WorldWideScience

Sample records for hybrid electric heavy-duty

  1. On-line energy and battery thermal management for hybrid electric heavy-duty truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A.

    2013-01-01

    This paper discusses an integrated approach for energy and thermal management to minimize the fuel consumption of a hybrid electric heavy-duty truck. Conventional Energy Management Systems (EMS) operate separately from the Battery Thermal Management System (BTMS) in Hybrid Electric Vehicles (HEVs).

  2. Cost-effective energy management for hybrid electric heavy-duty truck including battery aging

    NARCIS (Netherlands)

    Pham, H.T.; Bosch, van den P.P.J.; Kessels, J.T.B.A.; Huisman, R.G.M.

    2013-01-01

    Battery temperature has large impact on battery power capability and battery life time. In Hybrid Electric Heavy-duty trucks (HEVs), the high-voltage battery is normally equipped with an active Battery Thermal Management System (BTMS) guaranteeing a desired battery life time. Since the BTMS can

  3. GHG emissions from sugar cane ethanol, plug-in hybrids, heavy duty gasoline vehicles and hybrids, and materials review

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided updates of new work and new pathways added to the GHGenius model. The model was developed to analyze lifecycle emissions of contaminants associated with the production and use of alternative and traditional fuels, and is continually updated with new information on existing processes and new innovations. The report described the addition of a new table that showed fossil energy consumption per km driven. New information on energy requirements to remove sulphur from gasoline and diesel fuel in Canada were provided. The report also outlined a new pathway for plug-in hybrid battery-powered electric and gasoline vehicles. Vehicle weight was included as part of the user inputs for modelling gasoline powered heavy duty vehicles and gasoline hybrid heavy duty vehicles. Information on the production processes of ethanol from sugar cane were also added to the model. Amounts of energy consumed during the manufacture of materials for vehicles were also incorporated into the model. 34 refs., 39 tabs., 6 figs

  4. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  5. Modelling and control of a light-duty hybrid electric truck

    OpenAIRE

    Park, Jong-Kyu

    2006-01-01

    This study is concentrated on modelling and developing the controller for the light-duty hybrid electric truck. The hybrid electric vehicle has advantages in fuel economy. However, there have been relatively few studies on commercial HEVs, whilst a considerable number of studies on the hybrid electric system have been conducted in the field of passenger cars. So the current status and the methodologies to develop the LD hybrid electric truck model have been studied through the ...

  6. Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kenneth; Bennion, Kevin; Miller, Eric; Prohaska, Bob

    2016-03-02

    NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impacts of duty cycle on performance requirements.

  7. Electric drive choices for light, medium, and heavy duty vehicles to reduce their climate change impact in Canada

    International Nuclear Information System (INIS)

    Fitzpatrick, N.P.

    2009-01-01

    The evolution of electric drive technologies from 1988, at the 9 th International Electric Vehicle Symposium (EVS 9) in Toronto, to 2007 at EVS 23 in Anaheim, is described. Total hybridization of Canada's fleet of light, medium and heavy duty vehicles would result in greenhouse reductions savings of 30 Mt of CO 2 E per year, similar to the saving from a 25% reduction in vehicle weight. Further savings in greenhouse reductions from plug-in hybrids require a battery cost similar to that needed for electric vehicles. Further development of both ultracapacitors and batteries is needed as is work on other parts of the electric drive supply chain. (author)

  8. Experimental study into a hybrid PCCI/CI concept for next-generation heavy-duty diesel engines

    NARCIS (Netherlands)

    Doosje, E.; Willems, F.P.T.; Baert, R.S.G.; Dijk, M.D. van

    2012-01-01

    This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load

  9. Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C. Stuart; Gao, Zhiming; Smith, David E.; Laclair, Tim J.; Pihl, Josh A.; Edwards, K. Dean

    2013-04-08

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  10. Optimal Energy Control Strategy Design for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuan Zou

    2013-01-01

    Full Text Available A heavy-duty parallel hybrid electric truck is modeled, and its optimal energy control is studied in this paper. The fundamental architecture of the parallel hybrid electric truck is modeled feed-forwardly, together with necessary dynamic features of subsystem or components. Dynamic programming (DP technique is adopted to find the optimal control strategy including the gear-shifting sequence and the power split between the engine and the motor subject to a battery SOC-sustaining constraint. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement on the fuel economy can be achieved in the heavy-duty vehicle cycle from the natural driving statistics.

  11. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  12. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  13. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  14. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  15. Medium- and Heavy-Duty Vehicle Field Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prohaska, Robert S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-11

    This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.

  16. Internet Enabled Remote Driving of a Combat Hybrid Electric Power System for Duty Cycle Measurement

    National Research Council Canada - National Science Library

    Goodell, Jarrett; Compere, Marc; Smith, Wilford; Holtz, Dale; Brudnak, Mark; Pozolo, Mike; Paul, Victor; Mohammad, Syed; Mortsfield, Todd; Shvartsman, Andrey

    2007-01-01

    This paper describes a human-in-the-loop motion-based simulator interfaced to hybrid-electric power system hardware, both of which were used to measure the duty cycle of a combat vehicle in a virtual...

  17. Modeling and Design of a medium-duty hybrid electric truck

    NARCIS (Netherlands)

    Hofman, T.; Serrarens, A.F.A.; Druten, van R.M.; Steinbuch, M.

    2007-01-01

    In this paper the effect of vehicular drive train hybridization for a medium-duty hybrid electrictruck (7 ton) on fuel economy and performance (i.e., acceleration and gradability) is investigatedby changing the size of the power sources. Furthermore, the influence of optimal component sizingof a

  18. Heavy Duty Diesel Truck and Bus Hybrid Powertrain Study

    Science.gov (United States)

    2012-03-01

    Electric Vehicles to supply battery modules for Smith’s lineup of zero-emission, all-electric commercial vehicles (CVs). A123 expects to begin...hybrids may have generally improved reliability compared to conventional diesel vehicles, their maintenance procedures are specialized. Hybrid

  19. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  20. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  1. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui; Yang Lifu; Junqing Jing; Yanling Luo [Jiangsu Xuzhou Construction Machinery Research Institute, Jiangsu (China)

    2011-01-15

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range. (author)

  2. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  3. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  4. Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a control materials and equipment on heavy-duty vehicles. Photo by Dennis Schroeder, NREL Illustration of a Ray David, NREL National Renewable Energy Laboratory (NREL) researchers are assisting heavy-duty

  5. Heavy-Duty Diesel Fuel Analysis

    Science.gov (United States)

    EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.

  6. Hybrid vehicles - an alternative for the Swedish market; Hybridfordon - ett alternativ foer den svenska bilparken

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, Karl-Erik; Bucksch, S

    2000-06-01

    The object of this report is to assemble information on and describe the situation for the development of hybrid vehicles and various alternatives within this field of development. In the report the description is concentrated mainly on the combination of combustion engine and electric battery, which is the most common combination in present day hybrid vehicles. In order to take a glimpse into the future even the combination of fuel cells and electric battery is described. The light duty electric hybrid vehicles which have been developed up to now are mainly parallel hybrids. If the development of hybrid systems takes place it will most certainly concern light duty vehicles which will come to be parallel hybrids equipped with an Otto or a diesel engine, depending on what the manufacturers wish to back. In the report the use of series hybrid vehicles is estimated to be limited to heavy-duty hybrid vehicles. Hybrids will not be likely to be relevant for heavy-duty vehicles, with the exception of those lorries which operate in city centres, i.e. lorries which are used to distribute goods to shops, garbage vehicles and certain types of working vehicle for service purposes. Continued development of the hybrid system for buses seems uncertain for various reasons. If there is a technical breakthrough in the manufacture of batteries and simultaneously the manufacturers increase their efforts to develop hybrid vehicles, the situation can be changed so that there is a speedier introduction of hybrid vehicles for heavy-duty vehicles.

