:25928140

  4. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Science.gov (United States)

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj

    2018-02-06

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Automatic Encoding and Language Detection in the GSDL

    Directory of Open Access Journals (Sweden)

    Otakar Pinkas

    2014-10-01

    Full Text Available Automatic detection of encoding and language of the text is part of the Greenstone Digital Library Software (GSDL for building and distributing digital collections. It is developed by the University of Waikato (New Zealand in cooperation with UNESCO. The automatic encoding and language detection in Slavic languages is difficult and it sometimes fails. The aim is to detect cases of failure. The automatic detection in the GSDL is based on n-grams method. The most frequent n-grams for Czech are presented. The whole process of automatic detection in the GSDL is described. The input documents to test collections are plain texts encoded in ISO-8859-1, ISO-8859-2 and Windows-1250. We manually evaluated the quality of automatic detection. To the causes of errors belong the improper language model predominance and the incorrect switch to Windows-1250. We carried out further tests on documents that were more complex.

  7. Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding

    Science.gov (United States)

    Fang, Xiaohui; Wang, Dong-Ning; Li, Shichen

    2003-08-01

    A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG according to the mapping code. The transfer matrix method together with Fourier transform is used to investigate the characteristics of the encoder/decoder. The factors that influence the correlation property of the encoder/decoder, including index modulation and bandwidth of the subgrating, are identified. The system structure is simple and good correlation output can be obtained. The performance of the OCDMA system based on SCFBGs has been analyzed.

  8. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  9. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Science.gov (United States)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  11. Empirical evaluation of a practical indoor mobile robot navigation method using hybrid maps

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2010-01-01

    This video presents a practical navigation scheme for indoor mobile robots using hybrid maps. The method makes use of metric maps for local navigation and a topological map for global path planning. Metric maps are generated as occupancy grids by a laser range finder to represent local information...... about partial areas. The global topological map is used to indicate the connectivity of the ‘places-of-interests’ in the environment and the interconnectivity of the local maps. Visual tags on the ceiling to be detected by the robot provide valuable information and contribute to reliable localization...... that the method is implemented successfully on physical robot in a hospital environment, which provides a practical solution for indoor navigation....

  12. Thermal stability of octadecylsilane hybrid silicas prepared by grafting and sol-gel methods

    International Nuclear Information System (INIS)

    Brambilla, Rodrigo; Santos, Joao H.Z. dos; Miranda, Marcia S.L.; Frost, Ray L.

    2008-01-01

    Hybrid silicas bearing octadecylsilane groups were prepared by grafting and sol-gel (SG) methods. The effect of the preparative route on the thermal stability was evaluated by means of thermal gravimetric analysis (TGA), infrared emission spectroscopy (IRES) and, complementary, by 13 C solid-state nuclear magnetic resonance ( 13 C NMR) and matrix assisted laser deionization time of flight mass spectroscopy (MALDI-TOF-MS). Silicas prepared by the grafting route seem to be slightly more stable than those produced by the sol-gel method. This behavior seems to be associated to the preparative route, since grafting affords a liquid-like conformation, while in the case of sol-gel a highly organized crystalline chain conformation was observed

  13. Hyper- and hybrid nonlocality

    Science.gov (United States)

    Li, Yanna; Gessner, Manuel; Li, Weidong; Smerzi, Augusto

    2018-02-01

    The controlled generation and identification of quantum correlations, usually encoded in either qubits or continuous degrees of freedom, builds the foundation of quantum information science. Recently, more sophisticated approaches, involving a combination of two distinct degrees of freedom, have been proposed to improve on the traditional strategies. Hyperentanglement describes simultaneous entanglement in more than one distinct degree of freedom, whereas hybrid entanglement refers to entanglement shared between a discrete and a continuous degree of freedom. In this work we propose a scheme that allows us to combine the two approaches, and to extend them to the strongest form of quantum correlations. Specifically, we show how two identical, initially separated particles can be manipulated to produce Bell nonlocality among their spins, among their momenta, as well as across their spins and momenta. We discuss possible experimental realizations with atomic and photonic systems.

