WorldWideScience

Sample records for hybrid electronic resource

  1. Human Resource Development in Hybrid Libraries

    OpenAIRE

    Prakasan, E. R.; Swarna, T.; Vijai Kumar, *

    2000-01-01

    This paper explores the human resources and development implications in hybrid libraries. Due to technological changes in libraries, which is a result of the proliferation of electronic resources, there has been a shift in workloads and workflow, requiring staff with different skills and educational backgrounds. Training of staff at all levels in information technology is the key to manage change, alleviate anxiety in the workplace and assure quality service in the libraries. Staff developmen...

  2. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  3. Auroral electron acceleration by lower-hybrid waves

    International Nuclear Information System (INIS)

    Bingham, R.; Bryant, D.A.; Hall, D.S.

    1986-01-01

    Because the particles and electric fields association with inverted-V electron streams do not have the characteristics expected for acceleration by a quasistatic potential difference, the possiblity that the electrons are stochastically accelerated by waves is investigated. It is demonstrated that the lower hybrid waves seen on auroral field lines have the righ properties to account for the electron acceleration. It is further shown that the lower hybrid wave power measured on auroral field lines can be generated by the streaming ions observed at the boundary of the plasma sheet, and that this wave power is sufficient to account for the electron power observed close to the atmosphere. (author)

  4. Hybrid electronic/optical synchronized chaos communication system.

    Science.gov (United States)

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  5. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    1999-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  6. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    2001-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  7. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  8. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik

    2009-01-01

    Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...... resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low...

  9. Electronic Resource Management and Design

    Science.gov (United States)

    Abrams, Kimberly R.

    2015-01-01

    We have now reached a tipping point at which electronic resources comprise more than half of academic library budgets. Because of the increasing work associated with the ever-increasing number of e-resources, there is a trend to distribute work throughout the library even in the presence of an electronic resources department. In 2013, the author…

  10. Dynamic Resource Allocation in Hybrid Access Femtocell Network

    Directory of Open Access Journals (Sweden)

    Afaz Uddin Ahmed

    2014-01-01

    Full Text Available Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femto-tier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP owners’ satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners’ satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network.

  11. Strong electron dissipation by a mode converted ion hybrid (Bernstein) wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Ram, A.K.

    1996-01-01

    The fast wave approximation, extended to include the effects of electron dissipation, is used to calculate the power mode converted to the ion hybrid (Bernstein) wave in the vicinity of the ion hybrid resonance. The power absorbed from the fast wave by ion cyclotron damping and by electron Landau and transit time damping (including cross terms) is also calculated. The fast wave equation is solved for either the Budden configuration of a cut-off-resonance pair or the triplet configuration of cut-off-resonance-cut-off. The fraction mode converted is compared for the triplet case and the Budden multi-pass situation. The electron damping rate of the ion hybrid wave is obtained from the local dispersion relation and a ray tracing code is used to calculate the damping of the mode converted ion hybrid wave by the electrons as it propagates away from the resonance. Quantitative results for a range of conditions relevant to JET, TFTR and ITER are given. copyright 1996 American Institute of Physics

  12. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Ozsoy-Keskinbora, Cigdem, E-mail: c.ozsoy@fkf.mpg.de [Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Boothroyd, Chris B.; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich (Germany); Aken, Peter A. van [Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Koch, Christoph T. [Structure Research & Electron Microscopy group, Department of Physics, Humboldt University of Berlin, Newtonstraße 15, 12489 Berlin (Germany)

    2016-06-15

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  13. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    International Nuclear Information System (INIS)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.; Aken, Peter A. van; Koch, Christoph T.

    2016-01-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  14. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  15. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environments?

    DEFF Research Database (Denmark)

    Faeth, Stanley H.; Oberhofer, Martina; Saari, Susanna Talvikki

    2017-01-01

    to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non......-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms...... of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis...

  16. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    International Nuclear Information System (INIS)

    Morais, H.; Sousa, T.; Soares, J.; Faria, P.; Vale, Z.

    2015-01-01

    Highlights: • Definition fuel shifting demand response programs applied to the electric vehicles. • Integration of the proposed fuel shifting in energy resource management algorithm. • Analysis of fuel shifting contribution to support the consumption increasing. • Analysis of fuel shifting contribution to support the electric vehicles growing. • Sensitivity analysis considering different electric vehicles penetration levels. - Abstract: In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required

  17. Application of Hybrid IC's to the Automotive Electronics Market in Europe

    OpenAIRE

    Eckart von Roda

    1981-01-01

    In the last few years hybrids have been increasingly used in automotive electronics in Europe. With examples from the BOSCH and BLAUPUNKT production range their application in regulators, breakerless ignition modules, electronically-controlled fuel injection systems and car radios is illustrated. The elements and techniques used to assemble the hybrids, and the advantages which can be gained are discussed.

  18. Development of an external readout electronics for a hybrid photon detector

    CERN Document Server

    Uyttenhove, Simon; Tichon, Jacques; Garcia, Salvador

    The pixel hybrid photon detectors currently installed in the LHCb Cherenkov system encapsulate readout electronics in the vacuum tube envelope. The LHCb upgrade and the new trigger system will require their replacement with new photon detectors. The baseline photon detector candidate is the multi-anode photomultiplier. A hybrid photon detector with external readout electronics has been proposed as a backup option. This master thesis covers a R & D phase to investigate this latter concept. Extensive studies of the initial electronics system underlined the noise contributions from the Beetle chip used as front-end readout ASIC and from the ceramic carrier of the photon detector. New front-end electronic boards have been developed and made fully compatible with the existing LHCb-RICH infrastructure. With this compact readout system, Cherenkov photons have been successfully detected in a real particle beam environment. The proof-of-concept of a hybrid photon detector with external readout electronics was val...

  19. Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink

    OpenAIRE

    Ahmed, Irfan; Khammari, Hedi; Shahid, Adnan

    2017-01-01

    This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder ...

  20. Electron heating using lower hybrid waves in the PLT tokamak

    International Nuclear Information System (INIS)

    Bell, R.E.; Bernabei, S.; Cavallo, A.; Chu, T.K.; Luce, T.; Motley, R.; Ono, M.; Stevens, J.; von Goeler, S.

    1987-06-01

    Lower hybrid waves with a narrow high velocity wave spectrum have been used to achieve high central electron temperatures in a tokamak plasma. Waves with a frequency of 2.45 GHz launched by a 16-waveguide grill at a power level less than 600 kW were used to increase the central electron temperature of the PLT plasma from 2.2 keV to 5 keV. The magnitude of the temperature increase depends strongly on the phase difference between the waveguides and on the direction of the launched wave. A reduction in the central electron thermal diffusivity is associated with the peaked electron temperature profiles of lower hybrid current-driven plasmas. 16 refs

  1. Electronic Resource Management Systems

    Directory of Open Access Journals (Sweden)

    Mark Ellingsen

    2004-10-01

    Full Text Available Computer applications which deal with electronic resource management (ERM are quite a recent development. They have grown out of the need to manage the burgeoning number of electronic resources particularly electronic journals. Typically, in the early years of e-journal acquisition, library staff provided an easy means of accessing these journals by providing an alphabetical list on a web page. Some went as far as categorising the e-journals by subject and then grouping the journals either on a single web page or by using multiple pages. It didn't take long before it was recognised that it would be more efficient to dynamically generate the pages from a database rather than to continually edit the pages manually. Of course, once the descriptive metadata for an electronic journal was held within a database the next logical step was to provide administrative forms whereby that metadata could be manipulated. This in turn led to demands for incorporating more information and more functionality into the developing application.

  2. The structural design and the electron optics of a hybrid electron-ion gun

    International Nuclear Information System (INIS)

    Bas, E.B.; Gisler, E.; Stucki, F.

    1984-01-01

    This paper describes a new kind of a particle gun called the hybrid gun. It is able to deliver a finely focused electron or ion beam simply by reversing the polarity of the acceleration voltage. The detailed design features of the gun are given and the electron-ion optical properties are discussed. (author)

  3. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-11-05

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration is to consolidate all electronic resources into a single and centralized location. This would allow for better information sharing among library staff.

  4. PRINCIPLES OF CONTENT FORMATION EDUCATIONAL ELECTRONIC RESOURCE

    Directory of Open Access Journals (Sweden)

    О Ю Заславская

    2017-12-01

    Full Text Available The article considers modern possibilities of information and communication technologies for the design of electronic educational resources. The conceptual basis of the open educational multimedia system is based on the modular architecture of the electronic educational resource. The content of the electronic training module can be implemented in several versions of the modules: obtaining information, practical exercises, control. The regularities in the teaching process in modern pedagogical theory are considered: general and specific, and the principles for the formation of the content of instruction at different levels are defined, based on the formulated regularities. On the basis of the analysis, the principles of the formation of the electronic educational resource are determined, taking into account the general and didactic patterns of teaching.As principles of the formation of educational material for obtaining information for the electronic educational resource, the article considers: the principle of methodological orientation, the principle of general scientific orientation, the principle of systemic nature, the principle of fundamentalization, the principle of accounting intersubject communications, the principle of minimization. The principles of the formation of the electronic training module of practical studies in the article include: the principle of systematic and dose based consistency, the principle of rational use of study time, the principle of accessibility. The principles of the formation of the module for monitoring the electronic educational resource can be: the principle of the operationalization of goals, the principle of unified identification diagnosis.

  5. Implementing CORAL: An Electronic Resource Management System

    Science.gov (United States)

    Whitfield, Sharon

    2011-01-01

    A 2010 electronic resource management survey conducted by Maria Collins of North Carolina State University and Jill E. Grogg of University of Alabama Libraries found that the top six electronic resources management priorities included workflow management, communications management, license management, statistics management, administrative…

  6. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    Science.gov (United States)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  7. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold.

    Science.gov (United States)

    Hutchison, N J; Langer-Safer, P R; Ward, D C; Hamkalo, B A

    1982-11-01

    In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average

  8. Hybrid resource provisioning for clouds

    International Nuclear Information System (INIS)

    Rahman, Mahfuzur; Graham, Peter

    2012-01-01

    Flexible resource provisioning, the assignment of virtual machines (VMs) to physical machine, is a key requirement for cloud computing. To achieve 'provisioning elasticity', the cloud needs to manage its available resources on demand. A-priori, static, VM provisioning introduces no runtime overhead but fails to deal with unanticipated changes in resource demands. Dynamic provisioning addresses this problem but introduces runtime overhead. To reduce VM management overhead so more useful work can be done and to also avoid sub-optimal provisioning we propose a hybrid approach that combines static and dynamic provisioning. The idea is to adapt a good initial static placement of VMs in response to evolving load characteristics, using live migration, as long as the overhead of doing so is low and the effectiveness is high. When this is no longer so, we trigger a revised static placement. (Thus, we are essentially applying local multi-objective optimization to tune a global optimization with reduced overhead.) This approach requires a complicated migration decision algorithm based on current and predicted:future workloads, power consumptions and memory usage in the host machines as well as network burst characteristics for the various possible VM multiplexings (combinations of VMs on a host). A further challenge is to identify those characteristics of the dynamic provisioning that should trigger static re-provisioning.

  9. Managing electronic resources a LITA guide

    CERN Document Server

    Weir, Ryan O

    2012-01-01

    Informative, useful, current, Managing Electronic Resources: A LITA Guide shows how to successfully manage time, resources, and relationships with vendors and staff to ensure personal, professional, and institutional success.

  10. Computer simulations of upper-hybrid and electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.C.

    1983-01-01

    A 2 1/2 -dimensional relativistic electromagnetic particle code is used to investigate the dynamic behavior of electron heating around the electron cyclotron and upper-hybrid layers when an extraordinary wave is obliquely launched from the high-field side into a magnetized plasma. With a large angle of incidence most of the radiation wave energy converts into electrostatic electron Bernstein waves at the upper-hybrid layer. These mode-converted waves propagate back to the cyclotron layer and deposit their energy in the electrons through resonant interactions dominated first by the Doppler broadening and later by the relativistic mass correction. The line shape for both mechanisms has been observed in the simulations. At a later stage, the relativistic resonance effects shift the peak of the temperature profile to the high-field side. The heating ultimately causes the extraordinary wave to be substantially absorbed by the high-energy electrons. The steep temperature gradient created by the electron cyclotron heating eventually reflects a substantial part of the incident wave energy. The diamagnetic effects due to the gradient of the mode-converted Bernstein wave pressure enhance the spreading of the electron heating from the original electron cyclotron layer

  11. A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles

    DEFF Research Database (Denmark)

    Sousa, Tiago; Vale, Zita; Carvalho, Joao Paulo

    2014-01-01

    The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed...... to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated...... annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA...

  12. Hybrid 3D Printing of Soft Electronics.

    Science.gov (United States)

    Valentine, Alexander D; Busbee, Travis A; Boley, John William; Raney, Jordan R; Chortos, Alex; Kotikian, Arda; Berrigan, John Daniel; Durstock, Michael F; Lewis, Jennifer A

    2017-10-01

    Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of lower hybrid fast electron populations on electron temperature measurements at JET

    International Nuclear Information System (INIS)

    Tanzi, C.P.; Bartlett, D.V.; Schunke, B.

    1993-01-01

    The Lower Hybrid Current Drive (LHCD) system on JET has to date achieved up to 1.5 MA of driven current. This current is carried by a fast electron population with energies more than ten times the electron temperature and density about 10 -4 of the bulk plasma. This paper discusses the effects of this fast electron population on our ability to make reliable temperature measurements using ECE and reviews the effects on other plasma diagnostics which rely on ECE temperature measurements for their interpretation. (orig.)

  14. Uranium resources and their implications for fission breeder and fusion hybrid development

    International Nuclear Information System (INIS)

    Max, C.E.

    1984-01-01

    Present estimates of uranium resources and reserves in the US and the non-Communist world are reviewed. The resulting implications are considered for two proposed breeder technologies: the liquid metal fast breeder reactor (LMFBR) and the fusion hybrid reactor. Using both simple arguments and detailed scenarios from the published literature, conditions are explored under which the LMFBR and fusion hybrid could respectively have the most impact, considering both fuel-supply and economic factors. The conclusions emphasize strong potential advantages of the fusion hybrid, due to its inherently large breeding rate. A discussion is presented of proposed US development strategies for the fusion hybrid, which at present is far behind the LMFBR in its practical application and maturity

  15. A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation

    Science.gov (United States)

    Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.

    2018-03-01

    We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.

  16. Hybrid functional calculation of electronic and phonon structure of BaSnO3

    International Nuclear Information System (INIS)

    Kim, Bog G.; Jo, J.Y.; Cheong, S.W.

    2013-01-01

    Barium stannate, BaSnO 3 (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO 3 . The center ball is Ba and small (red) ball on edge is oxygen and SnO 6 octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F 1u phonon mode. Highlights: ► We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO 3 . ► The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. ► The effective mass at the conduction band minimum and valence band maximum was calculated. ► In addition, the phonon structure of BSO was calculated using the HSE06 functional. ► Finally, the heat capacity was calculated and compared with the recent experimental result.

  17. Electronic and magnetic properties of modified silicene/graphene hybrid: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Suman; Jana, Debnarayan, E-mail: cujanad@yahoo.com

    2016-11-01

    Among other two-dimensional (2D) novel materials, graphene and silicene both have drawn intense research interest among the researchers because they possess some unique intriguing properties which can change the scenario of the current electronic industry. In this work we have studied the electronic and the magnetic properties of a new kind of materials which is the hybrid of these two materials. Density functional theory (DFT) has been employed to calculate the relevant electronic and magnetic properties of this hybrid material. The pristine structure is modified by substitutional doping or by creating vacancy (Y-X, where one Y atom (Si or C) has been replaced by one X atom (B, N, Al, P or void)). The calculations have revealed that void systems are unstable while Si-B and Si-N are most stable ones. It has been noticed that some of these doped structures are magnetic in nature having induced mid-gap states in the system. In particular, Si-void structure is unstable yet it possess the highest magnetic moment of the order of 4 μ{sub B} (μ{sub B} being the Bohr magneton). The estimated band gaps of modified silicene/graphene hybrid from spin polarized partial density of states (PDOS) vary between 1.43–2.38 eV and 1.58–2.50 eV for spin-up and spin-down channel respectively. The implication of midgap states has been critically analysed in the light of magnetic nature. This study may be useful to build hybrid spintronic devices with controllable gap for spin up and spin down states. - Graphical abstract: We have studied the electronic and magnetic properties of silicene/graphene hybrid by employing density functional theory (DFT). - Highlights: • Electronic and magnetic properties of two dimensional graphene/silicene hybrid have been explored. • There is no magnetism in the system for a single carbon atom vacancy. • A net magnetic moment of 4.0 Bohr magneton is observed for a single silicon atom vacancy. • Unpaired electrons introduce mid-gap states which

  18. Electron transport properties in ZnO nanowires/poly(3-hexylthiophene) hybrid nanostructure

    International Nuclear Information System (INIS)

    Cheng Ke; Cheng Gang; Wang Shujie; Fu Dongwei; Zou Bingsuo; Du Zuliang

    2010-01-01

    The ZnO nanowires (NWs) array/poly(3-hexylthiophene) (P3HT) hybrid prototype device was fabricated. An ultraviolet (UV) light of λ = 350 nm is used to investigate the photo-electric properties of the ZnO NWs array and hybrid structure. In this way, we can avoid the excitation of P3HT, which can give us a real electron transport ability of ZnO NWs itself. Our results demonstrated a higher and faster photo-electric response of 3 s for the hybrid structure while 9 s for the ZnO NWs array. The surface states related slow photo-electric response was also observed for them. The charge transfer mechanism and the influence of surface states were discussed. The current work provides us profound understandings on the electron transport ability of ZnO NWs array in a working hybrid polymer solar cell, which is crucial for optimizing the device performance.

  19. Gender Analysis Of Electronic Information Resource Use: The Case ...

    African Journals Online (AJOL)

    Based on the findings the study concluded that access and use of electronic information resources creates a “social digital divide” along gender lines. The study ... Finally, the library needs to change its marketing strategies on the availability of electronic information resources to increase awareness of these resources.

  20. Modified electron-acoustic and lower-hybrid drift dissipative instability in a two-electron temperature plasma

    International Nuclear Information System (INIS)

    Bose, M.

    1989-01-01

    It is often found, in fusion devices as well as in the auroral ionosphere, that the electrons consist of two distinct group, viz., hot and cold. These two-temperature electron model is sometimes convenient for analytical purposes. Thus the authors have considered a two-temperature electron plasma. In this paper, they investigated analytically the drift dissipative instabilities of modified electron-acoustic and lower-hybrid wve in a two-electron temperature plasma. It is found that the modified electron-acoustic drift dissipative mode are strongly dependent on the number density of cold electrons. From the expression of the growth rate, it is clear that these cold electrons can control the growth of this mode as well

  1. Users satisfaction with electronic information resources and services ...

    African Journals Online (AJOL)

    This study investigated users satisfaction on the use of electronic information resources and services in MTN Net libraries in ABU & UNIBEN. Two objectives and one null hypotheses were formulated and tested with respect to the users' satisfaction on electronic information resources and services in MTN Net libraries in ...

  2. Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources

    International Nuclear Information System (INIS)

    Liu, Qiang; Shang, Linlin; Duan, Yuanyuan

    2016-01-01

    Highlights: • Geothermal energy is used to preheat the feedwater in a coal-fired power unit. • The performance of a hybrid geothermal–fossil power generation system is analyzed. • Models for both parallel and serial geothermal preheating schemes are presented. • Effects of geothermal source temperatures, distances and heat losses are analyzed. • Power increase of the hybrid system over an ORC and tipping distance are discussed. - Abstract: Low-enthalpy geothermal heat can be efficiently utilized for feedwater preheating in coal-fired power plants by replacing some of the high-grade steam that can then be used to generate more power. This study analyzes a hybrid geothermal–fossil power generation system including a supercritical 1000 MW power unit and a geothermal feedwater preheating system. This study models for parallel and serial geothermal preheating schemes and analyzes the thermodynamic performance of the hybrid geothermal–fossil power generation system for various geothermal resource temperatures. The models are used to analyze the effects of the temperature matching between the geothermal water and the feedwater, the heat losses and pumping power during the geothermal water transport and the resource distance and temperature on the power increase to improve the power generation. The serial geothermal preheating (SGP) scheme generally generates more additional power than the parallel geothermal preheating (PGP) scheme for geothermal resource temperatures of 100–130 °C, but the SGP scheme generates slightly less additional power than the PGP scheme when the feedwater is preheated to as high a temperature as possible before entering the deaerator for geothermal resource temperatures higher than 140 °C. The additional power decreases as the geothermal source distance increases since the pipeline pumping power increases and the geothermal water temperature decreases due to heat losses. More than 50% of the power decrease is due to geothermal

  3. Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates

    International Nuclear Information System (INIS)

    Wu, Guodong; Wan, Changjin; Wan, Qing; Zhou, Jumei; Zhu, Liqiang

    2014-01-01

    Low-voltage (1.5 V) indium zinc oxide (IZO)-based electric-double-layer (EDL) thin-film transistors (TFTs) gated by nanogranular proton conducting SiO 2 electrolyte films are fabricated on paper substrates. Both enhancement-mode and depletion-mode operation are obtained by tuning the thickness of the IZO channel layer. Furthermore, such flexible IZO protonic/electronic hybrid EDL TFTs can be used as artificial synapses, and synaptic stimulation response and short-term synaptic plasticity function are demonstrated. The protonic/electronic hybrid EDL TFTs on paper substrates proposed here are promising for low-power flexible paper electronics, artificial synapses and bioelectronics. (paper)

  4. Methods for fabrication of flexible hybrid electronics

    Science.gov (United States)

    Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos

    2017-08-01

    Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.

  5. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography.

    Science.gov (United States)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; van Aken, Peter A; Koch, Christoph T

    2016-06-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The hybridized front end electronics of the Central Drift Chamber in the Stanford Linear Collider Detector

    International Nuclear Information System (INIS)

    Lo, C.C.; Kirsten, F.A.; Nakamura, M.

    1987-10-01

    In order to accommodate the high packaging density requirements for the front end electronics of the Central Drift Chamber (CDC) in the SLAC Linear Collider Detector (SLD), the CDC front end electronics has been hybridized. The hybrid package contains eight channels of amplifiers together with all the associated circuits for calibration, event recognition and power economy switching functions. A total of 1280 such hybrids are used in the CDC

  7. Organizational matters of competition in electronic educational resources

    Directory of Open Access Journals (Sweden)

    Ирина Карловна Войтович

    2015-12-01

    Full Text Available The article examines the experience of the Udmurt State University in conducting competitions of educational publications and electronic resources. The purpose of such competitions is to provide methodological support to educational process. The main focus is on competition of electronic educational resources. The technology of such contests is discussed through detailed analysis of the main stages of the contest. It is noted that the main task of the preparatory stage of the competition is related to the development of regulations on competition and the definition of criteria for selection of the submitted works. The paper also proposes a system of evaluation criteria of electronic educational resources developed by members of the contest organizing committee and jury members. The article emphasizes the importance of not only the preparatory stages of the competition, but also measures for its completion, aimed at training teachers create quality e-learning resources.

  8. A Hybrid System Based on an Electronic Nose Coupled with an Electronic Tongue for the Characterization of Moroccan Waters

    Directory of Open Access Journals (Sweden)

    Z. Haddi

    2014-05-01

    Full Text Available A hybrid multisensor system combined with multivariate analysis was applied to the characterization of different kinds of Moroccan waters. The proposed hybrid system based on an electronic nose coupled with an electronic tongue consisted of metal oxide semiconductors and potentiometric sensors respectively. Five Taguchi Gas Sensors were implemented in the electronic nose for the discrimination between mineral, natural, sparkling, river and tap waters. Afterwards, the electronic tongue, based on series of Ion-Selective-Electrodes was applied to the analysis of the same waters. Multisensor responses obtained from the waters were processed by two chemometrics: Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. PCA results using electronic nose data depict all of the potable water samples in a separate group from the samples that were originated from river. Furthermore, PCA and LDA analysis on electronic tongue data permitted clear and rapid recognizing of the different waters due to the concentration changes of the chemical parameters from source to another.

  9. CHALLENGES OF ELECTRONIC INFORMATION RESOURCES IN ...

    African Journals Online (AJOL)

    This paper discusses the role of policy for proper and efficient library services in the electronic era. It points out some of the possible dangers of embarking in electronic resources without a proper focus at hand. Thus, it calls for today's librarians and policy makers to brainstorm and come up with working policies suitable to ...

  10. Superhard sp2–sp3 hybrid carbon allotropes with tunable electronic properties

    Directory of Open Access Journals (Sweden)

    Meng Hu

    2016-05-01

    Full Text Available Four sp2–sp3 hybrid carbon allotropes are proposed on the basis of first principles calculations. These four carbon allotropes are energetically more favorable than graphite under suitable pressure conditions. They can be assembled from graphite through intralayer wrinkling and interlayer buckling, which is similar to the formation of diamond from graphite. For one of the sp2–sp3 hybrid carbon allotropes, mC24, the electron diffraction patterns match these of i-carbon, which is synthesized from shock-compressed graphite (H. Hirai and K. Kondo, Science, 1991, 253, 772. The allotropes exhibit tunable electronic characteristics from metallic to semiconductive with band gaps comparable to those of silicon allotropes. They are all superhard materials with Vickers hardness values comparable to that of cubic BN. The sp2–sp3 hybrid carbon allotroes are promising materials for photovoltaic electronic devices, and abrasive and grinding tools.

  11. Resource Efficiency Assessment—Comparing a Plug-In Hybrid with a Conventional Combustion Engine

    Directory of Open Access Journals (Sweden)

    Martin Henßler

    2016-01-01

    Full Text Available The strong economic growth in recent years has led to an intensive use of natural resources, which causes environmental stress as well as restrictions on the availability of resources. Therefore, a more efficient use of resources is necessary as an important contribution to sustainable development. The ESSENZ method presented in this article comprehensively assesses a product’s resource efficiency by going beyond existing approaches and considering the pollution of the environment as well as the physical and socio-economic availability of resources. This paper contains a short description of the ESSENZ methodology as well as a case study of the Mercedes-Benz C-Class (W 205—comparing the conventional C 250 (petrol engine with the C 350 e Plug-In Hybrid (electric motor and petrol engine. By applying the ESSENZ method it can be shown that the use of more and different materials for the Plug-In-Hybrid influences the dimensions physical and socio-economic availability significantly. However, for environmental impacts, especially climate change and summer smog, clear advantages of the C 350 e occur due to lower demand of fossil energy carriers. As shown within the case study, the when applying the ESSENZ method a comprehensive evaluation of the used materials and fossil energy carriers can be achieved.

  12. Removal of VOCs by hybrid electron beam reactor with catalyst bed

    International Nuclear Information System (INIS)

    Kim, Jinkyu; Han, Bumsoo; Kim, Yuri; Lee, J.H.; Park, C.R.; Kim, J.C.; Kim, J.C.; Kim, K.J.

    2004-01-01

    Electron beam decomposition of volatile organic compounds (VOCs) was studied in order to obtain information for developing effective treatment method of off-gases from industries. We have examined the combination of electron beam and catalyst honeycomb which is either 1% platinum based or ceramic honeycomb- based aluminum oxide, using a hybrid reactor in order to improve removal efficiency and CO 2 formation; and to suppress undesirable by-product formation e.g. O 3 , aerosol, H x C y. , and tar. The experiments were conducted using a pilot-scale treatment system (maximum capacity; 1800 N m 3 /h) that fitted the field size to scale up from the traditional laboratory scale system for VOC removal with electron beam irradiation. Toluene was selected as a typical VOC that was irradiated to investigate product formation, effect of ceramic and catalyst, and factors effecting overall efficiency of degradation. Styrene was selected as the most odorous compound among the VOCs of interest. It was found that VOCs could be destroyed more effectively using a hybrid system with catalyst bed than with electron beam irradiation only

  13. Use of Electronic Resources in a Private University in Nigeria ...

    African Journals Online (AJOL)

    The study examined awareness and constraints in the use of electronic resources by lecturers and students of Ajayi Crowther University, Oyo, Nigeria. It aimed at justifying the resources expended in the provision of electronic resources in terms of awareness, patronage and factors that may be affecting awareness and use ...

  14. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-05-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.

  15. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  16. Cross effects on electron-cyclotron and lower-hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Krivenski, V.; Mazzucato, E.; Ziebell, L.F.

    1986-11-01

    Electron cyclotron resonance current drive in a tokamak plasma in the presence of a lower hybrid tail is investigated using a 2D Fokker-Planck code. For an extraordinary mode at oblique propagation and down-shifted frequency it is shown that the efficiency of electron cyclotron current drive becomes, i) substantially greater than the corresponding efficiency of a Maxwellian plasma at the same bulk temperature, ii) equal or greater than that of the lower hybrid waves, iii) comparable with the efficiency of a Maxwellian plasma at much higher temperature. This enhancement results from a beneficial cross-effect of the two waves on the formation of the current carrying electron tail. (5 fig; 17 refs)

  17. use of electronic resources by graduate students of the department

    African Journals Online (AJOL)

    respondent's access electronic resources from the internet via Cybercafé .There is a high ... KEY WORDS: Use, Electronic Resources, Graduate Students, Cybercafé. INTRODUCTION ... Faculty of Education, University of Uyo, Uyo. Olu Olat ...

  18. Interfacial characterization of flexible hybrid electronics

    Science.gov (United States)

    Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott

    2018-03-01

    Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.

  19. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then...

  20. Electronic resource management practical perspectives in a new technical services model

    CERN Document Server

    Elguindi, Anne

    2012-01-01

    A significant shift is taking place in libraries, with the purchase of e-resources accounting for the bulk of materials spending. Electronic Resource Management makes the case that technical services workflows need to make a corresponding shift toward e-centric models and highlights the increasing variety of e-formats that are forcing new developments in the field.Six chapters cover key topics, including: technical services models, both past and emerging; staffing and workflow in electronic resource management; implementation and transformation of electronic resource management systems; the ro

  1. Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.

    1996-07-01

    The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)

  2. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  3. Lower-hybrid wave penetration and effects on electron population

    International Nuclear Information System (INIS)

    Dupas, L.; Grelot, P.; Parlange, F.; Weisse, J.

    1981-01-01

    In a high-power-density lower-hybrid experiment (approximately 10kW.cm -2 ), a parallel index spectrum was measured and the radial position where sidebands are excited was deduced from pump and sideband wavenumber measurements. On this basis, some considerations on wave propagation are given which are compatible with some effects observed on electron population. (author)

  4. Utilization of electronic information resources by academic staff at ...

    African Journals Online (AJOL)

    The study investigated the utilization of Electronic Information resources by the academic staff of Makerere University in Uganda. It examined the academic staff awareness of the resources available, the types of resources provided by the Makerere University Library, the factors affecting resource utilization. The study was ...

  5. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-01-01

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration

  7. Excitation of lower hybrid waves by electron beams in finite geometry plasmas

    International Nuclear Information System (INIS)

    Shoucri, M.m.; Gagne, R.R.J.

    1978-01-01

    The quasi-static lower hybrid eigenmodes of a plasma column in a cylindrical waveguide are determined, and their linear excitation by a small density electron beam is discussed for the cases of a hot electron beam as well as for a cold electron beam. It is shown that under certain conditions, finite geometry effects introduce important quantitative and qualitative differences with respect to the results obtained in an infinite geometry. (author)

  8. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional.

    Science.gov (United States)

    Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara

    2017-07-28

    We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.

  9. Generation of runaway electrons during deterioration of lower hybrid power coupling in lower hybrid current drive plasmas in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Chen, Z Y; Ju, H J; Zhu, J X; Li, M; Cai, W D; Liang, H F; Wan, B N; Shi, Y J; Xu, H D

    2009-01-01

    Efficient coupling of lower hybrid (LH) power from the wave launcher to the plasma is a very important issue in lower hybrid current drive (LHCD) experiments. The large unbalanced reflections in the grill trigger the LH protection system, which will trip the power, resulting in the reduction of the coupled LH power. The generation of runaway electrons has been investigated in LHCD plasmas with deterioration of LH coupling in the HT-7 tokamak. The deterioration of LH coupling results in an increase of the loop voltage and a more energetic fast electron population. These two effects favor the generation of a runaway population. It is found that most of the fast electrons generated by LH waves through parallel electron Landau damping were converted into a runaway population through the acceleration from the toroidal electric field when significant deterioration of LH coupling occurs.

  10. Practical guide to electronic resources in the humanities

    CERN Document Server

    Dubnjakovic, Ana

    2010-01-01

    From full-text article databases to digitized collections of primary source materials, newly emerging electronic resources have radically impacted how research in the humanities is conducted and discovered. This book, covering high-quality, up-to-date electronic resources for the humanities, is an easy-to-use annotated guide for the librarian, student, and scholar alike. It covers online databases, indexes, archives, and many other critical tools in key humanities disciplines including philosophy, religion, languages and literature, and performing and visual arts. Succinct overviews of key eme

  11. A hybrid gyrokinetic ion and isothermal electron fluid code for astrophysical plasma

    Science.gov (United States)

    Kawazura, Y.; Barnes, M.

    2018-05-01

    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) Schekochihin et al. (2009) [9]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into AstroGK, an Eulerian δf gyrokinetics code specialized to a slab geometry Numata et al. (2010) [41]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant-Friedrichs-Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼ 2√{mi /me } ∼ 100 times faster than AstroGK with a single ion species and kinetic electrons where mi /me is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron-ion temperature ratio and plasma beta.

  12. Utilisation of Electronic Information Resources By Lecturers in ...

    African Journals Online (AJOL)

    This study assesses the use of information resources, specifically, electronic databases by lecturers/teachers in Universities and Colleges of Education in South Western Nigeria. Information resources are central to teachers' education. It provides lecturers/teachers access to information that enhances research and ...

  13. Monitoring of beer fermentation based on hybrid electronic tongue.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Polymer-metal hybrid transparent electrodes for flexible electronics

    Science.gov (United States)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  15. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    Science.gov (United States)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.

    2017-11-01

    Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.

  16. Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems

    Science.gov (United States)

    Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2010-09-01

    A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.

  17. Discipline, availability of electronic resources and the use of Finnish National Electronic Library - FinELib

    Directory of Open Access Journals (Sweden)

    Sanna Torma

    2004-01-01

    Full Text Available This study elaborated relations between digital library use by university faculty, users' discipline and the availability of key resources in the Finnish National Electronic Library (FinELib, Finnish national digital library, by using nationwide representative survey data. The results show that the perceived availability of key electronic resources by researchers in FinELib was a stronger predictor of the frequency and purpose of use of its services than users' discipline. Regardless of discipline a good perceived provision of central resources led to a more frequent use of FinELib. The satisfaction with the services did not vary with the discipline, but with the perceived availability of resources.

  18. The Role of the Acquisitions Librarian in Electronic Resources Management

    Science.gov (United States)

    Pomerantz, Sarah B.

    2010-01-01

    With the ongoing shift to electronic formats for library resources, acquisitions librarians, like the rest of the profession, must adapt to the rapidly changing landscape of electronic resources by keeping up with trends and mastering new skills related to digital publishing, technology, and licensing. The author sought to know what roles…

  19. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.

    Science.gov (United States)

    Zhang, Kewei; Wang, Xue; Yang, Ya; Wang, Zhong Lin

    2015-01-01

    We report a hybridized electromagnetic-triboelectric nanogenerator for highly efficient scavenging of biomechanical energy to sustainably power wearable electronics by human walking. Based on the effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator, with dimensions of 5 cm × 5 cm × 2.5 cm and a light weight of 60 g, integrates a triboelectric nanogenerator (TENG) that can deliver a peak output power of 4.9 mW under a loading resistance of 6 MΩ and an electromagnetic generator (EMG) that can deliver a peak output power of 3.5 mW under a loading resistance of 2 kΩ. The hybridized nanogenerator exhibits a good stability for the output performance and a much better charging performance than that of an individual energy-harvesting unit (TENG or EMG). Furthermore, the hybridized nanogenerator integrated in a commercial shoe has been utilized to harvest biomechanical energy induced by human walking to directly light up tens of light-emitting diodes in the shoe and sustainably power a smart pedometer for reading the data of a walking step, distance, and energy consumption. A wireless pedometer driven by the hybrid nanogenerator can work well to send the walking data to an iPhone under the distance of 25 m. This work pushes forward a significant step toward energy harvesting from human walking and its potential applications in sustainably powering wearable electronics.

  20. Optimal Allocation of Power-Electronic Interfaced Wind Turbines Using a Genetic Algorithm - Monte Carlo Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe

    2010-01-01

    determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....

  1. Analysis of Pedagogic Potential of Electronic Educational Resources with Elements of Autodidactics

    Directory of Open Access Journals (Sweden)

    Igor A.

    2018-03-01

    Full Text Available Introduction: in recent years didactic properties of electronic educational resources undergo considerable changes, nevertheless, the question of studying of such complete phenomenon as “an electronic educational resource with autodidactics elements” remains open, despite sufficient scientific base of researches of the terms making this concept. Article purpose – determination of essence of electronic educational resources with autodidactics elements. Materials and Methods: the main method of research was the theoretical analysis of the pedagogical and psychological literature on the problem under study. We used the theoretical (analysis, synthesis, comparison and generalization methods, the method of interpretation, pedagogical modeling, and empirical methods (observation, testing, conversation, interview, analysis of students’ performance, pedagogical experiment, peer review. Results: we detected the advantages of electronic educational resources in comparison with traditional ones. The concept of autodidactics as applied to the subject of research is considered. Properties of electronic educational resources with a linear and nonlinear principle of construction are studied.The influence of the principle of construction on the development of the learners’ qualities is shown. We formulated an integral definition of electronic educational resources with elements of autodidactics, namely, the variability, adaptivity and cyclicity of training. A model of the teaching-learning process with electronic educational resources is developed. Discussion and Conclusions: further development of a problem will allow to define whether electronic educational resources with autodidactics elements pedagogical potential for realization of educational and self-educational activity of teachers have, to modify technological procedures taking into account age features of students, their specialties and features of the organization of process of training of

  2. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.

