WorldWideScience

Sample records for hybrid electrolytic-thermochemical hydrogen

  1. Hydrogen production by water decomposition using a combined electrolytic-thermochemical cycle

    Science.gov (United States)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    A proposed dual-purpose power plant generating nuclear power to provide energy for driving a water decomposition system is described. The entire system, dubbed Sulfur Cycle Water Decomposition System, works on sulfur compounds (sulfuric acid feedstock, sulfur oxides) in a hybrid electrolytic-thermochemical cycle; performance superior to either all-electrolysis systems or presently known all-thermochemical systems is claimed. The 3345 MW(th) graphite-moderated helium-cooled reactor (VHTR - Very High Temperature Reactor) generates both high-temperature heat and electric power for the process; the gas stream at core exit is heated to 1850 F. Reactor operation is described and reactor innards are illustrated. A cost assessment for on-stream performance in the 1990's is optimistic.

  2. The hydrogen hybrid option

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  3. Nuclear driven water decomposition plant for hydrogen production

    Science.gov (United States)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  4. Future hybrid systems: solar and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Broussard, K. [National Renewable Energy Lab., Golden, CO (United States)]|[NREL MURA Intern from Southern Univ., Baton Rouge, LA (United States)

    2003-07-01

    Future solar and hydrogen hybrid systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences, as well as solar parks, are presented. Landarea issues are evaluated, and the economics and potential of these approaches are examined in terms of roadmap predictions on PV and hydrogen pathways. (orig.)

  5. Development of Premacy Hydrogen RE Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, N. [Mazda Motor Corporation, Hiroshima (Japan)

    2010-07-01

    Hydrogen powered ICE (internal combustion engine) vehicles can play an important role as an automotive power source in the future, because of its higher reliability and cost performance than those of fuel cell vehicles. Combined with hydrogen, Mazda's unique rotary engine (RE) has merits such as a prevention of hydrogen pre-ignition. Mazda has been developing hydrogen vehicles with the hydrogen RE from the early 1990s. Premacy (Mazda5) Hydrogen RE Hybrid was developed and launched in 2009, following RX-8 Hydrogen RE delivered in 2006. A series hybrid system was adopted in Premacy Hydrogen RE Hybrid. A traction motor switches its windings while the vehicle is moving. This switching technology allows the motor to be small and high-efficient. The lithium-ion high voltage battery, which has excellent input-output characteristics, was installed. These features extend the hydrogen fuel driving range to 200 km and obtain excellent acceleration performance. The hydrogen RE can be also operated by gasoline (Dual Fuel System). The additional gasoline operation makes hydrogen vehicles possible to drive in non-hydrogen station area. With approval from the Japanese Ministry of Land Infrastructure and Transport, Mazda Premacy Hydrogen RE Hybrid was delivered successfully to the Japanese market in the form of leasing. (orig.)

  6. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  7. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  8. Hybrid Photovoltaic-Hydrogen Power Conditioning System

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Ejea, J. B.; Ferreres, A.; Sanchis, E.

    2011-10-01

    This paper explores a power conditioning unit for photovoltaic/hydrogen based energy systems. Similar power conversion techniques, compared to traditional space power systems, are applied. An S4R regulator is devised with an unregulated battery bus as primary output and a secondary path to feed and electrolyser. A modular fuel cell converter completes the system and it operates when photovoltaic energy is not available or load demand exceeds solar power, i. e. like a traditional BDR. An ancillary battery keeps the unregulated bus voltage distributed in the system and it also aids the fuel cell during transients or start-up due to its limited speed. A 1kW breadboard has been designed and implemented to corroborate the proposed system.

  9. Series hybrid vehicles and optimized hydrogen engine design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.; Aceves, S. [Lawrence Livermore National Lab., CA (United States); Van Blarigan, P. [Sandia National Labs., Livermore, CA (United States)

    1995-05-10

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO{sub x} emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier II emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  10. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  11. THE HYBRID COUMPOUNDS AND THE INFLUENCE OF HYDROGEN BONDING

    Directory of Open Access Journals (Sweden)

    F ALLOUCHE

    2014-12-01

    Full Text Available Organic–inorganic hybrid materials have received increasing attention in recent research particularly because of their ability to combine the specific properties of inorganic frameworks and the features of organic molecules, including the formation of weak interactions. These materials have recently attracted further interest due to their attractive potential for application as insulators in the electronics industry. They offer promising opportunities for the development of efficient conductors, ferroelectrics, and semiconductors in a wide range of electronic applications [1,2]. The hybrid compounds are rich in H-bonds and they could be used to this effect because of their potential importance in constructing sophisticated assemblies from discrete ionic or molecular building blocks due to its strength and directionality. In order to enrich the varieties in such kinds of hybrid materials and to investigate the influence of hydrogen bonds on the on the structural features, they have synthesized a new compound, This kind of hydrogen bonding appears in the active sites of several biological systems and is observed in similar previously studied hybrid compounds.

  12. Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2016-06-01

    Full Text Available Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised...

  13. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa

    2016-09-08

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  14. Hybrid vehicle system studies and optimized hydrogen engine design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  15. Progress toward an optimized hydrogen series hybrid engine

    Science.gov (United States)

    Smith, J. Ray; Aceves, Salvador M.; Johnson, Norman L.; Amsden, Anthony A.

    1995-06-01

    The design considerations and computational fluid dynamics (CFD) modeling of a high efficiency, low emissions, hydrogen-fueled engine for use as the prime mover of a series hybrid automobile is described. The series hybrid automobile uses the engine to generate electrical energy via a lightweight generator, the electrical energy is stored in a power peaking device (like a flywheel or ultracapacitor) and used as required to meet the tractive drive requirements (plus accessory loads) through an electrical motor. The engine/generator is stopped whenever the energy storage device is fully charged. Engine power output required was determined with a vehicle simulation code to be 15 to 20 kW steady state with peak output of 40 to 45 kW for hill climb. Combustion chamber and engine geometry were determined from a critical review of the hydrogen engine experiments in the literature combined with a simplified global engine model. Two different engine models are employed to guide engine design. The models are a simplified global engine performance model that relies strongly on correlations with literature data for heat transfer and friction losses, and a state-of-the-art CFD combustion model, KIVA-3, to elucidate fluid mechanics and combustion details through full three-dimensional modeling. Both intake and exhaust processes as well as hydrogen combustion chemistry and thermal NO(sub x) production are simulated. Ultimately, a comparison between the simulation and experimental results will lead to improved modeling and will give guidance to changes required in the next generation engine to achieve the goal of 45% brake thermal efficiency.

  16. Progress toward an optimized hydrogen series hybrid engine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.; Aceves, S.M. [Lawrence Livermore National Lab., CA (United States); Johnson, N.L.; Amsden, A.A. [Los Alamos National Lab., NM (United States)

    1995-06-01

    The design considerations and computational fluid dynamics (CFD) modeling of a high efficiency, low emissions, hydrogen-fueled engine for use as the prime mover of a series hybrid automobile is described. The series hybrid automobile uses the engine to generate electrical energy via a lightweight generator, the electrical energy is stored in a power peaking device (like a flywheel or ultracapacitor) and used as required to meet the tractive drive requirements (plus accessory loads) through an electrical motor. The engine/generator is stopped whenever the energy storage device is fully charged. Engine power output required was determined with a vehicle simulation code to be 15 to 20 kW steady state with peak output of 40 to 45 kW for hill climb. Combustion chamber and engine geometry were determined from a critical review of the hydrogen engine experiments in the literature combined with a simplified global engine model. Two different engine models are employed to guide engine design. The models are a simplified global engine performance model that relies strongly on correlations with literature data for heat transfer and friction losses, and a state-of-the-art CFD combustion model, KIVA-3, to elucidate fluid mechanics and combustion details through full three-dimensional modeling. Both intake and exhaust processes as well as hydrogen combustion chemistry and thermal NO{sub x} production are simulated. Ultimately, a comparison between the simulation and experimental results will lead to improved modeling and will give guidance to changes required in the next generation engine to achieve the goal of 45% brake thermal efficiency.

  17. Hydrogen on hybrid MoS{sub 2}/graphene nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Maniadaki, Aristea E.; Kopidakis, Georgios [Department of Materials Science and Technology, University of Crete, Heraklion (Greece)

    2016-06-15

    Transition metal dichalcogenides are rising candidates for the replacement of Pt catalysts in water splitting. In this theoretical study we focus on the hydrogen evolution reaction part of this process and on how hydrogen (H) interacts with MoS{sub 2} nanostructures, free-standing or positioned on a graphene substrate. Density functional theory calculations confirm the stability of such nanostructures and our results for H on several configurations, from 2D infinite monolayers to quasi-1D MoS{sub 2} ribbons and quasi-0D MoS{sub 2} flakes, are presented. We calculate the adsorption energy of H atoms on various sites of the MoS{sub 2} nanostructures, notably at Mo and S active edges. Comparing free-standing and MoS{sub 2}/graphene hybrid systems we find that the effect of the support on the adsorption of H on MoS{sub 2} nanostructures is quite significant when the substrate induces strain. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Hydrogenation of carbon dioxide by hybrid catalysts, direct synthesis of aromatic from carbon dioxide and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kuei Chikung; Lee Mindar (National Taiwan Univ., Taipei (Taiwan))

    1991-02-01

    To improve climatic conditions and to solve the carbon resource problem, it is desirable to develop techniques whereby carbon dioxide can be converted to valuable liquid hydrocarbons which can be used either as fuels or industrial raw materials. Direct synthesis of aromatics from carbon dioxide hydrogenation was investigated in a single stage reactor using hybrid catalysts composed of iron catalysts and HZSM-5 zeolite. Carbon dioxide was first converted to CO by the reverse water gas shift reaction, followed by the hydrogenation of CO to hydrocarbons on iron catalyst, and finally the hydrocarbons were converted to aromatics in HZSM-5. Under the operating conditions of 350{degree}C, 2100 kilopascals and CO{sub 2}/H{sub 2}={1/2} the maximum aromatic selectivity obtained was 22% with a CO{sub 2} conversion of 38% using fused iron catalyst combined with the zeolite. Together with the kinetic studies, thermodynamic analysis of the CO{sub 2} hydrogenation was also conducted. It was found that unlike Fischer Tropsch synthesis, the formation of hydrocarbons from CO{sub 2} may not be thermodynamically favored at higher temperature. However, the sufficiently high yields of aromatics possible with this process provides a route for the direct synthesis of high-octane gasoline from carbon dioxide. 24 refs., 9 figs., 5 tabs.

  19. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  20. Development of Pd Alloy Hydrogen Separation Membranes with Dense/Porous Hybrid Structure for High Hydrogen Perm-Selectivity

    Directory of Open Access Journals (Sweden)

    Jae-Yun Han

    2014-01-01

    Full Text Available For the commercial applications of hydrogen separation membranes, both high hydrogen selectivity and permeability (i.e., perm-selectivity are required. However, it has been difficult to fabricate thin, dense Pd alloy composite membranes on porous metal support that have a pore-free surface and an open structure at the interface between the Pd alloy films and the metal support in order to obtain the required properties simultaneously. In this study, we fabricated Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity. The hydrogen selectivity of this membrane increased owing to the dense and pore-free microstructure of the membrane surface. The hydrogen permeation flux also was remarkably improved by the formation of an open microstructure with numerous open voids at the interface and by an effective reduction in the membrane thickness as a result of the porous structure formed within the Pd alloy films.

  1. A nanostructured Ni/graphene hybrid for enhanced electrochemical hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Moon-Hyung; Min, Young-Je [Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Taegu 702-701 (Korea, Republic of); Gwak, Gyeong-Hyeon [Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo 220-710 (Korea, Republic of); Paek, Seung-Min, E-mail: smpaek@knu.ac.kr [Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Taegu 702-701 (Korea, Republic of); Oh, Jae-Min, E-mail: jaemin.oh@yonsei.ac.kr [Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo 220-710 (Korea, Republic of)

    2014-10-15

    Highlights: • Graphene oxide(GO) was hybridized with the Ni(OH){sub 2}. • The Ni(OH){sub 2}/GO was reduced to Ni/graphene. • XRD, TEM, and X-ray absorption spectroscopy were examined. • The hydrogen storage property of Ni/graphene was significantly enhanced. - Abstract: To fabricate electrochemical hydrogen storage materials with delaminated structure, the graphene oxide (GO) in the ethylene glycol solution was reassembled in the presence of the precursor of Ni nanoparticles, and then, the reassembled hybrid was reduced under hydrogen atmosphere to obtain Ni/graphene hybrid. X-ray diffraction patterns and X-ray absorption spectscopic (XAS) analysis clearly show that Ni nanoparticles in Ni/graphene hybrid maintain its nanosized nature even after hybridization with graphene nanosheet (GNS). According to the TEM analysis, the Ni nanoparticles with an average size of 5.2 nm are homogeneously distributed onto the GNS in such a way that the nanoporous structure with much amount of void spaces could be fabricated. The obtained Ni/GNS exhibits a hydrogen storage capacity of 160 mA h/g, while the specific capacity of the graphene nanosheet was only 21 mA h/g. A flexible delaminated structure of Ni/GNS nanocomposite could provide additional intercalation sites for accommodation of hydrogen, leading to the enhancement of hydrogen storage capacity.

  2. Optimization and field demonstration of hybrid hydrogen generator/high efficiency furnace system

    Energy Technology Data Exchange (ETDEWEB)

    Entchev, E.; Coyle, I.; Szadkowski, F. [CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario K1A-1M1 (Canada); Manning, M.; Swinton, M. [National Research Council Ottawa, Ontario (Canada); Graydon, J.; Kirk, D. [University of Toronto, Toronto, Ontario (Canada)

    2009-05-15

    Hydrogen is seen as an energy carrier of the future and significant research on hydrogen generation, storage and utilization is accomplished around the world. However, an appropriate intermediate step before wide hydrogen introduction will be blending conventional fuels such as natural gas, oil or diesel with hydrogen and follow up combustion through conventional means. Due to changes in the combustion and flame characteristics of the system additional research is needed to access the limits and the impact of the fuel mix on the combustion systems performance. The hybrid system consists of a 5 kW{sub el} electrolyzer and a residential 15 kW{sub th} high efficiency gas fired furnace. The electrolyzer was integrated with the furnace gas supply and setup to replace 5-25% of the furnace natural gas flow with hydrogen. A mean for proper mixing of hydrogen with natural gas was provided and a control system for safe system operation was developed. Prior to the start of the field trial the hybrid system was investigated in laboratory environment. It was subjected to a variety of steady state and cycling conditions and a detailed performance and optimization analysis was performed with a range of hydrogen/natural gas mixtures. The optimized system was then installed at the Canadian Centre for Housing Technologies (CCHT) Experimental research house. The energy performance of the hybrid system was compared to the energy performance of an identical high efficiency furnace in the Control research house next door. (author)

  3. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles

    Science.gov (United States)

    Griessen, Ronald; Strohfeldt, Nikolai; Giessen, Harald

    2016-03-01

    Palladium-hydrogen is a prototypical metal-hydrogen system. It is therefore not at all surprising that a lot of attention has been devoted to the absorption and desorption of hydrogen in nanosized palladium particles. Several seminal articles on the interaction of H with Pd nanocubes and nanoparticles have recently been published. Although each article provides for the first time detailed data on specific aspects of hydrogen in nanoparticles, they individually do not contain enough information to draw firm conclusions about the involved mechanisms. Here, we show that the large body of data available so far in literature exhibits general patterns that lead to unambiguous conclusions about the processes involved in H absorption and desorption in Pd nanoparticles. On the basis of a remarkably robust scaling law for the hysteresis in absorption-desorption isotherms, we show that hydrogen absorption in palladium nanoparticles is consistent with a coherent interface model and is thus clearly different from bulk Pd behaviour. However, H desorption occurs fully coherently only for small nanoparticles (typically smaller than 50 nm) at temperatures sufficiently close to the critical temperature. For larger particles it is partially incoherent, as in bulk, where dilute α-PdHx and high concentration β-PdHx phases coexist.

  4. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles.

    Science.gov (United States)

    Griessen, Ronald; Strohfeldt, Nikolai; Giessen, Harald

    2016-03-01

    Palladium-hydrogen is a prototypical metal-hydrogen system. It is therefore not at all surprising that a lot of attention has been devoted to the absorption and desorption of hydrogen in nanosized palladium particles. Several seminal articles on the interaction of H with Pd nanocubes and nanoparticles have recently been published. Although each article provides for the first time detailed data on specific aspects of hydrogen in nanoparticles, they individually do not contain enough information to draw firm conclusions about the involved mechanisms. Here, we show that the large body of data available so far in literature exhibits general patterns that lead to unambiguous conclusions about the processes involved in H absorption and desorption in Pd nanoparticles. On the basis of a remarkably robust scaling law for the hysteresis in absorption-desorption isotherms, we show that hydrogen absorption in palladium nanoparticles is consistent with a coherent interface model and is thus clearly different from bulk Pd behaviour. However, H desorption occurs fully coherently only for small nanoparticles (typically smaller than 50 nm) at temperatures sufficiently close to the critical temperature. For larger particles it is partially incoherent, as in bulk, where dilute α-PdHx and high concentration β-PdHx phases coexist.

  5. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  6. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage

    Science.gov (United States)

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-03-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  7. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  8. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  9. Hybrid Catalysis Enabling Room-Temperature Hydrogen Gas Release from N-Heterocycles and Tetrahydronaphthalenes.

    Science.gov (United States)

    Kato, Shota; Saga, Yutaka; Kojima, Masahiro; Fuse, Hiromu; Matsunaga, Shigeki; Fukatsu, Arisa; Kondo, Mio; Masaoka, Shigeyuki; Kanai, Motomu

    2017-02-15

    Hybrid catalyst systems to achieve acceptorless dehydrogenation of N-heterocycles and tetrahydronaphthalenes-model substrates for liquid organic hydrogen carriers-were developed. A binary hybrid catalysis comprising an acridinium photoredox catalyst and a Pd metal catalyst was effective for the dehydrogenation of N-heterocycles, whereas a ternary hybrid catalysis comprising an acridinium photoredox catalyst, a Pd metal catalyst, and a thiophosphoric imide organocatalyst achieved dehydrogenation of tetrahydronaphthalenes. These hybrid catalyst systems allowed for 2 molar equiv of H2 gas release from six-membered N-heterocycles and tetrahydronaphthalenes under mild conditions, i.e., visible light irradiation at rt. The combined use of two or three different catalyst types was essential for the catalytic activity.

  10. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  11. Evaluation of the hydrogen-fueled rotary engine for hybrid vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Salanki, P.A.; Wallace, J.S. [Univ. of Toronto, Ontario (Canada)

    1996-09-01

    The hydrogen-fueled engine has been identified as a viable power unit for ultra-low emission series-hybrid vehicles. The Wankel engine is particularly well suited to the use of hydrogen fuel, since its design minimizes most of the combustion difficulties. In order to evaluate the possibilities offered by the hydrogen fueled rotary engine, dynamometer tests were conducted with a small (2.2 kW) Wankel engine fueled with hydrogen. Preliminary results show an absence of the combustion difficulties present with hydrogen-fueled homogeneous charge piston engines. The engine was operated unthrottled and power output was controlled by quality governing, i.e. by varying the fuel-air equivalence ratio on the lean side of stoichiometric. The ability to operate with quality governing is made possible by the wide flammability limits of hydrogen-air mixtures. NO{sub x} emissions are on the order of 5 ppm for power outputs up to 70% of the maximum attainable on hydrogen fuel. Thus, by operating with very lean mixtures, which effectively derates the engine, very low NO{sub x} emissions can be achieved. Since the rotary engine has a characteristically high power to weight ratio and a small volume per unit power compared to the piston engine, operating a rotary engine on hydrogen and derating the power output could yield an engine with extremely low emissions which still has weight and volume characteristics comparable to a gasoline-fueled piston engine. Finally, since engine weight and volume affect vehicle design, and consequently in-use vehicle power requirements, those factors, as well as engine efficiency, must be taken into account in evaluating overall hybrid vehicle efficiency.

  12. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  13. Enhanced hydrogen storage in sandwich-structured rGO/Co1-xS/rGO hybrid papers through hydrogen spillover

    Science.gov (United States)

    Han, Lu; Qin, Wei; Jian, Jiahuang; Liu, Jiawei; Wu, Xiaohong; Gao, Peng; Hultman, Benjamin; Wu, Gang

    2017-08-01

    Reduced graphene oxide (rGO) based two-dimensional (2D) structures have been fabricated for electrochemical hydrogen storage. However, the effective transfer of atomic hydrogen to adjacent rGO surfaces is suppressed by binders, which are widely used in conventional electrochemical hydrogen storage electrodes, leading to a confining of the performance of rGO for hydrogen storage. As a proof of concept experiment, a novel strategy is developed to fabricate the binder-free sandwich-structured rGO/Co1-xS/rGO hybrid paper via facile ball milling and filtration process. Based on the structure investigation, Co1-xS is immobilized in the space between the individual rGO sheets by the creation of chemical ;bridges; (Csbnd S bonds). Through the Csbnd S bonds, the atomic hydrogen is transferred from Co1-xS to rGO accompanying a Csbnd H chemical bond formation. When used as an electrode, the hybrid paper exhibits an improved hydrogen storage capacity of 3.82 wt% and, most importantly, significant cycling stability for up to 50 cycles. Excluding the direct hydrogen storage contribution from the Co1-xS in the hybrid paper, the hydrogen storage ability of rGO is enhanced by 10× through the spillover effects caused by the Co1-xS modifier.

  14. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  15. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  16. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco; Stark, Greg

    2017-04-07

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  17. Wind-hydrogen-biomass. The hybrid power plant of ENERTRAG AG

    Energy Technology Data Exchange (ETDEWEB)

    Miege, Andreas; Luschtinetz, T. [Fachhochschule Stralsund (Germany); Wenske, M.; Gamallo, F. [ENERTRAG AG (Germany)

    2010-07-01

    The ENERTRAG Hybrid Power Plant is designed around the following components: three wind turbines of 2 MW each, an electrolyser of 500 kW, a hydrogen storage system, and two CHP units of 350 kW each, able to run with variable mixtures of biogas and hydrogen. The use of the electrolyser - acting as a deferrable load, and running under variable power - and the possibility of reconverting the hydrogen again into electricity will allow a feeding-in of the produced electricity to the grid, free of any of the changing characteristics of the wind power. Besides of that renewable electricity, the Hybrid Power Plant will also be able of delivering hydrogen as a clean fuel for the transport sector, as well as oxygen and heat. The project will show that renewable energy sources, like wind and solar, will be able, in the future, of producing back-up power without any support of fossile sources; and also of feeding electricity to the grid as a part of the base-load demand. As a first step towards this direction, the project has the goal of assuring that the energy production of the three wind turbines will be in accordance to the 24-h-forecasted wind power values. (orig.)

  18. A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution

    Science.gov (United States)

    Huang, Yunpeng; Lu, Hengyi; Gu, Huahao; Fu, Jun; Mo, Shuyi; Wei, Chun; Miao, Yue-E.; Liu, Tianxi

    2015-11-01

    Exploration of high-efficiency Pt-free electrochemical catalysts for hydrogen evolution reaction (HER) is considered as a great challenge for the development of sustainable and carbon dioxide free energy conversion systems. In this work, a unique hierarchical nanostructure of few-layered MoSe2 nanosheets perpendicularly grown on carbon nanotubes (CNTs) is synthesized through a one-step solvothermal reaction. This rationally designed architecture based on a highly conductive CNT substrate possesses fully exposed active edges and open structures for fast ion/electron transfer, thus leading to remarkable HER activity with a low onset potential of -0.07 V vs. RHE (reversible hydrogen electrode), a small Tafel slope of 58 mV per decade and excellent long-cycle stability. Therefore, this noble-metal-free and highly efficient catalyst enables prospective applications for industrial, renewable hydrogen production.Exploration of high-efficiency Pt-free electrochemical catalysts for hydrogen evolution reaction (HER) is considered as a great challenge for the development of sustainable and carbon dioxide free energy conversion systems. In this work, a unique hierarchical nanostructure of few-layered MoSe2 nanosheets perpendicularly grown on carbon nanotubes (CNTs) is synthesized through a one-step solvothermal reaction. This rationally designed architecture based on a highly conductive CNT substrate possesses fully exposed active edges and open structures for fast ion/electron transfer, thus leading to remarkable HER activity with a low onset potential of -0.07 V vs. RHE (reversible hydrogen electrode), a small Tafel slope of 58 mV per decade and excellent long-cycle stability. Therefore, this noble-metal-free and highly efficient catalyst enables prospective applications for industrial, renewable hydrogen production. Electronic supplementary information (ESI) available: the FESEM image of CNT@MoSe2-6 hybrid at low magnification; EDS mapping of CNT@MoSe2-6 hybrid. See DOI: 10

  19. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  20. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  1. An exergetic/energetic/economic analysis of three hydrogen production processes - Electrolysis, hybrid, and thermochemical

    Science.gov (United States)

    Funk, J. E.; Eisermann, W.

    This paper presents the results of a combined first and second law analysis, along with capital and operating costs, for hydrogen production from water by means of electrolytic, hybrid, and thermochemical processes. The processes are SPE and Lurgi electrolysis with light water reactor power generation and sulfur cycle hybrid, thermochemical and SPE electrolysis with a very high temperature reactor primary energy source. Energy and Exergy (2nd law) flow diagrams for the process are shown along with the location and magnitude of the process irreversibilities. The overall process thermal (1st law) efficiencies vary from 25 to 51% and the exergetic (2nd law) efficiencies, referred to the fuel for the primary energy source, vary from 22 to 45%. Capital and operating costs, escalated to 1979 dollars, are shown for each process for both the primary energy source and the hydrogen production plant. All costs were taken from information available in the open literature and are for a plant capacity of 100 x 10 to the 6th SCF/day. Production costs vary from 10 to 18 $/GJ, based on the higher heating value of hydrogen, and are based on a 90% plant operating factor with a 21% annual charge on total capital costs.

  2. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

    Science.gov (United States)

    Unda, Jesus E Zerpa; Roduner, Emil

    2012-03-21

    A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

  3. Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters

    Science.gov (United States)

    2016-01-01

    This report focuses on a novel strategy for the preparation of transition metal–MoS2 hybrid nanoclusters based on a one-step, dual-target magnetron sputtering, and gas condensation process demonstrated for Ni-MoS2. Aberration-corrected STEM images coupled with EDX analysis confirms the presence of Ni and MoS2 in the hybrid nanoclusters (average diameter = 5.0 nm, Mo:S ratio = 1:1.8 ± 0.1). The Ni-MoS2 nanoclusters display a 100 mV shift in the hydrogen evolution reaction (HER) onset potential and an almost 3-fold increase in exchange current density compared with the undoped MoS2 nanoclusters, the latter effect in agreement with reported DFT calculations. This activity is only reached after air exposure of the Ni-MoS2 hybrid nanoclusters, suggested by XPS measurements to originate from a Ni dopant atoms oxidation state conversion from metallic to 2+ characteristic of the NiO species active to the HER. Anodic stripping voltammetry (ASV) experiments on the Ni-MoS2 hybrid nanoclusters confirm the presence of Ni-doped edge sites and reveal distinctive electrochemical features associated with both doped Mo-edge and doped S-edge sites which correlate with both their thermodynamic stability and relative abundance.

  4. An Experimental Study of Laboratory Hybrid Power System with the Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Daniel Minarik

    2014-01-01

    Full Text Available This paper presents very small laboratory hybrid photovoltaic-hydrogen power system. The system was primarily assembled to verify the operability of the control algorithms and practical deployment of available commercial hydrogen technologies that are directly usable for storage of electricity produced from renewable energy sources in a small island system. This energetic system was installed and tested in Laboratory of fuel cells that is located in the university campus of VSB-Technical University of Ostrava. The energetic system consists of several basic components: a photovoltaic field, accumulators bank, water commercial electrolyzer and compact fuel cell system. The weather conditions recorded in two different weeks as model weather and solar conditions are used as case studies to test the energetic system and the results for two different cases are compared each other. The results show and illustrate selected behaviour curves of the power system and also average energy storage efficiency for accumulation subsystem based on hydrogen technologies or at the energetic system embedded components. On the basis of real measurement and its evaluation the ideal parameters of the photovoltaic field were calculated as well as the hydrogen technologies for supposed purpose and the power requirements.

  5. Recovery of Hydrogen from Ammonia Plant Tail Gas by Absorption-Hydration Hybrid Method

    Institute of Scientific and Technical Information of China (English)

    刘蓓; 王秀林; 唐绪龙; 杨兰英; 孙长宇; 陈光进

    2011-01-01

    In this work, the absorption-hydration hybrid method was used to recover (hydrogen + nitrogen) from (hydrogen + nitrogen + methane + argon) tail gas mixtures of synthetic ammonia plant through hydrate formation/dissociation. A high-pressure reactor with magnetic stirrer was used to study the separation efficiency. The in-fluences of the concentration of anti-agglomerant, temperature, pressure, initial gas-liquid volume ratio, and oil-water volume ratio on the separation efficiency were systematically investigated in the presence of tetrahydro-furan (THF). Anti-agglomerant was used to disperse hydrate particles into the condensate phase for water-in-oil emulsion system. Since nitrogen is the material for ammonia production, the objective production in our separation process is (hydrogen + nitrogen). Our experimental results show that by adopting appropriate operating conditions, high concentration of (hydrogen + nitrogen) can be obtained using the proposed technology based on forming hydrate.