  14. Optimal Design for Hybrid Ratio of Carbon/Basalt Hybrid Fiber Reinforced Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    XU Hong

    2017-08-01

    Full Text Available The optimum hybrid ratio range of carbon/basalt hybrid fiber reinforced resin composites was studied. Hybrid fiber composites with nine different hybrid ratios were prepared before tensile test.According to the structural features of plain weave, the unit cell's performance parameters were calculated. Finite element model was established by using SHELL181 in ANSYS. The simulated values of the sample stiffness in the model were approximately similar to the experimental ones. The stress nephogram shows that there is a critical hybrid ratio which divides the failure mechanism of HFRP into single failure state and multiple failure state. The tensile modulus, strength and limit tensile strain of HFRP with 45% resin are simulated by finite element method. The result shows that the tensile modulus of HFRP with 60% hybrid ratio increases by 93.4% compared with basalt fiber composites (BFRP, and the limit tensile strain increases by 11.3% compared with carbon fiber composites(CFRP.

  15. Exhaustive search of linear information encoding protein-peptide recognition.

    Science.gov (United States)

    Kelil, Abdellali; Dubreuil, Benjamin; Levy, Emmanuel D; Michnick, Stephen W

    2017-04-01

    High-throughput in vitro methods have been extensively applied to identify linear information that encodes peptide recognition. However, these methods are limited in number of peptides, sequence variation, and length of peptides that can be explored, and often produce solutions that are not found in the cell. Despite the large number of methods developed to attempt addressing these issues, the exhaustive search of linear information encoding protein-peptide recognition has been so far physically unfeasible. Here, we describe a strategy, called DALEL, for the exhaustive search of linear sequence information encoded in proteins that bind to a common partner. We applied DALEL to explore binding specificity of SH3 domains in the budding yeast Saccharomyces cerevisiae. Using only the polypeptide sequences of SH3 domain binding proteins, we succeeded in identifying the majority of known SH3 binding sites previously discovered either in vitro or in vivo. Moreover, we discovered a number of sites with both non-canonical sequences and distinct properties that may serve ancillary roles in peptide recognition. We compared DALEL to a variety of state-of-the-art algorithms in the blind identification of known binding sites of the human Grb2 SH3 domain. We also benchmarked DALEL on curated biological motifs derived from the ELM database to evaluate the effect of increasing/decreasing the enrichment of the motifs. Our strategy can be applied in conjunction with experimental data of proteins interacting with a common partner to identify binding sites among them. Yet, our strategy can also be applied to any group of proteins of interest to identify enriched linear motifs or to exhaustively explore the space of linear information encoded in a polypeptide sequence. Finally, we have developed a webserver located at http://michnick.bcm.umontreal.ca/dalel, offering user-friendly interface and providing different scenarios utilizing DALEL.

  16. Development of numerical methods to calculate the propagation and the absorption of the hybrid wave in tokamaks; Developpement des methodes numeriques pour la resolution de la propagation et de l`absorption de l`onde hybride dans les tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sebelin, E

    1997-12-15

    Full-wave calculations based on trial functions are carried out for solving the lower hybrid current drive problem in tokamaks. A variational method is developed and provides an efficient system to describe in a global manner both the propagation and the absorption of the electromagnetic waves in plasmas. The calculation is fully carried out in the case of circular and concentric flux surfaces. The existence and uniqueness of the solution of the wave propagation equation is mathematically proved. The first realistic simulations are performed for the high aspect ratio tokamak TRIAM-1M. It is checked that the main features of the lower-hybrid wave dynamics are well described numerically. (A.C.) 81 refs.

  17. Using Social Scientific Criteria to Evaluate Cultural Theories: Encoding/Decoding Evaluated

    Directory of Open Access Journals (Sweden)

    Evan L. Kropp

    2015-12-01

    Full Text Available This article transcends the issue of conflicting theoretical schools of thought to formulate a method of social scientific style theory evaluation for cultural studies. It is suggested that positivist social scientific models of theory critique can be used to assess cultural models of communication to determine if they should be classified as theories. A set of evaluation criteria is formulated as a guide and applied to Stuart Hall’s Encoding/Decoding to determine if it is a theory. Conclusions find the sharing of criteria between schools of thought is judicious, Encoding/Decoding fits the established criteria, and Encoding/Decoding should be referred to as a theory.