    Science.gov (United States)

    Lek, Jun Yan; Xing, Guichuan; Sum, Tze Chien; Lam, Yeng Ming

    2014-01-22

    Hybrid solar cells have the potential to be efficient solar-energy-harvesting devices that can combine the benefits of solution-processable organic materials and the extended absorption offered by inorganic materials. In this work, an understanding of the factors limiting the performance of hybrid solar cells is explored. Through photovoltaic-device characterization correlated with transient absorption spectroscopy measurements, it was found that the interfacial charge transfer between the organic (P3HT) and inorganic (CdSe nanorods) components is not the factor limiting the performance of these solar cells. The insulating original ligands retard the charge recombination between the charge-transfer states across the CdSe-P3HT interface, and this is actually beneficial for charge collection. These cells are, in fact, limited by the subsequent electron collection via CdSe nanoparticles to the electrodes. Hence, the design of a more continuous electron-transport pathway should greatly improve the performance of hybrid solar cells in the future.

  3. Preservation and conservation of electronic information resources of ...

    African Journals Online (AJOL)

    The major holdings of the broadcast libraries of the Nigerian Television Authority (NTA) are electronic information resources; therefore, providing safe places for general management of these resources have aroused interest in the industry in Nigeria for sometimes. The need to study the preservation and conservation of ...

  4. Superhard sp{sup 2}–sp{sup 3} hybrid carbon allotropes with tunable electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Meng; Ma, Mengdong; Zhao, Zhisheng; Yu, Dongli; He, Julong, E-mail: hjl@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2016-05-15

    Four sp{sup 2}–sp{sup 3} hybrid carbon allotropes are proposed on the basis of first principles calculations. These four carbon allotropes are energetically more favorable than graphite under suitable pressure conditions. They can be assembled from graphite through intralayer wrinkling and interlayer buckling, which is similar to the formation of diamond from graphite. For one of the sp{sup 2}–sp{sup 3} hybrid carbon allotropes, mC24, the electron diffraction patterns match these of i-carbon, which is synthesized from shock-compressed graphite (H. Hirai and K. Kondo, Science, 1991, 253, 772). The allotropes exhibit tunable electronic characteristics from metallic to semiconductive with band gaps comparable to those of silicon allotropes. They are all superhard materials with Vickers hardness values comparable to that of cubic BN. The sp{sup 2}–sp{sup 3} hybrid carbon allotroes are promising materials for photovoltaic electronic devices, and abrasive and grinding tools.

  5. Building an electronic resource collection a practical guide

    CERN Document Server

    Lee, Stuart D

    2004-01-01

    This practical book guides information professionals step-by-step through building and managing an electronic resource collection. It outlines the range of electronic products currently available in abstracting and indexing, bibliographic, and other services and then describes how to effectively select, evaluate and purchase them.

  6. Analysis of Human Resources Management Strategy in China Electronic Commerce Enterprises

    Science.gov (United States)

    Shao, Fang

    The paper discussed electronic-commerce's influence on enterprise human resources management, proposed and proved the human resources management strategy which electronic commerce enterprise should adopt from recruitment strategy to training strategy, keeping talent strategy and other ways.

  7. Using XML Technologies to Organize Electronic Reference Resources

    OpenAIRE

    Huser, Vojtech; Del Fiol, Guilherme; Rocha, Roberto A.

    2005-01-01

    Provision of access to reference electronic resources to clinicians is becoming increasingly important. We have created a framework for librarians to manage access to these resources at an enterprise level, rather than at the individual hospital libraries. We describe initial project requirements, implementation details, and some preliminary results.

  8. Electron Landau damping of lower hybrid waves from a finite length antenna

    International Nuclear Information System (INIS)

    Brambilla, M.

    1977-01-01

    Launching and propagation of Lower Hybrid Waves to heat large plasmas by Electron Landau Damping is discussed. Conditions on the appropriate frequency and on the antenna location in the plasma density profile are derived

  9. Tri-generation based hybrid power plant scheduling for renewable resources rich area with energy storage

    International Nuclear Information System (INIS)

    Pazheri, F.R.

    2015-01-01

    Highlights: • Involves scheduling of the tri-generation based hybrid power plant. • Utilization of renewable energy through energy storage is discussed. • Benefits of the proposed model are illustrated. • Energy efficient and environmental friendly dispatch is analyzed. • Modeled scheduling problem is applicable to any fuel enriched area. - Abstract: Solving power system scheduling is crucial to ensure smooth operations of the electric power industry. Effective utilization of available conventional and renewable energy sources (RES) by tri-generation and with the aid of energy storage facilities (ESF) can ensure clean and energy efficient power generation. Such power generation can play an important role in countries, like Saudi Arabia, where abundant fossil fuels (FF) and renewable energy sources (RES) are available. Hence, effective modeling of such hybrid power systems scheduling is essential in such countries based on the available fuel resources. The intent of this paper is to present a simple model for tri-generation based hybrid power system scheduling for energy resources rich area in presence of ESF, to ensure optimum fuel utilization and minimum pollutant emissions while meeting the power demand. This research points an effective operation strategy which ensure a clean and energy efficient power scheduling by exploiting available energy resources effectively. Hence, it has an important role in current and future power generation. In order to illustrate the benefits of the presented approach a clean and energy efficient hybrid power supply scheme for King Saud University (KSU), Saudi Arabia, is proposed and analyzed here. Results show that the proposed approach is very suitable for KSU since adequate solar power is available during its peak demand periods

  10. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  11. Inorganic-organic hybrid polymer for preparation of affiliating material using electron beam irradiation

    International Nuclear Information System (INIS)

    Chung, Jaeseung; Kim, Seongeun; Kim, Byounggak; Lee, Jongchan; Park, Jihyun; Lee, Byeongcheol

    2011-01-01

    Recently, silver nano materials have gained a lot of attentions in a variety of applications due to the unique biological, optical, and electrical properties. Especially, the antifouling property of these material is considered to be an important character for biomedical field, marine coatings industry, biosensor, and drug delivery. In this study, we design and synthesize the inorganic-organic hybrid polymer for preparation of affiliating materials. Silver nano materials having antifouling property with different shapes are prepared by control the electron beam irradiation conditions. Inorganic-organic hybrid polymer was synthesized and characterized. → Morphology and size controlled nano materials are prepared using electron beam irradiation. → Silver nano materials having various shapes can be used for antifouling material

  12. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  13. Electronic Resources and Mission Creep: Reorganizing the Library for the Twenty-First Century

    Science.gov (United States)

    Stachokas, George

    2009-01-01

    The position of electronic resources librarian was created to serve as a specialist in the negotiation of license agreements for electronic resources, but mission creep has added more functions to the routine work of electronic resources such as cataloging, gathering information for collection development, and technical support. As electronic…

  14. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system

  15. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li Qiang, E-mail: guoliqiang@ujs.edu.cn; Ding, Jian Ning; Huang, Yu Kai [Micro/Nano Science & Technology Center, Jiangsu University, Zhenjiang, 212013 (China); Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  16. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Directory of Open Access Journals (Sweden)

    Li Qiang Guo

    2015-08-01

    Full Text Available Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO2 electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO synaptic transistor. In such synaptic transistors, protons within the SiO2 electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  17. MendelWeb: An Electronic Science/Math/History Resource for the WWW.

    Science.gov (United States)

    Blumberg, Roger B.

    This paper describes a hypermedia resource, called MendelWeb that integrates elementary biology, discrete mathematics, and the history of science. MendelWeb is constructed from Gregor Menders 1865 paper, "Experiments in Plant Hybridization". An English translation of Mendel's paper, which is considered to mark the birth of classical and…

  18. Excitation of lower hybrid waves by electron beams in finite geometry plasmas

    International Nuclear Information System (INIS)

    Gagne, R.R.J.; Shoucri, M.M.

    1978-01-01

    The dispersion relations for the quasi-static lower hybrid surface waves are derived. Conditions for their existence and their linear excitation by a small density electron beam are discussed. Instabilities appearing in low-frequency surface waves are also discussed. (author)

  19. The Internet School of Medicine: use of electronic resources by medical trainees and the reliability of those resources.

    Science.gov (United States)

    Egle, Jonathan P; Smeenge, David M; Kassem, Kamal M; Mittal, Vijay K

    2015-01-01

    Electronic sources of medical information are plentiful, and numerous studies have demonstrated the use of the Internet by patients and the variable reliability of these sources. Studies have investigated neither the use of web-based resources by residents, nor the reliability of the information available on these websites. A web-based survey was distributed to surgical residents in Michigan and third- and fourth-year medical students at an American allopathic and osteopathic medical school and a Caribbean allopathic school regarding their preferred sources of medical information in various situations. A set of 254 queries simulating those faced by medical trainees on rounds, on a written examination, or during patient care was developed. The top 5 electronic resources cited by the trainees were evaluated for their ability to answer these questions accurately, using standard textbooks as the point of reference. The respondents reported a wide variety of overall preferred resources. Most of the 73 responding medical trainees favored textbooks or board review books for prolonged studying, but electronic resources are frequently used for quick studying, clinical decision-making questions, and medication queries. The most commonly used electronic resources were UpToDate, Google, Medscape, Wikipedia, and Epocrates. UpToDate and Epocrates had the highest percentage of correct answers (47%) and Wikipedia had the lowest (26%). Epocrates also had the highest percentage of wrong answers (30%), whereas Google had the lowest percentage (18%). All resources had a significant number of questions that they were unable to answer. Though hardcopy books have not been completely replaced by electronic resources, more than half of medical students and nearly half of residents prefer web-based sources of information. For quick questions and studying, both groups prefer Internet sources. However, the most commonly used electronic resources fail to answer clinical queries more than half

  20. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  1. Pressure dependence of electron density distribution and d-p-π hybridization in titanate perovskite ferroelectrics

    Science.gov (United States)

    Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang

    2018-04-01

    Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.

  2. Universal logic gates via liquid-electronic hybrid divider

    KAUST Repository

    Zhou, Bingpu

    2012-01-01

    We demonstrated two-input microdroplet-based universal logic gates using a liquid-electronic hybrid divider. All 16 Boolean logic functions have been realized by manipulating the applied voltages. The novel platform consists of a microfluidic chip with integrated microdroplet detectors and external electronic components. The microdroplet detectors act as the communication media for fluidic and electronic information exchange. The presence or absence of microdroplets at the detector translates into the binary signal 1 or 0. The embedded micro-mechanical pneumatically actuated valve (PAV), fabricated using the well-developed multilayer soft lithography technique, offers biocompatibility, flexibility and accuracy for the on-chip realization of different logic functions. The microfluidic chip can be scaled up to construct large-scale microfluidic logic computation. On the other hand, the microfluidic chip with a specific logic function can be applied to droplet-based chemical reactions for on-demand bio or chemical analysis. Our experimental results have presented an autonomously driven, precision-controlled microfluidic chip for chemical reactions based on the IF logic function. © 2012 The Royal Society of Chemistry.

  3. Assignment of electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) to human chromosome 4q33 by fluorescence in situ hybridization and somatic cell hybridization.

    Science.gov (United States)

    Spector, E B; Seltzer, W K; Goodman, S I

    1999-08-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a nuclear-encoded protein located in the inner mitochondrial membrane. Inherited defects of ETF-QO cause glutaric acidemia type II. We here describe the localization of the ETF-QO gene to human chromosome 4q33 by somatic cell hybridization and fluorescence in situ hybridization. Copyright 1999 Academic Press.

  4. Comparison of the decomposition characteristics of aromatic VOCs using an electron beam hybrid system

    International Nuclear Information System (INIS)

    Son, Youn-Suk; Kim, Ki-Joon; Kim, Ji-Yong; Kim, Jo-Chun

    2010-01-01

    We applied a hybrid technique to assess the decomposition characteristics of ethylbenzene and toluene that annexed the catalyst technique with existing electron beam (EB) technology. The removal efficiency of ethylbenzene in the EB-catalyst hybrid turned out to be 30% greater than that of EB-only treatment. We concluded that ethylbenzene was decomposed more easily than toluene by EB irradiation. We compared the independent effects of the EB-catalyst hybrid and catalyst-only methods, and observed that the efficiency of the EB-catalyst hybrid demonstrated approximately 6% improvement for decomposing toluene and 20% improvement for decomposing ethylbenzene. The G-values for ethylbenzene increased with initial concentration and reactor type: for example, the G-values by reactor type at 2800 ppmC were 7.5-10.9 (EB-only) and 12.9-25.7 (EB-catalyst hybrid). We also observed a significant decrease in by-products as well as in the removal efficiencies associated with the EB-catalyst hybrid technique.

  5. Comparison of the decomposition characteristics of aromatic VOCs using an electron beam hybrid system

    Science.gov (United States)

    Son, Youn-Suk; Kim, Ki-Joon; Kim, Ji-Yong; Kim, Jo-Chun

    2010-12-01

    We applied a hybrid technique to assess the decomposition characteristics of ethylbenzene and toluene that annexed the catalyst technique with existing electron beam (EB) technology. The removal efficiency of ethylbenzene in the EB-catalyst hybrid turned out to be 30% greater than that of EB-only treatment. We concluded that ethylbenzene was decomposed more easily than toluene by EB irradiation. We compared the independent effects of the EB-catalyst hybrid and catalyst-only methods, and observed that the efficiency of the EB-catalyst hybrid demonstrated approximately 6% improvement for decomposing toluene and 20% improvement for decomposing ethylbenzene. The G-values for ethylbenzene increased with initial concentration and reactor type: for example, the G-values by reactor type at 2800 ppmC were 7.5-10.9 (EB-only) and 12.9-25.7 (EB-catalyst hybrid). We also observed a significant decrease in by-products as well as in the removal efficiencies associated with the EB-catalyst hybrid technique.

  6. ANALYTICAL REVIEW OF ELECTRONIC RESOURCES FOR THE STUDY OF LATIN

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2014-04-01

    Full Text Available The article investigates the current state of development of e-learning content in the Latin language. It is noted that the introduction of ICT in the educational space has expanded the possibility of studying Latin, opened access to digital libraries resources, made it possible to use scientific and educational potential and teaching Latin best practices of world's leading universities. A review of foreign and Ukrainian information resources and electronic editions for the study of Latin is given. Much attention was paid to the didactic potential of local and online multimedia courses of Latin, electronic textbooks, workbooks of interactive tests and exercises, various dictionaries and software translators, databases and digital libraries. Based on analysis of the world market of educational services and products the main trends in the development of information resources and electronic books are examined. It was found that multimedia courses with interactive exercises or workbooks with interactive tests, online dictionaries and translators are the most widely represented and demanded. The noticeable lagging of Ukrainian education and computer linguistics in quantitative and qualitative measures in this industry is established. The obvious drawback of existing Ukrainian resources and electronic editions for the study of Latin is their noninteractive nature. The prospects of e-learning content in Latin in Ukraine are outlined.

  7. Electron imaging with Medipix2 hybrid pixel detector

    International Nuclear Information System (INIS)

    McMullan, G.; Cattermole, D.M.; Chen, S.; Henderson, R.; Llopart, X.; Summerfield, C.; Tlustos, L.; Faruqi, A.R.

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μmx55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach ∼85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach ∼35% of that expected for a perfect detector (4/π 2 ). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses

  8. Electron imaging with Medipix2 hybrid pixel detector.

    Science.gov (United States)

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  9. Ag–graphene hybrid conductive ink for writing electronics

    International Nuclear Information System (INIS)

    Xu, L Y; Yang, G Y; Jing, H Y; Han, Y D; Wei, J

    2014-01-01

    With the aim of preparing a method for the writing of electronics on paper by the use of common commercial rollerball pens loaded with conductive ink, hybrid conductive ink composed of Ag nanoparticles (15 wt%) and graphene–Ag composite nanosheets (0.15 wt%) formed by depositing Ag nanoparticles (∼10 nm) onto graphene sheets was prepared for the first time. Owing to the electrical pathway effect of graphene and the decreased contact resistance of graphene junctions by depositing Ag nanoparticles (NPs) onto graphene sheets, the concentration of Ag NPs was significantly reduced while maintaining high conductivity at a curing temperature of 100 ° C. A typical resistivity value measured was 1.9 × 10 −7  Ω m, which is 12 times the value for bulk silver. Even over thousands of bending cycles or rolling, the resistance values of writing tracks only increase slightly. The stability and flexibility of the writing circuits are good, demonstrating the promising future of this hybrid ink and direct writing method. (paper)

  10. Elektronik Bilgi Kaynaklarının Seçimi / Selection of Electronic Information Resources

    Directory of Open Access Journals (Sweden)

    Pınar Al

    2003-04-01

    Full Text Available For many years, library users have used only from the printed media in order to get the information that they have needed. Today with the widespread use of the Web and the addition of electronic information resources to library collections, the use of information in the electronic environment as well as in printed media is started to be used. In time, such types of information resources as, electronic journals, electronic books, electronic encyclopedias, electronic dictionaries and electronic theses have been added to library collections. In this study, selection criteria that can be used for electronic information resources are discussed and suggestions are provided for libraries that try to select electronic information resources for their collections.

  11. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units

    Energy Technology Data Exchange (ETDEWEB)

    Cagatay Bayindir, Kamil; Goezuekuecuek, Mehmet Ali; Teke, Ahmet [Cukurova University, Department of Electrical and Electronics Engineering, Balcali, Saricam, Adana (Turkey)

    2011-02-15

    The studies for hybrid electrical vehicle (HEV) have attracted considerable attention because of the necessity of developing alternative methods to generate energy for vehicles due to limited fuel based energy, global warming and exhaust emission limits in the last century. HEV incorporates internal composition engine, electric machines and power electronic equipments. In this study, overview of HEVs with a focus on hybrid configurations, energy management strategies and electronic control units are presented. Advantages and disadvantages of each configuration are clearly emphasized. The existing powertrain control techniques for HEVs are classified and comprehensively described. Electronic control units used in HEV configuration are also elaborated. The latest trends and technological challenges in the near future for HEVs are discussed. (author)

  12. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    Science.gov (United States)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  13. Access to electronic resources by visually impaired people

    Directory of Open Access Journals (Sweden)

    Jenny Craven

    2003-01-01

    Full Text Available Research into access to electronic resources by visually impaired people undertaken by the Centre for Research in Library and Information Management has not only explored the accessibility of websites and levels of awareness in providing websites that adhere to design for all principles, but has sought to enhance understanding of information seeking behaviour of blind and visually impaired people when using digital resources.

  14. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  15. Library training to promote electronic resource usage

    DEFF Research Database (Denmark)

    Frandsen, Tove Faber; Tibyampansha, Dativa; Ibrahim, Glory

    2017-01-01

    Purpose: Increasing the usage of electronic resources is an issue of concern for many libraries all over the world. Several studies stress the importance of information literacy and instruction in order to increase the usage. Design/methodology/approach: The present article presents the results...

  16. Why and How to Measure the Use of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Jean Bernon

    2008-11-01

    Full Text Available A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it insufficient and pointed out the need for local tools such as web markers and deep analysis of proxy logs. Within the French national consortium COUPERIN, a new working group is testing ERMS, SUSHI standards, Shibboleth authentication, along with COUNTER standards, to improve the counting of the electronic resources use. At this stage this counting is insufficient and its improvement will be a European challenge for the future.

  17. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  18. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.

    Science.gov (United States)

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-10-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  19. Generation of suprathermal electrons during plasma current startup by lower hybrid waves in a tokamak

    International Nuclear Information System (INIS)

    Ohkubo, K.; Toi, K.; Kawahata, K.

    1984-10-01

    Suprathermal electrons which carry a seed current are generated by non-resonant parametric decay instability during initial phase of lower hybrid current startup in the JIPP T-IIU tokamak. From the numerical analysis, it is found that parametrically excited lower hybrid waves at lower side band can bridge the spectral gap between the thermal velocity and the low velocity end in the pump power spectrum. (author)

  20. Development of aromatic VOC control technology by electron beam hybrid

    International Nuclear Information System (INIS)

    Kim, Jo-Chun; Kim, Ki-Joon

    2006-01-01

    As a fundamental study, the decomposition of volatile organic compounds (VOCs) using electron beam (EB) irradiation has been extensively investigated. EB treatments of VOCs such as toluene and styrene are discussed. The degradation characteristics were intensively investigated under various concentrations and irradiation doses to determine and improve VOC removal efficiencies. This work illustrates that the removal efficiencies of aromatic VOCs generally increase as their concentrations decrease and the irradiation doses increase. Based on these basic studies, it was found that by-products produced from EB irradiation of VOCs would cause a secondary pollution problem. Therefore, a novel hybrid technology has been applied to control aromatic VOC emissions by annexing the catalyst technique with conventional treatment study using EB technology. The experiments were carried out using a bench-scale at first, then a pilot-scale system was followed. Toluene was selected as a typical VOC for EB hybrid control to investigate by-products, effects of ceramic and catalyst, and factors affecting overall efficiency of degradation. It was concluded that VOCs could be destroyed more effectively by a novel hybrid system than single EB irradiation. (author)

  1. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  2. Generation and control of electronic hybrid entanglement via a two-dimensional Rashba anisotropic nanodot

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, F.; Rastgoo, S.; Golshan, M.M., E-mail: golshan@susc.ac.ir

    2014-06-13

    In the present article we report the dynamics of electronic spin–subbands, as well as subband–subband, hybrid entanglements in a two-dimensional anisotropic quantum dot. The dot is under the influence of Rashba effect and an external magnetic field. To study the hybrid entanglements, we partition the system into two categories in which either spatial degrees of freedom, subbands, entangle with the spin or the subbands become entangled amongst themselves. For the first case we calculate the von Neumann entropy, while for the latter the negativity is calculated. Our calculations show that for both cases information is periodically distributed between the corresponding subspaces. Effects of Rashba parameter and magnetic field on the characteristics of such oscillatory behavior are also discussed. For spin–subband entanglement the oscillations include dips, surrounded by plateaus of maximal entanglement. The subband–subband entanglement shows vanishingly small plateaus. The duration of plateaus is controlled by Rashba coupling and the external field. - Highlights: • Dynamics of hybrid entanglements in a parabolic 2-dimensional electron gas is reported. • The electron gas is influenced by the Rashba spin–orbit coupling and a magnetic field. • Spin–subband entanglement exhibits oscillations with dips and maximal plateaus. • Subband–subband entanglement also oscillates, but with vanishingly small plateaus. • The vigilance of plateaus is controllable by the Rashba effect and/or the field.

  3. Study of the fast electron distribution function in lower hybrid and electron cyclotron current driven plasmas in the WT-3 tokamak

    International Nuclear Information System (INIS)

    Ogura, K.; Tanaka, H.; Ide, S.

    1991-01-01

    The distribution function f(p-vector) of fast electrons produced by lower hybrid current drive (LHCD) is investigated in the WT-3 tokamak, using a combination of measurements of the hard X-ray (HXR) angular distribution with respect to the toroidal magnetic field and observations of the HXR radial profile. The data obtained indicate the formation of a plateau-like region in f(p-vector) which corresponds to a region of resonant interaction between the lower hybrid (LH) wave and the electrons. The energy of the fast electrons in the peripheral plasma region is observed to be higher than that in the central plasma region under operational conditions with a high plasma current (I p ≥ 80 kA). At low current (I p < or approx. 50 kA), however, the energy of fast electrons is constant along the plasma radius. In the current ramp-up phase, fast electrons are generated in the directions normal to and opposite to the LH wave propagation. The latter case is ascribed to a negatively biased toroidal electric field induced by the current ramp-up. To study the characteristic change of f(p-vector) for various current drive mechanisms, HXR measurements are performed in electron cyclotron current driven (ECCD) plasma and in Ohmic heating (OH) plasma. In ECCD plasma, the perpendicular energy of fast electrons increases, which indicates that fast electrons are accelerated perpendicularly by electron cyclotron heating. In both LHCD and ECCD plasmas, fast electrons flow in the direction opposite to the wave propagation, while no such fast electrons are formed in OH plasma. (author). 33 refs, 16 figs, 1 tab

  4. Effects of Electronic Information Resources Skills Training for Lecturers on Pedagogical Practices and Research Productivity

    Science.gov (United States)

    Bhukuvhani, Crispen; Chiparausha, Blessing; Zuvalinyenga, Dorcas

    2012-01-01

    Lecturers use various electronic resources at different frequencies. The university library's information literacy skills workshops and seminars are the main sources of knowledge of accessing electronic resources. The use of electronic resources can be said to have positively affected lecturers' pedagogical practices and their work in general. The…

  5. Complementary Self-Biased Logics Based on Single-Electron Transistor (SET)/CMOS Hybrid Process

    Science.gov (United States)

    Song, Ki-Whan; Lee, Yong Kyu; Sim, Jae Sung; Kim, Kyung Rok; Lee, Jong Duk; Park, Byung-Gook; You, Young Sub; Park, Joo-On; Jin, You Seung; Kim, Young-Wug

    2005-04-01

    We propose a complementary self-biasing method which enables the single-electron transistor (SET)/complementary metal-oxide semiconductor (CMOS) hybrid multi-valued logics (MVLs) to operate well at high temperatures, where the peak-to-valley current ratio (PVCR) of the Coulomb oscillation markedly decreases. The new architecture is implemented with a few transistors by utilizing the phase control capability of the sidewall depletion gates in dual-gate single-electron transistors (DGSETs). The suggested scheme is evaluated by a SPICE simulation with an analytical DGSET model. Furthermore, we have developed a new process technology for the SET/CMOS hybrid systems. We have confirmed that both of the fabricated devices, namely, SET and CMOS transistors, exhibit the ideal characteristics for the complementary self-biasing scheme: the SET shows clear Coulomb oscillations with a 100 mV period and the CMOS transistors show a high voltage gain.

  6. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  7. Electronic Commerce Resource Centers. An Industry--University Partnership.

    Science.gov (United States)

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  8. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.

    Science.gov (United States)

    Spreafico, Clelia; VandeVondele, Joost

    2014-12-21

    The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.

  9. Hybrid (Vlasov-Fluid) simulation of ion-acoustic solitons chain formation including trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Behjat, E.; Aminmansoor, F.; Abbasi, H. [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.

  10. Hybrid control scheme for distributed energy resource management in a market context

    DEFF Research Database (Denmark)

    Han, Xue; Bindner, Henrik W.; Mehmedalic, Jasmin

    2015-01-01

    In modernizing the electricity grid, distributed energy resources (DERs) can play an important role in accommodating intermittent energy sources, assisting system operation and the transition to a smart grid. Proper aggregation and coordination of the available DER units is required to provide...... flexibility to meet regular demand from the distribution system operator (DSO). By considering both their physical constraints and the economical system operation, this paper proposes a realtime hybrid management system for DER units in a market environment, which considers both the request from the DSO...

  11. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  12. A compact CMA spectrometer with axially integrated hybrid electron-ion gun for ISS, AES and sputter depth profile analysis

    International Nuclear Information System (INIS)

    Gisler, E.; Bas, E.B.

    1986-01-01

    Until now, the combined application of electrons and ions in surface analysis required two separate sources for electrons and ions with different incidence angles. The newly developed hybrid electron-ion gun, however, allows bombardment of the same sample area both with noble gas ions and with electrons coming from the same direction. By integrating such a hybrid gun axially in a cylindrical mirror energy analyser (CMA) a sensitive compact single flange spectrometer obtains for ion scattering spectroscopy (ISS), Auger electron spectroscopy (AES), and sputtering all within normal beam incidence. This concept makes accurate beam centering very easy. Additionally, the bombardment from the same direction both for sputtering and for surface analysis brings advantages in depth profiling. The scattering angle for ISS has a constant value of about 138 0 . The hybrid gun delivers typically an electron beam current of -20μA at 3keV for AES, and an ion beam current of +40 nA and +1.2μA at 2 keV for ISS and sputtering respectively. The switching time between ISS, AES, and sputtering mode is about 0.1 s. So this system is best suited for automatically controlled depth profile analysis. The design and operation of this new system will be described and some applications will be discussed. (author)

  13. Power electronics and electric machinery challenges and opportunities in electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.J.; Hsu, J.S.; Young, R.W. [Oak Ridge National Lab., TN (United States); Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-06-01

    The development of power electronics and electric machinery presents significant challenges to the advancement of electric and hybrid vehicles. Electronic components and systems development for vehicle applications have progressed from the replacement of mechanical systems to the availability of features that can only be realized through interacting electronic controls and devices. Near-term applications of power electronics in vehicles will enable integrated powertrain controls, integrated chassis system controls, and navigation and communications systems. Future applications of optimized electric machinery will enable highly efficient and lightweight systems. This paper will explore the areas where research and development is required to ensure the continued development of power electronics and electric machines to meet the rigorous demands of automotive applications. Additionally, recent advances in automotive related power electronics and electric machinery at Oak Ridge National Laboratory will be explained. 3 refs., 5 figs.

  14. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  15. Synergy between electron cyclotron and lower hybrid current drive on Tore Supra

    International Nuclear Information System (INIS)

    Giruzzi, G.; Artaud, J.F.; Dumont, R.J.; Imbeaux, F.; Bibet, P.; Berger-By, G.; Bouquey, F.; Clary, J.; Darbos, C.; Ekedahl, A.; Hoang, G.T.; Lennholm, M.; Maget, P.; Magne, R.; Segui, J.L.; Bruschi, A.; Granucci, G.

    2005-01-01

    Improvement (up to a factor ∼ 4) of the electron cyclotron (EC) current drive efficiency in plasmas sustained by lower hybrid (LH) current drive has been demonstrated in stationary conditions on the Tore Supra tokamak. This was made possible by feedback controlled discharges at zero loop voltage, constant plasma current and density. This effect, predicted by kinetic theory, results from a favorable interplay of the velocity space diffusions induced by the two waves: the EC wave pulling low-energy electrons out of the Maxwellian bulk, and the LH wave driving them to high parallel velocities. (author)

  16. Protonic/electronic hybrid oxide transistor gated by chitosan and its full-swing low voltage inverter applications

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Jin Yu [Shanxi Province Key Laboratory High Gravity Chemical Engineering, North University of China, Taiyuan 030051 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn; Xiao, Hui [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Yuan, Zhi Guo, E-mail: ncityzg@163.com [Shanxi Province Key Laboratory High Gravity Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2015-12-21

    Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ∼1.0 V such as on/off ratio of ∼3 × 10{sup 7}, subthreshold swing of ∼65 mV/dec, threshold voltage of ∼0.3 V, and mobility of ∼7 cm{sup 2}/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor in series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.

  17. Bosch automotive electrics and automotive electronics systems and components, networking and hybrid drive

    CERN Document Server

    2014-01-01

    The significance of electrical and electronic systems has increased considerably in the last few years and this trend is set to continue. The characteristics feature of innovative systems is the fact that they can work together in a network. This requires powerful bus systems that the electronic control units can use to exchange information. Networking and the various bus systems used in motor vehicles are the prominent new topic in the 5th edition of the "Automotive Electric, Automotive Electronics" technical manual. The existing chapters have also been updated, so that this new edition brings the reader up to date on the subjects of electrical and electronic systems in the motor vehicle. Content Electrical and electronical systems – Basic principles of networking - Examples of networked vehicles – Bus systems – Architecture of electronic systems – Mechatronics – Elektronics – Electronic control Units – Software – Sensors – Actuators – Hybrid drives – Vehicle electrical system – Start...

  18. Third generation hybrid drive. Transmission-based integration of power electronics; Dritte Generation Hybridantrieb. Getriebenahe Integration der Leistungselektronik

    Energy Technology Data Exchange (ETDEWEB)

    Schoen, Wolfgang [ZF Friedrichshafen AG, Friedrichshafen (DE). Hybridantriebe (F und E); Lutz, Steffen [BMW AG, Muenchen (Germany); Hensler, Alexander [Technische Univ. Chemnitz (Germany); Munding, Andreas [Liebherr Elektronik GmbH, Lindau (Germany); Thoben, Markus [Infineon Technologies AG, Warstein (Germany); Zeidler, Dietmar [Kemet Electronics GmbH, Landsberg am Lech (Germany)

    2011-06-15

    The power electronics components in today's hybrid vehicles are situated at different places in the vehicle - till now far away from harsh and hot surroundings. In order to develop an integrated solution near the transmission, ZF and BMW launched the research project 'Electric components for active power transmissions' (EfA). On the basis of an eight-speed full hybrid transmission and together with Infineon, Kemet, Liebherr, and the University of Technology of Chemnitz, they are developing a power electronics unit, which facilitates doubling the power density while increasing the operating temperature. The project EfA will be concluded in June 2011. (orig.)

  19. Pseudo-diode based on protonic/electronic hybrid oxide transistor

    Science.gov (United States)

    Fu, Yang Ming; Liu, Yang Hui; Zhu, Li Qiang; Xiao, Hui; Song, An Ran

    2018-01-01

    Current rectification behavior has been proved to be essential in modern electronics. Here, a pseudo-diode is proposed based on protonic/electronic hybrid indium-gallium-zinc oxide electric-double-layer (EDL) transistor. The oxide EDL transistors are fabricated by using phosphorous silicate glass (PSG) based proton conducting electrolyte as gate dielectric. A diode operation mode is established on the transistor, originating from field configurable proton fluxes within the PSG electrolyte. Current rectification ratios have been modulated to values ranged between ˜4 and ˜50 000 with gate electrode biased at voltages ranged between -0.7 V and 0.1 V. Interestingly, the proposed pseudo-diode also exhibits field reconfigurable threshold voltages. When the gate is biased at -0.5 V and 0.3 V, threshold voltages are set to ˜-1.3 V and -0.55 V, respectively. The proposed pseudo-diode may find potential applications in brain-inspired platforms and low-power portable systems.

  20. Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.

  1. Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices

    Directory of Open Access Journals (Sweden)

    Selina Olthof

    2016-09-01

    Full Text Available In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.

  2. Hybrid functional pseudopotentials

    Science.gov (United States)

    Yang, Jing; Tan, Liang Z.; Rappe, Andrew M.

    2018-02-01

    The consistency between the exchange-correlation functional used in pseudopotential construction and in the actual density functional theory calculation is essential for the accurate prediction of fundamental properties of materials. However, routine hybrid density functional calculations at present still rely on generalized gradient approximation pseudopotentials due to the lack of hybrid functional pseudopotentials. Here, we present a scheme for generating hybrid functional pseudopotentials, and we analyze the importance of pseudopotential density functional consistency for hybrid functionals. For the PBE0 hybrid functional, we benchmark our pseudopotentials for structural parameters and fundamental electronic gaps of the Gaussian-2 (G2) molecular dataset and some simple solids. Our results show that using our PBE0 pseudopotentials in PBE0 calculations improves agreement with respect to all-electron calculations.

  3. Evaluation of a hybrid paper-electronic medication management system at a residential aged care facility.

    Science.gov (United States)

    Elliott, Rohan A; Lee, Cik Yin; Hussainy, Safeera Y

    2016-06-01

    Objectives The aims of the study were to investigate discrepancies between general practitioners' paper medication orders and pharmacy-prepared electronic medication administration charts, back-up paper charts and dose-administration aids, as well as delays between prescribing, charting and administration, at a 90-bed residential aged care facility that used a hybrid paper-electronic medication management system. Methods A cross-sectional audit of medication orders, medication charts and dose-administration aids was performed to identify discrepancies. In addition, a retrospective audit was performed of delays between prescribing and availability of an updated electronic medication administration chart. Medication administration records were reviewed retrospectively to determine whether discrepancies and delays led to medication administration errors. Results Medication records for 88 residents (mean age 86 years) were audited. Residents were prescribed a median of eight regular medicines (interquartile range 5-12). One hundred and twenty-five discrepancies were identified. Forty-seven discrepancies, affecting 21 (24%) residents, led to a medication administration error. The most common discrepancies were medicine omission (44.0%) and extra medicine (19.2%). Delays from when medicines were prescribed to when they appeared on the electronic medication administration chart ranged from 18min to 98h. On nine occasions (for 10% of residents) the delay contributed to missed doses, usually antibiotics. Conclusion Medication discrepancies and delays were common. Improved systems for managing medication orders and charts are needed. What is known about the topic? Hybrid paper-electronic medication management systems, in which prescribers' orders are transcribed into an electronic system by pharmacy technicians and pharmacists to create medication administration charts, are increasingly replacing paper-based medication management systems in Australian residential aged care

  4. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalick, S.; Jansen, P.; Kessler, G.; Klumpp, P.

    1980-08-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  5. USE OF ELECTRONIC EDUCATIONAL RESOURCES WHEN TRAINING IN WORK WITH SPREADSHEETS

    Directory of Open Access Journals (Sweden)

    Х А Гербеков

    2017-12-01

    Full Text Available Today the tools for maintaining training courses based on opportunities of information and communication technologies are developed. Practically in all directions of preparation and on all subject matters electronic textbook and self-instruction manuals are created. Nevertheless the industry of computer educational and methodical materials actively develops and gets more and more areas of development and introduction. In this regard more and more urgent is a problem of development of the electronic educational resources adequate to modern educational requirements. Creation and the organization of training courses with use of electronic educational resources in particular on the basis of Internet technologies remains a difficult methodical task.In article the questions connected with development of electronic educational resources for use when studying the substantial line “Information technologies” of a school course of informatics in particular for studying of spreadsheets are considered. Also the analysis of maintenance of a school course and the unified state examination from the point of view of representation of task in him corresponding to the substantial line of studying “Information technologies” on mastering technology of information processing in spreadsheets and the methods of visualization given by means of charts and schedules is carried out.

  6. Using GPU to calculate electron dose for hybrid pencil beam model

    International Nuclear Information System (INIS)

    Guo Chengjun; Li Xia; Hou Qing; Wu Zhangwen

    2011-01-01

    Hybrid pencil beam model (HPBM) offers an efficient approach to calculate the three-dimension dose distribution from a clinical electron beam. Still, clinical radiation treatment activity desires faster treatment plan process. Our work presented the fast implementation of HPBM-based electron dose calculation using graphics processing unit (GPU). The HPBM algorithm was implemented in compute unified device architecture running on the GPU, and C running on the CPU, respectively. Several tests with various sizes of the field, beamlet and voxel were used to evaluate our implementation. On an NVIDIA GeForce GTX470 GPU card, we achieved speedup factors of 2.18- 98.23 with acceptable accuracy, compared with the results from a Pentium E5500 2.80 GHz Dual-core CPU. (authors)

  7. Electron currents in field reversed mirror dynamics: Theory and hybrid simulation

    International Nuclear Information System (INIS)

    Stark, R.A.