  7. Analysis of application of alternative drive systems for international heavy-duty transport on Wroclaw-Dresden-Prague routes

    Science.gov (United States)

    Skrętowicz, Maria; Sroka, Zbigniew

    2017-11-01

    The depletion of the fossil fuels resources, significant increase of the air pollution caused by the use of internal combustion engines, and emission of carbon dioxide which is responsible for the greenhouse effect escalates the development of vehicle's alternative drive systems. Generally, the emphasis is given to the alternative fuels (natural gas CNG, mixture of propane-butane gases LPG, hydrogen, alcohol fuels, biofuels) and hybrid or electric vehicles. Roads between large industrial and commercial centres, i.e. Wroclaw - Dresden - Prague, are used mainly by heavy-duty vehicles. Consequently, the contribution of the road transport to the ecological threat in this realm is significant. The objectives of this research were the assessment of the traffic volume and emission rate of exhaust gases caused by heavy-duty vehicles on the analysed roads and evaluation of the possibility of using existing and alternative drive systems in vehicles driving on the roads in the analysed region.

  8. 78 FR 2868 - Draft Environmental Assessment for Rulemaking To Establish Minimum Sound Requirements for Hybrid...

    Science.gov (United States)

    2013-01-14

    ... require hybrid and electric passenger cars, light trucks, medium and heavy duty trucks and buses, low... Sound Requirements for Hybrid and Electric Vehicles AGENCY: National Highway Traffic Safety... minimum sound requirements for hybrid and electric vehicles. DATES: Comments must be received on or before...

  9. Design sensitivity analysis for heavy-duty hybrid electric trucks with a waste heat recovery system

    NARCIS (Netherlands)

    Verbruggen, F.J.R.; Hofman, T.

    One general trend aiming to improve the development of hybrid electric powertrains is the reduction of production cost of powertrains by developing powertrain components that can be used for multiple vehicle segments. The development of these kind of modular powertrain components requires knowledge

  10. The hybrid electric vehicle revolution, off road

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B.E. [ePower Technologies (United States)

    2004-07-01

    In this presentation the author presents concepts and details of hybrid vehicles in general, including their benefits, then describes off-road hybrid vehicles. Hybrid vehicles have been experimented with for over a century. Demonstrator vehicles include a diesel-electric tractor, an electric lawn tractor, a hybrid snow thrower, and a hybrid wheel loader. A duty cycle for the loader is shown with battery-assisted acceleration, and regenerative braking. Both of these keep the size of the engine small, the loads on it less variable, thus improving fuel economy. A hybrid excavator and its duty cycle is shown. A fuel cell lift truck that is currently in design is illustrated. The author then describes the possibilities of the hydrogen economy where sourcing and infrastructure are yet to be demonstrated on a commercial scale. The author predicts that off-road hydrogen fuel cell vehicles will be commercially viable five years before on-road applications. The author predicts hydrogen sourced from biogas, photovoltaics, and wind power. tabs, figs.

  11. Hybrid component specification optimization for a medium-duty hybrid electric truck

    NARCIS (Netherlands)

    Hofman, T.; Steinbuch, M.; Druten, van R.M.; Serrarens, A.F.A.

    2008-01-01

    This paper presents a modelling and simulation approach for determining the optimal degree-of-hybridisation for the drive train (engine, electric machine size) and the energy storage system (battery, ultra capacitor) for a medium-duty truck. The results show that the degree-of-hybridisation of known

  12. Integrated online energy and battery life management for hybrid long haulage truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.

    2014-01-01

    Battery lifetime management plays an important role for successful commercializing hybrid electric vehicles. This paper aims at integrating the battery lifetime management into the energy management system of a heavy-duty hybrid electric truck. The developed strategy called Integrated Energy

  13. 77 FR 4678 - Nonconformance Penalties for On-Highway Heavy Heavy-Duty Diesel Engines

    Science.gov (United States)

    2012-01-31

    ...), optimized turbo-charging, optimized fuel injection, diesel particulate filters), plus liquid urea based...-Highway Heavy Heavy-Duty Diesel Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Interim... manufacturers of heavy heavy-duty diesel engines in model years 2012 and 2013 for emissions of oxides of...

  14. Research on Fuel Consumption of Hybrid Bulldozer under Typical Duty Cycle

    Science.gov (United States)

    Song, Qiang; Wang, Wen-Jun; Jia, Chao; Yao, You-Liang; Wang, Sheng-Bo

    The hybrid drive bulldozer adopts a dual-motor independent drive system with engine-generator assembly as its power source. The mathematical model of the whole system is constructed on the software platform of MATLAB/Simulink. And then according to the velocity data gained from a real test experiment, a typical duty cycle is build up. Finally the fuel consumption of the bulldozer is calculated under this duty-cycle. Simulation results show that, compared with the traditional mechanical one, the hybrid electric drive system can save fuel up to 16% and therefore indicates great potential for lifting up fuel economy.

  15. System design and energetic characterization of a four-wheel-driven series–parallel hybrid electric powertrain for heavy-duty applications

    International Nuclear Information System (INIS)

    Wang, Enhua; Guo, Di; Yang, Fuyuan

    2015-01-01

    Highlights: • A novel four-wheel-driven series–parallel hybrid powertrain is proposed. • A system model and a rule-based control strategy are designed. • Energetic performance is compared to a rear-wheel-driven hybrid powertrain. • Less torsional oscillation and more robust regenerative braking are achieved. - Abstract: Powertrain topology design is vital for system performance of a hybrid electric vehicle. In this paper, a novel four-wheel-driven series–parallel hybrid electric powertrain is proposed. A motor is connected to the differential of the rear axle. An auxiliary power unit is linked to the differential of the front axle via a clutch. First, a mathematical model was established to evaluate the fuel-saving potential. A rule-based energy management algorithm was subsequently designed, and its working parameters were optimized. The hybrid powertrain system was applied to a transit bus, and the system characteristics were analyzed. Compared to an existing coaxial power-split hybrid powertrain, the fuel economy of the four-wheel-driven series–parallel hybrid powertrain can be at the same level under normal road conditions. However, the proposed four-wheel-driven series–parallel hybrid powertrain can recover braking energy more efficiently under road conditions with a low adhesive coefficient and can alleviate the torsional oscillation occurring at the existing coaxial power-split hybrid powertrain. Therefore, the four-wheel-driven series–parallel hybrid powertrain is a good solution for transit buses toward more robust performance.

  16. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  17. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Kosowski, Mark [Electric Power Research Institute (EPRI), Palo Alto, CA (United States)

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  18. Lithium-Ion Battery Cell Cycling and Usage Analysis in a Heavy-Duty Truck Field Study

    Directory of Open Access Journals (Sweden)

    Pontus Svens

    2015-05-01

    Full Text Available This paper presents results from a field test performed on commercial power-optimized lithium-ion battery cells cycled on three heavy-duty trucks. The goal with this study was to age battery cells in a hybrid electric vehicle (HEV environment and find suitable methods for identifying cell ageing. The battery cells were cycled on in-house developed equipment intended for testing on conventional vehicles by emulating an HEV environment. A hybrid strategy that allows battery usage to vary within certain limits depending on driving patterns was used. This concept allows unobtrusive and low-cost testing of battery cells under realistic conditions. Each truck was equipped with one cell cycling equipment and two battery cells. One cell per vehicle was cycled during the test period while a reference cell on each vehicle experienced the same environmental conditions without being cycled. Differential voltage analysis and electrochemical impedance spectroscopy were used to identify ageing of the tested battery cells. Analysis of driving patterns and battery usage was performed from collected vehicle data and battery cell data.