  6. Pt-TiO2/MWCNTs Hybrid Composites for Monitoring Low Hydrogen Concentrations in Air

    Directory of Open Access Journals (Sweden)

    Stefano Trocino

    2012-09-01

    Full Text Available Hydrogen is a valuable fuel for the next energy scenario. Unfortunately, hydrogen is highly flammable at concentrations higher than 4% in air. This aspect makes the monitoring of H2 leaks an essential issue for safety reasons, especially in the transportation field. In this paper, nanocomposites based on Pt-doped TiO2/multiwalled carbon nanotubes (MWCNTs have been introduced as sensitive materials for H2 at low temperatures. Pt-TiO2/MWNTs nanocomposites with different composition have been prepared by a simple wet chemical procedure and their morphological, microstructural and electrical properties were investigated. Resistive thick-film devices have been fabricated printing the hybrid nanocomposites on alumina substrates provided with Pt interdigitated electrodes. Electrical tests in air have shown that embedding MWCNTs in the TiO2 matrix modify markedly the electrical conductivity, providing a means to decrease the resistance of the sensing layer. Pt acts as a catalytic additive. Pt-TiO2/MWNTs-based sensors were found to be sensitive to hydrogen at concentrations between 0.5 and 3% in air, satisfying the requisites for practical applications in hydrogen leak detection devices.

  7. Development of a New Thermochemical and Electrolytic Hybrid Hydrogen Production System for Sodium Cooled FBR

    Science.gov (United States)

    Nakagiri, Toshio; Kase, Takeshi; Kato, Shoichi; Aoto, Kazumi

    A new thermo-chemical and electrolytic hybrid hydrogen production system in lower temperature range is newly proposed by the Japan Nuclear Cycle Development Institute (JAEA) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeder Reactor (FBR). The system is based on sulfuric acid (H2SO4) synthesis and decomposition process developed earlier (Westinghouse process), and sulfur trioxide (SO3) decomposition process is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce the operation temperature 200-300°C lower than Westinghouse process. SO3 decomposition with the voltage lower than 0.5V was confirmed in the temperature range of 500 to 600°C and theoretical thermal efficiency of the system evaluated based on chemical reactions was within the range of 35% to 55% under the influence of H2SO4 concentration and heat recovery. Furthermore, hydrogen production experiments to substantiate the whole process were performed. Stable hydrogen and oxygen production were observed in the experiments, and maximum duration of the experiments was about 5 hours.

  8. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  9. Molecular dynamics simulation of the formation of sp3 hybridized bonds in hydrogenated diamondlike carbon deposition processes.

    Science.gov (United States)

    Murakami, Yasuo; Horiguchi, Seishi; Hamaguchi, Satoshi

    2010-04-01

    The formation process of sp3 hybridized carbon networks (i.e., diamondlike structures) in hydrogenated diamondlike carbon (DLC) films has been studied with the use of molecular-dynamics simulations. The processes simulated in this study are injections of hydrocarbon (CH3 and CH) beams into amorphous carbon (a-C) substrates. It has been shown that diamondlike sp3 structures are formed predominantly at a subsurface level when the beam energy is relatively high, as in the "subplantation" process for hydrogen-free DLC deposition. However, for hydrogenated DLC deposition, the presence of abundant hydrogen at subsurface levels, together with thermal spikes caused by energetic ion injections, substantially enhances the formation of carbon-to-carbon sp3 bonds. Therefore, the sp3 bond formation process for hydrogenated DLC films essentially differs from that for hydrogen-free DLC films.

  10. Optimization of the Hybrid Sulfur Cycle for Nuclear Hydrogen Production Using UniSim Design

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Hun; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2009-05-15

    The sulfur-based thermochemical cycles are considered as the most promising methods to produce hydrogen. The Hybrid Sulfur (HyS) Cycle is a mixed thermochemical cycle with the sulfur-aided electrolysis as depicted in the Fig. 1. Hydrogen is produced from water by oxidizing sulfur dioxide in the low temperature electrolysis step and the sulfuric acid which is also produced in the electrolyzer proceeds to the high temperature thermochemical step. The sulfuric acid is concentrated in the concentrator first and then decomposed into steam and sulfur trioxide, which is further decomposed into sulfur dioxide and oxygen at high temperature (;1100 K) in the decomposer. After separated with oxygen in the separator, the sulfur dioxide is fed again to the electrolyzer to reduce the required electrode potential far below than that of the typical water electrolysis. Hydrogen is worth as a future energy carrier when it is produced cost effectively. In that sense, the energy efficiency of the hybrid sulfur cycle is needed to be improved as high as achievable. The flow sheet developed by Westinghouse, the first proposer of the cycle, is not optimized for the cycle efficiency. In the previous work, a detailed flow sheet model was developed and also the cycle efficiency of that was roughly estimated using the software CHEMKIN and CANARY based on the experimental data for the electrode potential and appropriate work of separation. The maximum efficiency was found to be 50.5% under the operating conditions of 10 bar and 1200K for decomposer and acid concentration of 60 mol% for decomposer, 60 wt. % for electrolyzer, respectively. In this study, more detailed flow sheet was developed and optimized by using software UniSim Design which is one of the most powerful process design and simulation tools.

  11. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  12. Low temperature hydrogen sensing using reduced graphene oxide and tin oxide nanoflowers based hybrid structure

    Science.gov (United States)

    Venkatesan, A.; Rathi, Servin; Lee, In-Yeal; Park, Jinwoo; Lim, Dongsuk; Kim, Gil-Ho; Kannan, E. S.

    2016-12-01

    In this paper, we have demonstrated a low temperature hydrogen (H2) sensor based on reduced graphene oxide (rGO) and tin oxide nanoflowers (SnO2 NFs) hybrid composite film. The addition of SnO2 NFs into rGO solution inhibits irreversible restacking and agglomeration of rGO and increases the active surface area for interaction with H2. This rGO-SnO2 NFs hybrid film sensor showed an excellent response to H2 at 60 °C at 200 ppm with an improvement of 126% compared to pure rGO which was used as a control sample. The sensor also showed good response and recovery time in comparison to pure rGO film. The highly improved H2 sensing characteristics of rGO-SnO2 NFs hybrid are due to its (a) unique structural geometry that increased the surface area for H2 adsorption, and (b) change in the width of depletion layer at the interface due to H2 interaction.

  13. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-06-05

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  14. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  15. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity

    Science.gov (United States)

    Pan, Yuan; Yang, Na; Chen, Yinjuan; Lin, Yan; Li, Yanpeng; Liu, Yunqi; Liu, Chenguang

    2015-11-01

    Development of hybrid catalysts with high activity, good stability and low cost is extremely desirable for hydrogen production by electrolysis of water. In this work, a hybrid composed of Ni2P nanoparticles (NPs) on N-doped reduced graphene oxide (NRGO) is synthesized via an in situ thermal decomposition approach for the first time and investigated as a catalyst for the hydrogen evolution reaction (HER). The as-synthesized Ni2P/NRGO hybrid exhibits an enhanced catalytic activity with low onset overpotential (37 mV), a small Tafel slope (59 mV dec-1), a much larger exchange current density (4.9 × 10-5 A cm-2), and lower HER activation energy (46.9 kJ mol-1) than Ni2P/RGO hybrid. In addition, the Ni2P/NRGO hybrid maintains its catalytic activity for at least 60‧000 s in acidic media. The enhanced catalytic activity is attributed to the synergistic effect of N-doped RGO and Ni2P NPs, the charged natures of Ni and P, as well as the high electrical conductivity of Ni2P/NRGO hybrid. This study may offer a new strategy for improving the electrocatalytic activity for hydrogen production.

  16. Photocatalytic hydrogen production of the CdS/TiO2-WO3 ternary hybrid under visible light irradiation.

    Science.gov (United States)

    Chen, Yi-Lin; Lo, Shang-Lien; Chang, Hsiang-Ling; Yeh, Hsiao-Mei; Sun, Liping; Oiu, Chunsheng

    2016-01-01

    An attractive and effective method for converting solar energy into clean and renewable hydrogen energy is photocatalytic water splitting over semiconductors. The study aimed at utilizing organic sacrificial agents in water, modeled by formic acid, in combination with visible light driven photocatalysts to produce hydrogen with high efficiencies. The photocatalytic hydrogen production of cadmium sulfide (CdS)/titanate nanotubes (TNTs) binary hybrid with specific CdS content was investigated. After visible light irradiation for 3 h, the hydrogen production rate of 25 wt% CdS/TNT achieved 179.35 μmol·h(-1). Thanks to the two-step process, CdS/TNTs-WO3 ternary hybrid can better promote the efficiency of water splitting compared with CdS/TNTs binary hybrid. The hydrogen production of 25 wt% CdS/TNTs-WO3 achieved 212.68 μmol·h(-1), under the same condition. Coating of platinum metal onto the WO3 could further promote the reaction. Results showed that 0.2 g 0.1 wt% Pt/WO3 + 0.2 g 25 wt% CdS/TNTs had the best hydrogen production rate of 428.43 μmol·h(-1). The resultant materials were well characterized by high-resolution transmission electron microscope, X-ray diffraction, scanning electron microscopy, and UV-Vis spectra.

  17. Hybrid Polymer-Immobilized Nanosized Pd Catalysts for Hydrogenation Reaction Obtained via Frontal Polymerization

    Directory of Open Access Journals (Sweden)

    Anatolii D. Pomogailo

    2013-01-01

    Full Text Available A new approach to the synthesis of mixed-type immobilized catalysts by frontal polymerization of metal-containing monomer in the presence of highly dispersed mineral support has been developed. Synthesis of the acrylamide Pd(II nitrate complex, Pd(CH2=CHCONH22 (NO32 (PdAAm, on the SiO2 (Al2O3, C surface and its consequent frontal polymerization and reduction lead to the formation of organic-inorganic composites with polymer-stabilized Pd nanoparticles. The immobilized metal complexes and palladium nanoparticles were characterized by various physical and chemical methods. The synthesized hybrid nanocomposites are efficient and selective catalysts for hydrogenation of cyclohexene, alkene, and acetylene alcohols, as well as di- and trinitrotoluene. Catalyst intermediates separated by nondestructive testing method have been described and changing in the palladium charge during the catalytic process has been identified.

  18. Hybrid electrodynamics and kinetics simulation for electromagnetic wave propagation in weakly ionized hydrogen plasmas.

    Science.gov (United States)

    Chen, Qiang; Chen, Bin

    2012-10-01

    In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.

  19. Techno-economical Analysis of Hybrid PV-WT-Hydrogen FC System for a Residential Building with Low Power Consumption

    Directory of Open Access Journals (Sweden)

    Badea G.

    2016-12-01

    Full Text Available This paper shows a techno-economical analysis on performance indicators of hybrid solar-wind-hydrogen power generation system which supply with electricity a low - energy building, located in Cluj-Napoca. The case study had the main objectives, as follows: cost estimation, evaluation of energy and environmental performance for a fuel cell integrated into a small-scale hybrid system power generation and estimation of electrolytic hydrogen production based on renewable energy resources available on the proposed site. The results presented in this paper illustrate a case study for location Cluj-Napoca. The wind and solar resource can play an important role in energy needs for periods with "peak load" or intermittent energy supply. However, hydrogen production is dependent directly proportional to the availability of renewable energy resources, but the hydrogen can be considered as a storage medium for these renewable resources. It can be said that this study is a small-scale model analysis, a starting point for a detailed analysis of Romania's potential electrolytic production of hydrogen from renewable resources and supply electricity using fuel cells integrated into hybrid energy systems.

  20. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-01-07

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered as several promising HER candidates. Here, a highly active and stable hybrid electrocatalyst 3D flower-like hierarchical Co9S8 nanosheets incorporated with MoSx has been developed via a one-step sulfurization method. Since the amounts of Co9S8 and MoSx are easily adjustable, we verify that small amounts of MoSx promotes the HER activity of Co9S8, and vise versa. In other words, we validate that symmetric synergy for HER in the Co- and Mo-based sulfide hybrid catalysts, a long-standing question requiring clear experimental proofs. Meanwhile, the best electrocatalyst Co9S8-30@MoSx/CC in this study exhibits excellent HER performance with an overpotential of −98 mV at −10 mA/cm2, a small Tafel slope of 64.8 mV/dec, and prominent electrochemical stability.

  1. Development and realization of a hydrogen range extender hybrid city bus

    Science.gov (United States)

    Sergi, F.; Andaloro, L.; Napoli, G.; Randazzo, N.; Antonucci, V.

    2014-03-01

    Electric vehicles, equipped with electrochemical batteries, are expected to significantly penetrate the automotive market in the next few years. Though, the recharge time for battery pack and the autonomy range can constitute a limit. An appropriate use of fuel cell technology in electric vehicles can now represent an advantageous choice both from a technical and economic point of view. This paper reports the results of the development of a hybrid electric city bus, performed by the synergy between fuel cell and batteries. A pure electric city bus, equipped with eight Zebra batteries, was acquired and modified in a fuel cell and batteries hybrid vehicle. In the final version the bus was equipped with six batteries and a hydrogen plant with a proton exchange membrane fuel cell system. In particular an innovative powertrain management, where even the time required for the terminal stops is used to charge the batteries by the fuel cell, is described. Set-up tests on the fuel cell system acquired are presented. Further, tests were conducted also on the battery pack working on board in a real route to demonstrate the capability of the reduced battery pack to drive the vehicle.

  2. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  3. Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable

    Science.gov (United States)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    Recently we reported about first in the world test of 10 m hybrid energy transfer line with liquid hydrogen and MgB2 superconducting cable. In this paper we present the new development of our second hybrid energy transfer line with 30 m length. The flexible 30 m hydrogen cryostat has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen shield and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were performed at temperatures from 20 to 26 K, hydrogen flow from 100 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation practically eliminated completely heat transfer from room temperature to liquid hydrogen in the 10 m section. AEC thermal insulation method can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable have been passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was ∼3500 A. The 30 m hybrid energy system developed is able to deliver up to 135 MW of chemical and electrical power in total.

  4. Di-ureasil hybrids doped with LiBF4 : spectroscopic study of the ionic interactions and hydrogen bonding

    OpenAIRE

    Fernandes, Mariana; Barbosa, P. C.; Silva,Maria Manuela; Smith, Michael John; Zea Bermudez, V. de

    2011-01-01

    In the present work Fourier Transform infrared and Raman spectroscopy were used to characterize the cation/polymer, cation/cross-link, cation/anion and hydrogen bonding interactions in hybrid electrolytes composed of lithium tetrafluoroborate (LiBF4) and di-urea cross-linked poly(oxyethylene) (POE)/siloxane hybrid networks (di-ureasils) designated as d-(2000) and d-U(600) and incorporating polyether chains with ca. 40.5 and 8.5 oxyethylene repeat units, respectively. Samples with ∞ > n ≥ 2.5 ...

  5. Improvement in the hydrogen desorption from MgH2 upon transition metals doping: A hybrid density functional calculations

    Science.gov (United States)

    Hussain, Tanveer; Maark, Tuhina Adit; Pathak, Biswarup; Ahuja, Rajeev

    2013-10-01

    This study deals with the investigations of structural, electronic and thermodynamic properties of MgH2 doped with selected transition metals (TMs) by means of hybrid density functional theory (PBE0). On the structural side, the calculated lattice parameters and equilibrium volumes increase in case of Sc, Zr and Y opposite to all the other dopants indicating volumetrically increased hydrogen density. Except Fe, all the dopants improve the kinetics of MgH2 by reducing the heat of adsorption with Cu, Nb, Ni and V proving more efficient than others studied TM's. The electronic properties have been studied by density of states and correlated with hydrogen adsorption energies.

  6. Synthesis and characterization of the hybrid Ni-TiO2/PANI for an efficient hydrogen photoproduction under visible light

    Directory of Open Access Journals (Sweden)

    Mohamed Faouzi Nsib

    2014-07-01

    Full Text Available NixZn1-xO/Polyaniline hybrid photocatalysts are synthesized by the impregnation method at ambient temperature and used for hydrogen photoproduction experiments. XRD, UV-Vis DRS, SEM and TGA are used to characterize the prepared materials. It is shown that the Ni2+ amount doped into ZnO controls its morphology and enhances its photoactivity for H2 generation. Polyaniline (PANI is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol. % Ni2+ and 10 wt. % PANI shows the maximum photocatalytic H2 production for one hour of visible irradiation: ~ 558 μmole while only ~ 178 μmole in the presence of pure ZnO. It is also observed that the hydrogen photoproduction efficiency depends strongly on the nature of the sacrificial electron donor and increases in the order: thiosulfate >sulfide> propanol.

  7. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  8. A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zi-Yu [College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Shao, Xiaohong, E-mail: shaoxh@mail.buct.edu.cn, E-mail: limin.liu@csrc.ac.cn [College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Da; Liu, Li-Min, E-mail: shaoxh@mail.buct.edu.cn, E-mail: limin.liu@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Johnson, J. Karl [Departments of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-28

    First-principles calculations are performed to investigate the adsorption of hydrogen onto Li-decorated hybrid boron nitride and graphene domains of (BN){sub x}C{sub 1−x} complexes with x = 1, 0.25, 0.5, 0.75, 0, and B{sub 0.125}C{sub 0.875}. The most stable adsorption sites for the nth hydrogen molecule in the lithium-decorated (BN){sub x}C{sub 1−x} complexes are systematically discussed. The most stable adsorption sites were affected by the charge localization, and the hydrogen molecules were favorably located above the C-C bonds beside the Li atom. The results show that the nitrogen atoms in the substrate planes could increase the hybridization between the 2p orbitals of Li and the orbitals of H{sub 2}. The results revealed that the (BN){sub x}C{sub 1−x} complexes not only have good thermal stability but they also exhibit a high hydrogen storage of 8.7% because of their dehydrogenation ability.

  9. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  10. Highly Efficient Photocatalytic Hydrogen Evolution in Ternary Hybrid TiO2/CuO/Cu Thoroughly Mesoporous Nanofibers.

    Science.gov (United States)

    Hou, Huilin; Shang, Minghui; Gao, Fengmei; Wang, Lin; Liu, Qiao; Zheng, Jinju; Yang, Zuobao; Yang, Weiyou

    2016-08-10

    Development of novel hybrid photocatalysts with high efficiency and durability for photocatalytic hydrogen generation is highly desired but still remains a grand challenge currently. In the present work, we reported the exploration of ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers via a foaming-assisted electrospinning technique. It is found that by adjusting the Cu contents in the solutions, the unitary (TiO2), binary (TiO2/CuO, TiO2/Cu), and ternary (TiO2/CuO/Cu) mesoporous products can be obtained, enabling the growth of TiO2/CuO/Cu ternary hybrids in a tailored manner. The photocatalytic behavior of the as-synthesized products as well as P25 was evaluated in terms of their hydrogen evolution efficiency for the photodecomposition water under Xe lamp irradiation. The results showed that the ternary TiO2/CuO/Cu thoroughly mesoporous nanofibers exhibit a robust stability and the most efficient photocatalytic H2 evolution with the highest release rate of ∼851.3 μmol g(-1) h(-1), which was profoundly enhanced for more than 3.5 times with respect to those of the pristine TiO2 counterparts and commercial P25, suggesting their promising applications in clean energy production.

  11. Driving electrocatalytic activity by interface electronic structure control in a metalloprotein hybrid catalyst for efficient hydrogen evolution.

    Science.gov (United States)

    Behera, Sushant Kumar; Deb, Pritam; Ghosh, Arghya

    2016-08-17

    The rational design of metalloprotein hybrid structures and precise calculations for understanding the role of the interfacial electronic structure in regulating the HER activity of water splitting sites and their microscopic effect for obtaining robust hydrogen evolution possess great promise for developing highly efficient nano-bio hybrid HER catalysts. Here, we employ high-accuracy linear-scaling density functional theory calculations using a near-complete basis set and a minimal parameter implicit solvent model within the self-consistent calculations, on silver (Ag) ions assimilated on bacteriorhodopsin (bR) at specific binding sites. Geometry optimization indicates the formation of active sites at the interface of the metalloprotein complex and the density of states reflects the metallic nature of the active sites. The reduced value of the canonical orbital gap indicates the state of dynamic nature after Ag ion assimilation on active sites and smooth electron transfer. These incorporated active protein sites are more efficient in electrolytic splitting of water than pristine sites due to their low value of Gibbs free energy for the HER in terms of hydrogen coverages. Volcano plot analysis and the free energy diagram are compared for understanding the hydrogen evolution efficiency. Moreover, the essential role of the interfacial electronic properties in regulating the HER catalytic activity of water splitting sites and enhancing the efficiency is elucidated.

  12. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support.

    Science.gov (United States)

    Youn, Duck Hyun; Han, Suenghoon; Kim, Jae Young; Kim, Jae Yul; Park, Hunmin; Choi, Sun Hee; Lee, Jae Sung

    2014-05-27

    Highly active and stable electrocatalysts for hydrogen evolution have been developed on the basis of molybdenum compounds (Mo2C, Mo2N, and MoS2) on carbon nanotube (CNT)-graphene hybrid support via a modified urea-glass route. By a simple modification of synthetic variables, the final phases are easily controlled from carbide, nitride to sulfide with homogeneous dispersion of nanocrystals on the CNT-graphene support. Among the prepared catalysts, Mo2C/CNT-graphene shows the highest activity for hydrogen evolution reaction with a small onset overpotential of 62 mV and Tafel slope of 58 mV/dec as well as an excellent stability in acid media. Such enhanced catalytic activity may originate from its low hydrogen binding energy and high conductivity. Moreover, the CNT-graphene hybrid support plays crucial roles to enhance the activity of molybdenum compounds by alleviating aggregation of the nanocrystals, providing a large area to contact with electrolyte, and facilitating the electron transfer.

  13. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X., E-mail: yan.xing@jaea.go.jp; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-05-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO{sub 2}. The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m{sup 3}/day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%.

  14. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  15. Synthesis and Characterization of Novel Inorganic-Organic Hybrid Ru(II Complexes and Their Application in Selective Hydrogenation

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2010-02-01

    Full Text Available Novel Ru(II complex-based hybrid inorganic-organic materials immobilized via a diamine co-ligand site instead of the conventional diphosphine ligand have been prepared. The complexes were prepared by two different methods: sol-gel and surface modification techniques. The structures of the desired materials were deduced by several available physical measurements like elemental analyses, infrared, FAB-MS and 1H-, 13C- and 31P-NMR spectroscopy. Due to a lack of solubility the structures of xerogel 3 and modified 4 were studied by solid state 13C-, 29Si- and 31P-NMR spectroscopy, infrared spectroscopy and EXAFS. These materials were stable enough to serve as hydrogenation catalysts. Selective hydrogenation of functionalized carbonyls in a,b-unsaturated compounds was successfully carried out under mild conditions in a basic medium using these complexes as catalysts.

  16. Improvement in the hydrogen desorption from MgH2 upon transition metals doping: A hybrid density functional calculations

    Directory of Open Access Journals (Sweden)

    Tanveer Hussain

    2013-10-01

    Full Text Available This study deals with the investigations of structural, electronic and thermodynamic properties of MgH2 doped with selected transition metals (TMs by means of hybrid density functional theory (PBE0. On the structural side, the calculated lattice parameters and equilibrium volumes increase in case of Sc, Zr and Y opposite to all the other dopants indicating volumetrically increased hydrogen density. Except Fe, all the dopants improve the kinetics of MgH2 by reducing the heat of adsorption with Cu, Nb, Ni and V proving more efficient than others studied TM’s. The electronic properties have been studied by density of states and correlated with hydrogen adsorption energies.

  17. A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production.

    Science.gov (United States)

    Thote, Jayshri; Aiyappa, Harshitha Barike; Deshpande, Aparna; Díaz Díaz, David; Kurungot, Sreekumar; Banerjee, Rahul

    2014-11-24

    CdS nanoparticles were deposited on a highly stable, two-dimensional (2D) covalent organic framework (COF) matrix and the hybrid was tested for photocatalytic hydrogen production. The efficiency of CdS-COF hybrid was investigated by varying the COF content. On the introduction of just 1 wt% of COF, a dramatic tenfold increase in the overall photocatalytic activity of the hybrid was observed. Among the various hybrids synthesized, that with 10 wt% COF, named CdS-COF (90:10), was found to exhibit a steep H2 production amounting to 3678 μmol h(-1) g(-1), which is significantly higher than that of bulk CdS particles (124 μmol h(-1) g(-1)). The presence of a π-conjugated backbone, high surface area, and occurrence of abundant 2D hetero-interface highlight the usage of COF as an effective support for stabilizing the generated photoelectrons, thereby resulting in an efficient and high photocatalytic activity.

  18. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  19. Electrochemical hydrogen evolution of multi-walled carbon nanotube/micro-hybrid composite decorated with Ni nanoparticles as catalyst through electroless deposition process.

    Science.gov (United States)

    Rahimi, Nazanin; Doroodmand, Mohammad Mahdi; Sabbaghi, Samad; Sheikhi, Mohammad Hossein

    2013-08-01

    Hydrogen evolution of multi-walled nanotube (MWCNT)/micro-hybrid polymer composite, decorated with Ni nanoparticles through electroless deposition process is studied by the electrochemical method. Cyclic voltammetry (CV) is utilized to clearly study the electrochemical hydrogen storage/evolution behavior of the composite through a potential window ranging from -1.60 to +0.60 V (vs. Ag/AgCl). Hydrogen adsorption/desorption peaks are positioned at -1.52 and -0.05 V, respectively. Chronoamperometry is also applied to estimate active surface area (0.145 m(2)g(-1)) of the composite as well as the diffusion coefficient (3.4×10(-11) m(2) s(-1)) of adsorbed hydrogen process. According to the chrono-charge/discharge technique, the capacity of fabricated Ni-MWCNT/micro-hybrid composite is estimated to be 2.98 wt.% during charging for a certain time (40 min).

  20. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    OpenAIRE

    Weiqiang Dong; Yanjun Li; Ji Xiang

    2016-01-01

    A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV)/wind turbine (WT)/battery (B)/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH)) for reliable and economic supply. Two...

  2. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  3. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film.

    Science.gov (United States)

    Lin, Kuo Chiang; Lin, Yu Ching; Chen, Shen Ming

    2012-01-07

    A simple method to immobilize poly(neutral red) (PNR) and flavin adenine dinucleotide (FAD) hybrid film (PNR/FAD) by cyclic voltammetry is proposed. The PNR/FAD hybrid film can be easily prepared on an electrode surface involving electropolymerization of neutral red (NR) monomers and the electrostatic interaction between the positively charged PNR and the negatively charged FAD. It exhibits electroactive, stable, surface-confined, pH-dependent, nano-sized, and compatible properties. It provides good electrocatalytic properties to various species. It shows a sensitivity of 5.4 μA mM(-1) cm(-2) and 21.5 μA mM(-1) cm(-2) for hydrogen peroxide (H(2)O(2)) and nicotinamide adenine dinucleotide (NADH) with the linear range of 0.1 μM-39 mM and 5 × 10(-5) to 2.5 × 10(-4) M, respectively. It shows another linear range of 48.8-355.5 mM with the sensitivity of 12.3 μA mM(-1) cm(-2) for H(2)O(2). In particular, the PNR/FAD hybrid film has potential to replace some hemoproteins to be a cathode of biofuel cells and provide the biosensing system for glucose and ethanol.

  4. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process

    Indian Academy of Sciences (India)

    Majji Venkatesh; Sukru Taktak; Efstathios I Meletis

    2014-12-01

    Silver-doped hydrogenated amorphous carbon (Ag-DLC) films were deposited on Si substrates using a hybrid plasma vapour deposition–plasma enhanced chemical vapour deposition (PVD–PECVD) process combining Ag target magnetron sputtering and PECVD in an Ar–CH4 plasma. Processing parameters (working pressure, CH4/Ar ratio and magnetron current) were varied to obtain good deposition rate and a wide variety of Ag films. Structure and bonding environment of the films were obtained from transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy studies. Variation of processing parameters was found to produce Ag-doped amorphous carbon or diamond-like carbon (DLC) films with a range of characteristics with CH4/Ar ratio exercising a dominant effect. It was pointed out that Ag concentration and deposition rate of the film increased with the increase in d.c. magnetron current. At higher Ar concentration in plasma, Ag content increased whereas deposition rate of the film decreased. FTIR study showed that the films contained a significant amount of hydrogen and, as a result of an increase in the Ag content in the hydrogenated DLC film, $sp^{2}$ bond content also increased. The TEM cross sectional studies revealed that crystalline Ag particles were formed with a size in the range of 2–4 nm throughout an amorphous DLC matrix.

  5. Noble-metal-free tungsten oxide/carbon (WOx/C) hybrid manowires for highly efficient hydrogen evolution.

    Science.gov (United States)

    Liu, Changhai; Qiu, Yangyang; Xia, Yujian; Wang, Fang; Liu, Xiaocun; Sun, Xuhui; Liang, Qian; Chen, Zhidong

    2017-08-14

    Developing active, stable, and low-cost electrocatalysts to generate hydrogen is a great challenge in the fields of chemistry and energy. Nonprecious metal catalysts comprised of inexpensive and earth-abundant transition metals are regarded as a promising substitute for noble metal catalysts used in hydrogen evolution reaction (HER), but are still practically unfeasible mainly due to unsatisfactory activity and durability. Here we report a facile two-step preparation method for WOx nanowires with high concentration of oxygen vacancies (OVs) via calcination of W-polydopamine compound precursors. The resulting hybrid material possesses a uniform and ultralong 1D nanowires structure and a rough and raised surface, which can effectively improve the specific surface area. The products exhibit excellent performance for H2 generation: the required overpotentials for 1 and 10 mA cm(-2) are 18 and 108 mV, the Tafel slope is 46 mV/decade, and the electrochemically active surface area is estimated to be ∼77.0 m(2) g(-1). After 1000 cycles, the catalyst works well without significant current density drop. Our experimental results verified metallic transition metal oxides as superior non-Pt electrocatalysts for practical hydrogen evolution reactions.

  6. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3

    OpenAIRE

    June Ho Lee; Jung-Hoon Lee; Eui-Hyun Kong; Hyun Myung Jang

    2016-01-01

    In spite of the key role of hydrogen bonding in the structural stabilization of the prototypic hybrid halide perovskite, CH3NH3PbI3 (MAPbI3), little progress has been made in our in-depth understanding of the hydrogen-bonding interaction between the MA+-ion and the iodide ions in the PbI6-octahedron network. Herein, we show that there exist two distinct types of the hydrogen-bonding interaction, naming α- and β-modes, in the tetragonal MAPbI3 on the basis of symmetry argument and density-func...