    1987-01-01

    To model the dynamics of the Field-Reversed Mirror (FRM) as a whole we have developed a 1-D radical hybrid code which also incorporates the above electron null current model. This code, named FROST, models the plasma as azimuthally symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. Massless fluid equations describe electrons and low energy ions. Since a fluid treatment for electrons is invalid near a field null, the null region electron current model discussed above has been included for this region, a unique feature. Results of simulation of neutral beam start-up in a 2XIIB-like plasma is discussed. There FROST predicts that electron currents will retard, but not prevent reversal of the magnetic field at the plasma center. These results are optimistic when compared to actual reversal experiments in 2XIIB, because there finite axial length effects and micro-instabilities substantially deteriorated the ion confinement. Nevertheless, because of the importance of the electron current in a low field region in the FRM, FROST represents a valuable intermediate step toward a more complete description of FRM dynamics. 54 refs., 50 figs., 3 tabs

  8. Removal of the lower hybrid (LH) frequency time scale in test electron simulations of LH-induced tokamak edge electron flow

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Petržílka, Václav; Gunn, J. P.; Goniche, M.

    2002-01-01

    Roč. 52, supplement D (2002), s. 45-50 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : tokamak, edge electrons, lower hybrid antenna Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  9. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Jansen, P.; Kessler, G.; Klumpp, P.

    1981-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  10. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.

    1980-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrides are coupled to the breeders. The results also indicate that from a resource standpaint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  11. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    Science.gov (United States)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  12. Generation of auroral kilometric radiation in upper hybrid wave-lower hybrid soliton interaction

    International Nuclear Information System (INIS)

    Pottelette, R.; Dubouloz, N.; Treumann, R.A.

    1992-01-01

    Sporadic bursts of auroral kilometric radiation (AKR) associated with strong bursty electrostatic turbulence in the vicinity of the lower hybrid frequency have been frequently recorded in the AKR source region by the Viking satellite. The variation time scale of these emissions is typically 1 s, long enough for lower hybrid waves to grow to amplitudes of several hundred millivolts per meter and to evolve nonlinearly into solitons. On the basis on these observations it is suggested that formation of lower hybrid solitons may play a role in the generation of AKR. A theoretical model is proposed which is based on the direct acceleration of electrons in the combined lower hybrid soliton and upper hybrid wave fields. The solitons act as sporadic, localized antennas allowing for efficient conversions of the electrostatic energy stored in upper hybrid waves into electromagnetic radiation at a frequency above the X mode cutoff. Excitation of lower hybrid waves is due to the presence of energetic electron beams in the auroral zone found to be associated with steep plasma density gradients. Upper hybrid waves can be excited by a population of energetic electrons with loss cone distributions. The power of the electromagnetic radiation obtained is only noticeable in regions where the plasma frequency is less than the electron gyrofrequency. The theory predicts spectral power densities of the order of 10 -11 to 10 -9 W m -2 Hz -1 in the source region, in good agreement with the Viking observations. The sporadic nature of the radiation derives from lower hybrid soliton collapses which occur on ∼1-s time scales

  13. MIROS: a hybrid real-time energy-efficient operating system for the resource-constrained wireless sensor nodes.

    Science.gov (United States)

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid

    2014-09-22

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.

  14. MIROS: A Hybrid Real-Time Energy-Efficient Operating System for the Resource-Constrained Wireless Sensor Nodes

    Science.gov (United States)

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El

    2014-01-01

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069

  15. Analytical Study of Usage of Electronic Information Resources at Pharmacopoeial Libraries in India

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2014-02-01

    Full Text Available The objective of this study is to know the rate and purpose of the use of e-resource by the scientists at pharmacopoeial libraries in India. Among other things, this study examined the preferences of the scientists toward printed books and journals, electronic information resources, and pattern of using e-resources. Non-probability sampling specially accidental and purposive technique was applied in the collection of primary data through administration of user questionnaire. The sample respondents chosen for the study consists of principle scientific officer, senior scientific officer, scientific officer, and scientific assistant of different division of the laboratories, namely, research and development, pharmaceutical chemistry, pharmacovigilance, pharmacology, pharmacogonosy, and microbiology. The findings of the study reveal the personal experiences and perceptions they have had on practice and research activity using e-resource. The major findings indicate that of the total anticipated participants, 78% indicated that they perceived the ability to use computer for electronic information resources. The data analysis shows that all the scientists belonging to the pharmacopoeial libraries used electronic information resources to address issues relating to drug indexes and compendia, monographs, drugs obtained through online databases, e-journals, and the Internet sources—especially polices by regulatory agencies, contacts, drug promotional literature, and standards.

  16. Transmission electron microscopic method for gene mapping on polytene chromosomes by in situ hybridization

    OpenAIRE

    Wu, Madeline; Davidson, Norman

    1981-01-01

    A transmission electron microscope method for gene mapping by in situ hybridization to Drosophila polytene chromosomes has been developed. As electron-opaque labels, we use colloidal gold spheres having a diameter of 25 nm. The spheres are coated with a layer of protein to which Escherichia coli single-stranded DNA is photochemically crosslinked. Poly(dT) tails are added to the 3' OH ends of these DNA strands, and poly(dA) tails are added to the 3' OH ends of a fragmented cloned Drosophila DN...

  17. Acceleration of electrons in the vicinity of a lower hybrid waveguide array

    International Nuclear Information System (INIS)

    Fuchs, V.; Goniche, M.; Demers, Y.; Jacquet, P.; Mailloux, J.

    1996-01-01

    The interaction of tokamak plasma edge electrons with the electric near field generated by a lower hybrid slow wave antenna is studied. Antenna field spectra of interest for current drive and/or plasma heating have lobes at high-n parallel values (n parallel approx-gt 30) intense enough for resonant acceleration of the relatively cold (∼25 eV) edge electrons. For waveguide electric fields, typically around 3 kV/cm, the higher-order modes overlap in the phase-space [B. V. Chirikov, Phys. Rep. 52, 263 (1979)], so that electron global stochasticity is induced. For Tokamak de Varennes (TdeV) [Dacute ecoste et al., Phys. Plasmas 1, 1497 (1994)] conditions and for 90 degree waveguide phasing, the stochastic limit in the current drive direction is about 2 keV, determined by the last overlapping mode. The progress of electrons through accessible phase space is very efficient: the TdeV 32 waveguide array can accelerate the electrons to the possible limit. An area-preserving map is derived to study the electron dynamics. Surface-of-section plots fully confirm the resonant wave-particle nature of the interaction. copyright 1996 American Institute of Physics

  18. Page 170 Use of Electronic Resources by Undergraduates in Two ...

    African Journals Online (AJOL)

    undergraduate students use electronic resources such as NUC virtual library, HINARI, ... web pages articles from magazines, encyclopedias, pamphlets and other .... of Nigerian university libraries have Internet connectivity, some of the system.

  19. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  20. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.

    Science.gov (United States)

    Yong, Yang-Chun; Yu, Yang-Yang; Zhang, Xinhai; Song, Hao

    2014-04-22

    Low extracellular electron transfer performance is often a bottleneck in developing high-performance bioelectrochemical systems. Herein, we show that the self-assembly of graphene oxide and Shewanella oneidensis MR-1 formed an electroactive, reduced-graphene-oxide-hybridized, three-dimensional macroporous biofilm, which enabled highly efficient bidirectional electron transfers between Shewanella and electrodes owing to high biomass incorporation and enhanced direct contact-based extracellular electron transfer. This 3D electroactive biofilm delivered a 25-fold increase in the outward current (oxidation current, electron flux from bacteria to electrodes) and 74-fold increase in the inward current (reduction current, electron flux from electrodes to bacteria) over that of the naturally occurring biofilms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A survey of the use of electronic scientific information resources among medical and dental students

    Directory of Open Access Journals (Sweden)

    Aarnio Matti

    2006-05-01

    Full Text Available Abstract Background To evaluate medical and dental students' utilization of electronic information resources. Methods A web survey sent to 837 students (49.9% responded. Results Twenty-four per cent of medical students and ninteen per cent of dental students searched MEDLINE 2+ times/month for study purposes, and thiry-two per cent and twenty-four per cent respectively for research. Full-text articles were used 2+ times/month by thirty-three per cent of medical and ten per cent of dental students. Twelve per cent of respondents never utilized either MEDLINE or full-text articles. In multivariate models, the information-searching skills among students were significantly associated with use of MEDLINE and full-text articles. Conclusion Use of electronic resources differs among students. Forty percent were non-users of full-text articles. Information-searching skills are correlated with the use of electronic resources, but the level of basic PC skills plays not a major role in using these resources. The student data shows that adequate training in information-searching skills will increase the use of electronic information resources.

  2. Access to electronic information resources by students of federal ...

    African Journals Online (AJOL)

    The paper discusses access to electronic information resources by students of Federal Colleges of Education in Eha-Amufu and Umunze. Descriptive survey design was used to investigate sample of 526 students. Sampling technique used was a Multi sampling technique. Data for the study were generated using ...

  3. Adoption and use of electronic information resources by medical ...

    African Journals Online (AJOL)

    This study investigated the adoption and use of electronic information resources by medical science students of the University of Benin. The descriptive survey research design was adopted for the study and 390 students provided the data. Data collected were analysed with descriptive Statistics(Simple percentage and ...

  4. An open-source framework for analyzing N-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology.

    Science.gov (United States)

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe

    2017-10-30

    In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    A 3D hyperbranched TiO2 electron transporting material is demonstrated, which exhibits superior carrier transport and lifetime, as well as excellent infiltration, leading to highly efficient mesostructured hybrid solar cells, such as lead-halide perovskites (15.5%) and dye-sensitized solar cells (11.2%).

  6. Highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials

    KAUST Repository

    Mahmood, Khalid

    2015-03-23

    A 3D hyperbranched TiO2 electron transporting material is demonstrated, which exhibits superior carrier transport and lifetime, as well as excellent infiltration, leading to highly efficient mesostructured hybrid solar cells, such as lead-halide perovskites (15.5%) and dye-sensitized solar cells (11.2%).

  7. Oxide nanomembrane hybrids with enhanced mechano- and thermo-sensitivity for semitransparent epidermal electronics.

    Science.gov (United States)

    Park, Minjoon; Do, Kyungsik; Kim, Jaemin; Son, Donghee; Koo, Ja Hoon; Park, Jinkyung; Song, Jun-Kyul; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-05-01

    Oxide nanomembrane hybrids with enhanced mechano- and thermo-sensitivity for semitransparent epidermal electronics are developed. The use of nanomaterials (single wall nanotubes and silver nanoparticles) embedded in the oxide nanomembranes significantly enhances mechanical and thermal sensitivities. These mechanical and thermal sensors are utilized in wheelchair control and hypothermia detection, which are useful for patients with strokes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Where Do Electronic Books Fit in the College Research Arsenal of Resources?

    Science.gov (United States)

    Barbier, Patricia

    2007-01-01

    Student use of electronic books has become an accepted supplement to traditional resources. Student use and satisfaction was monitored through an online course discussion board. Increased use of electronic books indicate this service is an accepted supplement to the print book collection.

  9. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    International Nuclear Information System (INIS)

    Wei Wei; Ding Bo-Jiang; Li Miao-Hui; Zhang Xin-Jun; Wang Xiao-Jie; Peysson, Y; Decker, J; Zhang Lei

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N ∥ ) are presented and discussed. (paper)

  10. A hybrid instrument combining electronic and photonic tunnelling for surface analysis

    International Nuclear Information System (INIS)

    Pechou, R.; Ajustron, F.; Seine, G.; Coratger, R.; Maurel, C.; Beauvillain, J.

    2004-01-01

    A PSTM working in the collection mode and based on an STM probe-sample regulation scheme has been developed. This original hybrid instrument for surface analysis uses apertureless metal-coated chemically etched optical fibres. The use of an electronic tunnelling-based feedback loop significantly reduces tip-sample distance and leads to the collection of a high level near-field optical (NFO) signal. A simple amplified photodiode is thus used to perform optical signal acquisition and to draw electromagnetic field maps of sample surfaces. Experimental results on nanostructured gold surfaces are presented

  11. Structural, electronic, and optical properties of GaInO{sub 3}: A hybrid density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, V., E-mail: wangvei@icloud.com; Ma, D.-M.; Liu, R.-J.; Yang, C.-M. [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xiao, W. [State Key Lab of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088 (China)

    2014-01-28

    The structural, electronic, and optical properties of GaInO{sub 3} have been studied by first-principles calculations based on Heyd-Scuseria-Ernzerhof hybrid functional theory. The optical properties, including the optical reflectivity, refractive index, extinction coefficient, absorption coefficient, and electron energy loss are discussed for radiation up to 60 eV together with the calculated electronic structure. Our results predicted that GaInO{sub 3} displays good transparency over the whole vision region, which is in good agreement with the experimental data available in the literature.

  12. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    Science.gov (United States)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  13. Hybrid electric vehicle thermal management and study of the power electronics cooling; Gestion thermique du vehicule hybride et etude du refroidissement de l'electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Rouaud, C.

    2004-07-01

    For decreasing the engine's consumption and pollutant emissions, automobile makers are developing hybrid electric vehicles incorporating an electric motor and power electronics leading to new under-hood thermal constraints. This is why we first present the tests results of a new common cooling circuit for all the vehicle components. With the aim of developing new energy management strategies between the components, we have chosen the nodal method to simulate the thermal behaviour of the engine, the electric motor, the power electronics and the cooling circuit. The second part of this thesis deals with a thermal-hydraulic analysis of several power electronics cooling methods, which has led us to choose the multiple jet impingement cooling. Several tests have been made for characterising the performances of this technique and enabled us to establish an optimal configuration. The last part shows the thermal simulation results run with the help of an innovative reduction method of thermal models applied to the power electronics. This technique allowed us to have a low cost of time simulation and will permit, in the future, the real-time control of the hybrid electric vehicle components. (author)

  14. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Zou, Long; Qiao, Yan; Zhong, Canyu; Li, Chang Ming

    2017-01-01

    Both physical structure and chemical property of an electrode play critical roles in extracellular electron transfer from microbes to electrodes in microbial fuel cells (MFCs). Herein a novel polyaniline hybridized large mesoporous carbon (PANI-LMC) anode is fabricated from natural biomass by nanostructured CaCO 3 template-assisted carbonization followed by in situ chemical polymerizing PANI to enable fast extracellular electron transfer, in which the LMC with rich disorder-interconnected large mesopores (∼20−50 nm) and large surface area facilitates a fast mediated electron transfer through electron mediators, while the decorated PANI on LMC surface enables the direct electron transfer via bacterial outer-membrane redox centers. Owing to the unique synergistic effect from both excellent electron transfer paths, the PANI-LMC hybrid anode harvests high power electricity with a maximum output power density of 1280 mW m −2 in Shewanella putrefaciens CN32 MFCs, 10-fold higher than that of conventional carbon cloth. The findings from this work suggest a new insight on design of high-efficient anode according to the multiple and flexible electrochemical process for practical MFC applications.

  15. A segmented Hybrid Photon Detector with integrated auto-triggering front-end electronics for a PET scanner

    CERN Document Server

    Chesi, Enrico Guido; Joram, C; Mathot, S; Séguinot, Jacques; Weilhammer, P; Ciocia, F; De Leo, R; Nappi, E; Vilardi, I; Argentieri, A; Corsi, F; Dragone, A; Pasqua, D

    2006-01-01

    We describe the design, fabrication and test results of a segmented Hybrid Photon Detector with integrated auto-triggering front-end electronics. Both the photodetector and its VLSI readout electronics are custom designed and have been tailored to the requirements of a recently proposed novel geometrical concept of a Positron Emission Tomograph. Emphasis is put on the PET specific features of the device. The detector has been fabricated in the photocathode facility at CERN.

  16. Strategic Planning for Electronic Resources Management: A Case Study at Gustavus Adolphus College

    Science.gov (United States)

    Hulseberg, Anna; Monson, Sarah

    2009-01-01

    Electronic resources, the tools we use to manage them, and the needs and expectations of our users are constantly evolving; at the same time, the roles, responsibilities, and workflow of the library staff who manage e-resources are also in flux. Recognizing a need to be more intentional and proactive about how we manage e-resources, the…

  17. REVIEW OF MOODLE PLUGINS FOR DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES FROM LANGUAGE DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2015-09-01

    Full Text Available Today the problem of designing multimedia electronic educational resources from language disciplines in Moodle is very important. This system has a lot of different, powerful resources, plugins to facilitate the learning of students with language disciplines. This article presents an overview and comparative analysis of the five Moodle plugins for designing multimedia electronic educational resources from language disciplines. There have been considered their key features and functionality in order to choose the best for studying language disciplines in the Moodle. Plugins are compared by a group of experts according to the criteria: efficiency, functionality and easy use. For a comparative analysis of the plugins it is used the analytic hierarchy process.

  18. Research of a hybrid undulator

    International Nuclear Information System (INIS)

    Ma Youwu; Wu Bing; Liu Bo

    1995-12-01

    A 1.5 m tapered hybrid undulator has been designed and built for mid-infrared free electron laser experiments at CIAE. The undulator utilizes the REC-steel hybrid configuration. The magnetic gap and magnetic field taper can be continuously adjusted. The rms error of the peak field is less than 0.53%. The electron trajectory deviation is around 0.03 mm. The design of undulator, sorting of magnets in hybrid undulator using simulated annealing technique, the motion of electron beam in the ideal and measured magnetic field, magnetic field measurement technique and magnetic field adjustment are described. (6 refs., 10 figs., 1 tab)

  19. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices

  20. Electronic properties of B and Al doped graphane: A hybrid density functional study

    Science.gov (United States)

    Mapasha, R. E.; Igumbor, E.; Andriambelaza, N. F.; Chetty, N.

    2018-04-01

    Using a hybrid density functional theory approach parametrized by Heyd, Scuseria and Ernzerhof (HSE06 hybrid functional), we study the energetics, structural and electronic properties of a graphane monolayer substitutionally doped with the B (BCH) and Al (AlCH) atoms. The BCH defect can be integrated within a graphane monolayer at a relative low formation energy, without major structural distortions and symmetry breaking. The AlCH defect relaxes outward of the monolayer and breaks the symmetry. The density of states plots indicate that BCH doped graphane monolayer is a wide band gap semiconductor, whereas the AlCH defect introduces the spin dependent mid gap states at the vicinity of the Fermi level, revealing a metallic character with the pronounced magnetic features. We further examine the response of the Al dependent spin states on the multiple charge states doping. We find that the defect formation energy, structural and electronic properties can be altered via charge state modulation. The +1 charge doping opens an energy band gap of 1.75 eV. This value corresponds to the wavelength in the visible spectrum, suggesting an ideal material for solar cell absorbers. Our study fine tunes the graphane band gap through the foreign atom doping as well as via defect charge state modulation.

  1. Mechanisms of the negative synergy effect between electron cyclotron current drive and lower hybrid current drive in tokamak

    International Nuclear Information System (INIS)

    Chen Shaoyong; Hong Binbin; Tang Changjian; Yang Wen; Zhang Xinjun

    2013-01-01

    The synergy current drive by combining electron cyclotron wave (ECW) with lower hybrid wave (LHW) can be used to either increase the noninductive current drive efficiency or shape the plasma current profile. In this paper, the synergy current drive by ECW and LHW is studied with numerical simulation. The nonlinear relationship between the wave powers and the synergy current of ECW and LHW is revealed. When the LHW power is small, the synergy current reduces as the ECW power increases, and the synergy current is even reduced to lower than zero, which is referred as negative synergy in the this context. Research shows that the mechanism of the negative synergy is the peaking effect of LHW power profile and the trapped electrons effect. The present research is helpful for understanding the physics of synergy between electron cyclotron current drive and lower hybrid current drive, it can also instruct the design of experiments. (authors)

  2. Numerical analysis on the synergy between electron cyclotron current drive and lower hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Chen, S Y; Hong, B B; Liu, Y; Lu, W; Huang, J; Tang, C J; Ding, X T; Zhang, X J; Hu, Y J

    2012-01-01

    The synergy between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) is investigated numerically with the parameters of the HL-2A tokamak. Based on the understanding of the synergy mechanisms, a high current driven efficiency or a desired radial current profile can be achieved through properly matching the parameters of ECCD and LHCD due to the flexibility of ECCD. Meanwhile, it is found that the total current driven by the electron cyclotron wave (ECW) and the lower hybrid wave (LHW) simultaneously can be smaller than the sum of the currents driven by the ECW and LHW separately, when the power of the ECW is much larger than the LHW power. One of the reasons leading to this phenomenon (referred to as negative synergy in this context) is that fast current-carrying electrons tend to be trapped, when the perpendicular velocity driven by the ECW is large and the parallel velocity decided by the LHW is correspondingly small. (paper)

  3. A Direct Power Conversion Topology for Grid Integration of Hybrid AC/DC Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2013-01-01

    This paper proposes a multiple-input versatile matrix converter (VMC) for integrating hybrid ac/dc energy resources and storages to the power grid. The VMC is developed from the traditional indirect matrix converter but operates in the reverse-boost mode rather than in the forward-buck mode....... The reverse-boost mode is more relevant here since most renewable sources and energy storages have lower voltages than the grid. The eventual VMC developed uses an alternative nine-switch converter, rather than usual six-switch voltage-source converter, for providing six input terminals in total. One three...

  4. Modern ICT Tools: Online Electronic Resources Sharing Using Web ...

    African Journals Online (AJOL)

    Modern ICT Tools: Online Electronic Resources Sharing Using Web 2.0 and Its Implications For Library And Information Practice In Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  5. Hybridized electronic states in potassium-doped picene probed by soft x-ray spectroscopies

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yamane

    2012-12-01

    Full Text Available The electronic structure of the unoccupied and occupied states of potassium (K-doped and undoped picene crystalline films has been investigated by using the element-selective and bulk-sensitive photon-detection methods of X-ray absorption and emission spectroscopies. We observed the formation of the doping-induced unoccupied and occupied electronic states in K-doped picene. By applying the inner-shell resonant-excitation experiments, we observed the evidence for the orbital hybridization between K and picene near the Fermi energy. Furthermore, the resonant X-ray emission experiment suggests the presence of the Raman-active vibronic interaction in K-doped picene. These experimental evidences play a crucial role in the superconductivity of K-doped picene.

  6. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.

    Science.gov (United States)

    Chen, Xiaochao; Chen, Fanjun; Chen, Yanling; Gao, Qiang; Yang, Xiaoli; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2013-03-01

    The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate-change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2-year field experiment under three N applications. The Hybrid-Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha(-1)  yr(-1) with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid-1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain-filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade-off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting

  7. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    International Nuclear Information System (INIS)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-01-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  8. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    Science.gov (United States)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-09-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  9. Detection of secondary electrons with pixelated hybrid semiconductor detectors

    International Nuclear Information System (INIS)

    Gebert, Ulrike Sonja

    2011-01-01

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10 -5 mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm 2 area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm 2 . To achieve this, a new photocathode was mounted in a shorter distance to the detector. The measurements where

  10. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2017-10-01

    Full Text Available The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system should be assessed. Developed a model for the development of the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system, which is based on the main scientific approaches, used in adult education, and consists of five blocks: target, informative, technological, diagnostic and effective.

  11. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  12. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites

    Science.gov (United States)

    Hurtado Parra, Sebastian; Straus, Daniel; Iotov, Natasha; Fichera, Bryan; Gebhardt, Julian; Rappe, Andrew; Subotnik, Joseph; Kikkawa, James; Kagan, Cherie

    Quantum and dielectric confinement effects in Ruddlesden-Popper 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling (EPC) in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures 75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous at temperatures <75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences Grant DE-SC0002158 and the National Science Foundation Graduate Research Fellowship Grant DGE-1321851.

  13. Electronic properties of CdWO{sub 4}: Use of hybrid exchange and correlation functionals

    Energy Technology Data Exchange (ETDEWEB)

    Meena, B. S., E-mail: bsmphysics@gmail.com; Mund, H. S.; Ahuja, B. L. [Department of Physics, University College of Science, M. L. Sukhadia University, Udaipur-313001 (India); Heda, N. L. [Department of Pure and Applied Physics, University of Kota, Kota-324010 (India)

    2016-05-23

    Energy bands, density of states (DOS), Mulliken population (MP) and electron momentum densities (EMDs) of CdWO{sub 4} are presented using hybrid exchange and correlation functionals namely B3LYP, B3PW and PBE0. To validate the present hybrid potentials, theoretical EMDs have been compared with the experimental Compton profile. It is found that LCAO-B3LYP based Compton profile gives a better agreement with experiment than other theoretical profiles. The energy bands and DOS show a wide band gap semiconducting nature of CdWO{sub 4}. The theoretical band gap obtained using B3LYP scheme reconciles well with the available experimental data. In addition, we have also presented the anisotropies in EMDs along [100], [110] and [001] directions and the bonding effects using the MP data.

  14. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  15. Temperature Dependent Surface Structures and Electronic Properties of Organic-Inorganic Hybrid Perovskite Single Crystals

    Science.gov (United States)

    Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.

  16. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  17. Electronic Resource Management System. Vernetzung von Lizenzinformationen

    Directory of Open Access Journals (Sweden)

    Michaela Selbach

    2014-12-01

    Full Text Available In den letzten zehn Jahren spielen elektronische Ressourcen im Bereich der Erwerbung eine zunehmend wichtige Rolle: Eindeutig lässt sich hier ein Wandel in den Bibliotheken (fort vom reinen Printbestand zu immer größeren E-Only-Beständen feststellen. Die stetig wachsende Menge an E-Ressourcen und deren Heterogenität stellt Bibliotheken vor die Herausforderung, die E-Ressourcen effizient zu verwalten. Nicht nur Bibliotheken, sondern auch verhandlungsführende Institutionen von Konsortial- und Allianzlizenzen benötigen ein geeignetes Instrument zur Verwaltung von Lizenzinformationen, welches den komplexen Anforderungen moderner E-Ressourcen gerecht wird. Die Deutsche Forschungsgemeinschaft (DFG unterstützt ein Projekt des Hochschulbibliothekszentrums des Landes Nordrhein-Westfalen (hbz, der Universitätsbibliothek Freiburg, der Verbundzentrale des Gemeinsamen Bibliotheksverbundes (GBV und der Universitätsbibliothek Frankfurt, in dem ein bundesweit verfügbares Electronic Ressource Managementsystem (ERMS aufgebaut werden soll. Ein solches ERMS soll auf Basis einer zentralen Knowledge Base eine einheitliche Nutzung von Daten zur Lizenzverwaltung elektronischer Ressourcen auf lokaler, regionaler und nationaler Ebene ermöglichen. Statistische Auswertungen, Rechteverwaltung für alle angeschlossenen Bibliotheken, kooperative Datenpflege sowie ein über standardisierte Schnittstellen geführter Datenaustausch stehen bei der Erarbeitung der Anforderungen ebenso im Fokus wie die Entwicklung eines Daten- und Funktionsmodells. In the last few years the importance of electronic resources in library acquisitions has increased significantly. There has been a shift from mere print holdings to both e- and print combinations and even e-only subscriptions. This shift poses a double challenge for libraries: On the one hand they have to provide their e-resource collections to library users in an appealing way, on the other hand they have to manage these

  18. Strong Depletion in Hybrid Perovskite p-n Junctions Induced by Local Electronic Doping.

    Science.gov (United States)

    Ou, Qingdong; Zhang, Yupeng; Wang, Ziyu; Yuwono, Jodie A; Wang, Rongbin; Dai, Zhigao; Li, Wei; Zheng, Changxi; Xu, Zai-Quan; Qi, Xiang; Duhm, Steffen; Medhekar, Nikhil V; Zhang, Han; Bao, Qiaoliang

    2018-04-01

    A semiconductor p-n junction typically has a doping-induced carrier depletion region, where the doping level positively correlates with the built-in potential and negatively correlates with the depletion layer width. In conventional bulk and atomically thin junctions, this correlation challenges the synergy of the internal field and its spatial extent in carrier generation/transport. Organic-inorganic hybrid perovskites, a class of crystalline ionic semiconductors, are promising alternatives because of their direct badgap, long diffusion length, and large dielectric constant. Here, strong depletion in a lateral p-n junction induced by local electronic doping at the surface of individual CH 3 NH 3 PbI 3 perovskite nanosheets is reported. Unlike conventional surface doping with a weak van der Waals adsorption, covalent bonding and hydrogen bonding between a MoO 3 dopant and the perovskite are theoretically predicted and experimentally verified. The strong hybridization-induced electronic coupling leads to an enhanced built-in electric field. The large electric permittivity arising from the ionic polarizability further contributes to the formation of an unusually broad depletion region up to 10 µm in the junction. Under visible optical excitation without electrical bias, the lateral diode demonstrates unprecedented photovoltaic conversion with an external quantum efficiency of 3.93% and a photodetection responsivity of 1.42 A W -1 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rectification of electronic heat current by a hybrid thermal diode.

    Science.gov (United States)

    Martínez-Pérez, Maria José; Fornieri, Antonio; Giazotto, Francesco

    2015-04-01

    Thermal diodes--devices that allow heat to flow preferentially in one direction--are one of the key tools for the implementation of solid-state thermal circuits. These would find application in many fields of nanoscience, including cooling, energy harvesting, thermal isolation, radiation detection and quantum information, or in emerging fields such as phononics and coherent caloritronics. However, both in terms of phononic and electronic heat conduction (the latter being the focus of this work), their experimental realization remains very challenging. A highly efficient thermal diode should provide a difference of at least one order of magnitude between the heat current transmitted in the forward temperature (T) bias configuration (Jfw) and that generated with T-bias reversal (Jrev), leading to ℛ = Jfw/Jrev ≫ 1 or ≪ 1. So far, ℛ ≈ 1.07-1.4 has been reported in phononic devices, and ℛ ≈ 1.1 has been obtained with a quantum-dot electronic thermal rectifier at cryogenic temperatures. Here, we show that unprecedentedly high ratios of ℛ ≈ 140 can be achieved in a hybrid device combining normal metals tunnel-coupled to superconductors. Our approach provides a high-performance realization of a thermal diode for electronic heat current that could be successfully implemented in true low-temperature solid-state thermal circuits.

  20. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    Science.gov (United States)

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  1. The Electron Microscopy Outreach Program: A Web-based resource for research and education.

    Science.gov (United States)

    Sosinsky, G E; Baker, T S; Hand, G; Ellisman, M H

    1999-01-01

    We have developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools and expertise for biological electron microscopy. A major focus is molecular electron microscopy, but the site also includes information and links on structural biology at all levels of resolution. This site serves to help integrate or link structural biology techniques in accordance with user needs. The WWW site, called the Electron Microscopy (EM) Outreach Program (URL: http://emoutreach.sdsc.edu), provides scientists with computational and educational tools for their research and edification. In particular, we have set up a centralized resource containing course notes, references, and links to image analysis and three-dimensional reconstruction software for investigators wanting to learn about EM techniques either within or outside of their fields of expertise. Copyright 1999 Academic Press.

  2. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  3. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  4. Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons

    Science.gov (United States)

    El-Taibany, W. F.; Zedan, N. A.; Taha, R. M.

    2018-06-01

    Based on the kinetic theory, Landau damping of dust acoustic waves (DAWs) propagating in a dusty plasma composed of hybrid nonthermal nonextensive distributed electrons, Maxwellian distributed ions and negatively charged dust grains is investigated using Vlasov-Poisson's equations. The characteristics of the DAWs Landau damping are discussed. It is found that the wave frequency increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, q (α ). It is recognized that α plays a significant role in observing damping or growing DAW oscillations. For small values of α , damping modes have been observed until reaching a certain value of α at which ω i vanishes, then a growing mode appears in the case of superextensive electrons. However, only damping DAW modes are observed in case of subextensive electrons. The present study is useful in the space situations where such distribution exists.

  5. Organic electronic materials: Recent advances in the dft description of the ground and excited states using tuned range-separated hybrid functionals

    KAUST Repository

    Körzdörfer, Thomas

    2014-11-18

    Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers.In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter.We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of π-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the

  6. Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

    Directory of Open Access Journals (Sweden)

    Anastasios Stergiou

    2014-09-01

    Full Text Available Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor–acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor–acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor–acceptor graphene-based hybrids, will be discussed.

  7. Determination of the energy of suprathermal electrons during lower hybrid current drive on PBX-M

    International Nuclear Information System (INIS)

    von Goeler, S.; Bernabei, S.; Davis, W.; Ignat, D.; Kaita, R.; Roney, P.; Stevens, J.; Post-Zwicker, A.

    1993-06-01

    Suprathermal electrons are diagnosed by a hard x-ray pinhole camera during lower hybrid current drive on PBX-M. The experimental hard x-ray images are compared with simulated images, which result from an integration of the relativistic bremsstrahlung along lines-of-sight through the bean-shaped plasma. Images with centrally peaked and radially hollow radiation profiles are easily distinguished. The energy distribution of the suprathermal electrons is analyzed by comparing images taken with different absorber foils. An effective photon temperature is derived from the experimental images, and a comparison with simulated photon temperatures yields the energy of the suprathermal electrons. The analysis indicates that the energy of the suprathermal electrons in the hollow discharges is in the 50 to 100 key range in the center of the discharge. There seems to exist a very small higher energy component close to the plasma edge

  8. MODEL OF AN ELECTRONIC EDUCATIONAL RESOURCE OF NEW GENERATION

    Directory of Open Access Journals (Sweden)

    Anatoliy V. Loban

    2016-01-01

    Full Text Available The mathematical structure of the modular architecture of an electronic educational resource (EER of new generation, which allows to decompose the process of studying the subjects of the course at a hierarchically ordered set of data (knowledge and procedures for manipulating them, to determine the roles of participants of process of training of and technology the development and use of EOR in the study procrate.

  9. Hybrid job shop scheduling

    NARCIS (Netherlands)

    Schutten, Johannes M.J.

    1995-01-01

    We consider the problem of scheduling jobs in a hybrid job shop. We use the term 'hybrid' to indicate that we consider a lot of extensions of the classic job shop, such as transportation times, multiple resources, and setup times. The Shifting Bottleneck procedure can be generalized to deal with

  10. Two-stream instabilities from the lower-hybrid frequency to the electron cyclotron frequency: application to the front of quasi-perpendicular shocks

    Directory of Open Access Journals (Sweden)

    L. Muschietti

    2017-09-01

    Full Text Available Quasi-perpendicular supercritical shocks are characterized by the presence of a magnetic foot due to the accumulation of a fraction of the incoming ions that is reflected by the shock front. There, three different plasma populations coexist (incoming ion core, reflected ion beam, electrons and can excite various two-stream instabilities (TSIs owing to their relative drifts. These instabilities represent local sources of turbulence with a wide frequency range extending from the lower hybrid to the electron cyclotron. Their linear features are analyzed by means of both a dispersion study and numerical PIC simulations. Three main types of TSI and correspondingly excited waves are identified: i. Oblique whistlers due to the (so-called fast relative drift between reflected ions/electrons; the waves propagate toward upstream away from the shock front at a strongly oblique angle (θ ∼ 50° to the ambient magnetic field Bo, have frequencies a few times the lower hybrid, and have wavelengths a fraction of the ion inertia length c∕ωpi. ii. Quasi-perpendicular whistlers due to the (so-called slow relative drift between incoming ions/electrons; the waves propagate toward the shock ramp at an angle θ a few degrees off 90°, have frequencies around the lower hybrid, and have wavelengths several times the electron inertia length c∕ωpe. iii. Extended Bernstein waves which also propagate in the quasi-perpendicular domain, yet are due to the (so-called fast relative drift between reflected ions/electrons; the instability is an extension of the electron cyclotron drift instability (normally strictly perpendicular and electrostatic and produces waves with a magnetic component which have frequencies close to the electron cyclotron as well as wavelengths close to the electron gyroradius and which propagate toward upstream. Present results are compared with previous works in order to stress some features not previously analyzed and to define a more

  11. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  12. Radially localized measurements of superthermal electrons using oblique electron cyclotron emission

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1996-05-01

    It is shown that radial localization of optically tin Electron Cyclotron Emission from superthermal electrons can be imposed by observation of emission upshifted from the thermal cyclotron resonance in the horizontal midplane of a tokamak. A new and unique diagnostic has been proposed and operated to make radially localized measurements of superthermal electrons during Lower Hybrid Current Drive on the PBX-M tokamak. The superthermal electron density profile as well as moments of the electron energy distribution as a function of radius are measured during Lower Hybrid Current Drive. The time evolution of these measurements after the Lower Hybrid power is turned off are given and the observed behavior reflects the collisional isotropization of the energy distribution and radial diffusion of the spatial profile

  13. ORNL TNS program: microwave start-up of tokamak plasmas near electron cyclotron and upper hybrid resonances

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Borowski, S.K.

    1977-12-01

    The scenario of toroidal plasma start-up with microwave initiation and heating near the electron cyclotron frequency is suggested and examined here. We assume microwave irradiation from the high field side and an anomalously large absorption of the extraordinary waves near the upper hybrid resonance. The dominant electron energy losses are assumed to be due to magnetic field curvature and parallel drifts, ionization of neutrals, cooling by ions, and radiation by low Z impurities. It is shown by particle and energy balance considerations that electron temperatures around 250 eV and densities of 10 12 to 10 13 cm -3 can be maintained, at least in a narrow region near the upper hybrid resonance, with modest microwave powers in the Impurity Study Experiment (ISX) (120 kW at 28 GHz) and The Next Step (TNS) (0.57 MW at 120 GHz). The loop voltages required for start-up from these initial plasmas are also estimated. It is shown that the loop voltage can be reduced by a factor of five to ten from that for unassisted start-up without an increase in the resistive loss in volt-seconds. If this reduction in loop voltage is verified in the ISX experiments, substantial savings in the cost of power supplies for the ohmic heating (OH) and equilibrium field (EF) coils can be realized in future large tokamaks

  14. Electronic traffic signs: The interplay between hybrid and full matrix e-signs

    Energy Technology Data Exchange (ETDEWEB)

    Lucas-Alba, A.; Hernando Mazon, A.; Blanch Mico, A.M.; Gutierrez Perez, D.; Echeverria Villaspi, J.I.; Landa Tejero-Garces, N.

    2016-07-01

    Road signs constitute a complex and growing communication system where different elements (pictograms, shapes, texts, etc.) are combined following different strategies. In this paper we have confronted drivers with a number of messages (congestion or road works, before, between, after location/s) developed as an adaptation of Advance Location Signs (class G, 1c in the 1968 Convention) to electronic displays. We manipulate two main factors a) the reading strategy (top-down vs. bottom-up) and the type of matrix display (hybrid, dissociating pictogram and text, vs. full matrix), in a repeated measures experimental design. The time taken to answer and the response given (correct, incorrect) was measured for each of the 24 message-blocks. Results show that the organization of the elements displayed is a key determinant for driver comprehension. Further thoughts on the need to understand the interplay between the formats adopted by static vs electronic message signs are provided. (Author)

  15. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

  16. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    International Nuclear Information System (INIS)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed

  17. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    KAUST Repository

    Xu, Xuezhu

    2016-06-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq-1) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays. © 2016 The Royal Society of Chemistry.