  19. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  20. The ethanol heavy-duty truck fleet demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  1. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  2. A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Krupp, Carsten; Baltzer, Sidney; Gnörich, Bruno; Peters, Ralf; Stolten, Detlef

    2016-01-01

    Highlights: • A battery-fuel cell hybrid auxiliary power unit for heavy duty vehicles is reported. • Comparison of direct and indirect hybrids using representative load profiles. • Evaluation based on validated fuel cell system and battery models. • Indirect hybrid with constant fuel cell load yields 29.3% hybrid system efficiency. • Fuel cell should be pre-heated using waste heat from the diesel engine during drive. - Abstract: The idling operation of engines in heavy duty vehicles to cover electricity demand during layovers entails significant fuel consumption and corresponding emissions. Indeed, this mode of operation is highly inefficient and a noteworthy contributor to the transportation sector’s aggregate carbon dioxide emissions. Here, a potential solution to this wasteful practice is outlined in the form of a hybrid battery-fuel cell system for application as an auxiliary power unit for trucks. Drawing on experimentally-validated fuel cell and battery models, several possible hybrid concepts are evaluated and direct and indirect hybrid configurations analyzed using a representative load profile. The results indicate that a direct hybrid configuration is only applicable if the load demand profile does not deviate strongly from the assumed profile. Operation of an indirect hybrid with a constant fuel cell load yields the greatest hybrid system efficiency, at 29.3%, while battery size could be reduced by 87% if the fuel cell is operated at the highest dynamics. Maximum efficiency in truck applications can be achieved by pre-heating the system prior to operation using exhaust heat from the motor, which increased system efficiency from 25.3% to 28.1%, including start-up. These findings confirm that hybrid systems could offer enormous fuel savings and constitute a sizeable step on the path toward energy-efficient and environmentally-friendly heavy duty vehicles that does not necessitate a fuel switch.

  3. Acoustic Data for Hybrid and Electric Heavy-Duty Vehicles and Electric Motorcycles

    Science.gov (United States)

    2015-12-01

    The Pedestrian Safety Enhancement Act (PSEA) of 2010 requires NHTSA to conduct a rulemaking to establish a Federal Motor Vehicle Safety Standard requiring an alert sound for pedestrians to be emitted by all types of motor vehicles that are electric o...

  4. Heavy duty plasma spray gun

    International Nuclear Information System (INIS)

    Irons, G.C.; Klein, J.F.; Lander, R.D.; Thompson, H.C.; Trapani, R.D.

    1984-01-01

    A heavy duty plasma spray gun for extended industrial service is disclosed. The gun includes a gas distribution member made of a material having a coefficient of expansion different from that of the parts surrounding it. The gas distribution member is forcibly urged by a resilient member such as a coiled spring against a seal so as to assure the plasma gas is introduced into the gun arc in a manner only defined by the gas distribution member. The gun has liquid cooling for the nozzle (anode) and the cathode. Double seals are provided between the coolant and the arc region and a vent is provided between the seals which provides an indication when a seal has failed. Some parts of the gun are electrically isolated from others by an intermediate member which is formed as a sandwich of two rigid metal face pieces and an insulator disposed between them. The metal face pieces provide a rigid body to attach the remaining parts in proper alignment therewith

  5. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport

    Science.gov (United States)

    Quiros, David C.; Smith, Jeremy; Thiruvengadam, Arvind; Huai, Tao; Hu, Shaohua

    2017-11-01

    Heavy-duty on-road vehicles account for 70% of all freight transport and 20% of transportation-sector greenhouse gas (GHG) emissions in the United States. This study measured three prevalent GHG emissions - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - from seven heavy-duty vehicles, fueled by diesel and compressed natural gas (CNG), and compliant to the MY 2007 or 2010 U.S. EPA emission standards, while operated over six routes used for freight movement in California. Total combined (tractor, trailer, and payload) weights were 68,000 ± 1000 lbs. for the seven vehicles. Using the International Panel on Climate Change (IPCC) radiative forcing values for a 100-year time horizon, N2O emissions accounted for 2.6-8.3% of total tailpipe CO2 equivalent emissions (CO2-eq) for diesel vehicles equipped with Diesel Oxidation Catalyst, Diesel Particulate Filter, and Selective Catalytic Reduction system (DOC + DPF + SCR), and CH4 emissions accounted for 1.4-5.9% of CO2-eq emissions from the CNG-powered vehicle with a three-way catalyst (TWC). N2O emissions from diesel vehicles equipped with SCR (0.17-0.30 g/mi) were an order of magnitude higher than diesel vehicles without SCR (0.013-0.023 g/mi) during highway operation. For the vehicles selected in this test program, we measured 11-22% lower CO2-eq emissions from a hybrid compared to conventional diesel vehicles during transport over lower-speed routes of the freight transport system, but 20-27% higher CO2-eq emissions during higher-speed routes. Similarly, a CNG vehicle emitted up to 15% lower CO2-eq compared to conventional diesel vehicles over more neutral-grade highway routes, but emitted up to 12% greater CO2-eq emissions over routes with higher engine loads.

  6. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  7. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks Table 1—Sampling...

  8. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  9. An electric-drive vehicle strategy for Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, D.; Lipman, T. [California Univ., Davis, CA (United States). Inst. of Transportation Studies; Lundberg, M. [Swedish Transport and Communications Research Board, Stockholm (Sweden)

    2000-07-01

    The strategy that Sweden has taken regarding the use of electric-powered vehicles (EVs) to mitigate the environmental impacts caused by the transportation sector was discussed. Sweden's unique attributes include inexpensive and clean electricity, a strong environmental ethic and a strong automotive sector. All versions of electric-drive technology are considered to be environmentally superior to internal combustion engine vehicles. While the cost of batteries is dropping, they will remain highly priced. However, manufacturers are making larger investments into hybrid EVs and fuel cell EVs. Electric drive buses are also gaining in popularity as a means by which to reduce exhaust gases in urban areas. Sweden's industrial policy is aimed at manufacturing electrically driven heavy duty vehicles such as buses and trucks. The environmental policy is aimed at deploying small EVs for on and off-road transportation use, as well as heavy duty EVs targeted by the industrial policy. refs.

  10. Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing

    OpenAIRE

    Marcinkoski, J.; Vijayagopal, R.; Kast, J.; Duran, A.

    2016-01-01

    Medium and heavy duty (MD and HD respectively) vehicles are responsible for 26 percent of the total U.S. transportation petroleum consumption [1]. Hydrogen fuel cells have demonstrated value as part of a portfolio of strategies for reducing petroleum use and emissions from MD and HD vehicles [2] [3], but their performance and range capabilities, and associated component sizing remain less clear when compared to other powertrains. This paper examines the suitability of converting a representat...

  11. IEA implementing agreement for hybrid and electric vehicle technologies and programmes, Annex VII hybrid vehicles : Topic 13, assessment of the energy consumption of hybrid trucks using ADVISOR

    NARCIS (Netherlands)

    Eelkema, J.; Winkel, R.G.; Geraets, R.; Verbakel, M.J.L.