  18. Diagnosis of canine visceral leishmaniasis with radiolabelled probes: comparison of the kDNA PCR-hybridization with three molecular methods in different clinical samples

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Aline Leandra C.; Ferreira, Sidney A.; Carregal, Virginia M.; Andrade, Antero Silva R., E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia; Melo, Maria N., E-mail: melo@icb.ufmg.br [Departamento de Parasitologia. Instituto de Ciencias Biologicas. Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-07-01

    Leishmania (Leishmania) chagasi is responsible for visceral leishmaniasis (VL) in Brazil and the dog is the main domestic reservoir. Disease control is based on the elimination of infected animals and the use of a sensitive and specific diagnostic test is necessary. The Brazilian VL control program emphasizes serologic surveys, mainly using the enzyme-linked immunosorbent assay (ELISA) and the immunofluorescence antibody test (IFAT), followed by the elimination of the seropositive dogs. However, these techniques present limitations in terms of sensitivity and specificity. The Polymerase Chain Reaction (PCR) associated to hybridization with DNA probes labeled with {sup 32}P has been recognized as a valuable tool for Leishmania identification. In this study, the sensitivity of kDNA PCR hybridization method was compared with three other molecular methods: Internal Transcribed Spacer 1 Nested PCR (ITS-1nPCR), Leishmania nested PCR (LnPCR) and Seminested kDNA PCR (kDNA snPCR). The comparison was performed in different clinical specimens: conjunctival swab, skin, blood and bone marrow. A group of thirty symptomatic dogs, positive in the parasitological and serological tests, was used. When. The techniques targeting kDNA mini-circles (kDNA snPCR and KDNA PCR-hybridization) showed the worst result for blood samples. The KDNA-PCR hybridization showed the best sensitivity for conjunctival swab. By comparing the samples on the basis of positivity obtained by the sum of all methods, the blood showed the worst outcome (71/120).The bone marrow showed the highest positivity (106/120), followed by conjunctival swab (100/120) and skin (89/120). Since the bone marrow samples are unsuitable for routine epidemiological surveys, the conjunctival swab was recommended because it allows high sensitivity, especially when associated with kDNA PCR hybridization method, and is a noninvasive sampling method. (author)

  19. Diagnosis of canine visceral leishmaniasis with radiolabelled probes: comparison of the kDNA PCR-hybridization with three molecular methods in different clinical samples

    International Nuclear Information System (INIS)

    Ferreira, Aline Leandra C.; Ferreira, Sidney A.; Carregal, Virginia M.; Andrade, Antero Silva R.

    2011-01-01

    Leishmania (Leishmania) chagasi is responsible for visceral leishmaniasis (VL) in Brazil and the dog is the main domestic reservoir. Disease control is based on the elimination of infected animals and the use of a sensitive and specific diagnostic test is necessary. The Brazilian VL control program emphasizes serologic surveys, mainly using the enzyme-linked immunosorbent assay (ELISA) and the immunofluorescence antibody test (IFAT), followed by the elimination of the seropositive dogs. However, these techniques present limitations in terms of sensitivity and specificity. The Polymerase Chain Reaction (PCR) associated to hybridization with DNA probes labeled with 32 P has been recognized as a valuable tool for Leishmania identification. In this study, the sensitivity of kDNA PCR hybridization method was compared with three other molecular methods: Internal Transcribed Spacer 1 Nested PCR (ITS-1nPCR), Leishmania nested PCR (LnPCR) and Seminested kDNA PCR (kDNA snPCR). The comparison was performed in different clinical specimens: conjunctival swab, skin, blood and bone marrow. A group of thirty symptomatic dogs, positive in the parasitological and serological tests, was used. When. The techniques targeting kDNA mini-circles (kDNA snPCR and KDNA PCR-hybridization) showed the worst result for blood samples. The KDNA-PCR hybridization showed the best sensitivity for conjunctival swab. By comparing the samples on the basis of positivity obtained by the sum of all methods, the blood showed the worst outcome (71/120).The bone marrow showed the highest positivity (106/120), followed by conjunctival swab (100/120) and skin (89/120). Since the bone marrow samples are unsuitable for routine epidemiological surveys, the conjunctival swab was recommended because it allows high sensitivity, especially when associated with kDNA PCR hybridization method, and is a noninvasive sampling method. (author)

  20. Advanced hybrid query tree algorithm based on slotted backoff mechanism in RFID

    Directory of Open Access Journals (Sweden)

    XIE Xiaohui

    2013-12-01

    Full Text Available The merits of performance quality for a RFID system are determined by the effectiveness of tag anti-collision algorithm.Many algorithms for RFID system of tag identification have been proposed,but they all have obvious weaknesses,such as slow speed of identification,unstable and so on.The existing algorithms can be divided into two groups,one is based on ALOHA and another is based on query tree.This article is based on the hybrid query tree algorithm,combined with a slotted backoff mechanism and a specific encoding (Manchester encoding.The number of value“1” in every three consecutive bits of tags is used to determine the tag response time slots,which will greatly reduce the time slot of the collision and improve the recognition efficiency.