  18. Measurement of lower-hybrid-driven current profile by Abel inversion of electron-cyclotron wave transmission spectra

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Caron, X.; Meyer, R.L.

    1991-01-01

    A method for measuring the radial profile of the lower-hybrid-driven current in a low-density tokamak plasma using electron-cyclotron wave attenuation is discussed. This diagnostic scheme is reminiscent of the transmission interferometry approach, commonly used in tokamaks to measure the plasma density, but now the wave amplitude instead of the phase is measured. Wave attenuation of the ordinary mode at ω p much-lt ω c along vertical chords is measured; at these frequencies, the waves are absorbed by the superthermal tail sustained by lower-hybrid waves and the local wave absorption coefficient is proportional to the noninductive current density. The radial profile of this current is obtained from Abel inversion. An application to the Tore Supra tokamak is presented

  19. Role of electron back action on photons in hybridizing double-layer graphene plasmons with localized photons

    Science.gov (United States)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey

    2018-05-01

    In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.

  20. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    Science.gov (United States)

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  1. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe

    Science.gov (United States)

    Wright, Joshua T.; Forsythe, Kyle; Hutchins, Jamie; Meulenberg, Robert W.

    2016-04-01

    This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of these materials. This information provides insights into many of the physical properties of doped QDs, including the highly debated near-infrared photoluminescence in Cu doped CdSe QDs. We show that all our results point to a common theme of orbital hybridization in Cu doped CdSe QDs which leads to optically and electronically active states below the conduction band minimum. Our model is supported from current-voltage measurements of doped and undoped materials, which exhibit Schottky to Ohmic behavior with Cu doping, suggestive of a tuning of the lowest energy states near the Fermi level.This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of

  2. Measurement and modelling of suprathermal electron bursts generated in front of a lower hybrid antenna

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Fuchs, Vladimír; Petržílka, Václav; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Hillairet, J.

    2016-01-01

    Roč. 56, č. 3 (2016), č. článku 036004. ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : lower hybrid * scrape off layer * SOL turbulence * Landau damping * suprathermal electrons Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/3/036004

  3. High-current electron beam coupling to hybrid waveguide and plasma modes in a dielectric Cherenkov maser with a plasma layer

    International Nuclear Information System (INIS)

    Shlapakovski, Anatoli S.

    2002-01-01

    The linear theory of a dielectric Cherenkov maser with a plasma layer has been developed. The dispersion relation has been derived for the model of infinitely thin, fully magnetized, monoenergetic hollow electron beam, in the axisymmetric case. The results of the numerical solution of the dispersion relation and the analysis of the beam coupling to hybrid waves, both hybrid waveguide and hybrid plasma modes, are presented. For the hybrid waveguide mode, spatial growth rate dependences on frequency at different plasma densities demonstrate improvement in gain for moderate densities, but strong shifting the amplification band and narrowing the bandwidth. For the hybrid plasma mode, the case of mildly relativistic, 200-250 keV beams is of interest, so that the wave phase velocity is just slightly greater than the speed of light in a dielectric medium. It has been shown that depending on beam and plasma parameters, the hybrid plasma mode can be separated from the hybrid waveguide mode, or be coupled to it through the beam resulting in strong gain increase, or exhibit a flat gain vs frequency dependence over a very broad band. The parameters, at which the -3 dB bandwidth calculated for 30 dB peak gain exceeds an octave, have been found

  4. Study in electron microscopy of the formation of the hybrid layer using adhesive systems One Coat and Experimental (EXL 759), at the Facultad de Odontologia of the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Santamaria Guzman, S. Marcela; Guevara Lopez, Rodrigo

    2012-01-01

    The formation of the hybrid layer is observed in dental pieces in vitro, utilizing conventional adhesives systems and of self etching with different times of acid etching, by applying of electron microscopy. Samples of dental pieces are prepared utilizing conventional adhesive systems as Single Bond 2 of 3M, One Coat of Coltene and the adhesive self etching Experimental (EXL 759) of 3M. Samples of dental pieces collected have been molars recently extracted and later stored in jars with water. Samples prepared with the adhesive systems are observed in the electron microscope to obtain images of the hybrid layers formed. The hybrid layers formed are compared observing the photographs of the images obtained in the electron microscope. The adhesive system that has allowed the formation of a hybrid layer more convenient is determined. The time of acid etching is determined and has interfered in the formation of a hybrid layer more stable [es

  5. Current-drive and plasma formation experiments on the Versator-II tokamak using lower-hybrid and electron-cyclotron waves

    International Nuclear Information System (INIS)

    Colborn, J.A.

    1992-01-01

    During lower-hybrid current-driven (LHCD) tokamak discharges with thermal electron temperature T e ∼ 150 eV, a two-parallel-temperature tail is observed in the electron distribution function. The cold tail extends to parallel energy E parallel ∼ 4.5 keV with temperature T cold tail ∼ 1.5 keV, and the hot tail extends to E parallel > 150 keV with T hot tail > 40 keV. Fokker-Planck computer simulations suggest the cold tail is created by low power, high-N parallel sidelobes in the lower-hybrid antenna spectrum, and that these sidelobes bridge the spectral gap, enabling current drive on small tokamaks such as Versator. During plasma-formation experiments using 28 GHz electroncyclotron (EC) waves, the plasma is born near the EC layer, then moves toward the upper-hybrid (UH) layer within 100-200μs. Wave power is detected in the plasma with frequency f = 300 MHz. Measured turbulent plasma fluctuations are correlated with decay-wave amplitude. Electron-cyclotron current-drive (ECCD) is observed with loop voltage V loop ≤ 0 and fully sustained plasma current I p approx-lt 15 kA at densities up to [n e ] = 2 x 10 12 cm -3 . The efficiency falls rapidly to zero as the density is raised, suggesting the ECCD depends on low collisonality. The EC waves enhance magnetic turbulence in the frequency range 50 kHz approx-lt f approx-lt 400 kHz by up to an order of magnitude. The time-of-arrival of the turbulence to probes at the plasma boundary is longer when the EC layer is farther from the probes

  6. GUIDELINES FOR EVALUATION OF PSYCHOLOGICAL AND PEDAGOGICAL QUALITY CHARACTERISTICS OF ELECTRONIC EDUCATIONAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Galina P. Lavrentieva

    2014-05-01

    Full Text Available The article highlights the causes of insufficient effective use of electronic learning resources and sets out the guidelines on ways to solve the aforementioned problems. The set of didactic, methodical, psychological, pedagogical, design and ergonomic quality requirements is considered for evaluation, selection and application of information and communication technologies in the educational process. The most appropriate mechanisms for the ICT introduction into the learning process are disclosed as it should meet the specific learning needs of the student and the objectives of the educational process. The guidance for psycho-educational assessment of quality of electronic educational resources is provided. It is argued that the effectiveness of the ICT use is to be improved by means of quality evaluation mechanisms involved into the educational process.

  7. Availability, Use and Constraints to Use of Electronic Information Resources by Postgraduates Students at the University of Ibadan

    Directory of Open Access Journals (Sweden)

    Dare Samuel Adeleke

    2017-12-01

    Full Text Available Availability, awareness and use of electronic resources provide access to authoritative, reliable, accurate and timely access to information. The use of electronic information resources (EIRs can enable innovation in teaching and increase timeliness in research of postgraduate students which will eventual result into encouragement of the expected research-led enquiry in this digital age. The study adopted a descriptive survey design. Samples of 300 of postgraduate students within seven out 13 Faculties were randomly selected. Data were collected using questionnaire designed to elicit response from respondents and data were analyzed using descriptive statistics methods percentages, mean, and standard deviation. Results indicated that internet was ranked most available and used in the university. Low level of usage of electronic resources, in particular, full texts data bases is linked to a number of constraints: Interrupted power supply was ranked highest among other factors as speed and capacity of computers, retrieval of records with high recall and low precision, retrieving records relevant to information need, lack of knowledge of search techniques to retrieve information effectively, non possession of requisite IT skills and problems accessing the internet. The study recommended that usage of electronic resources be made compulsory, intensifying awareness campaigns concerning the availability, training on use of electronic resources and the problem of power outage be addressed.

  8. Lower hybrid heating data on the Wega experiment revisited using ion stochastic heating and electron Landau damping theories

    International Nuclear Information System (INIS)

    Gormezano, C.; Hess, W.; Ichtchenko, G.

    1980-07-01

    The already obtained data on the Wega Tokamak by lower hybrid heating (f=500 MHz - Psub(HF)=130 KW) are revisited in the light of recent theories on ion stochastic heating and quasi-linear electron Landau damping. It is possible to correctly estimate with these theories the fast ion mean energy, the H.F. power density coupled to the ions and that coupled to the electrons. The values of the parallel index of refraction, Nsub(//), which are necessary to obtain a good quantitative agreement between experiment and theoretical estimates, are the same for the ions and for the electrons, even though at higher values than expected

  9. Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buijsse, Bart; Laarhoven, Frank M.H.M. van [FEI Company, PO Box 80066, 5600 KA Eindhoven (Netherlands); Schmid, Andreas K.; Cambie, Rossana; Cabrini, Stefano; Jin, Jian [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Glaeser, Robert M., E-mail: rmglaeser@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2011-12-15

    A novel design is described for an aperture that blocks a half-plane of the electron diffraction pattern out to a desired scattering angle, and then - except for a narrow support beam - transmits all of the scattered electrons beyond that angle. Our proposed tulip-shaped design is thus a hybrid between the single-sideband (ssb) aperture, which blocks a full half-plane of the diffraction pattern, and the conventional (i.e. fully open) double-sideband (dsb) aperture. The benefits of this hybrid design include the fact that such an aperture allows one to obtain high-contrast images of weak-phase objects with the objective lens set to Scherzer defocus. We further demonstrate that such apertures can be fabricated from thin-foil materials by milling with a focused ion beam (FIB), and that such apertures are fully compatible with the requirements of imaging out to a resolution of at least 0.34 nm. As is known from earlier work with single-sideband apertures, however, the edge of such an aperture can introduce unwanted, electrostatic phase shifts due to charging. The principal requirement for using such an aperture in a routine data-collection mode is thus to discover appropriate materials, protocols for fabrication and processing and conditions of use such that the hybrid aperture remains free of charging over long periods of time. -- Highlights: Black-Right-Pointing-Pointer New objective-aperture design is proposed for imaging weak-phase objects. Black-Right-Pointing-Pointer Design produces single-sideband contrast at low spatial frequencies. Black-Right-Pointing-Pointer Design also retains Scherzer-defocus phase contrast at higher resolution. Black-Right-Pointing-Pointer Proof-of-concept results are presented for microfabricated apertures. Black-Right-Pointing-Pointer Charging of such apertures during use remains an experimental challenge.

  10. A Study on Developing Evaluation Criteria for Electronic Resources in Evaluation Indicators of Libraries

    Science.gov (United States)

    Noh, Younghee

    2010-01-01

    This study aimed to improve the current state of electronic resource evaluation in libraries. While the use of Web DB, e-book, e-journal, and other e-resources such as CD-ROM, DVD, and micro materials is increasing in libraries, their use is not comprehensively factored into the general evaluation of libraries and may diminish the reliability of…

  11. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter

    International Nuclear Information System (INIS)

    Chen, Leifeng; He, Hong; Yu, Hua; Cao, Yiqi; Lei, Da; Menggen, QiQiGe; Wu, Chaoxing; Hu, Liqin

    2014-01-01

    The graphene (GP) and multi-walled carbon nanotubes (MCNTs) hybrid nanostructure emitter was constructed by a larger scale electrophoretic deposition (EPD) method. The field emission (FE) performance of the hybrid emitter is greatly improved compared with that of only GP or MCNTs emitter. The low turn-on electric field (EF), the low threshold EF and the reliability FE properties are obtained from the hybrid emitter. The better FE properties result from the improved electrical properties. For further enhancement FE of hybrids, Ag Nanoparticles (NPs) were decorated on the hybrids and FE characteristics were also studied. These studies indicate that we can use the hybrid nanostructure to improve conductivity and contact resistance, which results in enhancement of the FE properties

  12. A neural network detection system for lower-hybrid cavities in electron plasma density measured by the FREJA satellite

    International Nuclear Information System (INIS)

    Waldemark, J.; Karlsson, Jan

    1995-03-01

    This paper presents a lower-hybrid cavity detection system, CDS, for measurements of electron plasma density on the FREJA satellite wave experiment. The system can reduce the amount of data to be analysed by as much as 96% and still retain more than 85% of the desired information. The CDS is a combination of a hybrid neural network, HNN and expert rules. The HNN is a Self Organizing Map, SOM, combined with a feed forward back propagation neural net, BP. The CDS can be controlled by the user to operate with various degrees of sensitivity. Maximum detection capability is as high as 95% with data reduction lowered to 85%. 10 refs

  13. Nanostructured hybrid films containing nanophosphor: Fabrication and electronic spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, S.A. [Instituto de Biociencias, Letras e Ciencias Exatas, UNESP - Univ Estadual Paulista, Rua Cristovao Colombo, 2265, 15054-000 Sao Jose do Rio Preto, SP (Brazil); Aoki, P.H.B.; Constantino, C.J.L. [Faculdade de Ciencias e Tecnologia, UNESP - Univ Estadual Paulista, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP (Brazil); Aroca, R.F. [Materials and Surface Science Group, University of Windsor, Windsor, Ont., Canada N9B3P4 (Canada); Pires, A.M., E-mail: anapires@fct.unesp.br [Faculdade de Ciencias e Tecnologia, UNESP - Univ Estadual Paulista, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP (Brazil)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Hybrid film containing the cationic polyelectrolyte PAH and Y{sub 2}O{sub 3}: Er, Yb nanophosphor. Black-Right-Pointing-Pointer LbL film growth was monitored by absorbance x concentration in UV-Vis absorption. Black-Right-Pointing-Pointer FTIR indicated existence of secondary interactions between PAH - nanophosphor layers. Black-Right-Pointing-Pointer The morphology and the spatial distribution of the LbL film were analyzed by Raman. Black-Right-Pointing-Pointer We observed intense electronic emission lines from doping ions in the micro-Raman. - Abstract: The intensive research of the optical properties of rare-earth ions is due to the high quantum efficiency of their emission, very narrow bands, and excellent fluorescence monochromaticity. The photoluminescence data presented here show that the nanophosphor remains a green emitter in Layer-by-Layer (LbL) films leading to potential application in optical devices or biological labeling. The LbL technique, an established method for thin film fabrication with molecular architecture control, is used in the manufacture of a hybrid film containing the cationic polyelectrolyte poly (allylamine hydrochloride) (PAH) and Y{sub 2}O{sub 3}: Er, Yb nanophosphor. The spectroscopic properties of this luminescent nanomaterial are extracted from the spectral data of the powder, cast film and LbL films. The growth of the LbL film was monitored by absorbance versus concentration plots in ultraviolet-visible (UV-Vis) absorption spectroscopy. The presence of both PAH and nanophosphor in the LbL film was confirmed by Fourier transform infrared (FTIR) absorption spectroscopy. The FTIR data also ruled out the existence of chemical interactions between the PAH and nanophosphor layers, which means that secondary interactions (like Van der Waals forces) might be the driving forces for LbL film growth. The morphology and the spatial distribution of the LbL film components along the film surface were

  14. Applications of the Hybrid Theory to the Scattering of Electrons from HE+ and Li++ and Resonances in these Systems

    Science.gov (United States)

    Bhatia, Anand K.

    2008-01-01

    Applications of the hybrid theory to the scattering of electrons from Ile+ and Li++ and resonances in these systems, A. K. Bhatia, NASA/Goddard Space Flight Center- The Hybrid theory of electron-hydrogen elastic scattering [I] is applied to the S-wave scattering of electrons from He+ and Li++. In this method, both short-range and long-range correlations are included in the Schrodinger equation at the same time. Phase shifts obtained in this calculation have rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach projection operator formalism [2], the close-coupling approach [3], and Harris-Nesbet method [4]. The agreement among all the calculations is very good. These systems have doubly-excited or Feshbach resonances embedded in the continuum. The resonance parameters for the lowest ' S resonances in He and Li+ are calculated and they are compared with the results obtained using the Feshbach projection operator formalism [5,6]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances and the continuum in which these resonances are embedded.

  15. UCare navigator: A dynamic guide to the hybrid electronic and paper medical record in transition.

    Science.gov (United States)

    Bokser, Seth J; Cucina, Russell J; Love, Jeffrey S; Blum, Michael S

    2007-10-11

    During the phased transition from a paper-based record to an electronic health record (EHR), we found that clinicians had difficulty remembering where to find important clinical documents. We describe our experience with the design and use of a web-based map of the hybrid medical record. With between 50 to 75 unique visits per day, the UCare Navigator has served as an important aid to clinicians practicing in the transitional environment of a large EHR implementation.

  16. Optical orientation in ferromagnet/semiconductor hybrids

    International Nuclear Information System (INIS)

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  17. Optical orientation in ferromagnet/semiconductor hybrids

    Science.gov (United States)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  18. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  19. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response.

    Science.gov (United States)

    Du, Aijun; Sanvito, Stefano; Li, Zhen; Wang, Dawei; Jiao, Yan; Liao, Ting; Sun, Qiao; Ng, Yun Hau; Zhu, Zhonghua; Amal, Rose; Smith, Sean C

    2012-03-07

    Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long-range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C(3)N(4)) and electronically active graphene. We find an inhomogeneous planar substrate (g-C(3)N(4)) promotes electron-rich and hole-rich regions, i.e., forming a well-defined electron-hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C(3)N(4) substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C(3)N(4) interface opens a 70 meV gap in g-C(3)N(4)-supported graphene, a feature that can potentially allow overcoming the graphene's band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C(3)N(4) is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C(3)N(4) monolayer, the hybrid graphene/g-C(3)N(4) complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications. © 2012 American Chemical Society

  20. FY1995 study of electronic coservice project which used Optical-Smart Hybrid Card; 1995 nendo hikari IC hybrid card wo mochiite katei kara ukeru gyosei denshika service project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As one of advanced multi media service, We can think about electoronization-network changing of the public coservice. that the official system provides. It can be expected to improve the life environment for a nation by the electronization. The purpose of this research is to clarify the off-line administration of an individual information and the issue on security. We constructed the experimental system using the Internet and Optical-IC hybrid card that an individual information is administrated. The system provides the following services. (1) On-stop moving service (2) Electronic certificate publishing service (3) Electronic ticket publishing service We have mounted client terminals at Fuchu city hall, Yokohama city hall, and Keio University, and made field experimentation. (NEDO)

  1. Hydrogen atom as a quantum-classical hybrid system

    International Nuclear Information System (INIS)

    Zhan, Fei; Wu, Biao

    2013-01-01

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  2. Nanotubule and Tour Molecule Based Molecular Electronics: Suggestion for a Hybrid Approach

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Recent experimental and theoretical attempts and results indicate two distinct broad pathways towards future molecular electronic devices and architectures. The first is the approach via Tour type ladder molecules and their junctions which can be fabricated with solution phase chemical approaches. Second are fullerenes or nanotubules and their junctions which may have better conductance, switching and amplifying characteristics but can not be made through well controlled and defined chemical means. A hybrid approach combining the two pathways to take advantage of the characteristics of both is suggested. Dimension and scale of such devices would be somewhere in between isolated molecule and nanotubule based devices but it maybe possible to use self-assembly towards larger functional and logicalunits.

  3. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    OpenAIRE

    Anton M. Avramchuk

    2017-01-01

    The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing ...

  4. Highly segmented large-area hybrid photodiodes with bialkali photocathodes and enclosed VLSI readout electronics

    CERN Document Server

    Braem, André; Filthaut, Frank; Go, A; Joram, C; Weilhammer, Peter; Wicht, P; Dulinski, W; Séguinot, Jacques; Wenzel, H; Ypsilantis, Thomas

    2000-01-01

    We report on the principles, design, fabrication, and operation of a highly segmented, large-area hybrid photodiode, which is being developed in the framework of the LHCb RICH project. The device consists of a cylindrical, 127 mm diameter vacuum envelope capped with a spherical borosilicate UV-glass entrance window, with an active-to-total-area fraction of 81A fountain-focusing electron optics is used to demagnify the image onto a 50 mm diameter silicon sensor, containing 2048 pads of size 1*1 mm/sup 2/. (10 refs).

  5. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik⊥ and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  6. Determining the level of awareness of the physicians in using the variety of electronic information resources and the effecting factors.

    Science.gov (United States)

    Papi, Ahmad; Ghazavi, Roghayeh; Moradi, Salimeh

    2015-01-01

    Understanding of the medical society's from the types of information resources for quick and easy access to information is an imperative task in medical researches and management of the treatment. The present study was aimed to determine the level of awareness of the physicians in using various electronic information resources and the factors affecting it. This study was a descriptive survey. The data collection tool was a researcher-made questionnaire. The study population included all the physicians and specialty physicians of the teaching hospitals affiliated to Isfahan University of Medical Sciences and numbered 350. The sample size based on Morgan's formula was set at 180. The content validity of the tool was confirmed by the library and information professionals and the reliability was 95%. Descriptive statistics were used including the SPSS software version 19. On reviewing the need of the physicians to obtain the information on several occasions, the need for information in conducting the researches was reported by the maximum number of physicians (91.9%) and the usage of information resources, especially the electronic resources, formed 65.4% as the highest rate with regard to meeting the information needs of the physicians. Among the electronic information databases, the maximum awareness was related to Medline with 86.5%. Among the various electronic information resources, the highest awareness (43.3%) was related to the E-journals. The highest usage (36%) was also from the same source. The studied physicians considered the most effective deterrent in the use of electronic information resources as being too busy and lack of time. Despite the importance of electronic information resources for the physician's community, there was no comprehensive knowledge of these resources. This can lead to less usage of these resources. Therefore, careful planning is necessary in the hospital libraries in order to introduce the facilities and full capabilities of the

  7. Managing Selection for Electronic Resources: Kent State University Develops a New System to Automate Selection

    Science.gov (United States)

    Downey, Kay

    2012-01-01

    Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…

  8. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  9. A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China

    Science.gov (United States)

    Li, Zhi; Li, Chunhui; Wang, Xuan; Peng, Cong; Cai, Yanpeng; Huang, Weichen

    2018-01-01

    Problems with water resources restrict the sustainable development of a city with water shortages. Based on system dynamics (SD) theory, a model of sustainable utilization of water resources using the STELLA software has been established. This model consists of four subsystems: population system, economic system, water supply system and water demand system. The boundaries of the four subsystems are vague, but they are closely related and interdependent. The model is applied to Zhengzhou City, China, which has a serious water shortage. The difference between the water supply and demand is very prominent in Zhengzhou City. The model was verified with data from 2009 to 2013. The results show that water demand of Zhengzhou City will reach 2.57 billion m3 in 2020. A water resources optimization model is developed based on interval-parameter two-stage stochastic programming. The objective of the model is to allocate water resources to each water sector and make the lowest cost under the minimum water demand. Using the simulation results, decision makers can easily weigh the costs of the system, the water allocation objectives, and the system risk. The hybrid system dynamics method and optimization model is a rational try to support water resources management in many cities, particularly for cities with potential water shortage and it is solidly supported with previous studies and collected data.

  10. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  11. Tuning the hybridization and magnetic ground state of electron and hole doped CeOs2Al10 : An x-ray spectroscopy study

    Science.gov (United States)

    Chen, Kai; Sundermann, Martin; Strigari, Fabio; Kawabata, Jo; Takabatake, Toshiro; Tanaka, Arata; Bencok, Peter; Choueikani, Fadi; Severing, Andrea

    2018-04-01

    Here we present linear and circular polarized soft x-ray absorption spectroscopy (XAS) data at the Ce M4 ,5 edges of the electron (Ir) and hole-doped (Re) Kondo semiconductor CeOs2Al10 . Both substitutions have a strong impact on the unusual high Néel temperature TN=28.5 K, and also the direction of the ordered moment in case of Ir. The substitution dependence of the linear dichroism is weak thus validating the crystal-field description of CeOs2Al10 being representative for the Re and Ir substituted compounds. The impact of electron and hole doping on the hybridization between conduction and 4 f electrons is related to the amount of f0 in the ground state and reduction of x-ray magnetic circular dichroism. A relationship of c f -hybridization strength and enhanced TN is discussed. The direction and doping dependence of the circular dichroism strongly supports the idea of strong Kondo screening along the crystallographic a direction.

  12. End-of-life resource recovery from emerging electronic products

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Habib, Komal; Cimpan, Ciprian

    2016-01-01

    Integrating product design with appropriate end-of-life (EoL) processing is widely recognized to have huge potentials in improving resource recovery from electronic products. In this study, we investigate both the product characteristics and EoL processing of robotic vacuum cleaner (RVC), as a case...... of emerging electronic product, in order to understand the recovery fate of different materials and its linkage to product design. Ten different brands of RVC were dismantled and their material composition and design profiles were studied. Another 125 RVCs (349 kg) were used for an experimental trial...... at a conventional ‘shred-and-separate’ type preprocessing plant in Denmark. A detailed material flow analysis was performed throughout the recycling chain. The results show a mismatch between product design and EoL processing, and the lack of practical implementation of ‘Design for EoL’ thinking. In the best...

  13. Design and realization of a fast low noise electronics for a hybrid pixel X-ray detector dedicated to small animal imaging

    International Nuclear Information System (INIS)

    Chantepie, B.

    2008-12-01

    Since the invention of computerized tomography (CT), charge integration detector were widely employed for X-ray biomedical imaging applications. Nevertheless, other options exist. A new technology of direct detection using semiconductors has been developed for high energy physics instrumentation. This new technology, called hybrid pixel detector, works in photon counting mode and allows for selecting the minimum energy of the counted photons. The ImXgam research team at CPPM develops the PIXSCAN demonstrator, a CT-scanner using the hybrid pixel detector XPAD. The aim of this project is to evaluate the improvement in image quality and in dose delivered during X-ray examinations of a small animal. After a first prototype of a hybrid pixel detector XPAD1 proving the feasibility of the project, a complete imager XPAD2 was designed and integrated in the PIXSCAN demonstrator. Since then, with the evolution of microelectronic industry, important improvements are conceivable. To reducing the size of pixels and to improving the energy resolution of detectors, a third design XPAD3 was conceived and will be soon integrated in a second generation of PIXSCAN demonstrator. In this project, my thesis work consisted in taking part to the design of the detector readout electronics, to the characterization of the chips and of the hybrid pixel detectors, and also to the definition of a auto-zeroing architecture for pixels. The first and second chapters present X-ray medical imaging and particle detection with semi-conductors and its modelling. The third chapter deals with the specifications of electronic circuits for imaging applications first for analog pixels then for digital pixels and describes the general architecture of the integrated circuits. The validation tests are presented in the fourth chapter while the last chapter gives an account of expected changes in pixel electronics

  14. Hybrid circuit prototypes for the CMS Tracker upgrade front-end electronics

    International Nuclear Information System (INIS)

    Blanchot, G; Honma, A; Kovacs, M; Braga, D; Raymond, M

    2013-01-01

    New high-density interconnect hybrid circuits are under development for the CMS tracker modules at the HL-LHC. These hybrids will provide module connectivity between flip-chip front-end ASICs, strip sensors and a service board for the data transmission and powering. Rigid organic-based substrate prototypes and also a flexible hybrid design have been built, containing up to eight front-end flip chip ASICs. A description of the function of the hybrid circuit in the tracker, the first prototype designs, results of some electrical and mechanical properties from the prototypes, and examples of the integration of the hybrids into detector modules are presented

  15. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  16. Use of electronic sales data to tailor nutrition education resources for an ethnically diverse population.

    Science.gov (United States)

    Eyles, H; Rodgers, A; Ni Mhurchu, C

    2010-02-01

    Nutrition education may be most effective when personally tailored. Individualised electronic supermarket sales data offer opportunities to tailor nutrition education using shopper's usual food purchases. The present study aimed to use individualised electronic supermarket sales data to tailor nutrition resources for an ethnically diverse population in a large supermarket intervention trial in New Zealand. Culturally appropriate nutrition education resources (i.e. messages and shopping lists) were developed with the target population (through two sets of focus groups) and ethnic researchers. A nutrient database of supermarket products was developed using retrospective sales data and linked to participant sales to allow tailoring by usual food purchases. Modified Heart Foundation Tick criteria were used to identify 'healthier' products in the database suitable for promotion in the resources. Rules were developed to create a monthly report listing the tailored and culturally targeted messages to be sent to each participant, and to produce automated, tailored shopping lists. Culturally targeted nutrition messages (n = 864) and shopping lists (n = 3 formats) were developed. The food and nutrient database (n = 3000 top-selling products) was created using 12 months of retrospective sales data, and comprised 60%'healthier' products. Three months of baseline sales data were used to determine usual food purchases. Tailored resources were successfully mailed to 123 Māori, 52 Pacific and 346 non-Māori non-Pacific participants over the 6-month trial intervention period. Electronic supermarket sales data can be used to tailor nutrition education resources for a large number of ethnically diverse supermarket shoppers.

  17. Impact of Vehicle Hybridization on Fuel Consumption Economy

    OpenAIRE

    Rezaei, Javad

    2018-01-01

    Air pollution, limited number of knownpetroleum resources and increasing of greenhouse gases have led the governmentsand researchers to have more investigation on Hybrid Electric Vehicles.Considering technical availability and manufacturing facilities with regardingto the final vehicle price, hybridization of conventional vehicles could be abetter choice than designing and manufacturing a new hybrid electric car.Parallel-Series hybrid electric vehicles(power-split) which is used in this study...

  18. Availability, Level of Use and Constraints to Use of Electronic Resources by Law Lecturers in Public Universities in Nigeria

    Science.gov (United States)

    Amusa, Oyintola Isiaka; Atinmo, Morayo

    2016-01-01

    (Purpose) This study surveyed the level of availability, use and constraints to use of electronic resources among law lecturers in Nigeria. (Methodology) Five hundred and fifty-two law lecturers were surveyed and four hundred and forty-two responded. (Results) Data analysis revealed that the level of availability of electronic resources for the…

  19. Organic electronic materials: Recent advances in the dft description of the ground and excited states using tuned range-separated hybrid functionals

    KAUST Repository

    Kö rzdö rfer, Thomas; Bredas, Jean-Luc

    2014-01-01

    -band-gap polymers.In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation

  20. Hybrid additive manufacturing of 3D electronic systems

    International Nuclear Information System (INIS)

    Li, J; Wasley, T; Nguyen, T T; Kay, R; Ta, V D; Shephard, J D; Stringer, J; Smith, P; Esenturk, E; Connaughton, C

    2016-01-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10 −4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability. (paper)

  1. A systematic review of portable electronic technology for health education in resource-limited settings.

    Science.gov (United States)

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent

  2. Lower hybrid waves at the shock front: a reassessment

    Directory of Open Access Journals (Sweden)

    S. N. Walker

    2008-03-01

    Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik and magnetised electrons (ω=Vek||. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.

  3. SAGES: a suite of freely-available software tools for electronic disease surveillance in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Sheri L Lewis

    Full Text Available Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations.

  4. Use and Cost of Electronic Resources in Central Library of Ferdowsi University Based on E-metrics

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Davarpanah

    2012-07-01

    Full Text Available The purpose of this study was to investigate the usage of electronic journals in Ferdowsi University, Iran based on e-metrics. The paper also aimed to emphasize the analysis of cost-benefit and the correlation between the journal impact factors and the usage data. In this study experiences of Ferdowsi University library on licensing and usage of electronic resources was evaluated by providing a cost-benefit analysis based on the cost and usage statistics of electronic resources. Vendor-provided data were also compared with local usage data. The usage data were collected by tracking web-based access locally, and by collecting vender-provided usage data. The data sources were one-year of vendor-supplied e-resource usage data such as Ebsco, Elsevier, Proquest, Emerald, Oxford and Springer and local usage data collected from the Ferdowsi university web server. The study found that actual usage values differ for vendor-provided data and local usage data. Elsevier has got the highest usage degree in searches, sessions and downloads. Statistics also showed that a small number of journals satisfy significant amount of use while the majority of journals were used less frequent and some were never used at all. The users preferred the PDF rather than HTML format. The data in subject profile suggested that the provided e-resources were best suited to certain subjects. There was no correlation between IF and electronic journal use. Monitoring the usage of e-resources gained increasing importance for acquisition policy and budget decisions. The article provided information about local metrics for the six surveyed vendors/publishers, e.g. usage trends, requests per package, cost per use as related to the scientific specialty of the university.

  5. Basic Principle of Advanced Oxidation Technology : Hybrid Technology Based on Ozone and Titania

    International Nuclear Information System (INIS)

    Widdi Usada; Agus Purwadi

    2007-01-01

    One of problems in health environment is organic liquid waste from many pollutant resources. Environmental friendly technology for degrading this waste is ozone which produced by plasma discharge technology, but its capability is limited. However, it is needed a new environmental friendly technology which has stronger capability. This new technology is so called advanced oxidation technology. Advanced oxidation technology is a hybrid of ozone, peroxide, UV light and photo catalyst. In this paper, it is introduced basic principle of hybrid of ozone and titania photo catalyst semiconductor. The capability of organic liquid degradation will be stronger because there is new radical which is produced by chemical reaction between electron-hole pair from photo catalyst titania and water or oxygen. This new radical then degrades this organic pollutant. This technology is used to degrade phenol. (author)

  6. Estimating the right allocation of resources on weekends and public holidays in Green Zone using hybrid methods

    Science.gov (United States)

    Yusoff, Nazhatul Sahima Mohd; Liong, Choong-Yeun; Ismail, Wan Rosmanira; Noh, Abu Yazid Md; Noor, Nur Amalina Mohd

    2018-04-01

    Long patient waiting time and congestion is a major problem faced by Green Zone in Emergency Department at Hospital Universiti Sains Malaysia (EDHUSM) especially during weekends and public holidays. Even though the Green Zone is servicing only the non-critical patients, patient waiting time, causing the department fails to achieve its Key Performance Indicator (KPI). The long waiting time is due to the insufficient resources provided during the weekends and public holidays versus the large number of patients. Currently, only two doctors supported by two nurses are scheduled for every shift during weekends and public holidays. The numbers of patients are higher during weekends and public holidays as compared to weekdays, but the scheduled number of doctors and nurses are the same as weekdays. Therefore, this study presents a hybrid method to estimate the right number of doctors and nurses for improving the services of the Green Zone during weekends and public holidays. Fifty scenarios based on current and proposed schedules of doctors and nurses are simulated and analysed using the hybrid method of Discrete Event Simulation (DES) and Data Envelopment Analysis (DEA). Banker, Charnes and Cooper (BCC) input-oriented model and Super-Efficiency models of DEA were used to analyse the efficiency of the scenarios. The results show that the best schedule is a combination of four doctors supported by four nurses in every shift during weekends and public holidays for the Green Zone. The findings show that such schedule will not only help the department to achieve its KPI but also enable a more optimal utilization of the resources.

  7. Experimental demonstration of synergy between electron cyclotron and lower hybrid current drive on Tore Supra

    International Nuclear Information System (INIS)

    Artaud, J.F.; Giruzzi, G.; Dumont, R.J.; Imbeaux, F.; Bibet, P.; Bouquey, F.; Clary, J.; Ekedahl, A.; Hoang, G.T.; Lennholm, M.; Magne, R.; Segui, J.L.

    2004-01-01

    Non-inductive current drive (CD) has two main applications in tokamaks: sustainment of a substantial fraction of the toroidal plasma current necessary for the plasma confinement and control of the plasma stability and transport properties by appropriate shaping of the current density profile. For the first kind of applications, lower hybrid (LH) waves are known to provide the highest efficiency (defined as the ratio of the driven current to the injected wave power), although with limited control capability. Conversely, electron cyclotron (EC) waves drive highly localized currents, and are therefore particularly suited for control purposes, but their CD efficiency is much lower than that of LH waves (typically, an order of magnitude in present day experiments). Various calculations have demonstrated an interesting property: the current driven by the simultaneous use of the two waves, I(LH+EC), can be significantly larger than the sum I(LH)+I(EC) of the currents separately driven by the two waves in the same plasma conditions. This property, called synergy effect. The peculiar experimental conditions attainable on the Tore Supra tokamak have allowed the first experimental demonstration of the synergy between EC and LH current drive. The significant improvement of the electron cyclotron current drive (ECCD) efficiency in the presence of low hybrid current drive (LHCD), predicted by kinetic theory and confirmed by stationary experiments on Tore Supra, opens up the possibility of using ECCD as an efficient current profile control tool in LHCD plasmas

  8. Dependence of synergy current driven by lower hybrid wave and electron cyclotron wave on the frequency and parallel refractive index of electron cyclotron wave for Tokamaks

    International Nuclear Information System (INIS)

    Huang, J.; Chen, S. Y.; Tang, C. J.

    2014-01-01

    The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N // of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainly caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space

  9. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function.

    Science.gov (United States)

    Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam

    2018-02-07

    We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.

  10. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  11. Building and Managing Electronic Resources in Digital Era in India with Special Reference to IUCAA and NIV, Pune: A Comparative Case Study

    Science.gov (United States)

    Sahu, H. K.; Singh, S. N.

    2015-04-01

    This paper discusses and presents a comparative case study of two libraries in Pune, India, Inter-University Centre for Astronomy and Astrophysics and Information Centre and Library of National Institute of Virology (Indian Council of Medical Research). It compares how both libraries have managed their e-resource collections, including acquisitions, subscriptions, and consortia arrangements, while also developing a collection of their own resources, including pre-prints and publications, video lectures, and other materials in an institutional repository. This study illustrates how difficult it is to manage electronic resources in a developing country like India, even though electronic resources are used more than print resources. Electronic resource management can be daunting, but with a systematic approach, various problems can be solved, and use of the materials will be enhanced.

  12. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  13. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management.