    2002-01-01

    This topic report focuses on the possible benefits of the application of a hybrid powertrain in heavy-duty vehicles. The main objective is to assess whether a significant reduction in fuel consumption is feasible. An average Dutch distribution truck with a conventional driveline will be compared to

  12. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  13. Optimal Sizing and Control Strategy Design for Heavy Hybrid Electric Truck

    Directory of Open Access Journals (Sweden)

    Yuan Zou

    2012-01-01

    Full Text Available Due to the complexity of the hybrid powertrain, the control is highly involved to improve the collaborations of the different components. For the specific powertrain, the components' sizing just gives the possibility to propel the vehicle and the control will realize the function of the propulsion. Definitely the components' sizing also gives the constraints to the control design, which cause a close coupling between the sizing and control strategy design. This paper presents a parametric study focused on sizing of the powertrain components and optimization of the power split between the engine and electric motor for minimizing the fuel consumption. A framework is put forward to accomplish the optimal sizing and control design for a heavy parallel pre-AMT hybrid truck under the natural driving schedule. The iterative plant-controller combined optimization methodology is adopted to optimize the key parameters of the plant and control strategy simultaneously. A scalable powertrain model based on a bilevel optimization framework is built. Dynamic programming is applied to find the optimal control in the inner loop with a prescribed cycle. The parameters are optimized in the outer loop. The results are analysed and the optimal sizing and control strategy are achieved simultaneously.

  14. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  15. Idle emissions from medium heavy-duty diesel and gasoline trucks.

    Science.gov (United States)

    Khan, A B M S; Clark, Nigel N; Gautam, Mridul; Wayne, W Scott; Thompson, Gregory J; Lyons, Donald W

    2009-03-01

    Idle emissions data from 19 medium heavy-duty diesel and gasoline trucks are presented in this paper. Emissions from these trucks were characterized using full-flow exhaust dilution as part of the Coordinating Research Council (CRC) Project E-55/59. Idle emissions data were not available from dedicated measurements, but were extracted from the continuous emissions data on the low-speed transient mode of the medium heavy-duty truck (MHDTLO) cycle. The four gasoline trucks produced very low oxides of nitrogen (NOx) and negligible particulate matter (PM) during idle. However, carbon monoxide (CO) and hydrocarbons (HCs) from these four trucks were approximately 285 and 153 g/hr on average, respectively. The gasoline trucks consumed substantially more fuel at an hourly rate (0.84 gal/hr) than their diesel counterparts (0.44 gal/hr) during idling. The diesel trucks, on the other hand, emitted higher NOx (79 g/hr) and comparatively higher PM (4.1 g/hr), on average, than the gasoline trucks (3.8 g/hr of NOx and 0.9 g/hr of PM, on average). Idle NOx emissions from diesel trucks were high for post-1992 model year engines, but no trends were observed for fuel consumption. Idle emissions and fuel consumption from the medium heavy-duty diesel trucks (MHDDTs) were marginally lower than those from the heavy heavy-duty diesel trucks (HHDDTs), previously reported in the literature.

  16. Development of a multi-mode hybrid electric bus

    Energy Technology Data Exchange (ETDEWEB)

    Shemmans, M.J. [Overland Custom Coach, Thorndale, ON (Canada); Bland, C. [BET Services Inc., Mississauga, ON (Canada)

    2004-04-01

    This paper describes the development of an energy efficient, low floor, 28 foot hybrid electric bus for use as an airport shuttle bus or other specialized transit operations. A multi-mode concept was also adopted to include the capability of operating in battery-only drive, engine-only drive or a range of hybrid electric drive modes. The electric drivetrain was powered by a battery pack or a combination of a battery pack and an internal combustion engine-powered electric generator. The participating companies in this project include Overland Custom Coach, BET Services Inc., Siemens and Transport Canada. The technical feasibility study was described with reference to duty cycles, performance issues, vehicle weight, mechanical drive issues, brakes, suspension, powertrain cooling, heating, ventilation, electrical system, batteries and control system. The commercial feasibility was also described in terms of capital and operating costs. Results of the prototype tests validate the possibilities of zero or reduced emission transit in real world applications. 25 tabs., 32 figs.

  17. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation

    OpenAIRE

    Mareev, Ivan; Becker, Jan Nicolas; Sauer, Dirk Uwe

    2018-01-01

    The use of heavy-duty battery electric trucks for long-haul transportation is challenging because of the required high energy amounts and thus the high capacity of traction batteries. Furthermore a high capacity battery implies high initial costs for the electric vehicle. This study investigates the required battery capacity for battery electric trucks considering the requirements of long-haul transportation in Germany and compares the life cycle costs of battery electric trucks and conventio...

  18. Data Collection, Testing, and Analysis of Hybrid Electric Trucks and Buses Operating in California Fleets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duran, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ragatz, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cosgrove, Jon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sindler, Petr [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Russell, Robert [Univ. of California, Riverside, CA (United States); Johnson, Kent [Univ. of California, Riverside, CA (United States)

    2015-06-12

    The objective of this project was to evaluate and quantify the emission impacts of commercially available hybrid medium- and heavy-duty vehicles relative to their non-hybrid counterparts. This effort will allow the California Air Resources Board (CARB) and other agencies to more effectively encourage development and commercial deployment of the most efficient, lowest emitting hybrid technologies needed to meet air quality and climate goals.

  19. Real-world NOx emissions of Euro V and Euro VI heavy duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, R.; Dekker, H.; Vonk, W.

    2012-04-15

    TNO regularly performs measurements to determine the in-service performance and durability with respect to the pollutant emissions of heavy-duty vehicles under representative driving conditions. The 2011 measurement programme yields new insights regarding the emission performance of the upcoming Euro VI technology for heavy-duty vehicles, mandatory as of 31 December 2013 and, together with the results from earlier performed programmes, leads to conclusions on the emission performance of past and present generations of heavy-duty vehicles (Euro V, EEV)

  20. On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.

    Science.gov (United States)

    Kear, Tom; Niemeier, D A

    2006-12-15

    This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.

  1. Scenarios for use of biogas for heavy-duty vehicles in Denmark and related GHG emissions impacts

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Winther, Morten; Jørgensen, Uffe

    2017-01-01

    of biogas is of concern. This study has analysed the potential biomass and biogas production from all Danish organic waste sources under different scenario assumptions for future scenario years. The analysis includes energy demand of the road transportation sector by means of transport and fuel types......, and potential use of the limited biogas resource taking into account alternative fuel options available for transportation (electricity, hydrogen, biofuels). Further, the total differences in fuel consumption and GHG emissions due to the replacement of diesel-powered heavy-duty vehicles by gas-powered heavy...

  2. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  3. Powertrain preheating system of tracked hybrid electric vehicle in cold weather

    International Nuclear Information System (INIS)

    Wang, Rui; Wang, Yichun; Feng, Chaoqing; Zhang, Xilong

    2015-01-01

    In order to make sure that the heavy duty tracked vehicle can work in various conditions, especially severe cold weather, preheating system of powertrain should be adopted, and a novel preheating system is presented for the tracked hybrid electric vehicle (HEV) in which heat is generated by the low-speed drive motor. The new preheating system can meet the need of cold start without adding any additional device. The characteristic of heat generation by motor is tested when the rotor of motor is rotated in very low speed. The heat loss from power cabin to external environment has been simulated, and the relevant test has been done to verify the simulation results. Combining the characteristic of heat generation and heat loss situation about preheating system, the heat transfer model of preheating system was implemented by MATLAB. The total energy required for preheating in different ambient temperature was calculated by this model. The results showed that: the minimum heating power was 70 kW and energy required was about 180 MJ when the HEV worked in −46 °C. If lithium ferrous phosphate (LFP) battery was used in power system, the minimum battery capacity is about 290 A h. - Highlights: • A novel preheating method was proposed for heavy duty tracked HEV. • Thermal energy in preheating system is produced by the PMSM in driving system. • This method can achieve preheating target by its own components without any adding. • Analyzing low temperature performance of power battery and select its capacity.

  4. Development of the New Light-Duty Hybrid Truck

    OpenAIRE

    Yamaguchi, Koichi

    2008-01-01

    Hino Motors, Ltd., developed the new light-duty hybrid truck whose traction motor, inverter, and traction battery were completely redesigned for maximizing output and efficiency. It also succeeds in balancing low fuel economy and low exhaust emissions by utilizing a combination of a new hybrid system control with a specially developed diesel engine.