  7. Two Distinct Modes of Hydrogen-Bonding Interaction in the Prototypic Hybrid Halide Perovskite, Tetragonal CH3NH3PbI3

    OpenAIRE

    Lee, June Ho; Lee, Jung-Hoon; Kong, Eui-Hyun; Jang, Hyun M.

    2015-01-01

    In spite of the key role of hydrogen bonding in the structural stabilization of the prototypic hybrid halide perovskite, CH3NH3PbI3 (MAPbI3), little progress has been made in our in-depth understanding of the hydrogen-bonding interaction between the MA+-ion and the iodide ions in the PbI6-octahedron network. Herein, we show that there exist two distinct types of the hydrogen-bonding interaction, naming a- and b-modes, in the tetragonal MAPbI3 on the basis of symmetry argument and density-func...

  8. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    Science.gov (United States)

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity.

  9. Ureaphosphanes as hybrid, anionic or supramolecular bidentate ligands for asymmetric hydrogenation reactions

    NARCIS (Netherlands)

    Meeuwissen, J.; Detz, R.; Sandee, A. J.; de Bruin, B.; Siegler, M. A.; Spek, A.L.; Reek, J.N.H.

    2010-01-01

    We report the coordination behavior of ureaphosphane ligand 1-[2-(diphenylphosphanyl)ethyl]-3-phenylurea (L1) towards different rhodium precursor complexes. Depending on the nature of the anion and the ligand/metal ratio, L1 acts either as a hybrid P,O-coordinating chelate, as an anionic P,N-coordin

  10. Hybrid functional calculations of potential hydrogen storage material: Complex dimagnesium iron hydride

    KAUST Repository

    Ul Haq, Bakhtiar

    2014-06-01

    By employing the state of art first principles approaches, comprehensive investigations of a very promising hydrogen storage material, Mg 2FeH6 hydride, is presented. To expose its hydrogen storage capabilities, detailed structural, elastic, electronic, optical and dielectric aspects have been deeply analysed. The electronic band structure calculations demonstrate that Mg2FeH6 is semiconducting material. The obtained results of the optical bandgap (4.19 eV) also indicate that it is a transparent material for ultraviolet light, thus demonstrating its potential for optoelectronics application. The calculated elastic properties reveal that Mg2FeH6 is highly stiff and stable hydride. Finally, the calculated hydrogen (H2) storage capacity (5.47 wt.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  11. Hydrogen , Hybrid and Electric Propulsion in a Strategy for Sustainable Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1998-01-01

    Analysis of the scope for application of hydrogen and electric propulsion for improvement of the fuel cycle efficiency and introduction of renewable energy in the transport sector. The paper compares these fuels with each other as well as with other fuels (especially bio fuels) and outlines...... their individual roles in a strategy for sustainable transport. Finally, the fuels are compared to the present fuels....

  12. Hydrogen production by hybrid electrolysis combined with assistance of solar energy

    Science.gov (United States)

    Takehara, Z.; Yoshizawa, S.

    As a means of reducing the electrical energy needed to produce hydrogen from water, a process is presented, whereby an aqueous sulfuric acid solution containing Fe(2+) ions is electrolyzed, hydrogen being an energy storage material which levels load variation of electrical utilities. In an electrolytic cell, Fe(2+) ions are oxidized on a packed bed carbon anode to form Fe(3+) ions. H(+) ions diffuse through a cation exchange membrane, and are then reduced to hydrogen gas on the cathode. The Fe(3+) ions, produced in the cell, are decomposed in a photodecomposition cell. Oxygen evolves on the TiO2 anode, illuminated by solar light; the produced H(+) ions are diffused through a cation exchange membrane and electrons move through the metal inserted in the membrane to the cathode. The solution containing Fe(+) ions, introduced in the cathode chamber, is reduced cathodically on the platinized platinum. Cell voltage is determined for the process and it is found to be only about 1.0 V for electrolysis of 50mA/sq cm at room temperature. For the case of direct electrolysis of 2N NaOH aqueous solution, the cell voltage is 2.2V electrolysis of 30mA/sq cm. Results indicate a large reduction of electrical energy needed for the production of hydrogen in the process presented.

  13. Hydrogen , Hybrid and Electric Propulsion in a Strategy for Sustainable Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1998-01-01

    Analysis of the scope for application of hydrogen and electric propulsion for improvement of the fuel cycle efficiency and introduction of renewable energy in the transport sector. The paper compares these fuels with each other as well as with other fuels (especially bio fuels) and outlines...

  14. Interfacial engineering of MoS2/TiO2 hybrids for enhanced electrocatalytic hydrogen evolution reaction

    Science.gov (United States)

    Song, Xiaolin; Chen, Guifeng; Guan, Lixiu; Zhang, Hui; Tao, Junguang

    2016-09-01

    Herein, we show that the synergistic effect between MoS2 and TiO2 enhances the hydrogen evolution reaction (HER) performance of their hybrids, which is tunable via interface engineering. Among several interfaces, MoS2/TiO2-H complexes exhibit the best HER activity. The observed Tafel slope of 66.9 mV/dec is well in range of previous literature reports, suggesting a Volmer-Heyrovsky mechanism. Enhanced activities were attributed to abundant active sites at the interfaces, as well as improved charge transfer efficiency. Our results emphasize the roles that interfaces play in enhancing the HER activities of MoS2-based heterogeneous catalysts.

  15. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

  16. Development of a new thermo-chemical and electrolytic hybrid hydrogen production process utilizing the heat from medium temperature heat source : development of the 1NL/h hydrogen production experimental apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Takai, T.; Nakagiri, T.; Inagaki, Y. [Japan Atomic Energy Agency, O-arai, Ibaraki (Japan)

    2007-07-01

    A promising energy conversion system is a high efficiency hydrogen production system that uses nuclear heat. This paper presented the results of a study that developed a 1N/L hydrogen production experimental apparatus. The paper presented the results of an experiment that was conducted to evaluate the hydrogen production efficiency and clarify technical problems for development of a large-scale hydrogen production apparatus. The paper discussed the principals and characteristics of the hybrid hydrogen production in lower temperature range (HHLT) process and presented details on the hydrogen production apparatus and experiment. This included a discussion of the experimental conditions and experimental results. This was followed by a discussion that included an evaluation of hydrogen production efficiency and influence of efficiency of sulfur trioxide electrolysis. Last the paper presented technical problems from the experimental results. It was concluded that hydrogen production efficiency was evaluated about 2 per cent by trial evaluation. A 55 per cent efficiency was expected and therefore, the apparatus required improvement and optimization in order to obtain higher efficiency in the future. 6 refs., 2 tabs., 3 figs.

  17. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  18. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gentil, Solène [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Lalaoui, Noémie [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Dutta, Arnab [Pacific Northwest National Laboratory, Richland WA 99532 USA; Current address: Chemistry Department, IIT Gandhinagar, Gujarat 382355 India; Nedellec, Yannig [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Cosnier, Serge [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Shaw, Wendy J. [Pacific Northwest National Laboratory, Richland WA 99532 USA; Artero, Vincent [Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Le Goff, Alan [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France

    2017-01-12

    A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with a multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.

  19. Hybrid SnO₂/TiO₂ Nanocomposites for Selective Detection of Ultra-Low Hydrogen Sulfide Concentrations in Complex Backgrounds.

    Science.gov (United States)

    Larin, Alexander; Womble, Phillip C; Dobrokhotov, Vladimir

    2016-08-27

    In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO₂/TiO₂ oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO₂/TiO₂ catalytic layer with 10% vol. content of TiO₂ demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material's characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested.

  20. Improved performance of cylindrical hybrid supercapacitor using activated carbon/ niobium doped hydrogen titanate

    Science.gov (United States)

    Lee, Jeong Hyun; Kim, Hong-Ki; Baek, Esther; Pecht, Michael; Lee, Seung-Hwan; Lee, Young-Hie

    2016-01-01

    A cylindrical hybrid supercapacitor is fabricated using activated carbon positive electrode and H2Ti12-xNbxO25 (0 ≤ x ≤ 0.6) negative electrode materials. The hybrid supercapacitor using H2Ti11.85Nb0.15O25 exhibits the best electrochemical performance. It has a capacitance of 78.4 F g-1, charge transfer resistance (Rct) of 0.03 Ω, capacitance retention of 91.4% after 1000 cycles at 3.0 A g-1 and energy density of 24.3 W h kg-1 at a power density of 1794.6 W kg-1. Therefore, the Nb doped HTO negative electrode material is a promising candidate as an energy storage system for electric vehicles (EVs).

  1. Light-driven hydrogen production from Photosystem I-catalyst hybrids.

    Science.gov (United States)

    Utschig, Lisa M; Soltau, Sarah R; Tiede, David M

    2015-04-01

    Solar energy conversion of water into environmentally clean fuels, such as hydrogen, offers one of the best long-term solutions for meeting future global energy needs. In photosynthesis, high quantum yield charge separation is achieved by a series of rapid, photoinitiated electron transfer steps that take place in proteins called reaction centers (RCs). Of current interest are new strategies that couple RC photochemistry to the direct synthesis of energy-rich molecules, offering opportunities to more directly tune the products of photosynthesis and potentially to increase solar energy conversion capacity. Innovative designs link RC photochemistry with synthetic molecular catalysts to create earth abundant biohybrid complexes that use light to rapidly produce hydrogen from water.

  2. Hybrid electric system for an Hydrogen Fuel Cell Vehicle and its energy management

    OpenAIRE

    DA FONSECA, Ramon Naiff; BIDEAUX, Eric; Gerard, Mathias; DESBOIS-RENAUDIN, Matthieu; JEANNERET, Bruno

    2012-01-01

    Fuel cell vehicles, (FCV) are characterized by the utilization on the same electric bus of an hydrogen fuel cell (FC) as a primary energy source and of storage elements like batterie s as a secondary source. In our project, the fuel c ell is a Polymer Electrolyte Membrane (PEM), which is well adapted for transport field applications. A Lithium rechargeable battery , more specifically a LiFePO4, is used to supplement the FC over the driv ing cycle. According to the requirements of the dri ...

  3. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: wangxiaog1982@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)

    2014-09-15

    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  4. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

    Science.gov (United States)

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-07-01

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production.

  5. Characterization of All Solid State Hydrogen Ion Selective Electrode Based on PVC-SR Hybrid Membranes

    Directory of Open Access Journals (Sweden)

    Yoon-Bo Shim

    2003-06-01

    Full Text Available Hydrogen ion selective membranes formulated with 3140 RTV silicone rubber (SR in PVC were studied to extend the life time of solid state ion sensors through improved membrane adhesion. All solid state hydrogen ion selective electrodes were prepared by incorporation of tridodecyl amine (TDDA as an ionophore, potassium tetrakis[3.5-bis(p-chlorophenylborate (KTpClPB as a lipophilic additive, bis(2-ethylhexyladipate (DOA as a plasticizer. Their linear dynamic range was pH 2.0-11.0 and showed the near Nernstian slope of 55.1±0.2 mV/pH (r=0.999. The ifluences from alkali and alkaline earth metal ions were studied for the response of the final ISE membrane composition. Impedance spectroscopic data showed that the resistance was increased by increasing SR content in PVC. Brewster Angle Microscopy (BAM image showed clear differences according to the SR compositions in PVC. Life time of the all solid state membrane electrode was extended to about 2 months by preparing the membrane with PVC and SR. The standard reference material from NIST (2181 HEPES Free acid and 2182 NaHEPESate was tested for the ISE and it gave good result.

  6. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  7. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Wang, L.; Wang, Dezhen

    2015-08-01

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering.

  8. Facile In Situ Fabrication of Nanostructured Graphene-CuO Hybrid with Hydrogen Sulfide Removal Capacity

    Institute of Scientific and Technical Information of China (English)

    Sunil P Lonkar; Vishnu V Pillai; Samuel Stephen; Ahmed Abdala; Vikas Mittal

    2016-01-01

    A simple and scalable synthetic approach for one-step synthesis of graphene–CuO (TRGC) nanocomposite by an in situ thermo-annealing method has been developed. Using graphene oxide (GO) and copper hydroxide as a precursors reagent, the reduction of GO and the uniform deposition of in situ formed CuO nanoparticles on graphene was simulta-neously achieved. The method employed no solvents, toxic-reducing agents, or organic modifiers. The resulting nanos-tructured hybrid exhibited improved H2S sorption capacity of 1.5 mmol H2S/g-sorbent (3 g S/100 g-sorbent). Due to its highly dispersed sub-20 nm CuO nanoparticles and large specific surface area, TRGC nanocomposite exhibits tremendous potential for energy and environment applications.

  9. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Chaofeng, E-mail: sang@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Sun, Jizhong [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Bonnin, Xavier [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, Villetaneuse 93430 (France); Wang, L. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-08-15

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering.

  10. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution.

    Science.gov (United States)

    Jin, Haiyan; Wang, Jing; Su, Diefeng; Wei, Zhongzhe; Pang, Zhenfeng; Wang, Yong

    2015-02-25

    Remarkable hydrogen evolution reaction (HER) or superior oxygen evolution reaction (OER) catalyst has been applied in water splitting, however, utilizing a bifunctional catalyst for simultaneously generating H2 and O2 is still a challenging issue, which is crucial for improving the overall efficiency of water electrolysis. Herein, inspired by the superiority of carbon conductivity, the propitious H atom binding energy of metallic cobalt, and better OER activity of cobalt oxide, we synthesized cobalt-cobalt oxide/N-doped carbon hybrids (CoOx@CN) composed of Co(0), CoO, Co3O4 applied to HER and OER by simple one-pot thermal treatment method. CoOx@CN exhibited a small onset potential of 85 mV, low charge-transfer resistance (41 Ω), and considerable stability for HER. Electrocatalytic experiments further indicated the better performance of CoOx@CN for HER can be attributed to the high conductivity of carbon, the synergistic effect of metallic cobalt and cobalt oxide, the stability of carbon-encapsulated Co nanoparticles, and the introduction of electron-rich nitrogen. In addition, when used as catalysts of OER, the CoOx@CN hybrids required 0.26 V overpotential for a current density of 10 mA cm(-2), which is comparable even superior to many other non-noble metal catalysts. More importantly, an alkaline electrolyzer that approached ∼20 mA cm(-2) at a voltage of 1.55 V was fabricated by applying CoOx@CN as cathode and anode electrocatalyst, which opened new possibilities for exploring overall water splitting catalysts.

  11. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    Science.gov (United States)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  12. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  13. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.

    Science.gov (United States)

    Wang, Jiu-Ju; Li, Zhi-Jun; Li, Xu-Bing; Fan, Xiang-Bing; Meng, Qing-Yuan; Yu, Shan; Li, Cheng-Bo; Li, Jia-Xin; Tung, Chen-Ho; Wu, Li-Zhu

    2014-05-01

    Natural photosynthesis offers the concept of storing sunlight in chemical form as hydrogen (H2), using biomass and water. Herein we describe a robust artificial photocatalyst, nickel-hybrid CdS quantum dots (Nih-CdS QDs) made in situ from nickel salts and CdS QDs stabilized by 3-mercaptopropionic acid, for visible-light-driven H2 evolution from glycerol and water. With visible light irradiation for 20 h, 403.2 μmol of H2 was obtained with a high H2 evolution rate of approximately 74.6 μmol h(-1)  mg(-1) and a high turnover number of 38 405 compared to MPA-CdS QDs (mercaptopropionic-acid-stabilized CdS quantum dots). Compared to CdTe QDs and CdSe QDs, the modified CdS QDs show the greatest affinity toward Ni(2+) ions and the highest activity for H2 evolution. X-ray photoelectron spectroscopy (XPS), inductively-coupled plasma atomic emission spectrometry (ICP-AES), and photophysical studies reveal the chemical nature of the Nih-CdS QDs. Electron paramagnetic resonance (EPR) and terephthalate fluorescence measurements clearly demonstrate water splitting to generate ⋅OH radicals. The detection of DMPO-H and DMPO-C radicals adduct in EPR also indicate that ⋅H radicals and ⋅C radicals are the active species in the catalytic cycle.

  14. Synthesis of a New Porphyrin-fluorescein Hybrid and its Supramolecular Self-assembly with Amino-porphyrinatomanganese(Ⅲ)by Hydrogen-bonding

    Institute of Scientific and Technical Information of China (English)

    Jia Zheng LU; Jin Wang HUANG; Li Fen FAN; Jie LIU; Ke Zhuan XU; Xian Li CHEN; Liang Nian JI

    2005-01-01

    A new porphyrin-fluorescein hybrid 2 (Fl-PPTPP) has been synthesized and characterized by UV-Vis, IR, 1H-NMR, ESI-MS and elemental analysis. The supramolecular self-assembly of Fl-PPTPP with amino-porphyrinatomanganese(Ⅲ) [Mn(Ⅲ) (p-APTPP)C1] by hydrogen-bonding was studied using fluorescence spectroscopic titration and ESI-MS.

  15. Facile Fabrication of 3D Layer-by-layer Graphene-gold Nanorod Hybrid Architecture for Hydrogen Peroxide Based Electrochemical Biosensor

    Science.gov (United States)

    2015-01-01

    Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor Chenming Xue...the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction Electrochemical biosensors are highly effective in...measurement techniques such as radioisotope tracing, NMR spectroscopy, and microfluorometry assay [12,25,18]. In recent years, electrochemical biosensors

  16. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.

    Science.gov (United States)

    Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T

    2009-01-01

    Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research.

  17. Hybrid simulations of solenoidal radio-frequency inductively coupled hydrogen discharges at low pressures

    Science.gov (United States)

    Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian

    2016-12-01

    In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.

  18. Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios

    Science.gov (United States)

    Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca

    2016-05-01

    The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.

  19. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Weiqiang Dong

    2016-09-01

    Full Text Available A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV/wind turbine (WT/battery (B/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP have been addressed for sizing HS-BH from a more comprehensive perspective, considering the basic demand of load, the profit from hydrogen, which is produced by HS-BH, and an effective energy storage strategy. An improved ant colony optimization (ACO algorithm has been presented to solve the sizing problem of HS-BH. Finally, a simulation experiment has been done to demonstrate the developed results, in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang, China.

  20. Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable

    Science.gov (United States)

    Kostyuk, V. V.; Blagov, E. V.; Antyukhov, I. V.; Firsov, V. P.; Vysotsky, V. S.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Svalov, G. G.; Rachuk, V. S.; Katorgin, B. I.

    2015-03-01

    In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50-60 MW of chemical power and ∼50-75 MW of electrical power, i.e. up to ∼135 MW in total.

  1. One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction

    Science.gov (United States)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao; Dong, Bin; Shang, Xiao; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2016-10-01

    A simple one-pot synthesis method has been used to fabricate novel Ni2P/MoS2 hybrid electrocatalysts for hydrogen evolution reaction (HER). Owing to the weak conductivity and layered structure of MoS2, Ni2P nanoparticles with excellent conductivity and activity have been doped into MoS2 for improving the electrocatalytic performances for HER. The structure and morphology of the as-prepared Ni2P/MoS2 hybrid nanostructures are characterized. XRD and XPS show the elemental composition and valence of Ni2P/MoS2. SEM and TEM confirm that the close interaction of the hybrid materials and good dispersion of Ni2P nanoparticles. The as-synthesized Ni2P/MoS2 hybrid electrocatalysts exhibit excellent activity with onset overpotential of 75 mV and Tafle slope of 76 mV dec-1, which are much better than that of pure MoS2. The enhanced stability of the as-prepared Ni2P/MoS2 for HER has also been observed. The improved performances for HER may be ascribed to the better conductivity and dispersion of MoS2 nanosheets in Ni2P/MoS2 hybrid electrocatalysts. The small size and good dispersion of Ni2P nanoparticles also contributed to the enhancement of HER activity. Compared with mechanically mixed MoS2 and Ni2P (Ni2P-MoS2), Ni2P/MoS2 hybrid materials demonstrate better electrochemical performances for HER, implying the existence of synergistic effect between Ni2P and MoS2 on HER activity.

  2. Enhanced hydrogen evolution rates at high pH with a colloidal cadmium sulphide–platinum hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Julian; Vaneski, Aleksandar; Susha, Andrei S.; Rogach, Andrey L., E-mail: andrey.rogach@cityu.edu.hk [Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong); Pesch, Georg R.; Yang Teoh, Wey [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2014-12-01

    We demonstrate enhanced hydrogen generation rates at high pH using colloidal cadmium sulphide nanorods decorated with Pt nanoparticles. We introduce a simplified procedure for the decoration and subsequent hydrogen generation, reducing both the number of working steps and the materials costs. Different Pt precursor concentrations were tested to reveal the optimal conditions for the efficient hydrogen evolution. A sharp increase in hydrogen evolution rates was measured at pH 13 and above, a condition at which the surface charge transfer was efficiently mediated by the formation of hydroxyl radicals and further consumption by the sacrificial triethanolamine hole scavenger.

  3. Enhanced hydrogen evolution rates at high pH with a colloidal cadmium sulphide–platinum hybrid system

    Directory of Open Access Journals (Sweden)

    Julian Schneider

    2014-12-01

    Full Text Available We demonstrate enhanced hydrogen generation rates at high pH using colloidal cadmium sulphide nanorods decorated with Pt nanoparticles. We introduce a simplified procedure for the decoration and subsequent hydrogen generation, reducing both the number of working steps and the materials costs. Different Pt precursor concentrations were tested to reveal the optimal conditions for the efficient hydrogen evolution. A sharp increase in hydrogen evolution rates was measured at pH 13 and above, a condition at which the surface charge transfer was efficiently mediated by the formation of hydroxyl radicals and further consumption by the sacrificial triethanolamine hole scavenger.

  4. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing.

    Science.gov (United States)

    Maji, Swarup Kumar; Sreejith, Sivaramapanicker; Mandal, Amal Kumar; Ma, Xing; Zhao, Yanli

    2014-08-27

    A new kind of two-dimensional (2-D) hybrid material (RGO-PMS@AuNPs), fabricated by the immobilization of ultrasmall gold nanoparticles (AuNPs, ∼3 nm) onto sandwich-like periodic mesopourous silica (PMS) coated reduced graphene oxide (RGO), was employed for both electrocatalytic application and cancer cell detection. The hybrid-based electrode sensor showed attractive electrochemical performance for sensitive and selective nonenzymatic detection of hydrogen peroxide (H2O2) in 0.1 M phosphate buffered saline, with wide linear detection range (0.5 μM to 50 mM), low detection limit (60 nM), and good sensitivity (39.2 μA mM(-1) cm(-2)), and without any interference by common interfering agents. In addition, the sensor exhibited a high capability for glucose sensing and H2O2 detection in human urine. More interestingly, the hybrid was found to be nontoxic, and the electrode sensor could sensitively detect a trace amount of H2O2 in a nanomolar level released from living tumor cells (HeLa and HepG2). Because the hybrid presents significant properties for the detection of bioactive species and certain cancerous cells by the synergistic effect from RGO, PMS, and AuNPs, it could be able to serve as a versatile platform for biosensing, bioanalysis, and biomedical applications.

  5. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    Science.gov (United States)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  6. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  7. Nanoporous gold on three-dimensional nickel foam: An efficient hybrid electrode for hydrogen peroxide electroreduction in acid media

    Science.gov (United States)

    Ke, Xi; Xu, Yantong; Yu, Changchun; Zhao, Jie; Cui, Guofeng; Higgins, Drew; Li, Qing; Wu, Gang

    2014-12-01

    A hybrid structure of nanoporous gold (NPG) on three-dimensional (3D) macroporous Ni foam has been synthesized by electrodeposition of Au-Sn alloy film followed by a facile chemical dealloying process under free corrosion conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to characterize the morphology and structure of the NPG/Ni foam hybrids. It is shown that the Ni foam skeletons are uniformly wrapped by the NPG film which is composed of bicontinuous nanostructures consisting of interconnected ligaments and nanopores. Electroreduction of H2O2 on the NPG/Ni foam hybrid electrode in acid media is investigated by linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy. It is found that such hierarchical porous electrode displays superior activity, durability and mass transport property for H2O2 electroreduction. These results demonstrate the potential of the NPG/Ni foam hybrid electrodes for the applications in fuel cell technology.

  8. Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor

    Directory of Open Access Journals (Sweden)

    Chenming Xue

    2015-03-01

    Full Text Available Three-dimensional (3D layer-by-layer graphene-gold nanorod (GNR architecture has been constructed. The resulting hybrid nanomaterials’ architecture has been tested for detecting hydrogen peroxide (H2O2 through the electrocatalytic reaction on a three electrode disposable biosensor platform. Cyclic voltammetry and amperometry were used to characterize and assess the performance of the biosensor. The 3D layer-by-layer modified electrode exhibited the highest sensitivity compared to the active carbon, graphene-oxide, cysteine-graphene oxide and GNR coated electrodes. This research explored the feasibility of using the 3D hybrid graphene-GNR as a template for biosensor. The 3D hybrid structure exhibited higher sensitivity than GNRs alone. SEM showed the explanation that GNRs had self-aggregates reducing the contact surface area when coated on the active carbon electrode, while there were no such aggregates in the 3D structure, and TEM illustrated that GNRs dispersed well in the 3D structure. This research demonstrated a better way to prepare well-separated metal nanoparticles by using the 3D layer-by-layer structure. Consequently, other single and bi-metallic metal nanoparticles could be incorporated into such structure. As a practical example, 3D layer-by-layer nanomaterials modified active carbon electrode was used for detecting glucose showing very good sensitivity and minimum interference by ascorbic acid and uric acid in test solution, which indicated a good selectivity of the biosensor as well.

  9. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor.

    Science.gov (United States)

    Zagrodnik, R; Łaniecki, M

    2017-01-01

    Hydrogen production from starch by a co-culture hybrid dark and photofermentation under repeated fed-batch conditions at different organic loading rates (OLR) was studied. Effective cooperation between bacteria in co-culture during initial days was observed at controlled pH 7.0. However, at pH above 6.5 dark fermentation phase was redirected from H2 formation towards production of formic acid, lactic acid and ethanol (which are not coupled with hydrogen production) with simultaneous lower starch removal efficiency. This resulted in decrease in the hydrogen production rate. The highest H2 production in co-culture process (3.23LH2/Lmedium - after 11days) was achieved at OLR of 1.5gstarch/L/day, and it was twofold higher than for dark fermentation process (1.59LH2/Lmedium). The highest H2 yield in the co-culture (2.62molH2/molhexose) was obtained at the OLR of 0.375gstarch/L/day. Different pH requirements of bacteria were proven to be a key limitation in co-culture system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modeling, Control, and Simulation of a Solar Hydrogen/Fuel Cell Hybrid Energy System for Grid-Connected Applications

    Directory of Open Access Journals (Sweden)

    Tourkia Lajnef

    2013-01-01

    Full Text Available Different energy sources and converters need to be integrated with each other for extended usage of alternative energy, in order to meet sustained load demands during various weather conditions. The objective of this paper is to associate photovoltaic generators, fuel cells, and electrolysers. Here, to sustain the power demand and solve the energy storage problem, electrical energy can be stored in the form of hydrogen. By using an electrolyser, hydrogen can be generated and stored for future use. The hydrogen produced by the electrolyser using PV power is used in the FC system and acts as an energy buffer. Thus, the effects of reduction and even the absence of the available power from the PV system can be easily tackled. Modeling and simulations are performed using MATLAB/Simulink and SimPowerSystems packages and results are presented to verify the effectiveness of the proposed system.

  11. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I.

    Science.gov (United States)

    Ihara, Masaki; Nishihara, Hirofumi; Yoon, Ki-Seok; Lenz, Oliver; Friedrich, Bärbel; Nakamoto, Hitoshi; Kojima, Kouji; Honma, Daisuke; Kamachi, Toshiaki; Okura, Ichiro

    2006-01-01

    In order to generate renewable and clean fuels, increasing efforts are focused on the exploitation of photosynthetic microorganisms for the production of molecular hydrogen from water and light. In this study we engineered a 'hard-wired' protein complex consisting of a hydrogenase and photosystem I (hydrogenase-PSI complex) as a direct light-to-hydrogen conversion system. The key component was an artificial fusion protein composed of the membrane-bound [NiFe] hydrogenase from the beta-proteobacterium Ralstonia eutropha H16 and the peripheral PSI subunit PsaE of the cyanobacterium Thermosynechococcus elongatus. The resulting hydrogenase-PsaE fusion protein associated with PsaE-free PSI spontaneously, thereby forming a hydrogenase-PSI complex as confirmed by sucrose-gradient ultracentrifuge and immunoblot analysis. The hydrogenase-PSI complex displayed light-driven hydrogen production at a rate of 0.58 mumol H(2).mg chlorophyll(-1).h(-1). The complex maintained its accessibility to the native electron acceptor ferredoxin. This study provides the first example of a light-driven enzymatic reaction by an artificial complex between a redox enzyme and photosystem I and represents an important step on the way to design a photosynthetic organism that efficiently converts solar energy and water into hydrogen.

  12. Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution

    Science.gov (United States)

    Pi, Mingyu; Wu, Tianli; Guo, Weimeng; Wang, Xiaodeng; Zhang, Dingke; Wang, Shuxia; Chen, Shijian

    2017-05-01

    The design and development of high-efficiency and non-noble-metal hydrogen evolution reaction (HER) electrocatalysts for future clean and renewable energy system has excited significant research interests over the recent years. In this communication, the polymorphic tungsten diphosphide (p-WP2) nanoparticles with mixed monoclinic (α-) and orthorhombic (β-) phases are synthesized by phase-controlled phosphidation route via vacuum capsulation and explored as a novel efficient electrocatalyst towards HER. The p-WP2 catalyst delivers superior performance with excellent stability under both acidic and alkaline conditions over its single phases of α-WP2 and β-WP2. This finding demonstrates that a highly efficient hybrid electrocatalyst can be achieved via precise composition controlling and may open up exciting opportunities for their practical applications toward energy conversion.