    Science.gov (United States)

    Lee, Yongkuk; Howe, Connor; Mishra, Saswat; Lee, Dong Sup; Mahmood, Musa; Piper, Matthew; Kim, Youngbin; Tieu, Katie; Byun, Hun-Soo; Coffey, James P; Shayan, Mahdis; Chun, Youngjae; Costanzo, Richard M; Yeo, Woon-Hong

    2018-05-22

    Recent wearable devices offer portable monitoring of biopotentials, heart rate, or physical activity, allowing for active management of human health and wellness. Such systems can be inserted in the oral cavity for measuring food intake in regard to controlling eating behavior, directly related to diseases such as hypertension, diabetes, and obesity. However, existing devices using plastic circuit boards and rigid sensors are not ideal for oral insertion. A user-comfortable system for the oral cavity requires an ultrathin, low-profile, and soft electronic platform along with miniaturized sensors. Here, we introduce a stretchable hybrid electronic system that has an exceptionally small form factor, enabling a long-range wireless monitoring of sodium intake. Computational study of flexible mechanics and soft materials provides fundamental aspects of key design factors for a tissue-friendly configuration, incorporating a stretchable circuit and sensor. Analytical calculation and experimental study enables reliable wireless circuitry that accommodates dynamic mechanical stress. Systematic in vitro modeling characterizes the functionality of a sodium sensor in the electronics. In vivo demonstration with human subjects captures the device feasibility for real-time quantification of sodium intake, which can be used to manage hypertension.

  14. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement.

    Science.gov (United States)

    Wang, Gui-Xiang; Lv, Jing; Zhang, Jie; Han, Shuo; Zong, Mei; Guo, Ning; Zeng, Xing-Ying; Zhang, Yue-Yun; Wang, You-Ping; Liu, Fan

    2016-01-01

    Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  15. Managing Deadline-constrained Bag-of-Tasks Jobs on Hybrid Clouds

    OpenAIRE

    Wang, Bo; Song, Ying; Sun, Yuzhong; Liu, Jun

    2016-01-01

    Outsourcing jobs to a public cloud is a cost-effective way to address the problem of satisfying the peak resource demand when the local cloud has insufficient resources. In this paper, we study on managing deadline-constrained bag-of-tasks jobs on hybrid clouds. We present a binary nonlinear programming (BNP) problem to model the hybrid cloud management where the utilization of physical machines (PMs) in the local cloud/cluster is maximized when the local resources are enough to satisfy the d...

  16. Island shape, size and interface dependency on electronic and magnetic properties of graphene hexagonal-boron nitride (h-BN) in-plane hybrids

    Science.gov (United States)

    Akman, Nurten; Özdoğan, Cem

    2018-04-01

    We systematically investigate the energetics of ion implantation, stability, electronic, and magnetic properties of graphene/hexagonal boron nitrate (h-BN) in-plane hybrids through first principle calculations. We consider hexagonal and triangular islands in supercells of graphene and h-BN layouts. In the case of triangular islands, both phases mix with each other by either solely Csbnd N or Csbnd B bonds. We also patterned triangles with predominating Csbnd N or Csbnd B bonds at their interfaces. The energetics of island implantation is discussed in detail. Formation energies point out that the island implantation could be even exothermic for all hybrids studied in this work. Effects of size and shape of the island, and dominating bonding sort at the island-layout interfaces on the stability, band gap, and magnetic properties of hybrids are studied particularly. The hybrids become more stable with increasing island size. Regardless of the layout, hybrids with hexagonal islands are all non-magnetic and semiconducting. One can thus open a band gap in the semimetallic graphene by mixing it with the h-BN phase. In general, hybrids containing graphene triangles show metallic property and exhibit considerable amount of magnetic moments for possible localized spin utilizations. Total magnetic moment of hybrids with both graphene and h-BN layouts increases with growing triangle island as well. The spin densities of magnetic hybrids are derived from interfaces of the islands and diminish towards their center. We suggest that the increase in stability and magnetic moment depend on the number of atoms at the interfaces rather than the island size.

  17. Lithium Resources for the 21st Century

    Science.gov (United States)

    Kesler, S.; Gruber, P.; Medina, P.; Keolian, G.; Everson, M. P.; Wallington, T.

    2011-12-01

    Lithium is an important industrial compound and the principal component of high energy-density batteries. Because it is the lightest solid element, these batteries are widely used in consumer electronics and are expected to be the basis for battery electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) for the 21st century. In view of the large incremental demand for lithium that will result from expanded use of various types of EVs, long-term estimates of lithium demand and supply are advisable. For GDP growth rates of 2 to 3% and battery recycling rates of 90 to 100%, total demand for lithium for all markets is expected to be a maximum of 19.6 million tonnes through 2100. This includes 3.2 million tonnes for industrial compounds, 3.6 million tonnes for consumer electronics, and 12.8 million tonnes for EVs. Lithium-bearing mineral deposits that might supply this demand contain an estimated resource of approximately 39 million tonnes, although many of these deposits have not been adequately evaluated. These lithium-bearing mineral deposits are of two main types, non-marine playa-brine deposits and igneous deposits. Playa-brine deposits have the greatest immediate resource potential (estimated at 66% of global resources) and include the Salar de Atacama (Chile), the source of almost half of current world lithium production, as well as Zabuye (China/Tibet) and Hombre Muerto (Argentina). Additional important playa-brine lithium resources include Rincon (Argentina), Qaidam (China), Silver Peak (USA) and Uyuni (Bolivia), which together account for about 35% of the estimated global lithium resource. Information on the size and continuity of brine-bearing aquifers in many of these deposits is limited, and differences in chemical composition of brines from deposit to deposit require different extraction processes and yield different product mixes of lithium, boron, potassium and other elements. Numerous other brines in playas

  18. Electron optics in hybrid photodetectors in magnetic fields

    International Nuclear Information System (INIS)

    Green, D.

    1996-12-01

    The CMS detector design has the hadronic calorimeter immersed in a 4 T magnetic field. The scintillator photon transducer must work reliably in this environment. The baseline phototransducer is the ''hybrid photomultiplier'', which consists of a standard photocathode (S20) followed by a high field acceleration onto the surface of a Si diode. Such a device has a linear response, 1 e out for every 3.6 eV of potential drop in excess of the threshold needed to penetrate the passivation layer of the diode. A threshold voltage of ∼2 kV is typical of these devices, leading to a gain of ∼2000 at 10 kV applied voltage. In the interest of reducing costs, the Si surface can be cut into pixels. However, the optics of the electron trajectories must be well understood so as to avoid crosstalk between pixels caused by misalignment of the accelerating electric field and the axis of the CMS magnetic field. The depletion depth of the Si is quite standard, ∼300 μm. The source capacity is ∼20 pF. The output pulse has a ∼6 nsec risetime for > 60 V diode biasing. The device is expected to be highly immune to magnetic field effects due to the short spacing, ∼3 mm, between photocathode and Si

  19. Hybrid stage I palliation for hypo-plastic left heart condition without a hybrid suite: Suggestions for developing nations

    Directory of Open Access Journals (Sweden)

    S. Anuradha

    2012-07-01

    Full Text Available Cardiac hybrid procedures are performed in modern, spacious, and highly equipped hybrid suites in developed countries. Organizing such expensive suites in countries with an emerging economy is difficult from both a financial and logistics point of view. We share our experience of safely performing a Hybrid stage I palliation procedure for Aortic atresia with ventricular septal defect on a 2-month-old infant weighing 3.35 kg using minimal resources in a conventional catheterization laboratory.

  20. [Use of internet and electronic resources among Spanish intensivist physicians. First national survey].

    Science.gov (United States)

    Gómez-Tello, V; Latour-Pérez, J; Añón Elizalde, J M; Palencia-Herrejón, E; Díaz-Alersi, R; De Lucas-García, N

    2006-01-01

    Estimate knowledge and use habits of different electronic resources in a sample of Spanish intensivists: Internet, E-mail, distribution lists, and use of portable electronic devices. Self-applied questionnaire. A 50-question questionnaire was distributed among Spanish intensivists through the hospital marketing delegates of a pharmaceutical company and of electronic forums. A total of 682 questionnaires were analyzed (participation: 74%). Ninety six percent of those surveyed used Internet individually: 67% admitted training gap. Internet was the second source of clinical consultations most used (61%), slightly behind consultation to colleagues (65%). The pages consulted most were bibliographic databases (65%) and electronic professional journals (63%), with limited use of Evidence Based Medicine pages (19%). Ninety percent of those surveyed used e-mail regularly in the practice of their profession, although 25% admitted that were not aware of its possibilities. The use of E-mail decreased significantly with increase in age. A total of 62% of the intensivists used distribution lists. Of the rest, 42% were not aware of its existence and 32% admitted they had insufficient training to handle them. Twenty percent of those surveyed had portable electronic devices and 64% considered it useful, basically due to its rapid consultation at bedside. Female gender was a negative predictive factor of its use (OR 0.35; 95% CI 0.2-0.63; p=0.0002). A large majority of the Spanish intensivists use Internet and E-mail. E-mail lists and use of portable devices are still underused resources. There are important gaps in training and infrequent use of essential pages. There are specific groups that require directed educational policies.

  1. Model of e-learning with electronic educational resources of new generation

    OpenAIRE

    A. V. Loban; D. A. Lovtsov

    2017-01-01

    Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with elec...

  2. A Hybrid Approach to Teaching Managerial Economics

    Science.gov (United States)

    Metzgar, Matthew

    2014-01-01

    Many institutions in higher education are experimenting with hybrid teaching approaches to undergraduate courses. Online resources may provide a number of advantages to students as compared to in-class approaches. Research regarding the effectiveness of hybrid approaches is mixed and still accumulating. This paper discusses the use of a hybrid…

  3. Impact of Knowledge Resources Linked to an Electronic Health Record on Frequency of Unnecessary Tests and Treatments

    Science.gov (United States)

    Goodman, Kenneth; Grad, Roland; Pluye, Pierre; Nowacki, Amy; Hickner, John

    2012-01-01

    Introduction: Electronic knowledge resources have the potential to rapidly provide answers to clinicians' questions. We sought to determine clinicians' reasons for searching these resources, the rate of finding relevant information, and the perceived clinical impact of the information they retrieved. Methods: We asked general internists, family…

  4. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources

    International Nuclear Information System (INIS)

    Kefayat, M.; Lashkar Ara, A.; Nabavi Niaki, S.A.

    2015-01-01

    Highlights: • A probabilistic optimization framework incorporated with uncertainty is proposed. • A hybrid optimization approach combining ACO and ABC algorithms is proposed. • The problem is to deal with technical, environmental and economical aspects. • A fuzzy interactive approach is incorporated to solve the multi-objective problem. • Several strategies are implemented to compare with literature methods. - Abstract: In this paper, a hybrid configuration of ant colony optimization (ACO) with artificial bee colony (ABC) algorithm called hybrid ACO–ABC algorithm is presented for optimal location and sizing of distributed energy resources (DERs) (i.e., gas turbine, fuel cell, and wind energy) on distribution systems. The proposed algorithm is a combined strategy based on the discrete (location optimization) and continuous (size optimization) structures to achieve advantages of the global and local search ability of ABC and ACO algorithms, respectively. Also, in the proposed algorithm, a multi-objective ABC is used to produce a set of non-dominated solutions which store in the external archive. The objectives consist of minimizing power losses, total emissions produced by substation and resources, total electrical energy cost, and improving the voltage stability. In order to investigate the impact of the uncertainty in the output of the wind energy and load demands, a probabilistic load flow is necessary. In this study, an efficient point estimate method (PEM) is employed to solve the optimization problem in a stochastic environment. The proposed algorithm is tested on the IEEE 33- and 69-bus distribution systems. The results demonstrate the potential and effectiveness of the proposed algorithm in comparison with those of other evolutionary optimization methods

  5. Electronic Document Management: A Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Thomas Groenewald

    2004-11-01

    Full Text Available This case study serve as exemplar regarding what can go wrong with the implementation of an electronic document management system. Knowledge agility and knowledge as capital, is outlined against the backdrop of the information society and knowledge economy. The importance of electronic document management and control is sketched thereafter. The literature review is concluded with the impact of human resource management on knowledge agility, which includes references to the learning organisation and complexity theory. The intervention methodology, comprising three phases, follows next. The results of the three phases are presented thereafter. Partial success has been achieved with improving the human efficacy of electronic document management, however the client opted to discontinue the system in use. Opsomming Die gevalle studie dien as voorbeeld van wat kan verkeerd loop met die implementering van ’n elektroniese dokumentbestuur sisteem. Teen die agtergrond van die inligtingsgemeenskap en kennishuishouding word kennissoepelheid en kennis as kapitaal bespreek. Die literatuurstudie word afgesluit met die inpak van menslikehulpbronbestuur op kennissoepelheid, wat ook die verwysings na die leerorganisasie en kompleksietydsteorie insluit. Die metodologie van die intervensie, wat uit drie fases bestaan, volg daarna. Die resultate van die drie fases word vervolgens aangebied. Slegs gedeelte welslae is behaal met die verbetering van die menslike doeltreffendheid ten opsigte van elektroniese dokumentbestuur. Die klient besluit egter om nie voort te gaan om die huidige sisteem te gebruik nie.

  6. Fast electron flux driven by lower hybrid wave in the scrape-off layer

    International Nuclear Information System (INIS)

    Li, Y. L.; Xu, G. S.; Wang, H. Q.; Wan, B. N.; Chen, R.; Wang, L.; Gan, K. F.; Yang, J. H.; Zhang, X. J.; Liu, S. C.; Li, M. H.; Ding, S.; Yan, N.; Zhang, W.; Hu, G. H.; Liu, Y. L.; Shao, L. M.; Li, J.; Chen, L.; Zhao, N.

    2015-01-01

    The fast electron flux driven by Lower Hybrid Wave (LHW) in the scrape-off layer (SOL) in EAST is analyzed both theoretically and experimentally. The five bright belts flowing along the magnetic field lines in the SOL and hot spots at LHW guard limiters observed by charge coupled device and infrared cameras are attributed to the fast electron flux, which is directly measured by retarding field analyzers (RFA). The current carried by the fast electron flux, ranging from 400 to 6000 A/m 2 and in the direction opposite to the plasma current, is scanned along the radial direction from the limiter surface to the position about 25 mm beyond the limiter. The measured fast electron flux is attributed to the high parallel wave refractive index n || components of LHW. According to the antenna structure and the LHW power absorbed by plasma, a broad parallel electric field spectrum of incident wave from the antennas is estimated. The radial distribution of LHW-driven current density is analyzed in SOL based on Landau damping of the LHW. The analytical results support the RFA measurements, showing a certain level of consistency. In addition, the deposition profile of the LHW power density in SOL is also calculated utilizing this simple model. This study provides some fundamental insight into the heating and current drive effects induced by LHW in SOL, and should also help to interpret the observations and related numerical analyses of the behaviors of bright belts and hot spots induced by LHW

  7. Study and impact of fast electrons diagnosed by electron cyclotron radiation on Tore-Supra tokamak

    International Nuclear Information System (INIS)

    Gomez, P.

    1999-12-01

    This thesis aims at characterizing the dynamics of fast electrons generated by the Landau absorption of the hybrid wave and studying their effects on electron cyclotron radiation. The different processes involved in the propagation and resonant absorption of the hybrid wave in plasmas are described. A method such as ray-tracing allows the characterization of the dynamics of heating but this method relies on the hypothesis of geometrical optics. Whenever absorption rate is low as it is in Tore-Supra, the hybrid wave undergoes a series of successive reflections on the edge of the plasma before being completely absorbed. These reflections generate an electromagnetic chaos in which geometrical optics hypothesis are no longer valid. A statistical treatment of the Fokker-Planck equation allows the calculation of the mean distribution function of electrons in the plasma submitted to hybrid wave. The electron cyclotron radiation is then deduced and by assuming that plasma behaves like a black body, a theoretical radiative temperature is calculated. The confrontation of this theoretical temperature profile with experimental values allows the validation of this modeling and the estimation of the effects of fast electrons on temperature measurements. (A.C.)

  8. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes

    Directory of Open Access Journals (Sweden)

    Corrado Napoli

    2018-03-01

    Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.

  9. Challenges in the implementation of an electronic surveillance system in a resource-limited setting: Alerta, in Peru

    Directory of Open Access Journals (Sweden)

    Soto Giselle

    2008-11-01

    Full Text Available Abstract Background Infectious disease surveillance is a primary public health function in resource-limited settings. In 2003, an electronic disease surveillance system (Alerta was established in the Peruvian Navy with support from the U.S. Naval Medical Research Center Detachment (NMRCD. Many challenges arose during the implementation process, and a variety of solutions were applied. The purpose of this paper is to identify and discuss these issues. Methods This is a retrospective description of the Alerta implementation. After a thoughtful evaluation according to the Centers for Disease Control and Prevention (CDC guidelines, the main challenges to implementation were identified and solutions were devised in the context of a resource-limited setting, Peru. Results After four years of operation, we have identified a number of challenges in implementing and operating this electronic disease surveillance system. These can be divided into the following categories: (1 issues with personnel and stakeholders; (2 issues with resources in a developing setting; (3 issues with processes involved in the collection of data and operation of the system; and (4 issues with organization at the central hub. Some of the challenges are unique to resource-limited settings, but many are applicable for any surveillance system. For each of these challenges, we developed feasible solutions that are discussed. Conclusion There are many challenges to overcome when implementing an electronic disease surveillance system, not only related to technology issues. A comprehensive approach is required for success, including: technical support, personnel management, effective training, and cultural sensitivity in order to assure the effective deployment of an electronic disease surveillance system.

  10. Hybrid nanowire ion-to-electron transducers for integrated bioelectronic circuitry (Conference Presentation)

    Science.gov (United States)

    Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.

    2016-09-01

    A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).

  11. Integrating magnetism into semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, Boris P; Korenev, Vladimir L [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2005-06-30

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor-making the hybrid an electronic-write-in and electronic-read-out elementary storage unit. (methodological notes)

  12. Integrating magnetism into semiconductor electronics

    International Nuclear Information System (INIS)

    Zakharchenya, Boris P; Korenev, Vladimir L

    2005-01-01

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor-making the hybrid an electronic-write-in and electronic-read-out elementary storage unit. (methodological notes)

  13. Genetic and epigenetic alterations of Brassica nigra introgression lines from somatic hybridization: a resource for cauliflower improvement

    Directory of Open Access Journals (Sweden)

    Guixiang Wang

    2016-08-01

    Full Text Available Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower ‘Korso’ (Brassica oleracea var. botrytis, 2n = 18, CC genome and black mustard ‘G1/1’ (Brassica nigra, 2n = 16, BB genome. However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits and physiological (black rot/club root resistance characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from ‘Korso’. Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms analysis identified the presence of ‘G1/1’ DNA segments (average 7.5%. Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1% was significantly higher than presence of novel bands (1.4%, and the presence of fragments specific to B. carinata (BBCC 2n = 34 were common (average 15.5%. Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4% was more frequent than hypomethylation (4.8%. Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  14. Organic-inorganic semiconductor hybrid systems. Structure, morphology, and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    El Helou, Mira

    2012-08-22

    This dissertation addresses the preparation and characterization of hybrid semiconducting systems combining organic with inorganic materials. Characterization methods used included to determine the structure, morphology, and thermal stability comprised X-ray diffraction (XRD), atomic force microscopy (AFM), thermal desorption spectroscopy (TDS), and X-ray photoelectron spectroscopy (XPS). One organic-inorganic semiconducting system was pentacene (C{sub 22}H{sub 14}) and zinc oxide. This interface was investigated in detail for pentacene on an oxygen-terminated zinc oxide surface, i.e. ZnO(000 anti 1). An extended study on the promising p-n junction was carried out for pentacene on ZnO with different orientations which exhibit different chemical and structural characteristics: ZnO(000 anti 1), ZnO(0001), and ZnO(10 anti 10). Moreover, the organic crystal structure of pentacene was selectively tuned by carefully choosing the substrate temperature. This defined interface with a physisorbed pentacene layer on ZnO was characterized by optical absorption which depends on the temperature of the measured system, the pentacene film thickness, and the molecular orientation and packing. The high quality of the pentacene films allowed in one case to characterize the Davydov splitting by linear polarized light focused on a single crystallite. Another subject in the field of organic-inorganic hybrid materials comprised conjugated dithiols used as self-assembled monolayers (SAMs) for immobilizing semiconducting CdS nanoparticles (NPs) on Au substrates. It was demonstrated that an appropriate selection and preparation of the conjugated SAMs is crucial for building up a light-addressable potentiometric sensor with a sufficient efficiency. An optimized electron transfer was achieved with SAMs of long range ordering, high stability, and adequate conductivity. This was examined for different linkers and was best for stilbenedithiol immobilized in solution at higher temperatures. Due

  15. A multiconfigurational hybrid density-functional theory

    DEFF Research Database (Denmark)

    Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard

    2012-01-01

    We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...

  16. The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.

    Directory of Open Access Journals (Sweden)

    Timothy F O'Connor

    Full Text Available This communication describes a glove capable of wirelessly translating the American Sign Language (ASL alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics.

  17. The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.

    Science.gov (United States)

    O'Connor, Timothy F; Fach, Matthew E; Miller, Rachel; Root, Samuel E; Mercier, Patrick P; Lipomi, Darren J

    2017-01-01

    This communication describes a glove capable of wirelessly translating the American Sign Language (ASL) alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics.

  18. Hybrid computing - Generalities and bibliography

    International Nuclear Information System (INIS)

    Neel, Daniele

    1970-01-01

    This note presents the content of a research thesis. It describes the evolution of hybrid computing systems, discusses the benefits and shortcomings of analogue or hybrid systems, discusses the building up of an hybrid system (requires properties), comments different possible uses, addresses the issues of language and programming, discusses analysis methods and scopes of application. An appendix proposes a bibliography on these issues and notably the different scopes of application (simulation, fluid dynamics, biology, chemistry, electronics, energy, errors, space, programming languages, hardware, mechanics, and optimisation of equations or processes, physics) [fr

  19. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Joshua T.; Forsythe, Kyle; Hutchins, Jamie; Meulenberg, Robert W.

    2016-04-13

    This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of these materials. This information provides insights into many of the physical properties of doped QDs, including the highly debated near-infrared photoluminescence in Cu doped CdSe QDs. We show that all our results point to a common theme of orbital hybridization in Cu doped CdSe QDs which leads to optically and electronically active states below the conduction band minimum. Our model is supported from current–voltage measurements of doped and undoped materials, which exhibit Schottky to Ohmic behavior with Cu doping, suggestive of a tuning of the lowest energy states near the Fermi level.

  20. A versatile nanotechnology to connect individual nano-objects for the fabrication of hybrid single-electron devices

    International Nuclear Information System (INIS)

    Bernand-Mantel, A; Bouzehouane, K; Seneor, P; Fusil, S; Deranlot, C; Petroff, F; Fert, A; Brenac, A; Notin, L; Morel, R

    2010-01-01

    We report on the high yield connection of single nano-objects as small as a few nanometres in diameter to separately elaborated metallic electrodes, using a 'table-top' nanotechnology. Single-electron transport measurements validate that transport occurs through a single nano-object. The vertical geometry of the device natively allows an independent choice of materials for each electrode and the nano-object. In addition ferromagnetic materials can be used without encountering oxidation problems. The possibility of elaborating such hybrid nanodevices opens new routes for the democratization of spintronic studies in low dimensions.

  1. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  2. Considering Point-of-Care Electronic Medical Resources in Lieu of Traditional Textbooks for Medical Education.

    Science.gov (United States)

    Hale, LaDonna S; Wallace, Michelle M; Adams, Courtney R; Kaufman, Michelle L; Snyder, Courtney L

    2015-09-01

    Selecting resources to support didactic courses is a critical decision, and the advantages and disadvantages must be carefully considered. During clinical rotations, students not only need to possess strong background knowledge but also are expected to be proficient with the same evidence-based POC resources used by clinicians. Students place high value on “real world” learning and therefore may place more value on POC resources that they know practicing clinicians use as compared with medical textbooks. The condensed nature of PA education requires students to develop background knowledge and information literacy skills over a short period. One way to build that knowledge and those skills simultaneously is to use POC resources in lieu of traditional medical textbooks during didactic training. Electronic POC resources offer several advantages over traditional textbooks and should be considered as viable options in PA education.

  3. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  4. A "Hybrid" Bacteriology Course: The Professor's Design and Expectations; The Students' Performance and Assessment

    Directory of Open Access Journals (Sweden)

    Steven Krawiec

    2009-12-01

    Full Text Available A basic bacteriology course was offered in two successive academic years, first in a conventional format and subsequently as a "hybrid" course. The latter combined (i online presentation of content, (ii an emphasis on online resources, (iii thrice-weekly, face-to-face conversations to advance understanding, and (iv frequent student postings on an electronic discussion board. We compared the two courses through statistical analysis of student performances on the final examinations and the course overall and student assessment of teaching. The data indicated that there was no statistical difference in performance on the final examinations or the course overall. Responses on an instrument of evaluation revealed that students less strongly affirmed the following measures in the hybrid course: (i The amount of work was appropriate for the credit received, (ii Interactions between students and instructor were positive, (iii I learned a great deal in this course, and (iv I would recommend this course to other students. We recommend clear direction about active learning tasks and relevant feedback to enhance learning in a hybrid course.

  5. Resource conservation approached with an appropriate collection and upgrade-remanufacturing for used electronic products.

    Science.gov (United States)

    Zlamparet, Gabriel I; Tan, Quanyin; Stevels, A B; Li, Jinhui

    2018-03-01

    This comparative research represents an example for a better conservation of resources by reducing the amount of waste (kg) and providing it more value under the umbrella of remanufacturing. The three discussed cases will expose three issues already addressed separately in the literature. The generation of waste electrical and electronic equipment (WEEE) interacts with the environmental depletion. In this article, we gave the examples of addressed issues under the concept of remanufacturing. Online collection opportunity eliminating classical collection, a business to business (B2B) implementation for remanufactured servers and medical devices. The material reuse (recycling), component sustainability, reuse (part harvesting), product reuse (after repair/remanufacturing) indicates the recovery potential using remanufacturing tool for a better conservation of resources adding more value to the products. Our findings can provide an overview of new system organization for the general collection, market potential and the technological advantages using remanufacturing instead of recycling of WEEE or used electrical and electronic equipment. Copyright © 2017. Published by Elsevier Ltd.

  6. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces.

    Science.gov (United States)

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon; Yeo, Woon-Hong

    2018-01-24

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

  7. Effects of the Use of Electronic Human Resource Management (EHRM Within Human Resource Management (HRM Functions at Universities

    Directory of Open Access Journals (Sweden)

    Chux Gervase Iwu

    2016-09-01

    Full Text Available This study set out to examine the effect of e-hrm systems in assisting human resource practitioners to execute their duties and responsibilities. In comparison to developed economies of the world, information technology adoption in sub-Saharan Africa has not been without certain glitches. Some of the factors that are responsible for these include poor need identification, sustainable funding, and insufficient skills. Besides these factors, there is also the issue of change management and users sticking to what they already know. Although, the above factors seem negative, there is strong evidence that information systems such as electronic human resource management present benefits to an organization. To achieve this, a dual research approach was utilized. Literature assisted immensely in both the development of the conceptual framework upon which the study hinged as well as in the development of the questionnaire items. The study also made use of an interview checklist to guide the participants. The findings reveal a mix of responses that indicate that while there are gains in adopting e-hrm systems, it is wiser to consider supporting resources as well as articulate the needs of the university better before any investment is made.

  8. Electronic human resource management: Enhancing or entrancing?

    Directory of Open Access Journals (Sweden)

    Paul Poisat

    2017-07-01

    Full Text Available Orientation: This article provides an investigation into the current level of development of the body of knowledge related to electronic human resource management (e-HRM by means of a qualitative content analysis. Several aspects of e-HRM, namely definitions of e-HRM, the theoretical perspectives around e-HRM, the role of e-HRM, the various types of e-HRM and the requirements for successful e-HRM, are examined. Research purpose: The purpose of the article was to determine the status of e-HRM and examine the studies that report on the link between e-HRM and organisational productivity. Motivation for the study: e-HRM has the capacity to improve organisational efficiency and leverage the role of human resources (HR as a strategic business partner. Main findings: The notion that the implementation of e-HRM will lead to improved organisational productivity is commonly assumed; however, empirical evidence in this regard was found to be limited. Practical/managerial implications: From the results of this investigation it is evident that more research is required to gain a greater understanding of the influence of e-HRM on organisational productivity, as well as to develop measures for assessing this influence. Contribution: This article proposes additional areas to research and measure when investigating the effectiveness of e-HRM. It provides a different lens from which to view e-HRM assessment whilst keeping it within recognised HR measurement parameters (the HR value chain. In addition, it not only provides areas for measuring e-HRM’s influence but also provides important clues as to how the measurements may be approached.

  9. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  10. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  11. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  12. Deterministic linear-optics quantum computing based on a hybrid approach

    International Nuclear Information System (INIS)

    Lee, Seung-Woo; Jeong, Hyunseok

    2014-01-01

    We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources

  13. Deterministic linear-optics quantum computing based on a hybrid approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Woo; Jeong, Hyunseok [Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University, Seoul, 151-742 (Korea, Republic of)

    2014-12-04

    We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources.

  14. Correlation between atomic negative muon capture and electron distribution in organic sp2-hybridization compounds CxHyClz

    International Nuclear Information System (INIS)

    Sakai, Yoichi; Tominaga, Takeshi; Ikuta, Shigeru

    1986-01-01

    The atomic negative muon capture ratios determined experimentally in organic sp 2 -hybridization compound, C x H y Cl z , were compared with the electron populations of carbon atomic orbitals obtained by an ab initio molecular orbital calculation in such systems. A clear positive correlation was found between the C 2s and C 2pz populations and the negative muon capture ratio A (C/Cl), suggesting the mesomolecular process in the initial stage of muon capture. (orig.)

  15. A hybrid renewable energy system for a North American off-grid community

    International Nuclear Information System (INIS)

    Rahman, Md. Mustafizur; Khan, Md. Mohib-Ul-Haque; Ullah, Mohammad Ahsan; Zhang, Xiaolei; Kumar, Amit

    2016-01-01

    Canada has many isolated communities that are not connected to the electrical grid. Most of these communities meet their electricity demand through stand-alone diesel generators. Diesel generators have economic and environmental concerns that can be minimized by using hybrid renewable energy technologies. This study aims to assess the implementation of a hybrid energy system for an off-grid community in Canada and to propose the best hybrid energy combination to reliably satisfy electricity demand. Seven scenarios were developed: 1) 100% renewable resources, 2) 80% renewable resources, 3) 65% renewable resources, 4) 50% renewable resources, 5) 35% renewable resources, 6) 21% renewable resources, and 7) battery-diesel generators (0% renewable resources). A case study for the remote community of Sandy Lake, Ontario, was conducted. Hybrid systems were chosen to meet the requirements of a 4.4 MWh/day primary load with a 772 kW peak load. Sensitivity analyses were carried out to assess the impact of solar radiation, wind speed, diesel price, CO 2 penalty cost, and project interest rate on optimum results. A GHG (greenhouse gas) abatement cost was assessed for each scenario. Considering GHG emission penalty cost, the costs of electricity for the seven scenarios are $1.48/kWh, $0.62/kWh, $0.54/kWh, $0.42/kWh, $0.39/kWh, $0.37/kWh, and $0.36/kWh. - Highlights: • Modeling of hybrid renewable energy systems for an off-grid community. • Seven scenarios were developed based on various renewable energy fractions. • Cost of electricity is the highest for 100% renewable fraction scenario. • CO 2 emissions are reduced by 1232 tonnes/yr by switching from diesel to renewables. • The electricity cost is most sensitive to diesel price based on sensitivity analysis.

  16. Identifying and evaluating electronic learning resources for use in adult-gerontology nurse practitioner education.

    Science.gov (United States)

    Thompson, Hilaire J; Belza, Basia; Baker, Margaret; Christianson, Phyllis; Doorenbos, Ardith; Nguyen, Huong

    2014-01-01

    Enhancing existing curricula to meet newly published adult-gerontology advanced practice registered nurse (APRN) competencies in an efficient manner presents a challenge to nurse educators. Incorporating shared, published electronic learning resources (ELRs) in existing or new courses may be appropriate in order to assist students in achieving competencies. The purposes of this project were to (a) identify relevant available ELR for use in enhancing geriatric APRN education and (b) to evaluate the educational utility of identified ELRs based on established criteria. A multilevel search strategy was used. Two independent team members reviewed identified ELR against established criteria to ensure utility. Only resources meeting all criteria were retained. Resources were found for each of the competency areas and included formats such as podcasts, Web casts, case studies, and teaching videos. In many cases, resources were identified using supplemental strategies and not through traditional search or search of existing geriatric repositories. Resources identified have been useful to advanced practice educators in improving lecture and seminar content in a particular topic area and providing students and preceptors with additional self-learning resources. Addressing sustainability within geriatric APRN education is critical for sharing of best practices among educators and for sustainability of teaching and related resources. © 2014.

  17. Systematic review of electronic surveillance of infectious diseases with emphasis on antimicrobial resistance surveillance in resource-limited settings.

    Science.gov (United States)

    Rattanaumpawan, Pinyo; Boonyasiri, Adhiratha; Vong, Sirenda; Thamlikitkul, Visanu

    2018-02-01

    Electronic surveillance of infectious diseases involves rapidly collecting, collating, and analyzing vast amounts of data from interrelated multiple databases. Although many developed countries have invested in electronic surveillance for infectious diseases, the system still presents a challenge for resource-limited health care settings. We conducted a systematic review by performing a comprehensive literature search on MEDLINE (January 2000-December 2015) to identify studies relevant to electronic surveillance of infectious diseases. Study characteristics and results were extracted and systematically reviewed by 3 infectious disease physicians. A total of 110 studies were included. Most surveillance systems were developed and implemented in high-income countries; less than one-quarter were conducted in low-or middle-income countries. Information technologies can be used to facilitate the process of obtaining laboratory, clinical, and pharmacologic data for the surveillance of infectious diseases, including antimicrobial resistance (AMR) infections. These novel systems require greater resources; however, we found that using electronic surveillance systems could result in shorter times to detect targeted infectious diseases and improvement of data collection. This study highlights a lack of resources in areas where an effective, rapid surveillance system is most needed. The availability of information technology for the electronic surveillance of infectious diseases, including AMR infections, will facilitate the prevention and containment of such emerging infectious diseases. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1977-04-01

    For the ion-ion hybrid resonance it is shown that: (1) the energy absorption occurs via a sequence of mode conversions; (2) a poloidal field component normal to the ion-ion hybrid mode conversion surface strongly influences the mode conversion process so that roughly equal electron and ion heating occurs in the present proton-deuterium experiments, while solely electron heating is predicted to prevail in deuterium-tritium reactors; (3) the ion-ion hybrid resonance suppresses toroidal eigenmodes; and (4) wave absorption in minority fundamental ion-cyclotron heating experiments will be dominated by ion-ion hybrid mode conversion absorption for minority concentrations exceeding roughly 1 percent. For the ion-cyclotron resonance, it is shown that: (1) ion-cyclotron mode conversion leads to surface electron heating; and (2) ion-cyclotron mode conversion absorption dominates fundamental ion-cyclotron absorption thereby preventing efficient ion heating

  19. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    Hybrid photovolvaic battery-hydropower microgrids can increase electricity accessibility and availability in remote areas. In those microgrids with grid-connected and islanded modes capabilities, seamless transition between both modes is needed as well. However, the different resources with conve......Hybrid photovolvaic battery-hydropower microgrids can increase electricity accessibility and availability in remote areas. In those microgrids with grid-connected and islanded modes capabilities, seamless transition between both modes is needed as well. However, the different resources...

  20. Study of the hybrid controller electronics for the nano-stabilization of mechanical vibrations of CLIC quadrupoles

    International Nuclear Information System (INIS)

    Carmona, P Fernandez; Artoos, K; Esposito, M; Guinchard, M; Janssens, S; Kuzmin, A; Ballester, R Moron; Collette, C

    2011-01-01

    In order to achieve the required levels of luminosity in the CLIC linear collider, mechanical stabilization of quadrupoles to the nanometre level is required. The paper describes a design of hybrid electronics combining an analogue controller and digital communication with the main machine controller. The choice of local analogue control ensures the required low latency while still keeping sufficiently low noise level. Furthermore, it reduces the power consumption, rack space and cost. Sensitivity to radiation single events upsets is reduced compared to a digital controller. The digital part is required for fine tuning and real time monitoring via digitization of critical parameters.

  1. From Millennium ERM to Proquest 360 Resource Manager: Implementing a new Electronic Resources Management System ERMS in an International Graduate Research University in Saudi Arabia

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    An overview of the Recommendation Study and the subsequent Implementation of a new Electronic Resources Management system ERMS in an international graduate research university in the Kingdom of Saudi Arabia. It covers the timeline, deliverables

  2. On the hybridization of nitrogen in enamines

    International Nuclear Information System (INIS)

    Ahlbrecht, H.; Papke, G.

    1975-01-01

    The so far almost unknown hybridization of nitrogen in enamines was investigated. Analogous to the 1 J( 13 C-H) coupling, a linear dependence between the coupling constant and the per cent s-character of the nitrogen orbital can also be proved for the 1 J( 15 N-H) coupling. A number of 15 N-labelled imine-enamine tautomeric systems was produced, and the dependence of the 15 NH coupling on the electronic properties of the substituents is investigated. The result of measurements with N-phenyl enamines is discussed with regard to molecular theory. Some thought is given to the problem of hybridization of the lone-pair electrons at the nitrogen level in consideration of the hybridization index for the N-phenyl and vinyl coupling. (orig./AK) [de

  3. Hybrid model for simulation of plasma jet injection in tokamak

    Science.gov (United States)

    Galkin, Sergei A.; Bogatu, I. N.

    2016-10-01

    Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.

  4. Identification and Progression of Heart Disease Risk Factors in Diabetic Patients from Longitudinal Electronic Health Records

    Directory of Open Access Journals (Sweden)

    Jitendra Jonnagaddala

    2015-01-01

    Full Text Available Heart disease is the leading cause of death worldwide. Therefore, assessing the risk of its occurrence is a crucial step in predicting serious cardiac events. Identifying heart disease risk factors and tracking their progression is a preliminary step in heart disease risk assessment. A large number of studies have reported the use of risk factor data collected prospectively. Electronic health record systems are a great resource of the required risk factor data. Unfortunately, most of the valuable information on risk factor data is buried in the form of unstructured clinical notes in electronic health records. In this study, we present an information extraction system to extract related information on heart disease risk factors from unstructured clinical notes using a hybrid approach. The hybrid approach employs both machine learning and rule-based clinical text mining techniques. The developed system achieved an overall microaveraged F-score of 0.8302.