  5. Hennepin County`s experience with heavy-duty ethanol vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

  6. Kansas Consortium Plug-in Hybrid Medium Duty

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative

  7. Heavy Duty Tireman. Open Pit Mining Job Training Series.

    Science.gov (United States)

    McColman, Don

    This training outline for heavy duty tiremen, one in a series of eight outlines, is designed primarily for company training foremen or supervisors and for trainers to use as an industry-wide guideline for heavy equipment operator training in open pit mining in British Columbia. Intended as a guide for preparation of lesson plans both for classroom…

  8. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  9. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Science.gov (United States)

    2010-07-01

    ..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...

  10. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  11. Evaluation of duty cycles for heavy-duty urban vehicles : final report of IEA AMF Annex 29

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Erkkila, K. [VTT Technical Research Centre of Finland, Espoo (Finland); Clark, N. [West Virginia Univ., Morgantown, WV (United States); Rideout, G. [Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre, Emissions Research and Measurement Div

    2007-07-01

    Heavy-duty vehicles in Europe and North America will require incylinder measures or exhaust gas after-treatment technology to control emissions and meet ever stringent emission requirements. Alternatively, manufacturers can choose clean burning alternative fuels such as natural gas. Although there are no international standards for heavy-duty vehicle chassis dynamometer testing at present, the IEA Implementing Agreements offer excellent platforms for international collaborative research. Harmonization of test methods for vehicles and fuels is one important task. This paper reported on the work of 3 laboratories that have produced emission results for complete heavy-duty vehicles. VTT Technical Research of Finland, Environment Canada and West Virginia University measured standard size urban buses driving various duty cycles on chassis dynamometers. The number of transient test cycles per laboratory varied from 6 to 16. European and North American diesel and natural gas vehicles were included in the vehicle matrix. The objective was to demonstrate how the driving cycle affects the emission performance of conventional and advanced urban buses. Several driving cycles were run on urban buses to better understand the characteristics of different duty cycles; produce a key for cross-interpretation of emission results generated with different cycles; and study the interaction between vehicle, exhaust after-treatment and fuel technologies and test procedures. Fuel consumption and exhaust emissions were measured. The results varied significantly not only by test cycle, but also by vehicle technology. In general, vehicles emissions were directly proportioned to the amount of fuel consumed, with the exception of NOx-emissions from SCR-vehicles. There was a clear difference in the emission profiles of European and North American vehicles. In Europe, fuel efficiency was emphasized, while in North America, more focus was given to regulated exhaust emissions, especially low

  12. 40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... for Light-Duty Vehicles and Light-Duty Trucks § 86.1708-99 Exhaust emission standards for 1999 and... are incorporated by reference (see § 86.1). (v) Hybrid electric vehicle requirements. Deterioration factors for hybrid electric vehicles shall be based on the emissions and mileage accumulation of the...

  13. PROBABILISTIC FINITE ELEMENT ANALYSIS OF A HEAVY DUTY RADIATOR UNDER INTERNAL PRESSURE LOADING

    Directory of Open Access Journals (Sweden)

    ROBIN ROY P.

    2017-09-01

    Full Text Available Engine cooling is vital in keeping the engine at most efficient temperature for the different vehicle speed and operating road conditions. Radiator is one of the key components in the heavy duty engine cooling system. Heavy duty radiator is subjected to various kinds of loading such as pressure, thermal, vibration, internal erosion, external corrosion, creep. Pressure cycle durability is one of the most important characteristic in the design of heavy duty radiator. Current design methodologies involve design of heavy duty radiator using the nominal finite element approach which does not take into account of the variations occurring in the geometry, material and boundary condition, leading to over conservative and uneconomical designs of radiator system. A new approach is presented in the paper to integrate traditional linear finite element method and probabilistic approach to design a heavy duty radiator by including the uncertainty in the computational model. As a first step, nominal run is performed with input design variables and desired responses are extracted. A probabilistic finite elementanalysis is performed to identify the robust designs and validated for reliability. Probabilistic finite element includes the uncertainty of the material thickness, dimensional and geometrical variation. Gaussian distribution is employed to define the random variation and uncertainty. Monte Carlo method is used to generate the random design points.Output response distributions of the random design points are post-processed using different statistical and probability technique to find the robust design. The above approach of systematic virtual modelling and analysis of the data helps to find efficient and reliable robust design.

  14. Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles

    International Nuclear Information System (INIS)

    Barter, Garrett E.; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; West, Todd H.; Manley, Dawn K.; Guzman, Katherine D.; Edwards, Donna M.

    2012-01-01

    A parametric analysis is used to examine the supply demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through 2050. The analysis emphasizes competition between conventional internal combustion engine (ICE) vehicles, including hybrids, and electric vehicles (EVs), represented by both plug-in hybrid and battery electric vehicles. We find that EV market penetration could double relative to our baseline case with policies to extend consumers' effective payback period to 7 years. EVs can also reduce per vehicle petroleum consumption by up to 5% with opportunities to increase that fraction at higher adoption rates. However, EVs have limited ability to reduce LDV greenhouse gas (GHG) emissions with the current energy source mix. Alone, EVs cannot drive compliance with the most aggressive GHG emission reduction targets, even if the electricity grid shifts towards natural gas powered sources. Since ICEs will dominate the LDV fleet for up to 40 years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions and petroleum consumption over this time. Specifically, achieving fleet average efficiencies of 72 mpg or greater can reduce average GHG emissions by 70% and average petroleum consumption by 81%. - Highlights: ► Parametric analysis of the light duty vehicle fleet, its fuels, and energy sources. ► Conventional vehicles will dominate the fleet for up to 40 years. ► Improving gasoline powertrain efficiency is essential for GHG and oil use reduction. ► Electric vehicles have limited leverage over GHG emissions with the current grid mix. ► Consumer payback period extensions can double electric vehicle market share.

  15. Marginal abatement cost curves for Heavy Duty Vehicles. Background report

    Energy Technology Data Exchange (ETDEWEB)

    Schroten, A.; Warringa, G.; Bles, M.

    2012-09-15

    Cost curves were calculated for CO2 abatement technologies for Heavy Duty Vehicles. These curves were elaborated for eight different vehicle categories (six categories of truck and two subcategories), as well as for an 'average' truck and bus. Given that cost curves depend very much on underlying assumptions, the MACH model (Marginal Abatement Costs of Heavy duty vehicles) was developed. This model allows users to enter their own assumptions with respect to parameters like fuel prices and cost and lifetime of individual technologies, with the model then generating new cost curves for the various vehicle categories. This background report contains a description of the model and a summary of the results of several model runs.

  16. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Musculus, Mark P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically short injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.