  13. In situ plasma sputtering synthesis of ZnO nanorods-Ag nanoparticles hybrids and their application in non-enzymatic hydrogen peroxide sensing.

    Science.gov (United States)

    Zhang, Dan; Zhang, Yuxia; Yang, Chi; Ge, Cunwang; Wang, Yuanhong; Wang, Hao; Liu, Hongying

    2015-08-21

    In this paper, ZnO nanorods-Ag nanoparticles hybrids were first synthesized via a facile, rapid, and in situ plasma sputtering method without using any silver precursor. The obtained materials were then characterized by scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and cyclic voltammetry. Based on the electrochemical catalytic properties of the obtained nanohybrids, a non-enzymatic hydrogen peroxide biosensor was constructed by immobilizing the obtained ZnO nanorods-Ag nanoparticles hybrids on the surface of a glassy carbon electrode. Under optimal conditions, the resulting biosensor displayed a good response for H2O2 with a linear range of 0.2 to 12.8 mM, and a detection limit of 7.8 μM at a signal-to-noise ratio of 3. In addition, it exhibited excellent anti-interference ability and fast response. The current work provides a feasible platform to fabricate a variety of non-enzymatic biosensors.

  14. In situ plasma sputtering synthesis of ZnO nanorods-Ag nanoparticles hybrids and their application in non-enzymatic hydrogen peroxide sensing

    Science.gov (United States)

    Zhang, Dan; Zhang, Yuxia; Yang, Chi; Ge, Cunwang; Wang, Yuanhong; Wang, Hao; Liu, Hongying

    2015-08-01

    In this paper, ZnO nanorods-Ag nanoparticles hybrids were first synthesized via a facile, rapid, and in situ plasma sputtering method without using any silver precursor. The obtained materials were then characterized by scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and cyclic voltammetry. Based on the electrochemical catalytic properties of the obtained nanohybrids, a non-enzymatic hydrogen peroxide biosensor was constructed by immobilizing the obtained ZnO nanorods-Ag nanoparticles hybrids on the surface of a glassy carbon electrode. Under optimal conditions, the resulting biosensor displayed a good response for H2O2 with a linear range of 0.2 to 12.8 mM, and a detection limit of 7.8 μM at a signal-to-noise ratio of 3. In addition, it exhibited excellent anti-interference ability and fast response. The current work provides a feasible platform to fabricate a variety of non-enzymatic biosensors.

  15. Hybrid SnO2/TiO2 Nanocomposites for Selective Detection of Ultra-Low Hydrogen Sulfide Concentrations in Complex Backgrounds

    Directory of Open Access Journals (Sweden)

    Alexander Larin

    2016-08-01

    Full Text Available In this paper, we present a chemiresistive metal oxide (MOX sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM, X-ray diffraction technique (XRD, atomic force microscopy (AFM, Energy Dispersive X-ray Spectroscopy (EDAX, UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested.

  16. Using flowerlike polymer-copper nanostructure composite and novel organic-inorganic hybrid material to construct an amperometric biosensor for hydrogen peroxide.

    Science.gov (United States)

    Wang, Jinfen; Yuan, Ruo; Chai, Yaqin; Li, Wenjuan; Fu, Ping; Min, Ligen

    2010-02-01

    A new type of amperometric hydrogen peroxide biosensor was fabricated by entrapping horseradish peroxidase (HRP) in the organic-inorganic hybrid material composed of zirconia-chitosan sol-gel and Au nanoparticles (ZrO2-CS-AuNPs). The sensitivity of the biosensor was enhanced by a flowerlike polymer-copper nanostructure composite (pPA-FCu) which was prepared from co-electrodeposition of CuSO4 solution and 2,6-pyridinediamine solution. Several techniques, including UV-vis absorption spectroscopy, scanning electron microscopy, cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were employed to characterize the assembly process and performance of the biosensor. The results showed that this pPA-FCu nanostructure not only had excellent redox electrochemical activity, but also had good catalytic efficiency for hydrogen peroxide. Also the ZrO2-CS-AuNPs had good film forming ability, high stability and good retention of bioactivity of the immobilized enzyme. The resulting biosensors showed a linear range from 7.80 x 10(-7) to 3.7 x 10(-3) mol L(-1), with a detection limit of 3.2 x 10(-7) mol L(-1) (S/N=3) under optimized experimental conditions. The apparent Michaelis-Menten constant was determined to be 0.32 mM, showing good affinity. In addition, the biosensor which exhibits good analytical performance, acceptable stability and good selectivity, has potential for practical applications.

  17. A Novel Hybrid Reformer-Electrolyzer-Purifier (REP) for Distributed Production of Low-Cost, Low Greenhouse Gas Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, Fred C. [FuelCell Energy, Inc.

    2017-03-28

    FuelCell Energy with support from the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) has investigated the production of low-cost, low CO2 hydrogen using a molten carbonate fuel cell operating as an electrolyzer. We confirmed the feasibility of the technology by testing a large-scale short stack. Economic analysis was done with the assistance of the National Fuel Cell Center at the University of California, Irvine and we found the technology to be attractive, especially for distributed hydrogen. We explored the performance under various operating parameters and developed an accurate model for further analysis and development calculations. We achieved the expected results, meeting all program goals. We identified additional uses of the technology such as for CO2 capture, power storage, and power load leveling.

  18. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    Science.gov (United States)

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  19. Hydrogen Delivery Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  20. Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption.

    Science.gov (United States)

    Lim, Dae-Woon; Yoon, Ji Woong; Ryu, Keun Yong; Suh, Myunghyun Paik

    2012-09-24

    Hexagonal-disk-shaped magnesium nanocrystals (MgNCs) are fabricated within a porous metal-organic framework (MOF, see picture). The MgNCs@MOF stores hydrogen by both physi- and chemisorptions, exhibiting synergistic effects to decrease the isosteric heat of H(2) physisorption compared with that of pristine MOF, and decrease the H(2) chemisorption/desorption temperatures by 200 K compared with those of bare Mg powder. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electron energy distribution functions and negative ion concentrations in tandem and hybrid multicusp negative hydrogen ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, M.B. (Dublin City Univ. (Ireland). Dept. of Physics); Bacal, M. (Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises); Graham, W.G. (Queen' s Univ., Belfast, Northern Ireland (UK). School of Mathematics and Physics)

    1991-03-14

    The second derivative of a Langmuir probe characteristic is used to establish the electron energy distribution function (EEDF) in both a tandem and hybrid multicusp H{sup -} ion source. Moveable probes are used to establish the spatial variation of the EEDF. The negative ion density is measured by laser induced photo-detachment. In the case of the hybrid source the EEDF consists of a cold Maxwellian in the central region of the source; the electron temperature increases with increasing discharge current (rising from 0.3 eV at 1 A to 1.2 eV at 50 A when the pressure is 0.4 Pa). A hot electron tail exists in the EEDF of the driver region adjacent to each filament which is shown to consist of a distinct group of primary electrons at low pressure (0.08 Pa) but becomes degraded mainly through inelastic collisions at higher pressures (0.27 Pa). The tandem source, on the other hand, has a single driver region which extends throughout the central region. The primary electron confinement times are much longer so that even at the lowest pressure considered (0.07 Pa) the primaries are degraded. In both cases the measured EEDF at specific locations and values of discharge operating parameters are used to establish the rate coefficients for the processes of importance in H{sup -} production and destruction. (author).

  2. Highly Chemiluminescent Graphene Oxide Hybrids Bifunctionalized by N-(Aminobutyl)-N-(Ethylisoluminol)/Horseradish Peroxidase and Sensitive Sensing of Hydrogen Peroxide.

    Science.gov (United States)

    Liu, Xiaoying; Han, Zhili; Li, Fang; Gao, Lingfeng; Liang, Gaolin; Cui, Hua

    2015-08-26

    N-aminobutyl-N-ethylisoluminol and horseradish peroxidase bifunctionalized graphene oxide hybrids (ABEI-GO@HRP) were prepared through a facile and green strategy for the first time. The hybrids exhibited excellent chemiluminescence (CL) activity over a wide range of pH from 6.1 to 13.0 when reacted with H2O2, whereas ABEI functionalized GO had no CL emission at neutral pH and showed more than 2 orders of magnitude lower CL intensity than ABEI-GO@HRP at pH 13.0. Such strong CL emission from ABEI-GO@HRP was probably due to that HRP and GO facilitated the formation of O2(•-), - CO4(•2-), HO(•), and π-C═C(•) in the CL reaction, and GO as a reaction interface promoted the electron transfer of the radical-involved reaction. By virtue of ABEI-GO@HRP as a platform, an ultrasensitive, selective, and reagentless CL sensor was developed for H2O2 detection. The CL sensor exhibited a detection limit of 47 fM at physiological pH, which was more than 2 orders of magnitude lower than previously reported methods. This work reveals that bifunctionalization of GO by ABEI and HRP leads to excellent CL feature and enzyme selectivity, which can be used as an ideal platform for developing novel analytical methods.

  3. Influence of annealing treatment on the microstructure and hydrogen storage performance of Ti{sub 1.02}Cr{sub 1.1}Mn{sub 0.3}Fe{sub 0.6} alloy for hybrid hydrogen storage application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Langxia [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, Lixin, E-mail: lxchen@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Xiao, Xuezhang; Xu, Chenchen; Sun, Jian; Li, Shouquan; Ge, Hongwei [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, Lijun [Institute of Energy Materials and Technology, General Research Institute for Non-ferrous Metals, Beijing 100088 (China)

    2015-07-05

    Highlights: • Annealing reduces the hydrogen absorption pressure and the desorption enthalpy. • Prolonging annealing time flattens the hydrogen desorption plateau of the alloy. • Prolonging annealing time enhances the hydrogen desorption plateau pressure. • Ti{sub 1.02}Cr{sub 1.1}Mn{sub 0.3}Fe{sub 0.6} annealed at 1123 K for 5 h shows the best overall performance. - Abstract: The as-cast Ti{sub 1.02}Cr{sub 1.1}Mn{sub 0.3}Fe{sub 0.6} alloy for hybrid hydrogen storage vessel application was annealed at different temperatures (873 K, 973 K, 1123 K, 1173 K) for 2 h, and annealed at 1123 K for different time (2, 5, 8 h) respectively, and their microstructure and hydrogen storage properties were investigated systematically. The results show that the as-cast alloy has a single C14 Laves phase, and all annealed alloys consist of a C14 Laves main phase and a secondary phase. After annealing at different temperatures for 2 h, the hydrogen absorption pressure at 298 K decreases, however, the maximum hydrogen storage capacity and desorption pressures at 318 K decrease slightly too. As the annealing time extends, the hydrogen absorption plateau pressure at 298 K and hydrogen desorption plateau pressure at 318 K increase, and the hydrogen desorption capacity increases first and then decreases, which reaches the highest desorption capacity of 1.721 wt.% at the annealing time of 5 h. Among the studied alloys, the alloy annealed at 1123 K for 5 h has the best overall properties for hybrid hydrogen storage application, its hydrogen absorption plateau at 298 K is 29.09 MPa, its hydrogen desorption plateau pressure at 318 K is 45.12 MPa, its hydrogen storage capacity is 1.721 wt.% and its dissociation enthalpy (ΔH{sub d}) is 17.78 kJ/mol H{sub 2}.

  4. Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-Fc nano-hybrids for the detection of hydrogen peroxide in living cells.

    Science.gov (United States)

    Bai, Zhihao; Li, Guiyin; Liang, Jingtao; Su, Jing; Zhang, Yue; Chen, Huaizhou; Huang, Yong; Sui, Weiguo; Zhao, Yongxiang

    2016-08-15

    A highly sensitive non-enzymatic electrochemical sensor based on platinum nanoparticles/reduced graphene oxide-chitosan-ferrocene carboxylic acid nano-hybrids (Pt NPs/RGO-CS-Fc biosensor) was developed for the measurement of hydrogen peroxide (H2O2). The RGO-CS-Fc nano-hybrids was prepared and characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectrometer and electrochemical impedance spectroscopy. Under optimal experimental conditions, the Pt NPs/RGO-CS-Fc biosensor showed outstanding catalytic activity toward H2O2 reduction. The current response of the biosensor presented a linear relationship with H2O2 concentration from 2.0×10(-8)M to 3.0×10(-6)M with a correlation coefficient of R(2)=0.9968 and with logarithm of H2O2 concentration from 6.0×10(-6)M to 1.0×10(-2)M with a correlation coefficient of R(2)=0.9887, the low detection limit of 20nM was obtained at the signal/noise (S/N) ratio of 3. Moreover, the Pt NPs/RGO-CS-Fc biosensor exhibited excellent anti-interference capability and reproducibility for the detection of H2O2. The biosensor was also successfully applied for the detection of H2O2 from living cells containing normal and cancer cells. All these results prove that the Pt NPs/RGO-CS-Fc biosensor has the potential application in clinical diagnostics to evaluate oxidative stress of different living cells.

  5. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds

    Science.gov (United States)

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-01

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg-1 by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high

  6. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.

    Science.gov (United States)

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-21

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg(-1) by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.

  7. Hybrid LCA of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances.

    Science.gov (United States)

    Nakamura, Shinichiro; Yamasue, Eiji

    2010-06-15

    In the current recycling system of end-of-life (EoL) appliances, which is based on shredding, alloying elements tend to end up in the scrap of base metals. The uncontrolled mixing of alloying elements contaminates secondary metals and calls for dilution with primary metals. Active disassembling fastener (ADF) is a design for disassembly (DfD) technology that is expected to solve this problem by significantly reducing the extent of mixing. This paper deals with a life cycle assessment (LCA) based on the waste input-output (WIO) model of an ADF developed using hydrogen storage alloys. Special attention is paid to the issue of dilution of mixed iron scrap using pig iron in an electric arc furnace (EAF). The results for Japanese electrical and electronic appliances indicate superiority of the recycling system based on the ADF over the current system in terms of reduced emissions of CO(2). The superiority of ADF was found to increase with an increase in the requirement for dilution of scrap.

  8. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Science.gov (United States)

    Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio

    2017-08-01

    A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  9. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    Science.gov (United States)

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2 /2 H(+) interconversion from pH 0 to 9, with catalytic preference for H2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm(-2) , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm(-2) , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Observation of the fully reconstructed $D^{0}\\overline{D}$$^{0}$ pair with long lifetimes in a high resolution hydrogen bubble chamber and the European Hybrid Spectrometer

    CERN Document Server

    AUTHOR|(CDS)2067425; Allison, W W M; Bagnaia, P; Touboul, M C; Baldo, B; Barone, L; Bartl, Walter; Bergier, A; Bettini, A; Bizzarri, R; Boratav, M; Borreani, G; Brooks, B; Bruyant, F; Castelli, Edoardo; Centro, Sandro; Checchia, P; Chliapnikov, P V; Ciapetti, G; Bertrand-Coremans, G H; Crennell, D J; Cresti, M; Crijns, F; De Giorgi, M; Dibon, Heinz; Di Capua, E; Dionisi, C; Dolbeau, J; Duboc, J; Dumarchez, J; Dykes, M; Etienne, F; Ferrando, A; Fisher, Colin M; Fisyak, Yu; Frühwirth, R; Gatignon, L; Gentile, S; Grard, F; Güsewell, D; Hartjes, F G; Hernández, J; Herquet, P; Hervé, A; Holmgren, S O; Hrubec, Josef; Hughes, P; Jacobs, D; Johansson, E K; Kesteman, J; Kistenev, E P; Kitamura, S; Kittel, E W; Kuhn, D; Kurtz, N; Ladrón de Guevara, P; Lecoq, P; Lemonne, J; Lesceux, J M; Leutz, H; Lipari, P; Loverre, P F; Lyons, L; Marchetto, F; Marin, J C; Markytan, Manfred; Marzano, F; Mazzucato, M; Menichetti, E; Michalon-Mentzer, M E; Michalon, A; Moa, T; Montanet, Lucien; Mulvey, J; Neuhofer, Günther; Nguyen, H; Nilsson, S; Paler, Kenneth; Pascoli, D; Peruzzo, L; Pilette, P; Piredda, G; Poljakov, B F; Poppleton, Alan; Rinaudo, G; Poropat, P; Porth, Paul; Powell, B; Regler, Meinhard; Reucroft, S; Robb, L; Rossi, P; Rubio, J; Sartori, G; Sessa, M I; Settles, Ronald; Stergiou, Athanase; Stopchenko, V A; Subramanian, A; Tavernier, Stefaan; Chikilev, O G; Toet, D Z; Touchard, A M; Troncon, C; Van Immerseel, M; Van de Walle, R T; Ventura, L; Voltolini, C; Wenninger, Horst; Wickens, J H; Willmott, C; Yiou, T P; Zanello, D; Zanello, L; Zholobov, G V; Zotto, P L; Zemerle, G

    1981-01-01

    In an experiment with a 360 GeV/c $\\pi^{-}$ beam at the CERN SPS using the high resolution hydrogen bubble chamber LEBC and the European Hybrid Spectrometer, an event has been observed of the type $\\pi^{-}p$ to $D^{0}D^{0}+8$ prongs. The fully reconstructed decay modes are $D^{0} \\rightarrow K^{-}\\pi^{+}\\pi^{0}\\pi^{0}$ and $D^{0} \\rightarrow K^{+}\\pi^{+}\\pi^{-}\\pi^{-}$, with all six charged tracks being detected in the spectrometer and all four photons from the $\\pi^{0}$ decays detected in the lead glass gamma detection system. The $D^{0}$ has momentum $119.0 \\pm 0.6$ GeV/c, $x_{F}=0.31$, length $4.1 \\pm 0.1$ mm and proper lifetime $(2.1 \\pm 0.1)\\times10^{-13}$s. The $D^{0}$ has momentum $78.5 \\pm 0.3$ GeV/c, $x_{F}=0.19$, length $7.5 \\pm 0.1$ mm and proper lifetime $(5.9 \\pm 0.1)\\times 10^{-13}$s.

  11. Water-soluble fluorescent conjugated polymer-enzyme hybrid system for the determination of both hydroquinone and hydrogen peroxide.

    Science.gov (United States)

    Huang, Hui; Xu, Min; Gao, Yuan; Wang, Guannan; Su, Xingguang

    2011-10-30

    In this paper, a sensitive and simple detecting system was developed for quantitative analysis of both hydroquinone (H(2)Q) and hydrogen peroxide (H(2)O(2)), based on the successful combination of horse radish peroxidase (HRP) and water-soluble conjugate fluorescence polymers PPESO(3). In the presence of HRP and H(2)O(2), H(2)Q could be oxidized to 1,4-benzoquinone (BQ), an intermediate, which plays the main role in the enhanced quenching of the photoluminescence (PL) intensity of PPESO(3). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of H(2)Q and H(2)O(2) in the range of 1.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.996) and 6.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.999), respectively. The detection limit for H(2)Q and H(2)O(2) was 5.0 × 10(-7)mol/L and 1.0 × 10(-6)mol/L, respectively. The present fluorescence quenching method was successfully applied for the determination of H(2)Q in the lake water, rainwater, tap-water and chemical plant wastewater samples. Compared with previous reports, the fluorescence quenching approach described in this work is simple and rapid with high sensitivity, which has a potential application for detecting various analytes which can be translated into quinone.

  12. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

    Science.gov (United States)

    Sun, Yimin; He, Kui; Zhang, Zefen; Zhou, Aijun; Duan, Hongwei

    2015-06-15

    In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages.

  13. The Conceptual Design of an Integrated Nuclearhydrogen Production Plant Using the Sulfur Cycle Water Decomposition System

    Science.gov (United States)

    Farbman, G. H.

    1976-01-01

    A hydrogen production plant was designed based on a hybrid electrolytic-thermochemical process for decomposing water. The sulfur cycle water decomposition system is driven by a very high temperature nuclear reactor that provides 1,283 K helium working gas. The plant is sized to approximately ten million standard cubic meters per day of electrolytically pure hydrogen and has an overall thermal efficiently of 45.2 percent. The economics of the plant were evaluated using ground rules which include a 1974 cost basis without escalation, financing structure and other economic factors. Taking into account capital, operation, maintenance and nuclear fuel cycle costs, the cost of product hydrogen was calculated at $5.96/std cu m for utility financing. These values are significantly lower than hydrogen costs from conventional water electrolysis plants and competitive with hydrogen from coal gasification plants.

  14. HySDeP: a computational platform for on-board hydrogen storage systems – hybrid high-pressure solid-state and gaseous storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2016-01-01

    A computational platform is developed in the Modelica® language within the DymolaTM environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...

  15. Microstructures and hydrogen storage properties of ZrFe{sub 2.05−x}V{sub x} (x = 0.05–0.20) alloys with high dissociation pressures for hybrid hydrogen storage vessel application

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lijun, E-mail: jlj@grinm.com [Institute of Energy Materials and Technology, General Research Institute for Non-ferrous Metals, Beijing 100088 (China); Tu, Youlong; Tu, Hailing [Institute of Energy Materials and Technology, General Research Institute for Non-ferrous Metals, Beijing 100088 (China); Chen, Liquan [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-04-05

    Highlights: • The substitution of V for Fe in ZrFe{sub 2.05−x}V{sub x} alloys is studied. • The C15 lattice parameters and unit cell volumes increase with the increase in x. • The capacity of hydrogen storage of alloys increases with the increase in x. • The hysteresis factor of alloys decreases with the increase in x. • The substitution of V for Fe improves the activation and kinetics of alloys. - Abstract: The microstructures and the hydrogen absorption/desorption properties of ZrFe{sub 2.05−x}V{sub x} (x = 0.05, 0.10, 0.15, 0.20) alloys have been studied by XRD, SEM/EDS, P-C isotherm and hydrogen absorption kinetics measurements. It is found that the C15 Laves phase is the dominant phase of the alloys and its lattice parameters and unit cell volumes increase with increase in the V substitution, but the C14 Laves minor phase appears when x is over 0.15. As the result, the capacity of hydrogen storage of the alloys increases and the hysteresis factor decreases with increase in the V concentration. The activation and hydrogen absorption kinetics of the alloys are also sufficiently improved by the substitution of V for Fe.

  16. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures.

    Science.gov (United States)

    Rico, Víctor J; Hueso, José L; Cotrino, José; Gallardo, Victoria; Sarmiento, Belén; Brey, Javier J; González-Elipe, Agustín R

    2009-11-07

    Dielectric Barrier Discharges (DBD) operated at atmospheric pressure and working at reduced temperatures (T < 115 degrees C) and a copper-manganese oxide catalyst are combined for the direct decomposition and the steam reforming of methanol (SRM) for hydrogen production and for the preferential oxidation of CO (CO-PROX).

  17. Research progress of power system for hydrogen-electric hybrid fuel cell vehicles%氢电混合燃料电池汽车动力系统研究进展

    Institute of Scientific and Technical Information of China (English)

    倪红军; 吕帅帅; 陈青青; 裴一

    2015-01-01

    Fuel cellhybrid vehicle (FCV) with zero emission and high efficiency is the ideal solution for sustainable mobility in the future. A new type of hydrogen fuel cells-lithium-ion battery hybrid power system was introduced; the energy efficiency factors as wel as improvement methods of fuel cellhybrid system were discussed. The research progress of hydrogen fuel cellvehicles power system at home and abroad was summarized.%零排放和高效率的燃料电池混合动力汽车是人类“可持续移动”的最理想解决方案。介绍了一种氢燃料电池-锂离子电池混合动力系统;讨论了车用燃料电池动力系统能源效率的影响因素及提高动力系统效率的途径,总结了氢燃料电池汽车动力系统的国内外研究进展。

  18. A Prototype Experiment to Study Charmed Particle Production and Decay using a Holographic High Resolution Hydrogen Chamber (HOLEBC) and the European Hybrid Spectrometer

    CERN Multimedia

    2002-01-01

    The high resolution Hydrogen bubble chamber LEBC has already been used in experiments at the SPS to detect particles with lifetime @$>$ 5.10|-|1|3s (NA13 & NA16). For this experiment, a new version of LEBC called HOLEBC, has been constructed. This chamber and the NA26 version of the spectrometer have been used with classical optics in the NA27 experiment. A significant improvement in resolution was achieved (@= 20 microns compared with @= 40@mm in LEBC) and hence a good sensitivity all (known) charmed particle decays. The development of holographic recording techniques with HOLEBC is in progress. The prototype NA26 experiment is designed to evaluate the feasibility of the high sensitivity, high resolution holographic hydrogen bubble chamber technique and evaluate various possible charm selective triggers using the information from the spectrometer.

  19. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  20. “活性污泥-生物膜”杂合ABR制氢系统的启动与运行%Start-up and operation of “sluge-micobial film” hybrid ABR used as hydrogen production system

    Institute of Scientific and Technical Information of China (English)

    郑阳; 王鲁宁; 张宝艺; 李永峰; 任南琪

    2016-01-01

    The new sluge-micobial film hybrid anaerobic baffled reactor (SMHABR) was obtained by the improvement of the original ABR with five compartments and effective volume of 43.2 L. The experimentation studied on the formation of ethanol type fermentation, the hydrogen production capacity and the COD removal capacity. The result of 180 days experiment showed that using brown sugar wastewater as raw material with hydraulic retention time of 12 h, temperature of 35℃±1℃, the system of ethanol type fermentation bacteria could be formatted in 35 days through increasing the influent COD in a phased operation mode. When the influent COD was about 3500 mg·L−1, the maximum hydrogen production was achieved with the total hydrogen production of 44.75 L·d−1. The hydrogen production of the second compartment was larger than that of the other compartments. When the influent COD was about 7100 mg·L−1, the maximum COD removal capacity was achieved with the average total COD removal rate of 49.33%. The maximum hydrogen production and the maximum COD removal rate did not appear at the same time. When the influent COD concentration was too high, the organic acid accumulation in the reactor was too much, resulting in the reactor pH down to 3. Low pH affected the hydrogen production efficiency of the system. Although ethanol fermentation was formed in the system, the hydrogen production capacity was low.%对 ABR 系统进行改良,建立新型的“活性污泥-生物膜”杂合厌氧折流板生物制氢反应器(SMHABR),研究其乙醇型发酵的形成及其产氢及COD处理能力。反应器分为5个格室,有效容积43.2 L,实验共进行180 d。系统以红糖废水为原料,在HRT为12 h,温度为(35±1)℃,通过分阶段提高进水COD的方式,可使ABR系统在35 d内培育驯化形成乙醇型发酵菌群体系。进水COD在约3500 mg·L−1时产氢量最大,总产氢量可达到44.75 L·d−1。进水COD浓度达到约7100 mg·L−1

  1. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe(2)S(2)] hydrogenase mimic as hydrogen evolution catalyst.

    Science.gov (United States)

    Wen, Fuyu; Wang, Xiuli; Huang, Lei; Ma, Guijun; Yang, Jinhui; Li, Can

    2012-05-01

    Photo opportunity: A highly efficient and stable hybrid artificial photosynthetic H(2) evolution system is assembled by using a semiconductor (ZnS) as light-harvester and an [Fe(2)S(2)] hydrogenase mimic ([(μ-SPh-4-NH(2) )(2) Fe(2) (CO)(6)]) as catalyst for H(2) evolution. Photocatalytic H(2) production is achieved with more than 2607 turnovers (based on [Fe(2)S(2)]) and an initial turnover frequency of 100 h(-1) through the efficient transfer of photogenerated electrons from ZnS to the [Fe(2)S(2)] complex.

  2. Can hydrogen win?: exploring scenarios for hydrogen fuelled vehicles

    OpenAIRE

    Muncaster, Katherine Aminta

    2008-01-01

    This study explored the conditions under which hydrogen might succeed in Canada’s transportation sector in a carbon-constrained world. Long-run simulations were created using CIMS, a hybrid energy-economy model that is technologically explicit, behaviourally realistic, and incorporates drivers of technological change. A hydrogen supply submodel was built to simulate economies of scale in infrastructure. Capital costs, technology performance, infrastructure, fuel prices, and other conditions w...

  3. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  4. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    . To accomplish tight binding of both proteins the PS1 subunit PsaE was genetically fused to the C-terminal end of the small subunit of MBH, i.e. close to the electron acceptor site of MBH. This fusion protein spontaneously assembled with the PsaE-deletion mutant of PS1. Crucial for a high hydrogen evolution rate of the system is an efficient electron transfer between both proteins. To allow this measurement, the PsaE-deletion mutant of PS1 was immobilized on a Ni-NTAterminated monolayer via a genetically introduced His-tag. The specificity of the assembly of fusion protein and deletion mutant was verified by SEIRAS. Surface plasmon resonance, gas chromatography and electrochemistry complemented this measurement and yielded the specific activity of the functional hybrid complex: 4500 mol H{sub 2} min{sup -1} mol{sup -1}. The investigated complex allowed hydrogen evolution at potentials up to 85 mV, i.e. hydrogen production at a lower energy level than on a platinum electrode. In addition, the hydrogen production rate was higher than for hydrogenase-modified electrodes without PS1. Beyond these specific results, the experimental setup can be used to quantify the hydrogen evolution rate on a molecular level for variable hydrogenases and hybrid complexes. This information will be used to choose the most efficient catalysts for introduction into the native system for in vivo hydrogen production. (orig.)

  5. Imaging Hydrogen Bond in Real Space

    CERN Document Server

    Chen, Xiu; Liu, Lacheng; Liu, Xiaoqing; Cai, Yingxing; Liu, Nianhua; Wang, Li

    2013-01-01

    Hydrogen bond is often assumed to be a purely electrostatic interaction between a electron-deficient hydrogen atom and a region of high electron density. Here, for the first time, we directly image hydrogen bond in real space by room-temperature scanning tunneling microscopy (STM) with the assistance of resonant tunneling effect in double barrier mode. STM observations demonstrate that the C=O:HO hydrogen bonds lifted several angstrom meters above metal surfaces appear shuttle-like features with a significant contrast along the direction connected the oxygen and hydrogen atoms of a single hydrogen bond. The off-center location of the summit and the variance of the appearance height for the hydrogen bond with scanning bias reveal that there are certain hybridizations between the electron orbitals of the involved oxygen and hydrogen atoms in the C=O:HO hydrogen bond.