  5. Electron spin control of optically levitated nanodiamonds in vacuum.

    Science.gov (United States)

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-19

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  6. Electron spin control of optically levitated nanodiamonds in vacuum

    Science.gov (United States)

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  7. Investigation of runaway electrons in the current ramp-up by a fully non-inductive lower hybrid current drive on the EAST tokamak

    International Nuclear Information System (INIS)

    Lu, H W; Zha, X J; Zhong, F C; Hu, L Q; Zhou, R J

    2013-01-01

    The possibility of using a lower hybrid wave (LHW) to ramp up the plasma current (I p ) from a low level to a high enough level required for fusion burn in the EAST (experimental advanced superconducting tokamak) tokamak is examined experimentally. The focus in this paper is on investigating how the relevant plasma parameters evolve during the current ramp-up (CRU) phase driving by a lower hybrid current drive (LHCD) with poloidal field (PF) coil cut-off, especially the behaviors of runaway electrons generated during the CRU phase. It is found that the intensity of runaway electron emission increases first, and then decreases gradually as the discharge goes on under conditions of PF coil cut-off before LHW was launched into plasma, PF coil cut-off at the same time as LHW was launched into plasma, as well as PF coil cut-off after LHW was launched into plasma. The relevant plasma parameters, including H α line emission (Ha), impurity line emission (UV), soft x-ray emission and electron density n e , increase to a high level. The loop voltage decreases from positive to negative, and then becomes zero because of the cut-off of PF coils. Also, the magnetohydrodynamic activity takes place during the CRU driving by LHCD. (paper)

  8. Fabrication of reproducible, integration-compatible hybrid molecular/si electronics.

    Science.gov (United States)

    Yu, Xi; Lovrinčić, Robert; Kraynis, Olga; Man, Gabriel; Ely, Tal; Zohar, Arava; Toledano, Tal; Cahen, David; Vilan, Ayelet

    2014-12-29

    Reproducible molecular junctions can be integrated within standard CMOS technology. Metal-molecule-semiconductor junctions are fabricated by direct Si-C binding of hexadecane or methyl-styrene onto oxide-free H-Si(111) surfaces, with the lateral size of the junctions defined by an etched SiO2 well and with evaporated Pb as the top contact. The current density, J, is highly reproducible with a standard deviation in log(J) of 0.2 over a junction diameter change from 3 to 100 μm. Reproducibility over such a large range indicates that transport is truly across the molecules and does not result from artifacts like edge effects or defects in the molecular monolayer. Device fabrication is tested for two n-Si doping levels. With highly doped Si, transport is dominated by tunneling and reveals sharp conductance onsets at room temperature. Using the temperature dependence of current across medium-doped n-Si, the molecular tunneling barrier can be separated from the Si-Schottky one, which is a 0.47 eV, in agreement with the molecular-modified surface dipole and quite different from the bare Si-H junction. This indicates that Pb evaporation does not cause significant chemical changes to the molecules. The ability to manufacture reliable devices constitutes important progress toward possible future hybrid Si-based molecular electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  10. The electronic structure of organic-inorganic hybrid compounds : (NH4)(2)CuCl4, (CH3NH3)(2)CuCl4 and (C2H5NH3)(2)CuCl4

    NARCIS (Netherlands)

    Zolfaghari, P.; de Wijs, G. A.; de Groot, R. A.

    2013-01-01

    Hybrid organic-inorganic compounds are an intriguing class of materials that have been experimentally studied over the past few years because of a potential broad range of applications. The electronic and magnetic properties of three organic-inorganic hybrid compounds with compositions

  11. Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm

    Science.gov (United States)

    Le Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M. R.; Graham, D. B.; Fischer, D.; Retinò, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Norgren, C.; Ergun, R. E.; Goodrich, K. A.; Burch, J. L.; Torbert, R. B.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H. Y.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Turner, D. L.; Fennell, J. F.; Leonard, T.; Jaynes, A. N.

    2017-12-01

    We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.

  12. Charge-transfer channel in quantum dot-graphene hybrid materials

    Science.gov (United States)

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-01

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  13. Parallel power electronics filters in three-phase four-wire systems principle, control and design

    CERN Document Server

    Wong, Man-Chung; Lam, Chi-Seng

    2016-01-01

    This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems. .

  14. Development of Regenerative Braking Co-operative Control System for Automatic Transmission-based Hybrid Electric Vehicle using Electronic Wedge Brake

    OpenAIRE

    Ko, Jiweon; Ko, Sungyeon; Bak, Yongsun; Jang, Mijeong; Yoo, Byoungsoo; Cheon, Jaeseung; Kim, Hyunsoo

    2013-01-01

    This research proposes a regenerative braking co-operative control system for the automatic transmission (AT)-based hybrid electric vehicle (HEV). The brake system of the subject HEV consists of the regenerative braking and the electronic wedge brake (EWB) friction braking for the front wheel, and the hydraulic friction braking for the rear wheel. A regenerative braking co-operative control algorithm is suggested for the regenerative braking and friction braking, which distributes the braking...

  15. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

    Science.gov (United States)

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon

    2018-01-01

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas. PMID:29364861

  16. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

    Directory of Open Access Journals (Sweden)

    Robert Herbert

    2018-01-01

    Full Text Available Flexible hybrid electronics (FHE, designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

  17. Electrochemically Functionalized Seamless Three-Dimensional Graphene-Carbon Nanotube Hybrid for Direct Electron Transfer of Glucose Oxidase and Bioelectrocatalysis.

    Science.gov (United States)

    Terse-Thakoor, Trupti; Komori, Kikuo; Ramnani, Pankaj; Lee, Ilkeun; Mulchandani, Ashok

    2015-12-01

    Three-dimensional seamless chemical vapor deposition (CVD) grown graphene-carbon nanotubes (G-CNT) hybrid film has been studied for its potential in achieving direct electron transfer (DET) of glucose oxidase (GOx) and its bioelectrocatalytic activity in glucose detection. A two-step CVD method was employed for the synthesis of seamless G-CNT hybrid film where CNTs are grown on already grown graphene film on copper foil using iron as a catalyst. Physical characterization using SEM and TEM show uniform dense coverage of multiwall carbon nanotubes (MWCNT) grown directly on graphene with seamless contacts. The G-CNT hybrid film was electrochemically modified to introduce oxygenated functional groups for DET favorable immobilization of GOx. Pristine and electrochemically functionalized G-CNT film was characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry, X-ray photoelectron-spectroscopy, and Raman spectroscopy. The DET between GOx and electrochemically oxidized G-CNT electrode was studied using cyclic voltammetry which showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -459 mV at pH 7 corresponding to the redox site of GOx. The constructed electrode detected glucose concentration over the clinically relevant range of 2-8 mM with the highest sensitivity of 19.31 μA/mM/cm(2) compared to reported composite hybrid electrodes of graphene oxide and CNTs. Electrochemically functionalized CVD grown seamless G-CNT structure used in this work has potential to be used for development of artificial mediatorless redox enzyme based biosensors and biofuel cells.

  18. Parametric decay below the upper hybrid frequency

    Energy Technology Data Exchange (ETDEWEB)

    Albers, E; Krause, K; Schlueter, H [Bochum Univ. (Germany, F.R.). Inst. fuer Experimentalphysik 2

    1977-03-21

    Parametric decay of the upper hybrid mode is observed between the electron cyclotron frequency and its first two harmonics. The decay products are identified as electron Bernstein and ion acoustic mode. The diagnostic results confirm the relevant dispersion relations.

  19. Open-Source Electronic Health Record Systems for Low-Resource Settings: Systematic Review.

    Science.gov (United States)

    Syzdykova, Assel; Malta, André; Zolfo, Maria; Diro, Ermias; Oliveira, José Luis

    2017-11-13

    Despite the great impact of information and communication technologies on clinical practice and on the quality of health services, this trend has been almost exclusive to developed countries, whereas countries with poor resources suffer from many economic and social issues that have hindered the real benefits of electronic health (eHealth) tools. As a component of eHealth systems, electronic health records (EHRs) play a fundamental role in patient management and effective medical care services. Thus, the adoption of EHRs in regions with a lack of infrastructure, untrained staff, and ill-equipped health care providers is an important task. However, the main barrier to adopting EHR software in low- and middle-income countries is the cost of its purchase and maintenance, which highlights the open-source approach as a good solution for these underserved areas. The aim of this study was to conduct a systematic review of open-source EHR systems based on the requirements and limitations of low-resource settings. First, we reviewed existing literature on the comparison of available open-source solutions. In close collaboration with the University of Gondar Hospital, Ethiopia, we identified common limitations in poor resource environments and also the main requirements that EHRs should support. Then, we extensively evaluated the current open-source EHR solutions, discussing their strengths and weaknesses, and their appropriateness to fulfill a predefined set of features relevant for low-resource settings. The evaluation methodology allowed assessment of several key aspects of available solutions that are as follows: (1) integrated applications, (2) configurable reports, (3) custom reports, (4) custom forms, (5) interoperability, (6) coding systems, (7) authentication methods, (8) patient portal, (9) access control model, (10) cryptographic features, (11) flexible data model, (12) offline support, (13) native client, (14) Web client,(15) other clients, (16) code

  20. Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications

    Science.gov (United States)

    Shamsi, Pourya

    Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.

  1. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M. [Thomas Young Centre, Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Bernasconi, L. [Rutherford Appleton Laboratory, STFC, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  2. Hybrid Circuit QED with Electrons on Helium

    Science.gov (United States)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  3. METHODOLOGICAL NOTES: Integrating magnetism into semiconductor electronics

    Science.gov (United States)

    Zakharchenya, Boris P.; Korenev, Vladimir L.

    2005-06-01

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor—making the hybrid an electronic-write-in and electronic-read-out elementary storage unit.

  4. The design and investigation of hybrid ferromagnetic/silicon spin electronic devices

    International Nuclear Information System (INIS)

    Pugh, D.I.

    2001-01-01

    The focus of this study concerns the design and investigation of ferromagnetic/silicon hybrid spin electronic devices as part of a wider project to design a novel spin valve transistor. The key issue to obtain a room temperature spin electronic device is the electrical injection of a spin polarised current from a ferromagnetic contact into a semiconductor. Despite many attempts concentrating on GaAs and InAs only small (< 1%) effects have been observed, making it difficult to confirm spin injection. Lateral devices were designed and fabricated using standard device fabrication procedures to produce arrays of Co/Si/So junctions. Subsequent designs aimed to reduce the number of junctions and improve device isolation. Evidence for spin dependent MR of up to 0.56% was observed in Co/p-Si/Co junctions with silicon gaps up to 16 μm in length. The maximum MR was observed when the first Co/Si Schottky barrier was reverse biased forming a high resistance interface. Vertical devices were designed in an attempt to eliminate any alternative current paths by using a well defined, 1 μm thick silicon membrane. Despite attempts to include oxide barriers, no spin dependent MR was observed in these devices. However, a novel vertical silicon based design has been made which should facilitate further advanced studies of spin injection and transport. The spin diffusion length in n-type silicon has been calculated as a function of doping concentration and temperature by considering the spin relaxation mechanisms in the semiconductor. Discussion has been made concerning p-type silicon and comparisons made with GaAs, indicating that n-Si should show longer spin diffusion lengths. The key design criteria for designing room temperature spin electronic devices have been highlighted. These include the use of a high leakage Schottky barrier or tunnel barrier between the ferromagnet and p-Si and a contact to the silicon to enable appropriate biasing to each FM/Si interface. (author)

  5. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  6. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    Science.gov (United States)

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  7. Study of lower hybrid current drive for the demonstration reactor

    Energy Technology Data Exchange (ETDEWEB)

    Molavi-Choobini, Ali Asghar [Dept. of Physics, Faculty of Engineering, Islamic Azad University, Shahr-e-kord Branch, Shahr-e-kord (Iran, Islamic Republic of); Naghidokht, Ahmed [Dept. of Physics, Urmia University, Urmia (Iran, Islamic Republic of); Karami, Zahra [Dept. of Engineering, Islamic Azad University, Zanjan Branch, Zanjan (Iran, Islamic Republic of)

    2016-06-15

    Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

  8. Tail anisotropy instability during plasma current rise by lower-hybrid waves in a tokamak

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru.

    1986-01-01

    Tail anisotropy instability during lower-hybrid current rise is investigated. Tail formation by lower-hybrid waves is studied by using a Fokker-Planck equation combined with the return field and the rf associated terms. Quasi-linear relaxation of the electron tail distribution under the influence of the plasma waves excited due to the instability is examined. It is found that the instability condition is related to the strength of the parallel diffusion by lower-hybrid waves and the ratio of the electron cyclotron frequency to the electron plasma frequency. The time scale between the instability spikes and the suppression of the instability by electron cyclotron heating are also discussed. (author)

  9. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  10. On hybrid cooperation in underlay cognitive radio networks

    KAUST Repository

    Mahmood, Nurul Huda

    2012-11-01

    In wireless systems where transmitters are subject to a strict received power constraint, such as in underlay cognitive radio networks, cooperative communication is a promising strategy to enhance network performance, as it helps to improve the coverage area and outage performance of a network. However, this comes at the expense of increased resource utilization. To balance the performance gain against the possible over-utilization of resources, we propose a hybrid-cooperation technique for underlay cognitive radio networks, where secondary users cooperate only when required. Various performance measures of the proposed hybrid-cooperation technique are analyzed in this paper, and are also further validated numerically. © 2012 IEEE.

  11. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  12. Constructing ternary polyaniline-graphene-TiO{sub 2} hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei, E-mail: vivizhg@yahoo.com [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590 (China); Guo, Hanlin; Sun, Haiqing [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zeng, Rongchang [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590 (China)

    2017-07-15

    Highlights: • Ternary polyaniline-graphene-TiO{sub 2} hybrids were synthesized. • Flat band potential shift facilitates electron injection to the coupled metal. • Electrons and holes transfer in the hybrids promotes electron–hole separation. • Synergistic effects of the ternary components make the hybrids photo-chargeable. - Abstract: Ternary polyaniline-graphene-TiO{sub 2} nanocomposites were constructed through a stepwise synthetic route. The hybrids exhibit remarkable enhancement in photoelectrochemical performance. The transfer of photo-excited carriers in the ternary composites facilitates the photo-induced electron-hole separation. Meanwhile, the flat band potential shift of the hybrids increases the inner electric field intensity that drives the photo-excited electron migration from the composites to the coupled metal. Furthermore, the ternary hybrids were found firstly to be photo-chargeable, which shows application potentials in photo-generated cathodic protection in dark.

  13. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    This paper is focused on a multi-agent system based event-triggered hybrid control for intelligently restructuring the operating mode of an microgrid (MG) to ensure the energy supply with high security, stability and cost effectiveness. Due to the microgrid is composed of different types...... of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  14. Magnetic instability with increasing hybridization in cerium compounds

    International Nuclear Information System (INIS)

    Kioussis, N.; Cooper, B.R.; Wills, J.M.

    1991-01-01

    A synthesis of a phenomenological theory of orbitally driven magnetic ordering of moderately delocalized light rare-earth systems and ab initio electronic structure calculations has been applied to investigate the change in magnetic behavior on going from CeSb to CeTe, both of which have rocksalt structure with a small decrease in lattice parameter. The hybridization-potential matrix elements and the band energies entering the Anderson-lattice Hamiltonian are obtained from linear-muffin-tin-orbital (LMTO) electronic-structure calculations with the Ce 4f states treated as core states. The position of the Ce 4f energy level relative to the Fermi energy and the intra-atomic Coulomb energy U are obtained by use of a sequence of three total-energy supercell calculations with one out of four Ce sites constrained to f n occupation with n=0,1,2, successively. The calculations elucidate the origins, in the electronic structure, of the variation of the f-state resonance width and hybridization potential on going from CeSb to CeTe, and the resultant sensitivity of the hybridization dressing of the crystal-field splitting and the hybridization-induced exchange interactions to chemical environment. The effect of opening up successive angular momentum scattering channels of the ab initio calculated two-ion exchange-interaction matrix on the nature of the magnetic ordering is examined. The calculated magnitude and range dependence of the two-ion exchange interactions changes sharply from CeSb to CeTe, yielding a change in magnetic behavior in qualitative agreement with experiment. The nonlinear hybridization effects on the hybridization dressing of the crystal-field splitting have been examined

  15. A HYBRID HEURISTIC ALGORITHM FOR SOLVING THE RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP

    Directory of Open Access Journals (Sweden)

    Juan Carlos Rivera

    Full Text Available The Resource Constrained Project Scheduling Problem (RCPSP is a problem of great interest for the scientific community because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently, combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP, Scatter Search and Justification. The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480 instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other researchers at international level, where a prominent place is obtained, according to Chen (2011.

  16. Optimization of hybrid PV/wind power system for remote telecom station

    NARCIS (Netherlands)

    Paudel, S.; Shrestha, J.N.; Neto, F.J.; Ferreira, J.A.F.; Adhikari, M.

    2011-01-01

    The rapid depletion of fossil fuel resources and environmental concerns has given awareness on generation of renewable energy resources. Among the various renewable resources, hybrid solar and wind energy seems to be promising solutions to provide reliable power supply with improved system

  17. Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Mahmoud M.; Abdallah, Tamer [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt); Easawi, Khalid; Negm, Sohair [Department of Physics and Mathematics, Faculty of Engineering (Shoubra), Benha University (Egypt); Talaat, Hassan, E-mail: hassantalaat@hotmail.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt)

    2015-05-15

    Graphical abstract: - Highlights: • Comparing band gaps values obtained optically with STS. • Comparing direct imaging with calculated dimensions. • STS determination of the interfacial band bending of metal/chalcogenide. - Abstract: The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe–Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe–Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe–Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.

  18. Nonlinear evolution of the lower-hybrid drift instability

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Forslund, D.W.; Quest, K.B.; Winske, D.

    1984-01-01

    The results of simulations of the lower-hybrid drift instability in a neutral sheet configuration are described. The simulations use an implicit formulation to relax the usual time step limitations and thus extend previous explicit calculations to weaker gradients, larger mass ratios, and long times compared with the linear growth time. The numerical results give the scaling of the saturation level, heating rates, resistivity, and cross-field diffusion and a demonstration by comparison with a fluid electron model that dissipation in the lower-hybrid drift instability is caused by electron kinetic effects

  19. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    International Nuclear Information System (INIS)

    Cook, J W S; Chapman, S C; Dendy, R O; Brady, C S

    2011-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a parameter regime motivated by tokamak fusion plasma conditions, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes excited by energetic ions, whose ring-beam distribution is motivated by population inversions related to ion cyclotron emission, in a background plasma with a temperature similar to that of the core of a large tokamak plasma. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the initial antiparallel travelling ring-beam distribution of 3 MeV protons in a background 10 keV Maxwellian deuterium plasma with realistic ion-electron mass ratio. These simulations provide a proof-of-principle for a key plasma physics process that may be exploited in future alpha channelling scenarios for magnetically confined burning plasmas.

  20. Evaluation of three electronic report processing systems for preparing hydrologic reports of the U.S Geological Survey, Water Resources Division

    Science.gov (United States)

    Stiltner, G.J.

    1990-01-01

    In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25

  1. Hybrid colloidal plasmonic-photonic crystals.

    Science.gov (United States)

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electron microscopic in situ hybridization and autoradiography: Localization and transcription of rDNA in human lymphocyte nucleoli

    International Nuclear Information System (INIS)

    Wachtler, F.; Mosgoeller, W.S.; Schwarzacher, H.G.

    1990-01-01

    The distribution of ribosomal DNA (rDNA) in the nucleoli of human lymphocytes was revealed by in situ hybridization with a nonautoradiographic procedure at the electron microscopic level. rDNA is located in the dense fibrillar component of the nucleolus but not in the fibrillar centers. In the same cells the incorporation of tritiated uridine takes place in the dense fibrillar component of the nucleolus as seen by autoradiography followed by gold latensification. From these findings it can be concluded that the transcription of ribosomal DNA takes place in the dense fibrillar component of the nucleolus

  3. Use and User Perception of Electronic Information Resources: A Case Study of Siva Institute of Frontier Technology, India

    Directory of Open Access Journals (Sweden)

    Velmurugan Chandran

    2013-12-01

    Full Text Available The present study aims to explore the use and user perception of electronic resources in Siva Institute of Frontier Technology, India. A total number of 123 users were taken into account for the study through a questionnaire-based survey method. A well-structured questionnaire was designed and distributed to the selected 200 students and staff members. 123 copies of the questionnaires were returned dully filled in and the overall response rate was 61.50 percent. The questionnaire contained both open- and close-ended questions. The collected data were classified, analyzed, and tabulated by using simple statistical methods. This study covers the impact of electronic resources on students and faculty in their academic pursuit.

  4. Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; Vilim, Richard B.; Binder, William R.; Bragg Sitton, Shannon M.; Boardman, Richard D.; McKellar, Michael G.; Paredis, Christiaan J.J.

    2016-01-01

    In support of more efficient utilization of clean energy generation sources, including renewable and nuclear options, HES (hybrid energy systems) can be designed and operated as FER (flexible energy resources) to meet both electrical and thermal energy needs in the electric grid and industrial sectors. These conceptual systems could effectively and economically be utilized, for example, to manage the increasing levels of dynamic variability and uncertainty introduced by VER (variable energy resources) such as renewable sources (e.g., wind, solar), distributed energy resources, demand response schemes, and modern energy demands (e.g., electric vehicles) with their ever changing usage patterns. HES typically integrate multiple energy inputs (e.g., nuclear and renewable generation) and multiple energy outputs (e.g., electricity, gasoline, fresh water) using complementary energy conversion processes. This paper reports a dynamic analysis of two realistic HES including a nuclear reactor as the main baseload heat generator and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by their application in scenarios with multiple commodity production and high renewable penetration. It is performed for regional cases – not generic examples – based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses. - Highlights: • Hybrids including renewables can operate as dispatchable flexible energy resources. • Nuclear energy can address high variability and uncertainty in energy systems. • Nuclear hybrids can reliably provide grid services over various time horizons. • Nuclear energy can provide operating reserves and grid inertia under high renewables. • Nuclear hybrids can greatly reduce GHG emissions and support grid and industry needs.

  5. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    International Nuclear Information System (INIS)

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-01-01

    Highlights: → End-of-life electrical and electronic equipment (EEE) as secondary metal resources. → The content and the total amount of metals in specific equipment are both important. → We categorized 21 EEE types from contents and total amounts of various metals. → Important equipment types as secondary resources were listed for each metal kind. → Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection

  6. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  7. Hybrid mask for deep etching

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-01-01

    Deep reactive ion etching is essential for creating high aspect ratio micro-structures for microelectromechanical systems, sensors and actuators, and emerging flexible electronics. A novel hybrid dual soft/hard mask bilayer may be deposited during

  8. Magnetic-field-driven electron transport in ferromagnetic/ insulator/semiconductor hybrid structures

    Science.gov (United States)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    Extremely large magnetotransport phenomena were found in the simple devices fabricated on base of the Me/SiO2/p-Si hybrid structures (where Me are Mn and Fe). These effects include gigantic magnetoimpedance (MI), dc magnetoresistance (MR) and the lateral magneto-photo-voltaic effect (LMPE). The MI and MR values exceed 106% in magnetic field about 0.2 T for Mn/SiO2/p-Si Schottky diode. LMPE observed in Fe/SiO2/p-Si lateral device reaches the value of 104% in a field of 1 T. We believe that in case with the Schottky diode MR and MI effects are originate from magnetic field influence on impact ionization process by two different ways. First, the trajectory of the electron is deflected by a magnetic field, which suppresses acquisition of kinetic energy and therefore impact ionization. Second, the magnetic field gives rise to shift of the acceptor energy levels in silicon to a higher energy. As a result, the activation energy for impact ionization significantly increases and consequently threshold voltage rises. Moreover, the second mechanism (acceptor level energy shifting in magnetic field) can be responsible for giant LMPE.

  9. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks.

    Science.gov (United States)

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-02-01

    Hybrid mobile applications (apps) combine the features of Web applications and "native" mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources-file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies "bridges" that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources-the ability to read and write contacts list, local files, etc.-to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content

  10. Principles of formation of the content of an educational electronic resource on the basis of general and didactic patterns of learning

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2018-12-01

    Full Text Available The article considers the influence of the development of technical means of teaching on the effectiveness of educational and methodical resources. Modern opportunities of information and communication technologies allow creating electronic educational resources that represent educational information that automates the learning process, provide information assistance, if necessary, collect and process statistical information on the degree of development of the content of the school material by schoolchildren, set an individual trajectory of learning, and so on. The main principle of data organization is the division of the training course into separate sections on the thematic elements and components of the learning process. General regularities include laws that encompass the entire didactic system, and in specific (particular cases, those whose actions extend to a separate component (aspect of the system. From the standpoint of the existence of three types of electronic training modules in the aggregate content of the electronic learning resource - information, control and module of practical classes - the principles of the formation of the electronic learning resource, in our opinion, should regulate all these components. Each of the certain principles is considered in the groups: scientific orientation, methodological orientation, systemic nature, accounting of interdisciplinary connections, fundamentalization, systematic and dosage sequence, rational use of study time, accessibility, minimization, operationalization of goals, unified identification diagnosis.

  11. A Study of Ion-Ion Hybrid Instability in the Mixed Plasma

    Directory of Open Access Journals (Sweden)

    Soo-Yong Kim

    1987-12-01

    Full Text Available There are more oxygen ions than hydrogen ions in the auroral field zone. We consider both analytic and numerical simulation study of the heating of hydrogen and oxygen ions by auroral electrons. With the low drift speed of electron beams, the ion-ion hybrid wave becomes unstable instead of the lower hybrid wave so that a preferential heating of oxygen ions occurs.

  12. CERN manufactured hybrid photon detectors

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    These hybrid photon detectors (HPDs) produce an electric signal from a single photon. An electron is liberated from a photocathode and accelerated to a silicon pixel array allowing the location of the photon on the cathode to be recorded. The electronics and optics for these devices have been developed in close collaboration with industry. HPDs have potential for further use in astrophysics and medical imaging.

  13. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence

  14. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    International Nuclear Information System (INIS)

    Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong

    2009-01-01

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  15. Capacitive coupling in hybrid graphene/GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, Pauline, E-mail: psimonet@phys.ethz.ch; Rössler, Clemens; Krähenmann, Tobias; Varlet, Anastasia; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2015-07-13

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure can detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials.

  16. Capacitive coupling in hybrid graphene/GaAs nanostructures

    International Nuclear Information System (INIS)

    Simonet, Pauline; Rössler, Clemens; Krähenmann, Tobias; Varlet, Anastasia; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner

    2015-01-01

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure can detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials

  17. Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Ahmad M. Manasrah

    2018-01-01

    Full Text Available Cloud computing environment provides several on-demand services and resource sharing for clients. Business processes are managed using the workflow technology over the cloud, which represents one of the challenges in using the resources in an efficient manner due to the dependencies between the tasks. In this paper, a Hybrid GA-PSO algorithm is proposed to allocate tasks to the resources efficiently. The Hybrid GA-PSO algorithm aims to reduce the makespan and the cost and balance the load of the dependent tasks over the heterogonous resources in cloud computing environments. The experiment results show that the GA-PSO algorithm decreases the total execution time of the workflow tasks, in comparison with GA, PSO, HSGA, WSGA, and MTCT algorithms. Furthermore, it reduces the execution cost. In addition, it improves the load balancing of the workflow application over the available resources. Finally, the obtained results also proved that the proposed algorithm converges to optimal solutions faster and with higher quality compared to other algorithms.

  18. Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation

    Science.gov (United States)

    Jin, Huile; Wang, Demeng; Zhao, Yuewu; Zhou, Huan; Wang, Shun; Wang, Jichang

    2012-10-01

    Using Au nanoparticles to catalyze the oxidation of alcohols has garnered increasing attention due to its potential application in direct alcohol fuel cells. In this research Te@Au core-shell hybrids were fabricated for the catalytic oxidation of ethanol, where the preparation procedure involved the initial production of Te crystals with different microstructures and the subsequent utilization of the Te crystal as a template and reducing agent for the production of Te@Au hybrids. The as-prepared core-shell hybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Electrochemical measurements illustrate that the hybrids have great electrocatalytic activity and stability toward ethanol oxidation in alkaline media. The enhanced electrocatalytic property may be attributed to the cooperative effects between the metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  19. Facile approach to prepare Pt decorated SWNT/graphene hybrid catalytic ink

    Energy Technology Data Exchange (ETDEWEB)

    Mayavan, Sundar, E-mail: sundarmayavan@cecri.res.in [Centre for Innovation in Energy Research, CSIR–Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu (India); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Mandalam, Aditya; Balasubramanian, M. [Centre for Innovation in Energy Research, CSIR–Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu (India); Sim, Jun-Bo [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Choi, Sung-Min, E-mail: sungmin@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of)

    2015-07-15

    Highlights: • Pt NPs were in situ synthesized onto CNT–graphene support in aqueous solution. • The as-prepared material was used directly as a catalyst ink without further treatment. • Catalyst ink is active toward methanol oxidation. • This approach realizes both scalable and greener production of hybrid catalysts. - Abstract: Platinum nanoparticles were in situ synthesized onto hybrid support involving graphene and single walled carbon nanotube in aqueous solution. We investigate the reduction of graphene oxide, and platinum nanoparticle functionalization on hybrid support by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The as-prepared platinum on hybrid support was used directly as a catalyst ink without further treatment and is active toward methanol oxidation. This work realizes both scalable and greener production of highly efficient hybrid catalysts, and would be valuable for practical applications of graphene based fuel cell catalysts.

  20. Design and realization of a fast low noise electronics for a hybrid pixel X-ray detector dedicated to small animal imaging

    International Nuclear Information System (INIS)

    Chantepie, Benoit

    2008-01-01

    Since the invention of computerized tomography (CT), charge integration detector were widely employed for X-ray biomedical imaging applications. Nevertheless, other options exist. A new technology of direct detection using semiconductors has been developed for high energy physics instrumentation. This new technology, called hybrid pixel detector, works in photon counting mode and allows for selecting the minimum energy of the counted photons. The imXgam research team at CPPM develops the PIXSCAN demonstrator, a CT-scanner using the hybrid pixel detector XPAD. The aim of this project is to evaluate the improvement on image quality and on dose delivered during X-ray examinations of a small animal. After a first prototype of hybrid pixel detector XPAD1 proving the feasibility of the project, a complete imager XPAD2 was designed and integrated in the PIXSCAN demonstrator. Since then, with the evolution of microelectronic industry, important improvements are conceivable. To reducing the size of pixels and to improving the energy resolution of detectors, a third design XPAD3 was conceived and will be soon integrated in a second generation of PIXSCAN demonstrator. In this project, my thesis's work consisted in taking part to the design of the detector readout electronics, to the characterization of the chips and of the hybrid pixel detectors, and also to the definition of an auto-zeroing architecture for pixels. (author) [fr

  1. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    International Nuclear Information System (INIS)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K s ) of GOx at the hybrid biocomposite was calculated to be 11.22 s −1 . The higher K s value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination

  2. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K{sub s}) of GOx at the hybrid biocomposite was calculated to be 11.22 s{sup −1}. The higher K{sub s} value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination.

  3. Effect of nanomodified polyester resin on hybrid sandwich laminates

    International Nuclear Information System (INIS)

    Anbusagar, NRR.; Giridharan, P.K.; Palanikumar, K.

    2014-01-01

    Highlights: • Effect of nanomodified polyester resin on hybrid sandwich laminates is evaluated. • The hybrid sandwich laminates are fabricated with varying wt% of nanoclay. • Flexural, impact and moisture absorbtion properties are evaluated for hybrid composites. • Scanning electron microscopy is utilized to analyze the dispersion of clay and fractured surfaces of the nanocomposites. - Abstract: Effect of nanoclay modified polyester resin on flexural, impact, hardness and water absorption properties of untreated woven jute and glass fabric hybrid sandwich laminates have been investigated experimentally. The hybrid sandwich laminates are prepared by hand lay-up manufacturing technique (HL) for investigation. All hybrid sandwich laminates are fabricated with a total of 10 layers, by varying the extreme layers and wt% of nanoclay in polyester resin so as to obtain four different combinations of hybrid sandwich laminates. For comparison of the composite with hybrid composite, jute fiber reinforced composite laminate also fabricated. X-ray diffraction (XRD) results obtained from samples with nanoclay indicated that intergallery spacing of the layered clay increases with matrix. Scanning electron microscopy (SEM) gave a morphological picture of the cross-sections and energy dispersive X-ray spectroscopy (EDS) allowed investigating the elemental composition of matrix in composites. The testing results indicated that the flexural properties are greatly increased at 4% of nanoclay loading while impact, hardness and water absorption properties are increased at 6% of nanoclay loading. A plausible explanation for high increase of properties has also been discussed

  4. Detection of secondary electrons with pixelated hybrid semiconductor detectors; Sekundaerelektronennachweis mit pixelierten hybriden Halbleiterdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Gebert, Ulrike Sonja

    2011-09-14

    Within the scope of this thesis, secondary electrons were detected with a pixelated semiconductor detector named Timepix. The Timepix detector consists of electronics and a sensor made from a semiconductor material. The connection of sensor and electronics is done for each pixel individually using bump bonds. Electrons with energies above 3 keV can be detected with the sensor. One electron produces a certain amount of electron-hole pairs according to its energy. The charge then drifts along an electric field to the pixel electronics, where it induces an electric signal. Even without a sensor it is possible to detect an electric signal from approximately 1000 electrons directly in the pixel electronics. Two different detector systems to detect secondary electrons using the Timepix detector were investigated during this thesis. First of all, a hybrid photon detector (HPD) was used to detect single photoelectrons. The HPD consists of a vacuum vessel with an entrance window and a cesium iodine photocathode at the inner surface of the window. Photoelectrons are released from the photocathode by incident light and are accelerated in an electric field towards the Timepix detector, where the point of interaction and the arrival time of the electron is determined. With a proximity focusing setup, a time resolution of 12 ns (with an acceleration voltage of 20 kV between photocathode and Timepix detector) was obtained. The HPD examined in this thesis showed a strong dependence of the dark rate form the acceleration voltage and the pressure in the vacuum vessel. At a pressure of few 10{sup -5} mbar and an acceleration voltage of 20 kV, the dark rate was about 800 Hz per mm{sup 2} area of the read out photocathode. One possibility to reduce the dark rate is to identify ion feedback events. With a slightly modified setup it was possible to reduce the dark rate to 0.5 Hz/mm{sup 2}. To achieve this, a new photocathode was mounted in a shorter distance to the detector. The

  5. From Millennium ERM to Proquest 360 Resource Manager: Implementing a new Electronic Resources Management System ERMS in an International Graduate Research University in Saudi Arabia

    KAUST Repository

    Ramli, Rindra M.

    2017-05-17

    An overview of the Recommendation Study and the subsequent Implementation of a new Electronic Resources Management system ERMS in an international graduate research university in the Kingdom of Saudi Arabia. It covers the timeline, deliverables and challenges as well as lessons learnt by the Project Team.

  6. Critical Resources for Emerging Battery Technologies for Hybrid and Electric Vehicles. Proceedings of the International Conference “ISWA World Solid Waste Congress”, 17th - 19th September 2012, Florence, Italy

    DEFF Research Database (Denmark)

    Habib, Komal; Nyander, Nils Christian; Wenzel, Henrik

    2012-01-01

    such as photovoltaics, wind turbines, electric and hybrid cars are, however, in turn dependent on other non- renewable resources such as metals which may become scarce in the future. The concept of ‘critical resources’ is in this context is an expression of how limited or constrained the supply of a resource......-manganese spinel Titanate (LMO – T)) for electric cars in a proposed scenario of 2050, in which a scale of 100 % global conversion of passenger cars to battery cars is modeled. Potential resource supply constraints for these emerging battery technologies in electric cars have been analyzed and assessed...

  7. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    Science.gov (United States)

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  8. A general range-separated double-hybrid density-functional theory.

    Science.gov (United States)

    Kalai, Cairedine; Toulouse, Julien

    2018-04-28

    A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.

  9. The Synthesis of the Hierarchical Structure of Information Resources for Management of Electronic Commerce Entities

    Directory of Open Access Journals (Sweden)

    Krutova Anzhelika S.

    2017-06-01

    Full Text Available The aim of the article is to develop the theoretical bases for the classification and coding of economic information and the scientific justification of the content of information resources of an electronic commerce enterprise. The essence of information resources for management of electronic business entities is investigated. It is proved that the organization of accounting in e-commerce systems is advisable to be built on the basis of two circuits: accounting for financial flows and accounting associated with transformation of business factors in products and services as a result of production activities. There presented a sequence of accounting organization that allows to combine the both circuits in a single information system, which provides a possibility for the integrated replenishment and distributed simultaneous use of the e-commerce system by all groups of users. It is proved that the guarantee of efficient activity of the information management system of electronic commerce entities is a proper systematization of the aggregate of information resources on economic facts and operations of an enterprise in accordance with the management tasks by building the hierarchy of accounting nomenclatures. It is suggested to understand nomenclature as an objective, primary information aggregate concerning a certain fact of the economic activity of an enterprise, which is characterized by minimum requisites, is entered into the database of the information system and is to be reflected in the accounting system. It is proposed to build a database of e-commerce systems as a part of directories (constants, personnel, goods / products, suppliers, buyers and the hierarchy of accounting nomenclatures. The package of documents regulating the organization of accounting at an enterprise should include: the provision on the accounting services, the order on the accounting policy, the job descriptions, the schedules of information exchange, the report card and

  10. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Mondal, Anjon Kumar; Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Zhang, Xiaogang; Wang, Guoxiu

    2014-01-01

    Graphene/MnO 2 hybrid nanosheets were prepared by incorporating graphene and MnO 2 nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO 2 hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na 2 SO 4 electrolyte. We found that the graphene/MnO 2 hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO 2 ) delivered the highest specific capacitance of 320 F g −1 . Graphene/MnO 2 hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO 2 hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO 2 ratios. • The graphene/MnO 2 hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles

  11. Hybrid integrated sensor for position measurement

    International Nuclear Information System (INIS)

    Schmidt, B.; Schott, H.; Just, H.-J.

    1986-01-01

    The design, fabrication and performance of an integrated two-dimensional position sensitive photodetector are presented. The optoelectronic device used as sensitive element in the circuit is a full area position sensitive photodiode (PPD) with high linearity over the full sensitive area. The PPD is integrated with the analog electronics in a hybrid circuit using thick film technology. The analog electronics includes the signal amplification and the signal conditioning to form the output signals proportional to the light beam center position at the sensor surface and an output signal proportional to the light beam intensity. Using hybrid integration a new position sensitive transducer is developed giving output signals, transmiting in large distances without problems and driving directly actuators in any control system

  12. Chemical sensors are hybrid-input memristors

    Science.gov (United States)

    Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.