  1. Effect of post-encoding emotion on recollection and familiarity for pictures.

    Science.gov (United States)

    Wang, Bo; Ren, Yanju

    2017-07-01

    Although prior studies have examined the effect of post-encoding emotional arousal on recognition memory for words, it is unknown whether the enhancement effect observed on words generalizes to pictures. Furthermore, prior studies using words have showed that the effect of emotional arousal can be modulated by stimuli valence and delay in emotion induction, but it is unclear whether such modulation can extend to pictures and whether other factors such as encoding method (incidental vs. intentional encoding) can be modulatory. Five experiments were conducted to answer these questions. In Experiment 1, participants encoded a list of neutral and negative pictures and then watched a 3-min neutral or negative video. The delayed test showed that negative arousal impaired recollection regardless of picture valence but had no effect on familiarity. Experiment 2 replicated the above findings. Experiment 3 was similar to Experiment 1 except that participants watched a 3-min neutral, negative, or positive video and conducted free recall before the recognition test. Unlike the prior two experiments, the impairment effect of negative arousal disappeared. Experiment 4, where the free recall task was eliminated, replicated the results from Experiment 3. Experiment 5 replicated Experiments 1 and 2 and further showed that the impairment effects of negative arousal could be modulated by delay in emotion induction but not by encoding method or stimuli valence. Taken together, the current study suggests that the enhancement effect observed on words may not generalize to pictures.

  2. A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA

    Science.gov (United States)

    Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan

    2016-11-01

    The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.

  3. Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection

    Science.gov (United States)

    Shikha, Swati; Zheng, Xiang; Zhang, Yong

    2018-06-01

    Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.

  4. Towards an Automatic Parameter-Tuning Framework for Cost Optimization on Video Encoding Cloud

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2012-01-01

    Full Text Available The emergence of cloud encoding services facilitates many content owners, such as the online video vendors, to transcode their digital videos without infrastructure setup. Such service provider charges the customers only based on their resource consumption. For both the service provider and customers, lowering the resource consumption while maintaining the quality is valuable and desirable. Thus, to choose a cost-effective encoding parameter, configuration is essential and challenging due to the tradeoff between bitrate, encoding speed, and resulting quality. In this paper, we explore the feasibility of an automatic parameter-tuning framework, based on which the above objective can be achieved. We introduce a simple service model, which combines the bitrate and encoding speed into a single value: encoding cost. Then, we conduct an empirical study to examine the relationship between the encoding cost and various parameter settings. Our experiment is based on the one-pass Constant Rate Factor method in x264, which can achieve relatively stable perceptive quality, and we vary each parameter we choose to observe how the encoding cost changes. The experiment results show that the tested parameters can be independently tuned to minimize the encoding cost, which makes the automatic parameter-tuning framework feasible and promising for optimizing the cost on video encoding cloud.

  5. Multi-objective Design Method for Hybrid Active Power Filter

    Science.gov (United States)

    Yu, Jingrong; Deng, Limin; Liu, Maoyun; Qiu, Zhifeng

    2017-10-01

    In this paper, a multi-objective optimal design for transformerless hybrid active power filter (HAPF) is proposed. The interactions between the active and passive circuits is analyzed, and by taking the interactions into consideration, a three-dimensional objective problem comprising of performance, efficiency and cost of HAPF system is formulated. To deal with the multiple constraints and the strong coupling characteristics of the optimization model, a novel constraint processing mechanism based on distance measurement and adaptive penalty function is presented. In order to improve the diversity of optimal solution and the local searching ability of the particle swarm optimization (PSO) algorithm, a chaotic mutation operator based on multistage neighborhood is proposed. The simulation results show that the optimums near the ordinate origin of the three-dimension space make better tradeoff among the performance, efficiency and cost of HAPF, and the experimental results of transformerless HAPF verify the effectiveness of the method for multi-objective optimization and design.

  6. Some results of applied interspecific hybridization in sunflower breeding

    International Nuclear Information System (INIS)

    Tsvetkova, F.