  6. Universal Strategy to Fabricate a Two-Dimensional Layered Mesoporous Mo2C Electrocatalyst Hybridized on Graphene Sheets with High Activity and Durability for Hydrogen Generation.

    Science.gov (United States)

    Huo, Lili; Liu, Baocang; Zhang, Geng; Zhang, Jun

    2016-07-20

    A universal strategy was developed for fabrication of a highly active and durable precious-metal-free mesoporous Mo2C/graphene (m-Mo2C/G) electrocatalyst with a two-dimensional layered structural feature via a nanocasting method using glucose as a carbon source and an in-stiu assembled mesoporous KIT-6/graphene (KIT-6/G) as a template. The m-Mo2C/G catalyst exhibits high catalytic activity and excellent durability for hydrogen evolution reaction (HER) over a wide pH range, which displays a small onset potential of 8 mV, owerpotential (η10) for driving a cathodic current density of 10 mA·cm(-2) of 135 mV, a Tafel slope of 58 mV·dec(-1), and an exchange current density of 6.31 × 10(-2) mA·cm(-2) in acidic media and an onset potential of of 41 mV, η10 of 128 mV, Tafel slope of 56 mV·dec(-1), and an exchange current density of 4.09 × 10(-2) mA·cm(-2) in alkaline media, respectively. Furthermore, such an m-Mo2C/G electrocatalyst also gives about 100% Faradaic yield and shows excellent durability during 3000 cycles of a long-term test, and the catalytic current remains stable over 20 h at fixed overpotentials, making it a great potential application prospect for energy issues.

  7. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model.

    Science.gov (United States)

    Chattopadhyay, Mitali; Kodela, Ravinder; Olson, Kenneth R; Kashfi, Khosrow

    2012-03-16

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are prototypical anti-cancer agents. However, their long-term use is associated with adverse gastrointestinal effects. Recognition that endogenous gaseous mediators, nitric oxide (NO) and hydrogen sulfide (H(2)S) can increase mucosal defense mechanisms has led to the development of NO- and H(2)S-releasing NSAIDs with increased safety profiles. Here we report on a new hybrid, NOSH-aspirin, which is an NO- and H(2)S-releasing agent. NOSH-aspirin inhibited HT-29 colon cancer growth with IC(50)s of 45.5 ± 2.5, 19.7 ± 3.3, and 7.7 ± 2.2 nM at 24, 48, and 72 h, respectively. This is the first NSAID based agent with such high degree of potency. NOSH-aspirin inhibited cell proliferation, induced apoptosis, and caused G(0)/G(1) cell cycle block. Reconstitution and structure-activity studies representing a fairly close approximation to the intact molecule showed that NOSH-aspirin was 9000-fold more potent than the sum of its parts towards growth inhibition. NOSH-aspirin inhibited ovine COX-1 more than ovine COX-2. NOSH-ASA treatment of mice bearing a human colon cancer xenograft caused a reduction in volume of 85%. Taken together, these results demonstrate that NOSH-aspirin has strong anti-cancer potential and merits further evaluation. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. sup 1 H NMR studies of a biosynthetic lacto-ganglio hybrid glycosphingolipid: Confirmation of structure, interpretation of anomalous' chemical shifts, and evidence for interresidue amide-amide hydrogen bonding

    Energy Technology Data Exchange (ETDEWEB)

    Levery, S.B.; Harris, D.D.; Hakomori, Senitiroh (Univ. of Washington, Seattle (United States)); Holmes, E.H. (Pacific Northwest Research Foundation, Seattle, WA (United States))

    1992-02-04

    Glycosphinogolipids bearing GlcNAc{beta}1 {yields} 3 and GalNAc{beta}1 {yields} 4 linked to {beta}-Gal of lactosylceramide first isolated from a murine myelogenous leukemia cell line have since been found as normal components of mullet roe and English sole liver. In order to clarify the biosynthetic pathways responsible for its occurrence both as a product of normal tissues and as a possible mammalian cancer-associated antigen, the lacto-ganglio hybrid core structure LcGg{sub 4}Cer was synthesized from Lc{sub 3}Cer using a GalNAc{beta}1 {yields} 4 transferase preparation from English sole liver. A preliminary characterization of the enzyme, which may be identical to the GalNAc T-1 responsible for synthesis of GM{sub 2} ganglioside, is presented. The enzymatically synthesized product was analyzed by 1- and 2-D {sup 1}H NMR spectroscopy, confirming its primary structure as GalNAc{beta}1 {yields} 4-(GlcNAc{beta}1 {yields} 3)Gal{beta}1 {yields} 4Glc{beta}1 {yields} 1Cer. An approximate three-dimensional structure for LcGg{sub 4}Cer is proposed, consistent with all data obtained, which should be useful in discussing the results of {sup 1}H NMR analysis of compounds containing this core tetrasaccharide. The structure is characterized by an unusual arrangement of terminal N-acetylhexosamine residues, resulting in a {pi}-H hydrogen-bonding interaction between their acetamido groups.

  9. Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  10. Hydrogen storage

    NARCIS (Netherlands)

    Peters, C.J.; Sloan, E.D.

    2005-01-01

    The invention relates to the storage of hydrogen. The invention relates especially to storing hydrogen in a clathrate hydrate. The clathrate hydrate according to the present invention originates from a composition, which comprises water and hydrogen, as well as a promotor compound. The promotor comp

  11. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Mitali; Kodela, Ravinder [Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY 10031 (United States); Olson, Kenneth R. [Department of Physiology, Indiana University School of Medicine, South Bend, IN 46617 (United States); Kashfi, Khosrow, E-mail: kashfi@med.cuny.edu [Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY 10031 (United States)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer NOSH-aspirin is the first dual acting NO and H{sub 2}S releasing hybrid. Black-Right-Pointing-Pointer Its IC{sub 50} for cell growth inhibition is in the low nano-molar range. Black-Right-Pointing-Pointer Structure-activity studies show that the sum of the parts does not equal the whole. Black-Right-Pointing-Pointer NOSH-aspirin reduced tumor growth by 85% in mice bearing a colon cancer xenograft. -- Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) are prototypical anti-cancer agents. However, their long-term use is associated with adverse gastrointestinal effects. Recognition that endogenous gaseous mediators, nitric oxide (NO) and hydrogen sulfide (H{sub 2}S) can increase mucosal defense mechanisms has led to the development of NO- and H{sub 2}S-releasing NSAIDs with increased safety profiles. Here we report on a new hybrid, NOSH-aspirin, which is an NO- and H{sub 2}S-releasing agent. NOSH-aspirin inhibited HT-29 colon cancer growth with IC{sub 50}s of 45.5 {+-} 2.5, 19.7 {+-} 3.3, and 7.7 {+-} 2.2 nM at 24, 48, and 72 h, respectively. This is the first NSAID based agent with such high degree of potency. NOSH-aspirin inhibited cell proliferation, induced apoptosis, and caused G{sub 0}/G{sub 1} cell cycle block. Reconstitution and structure-activity studies representing a fairly close approximation to the intact molecule showed that NOSH-aspirin was 9000-fold more potent than the sum of its parts towards growth inhibition. NOSH-aspirin inhibited ovine COX-1 more than ovine COX-2. NOSH-ASA treatment of mice bearing a human colon cancer xenograft caused a reduction in volume of 85%. Taken together, these results demonstrate that NOSH-aspirin has strong anti-cancer potential and merits further evaluation.

  12. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  13. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  14. NOSH-aspirin (NBS-1120), a novel nitric oxide and hydrogen sulfide releasing hybrid, attenuates neuroinflammation induced by microglial and astrocytic activation: a new candidate for treatment of neurodegenerative disorders.

    Science.gov (United States)

    Lee, Moonhee; McGeer, Edith; Kodela, Ravinder; Kashfi, Khosrow; McGeer, Patrick L

    2013-10-01

    Hydrogen sulfide (H2 S) and nitric oxide (NO) have been described as gasotransmitters. Anti-inflammatory activity in the central and peripheral nervous systems may be one of their functions. Previously we demonstrated that several SH(-) donors including H2 S-releasing aspirin (S-ASA) exhibited anti-inflammatory and neuroprotective activity in vitro against toxins released by activated microglia and astrocytes. Here we report that NOSH-ASA, an NO- and H2 S-releasing hybrid of aspirin, has a significantly greater anti-inflammatory and neuroprotective effect than S-ASA or NO-ASA. When activated by LPS/IFNγ, human microglia and THP-1 cells release materials that are toxic to differentiated SH-SY5Y cells. These phenomena also occur with IFNγ-stimulated human astroglia and U373 cells. When the cells were treated with the S-ASA or NO-ASA, there was a significant enhancement of neuroprotection. However, NOSH-ASA had significantly more potent protection properties than NO-ASA or S-ASA. The effect was concentration-dependent, as well as incubation time-dependent. Such treatment not only reduced the release of the TNFα and IL-6, but also attenuated activation of P38 MAPK and NFκB proteins. All the compounds tested were not harmful when applied directly to SH-SY5Y cells. These data suggest that NOSH-ASA has significant anti-inflammatory properties and may be a new candidate for treating neurodegenerative disorders that have a prominent neuroinflammatory component such as Alzheimer disease and Parkinson disease.

  15. Improved hybrid rocket fuel

    Science.gov (United States)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  16. Hydrogen Spectrum

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The series of absorption or emission lines that are characteristic of the hydrogen atom. According to the Bohr theory of the hydrogen atom, devised by Danish physicist Neils Bohr (1885-1962) in 1913, the hydrogen atom can be envisaged as consisting of a central nucleus (a proton) around which a single electron revolves. The electron is located in one of a number of possible permitted orbits, each...

  17. Hydrogen and OUr Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  18. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  19. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  20. Hydrogen carriers

    Science.gov (United States)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  1. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  2. Nanoporous metal organic framework materials for hydrogen storage

    Institute of Scientific and Technical Information of China (English)

    Bo Xiao; Qingchun Yuan

    2009-01-01

    Hydrogen is expected to play an important role in future transportation as a promising alternative clean energy source to carbon-based fuels.One of the key challenges to commercialize hydrogen energy is to develop appropriate onboard hydrogen storage systems,capable of charging and discharging large quantities of hydrogen with fast enough kinetics to meet commercial requirements.Metal organic framework (MOF) is a new type of inorganic and organic hybrid nanoporous particulate materials.Its diverse networks can enhance hydrogen storage through tuning the structure and property of MOFs.The MOF materials so far developed adsorb hydrogen through weak disperston interactions,which allow significant quantity of hydrogen to be stored at cryogenic temperatures with fast kinetics.Novel MOFs are being developed to strengthen the interactions between hydrogen and MOFs in order to store hydrogen under ambient conditions.This review surveys the development of such candidate materials,their performance and future research needs.

  3. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  4. Biomimetic Production of Hydrogen

    Science.gov (United States)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  5. Metallic Hydrogen

    Science.gov (United States)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  6. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  7. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  8. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  9. Hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

  10. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  11. Photoelectrochemical Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short

  12. Mechanical properties of hydrogenated electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Muniz, Andre R.; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2016-09-01

    We report a systematic analysis on the effects of hydrogenation on the mechanical behavior of irradiated single-layer graphene sheets, including irradiation-induced amorphous graphene, based on molecular-dynamics simulations of uniaxial tensile straining tests and using an experimentally validated model of electron-irradiated graphene. We find that hydrogenation has a significant effect on the tensile strength of the irradiated sheets only if it changes the hybridization of the hydrogenated carbon atoms to sp3, causing a reduction in the strength of irradiation-induced amorphous graphene by ˜10 GPa. Hydrogenation also causes a substantial decrease in the failure strain of the defective sheets, regardless of the hybridization of the hydrogenated carbon atoms, and in their fracture toughness, which decreases with increasing hydrogenation for a given irradiation dose. We characterize in detail the fracture mechanisms of the hydrogenated irradiated graphene sheets and elucidate the role of hydrogen and the extent of hydrogenation in the deformation and fracture processes. Our study sets the stage for designing hydrogenation and other chemical functionalization strategies toward tailoring the properties of defect-engineered ductile graphene.

  13. Energy Accumulation by Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Jiřina Čermáková

    2012-01-01

    Full Text Available Photovoltaic power plants as a renewable energy source have been receiving rapidly growing attention in the Czech Republic and in the other EU countries. This rapid development of photovoltaic sources is having a negative effect on the electricity power system control, because they depend on the weather conditions and provide a variable and unreliable supply of electric power. One way to reduce this effect is by accumulating electricity in hydrogen. The aim of this paper is to introduce hydrogen as a tool for regulating photovoltaic energy in island mode. A configuration has been designed for connecting households with the photovoltaic hybrid system, and a simulation model has been made in order to check the validity of this system. The simulation results provide energy flows and have been used for optimal sizing of real devices. An appropriate system can deliver energy in a stand-alone installation.

  14. Comparative costs and benefits of hydrogen vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  15. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties

    OpenAIRE

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-01-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6 h post-adm...

  16. Supramolecular hydrogen-bonding patterns in the organic-inorganic hybrid compound bis(4-amino-5-chloro-2,6-dimethylpyrimidinium) tetrathiocyanatozinc(II)-4-amino-5-chloro-2,6-dimethylpyrimidine-water (1/2/2).

    Science.gov (United States)

    Karthikeyan, Ammasai; Zeller, Matthias; Thomas Muthiah, Packianathan

    2016-04-01

    Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one-, two- and three-dimensional polymeric metal-thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate-aminopyrimidine organic-inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4-amino-5-chloro-2,6-dimethylpyrimidinium cation, a 4-amino-5-chloro-2,6-dimethylpyrimidine molecule and a water molecule. The Zn(II) atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The Zn(II) atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the Zn(II) atom, but are hydrogen bonded to the uncoordinated water molecules and the metal-coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base-pair-like structures with an R2(2)(8) ring motif via N-H...N hydrogen bonds. The crystal structure is further stabilized by intermolecular N-H...O, O-H...S, N-H...S and O-H...N hydrogen bonds, by intramolecular N-H...Cl and C-H...Cl hydrogen bonds, and also by π-π stacking interactions.

  17. Hydrogen storage and delivery system development: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Malinowski, M.E.; Wally, K. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  18. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  19. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available of hydrogen in metals processing and treatment identified, and mechanisms for hydrogen entry into a ferritic surface are discussed. The differences between hydrogen attack of ferritic steels and copper alloys are contrasted, and an unusual case study...

  20. Hydrogen heat treatment of hydrogen absorbing materials

    Science.gov (United States)

    Park, Choong-Nyeon

    2000-12-01

    This study introduces the hydrogen heat treatment of hydrogen absorbing materials and its applicability for practical use. This treatment is somewhat different from normal heat treatment because of the interaction between metal atoms and hydrogen. Since hydrogen can be removed very fast by pumping it out the hydrogen-induced new lattice phase which can not be obtained without hydrogen can be preserved in a meta-stable state. A thermodynamic interpretation of the hydrogen heat treatment established previously was reformulated for graphical and analytical methods and applied to Pd-Pt-H and Pd-Ag-H alloy systems and a fair correlation between the calculation and experimental results was shown. The feasibility of applying the thermodynamic interpretation to intermetallic compounds-hydrogen systems was also discussed.

  1. Tribology in Gaseous Hydrogen

    Science.gov (United States)

    Sawae, Yoshinori; Sugimura, Joich

    Hydrogen is expected as a clean and renewable energy carrier for future environment-friendly society. Many machine elements in hydrogen energy systems should be operating within hydrogen gas and tribological behavior, such as friction and wear, of bearings and seals are affected by the hydrogen environment through some interactions between material surfaces and gaseous hydrogen, i.e., physisorption of hydrogen molecules and following chemisorptions of dissociated atoms on metal surfaces, formation of metal hydride and reduction of metal oxide layer by hydrogen atoms diffused into bulk. Therefore, friction and wear characteristics of tribomaterials in the hydrogen environment should be appropriately understood to establish a design guideline for reliable hydrogen utilizing systems. This paper reviews the current knowledge about the effect of hydrogen on friction and wear of materials, and then describes our recent progress of hydrogen research in the tribology field.

  2. Development of the Hybrid Sulfur Thermochemical Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Summers, William A.; Steimke, John L

    2005-09-23

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  3. Hydrogen sulphide.

    Science.gov (United States)

    Guidotti, T L

    1996-10-01

    Hydrogen sulphide (H2S) is the primary chemical hazard in natural gas production in 'sour' gas fields. It is also a hazard in sewage treatment and manure-containment operations, construction in wetlands, pelt processing, certain types of pulp and paper production, and any situation in which organic material decays or inorganic sulphides exist under reducing conditions. H2S dissociates into free sulphide in the circulation. Sulphide binds to many macromolecules, among them cytochrome oxidase. Although this is undoubtedly an important mechanism of toxicity due to H2S, there may be others H2S provides little opportunity for escape at high concentrations because of the olfactory paralysis it causes, the steep exposure-response relationships, and the characteristically sudden loss of consciousness it can cause which is colloquially termed 'knockdown.' Other effects may include mucosal irritation, which is associated at lower concentrations with a keratoconjunctivitis called 'gas eye' and at higher concentrations with risk of pulmonary oedema. Chronic central nervous system sequelae may possibly follow repeated knockdowns: this is controversial and the primary effects of H2S may be confounded by anoxia or head trauma. Treatment is currently empirical, with a combination of nitrite and hyperbaric oxygen preferred. The treatment regimen is not ideal and carries some risk.

  4. A hydrogen ice cube

    NARCIS (Netherlands)

    Schrauwers, A.

    2004-01-01

    Hydrogen is considered to be a highly promising energy carrier. Nonetheless, before hydrogen can become the fuel of choice for the future a number of slight problems will have to be overcome. For example, how can hydrogen be safely stored? Motor vehicles running on hydrogen may be clean in concept

  5. A hydrogen ice cube

    NARCIS (Netherlands)

    Schrauwers, A.

    2004-01-01

    Hydrogen is considered to be a highly promising energy carrier. Nonetheless, before hydrogen can become the fuel of choice for the future a number of slight problems will have to be overcome. For example, how can hydrogen be safely stored? Motor vehicles running on hydrogen may be clean in concept b

  6. Photoelectrochemical Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short

  7. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  8. Performance evaluation of the hydrogen-powered prototype locomotive 'Hydrogen Pioneer'

    Science.gov (United States)

    Hoffrichter, Andreas; Fisher, Peter; Tutcher, Jonathan; Hillmansen, Stuart; Roberts, Clive

    2014-03-01

    The narrow-gauge locomotive 'Hydrogen Pioneer', which was developed and constructed at the University of Birmingham, was employed to establish the performance of a hydrogen-hybrid railway traction vehicle. To achieve this several empirical tests were conducted. The locomotive utilises hydrogen gas in a Proton Exchange Membrane Fuel Cell power-plant to supply electricity to the traction motors or charge the on-board lead-acid batteries. First, the resistance to motion of the vehicle was determined, then operating tests were conducted for the speeds 2 km h-1, 6 km h-1, 7 km h-1, and 10 km h-1 on a 30 m straight, level alignment resembling light running. The power-plant and vehicle efficiency as well as the performance of the hybrid system were recorded. The observed overall duty cycle efficiency of the power-plant was from 28% to 40% and peak-power demand, such as during acceleration, was provided by the battery-pack, while average power during the duty cycle was met by the fuel cell stack, as designed. The tests establish the proof-of-concept for a hydrogen-hybrid railway traction vehicle and the results indicate that the traction system can be applied to full-scale locomotives.

  9. Interactions of hydrogen with amorphous hafnium oxide

    Science.gov (United States)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  10. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  11. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  12. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  13. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...

  14. LaNi5-Assisted Hydrogenation of MgNi2 in the Hybrid Structures of La1.09Mg1.91Ni9D9.5 and La0.91Mg2.09Ni9D9.4

    Directory of Open Access Journals (Sweden)

    Roman V. Denys

    2015-04-01

    Full Text Available This work focused on the high pressure PCT and in situ neutron powder diffraction studies of the LaMg2Ni9-H2 (D2 system at pressures up to 1,000 bar. LaMg2Ni9 alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, La1.1Mg1.9Ni9 (sample 1 and La0.9Mg2.1Ni9 (sample 2. In situ neutron powder diffraction studies of the La1.09Mg1.91Ni9D9.5 (1 and La0.91Mg2.09Ni9D9.4 (2 deuterides were performed at 25 bar D2 (1 and 918 bar D2 (2. The hydrogenation properties of the (1 and (2 are dramatically different from those for LaNi3. The Mg-containing intermetallics reversibly form hydrides with DHdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9. A pronounced hysteresis of H2 absorption and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the La1.09Mg1.91Ni9D9.5 (1 and La0.91Mg2.09Ni9D9.4 (2 (a = 5.263/5.212; c = 25.803/25.71 Å D atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and [La(Mg2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra.

  15. Power from space and the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Philip K. [Transformational Space Corp., Reston, VA (United States); Haynes, William E.

    2005-10-15

    Recent discoveries of methane hydrates under the Arctic permafrost and on continental shelves have revealed an immense energy resource. This has two major implications for the Solar Power Satellite (SPS). First, the SPS will not be built unless it can produce electricity at a price competitive with that generated using methane from hydrates (perhaps with sequestration of carbon dioxide). Second, steam reformation of methane is much cheaper than water electrolysis as a source of hydrogen, so there is little role for the SPS (or any other electric power technology) in the proposed hydrogen economy. On the other hand, an economy based on methane-electric hybrid vehicles offers advantages quite comparable to the hydrogen economy, without its technical problems and immense capital requirements. The methane economy also offers a transitional path to increasing direct use of electricity in transportation, a development that could create a major market for the SPS. (Author)

  16. Electronic and Mechanical Properties of Hydrogenated Irradiated and Amorphous Graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    Defect engineering and chemical functionalization of graphene are promising routes for fabrication of carbon nanostructures and 2D metamaterials with unique properties and function. Here, we use hydrogenation of irradiated, including irradiation-induced amorphous, graphene as a means of studying chemical functionalization effects on its electronic structure and mechanical response. We use molecular-dynamics simulations based on a reliable bond-order potential to prepare the hydrogenated configurations and carry out dynamic deformation tests at constant strain rate and temperature. Our mechanical tests show that hydrogenation does not affect the ultimate tensile strength (UTS) of the irradiated graphene sheet if the hydrogenated C atoms remain sp2-hybridized; however, upon inducing sp3 hybridization of these C atoms, UTS decreases by about 10 GPa. Furthermore, the fracture strain of the irradiated structure decreases by up to 30% upon hydrogenation independent of the hybridization type. We also report results for the electronic structure of hydrogenated configurations based on a density-functional tight-binding approach and assess the potential for tuning the electronic properties of these defective, functionalized graphenes.

  17. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  18. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  19. Concentration of Hydrogen Peroxide

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  20. Hydrogen in semiconductors

    CERN Document Server

    Pankove, Jacques I

    1991-01-01

    Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed cove

  1. Manitoba's continuing drive to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, R.V.; Crone, J. [Government of Manitoba, Winnipeg, MB (Canada). Manitoba Energy Development Initiative, Dept. of Science, Technology, Energy and Mines

    2007-07-01

    In 2001, the Government of Manitoba initiated a strategy to pursue hydrogen as a longer-term option within its portfolio of renewable energy opportunities. A key potential hydrogen application includes all-electric vehicles; metal air cells; and biofuels. A detailed hydrogen economic development strategy was formulated for the province as a whole. In 2003, Manitoba's Hydrogen Steering Committee released the first strategy document on hydrogen prepared by any jurisdiction in Canada. The report outlined an assessment framework using broad-based working groups to cover 5 lead areas. The report listed 5 priority actions on hydrogen, to which a sixth priority action has now been added. These include hydrogen buses and refueling; a by-product hydrogen fuel cell demonstration project; the creation of the Hydrogen Centre of Expertise Inc.; an on-site hydrogen system at Manitoba Hydro's Dorsey Station; a memorandum of understanding on hydrogen development with Iceland; and, a permanent refueling station and associated support facilities. These priority actions were undertaken to help define future directions and to gain experience in opportunity areas. Since the report's release, substantial progress has been made on all 6 priority actions. Two major hydrogen bus and refueling demonstration projects have been completed, with the most recent involving the hybrid fuel cell bus. Manitoba currently has 2 major sodium chlorate plants producing significant quantities of hydrogen as a by-product. This paper provided an update on the strategic approach taken by Manitoba and discussed how hydrogen can be integrated with other renewable energy priorities. 10 refs., 1 tab., 10 figs.

  2. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  3. Continuity Controlled Hybrid Automata

    OpenAIRE

    Bergstra, J. A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...

  4. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    Ranber Singh; S Prakash

    2003-07-01

    The problem of hydrogen diffusion in hydrogenated amorphous silicon (a-Si:H) is studied semiclassically. It is found that the local hydrogen concentration fluctuations-induced extra potential wells, if intense enough, lead to the localized electronic states in a-Si:H. These localized states are metastable. The trapping of electrons and holes in these states leads to the electrical degradation of the material. These states also act as recombination centers for photo-generated carriers (electrons and holes) which in turn may excite a hydrogen atom from a nearby Si–H bond and breaks the weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds.

  5. Hydrogen transport membranes

    Science.gov (United States)

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  6. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  7. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  8. Hybridized tetraquarks

    Directory of Open Access Journals (Sweden)

    A. Esposito

    2016-07-01

    Full Text Available We propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X,Z particles. Considerations on a state with the same quantum numbers as the X(5568 are also made.

  9. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  10. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  11. Economic comparison of hydrogen production using sulfuric acid electrolysis and sulfur cycle water decomposition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farbman, G.H.; Krasicki, B.R.; Hardman, C.C.; Lin, S.S.; Parker, G.H.

    1978-06-01

    An evaluation of the relative economics of hydrogen production using two advanced techniques was performed. The hydrogen production systems considered were the Westinghouse Sulfur Cycle Water Decomposition System and a water electrolysis system employing a sulfuric acid electrolyte. The former is a hybrid system in which hydrogen is produced in an electrolyzer which uses sulfur dioxide to depolarize the anode. The electrolyte is sulfuric acid. Development and demonstration efforts have shown that extremely low cell voltages can be achieved. The second system uses a similar sulfuric acid electrolyte technology in water electrolysis cells. The comparative technoeconomics of hydrogen produced by the hybrid Sulfur Cycle and by water electrolysis using a sulfuric acid electrolyte were determined by assessing the performance and economics of 380 million SCFD plants, each energized by a very high temperature nuclear reactor (VHTR). The evaluation concluded that the overall efficiencies of hydrogen production, for operating parameters that appear reasonable for both systems, are approximately 41% for the sulfuric acid electrolysis and 47% for the hybrid Sulfur Cycle. The economic evaluation of hydrogen production, based on a 1976 cost basis and assuming a developed technology for both hydrogen production systems and the VHTRs, indicated that the hybrid Sulfur Cycle could generate hydrogen for a total cost approximately 6 to 7% less than the cost from the sulfuric acid electrolysis plant.

  12. Development of functional metal-organic frameworks (MOFs) for storing hydrogen in para form

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2016-12-01

    Full Text Available In this work, enrichment of para-hydrogen is performed by flowing ultra-purity hydrogen gas at low temperature (77K) in the presence of a developed catalyst anchored in a MOF hybrid material. This approach fits within the bigger scope...

  13. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...

  14. Biological hydrogen photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Y. [Univ. of Miami, FL (United States)

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  15. Sensitive hydrogen leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  16. Battery-operated, argon-hydrogen microplasma on hybrid, postage stamp-sized plastic-quartz chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer.