    2018-04-01

    Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.

  13. Light programmable organic transistor memory device based on hybrid dielectric

    Science.gov (United States)

    Ren, Xiaochen; Chan, Paddy K. L.

    2013-09-01

    We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.

  14. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    International Nuclear Information System (INIS)

    Hong, Lin-Ann; Vu, Hoang-Tuan; Juang, Fuh-Shyang; Lai, Yun-Jr; Yeh, Pei-Hsun; Tsai, Yu-Sheng

    2013-01-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm 2 , and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  15. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Lin-Ann; Vu, Hoang-Tuan [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Juang, Fuh-Shyang, E-mail: fsjuang@seed.net.tw [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Lai, Yun-Jr [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Yeh, Pei-Hsun [Raystar Optronics, Inc., 5F No. 25, Keya Rd. Daya Township, Taichung County, Taiwan (China); Tsai, Yu-Sheng [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China)

    2013-10-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm{sup 2}, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  16. Twin Cities Metro Hybrid Landcover 2000 (Raster)

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Hybrid Landcover is an attempt to clean up the University of Minnesota Remote Sensing Lab's 2000 LandSat Land Cover for the Twin Cities 7-county metropolitan...

  17. Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors.

    Science.gov (United States)

    Lee, Jeong-Hyun; Lee, Seung-Hwan

    2016-10-26

    The hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon is fabricated as a cylindrical cell and investigated against electrochemical performances. The hybrid coating shows that the conductivity for the electron and Li ion is superior and it prevented active material from HF attack. Consequently, carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 shows enhanced rate capability and long-term cycle life. Also, the hybrid coating inhibits swelling phenomenon caused by gas generated as decomposition reaction of electrolyte. Therefore, the hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon can be applied to an energy storage system that requires a long-term life.

  18. Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere

    Science.gov (United States)

    Wong, H. K.

    1995-01-01

    DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.

  19. Controlling user access to electronic resources without password

    Science.gov (United States)

    Smith, Fred Hewitt

    2015-06-16

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes pre-determining an association of the restricted computer resource and computer-resource-proximal environmental information. Indicia of user-proximal environmental information are received from a user requesting access to the restricted computer resource. Received indicia of user-proximal environmental information are compared to associated computer-resource-proximal environmental information. User access to the restricted computer resource is selectively granted responsive to a favorable comparison in which the user-proximal environmental information is sufficiently similar to the computer-resource proximal environmental information. In at least some embodiments, the process further includes comparing user-supplied biometric measure and comparing it with a predetermined association of at least one biometric measure of an authorized user. Access to the restricted computer resource is granted in response to a favorable comparison.

  20. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Science.gov (United States)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  1. DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor

    International Nuclear Information System (INIS)

    Lv Wei; Jin Fengmin; Guo Quangui; Yang Quanhong; Kang Feiyu

    2012-01-01

    Highlights: ► We investigated the potential of GNS/NiO/DNA hybrid used as a nonenzymatic sensor. ► DNA is a highly efficient disperse agent for GNS/NiO hybrid than ionic surfactants. ► GNS/NiO/DNA hybrid shows fast electron transfer in the electrochemical reaction. ► GNS/NiO/DNA hybrid shows good detection performance towards glucose. - Abstract: We demonstrate graphene nanosheet/NiO hybrids (GNS/NiO) as the active material for high-performance non-enzymatic glucose sensors. Such sensors are fabricated by DNA-dispersed GNS/NiO suspension deposited on glassy carbon electrodes. ss-DNA shows strong dispersing ability for the GNS/NiO hybrid materials resulting in stable water-dispersible GNS/NiO/DNA hybrids with fully separated layers. The GNS/NiO/DNA hybrids show enhanced electron transfer in the electrocatalytic reaction process, and accordingly, such hybrids modified electrodes show good sensing performance towards glucose and are characterized by large detection ranges, short response periods, low detection limit and high sensitivity and stability.

  2. Electronic theses and dissertations: a review of this valuable resource for nurse scholars worldwide.

    Science.gov (United States)

    Goodfellow, L M

    2009-06-01

    A worldwide repository of electronic theses and dissertations (ETDs) could provide worldwide access to the most up-to-date research generated by masters and doctoral students. Until that international repository is established, it is possible to access some of these valuable knowledge resources. ETDs provide a technologically advanced medium with endless multimedia capabilities that far exceed the print and bound copies of theses and dissertations housed traditionally in individual university libraries. CURRENT USE: A growing trend exists for universities worldwide to require graduate students to submit theses or dissertations as electronic documents. However, nurse scholars underutilize ETDs, as evidenced by perusing bibliographic citation lists in many of the research journals. ETDs can be searched for and retrieved through several digital resources such as the Networked Digital Library of Theses and Dissertations (http://www.ndltd.org), ProQuest Dissertations and Theses (http://www.umi.com), the Australasian Digital Theses Program (http://adt.caul.edu.au/) and through individual university web sites and online catalogues. An international repository of ETDs benefits the community of nurse scholars in many ways. The ability to access recent graduate students' research electronically from anywhere in the world is advantageous. For scholars residing in developing countries, access to these ETDs may prove to be even more valuable. In some cases, ETDs are not available for worldwide access and can only be accessed through the university library from which the student graduated. Public access to university library ETD collections is not always permitted. Nurse scholars from both developing and developed countries could benefit from ETDs.

  3. USING OF NON-CONVENTIONAL FUELS IN HYBRID VEHICLE DRIVES

    Directory of Open Access Journals (Sweden)

    Dalibor Barta

    2016-12-01

    Full Text Available Electric or hybrid vehicles are becoming increasingly common on roads. While electric vehicles are still more or less intended for city traffic, hybrid vehicles allow normal use due to wider driving range. The use of internal combustion engines in hybrid drives is still an inspiration to find the way to reduce the produc-tion of emissions. Numbers of alternative energy resources were studied as a substitution of conventional fuels for hybrid vehicles drives worldwide. The paper deals with the possibility of using alternative fuels as CNG, LPG and LNG in combination with hybrid drive of a midibus with the capacity of 20 passengers. Various aspects and techniques of hybrid vehicles from energy management system, propulsion system and using of various alternative fuels are explored in this paper. Other related fields of hybrid vehicles such as changes of vehicle weight or influence of electric energy sources on the total vehicle emission production are also included.

  4. Influence of Hybrid Perovskite Fabrication Methods on Film Formation, Electronic Structure, and Solar Cell Performance

    Science.gov (United States)

    Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus

    2017-01-01

    Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555

  5. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-09-01

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238 Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232 U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  6. Electron Heating of LHCD Plasma in HT-7 Tokamak

    International Nuclear Information System (INIS)

    Ding Yonghua; Wan Baonian; Lin Shiyao; Chen Zhongyong; Hu Xiwei; Shi Yuejiang; Hu Liqun; Kong Wei; Zhang Xiaoqing

    2006-01-01

    Electron heating via lower hybrid current drive (LHCD) has been investigated in HT-7 superconducting tokamak. Experiments show that the central electron temperature T e0 , the volume averaged electron temperature e > and the peaking factor of the electron temperature Q Te = T e0 / e > increase with the lower hybrid wave (LHW) power. Simultaneously the electron heating efficiency and the electron temperature as the function of the central line-averaged electron density (n e ) and the plasma current (I p ) have also been investigated. The experimental results are in a good agreement with those of the classical collision theory and the LHW power deposition theory

  7. 1-D hybrid code for FRM start-up

    International Nuclear Information System (INIS)

    Stark, R.A.; Miley, G.H.

    1982-01-01

    A one-D hybrid has been developed to study the start-up of the FRM via neutral-beam injection. The code uses a multi-group numerical model originally developed by J. Willenberg to describe fusion product dynamics in a solenoidal plasma. Earlier we described such a model for use in determining self-consistent ion currents and magnetic fields in FRM start-up. However, consideration of electron dynamics during start-up indicate that the electron current will oppose the injected ion current and may even foil the attempt to achieve reversal. For this reason, we have combined the multi-group ion (model) with a fluid treatment for electron dynamics to form the hybrid code FROST (Field Reversed One-dimensional STart-up). The details of this merger, along with sample results of operation of FROST, are given

  8. Buck-Boost/Forward Hybrid Converter for PV Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2014-01-01

    Full Text Available This paper presents a charger and LED lighting (discharger hybrid system with a PV array as its power source for electronic sign indicator applications. The charger adopts buck-boost converter which is operated in constant current mode to charge lead-acid battery and with the perturb and observe method to extract maximum power of PV arrays. Their control algorithms are implemented by microcontroller. Moreover, forward converter with active clamp circuit is operated in voltage regulation condition to drive LED for electronic sign applications. To simplify the circuit structure of the proposed hybrid converter, switches of two converters are integrated with the switch integration technique. With this approach, the proposed hybrid converter has several merits, which are less component counts, lighter weight, smaller size, and higher conversion efficiency. Finally, a prototype of LED driving system under output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the electronic sign indicator applications.

  9. Library resources on the Internet

    Science.gov (United States)

    Buchanan, Nancy L.

    1995-07-01

    Library resources are prevalent on the Internet. Library catalogs, electronic books, electronic periodicals, periodical indexes, reference sources, and U.S. Government documents are available by telnet, Gopher, World Wide Web, and FTP. Comparatively few copyrighted library resources are available freely on the Internet. Internet implementations of library resources can add useful features, such as full-text searching. There are discussion lists, Gophers, and World Wide Web pages to help users keep up with new resources and changes to existing ones. The future will bring more library resources, more types of library resources, and more integrated implementations of such resources to the Internet.

  10. Review of the current status of linear hybrid reactor concepts

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1977-07-01

    A review was made of the current status of linear fusion-fission hybrid reactor design studies in the USA. The linear hybrid reactor concepts reviewed include the linear theta-pinch hybrid reactor being studied at Los Alamos Scientific Laboratory, the electron beam-heated solenoid hybrid reactor under development at Physics International Co., the laser-heated solenoid hybrid reactor being investigated at Mathematical Sciences Northwest, Inc., and the linear fusion waste burning reactor being studied at General Atomic Company. The discussion addresses confinement and heating mechanisms for each concept, as well as the hybrid blanket designs. The current state of the four reactor designs is summarized and the performance of the various concepts compared

  11. Study in electron microscopy the formation of the hybrid layer using adhesive systems One Coat and Single Bond Universal, at the Facultad de Medicina of the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Parra Barillas, Adriana; Montoya, Michael

    2013-01-01

    The formation of the hybrid layer is observed in dental pieces in vitro, using systems of conventional adhesives (Single Bond 2 of 3M and One Coat of Coltene), with different times of acid etching, through the use of atomic force microscopy (AFM). The images of the hybrid layer obtained from samples prepared with adhesive systems are analyzed by AFM. Samples collected have been of dental pieces (molars and premolars) recently extracted and later placed in water. The pieces used have provided more surface to be observed under the microscope, greater accessibility to the be cut for its study, and to the great pieces have facilitated their placement on the Isomet low speed saw. The differences are evaluated between hybrid layers according the adhesive system used and the mode of application of the images obtained in the atomic force microscope. The adhesive system that has allowed the formation of a hybrid layer more appropriate between the adhesive system One Coat and the adhesive system Single Bond Universal is determined. The time of acid etching as variable of procedure is determined and has interfered with the formation of a hybrid layer more stable. The images evaluated that were provided by the atomic force microscope and compared with the images of electron microscopy of other studies, have determined that the AFM is without providing detailed information, as well as the appropriate images to evaluate the hybrid layer of the adhesive systems Single Bond 2 and One Coat of Coltene, or the different times of acid etching. Therefore, for this type of study, the image of choice must be of an electron microscope [es

  12. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  13. ELECTRONIC EDUCATIONAL RESOURCES FOR ONLINE SUPPORT OF MODERN CHEMISTRY CLASSES IN SPECIALIZED SCHOOL

    Directory of Open Access Journals (Sweden)

    Maria D. Tukalo

    2013-09-01

    Full Text Available This article contains material of some modern electronic educational resources that can be used via the Internet to support the modern chemistry classes in specialized school. It was drawn attention to the educational chemical experiments as means of knowledge; simulated key motivational characteristics to enhance students interest for learning subjects, their cognitive and practical activity in the formation of self-reliance and self-creative; commented forecasts for creating of conditions to enhance the creative potential of students in a modern learning environment.

  14. Selection and Evaluation of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Doğan Atılgan

    2013-11-01

    Full Text Available Publication boom and issues related to controlling and accession of printed sources have created some problems after World War II. Consequently, publishing industry has encountered the problem of finding possible solution for emerged situation. Industry of electronic publishing has started to improve with the rapid increase of the price of printed sources as well as the problem of publication boom. The first effects of electronic publishing were appeared on the academic and scholarly publications then electronic publishing became a crucial part of all types of publications. As a result of these developments, collection developments and service policies of information centers were also significantly changed. In this article, after a general introduction about selection and evaluation processes of electronic publications, the subscribed databases by a state and a privately owned university in Turkey and their usage were examined.

  15. Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.

  16. Multisensors Cooperative Detection Task Scheduling Algorithm Based on Hybrid Task Decomposition and MBPSO

    Directory of Open Access Journals (Sweden)

    Changyun Liu

    2017-01-01

    Full Text Available A multisensor scheduling algorithm based on the hybrid task decomposition and modified binary particle swarm optimization (MBPSO is proposed. Firstly, aiming at the complex relationship between sensor resources and tasks, a hybrid task decomposition method is presented, and the resource scheduling problem is decomposed into subtasks; then the sensor resource scheduling problem is changed into the match problem of sensors and subtasks. Secondly, the resource match optimization model based on the sensor resources and tasks is established, which considers several factors, such as the target priority, detecting benefit, handover times, and resource load. Finally, MBPSO algorithm is proposed to solve the match optimization model effectively, which is based on the improved updating means of particle’s velocity and position through the doubt factor and modified Sigmoid function. The experimental results show that the proposed algorithm is better in terms of convergence velocity, searching capability, solution accuracy, and efficiency.

  17. Linear equations and rap battles: how students in a wired classroom utilized the computer as a resource to coordinate personal and mathematical positional identities in hybrid spaces

    Science.gov (United States)

    Langer-Osuna, Jennifer

    2015-03-01

    This paper draws on the constructs of hybridity, figured worlds, and cultural capital to examine how a group of African-American students in a technology-driven, project-based algebra classroom utilized the computer as a resource to coordinate personal and mathematical positional identities during group work. Analyses of several vignettes of small group dynamics highlight how hybridity was established as the students engaged in multiple on-task and off-task computer-based activities, each of which drew on different lived experiences and forms of cultural capital. The paper ends with a discussion on how classrooms that make use of student-led collaborative work, and where students are afforded autonomy, have the potential to support the academic engagement of students from historically marginalized communities.

  18. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  19. An Exploratory study on the use of LibAnswers to Resolve, Track and Monitor Electronic Resources Issues: The KAUST Library experience

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    An Exploratory study on KAUST library use of LibAnswers in resolving electronic resources questions received in LibAnswers. It describes the findings of the questions received in LibAnswers. The author made suggestions based on the findings to improve the reference services in responding to e-resources questions.

  20. An Exploratory study on the use of LibAnswers to Resolve, Track and Monitor Electronic Resources Issues: The KAUST Library experience

    KAUST Repository

    Ramli, Rindra M.

    2017-05-03

    An Exploratory study on KAUST library use of LibAnswers in resolving electronic resources questions received in LibAnswers. It describes the findings of the questions received in LibAnswers. The author made suggestions based on the findings to improve the reference services in responding to e-resources questions.

  1. The level of the usage of the human resource information system and electronic recruitment in Croatian companies

    Directory of Open Access Journals (Sweden)

    Snježana Pivac

    2014-12-01

    Full Text Available Performing business according to contemporary requirements influences companies for continuous usage of modern managerial tools, such as a human resource information system (HRIS and electronic recruitment (ER. Human resources have been recognised as curtail resources and the main source of a competitive advantage in creation of successful business performance. In order to attract and select the top employees, companies use quality information software for attracting internal ones, and electronic recruitment for attracting the best possible external candidates. The main aim of this paper is to research the level of the usage of HRIS and ER within medium-size and large Croatian companies. Moreover, the additional aim of this paper is to evaluate the relationship among the usage of these modern managerial tools and the overall success of human resource management within these companies. For the purpose of this paper, primary and secondary research has been conducted in order to reveal the level of the usage of HRIS and ER as well as the overall success of human resource management in Croatian companies. The companies’ classification (HRIS and ER is done by using the non-hierarchical k-means cluster method as well as the nonparametric Kruskal Wallis test. Further, the companies are ranked by the multicriteria PROMETHEE method. Relevant nonparametric tests are used for testing the overall companies’ HRM. Finally, binary logistic regression is estimated, relating binary variable HRM and HRIS development. After detailed research, it can be concluded that large Croatian companies apply HRIS in majority (with a positive relation to HRM performance, but still require certain degrees of its development.

  2. The electronic encapsulation of knowledge in hydraulics, hydrology and water resources

    Science.gov (United States)

    Abbott, Michael B.

    The rapidly developing practice of encapsulating knowledge in electronic media is shown to lead necessarily to the restructuring of the knowledge itself. The consequences of this for hydraulics, hydrology and more general water-resources management are investigated in particular relation to current process-simulation, real-time control and advice-serving systems. The generic properties of the electronic knowledge encapsulator are described, and attention is drawn to the manner in which knowledge 'goes into hiding' through encapsulation. This property is traced in the simple situations of pure mathesis and in the more complex situations of taxinomia using one example each from hydraulics and hydrology. The consequences for systems architectures are explained, pointing to the need for multi-agent architectures for ecological modelling and for more general hydroinformatics systems also. The relevance of these developments is indicated by reference to ongoing projects in which they are currently being realised. In conclusion, some more general epistemological aspects are considered within the same context. As this contribution is so much concerned with the processes of signification and communication, it has been partly shaped by the theory of semiotics, as popularised by Eco ( A Theory of Semiotics, Indiana University, Bloomington, 1977).

  3. Study of applying a hybrid standalone wind-photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    Aissa Dahmani

    2015-01-01

    Full Text Available The purpose of this paper is the study of applying a hybrid system wind/photovoltaic to supply a community in southern Algeria. Diesel generators are always used to provide such remote regions with energy. Using renewable energy resources is a good alternative to overcome such pollutant generators. Hybrid Optimization Model for Electric Renewable (HOMER software is used to determine the economic feasibility of the proposed configuration. Assessment of renewable resources consisting in wind and solar potentials, load profile determination and sensitivity of different parameters analysis were performed. The cost of energy (COE of 0.226 $/kWh is very competitive with those found in literature.

  4. Runaway electron studies with hard x-ray and microwave diagnostics in the FT-2 lower hybrid current drive discharges

    Science.gov (United States)

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Pandya, S. P.; Plyusnin, V. V.; Altukhov, A. B.; Kouprienko, D. V.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2018-01-01

    Studies of the super-thermal and runaway electron behavior in ohmic and lower hybrid current drive FT-2 tokamak plasmas have been carried out using information obtained from measurements of hard x-ray spectra and non-thermal microwave radiation intensity at the frequency of 10 GHz and in the range of (53 ÷ 78) GHz. A gamma-ray spectrometer based on a scintillation detector with a LaBr3(Ce) crystal was used, which provides measurements at counting rates up to 107 s-1. Reconstruction of the energy distribution of RE interacting with the poloidal limiter of the tokamak chamber was made with application of the DeGaSum code. Super-thermal electrons accelerated up to 2 MeV by the LH waves at the high-frequency pumping of the plasma with low density ≤ft ~ 2  ×  1013 cm-3 and then up to 7 MeV by vortex electric field have been found. Experimental analysis of the runaway electron beam generation and evolution of their energy distribution in the FT-2 plasmas is presented in the article and compared with the numerical calculation of the maximum energy gained by runaway electrons for given plasma parameters. In addition, possible mechanisms for limiting the maximum energy gained by the runaway electrons are also calculated and described for a FT-2 plasma discharge.

  5. An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1.

    Science.gov (United States)

    Kiah, M L Mat; Nabi, Mohamed S; Zaidan, B B; Zaidan, A A

    2013-10-01

    This study aims to provide security solutions for implementing electronic medical records (EMRs). E-Health organizations could utilize the proposed method and implement recommended solutions in medical/health systems. Majority of the required security features of EMRs were noted. The methods used were tested against each of these security features. In implementing the system, the combination that satisfied all of the security features of EMRs was selected. Secure implementation and management of EMRs facilitate the safeguarding of the confidentiality, integrity, and availability of e-health organization systems. Health practitioners, patients, and visitors can use the information system facilities safely and with confidence anytime and anywhere. After critically reviewing security and data transmission methods, a new hybrid method was proposed to be implemented on EMR systems. This method will enhance the robustness, security, and integration of EMR systems. The hybrid of simple object access protocol/extensible markup language (XML) with advanced encryption standard and secure hash algorithm version 1 has achieved the security requirements of an EMR system with the capability of integrating with other systems through the design of XML messages.

  6. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  7. Hybrid CNG propulsion for fleet vehicles: emission reduction potential and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Drozdz, P. [BC Research Institute, BC (Canada)

    1997-12-31

    A project (1) to build an experimental hybrid electric vehicle to be used as a test bed for the development of EZEV-oriented technologies, (2) to develop a control system to manage the energy use in a series hybrid vehicle, (3) to evaluate the suitability of valve regulated lead acid batteries for hybrid propulsion, and (4) to investigate the feasibility of using hybrid propulsion for medium duty fleet vehicles was discussed. In this context, the electric G-Van, the BCRI hybrid G-Van battery, the hybrid power unit, and the electronic control unit were described. The concept of hybrid vehicle control, and the control system software were explained, and a summary of the hybrid system efficiency test was provided.

  8. RESEARCH OF INFLUENCE OF QUALITY OF ELECTRONIC EDUCATIONAL RESOURCES ON QUALITY OF TRAINING WITH USE OF DISTANCE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    H. M. Kravtsov

    2013-03-01

    Full Text Available Communication improving of educational processes requires today new approaches to the management arrangements and forming of educational policy in the field of distance learning, which is based on the use of modern information and communication technologies. An important step in this process is the continuous monitoring of the development and implementation of information technology and, in particular, the distance learning systems in higher educational establishments. The main objective of the monitoring is the impact assessment on the development of distance learning following the state educational standards, curricula, methodical and technical equipment and other factors; factors revelation that influence the implementation and outcomes of distance learning; results comparison of educational institution functioning and distance education systems in order to determine the most efficient ways of its development. The paper presents the analysis results of the dependence of the quality of educational services on the electronic educational resources. Trends in educational services development was studied by comparing the quality influence of electronic educational resources on the quality of educational services of higher pedagogical educational institutions of Ukraine as of 2009-2010 and 2012-2013. Generally, the analysis of the survey results allows evaluating quality of the modern education services as satisfactory and it can be said that almost 70% of the success of their future development depends on the quality of the used electronic educational resources and distance learning systems in particular.

  9. Design of magnetic akaganeite-cyanobacteria hybrid biofilms

    International Nuclear Information System (INIS)

    Dahoumane, Si Amar; Djediat, Chakib; Yepremian, Claude; Coute, Alain; Fievet, Fernand; Brayner, Roberta

    2010-01-01

    Common Anabaena cyanobacteria are shown to form intra-cellularly akaganeite β-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. High-resolution transmission electron microscopy showed that these nanorods present a complex arrangement of pores forming a spongelike structure. These hybrid akaganeite-cyanobacteria were used to form 'one-pot' hybrid biofilms. The hybrid biofilm presents higher coercivity (H c = 44.6 kA m -1 (560 Oe)) when compared to lyophilized akaganeite-cyanobacteria powder (H c = 0.8 kA m -1 (10 Oe)) due to the quasi-assembly of the cells on the glass substrate compared to the lyophilized randomly akaganeite-cyanobacteria powder.

  10. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite.

    Science.gov (United States)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV-visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (Ks) of GOx at the hybrid biocomposite was calculated to be 11.22s(-1). The higher Ks value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05-23.2mM. The limit of detection (LOD) was estimated to be 28μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. © 2013.

  11. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  12. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.

    Science.gov (United States)

    Habib, Komal; Parajuly, Keshav; Wenzel, Henrik

    2015-10-20

    Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.

  13. On Hybrid Cooperation in Underlay Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Yilmaz, Ferkan; Øien, Geir E.

    2013-01-01

    of opportunistic wireless systems such as cognitive radio networks. In order to balance the performance gains from cooperative communication against the possible over-utilization of resources, we propose and analyze an adaptive-cooperation technique for underlay cognitive radio networks, termed as hybrid......Cooperative communication is a promising strategy to enhance the performance of a communication network as it helps to improve the coverage area and the outage performance. However, such enhancement comes at the expense of increased resource utilization, which is undesirable; more so in the case......-cooperation. Under the proposed cooperation scheme, secondary users in a cognitive radio network cooperate adaptively to enhance the spectral efficiency and the error performance of the network. The bit error rate, the spectral efficiency and the outage performance of the network under the proposed hybrid...

  14. Site-specific analysis of hybrid geothermal/fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

  15. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  16. Preparation and fluorescent recognition properties for fluoride of a nanostructured covalently bonded europium hybrid material

    Institute of Scientific and Technical Information of China (English)

    余旭东; 李景印; 李亚娟; 耿丽君; 甄小丽; 于涛

    2015-01-01

    A novel covalently bonded Eu3+-based silica hybrid material was designed and its spectrophotometric anion sensing prop-erty was studied. The fluorescent receptor (europium complex) was covalently grafted to the silica matrix via a sol-gel approach. FTIR, UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescent spectra were characterized, and the results revealed that the hybrid material with nanosphere structure displayed excellent photophysical property. In addition, the selective anion sensing property of the hybrid material was studied by UV-vis and fluorescence spectra. The results showed that the hybrid material exhibited a smart response with fluoride anions.

  17. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector

    Directory of Open Access Journals (Sweden)

    Masato Ohnishi

    2015-04-01

    Full Text Available When a radial strain is applied to a carbon nanotube (CNT, the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.

  18. Resource Discovery within the Networked "Hybrid" Library.

    Science.gov (United States)

    Leigh, Sally-Anne

    This paper focuses on the development, adoption, and integration of resource discovery, knowledge management, and/or knowledge sharing interfaces such as interactive portals, and the use of the library's World Wide Web presence to increase the availability and usability of information services. The introduction addresses changes in library…

  19. Electron spectroscopy of nanodiamond surface states

    Energy Technology Data Exchange (ETDEWEB)

    Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P

    2003-06-15

    Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp{sup 3} hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of {sigma}{sub p} up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms {sigma}{sub s}{sup 1}{sigma}{sub p}{sup 2}{pi}{sup 1} surface states without overlapping of {pi}-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface.

  20. The future of electronic power processing and conversion

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Consoli, A.; Ferreira, J.A.

    2005-01-01

    . - A large penetration of power electronics into power systems will happen within the next 25-30 years. The main transmission grid will not be affected. The power electronics development will be in distributed generation and in the loads. - The success of the integrated starter/generator, hybrid or electric...... cars depends on political decisions more than on technological advances. However, the success of a recent Japanese hybrid car and the cost of oil could trigger the critical momentum for large-scale use of power electronics in automotive applications. - We are moving toward standardized power supply...

  1. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail

    2017-07-20

    Network efficiency and proper utilization of its resources are essential requirements to operate wireless networks in an optimal fashion. Cognitive radio aims to fulfill these requirements by exploiting artificial intelligence techniques to create an entity called cognitive engine. Cognitive engine exploits awareness about the surrounding radio environment to optimize the use of radio resources and adapt relevant transmission parameters. In this paper, we propose a hybrid cognitive engine that employs Case Based Reasoning (CBR) and Decision Trees (DTs) to perform radio adaptation in multi-carriers wireless networks. The engine complexity is reduced by employing DTs to improve the indexing methodology used in CBR cases retrieval. The performance of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes in different scenarios.

  2. Graphene/MnO{sub 2} hybrid nanosheets as high performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Zhang, Xiaogang [College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-15

    Graphene/MnO{sub 2} hybrid nanosheets were prepared by incorporating graphene and MnO{sub 2} nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO{sub 2} hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na{sub 2}SO{sub 4} electrolyte. We found that the graphene/MnO{sub 2} hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO{sub 2}) delivered the highest specific capacitance of 320 F g{sup −1}. Graphene/MnO{sub 2} hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO{sub 2} hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO{sub 2} ratios. • The graphene/MnO{sub 2} hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles.

  3. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    KAUST Repository

    Cho, Nam Chul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Banavoth, Murali; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tao; Bakr, Osman

    2016-01-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid

  4. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng

    2015-09-08

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

  5. Radiation hybrid mapping of human chromosome 18

    International Nuclear Information System (INIS)

    Francke, U.; Moon, A.J.; Chang, E.; Foellmer, B.; Strauss, B.; Haschke, A.; Chihlin Hsieh; Geigl, E.M.; Welch, S.

    1990-01-01

    The authors have generated a Chinese hamster V79/380-6 HPRT minus x human leukocyte hybrid cell line (18/V79) with chromosome 18 as the only human chromosome that is retained at high frequency without specific selection. Hybrid cells were selected in HAT medium, and 164 individual colonies were isolated. Of 110 colonies screened for human DNA by PCR amplification using a primer specific for human Alu repeats 67 (61%) were positive. These were expanded in culture for large-scale DNA preparations. Retesting expanded clones by PCR with Alu and LINE primers has revealed unique patterns of amplification products. In situ hybridization of biotin labelled total human DNA to metaphase spreads from various hybrids revealed the presence of one or more human DNA fragments integrated in hamster chromosomes. The authors have generated a resource that should allow the construction of a radiation map, to be compared with the YAC contig map also under construction in their laboratory

  6. Radial profile of the electron distribution from electron cyclotron emission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tribaldos, V.; Krivenski, V.

    1993-07-01

    A numerical study is presented, showing the possibility to invert the electron distribution function from a small set of non-thermal spectra, for a regime of lower hybrid current drive. (Author) 7 refs.

  7. Radial profile of the electron distribution from electron cyclotron emission measurements

    International Nuclear Information System (INIS)

    Tribaldos, V.; Krivenski, V.

    1993-01-01

    A numerical study is presented, showing the possibility to invert the electron distribution function from a small set of non-thermal spectra, for a regime of lower hybrid current drive. (Author) 7 refs

  8. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    Science.gov (United States)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  9. Hierarchically porous carbon/polyaniline hybrid for use in supercapacitors.

    Science.gov (United States)

    Joo, Min Jae; Yun, Young Soo; Jin, Hyoung-Joon

    2014-12-01

    A hierarchically porous carbon (HPC)/polyaniline (PANI) hybrid electrode was prepared by the polymerization of PANI on the surface of the HPC via rapid-mixing polymerization. The surface morphologies and chemical composition of the HPC/PANI hybrid electrode were characterized using transmission electron microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The surface morphologies and XPS results for the HPC, PANI and HPC/PANI hybrids indicate that PANI is coated on the surface of HPC in the HPC/PANI hybrids which have two different nitrogen groups as a benzenoid amine (-NH-) peak and positively charged nitrogen (N+) peak. The electrochemical performances of the HPC/PANI hybrids were analyzed by performing cyclic voltammetry and galvanostatic charge-discharge tests. The HPC/PANI hybrids showed a better specific capacitance (222 F/g) than HPC (111 F/g) because of effect of pseudocapacitor behavior. In addition, good cycle stabilities were maintained over 1000 cycles.

  10. Hybrid Vlasov–Fokker–Planck–Maxwell simulations of fast electron transport and the time dependance of K-shell excitation in a mid-Z metallic target

    International Nuclear Information System (INIS)

    Thomas, A G R; Sherlock, M; Ridgers, C P; Kuranz, C; Drake, R P

    2013-01-01

    Using a hybrid Vlasov–Fokker–Planck–Maxwell code coupled to calculations using a modified relativistic binary-encounter Bethe model of ionizing collisions we study the time and space dependence of K α photon generation by a fast electron beam injected into a solid density copper plasma target. The electron beam is chosen to be representative of that expected to be generated by a picosecond duration, ∼10 19 W cm −2 intensity laser. K α photons are produced as electrons reflux laterally across the target and are slowed and thermalized by collisions with, and Ohmic heating of, the background fluid over a ∼10 ps timescale, which dictates the timescale for K α emission. The results show reasonable agreement with recent experimental results in terms of both the yield and time dependance. We show how lateral expansion of the electrons can be imaged in the K α radiation. (paper)

  11. Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron-hole balanced spacers

    International Nuclear Information System (INIS)

    Leem, Dong-Seok; Kim, Ji Whan; Kim, Jang-Joo; Jung, Sung Ouk; Kim, Seul-Ong; Kwon, Soon-Ki; Kim, Se Hoon; Kim, Kee Young; Kim, Yun-Hi

    2010-01-01

    High-efficiency two-colour white organic light-emitting diodes (WOLEDs) comprising a newly synthesized iridium complex orange phosphor ((impy) 2 Ir(acac)) and a blue fluorophor (BD012) have been realized by placing several kinds of thin spacers between two emitters. Hybrid WOLEDs with a spacer composed of a hole-transporting N,N-dicarbazolyl-3,5-benzene (mCP) and an electron-transporting 4,7-diphenyl-1,10-phenanthroline (Bphen) exhibit a high external quantum efficiency (EQE) of up to 8.4% and a negligible colour change (the colour coordinate of (0.39, 0.41) at 1000 cd m -2 ) with increasing brightness, whereas the device using a hole-transporting mCP spacer shows a relatively low EQE of 6.2% and a large shift of emitting colour with increasing brightness. Device performance is further characterized based on the charge transport behaviour of the spacers inserted between the two emitters.

  12. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    Science.gov (United States)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  13. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    CERN Document Server

    Pompili, Riccardo; Bellaveglia, M; Biagioni, A; Castorina, G; Chiadroni, E; Cianchi, A; Croia, M; Di Giovenale, D; Ferrario, M; Filippi, F; Gallo, A; Gatti, G; Giorgianni, F; Giribono, A; Li, W; Lupi, S; Mostacci, A; Petrarca, M; Piersanti, L; Di Pirro, G; Romeo, S; Scifo, J; Shpakov, V; Vaccarezza, C; Villa, F

    2017-01-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.

  14. Femtosecond timing-jitter between photo-cathode laser and ultra-short electron bunches by means of hybrid compression

    International Nuclear Information System (INIS)

    Pompili, R; Anania, M P; Bellaveglia, M; Biagioni, A; Castorina, G; Chiadroni, E; Croia, M; Giovenale, D Di; Ferrario, M; Gallo, A; Gatti, G; Cianchi, A; Filippi, F; Giorgianni, F; Giribono, A; Lupi, S; Mostacci, A; Petrarca, M; Piersanti, L; Li, W

    2016-01-01

    The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC-LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations. (paper)

  15. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  16. A Hybrid Digital-Signature and Zero-Watermarking Approach for Authentication and Protection of Sensitive Electronic Documents

    Science.gov (United States)

    Kabir, Muhammad N.; Alginahi, Yasser M.

    2014-01-01

    This paper addresses the problems and threats associated with verification of integrity, proof of authenticity, tamper detection, and copyright protection for digital-text content. Such issues were largely addressed in the literature for images, audio, and video, with only a few papers addressing the challenge of sensitive plain-text media under known constraints. Specifically, with text as the predominant online communication medium, it becomes crucial that techniques are deployed to protect such information. A number of digital-signature, hashing, and watermarking schemes have been proposed that essentially bind source data or embed invisible data in a cover media to achieve its goal. While many such complex schemes with resource redundancies are sufficient in offline and less-sensitive texts, this paper proposes a hybrid approach based on zero-watermarking and digital-signature-like manipulations for sensitive text documents in order to achieve content originality and integrity verification without physically modifying the cover text in anyway. The proposed algorithm was implemented and shown to be robust against undetected content modifications and is capable of confirming proof of originality whilst detecting and locating deliberate/nondeliberate tampering. Additionally, enhancements in resource utilisation and reduced redundancies were achieved in comparison to traditional encryption-based approaches. Finally, analysis and remarks are made about the current state of the art, and future research issues are discussed under the given constraints. PMID:25254247

  17. A Hybrid Digital-Signature and Zero-Watermarking Approach for Authentication and Protection of Sensitive Electronic Documents

    Directory of Open Access Journals (Sweden)

    Omar Tayan

    2014-01-01

    Full Text Available This paper addresses the problems and threats associated with verification of integrity, proof of authenticity, tamper detection, and copyright protection for digital-text content. Such issues were largely addressed in the literature for images, audio, and video, with only a few papers addressing the challenge of sensitive plain-text media under known constraints. Specifically, with text as the predominant online communication medium, it becomes crucial that techniques are deployed to protect such information. A number of digital-signature, hashing, and watermarking schemes have been proposed that essentially bind source data or embed invisible data in a cover media to achieve its goal. While many such complex schemes with resource redundancies are sufficient in offline and less-sensitive texts, this paper proposes a hybrid approach based on zero-watermarking and digital-signature-like manipulations for sensitive text documents in order to achieve content originality and integrity verification without physically modifying the cover text in anyway. The proposed algorithm was implemented and shown to be robust against undetected content modifications and is capable of confirming proof of originality whilst detecting and locating deliberate/nondeliberate tampering. Additionally, enhancements in resource utilisation and reduced redundancies were achieved in comparison to traditional encryption-based approaches. Finally, analysis and remarks are made about the current state of the art, and future research issues are discussed under the given constraints.

  18. Effects of B site doping on electronic structures of InNbO4 based on hybrid density functional calculations

    Science.gov (United States)

    Lu, M. F.; Zhou, C. P.; Li, Q. Q.; Zhang, C. L.; Shi, H. F.

    2018-01-01

    In order to improve the photocatalytic activity under visible-light irradiation, we adopted first principle calculations based on density functional theory (DFT) to calculate the electronic structures of B site transition metal element doped InNbO4. The results indicated that the complete hybridization of Nb 4d states and some Ti 3d states contributed to the new conduction band of Ti doped InNbO4, barely changing the position of band edge. For Cr doping, some localized Cr 3d states were introduced into the band gap. Nonetheless, the potential of localized levels was too positive to cause visible-light reaction. When it came to Cu doping, the band gap was almost same with that of InNbO4 as well as some localized Cu 3d states appeared above the top of VB. The introduction of localized energy levels benefited electrons to migrate from valence band (VB) to conduction band (CB) by absorbing lower energy photons, realizing visible-light response.