  17. Distributed Road Grade Estimation for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sahlholm, Per

    2011-07-01

    An increasing need for goods and passenger transportation drives continued worldwide growth in traffic. As traffic increases environmental concerns, traffic safety, and cost efficiency become ever more important. Advancements in microelectronics open the possibility to address these issues through new advanced driver assistance systems. Applications such as predictive cruise control, automated gearbox control, predictive front lighting control, and hybrid vehicle state-of-charge control decrease the energy consumption of vehicles and increase the safety. These control systems can benefit significantly from preview road grade information. This information is currently obtained using specialized survey vehicles, and is not widely available. This thesis proposes new methods to obtain road grade information using on-board sensors. The task of creating road grade maps is addressed by the proposal of a framework where vehicles using a road network collect the necessary data for estimating the road grade. The estimation can then be carried out locally in the vehicle, or in the presence of a communication link to the infrastructure, centrally. In either case the accuracy of the map increases over time, and costly road surveys can be avoided. This thesis presents a new distributed method for creating accurate road grade maps for vehicle control applications. Standard heavy duty vehicles in normal operation are used to collect measurements. Estimates from multiple passes along a road segment are merged to form a road grade map, which improves each time a vehicle retraces a route. The design and implementation of the road grade estimator are described, and the performance is experimentally evaluated using real vehicles. Three different grade estimation methods, based on different assumption on the road grade signal, are proposed and compared. They all use data from sensors that are standard equipment in heavy duty vehicles. Measurements of the vehicle speed and the engine

  18. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  19. Quantitative Evaluation of Heavy Duty Machine Tools Remanufacturing Based on Modified Catastrophe Progression Method

    Science.gov (United States)

    shunhe, Li; jianhua, Rao; lin, Gui; weimin, Zhang; degang, Liu

    2017-11-01

    The result of remanufacturing evaluation is the basis for judging whether the heavy duty machine tool can remanufacture in the EOL stage of the machine tool lifecycle management.The objectivity and accuracy of evaluation is the key to the evaluation method.In this paper, the catastrophe progression method is introduced into the quantitative evaluation of heavy duty machine tools’ remanufacturing,and the results are modified by the comprehensive adjustment method,which makes the evaluation results accord with the standard of human conventional thinking.Using the catastrophe progression method to establish the heavy duty machine tools’ quantitative evaluation model,to evaluate the retired TK6916 type CNC floor milling-boring machine’s remanufacturing.The evaluation process is simple,high quantification,the result is objective.

  20. Final Rule for Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Science.gov (United States)

    EPA is taking final action to establish nonconformance penalties (NCPs) for manufacturers of heavy heavy-duty diesel engines (HHDDE) in model years 2012 and later for emissions of oxides of nitrogen (NOX) because we have found the criteria for NCPs.

  1. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  2. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of..., exhaust emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For Otto-cycle heavy-duty engines fueled with either gasoline or liquefied petroleum gas, and intended...

  3. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of

  4. Robust cylinder pressure estimation in heavy-duty diesel engines

    NARCIS (Netherlands)

    Kulah, S.; Forrai, A.; Rentmeester, F.; Donkers, T.; Willems, F.P.T.

    2017-01-01

    The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the

  5. Hybrid-mode interleaved boost converter design for fuel cell electric vehicles

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • A high power interleaved boost converter is designed for a 150 kW high-power fuel cell electric vehicle application. • A hybrid-mode scheme is used: Mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. • Boundary conditions for different modes are determined with respect to switching duty ratio and load conditions. • With the proposed scheme, the power density is improved by 44.2% and 34.3% in terms of the converter volume and weight. - Abstract: For Fuel Cell Electric Vehicles, DC-DC power converters are essential to provide energy storage buffers between fuel cell stacks and the traction system because fuel cells show characteristics of low-voltage high-current output and wide output voltage variation. This paper presents a hybrid-mode two-phase interleaved boost converter for fuel cell electric vehicle application in order to improve the power density, minimize the input current ripple, and enhance the system efficiency. Two operation modes are adopted in the practical design: mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. The operation, design and control of the interleaved boost converter for different operating modes are discussed with their equivalent circuits. The boundary conditions are distinguished with respect to switching duty ratio and load conditions. Transitions between continuous conduction mode and discontinuous conduction mode are illustrated for the whole duty ratio range. The expressions for inductor current ripple, input current ripple and output voltage ripple are derived and verified by simulation and experimental tests. The efficiency and power density improvements are illustrated to verify the effectiveness of the proposed design scheme.

  6. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  7. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later...

  8. Development of a heavy duty portable variable power supply (HPVPS)

    Science.gov (United States)

    Musa, Ahmad Zulfadli Bin; Lung, Chong Man; Abidin, Wan'Amirah Basyarah Binti Zainol

    2017-08-01

    This paper covers the innovation of a Heavy Duty Portable Variable Power Supply (HPVPS) in Jabatan Kejuruteraan Elektrik (JKE), Politeknik Mukah, Sarawak (PMU). This project consists of variable power supply which can vary the output from 1.2 V to 11.6V, AC pure wave inverter to convert DC to AC for the operation of low power home appliances and also used Li-on rechargeable batteries to store the electrical energy and additional feature that can be used to jump-start the batteries of the car. The main objective of this project is to make the user can operate the electronic devices anywhere whenever if no electricity while doing their lab activities. Most of the regulated power supply in JKE lab aged 9-10 years old and need periodical maintenance and need cost and also the unit can be used is not enough to support the whole class during lab activities. As a result, the P&P process will be facing the major problem in order to make the lab activities running smoothly. By development of the portable variable power supply, the P&P process is more efficient and very helpful.

  9. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  10. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  11. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  12. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  13. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    Energy Technology Data Exchange (ETDEWEB)

    LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  14. Thermal/structural analysis of radiators for heavy-duty trucks

    International Nuclear Information System (INIS)

    Mao Shaolin; Cheng, Changrui; Li Xianchang; Michaelides, Efstathios E.

    2010-01-01

    A thermal/structural coupling approach is applied to analyze thermal performance and predict the thermal stress of a radiator for heavy-duty transportation cooling systems. Bench test and field test data show that non-uniform temperature gradient and dynamic pressure loads may induce large thermal stress on the radiator. A finite element analysis (FEA) tool is used to predict the strains and displacement of radiator based on the solid wall temperature, wall-based fluid film heat transfer coefficient and pressure drop. These are obtained from a computational fluid dynamics (CFD) simulation. A 3D simulation of turbulent flow and coupled heat transfer between the working fluids poses a major difficulty because the range of length scales involved in heavy-duty radiators varies from few millimeters of the fin pitch and/or tube cross-section to several meters for the overall size of the radiator. It is very computational expensive, if not impossible, to directly simulate the turbulent heat transfer between fins and the thermal boundary layer in each tube. In order to overcome the computational difficulties, a dual porous zone (DPZ) method is applied, in which fins in the air side and turbulators in the water side are treated as porous region. The parameters involved in the DPZ method are tuned based on experimental data in prior. A distinguished advantage of the porous medium method is its effectiveness of modeling wide-range characteristic scale problems. A parametric study of the impact of flow rate on the heat transfer coefficient is presented. The FEA results predict the maximum value of stress/strain and target locations for possible structural failure and the results obtained are consistent with experimental observations. The results demonstrate that the coupling thermal/structural analysis is a powerful tool applied to heavy-duty cooling product design to improve the radiator thermal performance, durability and reliability under rigid working environment.

  15. Heavy-duty explosively operated pulsed opening and closing switches

    International Nuclear Information System (INIS)

    Peterson, D.R.; Price, J.H.; Upshaw, J.L.; Weldon, W.F.; Zowarka, R.C.; Gully, J.H.; Spann, M.L.

    1991-01-01

    This paper discusses improvements to heavy duty, explosively operated, opening and closing switches to reduce component cost, installation cost, and turnaround time without sacrificing reliability. Heavy duty opening and closing switches operated by small explosive charges (50 g or less) are essential to operation of the 60 MJ Balcones power supply. The six independent modules - a 10 MJ homopolar generator (HPG) and a 6 μH storage inductor - can be discharged sequentially, a valuable feature for shaping the current pulse delivered to loads such as high-energy railguns. Each delayed inductor must be isolated from the railgun circuit with a heavy duty closing switch capable of carrying megampere currents to millisecond duration. Similar closing switches are used to crowbar the railgun as the projectile approaches the muzzle: noise reduction, reduction of muzzle arc damage, and reduction of post-launch perturbation of projectile flight. The switches - both opening and closing - are characterized by microhm resistance in the closed state. Current is carried in metallic conductors. Metal-to-metal seams which carry current are maintained in uniform high pressure contact. Efficient switching is crucial to efficient conversion: rotor kinetic energy to stored inductive energy with ∼50% efficiency, stored inductive energy to projectile kinetic energy with ∼30% efficiency. The switches must operate with a precision and repeatability of 10 -5 s, readily achievable with explosives. The opening switches must be structurally and thermally capable of carrying megampere currents for more than 100 ms (∼10 5 C) and develop 10 kV upon opening, stay open for 10 - 2 s, and safely and reliably dissipate megajoules of inductive energy in the event of a fault, a failure of the switch to operate or an attempt to commutate into an open circuit

  16. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, James [Caterpillar Inc., Mossville, IL (United States)

    2017-06-13

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the next generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.