    Science.gov (United States)

    Weagant, Scott; Chen, Vivian; Karanassios, Vassili

    2011-11-01

    A battery-operated, atmospheric pressure, self-igniting, planar geometry Ar-H(2) microplasma for elemental analysis of liquid microsamples is described. The inexpensive microplasma device (MPD) fabricated for this work was a hybrid plastic-quartz structure that was formed on chips with an area (roughly) equal to that of a small-sized postage stamp (MPD footprint, 12.5-mm width by 38-mm length). Plastic substrates were chosen due to their low cost, for rapid prototyping purposes, and for a speedy microplasma device evaluation. To enhance portability, the microplasma was operated from an 18-V rechargeable battery. To facilitate portability even further, it was demonstrated that the battery can be recharged by a portable solar panel. The battery-supplied dc voltage was converted to a high-voltage ac. The ~750-μm (diameter) and 12-mm (long) Ar-H(2) (3% H(2)) microplasma was formed by applying the high-voltage ac between two needle electrodes. Spectral interference from the electrode materials or from the plastic substrate was not observed. Operating conditions were found to be key to igniting and sustaining a microplasma that was simply "warm" to the touch (thus alleviating the need for cooling or other thermal management) and that had a stable background emission. A small-sized (900 μL internal volume) electrothermal vaporization system (40-W max power) was used for microsample introduction. Microplasma background emission in the spectral region between 200 and 850 nm obtained using a portable fiber-optic spectrometer is reported and the effect of the operating conditions is described. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. The majority of spectral lines observed for the elements tested were from neutral atoms. The relative lack of emission from ion lines simplified the spectra, thus facilitating the use of a portable spectrometer. Despite the relative spectral

  17. Neurotoxic injury pathways in differentiated mouse motor neuron–neuroblastoma hybrid (NSC-34D) cells in vitro—Limited effect of riluzole on thapsigargin, but not staurosporine, hydrogen peroxide and homocysteine neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hemendinger, Richelle A., E-mail: richelle.hemendinger@carolinashealthcare.org [ALS Translational Neuroscience Laboratory, Carolinas Medical Center, Charlotte, NC 28203 (United States); Carolinas Neuromuscular/ALS-MDA Center, Department of Neurology, Carolinas Medical Center, Charlotte, NC 28203 (United States); Armstrong, Edward J. [ALS Translational Neuroscience Laboratory, Carolinas Medical Center, Charlotte, NC 28203 (United States); Carolinas Neuromuscular/ALS-MDA Center, Department of Neurology, Carolinas Medical Center, Charlotte, NC 28203 (United States); Radio, Nick [ThermoScientific, Pittsburgh, PA (United States); Brooks, Benjamin Rix [ALS Translational Neuroscience Laboratory, Carolinas Medical Center, Charlotte, NC 28203 (United States); Carolinas Neuromuscular/ALS-MDA Center, Department of Neurology, Carolinas Medical Center, Charlotte, NC 28203 (United States); University of North Carolina School of Medicine-Charlotte Campus (United States)

    2012-01-15

    The neuroblastoma–spinal motor neuron fusion cell line, NSC-34, in its differentiated form, NSC-34D, permits examining the effects of riluzole, a proven treatment for amyotrophic lateral sclerosis (ALS) on cell death induction by staurosporine (STS), thapsigargin (Thaps), hydrogen peroxide (H{sub 2}O{sub 2}) and homocysteine (HCy). These neurotoxins, applied exogenously, have mechanisms of action related to the various proposed molecular pathogenetic pathways in ALS and are differentiated from endogenous cell death that is associated with cytoplasmic aggregate formation in motor neurons. Nuclear morphology, caspase-3/7 activation and high content imaging were used to assess toxicity of these neurotoxins with and without co-treatment with riluzole, a benzothiazole compound with multiple pharmacological actions. STS was the most potent neurotoxin at killing NSC-34D cells with a toxic concentration at which 50% of maximal cell death is achieved (TC{sub 50} = 0.01 μM), followed by Thaps (TC{sub 50} = 0.9 μM) and H{sub 2}O{sub 2} (TC{sub 50} = 15 μM) with HCy requiring higher concentrations to kill at the same level (TC{sub 50} = 2200 μM). Riluzole provided neurorescue with a 20% absolute reduction (47.6% relative reduction) in apoptotic cell death against Thaps-induced NSC-34D cell (p ≤ 0.05), but had no effect on STS-, H{sub 2}O{sub 2}- and HCy-induced NSC-34D cell death. This effect of riluzole on Thaps induction of cell death was independent of caspase-3/7 activation. Riluzole mitigated a toxin that can cause intracellular calcium dysregulation associated with endoplasmic reticulum (ER) stress but not toxins associated with other cell death mechanisms. -- Highlights: ► Calcium-dependent neurotoxins are potent cell death inducers in NSC-34D cells. ► Riluzole provides neurorescue against Thaps-induced NSC-34D cell death. ► Riluzole had no effect on neurotoxicity by STS, H{sub 2}O{sub 2} and Hcy. ► Riluzole reduces NSC-34D cell death independent of

  18. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties.

    Science.gov (United States)

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-12-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6h post-administration, number/size of hemorrhagic lesions in stomachs were counted. Tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Anti-cancer: We examined the effects of NOSH-sulindac on the growth properties of 12 human cancer cell lines of six different tissue origins. Both agents reduced PGE2 levels in stomach tissue; however, NOSH-sulindac did not cause any stomach ulcers, whereas sulindac caused significant bleeding. Lipid peroxidation induced by sulindac was higher than that from NOSH-sulindac. SOD activity was significantly lowered by sulindac but increased by NOSH-sulindac. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Sulindac increased plasma TNFα whereas this rise was lower in the NOSH-sulindac-treated animals. NOSH-sulindac inhibited the growth of all cancer cell lines studied, with potencies of 1000- to 9000-fold greater than that of sulindac. NOSH-sulindac inhibited cell proliferation, induced apoptosis, and caused G2/M cell

  19. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  20. Hydrogen storage and delivery system development

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Wally, K.; Raber, T.N. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  1. Hydrogen storage in metal-organic frameworks: A review

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2014-05-01

    Full Text Available Metal-organic frameworks (MOFs) for hydrogen storage have continued to receive intense interest over the past decade. MOFs are a class of organic-inorganic hybrid crystalline materials consisting of metallic moieties that are linked by strong...

  2. Materials for hydrogen storage

    Directory of Open Access Journals (Sweden)

    Andreas Züttel

    2003-09-01

    The goal is to pack hydrogen as close as possible, i.e. to reach the highest volumetric density by using as little additional material as possible. Hydrogen storage implies the reduction of an enormous volume of hydrogen gas. At ambient temperature and atmospheric pressure, 1 kg of the gas has a volume of 11 m3. To increase hydrogen density, work must either be applied to compress the gas, the temperature decreased below the critical temperature, or the repulsion reduced by the interaction of hydrogen with another material.

  3. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  4. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  5. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  6. Hydrogen as a near-term transportation fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

    1995-06-29

    The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

  7. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  8. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  9. Photobiological hydrogen production.

    Science.gov (United States)

    Asada, Y; Miyake, J

    1999-01-01

    The principles and recent progress in the research and development of photobiological hydrogen production are reviewed. Cyanobacteria produce hydrogen gas using nitrogenase and/or hydrogenase. Hydrogen production mediated by native hydrogenases in cyanobacteria occurs under in the dark under anaerobic conditions by degradation of intracellular glycogen. In vitro and in vivo coupling of the cyanobacterial photosynthetic system with a clostridial hydrogenase via cyanobacterial ferredoxin was demonstrated in the presence of light. Genetic transformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum was successful; the active enzyme was expressed in PCC7942. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Coculture of Rhodobacter and Clostriudium was applied for hydrogen production from glucose. A mutant strain of Rhodobacter sphaeroides RV whose light-harvesting proteins were altered was obtained by UV irradiation. Hydrogen productivity by the mutant was improved when irradiated with monochromatic light of some wavelengths. The development of photobioreactors for hydrogen production is also reviewed.

  10. Composite material systems for hydrogen management

    Science.gov (United States)

    Pangborn, R. N.; Queeney, R. A.

    1991-01-01

    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  11. Brazilian hybrid electric fuel cell bus

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.E.V.; Carreira, E.S. [Coppe-Federal Univ. of Rio de Janeiro (Brazil). Hydrogen Lab.

    2010-07-01

    The first prototype of a hybrid electric fuel cell bus developed with Brazilian technology is unveiled. It is a 12 m urban-type, low-floor, air-conditioned bus that possesses three doors, air suspension, 29 seats and reversible wheelchair site. The bus body was built based on a double-deck type monoblock vehicle that is able to sustain important load on its roof. This allowed positioning of the type 3 hydrogen tanks and the low weight traction batteries on the roof of the vehicles without dynamic stabilization problems. A novel hybrid energy configuration was designed in such a way that the low-power (77 kWe) fuel cell works on steady-state operation mode, not responding directly to the traction motor load demand. The rate of kinetic energy regeneration upon breaking was optimized by the use of an electric hybrid system with predominance of batteries and also by utilizing supercapacitors. The electric-electronic devices and the security control softwares for the auxiliary and traction systems were developed in-house. The innovative hybrid-electric traction system configuration led to the possibility to decrease the fuel cell power, with positive impact on weight and system volume reduction, as well as to significantly decrease the hydrogen consumption. (orig.)

  12. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  13. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  14. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  15. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  16. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; P.P.J. van den Bosch; Y. Shen; T. Hofman; Edwin Tazelaar

    2012-01-01

    Fuel cell hybrid vehicles are believed to provide a solution to cut down emissions in the long term. They provide local zero-emission propulsion and when the hydrogen as fuel is derived from renewable energy sources, fuel cell hybrids enable well-to-wheel zero-emission transportation,

  17. Organic-Inorganic Hybrid Solution-Processed H-2-Evolving Photocathodes

    NARCIS (Netherlands)

    Lai, Lai-Hung; Gomulya, Widianta; Berghuis, Matthijs; Protesescu, Loredana; Detz, Remko J.; Reek, Joost N. H.; Kovalenko, Maksym V.; Loi, Maria A.

    2015-01-01

    Here we report for the first time an H-2-evolving photocathode fabricated by a solution-processed organic inorganic hybrid composed of CdSe and P3HT. The CdSe:P3HT (10:1 (w/w)) hybrid bulk heterojunction treated with 1,2-ethanedithiol (EDT) showed efficient water reduction and hydrogen generation. A

  18. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up....... A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling...

  19. Scandinavian hydrogen highway partnership

    Energy Technology Data Exchange (ETDEWEB)

    Sloth, M.; Hansen, J. [H2 Logic A/S, Herning (Denmark); Wennike, F. [Hydrogen Link Denmark Association, Ringkoebing (Denmark)

    2009-07-01

    The Scandinavian Hydrogen Highway Partnership (SHHP) was launched in an effort to build hydrogen filling stations in Scandinavian countries by 2012 in order to enable hydrogen powered vehicles to operate and refuel when needed. Three hydrogen refueling stations are currently in operation in Scandinavia to fuel a fleet of 15 hydrogen-fuelled cars. It is anticipated that by the end of 2009, there will be 14 hydrogen refueling stations and more than 70 vehicles in operation. Beyond 2012, the number of filling stations and vehicles is expected to increase significantly through large scale demonstration, where SHHP aims to attract funding from the European Union. The current activities of SHHP are co-funded by national and regional authorities. The SHHP network is funded by Nordic Energy Research.

  20. Hydrogen storage container

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  1. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  2. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  3. Triethylammonium hydrogen chloranilate

    Directory of Open Access Journals (Sweden)

    Kazuma Gotoh

    2010-12-01

    Full Text Available In the crystal structure of the title compound (systematic name: triethylammonium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate, C6H16N+·C6HCl2O4−, two hydrogen chloranilate anions are connected by a pair of bifurcated O—H...O hydrogen bonds into a dimeric unit. The triethylammonium cations are linked on both sides of the dimer via bifurcated N—H...O hydrogen bonds into a centrosymmetric 2:2 aggregate. The 2:2 aggregates are further linked by intermolecular C—H...O hydrogen bonds.

  4. Facile synthesis of zirconia doped hybrid organic inorganic silica membranes

    NARCIS (Netherlands)

    Hove, ten M.; Nijmeijer, A.; Winnubst, A.J.A.

    2015-01-01

    Hybrid organic inorganic silica membranes are interesting candidates for gas-separation applications due to their excellent hydrothermal stability. However, up to now these membranes lack the separation performance required to separate hydrogen from carbon dioxide. In this work a procedure for dopin

  5. Optimization strategy for element sizing in hybrid power systems

    Science.gov (United States)

    del Real, Alejandro J.; Arce, Alicia; Bordons, Carlos

    This paper presents a procedure to evaluate the optimal element sizing of hybrid power systems. In order to generalize the problem, this work exploits the "energy hub" formulation previously presented in the literature, defining an energy hub as an interface among energy producers, consumers and the transportation infrastructure. The resulting optimization minimizes an objective function which is based on costs and efficiencies of the system elements, while taking into account the hub model, energy and power constraints and estimated operational conditions, such as energy prices, input power flow availability and output energy demand. The resulting optimal architecture also constitutes a framework for further real-time control designs. Moreover, an example of a hybrid storage system is considered. In particular, the architecture of a hybrid plant incorporating a wind generator, batteries and intermediate hydrogen storage is optimized, based on real wind data and averaged residential demands, also taking into account possible estimation errors. The hydrogen system integrates an electrolyzer, a fuel cell stack and hydrogen tanks. The resulting optimal cost of such hybrid power plant is compared with the equivalent hydrogen-only and battery-only systems, showing improvements in investment costs of almost 30% in the worst case.

  6. Optimization strategy for element sizing in hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    del Real, Alejandro J.; Arce, Alicia; Bordons, Carlos [Departamento de Ingenieria de Sistemas y Automatica, Universidad de Sevilla, 41092 Sevilla (Spain)

    2009-08-01

    This paper presents a procedure to evaluate the optimal element sizing of hybrid power systems. In order to generalize the problem, this work exploits the ''energy hub'' formulation previously presented in the literature, defining an energy hub as an interface among energy producers, consumers and the transportation infrastructure. The resulting optimization minimizes an objective function which is based on costs and efficiencies of the system elements, while taking into account the hub model, energy and power constraints and estimated operational conditions, such as energy prices, input power flow availability and output energy demand. The resulting optimal architecture also constitutes a framework for further real-time control designs. Moreover, an example of a hybrid storage system is considered. In particular, the architecture of a hybrid plant incorporating a wind generator, batteries and intermediate hydrogen storage is optimized, based on real wind data and averaged residential demands, also taking into account possible estimation errors. The hydrogen system integrates an electrolyzer, a fuel cell stack and hydrogen tanks. The resulting optimal cost of such hybrid power plant is compared with the equivalent hydrogen-only and battery-only systems, showing improvements in investment costs of almost 30% in the worst case. (author)

  7. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction.

    Science.gov (United States)

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Klímová, Kateřina; Macková, Anna; Pumera, Martin

    2014-07-22

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in the fields of energy generation and sensing. Metal-doped graphenes, where metal serves as the catalytic center and graphene as the high area conductor, have been used as electrocatalysts for such applications. In this paper, we investigated the use of uranium-graphene and thorium-graphene hybrids prepared by a simple and scalable method. The hybrids were synthesized by the thermal exfoliation of either uranium- or thorium-doped graphene oxide in various atmospheres. The synthesized graphene hybrids were characterized by high-resolution XPS, SEM, SEM-EDS, combustible elemental analysis, and Raman spectroscopy. The influence of dopant and exfoliation atmosphere on electrocatalytic activity was determined by electrochemical measurements. Both hybrids exhibited excellent electrocatalytic properties toward oxygen and hydrogen peroxide reduction, suggesting that actinide-based graphene hybrids have enormous potential for use in energy conversion and sensing devices.

  8. Hydrogen Release Studies of Alkali Metal Amidoboranes

    Energy Technology Data Exchange (ETDEWEB)

    Luedtke, Avery T.; Autrey, Thomas

    2010-04-19

    A series of metal amido boranes LiNH2BH3 (LAB), NaNH2BH3 (SAB), LiNH(Me)BH3 (LMAB), NaNH(Me)BH3 (SMAB), KNH(Me)BH3 (PMAB), and KNH(tBu)BH3 (PBAB) were synthesized, by solution phase methods, and the thermal release of H2 in the solid state was studied. Based on the observed trends in reaction rates of H > Me > tBu and the kinetic isotope effect, the mechanism of hydrogen release from MAB compounds was found to proceed through a bimolecular mechanism involving the intermediacy of a MH (M = Li, Na, or K). The mechanism of hydrogen release from metal amidoboranes, a metal ion assisted hydride transfer, is very different than the mechanism of hydrogen release from the parent compound ammonia borane (AB). The non-volatile products formed from MAB’s are significantly different than the products formed after hydrogen release from AB. The boron containing resulting from the release of one equivalent of hydrogen from the metal amidoboranes were characterized by MAS 11B NMR spectroscopy and found to contain both BH3 and sp2 hybridized BH groups, consistent with a general structural feature MN(R)=BHN(R)MBH3. This work was funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy as part of the Chemical Hydrogen Storage CoE at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle. MAS NMR studies were performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL.

  9. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  10. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  11. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  12. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  13. Combination moisture and hydrogen getter

    Science.gov (United States)

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  14. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  15. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  16. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....

  17. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  18. Hybrid Management in Hospitals

    DEFF Research Database (Denmark)

    Byrkjeflot, Haldor; Jespersen, Peter Kragh

    2010-01-01

    Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...

  19. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics. © 2014 Macmillan Publishers Limited. All rights reserved.

  20. Hydrogen evolution by a metal-free electrocatalyst.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Du, Aijun; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-04-28

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.

  1. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  2. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  3. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    Science.gov (United States)

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Staley

    2010-03-31

    the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  5. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  6. Travel with hydrogen

    Science.gov (United States)

    Hermans, L. J. F. Jo

    2017-03-01

    In the field of transportation, hydrogen does not have a particularly glorious history. Just think of the dozens of hydrogen airships destroyed by fire over the years, with the Hindenburg disaster in 1937 as the most famous example. Now H2 is trying a comeback on the road, often in combination with a fuel cell and an electric motor to power the car.

  7. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  8. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  9. Conductive dense hydrogen.

    Science.gov (United States)

    Eremets, M I; Troyan, I A

    2011-11-13

    Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, T(c), of 200-400 K, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, Thydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K; and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

  10. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  11. Realizing the Hybrid Library.

    Science.gov (United States)

    Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter

    1998-01-01

    Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…

  12. Homoploid hybrid expectations

    Science.gov (United States)

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  13. Hybrid armature projectile

    Science.gov (United States)

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  14. Intraply Hybrid Composite Design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  15. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  16. World Hydrogen Energy Conference, 5th, Toronto, Canada, July 15-19, 1984, Proceedings

    Science.gov (United States)

    Veziroglu, T. N.; Taylor, J. B.

    Among the topics discussed are thermochemical and hybrid processes for hydrogen production, pyrite-assisted water electrolysis, a hydrogen distribution network for industrial use in Western Europe, the combustion of alternative fuels in spark-ignition engines, the use of fuel cells in locomotive propulsion, hydrogen storage by glass microencapsulation, and FeTi compounds' hydriding. Also covered are plasmachemical methods of energy carrier production, synthetic fuels' production in small scale plants, products found in the anodic oxidation of coal, hydrogen embrittlement, and the regulating step in LaNi5 hydride formation.

  17. Hydrogen Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  18. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  19. Implementing a hydrogen economy

    Directory of Open Access Journals (Sweden)

    James A Ritter

    2003-09-01

    In recent years, months, weeks, and even days, it has become increasingly clear that hydrogen as an energy carrier is ‘in’ and carbonaceous fuels are ‘out’1. The hydrogen economy is coming, with the impetus to transform our fossil energy-based society, which inevitably will cease to exist, into a renewable energy-based one2. However, this transformation will not occur overnight. It may take several decades to realize a hydrogen economy. In the meantime, research and development is necessary to ensure that the implementation of the hydrogen economy is completely seamless, with essentially no disruption of the day-to-day activities of the global economy. The world has taken on a monumental, but not insurmountable, task of transforming from carbonaceous to renewable fuels, with clean burning, carbon dioxide-free hydrogen as the logical choice.

  20. Hydrogen Peroxide Concentrator

    Science.gov (United States)

    Parrish, Clyde F.

    2007-01-01

    A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The heart of the apparatus is a vessel comprising an outer shell containing tubular membranes made of a polymer that is significantly more permeable by water than by hydrogen peroxide. The aqueous solution of hydrogen peroxide to be concentrated is fed through the interstitial spaces between the tubular membranes. An initially dry sweep gas is pumped through the interiors of the tubular membranes. Water diffuses through the membranes and is carried away as water vapor mixed into the sweep gas. Because of the removal of water, the hydrogen peroxide solution flowing from the vessel at the outlet end is more concentrated than that fed into the vessel at the inlet end. The sweep gas can be air, nitrogen, or any other gas that can be conveniently supplied in dry form and does not react chemically with hydrogen peroxide.

  1. Process and device for hydrating organic compounds which can be hydrated by cathodically separated hydrogen. Verfahren und Vorrichtung zur Hydrierung von hydrierbaren organischen Verbindungen durch kathodisch abgeschiedenen Wasserstoff

    Energy Technology Data Exchange (ETDEWEB)

    Biallas, B.; Schulten, R.; Weirich, W.

    1984-03-29

    Hydratable compounds, particularly alcohols, can be hydrated by cathodically separated hydrogen, by bringing them into contact with the back of the cathode, which is itself permeable to hydrogen. This procedure is particularly suitable for the hydration of methanol by cathodically separated hydrogen during electrolysis of water in the context of a hybrid circuit process for generating hydrogen, together with steam reforming and synthesis of methanol as further parts of the process.

  2. Analysis of experimental hydrogen engine data and hydrogen vehicle performance and emissions simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.A. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    This paper reports the engine and vehicle simulation and analysis done at Lawrence Livermore (LLNL) as a part of a joint optimized hydrogen engine development effort. Project participants are: Sandia National Laboratory; Los Alamos National Laboratory; and the University of Miami. Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios. NO{sub x} emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The results indicate that hydrogen lean-burn spark-ignite engines can provide Equivalent Zero Emission Vehicle (EZEV) levels in either a series hybrid or a conventional automobile.

  3. Ru-protein-Co biohybrids designed for solar hydrogen production: understanding electron transfer pathways related to photocatalytic functionElectronic supplementary information (ESI) available: Time traces of photocatalysis, additional EPR spectra and parameters, UV-visible spectroscopy data, and kinetic fits of TA traces. See DOI: 10.1039/c6sc03121h

    National Research Council Canada - National Science Library

    Soltau, Sarah R; Dahlberg, Peter D; Niklas, Jens; Poluektov, Oleg G; Mulfort, Karen L; Utschig, Lisa M

    2016-01-01

    ...) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies...

  4. Simulation of a hydrogen hybrid battery-fuel cell vehicle

    OpenAIRE

    Víctor Alfonsín; Andrés Suárez; Rocío Maceiras; Ángeles Cancela; Ángel Sánchez

    2015-01-01

    Este artículo describe una herra mienta de simulación bajo el en torno de Matlab®, que puede ser utilizada para estimar la auton omía de un vehículo con baterías o híbrido con pila de combustible y bater ías. El modelo es función de variables mecánicas y físicas que dependerán no solo del propio vehículo sino también del terreno. Su uso es extendido para recorridos obtenidos mediante dispositivos GPS y para ciclos estándar. Pueden obtenerse diferentes variables de salid a tales como: e...

  5. Metal doped hybrid silica for hydrothermally stable hydrogen separation membranes

    NARCIS (Netherlands)

    Hove, ten M.

    2016-01-01

    The research, as described in this thesis, is carrier out within the cluster "Catalysis, Membranes and Separations"(CMS) of ADEM (A green Deal in Energy Materials), which is funded by the Dutch ministry of economic affairs. The ADEM program aims to materialize innovations in energy technologies in c

  6. Metal doped hybrid silica for hydrothermally stable hydrogen separation membranes

    NARCIS (Netherlands)

    ten Hove, Marcel

    2016-01-01

    The research, as described in this thesis, is carrier out within the cluster "Catalysis, Membranes and Separations"(CMS) of ADEM (A green Deal in Energy Materials), which is funded by the Dutch ministry of economic affairs. The ADEM program aims to materialize innovations in energy technologies in c

  7. Simulation of a hydrogen hybrid battery-fuel cell vehicle

    Directory of Open Access Journals (Sweden)

    Víctor Alfonsín

    2015-01-01

    Full Text Available Este artículo describe una herra mienta de simulación bajo el en torno de Matlab®, que puede ser utilizada para estimar la auton omía de un vehículo con baterías o híbrido con pila de combustible y bater ías. El modelo es función de variables mecánicas y físicas que dependerán no solo del propio vehículo sino también del terreno. Su uso es extendido para recorridos obtenidos mediante dispositivos GPS y para ciclos estándar. Pueden obtenerse diferentes variables de salid a tales como: el consumo de hidrógeno y batería, el nivel hidró geno, el estado de carga de la batería, la potencia consumida, la producción de energía por parte de la pila, el máximo alcance del vehículo y el máximo número de ciclos finalizados. La simulación de rutas reales pro porciona una buena aproximación de la velocidad del vehículo pa ra usos, en lugar de utilizar ciclos de c onducción estándar, obteniendo así aproximaciones bas tante arbitrarias para una ruta real.

  8. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  9. Hybridization and extinction.

    Science.gov (United States)

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.

  10. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  11. Hydrogen storage by physisorption on Metal Organic Frameworks

    Science.gov (United States)

    Dailly, Anne

    2008-03-01

    Cryo-adsorption systems based on materials with high specific surface areas have the main advantage that they can store and release hydrogen with fast kinetics and high reversibility over multiples cycles. Recently Metal Organic Frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. These crystallographically well organized hybrid solids resulting from the three dimensional connection of inorganic clusters using organic linkers show the largest specific surface areas of all known crystalline solids. The determination of the relationships between physical properties (chemistry, structure, surface area ) of the MOFs and their hydrogen storage behavior is a key step in the characterization of these materials, if they are to be designed for hydrogen storage applications. Excess hydrogen sorption measurements for different MOFs will be presented. We show that maximum hydrogen uptake at high pressure and 77K does not always scale with the specific surface area. A linear correlation trend only apply within a class of specific materials and breaks down when the surface area measurement does not represent the surface sites that are available to H2. The influence of pore size and shape will also be discussed by comparing several MOFs with different structure types. The hydrogen adsorption and binding energy at low pressure are strongly dependent on the metal ions and the pore size.

  12. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.; Misra, A.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  13. EVermont Renewable Hydrogen Production and Transportation Fueling System

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  14. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  15. The Hydrogen Futures Simulation Model (H[2]Sim) technical description.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott A.; Kamery, William; Baker, Arnold Barry; Drennen, Thomas E.; Lutz, Andrew E.; Rosthal, Jennifer Elizabeth

    2004-10-01

    ) vehicles (0.55$/mile), hybrids (0.56 $/mile), and electric vehicles (0.82-0.84 $/mile) with 2020 fuel cell vehicles (FCVs) (0.64-0.66 $/mile), fuel cell vehicles with onboard gasoline reformation (FCVOB) (0.70 $/mile), and direct combustion hydrogen hybrid vehicles (H2Hybrid) (0.55-0.59 $/mile). The results suggests that while the H2Hybrid vehicle may be competitive with ICE vehicles, it will be difficult for the FCV to compete without significant increases in gasoline prices, reduced predicted vehicle costs, stringent carbon policies, or unless they can offer the consumer something existing vehicles can not, such as on demand power, lower emissions, or better performance.

  16. Inside the Hydrogen Atom

    CERN Document Server

    Nowakowski, M; Fierro, D Bedoya; Manjarres, A D Bermudez

    2016-01-01

    We apply the non-linear Euler-Heisenberg theory to calculate the electric field inside the hydrogen atom. We will demonstrate that the electric field calculated in the Euler-Heisenberg theory can be much smaller than the corresponding field emerging from the Maxwellian theory. In the hydrogen atom this happens only at very small distances. This effect reduces the large electric field inside the hydrogen atom calculated from the electromagnetic form-factors via the Maxwell equations. The energy content of the field is below the pair production threshold.

  17. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  18. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  19. A Hydrogen Utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Robert Stephen; Reynolds, Bruce Allen

    2004-01-01

    The use of hydrogen as a fuel for transportation and stationary applications is receiving much favorable attention as a technical and policy issue. However, the widespread introduction of this technology is likely also to have negative consequences that are not being actively discussed in broad public forums. Such possibilities include, among others, delayed development of other energy alternatives, hazards of catalyst or hydride metals, disruptive employment shifts, land usage conflicts, and increased vehicle usage. Even though hydrogen is likely to be beneficial in its overall societal and environmental effects, hydrogen technology advocates must understand the range of problematic issues and prepare to address them.

  20. A hydrogen utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Robert S. [National Academy of Engineering, Washington, DC (United States)

    2004-02-01

    The use of hydrogen as a fuel for transportation and stationary applications is receiving much favorable attention as a technical and policy issue. However, the widespread introduction of this technology is likely also to have negative consequences that are not being actively discussed in broad public forums. Such possibilities include, among others, delayed development of other energy alternatives, hazards of catalyst or hydride metals, disruptive employment shifts, land usage conflicts, and increased vehicle usage. Even though hydrogen is likely to be beneficial in its overall societal and environmental effects, hydrogen technology advocates must understand the range of problematic issues and prepare to address them. (Author)

  1. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  2. Effect of hydraulic retention time on the hydrogen yield and population of Clostridium in hydrogen fermentation of glucose

    Institute of Scientific and Technical Information of China (English)

    CHU Chunfeng; EBIE Yoshitaka; INAMORI Yuhei; KONG Hainan

    2009-01-01

    The conversion of glucose to hydrogen was evaluated with continuous stirred tank reactor at 30℃, pH 5.5 at various hydraulic retention times (HRT). Furthermore, the population dynamics of hydrogen-producing bacteria was surveyed by fluorescence in-situ hybridization using probe Clost IV targeting the genus Clostridium based on 16S rRNA. It was clear that positive correlation was observed between the cells quantified with probe Clost IV and hydrogen yield of the respective sludge. The numbers of hydrogen-producing bacteria were decreased gradually with increasing HRT, were 9.2 × 108, 8.2 × 108, 2.8 × 108 , and 6.2 × 107 cells/mL, at HRT 6, 8, 12, and 14 h, respectively. The hydrogen yield was 1.4-1.5 mol H2/mol glucose at the optimum HRT 6-8 h. It is considered that the percentage of the hydrogen-producing bacteria to total bacteria is useful parameter for evaluation of hydrogen production process.

  3. Vehicular hydrogen storage using lightweight tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Weisberg, A H; Myers, B

    2000-07-22

    Lightweight hydrogen storage for vehicles is enabled by adopting and adapting aerospace tankage technology. The weight, volume, and cost are already acceptable and improving. Prototype tankage was demonstrated with 11.3% hydrogen by weight, 1.74 million inch (44.3 km) burst performance factor (P{sub b}V/W), and 3.77 kWh/kg specific energy for the tank and hydrogen (LHV). DOE cannot afford full scale aerospace development costs. For example, it costs many tens of $M to develop a rocket motor casing with a safety factor (SF) of 1.25. Large teams of experts are required to design, develop, and test new processes. Car companies are buying existing technology with only modest investments in research and development (R&D). The Lawrence Livermore National Laboratory (LLNL) team is maximizing the leverage from DOE funding by joining with industry to solve technical risks at the component level. LLNL is developing fabrication processes with IMPCO Technologies, Thiokol Propulsion, and Aero Tec Laboratories (ATL). LLNL is creating commercial products that are close to adoption under DOE solicitation. LLNL is breaking ground to achieve greater than 10% hydrogen by weight tankage with safety that exceeds the requirements of NGV2 standards modified for hydrogen. Risk reduction is proceeding along three axes: (1) Commercializable products will be available next year with {approx}90% confidence; (2) R&D progress is pushing the envelope in lightweight tankage for vehicles; and (3) Integration challenges are being met with partners in industry and DOE demo programs. This project is a key part of LLNL's effort to develop high cycle life energy storage systems with >600 Wh/kg specific energy for various applications, including: high altitude long endurance solar rechargeable aircraft, zero emission vehicles, hybrid energy storage/propulsion systems for spacecraft, energy storage for premium power, remote power sources, and peak shaving.