    1976-01-01

    Investigations on the interspecific hybridization in sunflower, aimed at developing a diversified initial selection material, were carried out Wild species of the diploid, tetraploid and hexaploid groups, varieties, hybrids, and selfed-lines of cultivated sunflower were used for crossings. To overcome incrossability between the species and sterility in the hybrids the method of f;cilitating of crossability by mutual gra'fting and gamma-rays treatment of seeds and pollen were applied. Results showed that: 1. By the method of interspecific hybridization forms might be produced resistant to more important diseases. 2. Interspecific hybridization in combination with other methods of selection might produce varieties and hybrids with a complex of valuable qualities. 3. Crossings between wild species and cultivated sunflower gave progenies with gene rale sterility. 4. The species H.tuberosus, H.scaberimus, H.arωphylus and H.lenticularis possess genes of full fertility restoration. (author)

  7. Hybrid SN/Monte Carlo research and results

    International Nuclear Information System (INIS)

    Baker, R.S.

    1993-01-01

    The neutral particle transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S N ) and stochastic (Monte Carlo) methods are applied. The Monte Carlo and S N regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid Monte Carlo/S N method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S N is well suited for by themselves. The hybrid method has been successfully applied to realistic shielding problems. The vectorized Monte Carlo algorithm in the hybrid method has been ported to the massively parallel architecture of the Connection Machine. Comparisons of performance on a vector machine (Cray Y-MP) and the Connection Machine (CM-2) show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when realistic problems requiring variance reduction are considered. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well

  8. Learning-based encoding with soft assignment for age estimation under unconstrained imaging conditions

    NARCIS (Netherlands)

    Alnajar, F.; Shan, C.; Gevers, T.; Geusebroek, J.M.

    2012-01-01

    In this paper we propose to adopt a learning-based encoding method for age estimation under unconstrained imaging conditions. A similar approach [Cao et al., 2010] is applied to face recognition in real-life face images. However, the feature vectors are encoded in hard manner i.e. each feature

  9. A Four-Stage Fifth-Order Trigonometrically Fitted Semi-Implicit Hybrid Method for Solving Second-Order Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Sufia Zulfa Ahmad

    2016-01-01

    Full Text Available We derived a two-step, four-stage, and fifth-order semi-implicit hybrid method which can be used for solving special second-order ordinary differential equations. The method is then trigonometrically fitted so that it is suitable for solving problems which are oscillatory in nature. The methods are then used for solving oscillatory delay differential equations. Numerical results clearly show the efficiency of the new method when compared to the existing explicit and implicit methods in the scientific literature.

  10. A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery

    International Nuclear Information System (INIS)

    Chang, Yang; Fang, Huajing; Zhang, Yong

    2017-01-01

    Highlights: •The proposed prognostic method can make full use of historical information. •The method of obtaining historical error data is discussed in detail. •Comparative experiments based on data-driven and model-based methods are performed. •Battery working with different discharging currents is considered. -- Abstract: The lithium-ion battery has become the main power source of many electronic devices, it is necessary to know its state-of-health and remaining useful life to ensure the reliability of electronic device. In this paper, a novel hybrid method with the thought of error-correction is proposed to predict the remaining useful life of lithium-ion battery, which fuses the algorithms of unscented Kalman filter, complete ensemble empirical mode decomposition (CEEMD) and relevance vector machine. Firstly, the unscented Kalman filter algorithm is adopted to obtain a prognostic result based on an estimated model and produce a raw error series. Secondly, a new error series is constructed by analyzing the decomposition results of the raw error series obtained by CEEMD method. Finally, the new error series is utilized by relevance vector machine regression model to predict the prognostic error which is adopted to correct the prognostic result obtained by unscented Kalman filter. Remaining useful life prediction experiments for batteries with different rated capacities and discharging currents are performed to show the high reliability of the proposed hybrid method.