  17. Fuel composition impact on heavy duty diesel engine combustion & emissions

    NARCIS (Netherlands)

    Frijters, P.J.M.

    2012-01-01

    The Heavy Duty Diesel or compression ignition (CI) engine plays an important economical role in societies all over the world. Although it is a fuel efficient internal combustion engine design, CI engine emissions are an important contributor to global pollution. To further reduce engine emissions

  18. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

    OpenAIRE

    Grelet, Vincent; Dufour, Pascal; Nadri, Madiha; Lemort, Vincent; Reiche, Thomas

    2015-01-01

    Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

  19. Model development for air conditioning system in heavy duty trucks

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; van den Bosch, P.P.J.; Zhang, Quansheng; Li, Shengbo Eben; Deng, Kun

    2016-01-01

    This chapter presents a modelling approach for the air conditioning (AC) system in heavy duty trucks. The presented model entails two major elements: a mechanical compressor model and a thermal AC model. The compressor model describes the massflow of the refrigerant as well as the mechanical power

  20. Simulation of a heavy-duty diesel engine with electrical turbocompounding system using operating charts for turbocharger components and power turbine

    International Nuclear Information System (INIS)

    Katsanos, C.O.; Hountalas, D.T.; Zannis, T.C.

    2013-01-01

    Highlights: • A diesel model was developed using charts for turbocharger and power turbine. • The maximum value of bsfc improvement is 4.1% at 100% engine load. • The generated electric power ranges from 23 kW to 62 kW. • Turbocharger turbine efficiency decreases slightly with the power turbine speed. • Turbocompounding increases the average pressure value in the exhaust manifold. - Abstract: In diesel engines, approximately 30–40% of the energy supplied by the fuel is rejected to the ambience through exhaust gases. Therefore, there is a potentiality for further considerable increase of diesel engine efficiency with the utilization of exhaust gas heat and its conversion to mechanical or electrical energy. In the present study, the operational behavior of a heavy-duty (HD) diesel truck engine equipped with an electric turbocompounding system is examined on a theoretical basis. The electrical turbocompounding configuration comprised of a power turbine coupled to an electric generator, which is installed downstream to the turbocharger (T/C) turbine. A diesel engine simulation model has been developed using operating charts for both turbocharger and power turbine. A method for introducing the operating charts into the engine model is described thoroughly. A parametric analysis is conducted with the developed simulation tool, where the varying parameter is the rotational speed of power turbine shaft. In this study, the interaction between the power turbine and the turbocharged diesel engine is examined in detail. The effect of power turbine speed on T/C components efficiencies, power turbine efficiency, exhaust pressure and temperature, engine boost pressure and air to fuel ratio is evaluated. In addition, theoretical results for the potential impact of electrical turbocompounding on the generated electric power, net engine power and relative improvement of brake specific fuel consumption (bsfc) are provided. The critical evaluation of the theoretical

  1. Particulate emissions from new heavy duty vehicles (Euro IV and V); Partikeludslip fra nye tunge koeretoejer (Euronorm IV og V)

    Energy Technology Data Exchange (ETDEWEB)

    Jordal-Joergensen, J.; Ohm, A.; Willumsen, E. (COWI A/S, Kgs. Lyngby (DK))

    2008-07-01

    The new Danish act on environmental zones allows local authorities to define zones where EURO III or older heavy duty vehicles should be equipped with a particulate filter. The introduction of EURO IV and V has reduced particulate emissions from heavy duty vehicles by approximately 80 % based on the mass of particles. There is, however, substantial uncertainty about the impact on the number of ultrafine particles, since they are not covered by Euronorm standards. When passing the bill, the Danish Minister for the Environment of the time stated that all relevant knowledge about particle emission from heavy duty vehicles needed to be collected for subsequent publication. To this end, the Danish Environmental Protection Agency (DEPA) commissioned a literature survey. The purpose of the survey is to provide an overview of the latest knowledge in the field of particle emissions from heavy duty vehicles, with special focus on the average size of the particle emissions. Another objective of the study is to analyse the direct emissions of NO{sub 2} from heavy duty vehicles classified under EURO IV and V. (au)

  2. Heavy quarkonium hybrids: Spectrum, decay, and mixing

    Science.gov (United States)

    Oncala, Ruben; Soto, Joan

    2017-07-01

    We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order, including the mixing of static hybrid states. We use potentials that fulfill the required short and long distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing potential at O (1 /mQ) , mQ being the mass of the heavy quarks, and work out its short and long distance constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of QCD are used for that goal. We show that the mixing effects may indeed be important and produce large spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or standard quarkonium candidate.

  3. Direct injection of diesel-butane blends in a heavy duty engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; van den Berge, B.; Luijten, C.C.M.; Goey, de L.P.H.; Jaasma, S.A.M.

    2011-01-01

    Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles.

  4. Design of power steering systems for heavy-duty long-haul vehicles

    NARCIS (Netherlands)

    Silvas, E.; Backx, E.A.; Hofman, T.; Voets, H.; Steinbuch, M.

    2014-01-01

    Conventionally, all auxiliaries present in a heavy-duty vehicle (e.g., power-steering pump, air-conditioning compressor) are engine-driven systems, which put high constraints on their performance. Outputs (e.g., speed, temperature) and energy consumption are dictated by engine speed, while most

  5. Energy storage technologies and hybrid architectures for specific diesel-driven rail duty cycles: Design and system integration aspects

    International Nuclear Information System (INIS)

    Meinert, M.; Prenleloup, P.; Schmid, S.; Palacin, R.

    2015-01-01

    Highlights: • We assessed integration of energy storage systems into hybrid system architectures. • We considered mechanical and electrical energy storage systems. • Potential of different combinations has been analyzed by standardized duty cycles. • Most promising are diesel-driven suburban, regional and shunting operations. • Double-layer capacitors and Lithium-ion batteries have the highest potential. - Abstract: The use of diesel-driven traction is an intrinsic part of the functioning of railway systems and it is expected to continue being so for the foreseeable future. The recent introduction of more restrictive greenhouse gas emission levels and other legislation aiming at the improvement of the environmental performance of railway systems has led to the need of exploring alternatives for cleaner diesel rolling stock. This paper focuses on assessing energy storage systems and the design of hybrid system architectures to determine their potential use in specific diesel-driven rail duty cycles. Hydrostatic accumulators, flywheels, Lithium-ion batteries and double-layer capacitors have been assessed and used to design hybrid system architectures. The potential of the different technology combinations has been analyzed using standardized duty cycles enhanced with gradient profiles related to suburban, regional and shunting operations. The results show that double-layer capacitors and Lithium-ion batteries have the highest potential to be successfully integrated into the system architecture of diesel-driven rail vehicles. Furthermore, the results also suggest that combining these two energy storage technologies into a single hybridisation package is a highly promising design that draws on their strengthens without any significant drawbacks.