  4. Hydrogen Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocket test operations at NASA Stennis Space Center (SSC) result in substantial quantities of hydrogen gas that is flared from the facility and helium gas that is...

  5. Hydrogen Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Liquid hydrogen is used extensively by NASA to support cryogenic rocket testing. In addition, there are many commercial applications in which delivery and use of...

  6. Fiber optic hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  7. Interstitial hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A.

    1980-09-30

    A metal hydride fuel system is described that incorporates a plurality of storage elements that may be individually replaced to provide a hydrogen fuel system for combustion engines having a capability of partial refueling is presented.

  8. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  9. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  10. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  11. Hydrogen Bonding in Hydrogenated Amorphous Germanium

    Institute of Scientific and Technical Information of China (English)

    M.S.Abo-Ghazala; S. Al Hazmy

    2004-01-01

    Thin films of hydrogenated amorphous germanium (a-Ge:H) were prepared by radio frequency glow discharge deposition at various substrate temperatures. The hydrogen distribution and bonding structure in a-Ge:H were discussed based on infrared absorption data. The correlation between infrared absorption spectra and hydrogen effusion measurements was used to determine the proportionality constant for each vibration mode of the Ge-H bonds. The results reveal that the bending mode appearing at 835 cm?1 is associated with the Ge-H2 (dihydride) groups on the internal surfaces of voids. While 1880 cm?1 is assigned to vibrations of Ge-H (monohydride) groups in the bulk, the 2000 cm?1 stretching mode is attributed to Ge-H and Ge-H2 bonds located on the surfaces of voids. For films associated with bending modes in the infrared spectra, the proportionality constant values of the stretching modes near 1880 and 2000 cm?1 are found to be lower than those of films which had no corresponding bending modes.

  12. Interstellar hydrogen sulfide.

    Science.gov (United States)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  13. Cryogenic hydrogen release research.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  14. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  15. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Jian; Wang, Rong; Liu, Xin-Ling; Peng, Fu-Min [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Li, Chuan-Hao, E-mail: chuanhao.li@yale.edu [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Department of Chemical & Environmental Engineering, Yale University, New Haven 06511 (United States); Teng, Fei [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-08-15

    Graphical abstract: Enhanced photocatalytic hydrogen generation was achieved though constructing the CdS/UiO-66 MOF hybrids. In addition, the resultant hybrids show excellent photostability for hydrogen generation. - Highlights: • CdS nanoparticles were hydrothermally grown on UiO-66 octahedrons. • The resultant CdS/UiO-66 hybrids show enhanced photocatalytic H{sub 2} generation under visible light irradiation. • CdS/UiO-66 hybrids possess excellent photostability for long-term hydrogen generation. - Abstract: CdS nanoparticles acting as photosensitizer was grown in situ upon UiO-66 metal-organic framework octahedrons through a hydrothermal process. The resultant CdS/UiO-66 hybrid photocatalysts show remarkably active hydrogen evolution under visible light irradiation as compared to CdS and UiO-66 alone. The optimum hybrid with 16 wt% CdS loading shows a hydrogen production rate of 235 μmol h{sup −1}, corresponding to 1.2% quantum efficiency at 420 nm. The improved photocatalytic hydrogen production over hybrid CdS/UiO-66 is ascribed to the efficient interfacial charge transfer from CdS to UiO-66, which effectively suppresses the recombination of photogenerated electron-hole pairs and thereby enhancing the photocatalytic efficiency.

  16. Hydrogen engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    In the continuing development of a hydrogen fueled IC engine optimized for application to a generator set or hybrid vehicle, experiments were performed at Sandia National Laboratories on two engine configurations. The intent is to maximize thermal efficiency while complying with strict emissions standards. The initial investigation was conducted utilizing a spark ignited 0.491 liter single cylinder Onan engine and has progressed to a spark ignited 0.850 liter modified for single cylinder operation Perkins engine. Both combustion chamber geometries were {open_quotes}pancake{close_quotes} shaped and achieved a compression ratio of 14:1. The engines were operated under premixed conditions. The results demonstrate that both engines can comply with the California Air Resources Board`s proposed Equivalent Zero Emission Vehicle standards for NO{sub x} during operation at an equivalence ratio of 0.4. The Onan engine achieved an indicated thermal efficiency of 43% at 1800 RPM, as determined by integration of the pressure-volume relationships. Initial experiments with the larger displacement Perkins engine have realized a gain, relative to the Onan engine, in indicated thermal efficiency of 2% at 1800 RPM, and 15% at 1200 RPM.

  17. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  18. Fuelcell-Hybrid Mine loader (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    James L Dippo; Tim Erikson; Kris Hess

    2009-07-10

    The fuel cell hybrid mine loader project, sponsored by a government-industry consortium, was implemented to determine the viability of proton exchange membrane (PEM) fuel cells in underground mining applications. The Department of Energy (DOE) sponsored this project with cost-share support from industry. The project had three main goals: (1) to develop a mine loader powered by a fuel cell, (2) to develop associated metal-hydride storage and refueling systems, and (3) to demonstrate the fuel cell hybrid loader in an underground mine in Nevada. The investigation of a zero-emissions fuel cell power plant, the safe storage of hydrogen, worker health advantages (over the negative health effects associated with exposure to diesel emissions), and lower operating costs are all key objectives for this project.

  19. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  20. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  1. Conductive dense hydrogen

    Science.gov (United States)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  2. Metallic hydrogen research

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, T.J.; Hawke, R.S.

    1978-11-16

    Theoretical studies predict that molecular hydrogen can be converted to the metallic phase at very high density and pressure. These conditions were achieved by subjecting liquid hydrogen to isentropic compression in a magnetic-flux compression device. Hydrogen became electrically conducting at a density of about 1.06 g/cm/sup 3/ and a calculated pressure of about 2 Mbar. In the experimental device, a cylindrical liner, on implosion by high explosive, compresses a magnetic flux which in turn isentropically compresses a hydrogen sample; coaxial conical anvils prevent escape of the sample during compression. One anvil contains a coaxial cable that uses alumina ceramic as an insulator; this probe allows continuous measurement of the electrical conductivity of the hydrogen. A flash x-ray radiograph exposed during the experiment records the location of the sample-tube boundaries and permits calculation of the sample density. The theoretical underpinnings of the metallic transition of hydrogen are briefly summarized, and the experimental apparatus and technique, analytical methods, and results are described. 9 figures.

  3. Examining hydrogen transitions.

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  4. STUDIES AND RESEARCHES CONCERNING THE POSSIBILITY OF USING HYDROGEN IN TURBO ENGINES

    Directory of Open Access Journals (Sweden)

    Marius BIBU

    2014-10-01

    Full Text Available The paper aims to study the main aspects related to using Hydrogen as fuel in thermal engines, the advantages and disadvantages of using it as fuel and the technical posibilities of adjusting it, Hydrogen used as supplement at the main fuel and Hydrogen used as working fluid. As a perspective, it can be considered using Hydrogen as thermical agent in a closed energetic flux with thermo- chemical compression of Hydrogen in a hybrid heat changer, based on the heat of burning products of thermical engines. The experiments made showed that using such a way of using the heat of burning products of turbo engines can assure the increase of power and efficiency of the whole instalation with 20 %, which make us consider Hydrogen as a viable and advantageous alternative of fuel to be used in turbo engines and other engines.

  5. Neutron scattering and hydrogen storage

    Directory of Open Access Journals (Sweden)

    A.J. Ramirez-Cuesta

    2009-11-01

    Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.

  6. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria;

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  7. BSA Hybrid Synthesized Polymer

    Institute of Scientific and Technical Information of China (English)

    Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO

    2006-01-01

    Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.

  8. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  9. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  10. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  12. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  13. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  14. Hybrid Unifying Variable Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the

  15. Large Unifying Hybrid Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.

  16. Hybrid Rocket Technology

    National Research Council Canada - National Science Library

    Sankaran Venugopal; K K Rajesh; V Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...

  17. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  18. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2015-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  19. Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator

    Science.gov (United States)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    A proposed apparatus for generating hydrogen by means of chemical reactions of magnesium and magnesium hydride with steam would exploit the same basic principles as those discussed in the immediately preceding article, but would be designed to implement a hybrid continuous/batch mode of operation. The design concept would simplify the problem of optimizing thermal management and would help to minimize the size and weight necessary for generating a given amount of hydrogen.

  20. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  1. Local hybrid functionals: an assessment for thermochemical kinetics.

    Science.gov (United States)

    Kaupp, Martin; Bahmann, Hilke; Arbuznikov, Alexei V

    2007-11-21

    Local hybrid functionals with position-dependent exact-exchange admixture are a new class of exchange-correlation functionals in density functional theory that promise to advance the available accuracy in many areas of application. Local hybrids with different local mixing functions (LMFs) governing the position dependence are validated for the heats of formation of the extended G3/99 set, and for two sets of barriers of hydrogen-transfer and heavy-atom transfer reactions (HTBH38 and NHTBH38 databases). A simple local hybrid Lh-SVWN with only Slater and exact exchange plus local correlation and a one-parameter LMF, g(r)=b(tau(W)(r)tau(r)), performs best and provides overall mean absolute errors for thermochemistry and kinetics that are a significant improvement over standard state-of-the-art global hybrid functionals. In particular, this local hybrid functional does not suffer from the systematic deterioration that standard functionals exhibit for larger molecules. In contrast, local hybrids based on generalized gradient approximation exchange tend to give rise to nonintuitive LMFs, and no improved functionals have been obtained along this route. The LMF is a real-space function and thus can be analyzed in detail. We use, in particular, graphical analyses to rationalize the performance of different local hybrids for thermochemistry and reaction barriers.

  2. Hydrogen in Martian Meteorites

    Science.gov (United States)

    Peslier, A. H.; Hervig, R.; Irving, T.

    2017-01-01

    Most volatile studies of Mars have targeted its surface via spacecraft and rover data, and have evidenced surficial water in polar caps and the atmosphere, in the presence of river channels, and in the detection of water bearing minerals. The other focus of Martian volatile studies has been on Martian meteorites which are all from its crust. Most of these studies are on hydrous phases like apatite, a late-stage phase, i.e. crystallizing near the end of the differentiation sequence of Martian basalts and cumulates. Moreover, calculating the water content of the magma a phosphate crystallized from is not always possible, and yet is an essential step to estimate how much water was present in a parent magma and its source. Water, however, is primarily dissolved in the interiors of differentiated planets as hydrogen in lattice defects of nominally anhydrous minerals (olivine, pyroxene, feldspar) of the crust and mantle. This hydrogen has tremendous influence, even in trace quantities, on a planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Studies of hydrogen in nominally anhydrous phases of Martian meteorites are rare. Measuring water contents and hydrogen isotopes in well-characterized nominally anhydrous minerals of Martian meteorites is the goal of our study. Our work aims at deciphering what influences the distribution and origin of hydrogen in Martian minerals, such as source, differentiation, degassing and shock.

  3. Hot Hydrogen Test Facility

    Science.gov (United States)

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  4. Hydrogen-selective membrane

    Science.gov (United States)

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  5. Magnetic liquefier for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

  6. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  7. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Univ. of Miami, Coral Gables, FL (United States). Clean Energy Research Institute

    2008-09-30

    In the 1960s, air pollution in cities became an important issue hurting the health of people. The author became interested in environmental issues in general and air pollution in particular. He started studying possible vehicle fuels, with a view of determining the fuel which would cause little or no pollution. He particularly studied methanol, ethanol, ammonia and hydrogen as well as the gasohols (i.e., the mixtures of gasoline and methanol and/or ethanol). His investigation of fuels for transportation lasted five years (1967-1972). The result was that hydrogen is the cleanest fuel, and it is also the most efficient one. It would not produce CO (carbon monoxide), CO{sub 2} (carbon dioxide), SO{sub x}, hydrocarbons, soot and particulates. If hydrogen was burned in oxygen, it would not produce NO{sub x} either. If it burned in air, there would then be some NO{sub x} produced. Since the author has always believed that engineers and scientists should strive to find solutions to the problems facing humankind and the world, he established the Clean Energy Research Institute (CERI) at the University of Miami in 1973. The mission of the Institute was to find a solution or solutions to the energy problem, so the world economy can function properly and provide humankind with high living standards. To find clean forms of energy was also the mission of the Institute, so that they would not produce pollution and damage the health of flora, fauna and humans, as well as the environment of the planet Earth as a whole. CERI looked at all of the possible primary energy sources, including solar, wind, currents, waves, tides, geothermal, nuclear breeders and thermonuclear. Although they are much cleaner and would last much longer than fossil fuels, these sources were not practical for use. They were not storable or transportable by themselves, except nuclear. They could not be used as a fuel for transportation by themselves, except nuclear for marine transportation. In order to solve

  8. Hydrogen Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-05-16

    This volume highlights the scientific content of the 2006 Hydrogen Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) on behalf of the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). Hydrogen Contractors Meeting held from May 16-19, 2006 at the Crystal Gateway Marriott Hotel Arlington, Virginia. This meeting is the second in a series of research theme-based Contractors Meetings sponsored by DMS&E held in conjunction with our counterparts in the Office of Energy Efficiency and Renewable Energy (EERE) and the first with the Hydrogen, Fuel Cells and Infrastructure Technologies Program. The focus of this year’s meeting is BES funded fundamental research underpinning advancement of hydrogen storage. The major goals of these research efforts are the development of a fundamental scientific base in terms of new concepts, theories and computational tools; new characterization capabilities; and new materials that could be used or mimicked in advancing capabilities for hydrogen storage.

  9. Theory of hydrogen migration in organic-inorganic halide perovskites.

    Science.gov (United States)

    Egger, David A; Kronik, Leeor; Rappe, Andrew M

    2015-10-12

    Solar cells based on organic-inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current-voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theory, we study the properties of an important defect in hybrid perovskites-interstitial hydrogen. We show that differently charged defects occupy different crystal sites, which may allow for ionization-enhanced defect migration following the Bourgoin-Corbett mechanism. Our analysis highlights the structural flexibility of organic-inorganic perovskites: successive iodide displacements, combined with hydrogen bonding, enable proton diffusion with low migration barriers. These findings indicate that hydrogen defects can be mobile and thus highly relevant for the performance of perovskite solar cells.

  10. Hydrogen sensing performance of WO3 thin film by using multi - wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    R. Ghasempour

    2014-04-01

    Full Text Available The WO3/MWNTs hybrid gas sensitive films were prepared by spin-coating on alumina substrate. The structure, morphology and chemical composition of the functionalized MWNTs and WO3/MWNTs hybrid films were studied by SEM, TEM, XRD, Raman, DLS and XPS methods. The MWCNT were initially functionalized (f-MWNTs. Dispersion and surface reactivity of MWNTs was improved because of oxygenate groups on MWNTs surface. Results showed WO3 nanoparticles were nucleated on oxygenated group on surface of f-MWNTs in hybrid suspension. After coating and annealing the films at 350 , the response of hybrid WO3/MWNTs films was measured. In addition, adding a little amount of MWNTs (the ratio of MWNTs/W less than 5/1000 wt% increased the hydrogen sensitivity so that the hybrid films showed an increase of 50 times compared to pure tungsten oxide layer in response to the 10000 ppm hydrogen concentration. Considering the results, the identification of these structures appear tobe 10 ppm hydrogen gas. With the addition of carbon nanotubes, the working temperature of pure tungsten oxide layers (400 reduced to 200 in hybrid layer. The gas sensitivity is suggested to have risendue to mainly the increase in the surface area as well as development of two types of depletion layers, one at the WO3/ MWNTs hetero junction and the other at WO3 grain boundaries.

  11. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  12. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  13. A Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars

    contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial...

  14. Hybrid trajectory spaces

    NARCIS (Netherlands)

    Collins, P.J.

    2005-01-01

    In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na

  15. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  16. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast at tempe......A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...... at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier....

  17. Reversible energy storage on a fuel cell-supercapacitor hybrid device

    Energy Technology Data Exchange (ETDEWEB)

    Zerpa Unda, Jesus Enrique

    2011-02-18

    A new concept of energy storage based on hydrogen which operates reversibly near ambient conditions and without important energy losses is investigated. This concept involves the hybridization between a proton exchange membrane fuel cell and a supercapacitor. The main idea consists in the electrochemical splitting of hydrogen at a PEM fuel cell-type electrode into protons and electrons and then in the storage of these two species separately in the electrical double layer of a supercapacitor-type electrode which is made of electrically conductive large-surface area carbon materials. The investigation of this concept was performed first using a two-electrode fuel cell-supercapacitor hybrid device. A three-electrode hybrid cell was used to explore the application of this concept as a hydrogen buffer integrated inside a PEM fuel cell to be used in case of peak power demand. (orig.)

  18. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  19. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  20. Hybrid propulsion technology program

    Science.gov (United States)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  1. Polyhydride complexes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    Polyhydride metal complexes are being developed for application in hydrogen storage. Efforts have focused on developing complexes with improved available hydrogen weight percentages. We have explored the possibility that complexes containing aromatic hydrocarbon ligands could store hydrogen at both the metal center and in the ligands. We have synthesized novel indenyl hydride complexes and explored their reactivity with hydrogen. The reversible hydrogenation of [IrH{sub 3}(PPh{sub 3})({eta}{sup 5}-C{sub 10}H{sub 7})]{sup +} has been achieved. While attempting to prepare {eta}{sup 6}-tetrahydronaphthalene complexes, we discovered that certain polyhydride complexes catalyze both the hydrogenation and dehydrogenation of tetrahydronaphthalene.

  2. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  3. Photoelectrochemical Hydrogen Production

    CERN Document Server

    Krol, R van de

    2012-01-01

    Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materia

  4. Hydrogen peroxide catalytic decomposition

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  5. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  6. Electrocatalysts for hydrogen energy

    CERN Document Server

    Losiewicz, Bozena

    2015-01-01

    This special topic volume deals with the development of novel solid state electrocatalysts of a high performance to enhance the rates of the hydrogen or oxygen evolution. It contains a description of various types of metals, alloys and composites which have been obtained using electrodeposition in aqueous solutions that has been identified to be a technologically feasible and economically superior technique for the production of the porous electrodes. The goal was to produce papers that would be useful to both the novice and the expert in hydrogen technologies. This volume is intended to be us

  7. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  8. Hydrogen Embrittlement of Structural Steels

    Energy Technology Data Exchange (ETDEWEB)

    Somerday, Brian P.; San Marchi, Christopher W

    2014-08-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines; however, it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittlement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a well-established failure mode for steel hydrogen containment structures subjected to pressure cycling. This pressure cycling represents one of the key differences in operating conditions between current hydrogen pipelines and those anticipated in a hydrogen delivery infrastructure. Applying structural integrity models in design codes coupled with measurement of relevant material properties allows quantification of the reliability/integrity of steel hydrogen pipelines subjected to pressure cycling. Furthermore, application of these structural integrity models is aided by the development of physics-based predictive models, which provide important insights such as the effects of microstructure on hydrogen-assisted fatigue crack growth. Successful implementation of these structural integrity and physics-based models enhances confidence in the design codes and enables decisions about materials selection and operating conditions for reliable and efficient steel hydrogen pipelines.

  9. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Advani, Suresh G.

    2013-01-01

    The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control...... strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical...... choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen...

  10. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    Science.gov (United States)

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO2 or N2, hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  11. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  12. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experimen...

  13. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  14. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  15. Sustainable Electrochemical Hydrogen Production

    DEFF Research Database (Denmark)

    Kibsgaard, Jakob; Jaramillo, Thomas F.; Chorkendorff, Ib

    production is through electrochemical processes coupled to renewable energy sources such as wind or solar. The hydrogen evolution reaction (HER, 2H+ + 2e− → H2) constitutes half of the water splitting reaction. To increase process efficiency, active catalysts for the HER are needed. Currently platinum...

  16. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  17. Hydrogen storage for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.

    1979-01-01

    Results of an analysis of hydrogen-fueled automobiles are presented as a part of a continuing study conducted by Lawrence Livermore Laboratory (LLL) on Energy Storage Systems for Automobile Propulsion. The hydrogen is stored either as a metal hydride at moderate pressure in TiFe/sub 0/ /sub 9/Mn/sub 0/ /sub 1/H/sub x/ and at low pressure in MgH/sub x/ catalyzed with 10 wt % Ni, or it is stored in hollow glass microspheres at pressures up to about 400 atm. Improved projections are given for the two hydrides, which are used in combination to take advantage of their complementary properties. In the dual-hydride case and in the microsphere case where Ti-based hydride is used for initial operation, hydrogen is consumed in an internal-combustion engine; whereas in the third case, hydrogen from Ti-based hydride is used with air in an alkaline fuel cell/Ni-Zn battery combination which powers an electric vehicle. Each system is briefly described; and the results of the vehicle analysis are compared with those for the conventional automobile and with electric vehicles powered by Pb-acid or Ni-Zn batteries. Comparisons are made on the basis of automobile weight, initial user cost, and life-cycle cost. In this report, the results are limited to those for the 5-passenger vehicle in the period 1985-1990, and are provided as probable and optimistic values.

  18. Oxidation resistant organic hydrogen getters

    Science.gov (United States)

    Shepodd, Timothy J.; Buffleben, George M.

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  19. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  20. Trends in Hydrogen Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hoevenaars, A.J.; Weeda, M. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-09-15

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  1. Hybrid Composite Cryogenic Tank Structure

    Science.gov (United States)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  2. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Clean Energy Research Inst., Univ. of Miami, Coral Gables, Florida (United States)

    2009-07-01

    'Full text': Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted quickly. Also, their combustion products are causing global problems such as the greenhouse effect, ozone layer depletion, acid rains and pollution, all of which are posing great danger for our environment and eventually for the life on our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, and little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century. (author)

  3. Task D: Hydrogen safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Sievert, B.G. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

    1996-10-01

    This report covers two topics. The first is a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels. The second is an experimental investigation of hydrogen flame impingement. Four areas of concern in the conversion of natural gas safety publications to hydrogen safety publications are delineated. Two suggested design criteria for hydrogen vehicle fuel systems are proposed. It is concluded from the experimental work that light weight, low cost, firewalls to resist hydrogen flame impingement are feasible.

  4. Recent progress in hydrogen storage

    Directory of Open Access Journals (Sweden)

    Ping Chen

    2008-12-01

    Full Text Available The ever-increasing demand for energy coupled with dwindling fossil fuel resources make the establishment of a clean and sustainable energy system a compelling need. Hydrogen-based energy systems offer potential solutions. Although, in the long-term, the ultimate technological challenge is large-scale hydrogen production from renewable sources, the pressing issue is how to store hydrogen efficiently on board hydrogen fuel-cell vehicles1,2.

  5. Hydrogen Fire Spectroscopy Issues Project

    Science.gov (United States)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  6. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  7. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  8. Hybrid Bloch Brane

    CERN Document Server

    Bazeia, D; Losano, L

    2016-01-01

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.

  9. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  10. Hybrid silicon evanescent devices

    Directory of Open Access Journals (Sweden)

    Alexander W. Fang

    2007-07-01

    Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.

  11. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    OpenAIRE

    Maclay, JD; J. Brouwer; Samuelsen, GS

    2007-01-01

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utili...

  12. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  13. Single element hydrogen sensing material

    NARCIS (Netherlands)

    Dam, B.; Boelsma, C.

    2015-01-01

    The present invention relates to a single element thin-film device, to a method for producing a thin-film device, to a single element for detecting hydrogen absorption, to a hydrogen sensor, to an apparatus for detecting hydrogen and to an electro-magnetic transformer comprising said sensor. A thin-

  14. Hydrogen storage: beyond conventional methods.

    Science.gov (United States)

    Dalebrook, Andrew F; Gan, Weijia; Grasemann, Martin; Moret, Séverine; Laurenczy, Gábor

    2013-10-09

    The efficient storage of hydrogen is one of three major hurdles towards a potential hydrogen economy. This report begins with conventional storage methods for hydrogen and broadly covers new technology, ranging from physical media involving solid adsorbents, to chemical materials including metal hydrides, ammonia borane and liquid precursors such as alcohols and formic acid.

  15. Waste/By-Product Hydrogen

    Science.gov (United States)

    2011-01-13

    By‐ product Hydrogen Fuel Flexibility Biogas : generated from organic waste �Wastewater treatment plants can provide multiple MW of renewable... Waste /By product Hydrogen Waste H2 sources include: � Waste bio‐mass: biogas to high temp fuel cells to produce H2 – there are over two dozen sites...13 Waste /By product Hydrogen ‐ Biogas

  16. Chaotic mixer improves microarray hybridization.

    Science.gov (United States)

    McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

    2004-02-15

    Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

  17. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    Science.gov (United States)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  18. Electrochemical Hydrogen Peroxide Generator

    Science.gov (United States)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  19. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  20. Hybrid polymer microspheres

    Science.gov (United States)

    Rembaum, A.

    1980-01-01

    Techniques have been successfully tested for bonding polymeric spheres, typically 0.1 micron in diameter, to spheres with diameter up to 100 microns. Hybrids are being developed as improved packing material for ion-exchange columns, filters, and separators.

  1. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  2. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  3. Functional hybrid materials

    National Research Council Canada - National Science Library

    Fahmi, Amir; Pietsch, Torsten; Mendoza, Cesar; Cheval, Nicolas

    2009-01-01

    .... This paper describes our group's achievements towards the development of multifunctional nanostructures via self-assembly of hybrid systems based on the block copolymer PS-b-P4VP and inorganic nanoparticles (NPs...

  4. Hybrid Rocket Technology

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal

    2011-04-01

    Full Text Available With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3, pp.193-200, DOI:http://dx.doi.org/10.14429/dsj.61.518

  5. Nitrous Paraffin Hybrid Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...

  6. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Hydrogen diffusion in Zircon

    Science.gov (United States)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  8. Hydrogen bonding characterization in water and small molecules

    Science.gov (United States)

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  9. Hybridity in Disgrace

    Institute of Scientific and Technical Information of China (English)

    刘建平

    2015-01-01

    John Maxwell Coetzee's masterpiece-Disgrace is the representative work about post colonialism.The novel describes a series of disgraceful events happened between the white and the black in the post apartheid South Africa.The famous literature theory-hybridity of Homi K.Bhabha is the very key theory to analyze the work.In post apartheid South Africa,hybridity is the only way for the white and the black to coexist.

  10. Hybrid Baryon Signatures

    CERN Document Server

    Page, P R

    2000-01-01

    We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.

  11. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  12. Requirements for Hybrid Cosimulation

    Science.gov (United States)

    2014-08-16

    hybrid cosimulation version of the Functional Mockup Interface (FMI) standard. A cosimulation standard de nes interfaces that enable diverse simulation...cosimulation standards, and specifically provides guidance for development of a hybrid cosimulation version of the Functional Mockup Interface (FMI) standard...V. Peetz, and S. Wolf. The functional mockup interface for tool independent exchange of simulation models. In Proc. of the 8-th International

  13. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry

    NARCIS (Netherlands)

    Bruneau, B.; Diomede, P.; Economou, D. J.; Longo, S.; Gans, T.; O’Connell, D.; Greb, A.; Johnson, E.; Booth, J. P.

    2016-01-01

    Parallel plate capacitively coupled plasmas in hydrogen at relatively high pressure ( 1 Torr) are excited with tailored voltage waveforms containing up to five frequencies. Predictions of a hybrid model combining a particle-in-cell simulation with Monte Carlo collisions and a fluid model

  14. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control

    NARCIS (Netherlands)

    Diomede, P.; Bruneau, B.; Longo, S.; Johnson, E.; Booth, J. P.

    2017-01-01

    A comprehensive hybrid model of a hydrogen capacitively coupled plasmas (CCP), including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these

  15. NMR properties of hydrogen-bonded glycine cluster in gas phase

    Science.gov (United States)

    Carvalho, Jorge R.; da Silva, Arnaldo Machado; Ghosh, Angsula; Chaudhuri, Puspitapallab

    2016-11-01

    Density Functional Theory (DFT) calculations have been performed to study the effect of the hydrogen bond formation on the Nuclear Magnetic Resonance (NMR) parameters of hydrogen-bonded clusters of glycine molecules in gas-phase. DFT predicted isotropic chemical shifts of H, C, N and O of the isolated glycine with respect to standard reference materials are in reasonable agreement with available experimental data. The variations of isotropic and anisotropic chemical shifts for all atoms constituting these clusters containing up to four glycine molecules have been investigated systematically employing gradient corrected hybrid B3LYP functional with three different types of extended basis sets. The clusters are mainly stabilized by a network of strong hydrogen bonds among the carboxylic (COOH) groups of glycine monomers. The formation of hydrogen bond influences the molecular structure of the clusters significantly which, on the other hand, gets reflected in the variations of NMR properties. The carbon (C) atom of the sbnd COOH group, the bridging hydrogen (H) and the proton-donor oxygen (O) atom of the Osbnd H bond suffer downfield shift due to the formation of hydrogen bond. The hydrogen bond lengths and the structural complexity of the clusters are found to vary with the number of participating monomers. A direct correlation between the hydrogen bond length and isotropic chemical shift of the bridging hydrogen is observed in all cases. The individual variations of the principal axis elements in chemical shift tensor provide additional insight about the different nature of the monomers within the cluster.

  16. Preparation of Hydrogenated Nitrile Rubber

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Hydrogenated nitrile rubber is an oil and solvent resistant rubber and particularly give more resistant to heat, ozone, light. It is generally prepared from nitrile rubber by selective hydrogenation using a suitable catalyst system. In the present work a prepared method was adapted for the hydrogenation reaction of nitrile rubber using homogeneous tris(tri-phenlphosphine)chlorhodium(I) catalyst (RhCl(PPh3)) system. The hydrogenation reaction was carriedout at different temperature, pressure, time and catalyst concentration, the concentration, the conditions of hydrogenation are stated in table 1.