  11. Evolutionary insights into scleractinian corals using comparative genomic hybridizations

    Directory of Open Access Journals (Sweden)

    Aranda Manuel

    2012-09-01

    Full Text Available Abstract Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization. Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than

  12. Optimal power flow: a bibliographic survey II. Non-deterministic and hybrid methods

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen [Colorado School of Mines, Department of Electrical Engineering and Computer Science, Golden, CO (United States); Steponavice, Ingrida [Univ. of Jyvaskyla, Dept. of Mathematical Information Technology, Agora (Finland); Rebennack, Steffen [Colorado School of Mines, Division of Economics and Business, Golden, CO (United States)

    2012-09-15

    Over the past half-century, optimal power flow (OPF) has become one of the most important and widely studied nonlinear optimization problems. In general, OPF seeks to optimize the operation of electric power generation, transmission, and distribution networks subject to system constraints and control limits. Within this framework, however, there is an extremely wide variety of OPF formulations and solution methods. Moreover, the nature of OPF continues to evolve due to modern electricity markets and renewable resource integration. In this two-part survey, we survey both the classical and recent OPF literature in order to provide a sound context for the state of the art in OPF formulation and solution methods. The survey contributes a comprehensive discussion of specific optimization techniques that have been applied to OPF, with an emphasis on the advantages, disadvantages, and computational characteristics of each. Part I of the survey provides an introduction and surveys the deterministic optimization methods that have been applied to OPF. Part II of the survey (this article) examines the recent trend towards stochastic, or non-deterministic, search techniques and hybrid methods for OPF. (orig.)

  13. Hybrid molecular–continuum methods: From prototypes to coupling software

    KAUST Repository

    Neumann, Philipp; Eckhardt, Wolfgang; Bungartz, Hans-Joachim

    2014-01-01

    In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano

  14. Transferring and generalizing deep-learning-based neural encoding models across subjects.

    Science.gov (United States)

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-08-01

    Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Application of a hybrid method based on the combination of genetic algorithm and Hopfield neural network for burnable poison placement

    International Nuclear Information System (INIS)

    Khoshahval, F.; Fadaei, A.

    2012-01-01

    Highlights: ► The performance of GA, HNN and combination of them in BPP optimization in PWR core are adequate. ► It seems HNN + GA arrives to better final parameter value in comparison with the two other methods. ► The computation time for HNN + GA is higher than GA and HNN. Thus a trade-off is necessary. - Abstract: In the last decades genetic algorithm (GA) and Hopfield Neural Network (HNN) have attracted considerable attention for the solution of optimization problems. In this paper, a hybrid optimization method based on the combination of the GA and HNN is introduced and applied to the burnable poison placement (BPP) problem to increase the quality of the results. BPP in a nuclear reactor core is a combinatorial and complicated problem. Arrangement and the worth of the burnable poisons (BPs) has an impressive effect on the main control parameters of a nuclear reactor. Improper design and arrangement of the BPs can be dangerous with respect to the nuclear reactor safety. In this paper, increasing BP worth along with minimizing the radial power peaking are considered as objective functions. Three optimization algorithms, genetic algorithm, Hopfield neural network optimization and a hybrid optimization method, are applied to the BPP problem and their efficiencies are compared. The hybrid optimization method gives better result in finding a better BP arrangement.

  16. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    Science.gov (United States)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  17. A Thrust Allocation Method for Efficient Dynamic Positioning of a Semisubmersible Drilling Rig Based on the Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Luman Zhao

    2015-01-01

    Full Text Available A thrust allocation method was proposed based on a hybrid optimization algorithm to efficiently and dynamically position a semisubmersible drilling rig. That is, the thrust allocation was optimized to produce the generalized forces and moment required while at the same time minimizing the total power consumption under the premise that forbidden zones should be taken into account. An optimization problem was mathematically formulated to provide the optimal thrust allocation by introducing the corresponding design variables, objective function, and constraints. A hybrid optimization algorithm consisting of a genetic algorithm and a sequential quadratic programming (SQP algorithm was selected and used to solve this problem. The proposed method was evaluated by applying it to a thrust allocation problem for a semisubmersible drilling rig. The results indicate that the proposed method can be used as part of a cost-effective strategy for thrust allocation of the rig.

  18. Beta-glucosidase variants and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Harris, Paul; Osborn, David

    2017-06-27

    The present invention relates to beta-glucosidase variants, e.g. beta-glucosidase variants of a parent Family GH3A beta-glucosidase from Aspergillus fumigatus. The present invention also relates to polynucleotides encoding the beta-glucosidase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the beta-glucosidase variants.

  19. Hybrid method to predict the resonant frequencies and to characterise dual band proximity coupled microstrip antennas

    Science.gov (United States)

    Varma, Ruchi; Ghosh, Jayanta

    2018-06-01

    A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.

  20. EGVII endoglucanase and nucleic acids encoding the same

    Science.gov (United States)

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2009-05-05

    The present invention provides an endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.