  19. Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts

    International Nuclear Information System (INIS)

    Li Chao; Ebert, Ute; Hundsdorfer, Willem

    2010-01-01

    Streamers are the first stage of sparks and lightning; they grow due to a strongly enhanced electric field at their tips; this field is created by a thin curved space charge layer. These multiple scales are already challenging when the electrons are approximated by densities. However, electron density fluctuations in the leading edge of the front and non-thermal stretched tails of the electron energy distribution (as a cause of X-ray emissions) require a particle model to follow the electron motion. But present computers cannot deal with all electrons in a fully developed streamer. Therefore, super-particle have to be introduced, which leads to wrong statistics and numerical artifacts. The method of choice is a hybrid computation in space where individual electrons are followed in the region of high electric field and low density while the bulk of the electrons is approximated by densities (or fluids). We here develop the hybrid coupling for planar fronts. First, to obtain a consistent flux at the interface between particle and fluid model in the hybrid computation, the widely used classical fluid model is replaced by an extended fluid model. Then the coupling algorithm and the numerical implementation of the spatially hybrid model are presented in detail, in particular, the position of the model interface and the construction of the buffer region. The method carries generic features of pulled fronts that can be applied to similar problems like large deviations in the leading edge of population fronts, etc.

  20. The Eindhoven High-Brightness Electron Programme

    NARCIS (Netherlands)

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    The Eindhoven High-Brightness programme is aimed at producing ultra-short intense electron bunches from compact accelerators. The RF electron gun is capable of producing 100 fs electron bunches at 7.5 MeV and 10 pC bunch charge. The DC/RF hybrid gun under development will produce bunches <75 fs at

  1. Investigation of Fluctuation-Induced Electron Transport in Hall Thrusters with a 2D Hybrid Code in the Azimuthal and Axial Coordinates

    Science.gov (United States)

    Fernandez, Eduardo; Borelli, Noah; Cappelli, Mark; Gascon, Nicolas

    2003-10-01

    Most current Hall thruster simulation efforts employ either 1D (axial), or 2D (axial and radial) codes. These descriptions crucially depend on the use of an ad-hoc perpendicular electron mobility. Several models for the mobility are typically invoked: classical, Bohm, empirically based, wall-induced, as well as combinations of the above. Experimentally, it is observed that fluctuations and electron transport depend on axial distance and operating parameters. Theoretically, linear stability analyses have predicted a number of unstable modes; yet the nonlinear character of the fluctuations and/or their contribution to electron transport remains poorly understood. Motivated by these observations, a 2D code in the azimuthal and axial coordinates has been written. In particular, the simulation self-consistently calculates the azimuthal disturbances resulting in fluctuating drifts, which in turn (if properly correlated with plasma density disturbances) result in fluctuation-driven electron transport. The characterization of the turbulence at various operating parameters and across the channel length is also the object of this study. A description of the hybrid code used in the simulation as well as the initial results will be presented.

  2. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    Science.gov (United States)

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  3. A novel hybrid biometric electronic voting system: integrating finger print face recognition

    International Nuclear Information System (INIS)

    Najam, S.S.; Shaikh, A.Z.; Naqvi, S.

    2018-01-01

    A novel hybrid design based electronic voting system is proposed, implemented and analyzed. The proposed system uses two voter verification techniques to give better results in comparison to single identification based systems. Finger print and facial recognition based methods are used for voter identification. Cross verification of a voter during an election process provides better accuracy than single parameter identification method. The facial recognition system uses Viola-Jones algorithm along with rectangular Haar feature selection method for detection and extraction of features to develop a biometric template and for feature extraction during the voting process. Cascaded machine learning based classifiers are used for comparing the features for identity verification using GPCA (Generalized Principle Component Analysis) and K-NN (K-Nearest Neighbor). It is accomplished through comparing the Eigen-vectors of the extracted features with the biometric template pre-stored in the election regulatory body database. The results of the proposed system show that the proposed cascaded design based system performs better than the systems using other classifiers or separate schemes i.e. facial or finger print based schemes. The proposed system will be highly useful for real time applications due to the reason that it has 91% accuracy under nominal light in terms of facial recognition. (author)

  4. Electron spin control and torsional optomechanics of an optically levitated nanodiamond in vacuum

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centers, indicating potential applications of NV centers in oxygen gas sensing. For spin-optomechanics, it is important to control the orientation of the nanodiamond and NV centers in a magnetic field. Recently, we have observed the angular trapping and torsional vibration of a levitated nanodiamond, which paves the way towards levitated torsional optomechanics in the quantum regime. NSF 1555035-PHY.

  5. Hybrid Design, Procurement and Testing for the LHCb Silicon Tracker

    CERN Document Server

    Bay, A; Frei, R; Jiménez-Otero, S; Perrin, A; Tran, MT; Van Hunen, J J; Vervink, K; Vollhardt, A; Agari, M; Bauer, C; Blouw, J; Hofmann, W; Knöpfle, K T; Löchner, S; Schmelling, M; Schwingenheuer, B; Smale, N J; Adeva, B; Esperante-Pereira, D; Lois, C; Vázquez, P; Lehner, F; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Needham, M; Steinkamp, O; Straumann, U; Volyanskyy, D; Voss, H; Wenger, A

    2005-01-01

    The Silicon Tracker of the LHCb experiment consists of four silicon detector stations positioned along the beam line of the experiment. The detector modules of each station are constructed from wide pitch silicon microstrip sensors. Located at the module's end, a polyimide hybrid is housing the front-end electronics. The assembly of the more than 600 hybrids has been outsourced to industry. We will report on the design and production status of the hybrids for the LHCb Silicon Tracker and describe the quality assurance tests. Particular emphasis is laid on the vendor qualifying and its impact on our hybrid design that we experienced during the prototyping phase.

  6. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering.

    Science.gov (United States)

    Lee, Junghoon; Han, A-Reum; Yu, Hojeong; Shin, Tae Joo; Yang, Changduk; Oh, Joon Hak

    2013-06-26

    Ambipolar polymer semiconductors are highly suited for use in flexible, printable, and large-area electronics as they exhibit both n-type (electron-transporting) and p-type (hole-transporting) operations within a single layer. This allows for cost-effective fabrication of complementary circuits with high noise immunity and operational stability. Currently, the performance of ambipolar polymer semiconductors lags behind that of their unipolar counterparts. Here, we report on the side-chain engineering of conjugated, alternating electron donor-acceptor (D-A) polymers using diketopyrrolopyrrole-selenophene copolymers with hybrid siloxane-solubilizing groups (PTDPPSe-Si) to enhance ambipolar performance. The alkyl spacer length of the hybrid side chains was systematically tuned to boost ambipolar performance. The optimized three-dimensional (3-D) charge transport of PTDPPSe-Si with pentyl spacers yielded unprecedentedly high hole and electron mobilities of 8.84 and 4.34 cm(2) V(-1) s(-1), respectively. These results provide guidelines for the molecular design of semiconducting polymers with hybrid side chains.

  7. HYBRIDIZATION AND MOLECULAR GEOMETRY: A NUMBER GAME

    African Journals Online (AJOL)

    Temechegn

    This article is not emphasizing the theory behind the hybridization, but only on how to ... The new orbitals have the same total electron capacity .... the quantum mechanics and from a theory of paramagnetic susceptibility to the structure.

  8. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile

    International Nuclear Information System (INIS)

    Cardemil, José Miguel; Cortés, Felipe; Díaz, Andrés; Escobar, Rodrigo

    2016-01-01

    Highlights: • Thermodynamic evaluation of geothermal-solar hybrid systems. • A multi-parameter analysis for different cycle configurations. • Performance comparison between two operation modes. • Overview of the technical applicability of the hybridization. - Abstract: A thermodynamic model was developed using Engineering Equation Solver (EES) to evaluate the performance of single and double-flash geothermal power plants assisted by a parabolic trough solar concentrating collector field, considering four different geothermal reservoir conditions. The benefits of delivering solar thermal energy for either the superheating or evaporating processes were analyzed in order to achieve the maximum 2"n"d law efficiency for the hybrid schemes and reduce the geothermal resource consumption for a constant power production. The results of the hybrid single-flash demonstrate that the superheating process generates additional 0.23 kWe/kWth, while supplying solar heat to evaporate the geothermal brine only delivers 0.16 kWe/kWth. The double-flash hybrid plant simulation results allow obtaining 0.29 kWe/kWth and 0.17 kW/kWth by integrating solar energy at the superheater and evaporator, respectively. In this context, the hybrid single-flash power plant is able to produce at least 20% additional power output, depending on the characteristics of the geothermal resource. Moreover, all of the cases analyzed herein increased the exergy efficiency of the process by at least 3%. The developed model also allowed assessing the reduction on the consumption of the geothermal fluid from the reservoir when the plant power output stays constant, up to 16% for the hybrid single-flash, and 19% for the hybrid double-flash. Based on the results obtained in this study, the solar-geothermal hybrid scheme increases the power generation compared with geothermal-only power plants, being an attractive solution for improved management of the geothermal reservoir depletion rates. The study shows

  9. Effectiveness of a Hybrid Classroom in the Delivery of Medical Terminology Course Content

    Science.gov (United States)

    Martin, Jeffrey S.; Kreiger, Joan E.; Apicerno, Amy L

    2015-01-01

    Hybrid courses are emerging as a viable option for content delivery across college campuses. In an attempt to maximize learning outcomes while leveraging resources, one institution used several sections of a Medical Terminology course as a pilot. Traditional and hybrid course delivery were compared utilizing a quantitative research method to…

  10. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    Science.gov (United States)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  11. Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures

    International Nuclear Information System (INIS)

    Choi, Dukhyun; Kim, Eok Su; Kim, Tae Sang; Lee, Sang Yoon; Choi, Jae-Young; Kim, Jong Min; Lee, Keun Young; Lee, Kang Hyuck; Kim, Sang-Woo

    2010-01-01

    In this work, we report a flexible hybrid nanoarchitecture that can be utilized as both an energy harvester and a touch sensor on a single platform without any cross-talk problems. Based on the electron transport and piezoelectric properties of a zinc oxide (ZnO) nanostructured thin film, a hybrid cell was designed and the total thickness was below 500 nm on a plastic substrate. Piezoelectric touch signals were demonstrated under independent and simultaneous operations with respect to photo-induced charges. Different levels of piezoelectric output signals from different magnitudes of touching pressures suggest new user-interface functions from our hybrid cell. From a signal controller, the decoupled performance of a hybrid cell as an energy harvester and a touch sensor was confirmed. Our hybrid approach does not require additional assembly processes for such multiplex systems of an energy harvester and a touch sensor since we utilize the coupled material properties of ZnO and output signal processing. Furthermore, the hybrid cell can provide a multi-type energy harvester by both solar and mechanical touching energies.

  12. Genomics for greater efficiency in pigeonpea hybrid breeding

    Directory of Open Access Journals (Sweden)

    Rachit K Saxena

    2015-10-01

    Full Text Available Cytoplasmic genic male sterility based hybrid technology has demonstrated its immense potential in increasing the productivity of various crops, including pigeonpea. This technology has shown promise for breaking the long-standing yield stagnation in pigeonpea. There are difficulties in commercial hybrid seed production due to non-availability of field-oriented technologies such as time-bound assessment of genetic purity of hybrid seeds. Besides this, there are other routine breeding activities which are labour oriented and need more resources. These include breeding and maintenance of new fertility restorers and maintainer lines, diversification of cytoplasm, and incorporation of biotic and abiotic stress resistances. The recent progress in genomics research could accelerate the existing traditional efforts to strengthen the hybrid breeding technology. Marker based seed purity assessment, identification of heterotic groups; selection of new fertility restorers are few areas which have already been initiated. In this paper efforts have been made to identify critical areas and opportunities where genomics can play a leading role and assist breeders in accelerating various activities related to breeding and commercialization of pigeonpea hybrids.

  13. Recent hybrid origin of three rare chinese turtles

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Bryan L.; Parham, James F.

    2006-02-07

    Three rare geoemydid turtles described from Chinese tradespecimens in the early 1990s, Ocadia glyphistoma, O. philippeni, andSacalia pseudocellata, are suspected to be hybrids because they are knownonly from their original descriptions and because they have morphologiesintermediate between other, better-known species. We cloned the allelesof a bi-parentally inherited nuclear intron from samples of these threespecies. The two aligned parental alleles of O. glyphistoma, O.philippeni, and S. pseudocellata have 5-11.5 times more heterozygouspositions than do 13 other geoemydid species. Phylogenetic analysis showsthat the two alleles from each turtle are strongly paraphyletic, butcorrectly match sequences of other species that were hypothesized frommorphology to be their parental species. We conclude that these rareturtles represent recent hybrids rather than valid species. Specifically,"O. glyphistoma" is a hybrid of Mauremys sinensis and M. cf. annamensis,"O. philippeni" is a hybrid of M. sinensis and Cuora trifasciata, and "S.pseudocellata" is a hybrid of C. trifasciata and S. quadriocellata.Conservation resources are better directed toward finding and protectingpopulations of other rare Southeast Asian turtles that do representdistinct evolutionary lineages.

  14. Diagnosis of Lower Hybrid on MST

    International Nuclear Information System (INIS)

    Burke, D. R.; Goetz, J. A.; Kaufman, M. C.; Almagri, A. F.; Anderson, J. K.; Forest, C. B.; Prager, S. C.

    2007-01-01

    RF driven current has never been demonstrated in a Reversed Field Pinch. Recently the lower hybrid system on the Madison Symmetric Torus reached a new operating regime. This upgrade allows RF powers of up to 5% of the Ohmic input power to be injected. It is therefore anticipated that the lower hybrid system is on the threshold of producing meaningful changes to the RFP equilibrium. A diagnostic set is under development to facilitate the study of such changes and lay the foundation for near megawatt operations. Many measurements are being studied for viability. These include electron cyclotron emission, examinations of bulk ion and electron heating, surface perturbation pickup coils, magnetic probe measurements, and Langmuir probe measurements. In addition, several x-ray diagnostics are in operation: pulse height analysis is performed on detector arrays to determine the 5-200 keV spectrum. An insertable target probe is available to create x-rays from fast electrons. Tomographic inversion of 2-D Soft x-ray detectors yields equilibrium information through island structure. Results from experiments with source power up to 225 kW will be presented. Preliminary results from CQL3D Fokker-Planck simulations will also be presented

  15. Electronic Structure of Au25 Clusters: Between Discrete and Continuous

    KAUST Repository

    Katsiev, Khabiboulakh

    2016-07-15

    Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.

  16. Electronic Structure of Au25 Clusters: Between Discrete and Continuous

    KAUST Repository

    Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Katla, Saikrishna; Li, Ruipeng; Mei, Wai Ning; Skrabalak, Sara; Challa, Challa; Losovyj, Yaroslav

    2016-01-01

    Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.

  17. Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development

    International Nuclear Information System (INIS)

    Chen, QianQian; Tang, ZhiYong; Lei, Yang; Sun, YuHan; Jiang, MianHeng

    2015-01-01

    Highlights: • We report a nuclear–coal hybrid energy systems. • We address the high-carbon energy resource integrating with a low-carbon energy resource. • We establish a systematic techno-economic model. • Improving both energy and carbon efficiency. • A significantly lower CO 2 emission intensity is achieved by the system. - Abstract: Global energy consumption is expected to increase significantly due to the growth of the economy and population. The utilization of fossil resource, especially coal, will likely be constrained by carbon dioxide emissions, known to be the principal contributor to climate change. Therefore, the world is facing the challenge of how to utilize fossil resource without a large carbon footprint. In the present work, a nuclear–coal hybrid energy system is proposed as a potential solution to the aforementioned challenge. A high-carbon energy such as coal is integrated effectively with a low-carbon energy such as nuclear in a flexible and optimized manner, which is able to generate the chemicals and fuels with low carbon dioxide emissions. The nuclear–coal hybrid energy system is presented in this paper for the detailed analysis. In this case, the carbon resource required by the fuel syntheses and chemical production processes is mainly provided by coal while the hydrogen resource is derived from nuclear energy. Such integration can not only lead to a good balance between carbon and hydrogen, but also improve both energy and carbon efficiencies. More importantly, a significantly lower CO 2 emission intensity is achieved. A systematic techno-economic model is established, and a scenario analysis is carried out on the hybrid system to assess the economic competitiveness based on the considerations of various types of externalities. It is found that with the rising carbon tax and coal price as well as the decreasing cost of nuclear energy, the hybrid energy system will become more and more economically competitive with the

  18. Photoconductivity enhancement and charge transport properties in ruthenium-containing block copolymer/carbon nanotube hybrids.

    Science.gov (United States)

    Lo, Kin Cheung; Hau, King In; Chan, Wai Kin

    2018-04-05

    Functional polymer/carbon nanotube (CNT) hybrid materials can serve as a good model for light harvesting systems based on CNTs. This paper presents the synthesis of block copolymer/CNT hybrids and the characterization of their photocurrent responses by both experimental and computational approaches. A series of functional diblock copolymers was synthesized by reversible addition-fragmentation chain transfer polymerizations for the dispersion and functionalization of CNTs. The block copolymers contain photosensitizing ruthenium complexes and modified pyrene-based anchoring units. The photocurrent responses of the polymer/CNT hybrids were measured by photoconductive atomic force microscopy (PCAFM), from which the experimental data were analyzed by vigorous statistical models. The difference in photocurrent response among different hybrids was correlated to the conformations of the hybrids, which were elucidated by molecular dynamics simulations, and the electronic properties of polymers. The photoresponse of the block copolymer/CNT hybrids can be enhanced by introducing an electron-accepting block between the photosensitizing block and the CNT. We have demonstrated that the application of a rigorous statistical methodology can unravel the charge transport properties of these hybrid materials and provide general guidelines for the design of molecular light harvesting systems.

  19. Novel kaolin/polysiloxane based organic-inorganic hybrid materials: Sol-gel synthesis, characterization and photocatalytic properties

    Science.gov (United States)

    dos Reis, Glaydson Simões; Lima, Eder Cláudio; Sampaio, Carlos Hoffmann; Rodembusch, Fabiano Severo; Petter, Carlos Otávio; Cazacliu, Bogdan Grigore; Dotto, Guillherme Luiz; Hidalgo, Gelsa Edith Navarro

    2018-04-01

    New hybrid materials using kaolin and the organosilicas methyl-polysiloxane (MK), methyl-phenyl-polysiloxane (H44), tetraethyl-ortho-silicate (TEOS) and 3-amino-propyl-triethoxysilane (APTES) were obtained by sol-gel process. These materials presented specific surfaces areas (SBET) in the range of 20-530 m2 g-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed remarkable differences between the kaolin and hybrid structures. Thermogravimetric analysis (TGA) revealed that the hybrid materials presented higher thermal stability when compared with their precursors. The electronic properties of the materials were also studied by Ultraviolet-Visible Diffuse Reflectance Absorption (DRUV) and Diffuse Reflectance spectroscopy (DR), where a new absorption band was observed located around 400-660 nm. In addition, these materials exhibit a decrease in DR from 30% to 70% in the blue-cyan green region and are significantly more transparent in the UV region than the kaolin, which could be useful for photocatalysis applications. These results show that the electronic structure of the final material was changed, indicating a significant interaction between the kaolin and the respective silica derivative. These findings support the main idea of the hybridization afforded by pyrolysis between kaolin and organosilica precursors. In addition, as a proof of concept, these hybrid materials were successfully employed as photocatalyst in the photoreduction of Cr(VI) to Cr(III).

  20. Superthermal electron distribution measurements from polarized electron cyclotron emission

    International Nuclear Information System (INIS)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs

  1. Electrocatalytic behaviour of hybrid cobalt–manganese hexacyanoferrate film on glassy carbon electrode

    International Nuclear Information System (INIS)

    Vinu Mohan, A.M.; Rambabu, Gutru; Aswini, K.K.; Biju, V.M.

    2014-01-01

    A thin film of hybrid cobalt–manganese hexacyanoferrate (CoMnHCF), a redox mediator was electrodeposited on a glassy carbon (GC) electrode and was employed as an amperometric sensor towards L-Tryptophan (L-Trp). The hybrid film was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction technique (XRD), scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDAX), and electrochemical techniques. The atomic absorption spectroscopic analysis provided the stoichiometry of the hybrid film to be K 1.74-y Co y Mn 0.78 [Fe(CN) 6 ], y ≤ 0.68. The electrochemical impedance study revealed the excellent charge transfer properties of GC/CoMnHCF electrode. The voltammetric investigations demonstrated exceptional electrocatalytic properties of the hybrid film modified electrode when compared to that of bare GC, GC/CoHCF and GC/MnHCF electrodes, towards the L-Trp oxidation. The kinetic parameters such as electron transfer coefficient, the electron transfer rate constant, the diffusion coefficient and the catalytic rate constant for the electrooxidation process of L-Trp were investigated. The amperometric detection of L-Trp employing GC/CoMnHCF electrode possessed a good sensitivity of 10 × 10 −2 A M −1 cm −2 in a wide range of detection (2–200 μM) at a reduced overpotential of 680 mV. In addition, the proposed amperometric method was applied to the detection of L-Trp in commercial milk samples with reproducible results. - Highlights: • A hybrid cobalt–manganese hexacyanoferrate film was prepared. • The hybrid film possesses excellent charge transfer properties. • The hybrid film exhibits excellent electrocatalytic properties towards Tryptophan. • Tryptophan detection is possible from commercial milk samples

  2. Using mobile electronic devices to deliver educational resources in developing countries.

    Science.gov (United States)

    Mazal, Jonathan Robert; Ludwig, Rebecca

    2015-01-01

    Developing countries have far fewer trained radiography professionals than developed countries, which exacerbates the limited access to imaging services. The lack of trained radiographers reflects, in part, limited availability of radiographer-specific educational resources. Historically, organizations that provided such resources in the developing world faced challenges related to the limited stock of current materials as well as expenses associated with shipping and delivery. Four mobile electronic devices (MEDs) were loaded with educational content (e-books, PDFs, and digital applications) spanning major radiography topics. The MEDs were distributed to 4 imaging departments in Ghana, India, Nepal, and Nigeria based on evidence of need for radiography-specific resources, as revealed by survey responses. A cost comparison of postal delivery vs digital delivery of educational content was performed. The effectiveness of delivering additional content via Wi-Fi transmission also was evaluated. Feedback was solicited on users' experience with the MEDs as a delivery tool for educational content. An initial average per e-book expense of $30.05, which included the cost of the device, was calculated for the MED delivery method compared with $15.56 for postal delivery of printed materials. The cost of the MED delivery method was reduced to an average of $10.05 for subsequent e-book deliveries. Additional content was successfully delivered via Wi-Fi transmission to all recipients during the 3-month follow-up period. Overall user feedback on the experience was positive, and ideas for enhancing the MED-based method were identified. Using MEDs to deliver radiography-specific educational content appears to be more cost effective than postal delivery of printed materials on a long-term basis. MEDs are more efficient for providing updates to educational materials. Customization of content to department needs, and using projector devices could enhance the usefulness of MEDs for

  3. Wavepacket propagation and current startup near the lower hybrid frequency in the torus

    International Nuclear Information System (INIS)

    Ohkubo, K.; Matsumura, Y.; Mizuno, M.; Matsuoka, M.; Matsuura, K.

    1987-08-01

    In addition to the two-dimensional propagation of wavepacket, electron heating and current drive by a lower hybrid wave in afterglow plasmas are investigated in a small torus. Because the wavepacket, which has a wide frequency spectrum, spreads in space and time due to dispersion, the pulse width of a received wavepacket accompanied with frequency shift increases. The experimental results including the direct observed group and phase velocities agree with the theoretical analysis. Lower hybrid waves with low power ( < 10 W and ≅ 100 μs) above the threshold power (≅ 0.3 W) are observed which heat electrons and drive the toroidal current. The power threshold is related to the power dependence on parametric instability. It is pointed out that parametrically excited lower hybrid waves take part in both electron heating and filling up the spectral gap which is closely related to current startup. (author)

  4. Success criteria for electronic medical record implementations in low-resource settings: a systematic review.

    Science.gov (United States)

    Fritz, Fleur; Tilahun, Binyam; Dugas, Martin

    2015-03-01

    Electronic medical record (EMR) systems have the potential of supporting clinical work by providing the right information at the right time to the right people and thus make efficient use of resources. This is especially important in low-resource settings where reliable data are also needed to support public health and local supporting organizations. In this systematic literature review, our objectives are to identify and collect literature about success criteria of EMR implementations in low-resource settings and to summarize them into recommendations. Our search strategy relied on PubMed queries and manual bibliography reviews. Studies were included if EMR implementations in low-resource settings were described. The extracted success criteria and measurements were summarized into 7 categories: ethical, financial, functionality, organizational, political, technical, and training. We collected 381 success criteria with 229 measurements from 47 articles out of 223 articles. Most papers were evaluations or lessons learned from African countries, published from 1999 to 2013. Almost half of the EMR systems served a specific disease area like human immunodeficiency virus (HIV). The majority of criteria that were reported dealt with the functionality, followed by organizational issues, and technical infrastructures. Sufficient training and skilled personnel were mentioned in roughly 10%. Political, ethical, and financial considerations did not play a predominant role. More evaluations based on reliable frameworks are needed. Highly reliable data handling methods, human resources and effective project management, as well as technical architecture and infrastructure are all key factors for successful EMR implementation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron-hole balanced spacers

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Dong-Seok; Kim, Ji Whan; Kim, Jang-Joo [Department of Materials Science and Engineering, and OLED Center, Seoul National University, Seoul 151-744 (Korea, Republic of); Jung, Sung Ouk; Kim, Seul-Ong; Kwon, Soon-Ki [School of Materials Science and Engineering, and Engineering Research Institute (ERI), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Se Hoon; Kim, Kee Young [Dongwoo Fine-Chem Co., Ltd, Pyeongtaek 451-822 (Korea, Republic of); Kim, Yun-Hi, E-mail: jjkim@snu.ac.k, E-mail: skwon@gnu.ac.k [Department of Chemistry and RINS, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2010-10-13

    High-efficiency two-colour white organic light-emitting diodes (WOLEDs) comprising a newly synthesized iridium complex orange phosphor ((impy){sub 2}Ir(acac)) and a blue fluorophor (BD012) have been realized by placing several kinds of thin spacers between two emitters. Hybrid WOLEDs with a spacer composed of a hole-transporting N,N-dicarbazolyl-3,5-benzene (mCP) and an electron-transporting 4,7-diphenyl-1,10-phenanthroline (Bphen) exhibit a high external quantum efficiency (EQE) of up to 8.4% and a negligible colour change (the colour coordinate of (0.39, 0.41) at 1000 cd m{sup -2}) with increasing brightness, whereas the device using a hole-transporting mCP spacer shows a relatively low EQE of 6.2% and a large shift of emitting colour with increasing brightness. Device performance is further characterized based on the charge transport behaviour of the spacers inserted between the two emitters.

  6. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

    Directory of Open Access Journals (Sweden)

    Arpita Jana

    2017-03-01

    Full Text Available Single layer graphite, known as graphene, is an important material because of its unique two-dimensional structure, high conductivity, excellent electron mobility and high surface area. To explore the more prospective properties of graphene, graphene hybrids have been synthesised, where graphene has been integrated with other important nanoparticles (NPs. These graphene–NP hybrid structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO, a graphene-like material, can be easily prepared by reduction of graphene oxide (GO and therefore offers the possibility to fabricate a large variety of graphene–transition metal oxide (TMO NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs, sensors, photocatalysts, removal of organic pollutants, etc. Recent studies have shown that a single graphene sheet (GS has extraordinary electronic transport properties. One possible route to connecting those properties for application in electronics would be to prepare graphene-wrapped TMO NPs. In this critical review, we discuss the development of graphene–TMO hybrids with the detailed account of their synthesis. In addition, attention is given to the wide range of applications. This review covers the details of graphene–TMO hybrid materials and ends with a summary where an outlook on future perspectives to improve the properties of the hybrid materials in view of applications are outlined.

  7. Lower hybrid wave current ramp-up and plasma equilibrium

    International Nuclear Information System (INIS)

    Gong Xueyu

    1996-01-01

    Questions on lower hybrid driven current and plasma equilibrium are studied. With the induced electric field taken into account, a system of self-consistent equations is obtained. This theory has been applied to some moments of the current ramp-up phase for the Tokamak Engineering Test Breeder (TETB) to study the lower hybrid current drive and MHD equilibrium. So, better electron current and safety factor profiles are obtained

  8. Franchising As Hybrid Organization: Russian Skill

    Directory of Open Access Journals (Sweden)

    Gyuzel F. Yusupova

    2016-12-01

    Full Text Available Russia has favorable conditions for development of hybrid cooperation (franchising on the different markets. On the one hand, as well as for the majority of countries with transition economies many Russian markets has been undersaturated. On the other hand, as for the developed countries, Russia has highly skilled human resources and the developed structure of consumption. In these conditions a model of coordination of the relations of franchising has been more and more popular. The benefit of this form can be explained from the side of institutional approach. The matter is that in real practice to determine the borders of firm is not simple. Key decisions of firm sometimes can be performed not in one center that can complicate distribution of control and responsibility and the determination of its borders. On the other hand, the determination of key decisions in the market, distribution of its assets and responsibility within one firm can strongly increase agency expenses. Therefore the hybrid form of coordination of the relations (to which the franchising belongs can lower these expenses, but in case of strict accomplishment of terms of the contract. The hybrid forms of coordination includes the combination of characteristics of the market and hierarchy. Transactions are controlled via the price mechanism for coordination. For control and management of united actions, the maintenance of a certain symmetry in relations are necessary the hierarchical elements. The different conditions of franchise are the reasons of risks for both parties. And for decrease in risk of opportunism the special tools are developed for disciplining of the franchisee. The described examples of the Russian franchises through comparison of contract terms showed how hybrid agreements solve the cooperation problems connected with specificity of resources, transactional expenses and the competition.

  9. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine.

    Science.gov (United States)

    Gutiérrez, Manuel; Llobera, Andreu; Vila-Planas, Jordi; Capdevila, Fina; Demming, Stefanie; Büttgenbach, Stephanus; Mínguez, Santiago; Jiménez-Jorquera, Cecilia

    2010-07-01

    A multiparametric system able to classify red and white wines according to the grape varieties and for analysing some specific parameters is presented. The system, known as hybrid electronic tongue, consists of an array of electrochemical microsensors and a colorimetric optofluidic system. The array of electrochemical sensors is composed of six ISFETs based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, an Au microelectrode and a microelectrode for sensing electrochemical oxygen demand. The optofluidic system is entirely fabricated in polymer technology and comprises a hollow structure, air mirrors, microlenses and self-alignment structures. The data obtained from these sensors has been treated with multivariate advanced tools; Principal Component Analysis (PCA), for the patterning recognition and classification of wine samples, and Partial-Least Squares (PLS) regression, for quantification of several chemical and optical parameters of interest in wine quality. The results have demonstrated the utility of this system for distinguishing the samples according to the grape variety and year vintage and for quantifying several sample parameters of interest in wine quality control.

  10. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  11. Study of an hybrid positron source using channeling for CLIC

    CERN Document Server

    Dadoun, O; Chehab, R; Poirier, F; Rinolfi, L; Strakhovenko, V; Variola, A; Vivoli, A

    2009-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten radiator. With the tungsten crystal oriented on its axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. In this note the optimization of the positron yield and the peak energy deposition density in the amorphous target are studied according to the distance between the crystal and the amorphous targets, the primary electron energy and the amorphous target thickness.

  12. Speed-up of ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo simulations by using an auxiliary potential energy surface

    International Nuclear Information System (INIS)

    Nakayama, Akira; Taketsugu, Tetsuya; Shiga, Motoyuki

    2009-01-01

    Efficiency of the ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo methods is enhanced by employing an auxiliary potential energy surface that is used to update the system configuration via molecular dynamics scheme. As a simple illustration of this method, a dual-level approach is introduced where potential energy gradients are evaluated by computationally less expensive ab initio electronic structure methods. (author)

  13. Scanning electron microscopy and fluorescent in situ hybridization of experimental Brachyspira (Serpulina) pilosicoli infection in growing pigs

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Møller, Kristian; Boye, Mette

    2000-01-01

    Two groups of six 8-week-old pigs were challenged with 1X10(9) cfu Brachyspira (Serpulina) pilosicoli or Serpulina intermedia daily for 3 consecutive days to study the pathology of porcine colonic spirochetosis by scanning electron microscopy (SEM) and fluorescent in situ hybridization (FISH......; however, only two pigs developed transient watery diarrhea. S. intermedia was reisolated from four of the inoculated pigs, but clinical signs were not observed. Gross examination of the B. pilosicoli-infected pigs revealed dilated large intestines with a hyperemic mucosa, whereas the large intestines...... of the S. intermedia-inoculated pigs and the control pigs appeared normal. SEM examination of B. pilosicoli-infected pigs revealed degenerated epithelial cells and spirochetal colonization of the colonic mucosa in four pigs. By FISH, B. pilosicoli cells were found colonizing and invading the surface...

  14. Electron beam irradiation, oxygen, and temperature effects on nucleotide degradation in stored aquaculture hybrid striped bass fillets

    International Nuclear Information System (INIS)

    Karahadian, C.; Brannan, R.G.; Heath, J.L.

    1997-01-01

    Skinless fillets from commercially-grown aquaculture hybrid striped bass (Morone saxatilis x M. chrysops) were electron beam-irradiated in the presence of air or vacuum-packaged and stored at 4C and -20C for 14 days. A mean low dose level of 2.0 or 3.0 kGy (+/- 0.5 kGy) and high dose level of 20 kGy (+/- 4 kGy) were used for irradiated samples. Hypoxanthine (Hx) concentrations, Ki-values ([(INO + Hx)/(IMP + INO + Hx)] x 100), and H-values ([(Hx)/(IMP + INO + Hx)] x 100) indicated that irradiation did not influence the rate of nucleotide degradation compared with nonirradiated controls at either refrigerated or frozen temperatures. Vacuum packaging or freezing of stored samples resulted in lower H-values and Hx contents compared with nonirradiated controls regardless of irradiation treatment

  15. Horizontally-connected ZnO-graphene hybrid films for multifunctional devices

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yi Rang [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Song, Wooseok; Lee, Young Bum; Kim, Seong Ku; Han, Jin Kyu; Myung, Sung; Lee, Sun Sook; An, Ki-Seok [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Choi, Chel-Jong [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lim, Jongsun, E-mail: jslim@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of)

    2016-08-30

    Highlights: • We designed horizontally-connected ZnO and graphene hybrid nanofilms with improved flexibility for multifunctional nanodevices including high performance TFTs. • The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. • The hybrid thin film transistors exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}. - Abstract: Here we designed horizontally-connected ZnO thin films and graphene in order to combine advantages of ZnO thin films, which are high on/off ratio and photo responsivity, and the superior mobility and sensitivity of graphene for applications in thin film transistors (TFTs) and flexible photodetectors. To synthesize the ZnO/graphene hybrid films, a 70-nm-thick ZnO thin film with a uniformly flat surface deposited by the atomic layer deposition process was horizontally connected with highly crystalline monolayer graphene grown by thermal chemical vapor deposition. The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. The hybrid TFT exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}.

  16. Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning.

    Science.gov (United States)

    Zhu, Fengbo; Lin, Ji; Wu, Zi Liang; Qu, Shaoxing; Yin, Jun; Qian, Jin; Zheng, Qiang

    2018-04-25

    Conductive polymer hydrogels (CPHs) that combine the unique properties of hydrogels and electronic properties of conductors have shown their great potentials in wearable/implantable electronic devices, where materials with remarkable mechanical properties, high conductivity, and easy processability are demanding. Here, we have developed a new type of polyion complex/polyaniline (PIC/PAni) hybrid hydrogels that are tough, conductive, and can be facilely patterned. The incorporation of conductive phase (PAni) into PIC matrix through phytic acid resulted in hybrid gels with ∼65 wt % water; high conductivity while maintaining the key viscoelasticity of the tough matrix. The gel prepared from 1 M aniline (Ani) exhibited the breaking strain, fracture stress, tensile modulus, and electrical conductivity of 395%, 1.15 MPa, 5.31 MPa, and 0.7 S/m, respectively, superior to the most existing CPHs. The mechanical and electrical performance of PIC/PAni hybrid hydrogels exhibited pronounced rate-dependent and self-recovery behaviors. The hybrid gels can effectively detect subtle human motions as strain sensors. Alternating conductive/nonconductive patterns can be readily achieved by selective Ani polymerization using stencil masks. This facile patterning method based on PIC/PAni gels can be readily scaled up for fast fabrication of wavy gel circuits and multichannel sensor arrays, enabling real-time monitoring of the large-extent and large-area deformations with various sensitivities.

  17. Lower hybrid current drive in shaped tokamaks

    International Nuclear Information System (INIS)

    Kesner, J.

    1993-01-01

    A time dependent lower hybrid current drive tokamak simulation code has been developed. This code combines the BALDUR tokamak simulation code and the Bonoli/Englade lower hybrid current drive code and permits the study of the interaction of lower hybrid current drive with neutral beam heating in shaped cross-section plasmas. The code is time dependent and includes the beam driven and bootstrap currents in addition to the current driven by the lower hybrid system. Examples of simulations are shown for the PBX-M experiment which include the effect of cross section shaping on current drive, ballooning mode stabilization by current profile control and sawtooth stabilization. A critical question in current drive calculations is the radial transport of the energetic electrons. The authors have developed a response function technique to calculate radial transport in the presence of an electric field. The consequences of the combined influences of radial diffusion and electric field acceleration are discussed

  18. The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons

    Science.gov (United States)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-06-01

    The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.

  19. The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons

    International Nuclear Information System (INIS)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-01-01

    The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner. (paper)

  20. Role of boundary plasma in lower-hybrid-frequency heating of a tokamak

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Yamamoto, Takumi; Fujii, Tsuneyuki

    1982-01-01

    Boundary plasma of a circular tokamak has been investigated by means of electrostatic probes during lower-hybrid heating. The reflection coefficient is affected by the density gradient in front of the launcher. An effective ion heating is performed in the main plasma region when the boundary electron temperature is relatively high enough to suppress the parametric decay instabilities. The simultaneous injection of neutral beams as well as the lower-hybrid wave brings the suppression of instabilities with increase of the electron temperature coming from the neutral beam heating. (author)