  17. Preparation of Hydrogenated Nitrile Rubber

    Institute of Scientific and Technical Information of China (English)

    LIU; ZhiCai

    2001-01-01

    Hydrogenated nitrile rubber is an oil and solvent resistant rubber and particularly give more resistant to heat, ozone, light. It is generally prepared from nitrile rubber by selective hydrogenation using a suitable catalyst system. In the present work a prepared method was adapted for the hydrogenation reaction of nitrile rubber using homogeneous tris(tri-phenlphosphine)chlorhodium(I) catalyst (RhCl(PPh3)) system.  The hydrogenation reaction was carriedout at different temperature, pressure, time and catalyst concentration, the concentration, the conditions of hydrogenation are stated in table 1.  ……

  18. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    Energy Technology Data Exchange (ETDEWEB)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  19. Europe - the first hydrogen economy?

    Energy Technology Data Exchange (ETDEWEB)

    Hart, D. [TH Huxley School, Imperial College, London, (United Kingdom)

    1999-12-01

    An examination of the state of research relating to hydrogen production and utilization indicates that interest in hydrogen from major companies in Europe has increased by several orders of magnitude in recent years. Of the three major areas where a hydrogen economy could be expected to start, namely, Japan, the United States and Europe, the latter may have advantages in diversity of resources, attitudes towards environmental issues and specific fiscal and regulatory structures. Examples of ongoing research and development projects in Europe include Norway`s hydrogen combustion turbine to run on hydrogen from decarbonised natural gas, a project in the Netherlands involving mixing hydrogen and methane in the natural gas grid and a variety of projects involving liquid hydrogen refuelling, hydrogen aircraft, hydrogen fuelling stations and fuel cell vehicle development. There are also ongoing projects in carbon sequestration and hydrogen production for power generation and vehicle use. The author`s main contention is that the combination of natural surroundings, environmental problems and attitudes, and business and government frameworks strongly suggest that Europe may be the first to have a hydrogen-based economy. 8 refs.

  20. Europe - the first hydrogen economy?

    Energy Technology Data Exchange (ETDEWEB)

    Hart, D. [TH Huxley School, Imperial College, London, (United Kingdom)

    1999-07-01

    An examination of the state of research relating to hydrogen production and utilization indicates that interest in hydrogen from major companies in Europe has increased by several orders of magnitude in recent years. Of the three major areas where a hydrogen economy could be expected to start, namely, Japan, the United States and Europe, the latter may have advantages in diversity of resources, attitudes towards environmental issues and specific fiscal and regulatory structures. Examples of ongoing research and developmentprojects in Europe include Norway's hydrogen combustion turbine to run on hydrogen from decarbonised natural gas, a project in the Netherlands involving mixing hydrogen and methane in the natural gas grid and a variety of projects involving liquid hydrogen refuelling, hydrogen aircraft, hydrogen fuelling stations and fuel cell vehicle development. There are also ongoing projects in carbon sequestration and hydrogen production for power generation and vehicle use. The author's main contention is that the combination of natural surroundings, environmental problems and attitudes, and business and government frameworks strongly suggest that Europe may be the first to have a hydrogen-based economy. 8 refs.

  1. New approaches to hydrogen storage.

    Science.gov (United States)

    Graetz, Jason

    2009-01-01

    The emergence of a Hydrogen Economy will require the development of new media capable of safely storing hydrogen in a compact and light weight package. Metal hydrides and complex hydrides, where hydrogen is chemically bonded to the metal atoms in the bulk, offer some hope of overcoming the challenges associated with hydrogen storage. The objective is to find a material with a high volumetric and gravimetric hydrogen density that can also meet the unique demands of a low temperature automotive fuel cell. Currently, there is considerable effort to develop new materials with tunable thermodynamic and kinetic properties. This tutorial review provides an overview of the different types of metal hydrides and complex hydrides being investigated for on-board (reversible) and off-board (non-reversible) hydrogen storage along with a few new approaches to improving the hydrogenation-dehydrogenation properties.

  2. Hydrogen Exchange Mass Spectrometry.

    Science.gov (United States)

    Mayne, Leland

    2016-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data.

  3. Molecular and Metallic Hydrogen

    Science.gov (United States)

    1977-05-01

    interaction between hydroge , molecules. Fortunately, theoretical calculation of the pair potential from first principles at small intermolecular...three- ,’ody effect is a general phenomenon for all highly condensed states of molecular hydroger The effect of t’ ,ree-body contribution to the...parameters of metallic hydroge -. have given more consis- tent results than those for the molecular hydrogen. For example, the r-sults of the earliest

  4. High Pressure Hydrogen from First Principles

    Science.gov (United States)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  5. Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder

    CERN Document Server

    Bandura, Kevin; Amiri, Mandana; Bond, J Richard; Campbell-Wilson, Duncan; Connor, Liam; Cliche, Jean-Francois; Davis, Greg; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gibbs, Kenneth; Gilbert, Adam; Halpern, Mark; Hanna, David; Hincks, Adam D; Hinshaw, Gary; Hofer, Carolin; Klages, Peter; Landecker, Tom L; Masui, Kiyoshi; Mena, Juan; Newburgh, Laura B; Pen, Ue-Li; Peterson, Jeffrey B; Recnik, Andre; Shaw, J Richard; Sigurdson, Kris; Sitwell, Michael; Smecher, Graeme; Smegal, Rick; Vanderlinde, Keith; Wiebe, Don

    2014-01-01

    A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37\\,m long by 20\\,m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument ...

  6. MSW to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, A.D.; Richardson, J.H.; Rogers, R.S.; Thorsness, C.B.; Wallman, H. [Lawrence Livermore National Lab., CA (United States); Richter, G.N.; Wolfenbarger, J.K. [Texaco Inc., Montebello, CA (United States). Montebello Research Lab.

    1994-04-19

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the preparation and conversion of municipal solid waste (MSW) to hydrogen by gasification and purification. The laboratory focus will be on pretreatment of MSW waste in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. Initial pretreatment approaches include (1) hydrothermal processing at saturated conditions around 300 C with or without chemical/pH modification and (2) mild dry pyrolysis with subsequent incorporation into an appropriate slurry. Initial experiments will be performed with newspaper, a major constituent of MSW, prior to actual work with progressively more representative MSW samples. Overall system modeling with special attention to energy efficiency and waste water handling of the pretreatment process will provide overall guidance to critical scale-up parameters. Incorporation of additional feed stock elements (e.g., heavy oil) will be evaluated subject to the heating value, viscosity, and economics of the MSW optimal slurry for hydrogen production. Ultimate scale-up of the optimized process will provide sufficient material for demonstration in the Texaco pilot facility; additional long term objectives include more detailed economic analysis of the process as a function of technical parameters and development of a measure/control system to ensure slagging ash for variable MSW feed stocks. Details of the overall project plan and initial experimental and modeling results are presented.

  7. Hydrogen molecules in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Joerg [Technische Universitaet Dresden, 01062 Dresden (Germany)], E-mail: joerg.weber@tu-dresden.de; Hiller, Martin; Lavrov, Edward V. [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2007-12-15

    Molecular hydrogen, the simplest of all molecules, allows a direct insight into the fundamental properties of quantum mechanics. In the case of H{sub 2}, the Pauli principle leads to two different species, para-H{sub 2} and ortho-H{sub 2}. A conversion between these species is prohibited. Vibrational mode spectra reflect the fundamental properties and allow an unambiguous identification of the H{sub 2} molecules. Today, we have experimental evidence for the trapping of hydrogen molecules in the semiconductors Si, Ge and GaAs at the interstitial sites, within hydrogen-induced platelets, in voids and at impurities (interstitial oxygen in Si). Interstitial H{sub 2} is a nearly free rotor with a surprisingly simple behavior. We review on interstitial H{sub 2} in semiconductors and report on the unexpected preferential disappearance of the para-H{sub 2} or ortho-D{sub 2} species. The origin of the detected ortho-para conversion will be discussed.

  8. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Zhang, Z. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. Photoelectrochemical devices-direct photoconversion systems utilizing a photovoltaic-type structure coated with water-splitting catalysts-represent a promising option to meet this goal. Direct solar-to-chemical conversion efficiencies greater than 7% and photoelectrode lifetimes of up to 30 hours in 1 molar KOH have been demonstrated in our laboratory using low-cost, amorphous-silicon-based photoelectrodes. Loss analysis models indicate that the DOE`s goal of 10% solar-to-chemical conversion can be met with amorphous-silicon-based structures optimized for hydrogen production. In this report, we describe recent progress in the development of thin-film catalytic/protective coatings, improvements in photoelectrode efficiency and stability, and designs for higher efficiency and greater stability.

  9. Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis.

    Science.gov (United States)

    Zagal, José H; Griveau, Sophie; Ozoemena, Kenneth I; Nyokong, Tebello; Bedioui, Fethi

    2009-04-01

    The manuscript discusses different ways of forming hybrid materials between single (SWCNT) or multi (MWCNT) walled carbon nanotubes and biomimetic compounds such as metalloporphyrins, metallophthalocyanines and other MN4 complexes. The hybrid materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants. Methods of characterizing the hybrid materials such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) are discussed.

  10. Simulation of a solar-hydrogen-fuel cell system: results for different locations in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Torres, L.A.; Rodriguez, F.J.; Sebastian, P.J. [CIE-UNAM, Morelos (Mexico). Centro de Computo

    1998-12-31

    The authors report the results obtained from the simulation of a PV-hydrogen-fuel-cell (PVHFC) hybrid system for different locations in Mexico. The hybrid system consists of photovoltaic arrays coupled with an electrolyzer to produce hydrogen, a fuel cell which converts chemical energy (H{sub 2}) to electricity, a hydrogen storage, a battery storage system, and the load. In this kind of system, all components can be connected electrically in parallel. The voltage of the PV arrays the fuel cell must be high enough to charge the battery, and the voltage of the electrolyzer must be low enough for the battery to power it during periods of low insolation. The simulation is based on the electrical component models and variable insolation data depending on the location. (author)

  11. GTI's hydrogen programs: hydrogen production, storage, and applications

    Institute of Scientific and Technical Information of China (English)

    范钦柏

    2006-01-01

    The use of hydrogen as an energy carrier could help address our concerns about energy security, global climate change,and air quality. Fuel cells are an important enabling technology for the Hydrogen Future and have the potential to revolutionize theway we power our nation, offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels.For over 45 years, GTI has been active in hydrogen energy research, development and demonstration. The Institute has extensive experience and on-going work in all aspects of the hydrogen energy economy including production, delivery, infrastructure,use, safety and public policy. This paper discusses the recent GTI programs in hydrogen production, hydrogen storage, and proton exchange membrane fuel cells (PEMFC) and solid oxide fuel cells (SOFC).

  12. Photoinduced hydrogen-bonding dynamics.

    Science.gov (United States)

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water.

  13. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  14. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...... ammonia and benefits from the properties of ammonia as a fuel. The system can be used as a safe, reversible, low-cost hydrogen carrier....

  15. Hydrogen solubility in rare earth based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Hirohisa [Tokai Univ., Kanagawa (Japan). School of Engineering; Kuji, Toshiro [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan)

    1999-09-01

    This paper reviews significant results of recent studies on the hydrogen storage properties of rare earth based AB{sub 5} (A: rare earth element, B: transition element) alloys The hydrogen solubility and the hydride formation, typically appeared in pressure-composition isotherms (PCT), are strongly dependent upon alloy composition, structure, morphology and even alloy particle size. Typical experimental results are shown to describe how these factors affect the hydrogen solubility and storage properties.

  16. Handheld hydrogen - a new concept for hydrogen storage

    DEFF Research Database (Denmark)

    Johannessen, Tue; Sørensen, Rasmus Zink

    2005-01-01

    A method of hydrogen storage using metal ammine complexes in combination with an ammonia decomposition catalyst is presented. This dense hydrogen storage material has high degree of safety compared to all the other available alternatives. This technology reduces the safety hazards of using liquid...... ammonia and benefits from the properties of ammonia as a fuel. The system can be used as a safe, reversible, low-cost hydrogen carrier....

  17. Hydrogen-bonded sheets in benzylmethylammonium hydrogen maleate.

    Science.gov (United States)

    Santacruz, Lynay; Abonia, Rodrigo; Cobo, Justo; Low, John N; Glidewell, Christopher

    2007-10-01

    In the title compound, C(8)H(12)N(+).C(4)H(3)O(4)(-), there is a short and almost linear but asymmetric O-H...O hydrogen bond in the anion. The ions are linked into C(2)(2)(6) chains by two short and nearly linear N-H...O hydrogen bonds and the chains are further weakly linked into sheets by a single C-H...O hydrogen bond.

  18. The Hybrids of Postmodernism

    Directory of Open Access Journals (Sweden)

    Dana BĂDULESCU

    2014-09-01

    Full Text Available Hybridization is a fundamental characteristic of postmodernism, included by Ihab Hassan in his “catena” of features. This paper looks into the hybrids of postmodernism, which are the result of migration, displacement and uprooting, the re-visitation of myths, folklore and legends, or projections of their author’s imagination. The hybrids used as examples here are drawn from several novels written by Salman Rushdie, especially The Satanic Verses, two short stories, one by Márquez and the other by Donald Barthelme, Borges’s Book of Imaginary Beings, Cărtărescu’s Encyclopaedia of Dragons and Michelle Cliff’s No Telephone to Heaven. Diverse as they may be, these hybrids emphasize a defining characteristic of postmodernism, which is its pluralism. I conclude that the hybrids of postmodernism are aesthetically or politically subversive. Besides, what makes them difficult to grasp is their unfixed and protean nature. They ask for high leaps of the imagination, a total suspension of disbelief and a complete surrender to the powerful seduction of imagination on the reader’s part.

  19. A novel organic-inorganic hybrid tandem solar cell with inverted structure

    Science.gov (United States)

    Bahrami, A.; Faez, R.

    2017-04-01

    A novel organic-inorganic hybrid tandem solar cell with inverted structure is proposed. This efficient double-junction hybrid tandem solar cell consists of a single-junction hydrogenated amorphous silicon (a-Si:H) subcell with n-i-p structure as front cell and a P3HT:PCBM organic subcell with inverted structure as back cell. In order to optimize the hybrid tandem cell, we have performed a simulation based on transfer matrix method. We have compared the characteristics of this novel structure with a conventional structure. As a result, a power conversion efficiency (PCE) of 6.1 and 24% improvement compared to the conventional hybrid tandem cell was achieved. We also discuss the high potential of this novel structure for realizing high-stability organic-inorganic hybrid photovoltaic devices.

  20. Physisorption-induced electron scattering on the surface of carbon-metal core-shell nanowire arrays for hydrogen sensing

    Science.gov (United States)

    Yick, S.; Yajadda, M. M. A.; Bendavid, A.; Han, Z. J.; Ostrikov, K.

    2013-06-01

    Palladium is sputtered on multi-walled carbon nanotube forests to form carbon-metal core-shell nanowire arrays. These hybrid nanostructures exhibited resistive responses when exposed to hydrogen with an excellent baseline recovery at room temperature. The magnitude of the response is shown to be tuneable by an applied voltage. Unlike the charge-transfer mechanism commonly attributed to Pd nanoparticle-decorated carbon nanotubes, this demonstrates that the hydrogen response mechanism of the multi-walled carbon nanotube-Pd core-shell nanostructure is due to the increase in electron scattering induced by physisorption of hydrogen. These hybrid core-shell nanostructures are promising for gas detection in hydrogen storage applications.

  1. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  2. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  3. Design of Multi-Decker Incorporated Metal Organic Frameworks for Hydrogen Storage

    Science.gov (United States)

    Boggavarapu, Kiran; Kandalam, Anil

    2009-03-01

    Metal Organic Frameworks (MOFs) are a new class of rationally designed microporous hybrid (organic-inorganic) materials. They have recently gained attention as potential hydrogen storage systems with gravimetric density meeting the DOE 2015 targets of 9 wt%. However, due to weak interaction between the molecular hydrogen and the host MOF (see figure), high pressures are required to reach the target storage levels. Recently, multi-decker organometallic complexes are shown to exhibit the ideal thermodynamics and kinetics for hydrogen storage. However, it is not clear if these multi-decker complexes can retain their hydrogen storage capability when assembled into a bulk-material. In this presentation, we investigate the hydrogen storage capability of a new class of materials by combining the strengths of MOFs and decker complexes. An ideal way to integrate these two systems is to incorporate the multi-deckers into the structural framework of MOFs. In these hybrid materials, the multi-decker units are expected to maintain their structural integrity and there by retaining the hydrogen storage capacity with an added advantage of being a part of stable porous MOF back-bone.

  4. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  5. Hydrogen from renewable resources research

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, P.K.; McKinley, K.R.

    1990-07-01

    In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

  6. Quantum Confinement in Hydrogen Bond

    CERN Document Server

    Santos, Carlos da Silva dos; Ricotta, Regina Maria

    2015-01-01

    In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.

  7. Hydrogen from renewable resources research

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, P.K.; McKinley, K.R.

    1990-07-01

    In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

  8. Liquid Hydrogen Absorber for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  9. Hydrogen application dynamics and networks

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)

    2010-12-30

    The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)

  10. for hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2001-01-01

    Full Text Available In this paper we develop a unified dynamical systems framework for a general class of systems possessing left-continuous flows; that is, left-continuous dynamical systems. These systems are shown to generalize virtually all existing notions of dynamical systems and include hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to left-continuous dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time dynamics, and dissipated energy over the resetting events. Finally, the generalized dissipativity notions are used to develop general stability criteria for feedback interconnections of left-continuous dynamical systems. These results generalize the positivity and small gain theorems to the case of left-continuous, hybrid, and impulsive dynamical systems.

  11. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time-derivatives in modell......In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...... to the differential action, thus, allowing stepwise development of hybrid systems Udgivelsesdato: JAN 1...

  12. Conditional Hybrid Nonclassicality

    Science.gov (United States)

    Agudelo, E.; Sperling, J.; Costanzo, L. S.; Bellini, M.; Zavatta, A.; Vogel, W.

    2017-09-01

    We derive and implement a general method to characterize the nonclassicality in compound discrete- and continuous-variable systems. For this purpose, we introduce the operational notion of conditional hybrid nonclassicality which relates to the ability to produce a nonclassical continuous-variable state by projecting onto a general superposition of discrete-variable subsystem. We discuss the importance of this form of quantumness in connection with interfaces for quantum communication. To verify the conditional hybrid nonclassicality, a matrix version of a nonclassicality quasiprobability is derived and its sampling approach is formulated. We experimentally generate an entangled, hybrid Schrödinger cat state, using a coherent photon-addition process acting on two temporal modes, and we directly sample its nonclassicality quasiprobability matrix. The introduced conditional quantum effects are certified with high statistical significance.

  13. Porosity in hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  14. Photoproduction of Hybrid Mesons

    CERN Document Server

    Barnes, T

    1998-01-01

    In this contribution I discuss prospects for photoproducing hybrid mesons at CEBAF, based on recent model results and experimental indications of possible hybrids. One excellent opportunity appears to be a search for the I=1, JPC=2+-, neutral "(b2)o" hybrid in (a2 pi)o through diffractive photoproduction. Other notable possibilities accessible through pi+ or pio exchange photoproduction are I=1, JPC=1-+, charged "pi1+" in f1 pi+, (b1 pi)+ and (rho pi)+; piJ(1770)+ in f2 pi+ and (b1 pi)+; pi(1800)+ in f0 pi+, f2 pi+, omega rho+ and (rho pi)+; a1 in f1 pi+ and f2 pi+; and omega in (rho pi)o, omega eta and (K1 K)o.

  15. Tetraphenylphosphonium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Philip A. W. Dean

    2008-01-01

    Full Text Available In the title compound, C24H20P+·C2HO4−, two symmetry-independent ion pairs are present. The cations aggregate into puckered sheets via zigzag infinite chains of sixfold phenyl embraces and parallel fourfold phenyl embraces, while the anions form hydrogen-bonded chains between the sheets of cations. In the two independent oxalate anions, the angles between the normals to the two least-squares carboxylate COO planes are unusually large, viz. 72.5 (1 and 82.1 (1°.

  16. Hydrogen storage development

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E. [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    A summary of the hydride development efforts for the current program year (FY98) are presented here. The Mg-Al-Zn alloy system was studied at low Zn levels (2--4 wt%) and midrange Al contents (40--60 wt%). Higher plateau pressures were found with Al and Zn alloying in Mg and, furthermore, it was found that the hydrogen desorption kinetics were significantly improved with small additions of Zn. Results are also shown here for a detailed study of the low temperature properties of Mg{sub 2}NiH{sub 4}, and a comparison made between conventional melt cast alloy and the vapor process material.

  17. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  18. Smart hybrid rotary damper

    Science.gov (United States)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  19. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Tazelaar, Edwin; Shen, Y.; Veenhuizen, Bram; Hofman, T.; Bosch, P. van den

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  20. Preparation and characterization of uniformly sized sub-micrometer spherical silica/organic polymer hybrid particles

    Energy Technology Data Exchange (ETDEWEB)

    Xing, X.-S.; Li, R.K.Y.; Shek, C.-H. [Department of Physics and Materials Science, City University of Hong Kong, Tak Chee Avenue, Kowloon, Hong Kong (China)

    2003-09-01

    Hybrid particles with a core-shell structure, consisting of a silica core and a polyvinyl alcohol (PVA) shell were fabricated via a two-step sol-gel process. The PVA molecular chains are probably physically adsorbed onto the surface of silica cores by hydrogen bonds and van der Waals forces. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Y. Shen; P. van den Bosch; Edwin Tazelaar; Bram Veenhuizen; T. Hofman

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  2. National Hydrogen Roadmap Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy future and outline the key barriers and needs to achieve the hydrogen vision. The National Hydrogen Roadmap Workshop was held April 2-3, 2002. These proceedings were compiled into a formal report, The National Hydrogen Energy Roadmap, which is also available online.

  3. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  4. Hybrid Weyl semimetal

    Science.gov (United States)

    Li, Fei-Ye; Luo, Xi; Dai, Xi; Yu, Yue; Zhang, Fan; Chen, Gang

    2016-09-01

    We construct a tight-binding model realizing one pair of Weyl nodes and three distinct Weyl semimetals. In the type-I (type-II) Weyl semimetal, both nodes belong to type-I (type-II) Weyl nodes. In addition, there exists a third type, previously undiscovered and dubbed "hybrid Weyl semimetal", in which one Weyl node is of type I while the other is of type II. For the hybrid Weyl semimetal, we further demonstrate the bulk Fermi surfaces and the topologically protected surface states, analyze the unique Landau-level structure and quantum oscillation, and discuss the conditions for possible material realization.

  5. Toyota hybrid synergy drive

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, H.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.

  6. Toyota hybrid synergy drive

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, H.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.

  7. THERMALLY CLEAVABLE HYBRID MATERIALS

    Directory of Open Access Journals (Sweden)

    Constantin Gaina

    2011-12-01

    Full Text Available Thermally cleavable hybrid materials were prepared by the Diels-Alder cycloaddition reaction of poly(vinyl furfural to N phenylmaleimido-N’-(triethoxysilylpropylurea followed by the sol-gel condensation reaction of trietoxysilyl groups with water and acetic acid. Thermal and dynamic mechanical analysis, dielectric and FTIR spectroscopy were used to characterize the structure and properties of the composites. The size of the inorganic silica particles in the hybrid material varied dependent on the silica content. The DSC study of the prepared materials revealed that the cleavage process of the formed cycloadducts takes place at temperatures varying between 143-165°C and is an endothermic process.

  8. The hybrid BCI

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    2010-04-01

    Full Text Available Nowadays, everybody knows what a hybrid car is. A hybrid car normally has 2 engines, its main purpose being to enhance energy efficiency and reduce CO2 output. Similarly, a typical hybrid brain-computer interface (BCI is also composed of 2 BCIs or at least one BCI and another system. Such a hybrid BCI, like any BCI, must fulfil the following four criteria: (i the device must rely on signals recorded directly from the brain; (ii there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii real time processing; and (iv the user must obtain feedback. This paper introduces some hybrid BCIs which have already been published or are currently in development or validation, and some concepts for future work. The BCIs described classify 2 EEG patterns: One is the event-related (desynchronisation (ERD, ERS of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP. The hybrid BCI can either have more than one input whereby the inputs are typically processed simultaneously or operate 2 systems sequentially, whereby the first system can act as a “brain switch”. In the case of self-paced operation of a SSVEP-based hand orthosis control with an motor imagery-based switch it was possible to reduce the rate of false positives during resting periods by about 50% compared to the SSVEP BCI alone. It is shown that such a brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS. Another interesting approach is a hybrid BCI with simultaneous operations of ERD- and SSVEP-based BCIs. Here it is important to prove the existing promising offline simulation results with online experiments. Hybrid BCIs can also use one brain signal and another input. Such an additional input can be a physiological signal like the heart rate but also a signal from an external device like, an eye gaze control system.

  9. REVIEW OF THE POTENTIAL OF NUCLEAR HYDROGEN FOR ADDRESSING ENERGY SECURITY AND CLIMATE CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien

    2010-06-01

    Nuclear energy has the potential to exert a major positive impact on energy security and climate change by coupling it to the transportation sector, primarily through hydrogen production. In the short term, this coupling will provide carbon-free hydrogen for upgrading increasingly lower quality petroleum resources such as oil sands, offsetting carbon emissions associated with steam methane reforming. In the intermediate term, nuclear hydrogen will be needed for large-scale production of infrastructure-compatible synthetic liquid fuels. In the long term, there is great potential for the use of hydrogen as a direct vehicle fuel, most likely in the form of light-duty pluggable hybrid hydrogen fuel cell vehicles. This paper presents a review of the potential benefits of large-scale nuclear hydrogen production for energy security (i.e. displacing imported petroleum) and reduction of greenhouse gas emissions. Lifecycle benefits of nuclear energy in this context are presented, with reference to recent major publications on this topic. The status of US and international nuclear hydrogen research programs are discussed. Industry progress toward consumer-grade hydrogen fuel cell vehicles are also be examined.

  10. Hydrogen fracture toughness tester completion

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  11. Hydrogen Technology Research at SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Danko, E.

    2011-02-13

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon

  12. Hydrogen embrittlement of structural steels.

    Energy Technology Data Exchange (ETDEWEB)

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline

  13. Hydrogen - A sustainable energy carrier

    Directory of Open Access Journals (Sweden)

    Kasper T. Møller

    2017-02-01

    Full Text Available Hydrogen may play a key role in a future sustainable energy system as a carrier of renewable energy to replace hydrocarbons. This review describes the fundamental physical and chemical properties of hydrogen and basic theories of hydrogen sorption reactions, followed by the emphasis on state-of-the-art of the hydrogen storage properties of selected interstitial metallic hydrides and magnesium hydride, especially for stationary energy storage related utilizations. Finally, new perspectives for utilization of metal hydrides in other applications will be reviewed.

  14. Hybrid silica-PVA nanofibers via sol-gel electrospinning.

    Science.gov (United States)

    Pirzada, Tahira; Arvidson, Sara A; Saquing, Carl D; Shah, S Sakhawat; Khan, Saad A

    2012-04-03

    We report on the synthesis of poly(vinyl alcohol) (PVA)-silica hybrid nanofibers via sol-gel electrospinning. Silica is synthesized through acid catalysis of a silica precursor (tetraethyl orthosilicate (TEOS) in ethanol-water), and fibers are obtained by electrospinning a mixture of the silica precursor solution and aqueous PVA. A systematic investigation on how the amount of TEOS, the silica-PVA ratio, the aging time of the silica precursor mixture, and the solution rheology influence the fiber morphology is undertaken and reveals a composition window in which defect-free hybrid nanofibers with diameters as small as 150 nm are obtained. When soaked overnight in water, the hybrid fibers remain intact, essentially maintaining their morphology, even though PVA is soluble in water. We believe that mixing of the silica precursor and PVA in solution initiates the participation of the silica precursor in cross-linking of PVA so that its -OH group becomes unavailable for hydrogen bonding with water. FTIR analysis of the hybrids confirms the disappearance of the -OH peak typically shown by PVA, while formation of a bond between PVA and silica is indicated by the Si-O-C peak in the spectra of all the hybrids. The ability to form cross-linked nanofibers of PVA using thermally stable and relatively inert silica could broaden the scope of use of these materials in various technologies.

  15. A Mathematical Approach to Hybridization

    Science.gov (United States)

    Matthews, P. S. C.; Thompson, J. J.

    1975-01-01

    Presents an approach to hybridization which exploits the similarities between the algebra of wave functions and vectors. This method will account satisfactorily for the number of orbitals formed when applied to hybrids involving the s and p orbitals. (GS)

  16. Solar Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Koval, C. [Univ. of Colorado, Boulder (United States); Sutin, N. [Brookhaven National Lab., Upton, NY (United States); Turner, J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  17. Hybrid Photocatalytic-Biological Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, M. I.; Malato, S.; Blanco, J.; Oller, I.; Gernjak, W.; Perez-Estrada, L.

    2006-07-01

    This contribution is presenting the tests and operational results performed for designing a new hybrid solar photocatalytic-biological demonstration plant built in a chemical industry located near Almeria (Spain). It will treat saline wastewater (sea water) containing a nonbiodegradable compound up to 550 mg/L and a Total Organic Carbon up to 600 mg/L. Initially, the wastewater (WW) is partly oxidized by solar photo-Fenton process to render the wastewater biodegradable. At pilot-plant scale the wastewater was successfully treated and the conditions for coupling with a biological treatment using Advanced Oxidation Processes (AOP) as pre-treatment were determined. Samples were collected along the AOP process and their biodegradability was evaluated with the Zahn-Wellens (ZW) test. Enhancement of WW biodegradability was confirmed (>70% biodegradable). Hydrogen peroxide management for reduced consumption is also discussed in detail and the principal parameters for designing the demonstration plant have been obtained. (Author)

  18. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  19. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  20. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the