  6. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2004-08-23

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  7. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  8. Hybrid Electric Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Publications Hybrid Electric Vehicle Publications The following technical papers, conference papers, and fact sheets provide information about NREL's hybrid electric fleet vehicle Class 8 Hybrid Electric Delivery Trucks. Mike Lammert. (2011) FedEx Delivery Trucks In-Use and Vehicle

  9. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    International Nuclear Information System (INIS)

    Wai-Lin Litzke; James Wegrzyn

    2001-01-01

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications

  10. Critical component wear in heavy duty engines

    CERN Document Server

    Lakshminarayanan, P A

    2011-01-01

    The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading.  Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon r

  11. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  12. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION OF EMISSION CONTROLS FOR HEAVY-DUTY DIESEL ENGINES

    Science.gov (United States)

    While lower emissions limits that took effect in 2004 and reduced sulfur content in diesel fuels will reduce emissions from new heavy-duty engines, the existing diesel fleet, which pollutes at much higher levels, may still have a lifetime of 20 to 30 years. Fleet operators seekin...

  14. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  15. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov (United States)

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to between fill-ups) that's very similar to the range of a conventional vehicle. A plug-in hybrid vehicle's

  16. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine

    International Nuclear Information System (INIS)

    Wang, Tianyou; Zhang, Yajun; Zhang, Jie; Peng, Zhijun; Shu, Gequn

    2014-01-01

    Highlights: • Comparisons of exhaust energy recovery are launched between two types of engine. • System performances are analyzed in terms of benefits and thermo-economics. • Diesel engine system presents superior to gasoline type in economic applicability. • Only diesel engine system using water under full load meets the economic demand. - Abstract: Exhaust energy recovery system (EERS) based on Rankine cycle (RC) in internal combustion engines have been studied mainly on heavy-duty diesel engines (D) and light-duty vehicle gasoline engines (G), however, little information available on systematical comparisons and evaluations between the two applications, which is a particularly necessary summary for clarifying the differences. In this paper, the two particular systems are compared quantitatively using water, R141b, R123 and R245fa as working fluids. The influences of evaporating pressure, engine type and load on the system performances are analyzed with multi-objectives, including the thermal efficiency improvement, the reduced CO 2 emission, the total heat transfer area per net power output (APP), the electricity production cost (EPC) and the payback period (PBP). The results reveal that higher pressure and engine load would be attractive for better performances. R141b shows the best performances in system benefits for the D-EERS, while water exhibits the largest contributions in the G-EERS. Besides, water performs the best thermo-economics, and R245fa serves as the most uneconomical fluid. The D-EERS presents superior to the G-EERS in the economic applicability as well as much more CO 2 emission reductions, although with slightly lower thermal efficiency improvement, and only the D-EERS with water under the full load meets the economic demand. Therefore the EERS based on RC serve more applicable on the heavy-duty diesel engine, while it might be feasible for the light-duty vehicle gasoline engine as the state-of-the art technologies are developed in the

  17. A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet

    International Nuclear Information System (INIS)

    Zhao, Yang; Tatari, Omer

    2015-01-01

    The vehicle-to-grid system is an approach utilizing the idle battery capacity of electric vehicles while they are parked to provide supplementary energy to the power grid. As electrification continues in light duty vehicle fleets, the application of vehicle-to-grid systems for commercial delivery truck fleets can provide extra revenue for fleet owners, and also has significant potential for reducing greenhouse gas emissions from the electricity generation sector. In this study, an economic input–output based hybrid life cycle assessment is conducted to analyze the potential greenhouse gas emissions emission savings from the use of the vehicle-to-grid system, as well as the possible emission impacts caused by battery degradation. A Monte Carlo simulation was performed to address the uncertainties that lie in the electricity exchange amount of the vehicle-to-grid service as well as the battery life of the electric vehicles. The results of this study showed that extended range electric vehicles and battery electric vehicles are both viable regulation service providers for saving greenhouse gas emissions from electricity generation if the battery wear-out from regulation services is assumed to be minimal, but the vehicle-to-grid system becomes less attractive at higher battery degradation levels. - Highlights: • The commercial delivery trucks are studied as vehicle-to-grid service providers. • Hybrid life cycle assessment is conducted to evaluate emission mitigation. • Battery degradation level and corresponding emissions and cost are evaluated. • Vehicle-to-grid service is shown to have significant emission saving effect.

  18. Electric-hybrid-vehicle simulation

    Science.gov (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  19. Diluted Operation of a Heavy-Duty Natural Gas Engine - Aiming at Improved Effciency, Emission and Maximum Load

    OpenAIRE

    Kaiadi, Mehrzad

    2011-01-01

    Most heavy-duty engines are diesel operated. Severe emission regulations, high fuel prices, high technology costs (e.g. catalysts, fuel injection systems) and unsustainably in supplying fuel are enough reasons to convenience engine developers to explore alternative technologies or fuels. Using natural gas/biogas can be a very good alternative due to the attractive fuel properties regarding emission reduction and engine operation. Heavy-duty diesel engines can be easily converted for natur...

  20. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  1. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Directory of Open Access Journals (Sweden)

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  2. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  3. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov (United States)

    . A wide variety of hybrid electric vehicle models is currently available. Although HEVs are often -go traffic), further improving fuel economy. Mild hybrid systems cannot power the vehicle using Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric

  4. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  5. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Otto-cycle HDE. (d) Every manufacturer of new motor vehicle engines subject to the standards prescribed... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  6. Overview of hybrid electric vehicle trend

    Science.gov (United States)

    Wang, Haomiao; Yang, Weidong; Chen, Yingshu; Wang, Yun

    2018-04-01

    With the increase of per capita energy consumption, environmental pollution is worsening. Using new alternative sources of energy, reducing the use of conventional fuel-powered engines is imperative. Due to the short period, pure electric vehicles cannot be mass-produced and there are many problems such as imperfect charging facilities. Therefore, the development of hybrid electric vehicles is particularly important in a certain period. In this paper, the classification of hybrid vehicle, research status of hybrid vehicle and future development trends of hybrid vehicles is introduced. It is conducive to the public understanding of hybrid electric vehicles, which has a certain theoretical significance.

  7. Medium-Duty Plug-in Electric Delivery Truck Fleet Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Ragatz, Adam; Simpson, Mike; Kelly, Kenneth

    2016-06-29

    In this paper, the authors present an overview of medium-duty electric vehicle (EV) operating behavior based on in-use data collected from Smith Newton electric delivery vehicles and compare their performance and operation to conventional diesel trucks operating in the same fleet. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific EV technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4% reduction in carbon dioxide equivalent emissions based on the local energy generation source.

  8. Euro VI technologies and costs for Heavy Duty vehicles: the expert panels summary of stakeholders responses

    NARCIS (Netherlands)

    Gense, N.L.J.; Riemersma, I.J.; Such, C.l; Ntziachristos, L.

    2006-01-01

    This report is the result of the work carried out under on the Europeans Commission’s call for tender regarding “Technical support for the Commission DG Environment on the development of Euro 5 standards for light-duty vehicles and Euro VI standards for heavy-duty vehicles” (Reference:

  9. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    OpenAIRE

    Burke, A.F.; Miller, M.

    1997-01-01

    The study focused on the emission reduction and fuel economy benefits of the application of hybrid/electric powertrain technology to tight-duty vehicles (mid-size and compact passenger cars). The approach taken was to calculate the exhaust emissions (gm/mi) energy use (Wh/mi and mpg) for a wide range of vehicle designs (steel and light-weight materials), engines, energy storage devices, control strategies, and driving cycles using two vehicle simulation programs (SIMPLEV and AVTE). The full f...

  10. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2010-12-29

    ...-HQ-OAR-2010-0162; FRL-9219-4; NHTSA 2010-0079] RIN 2060-AP61; RIN 2127-AK74 Greenhouse Gas Emissions... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on...

  11. Integrated powertrain control for optimizing CO2-NOx emission trade-off in heavy duty hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Willems, F.P.T.; Spronkmans, S.J.

    2011-01-01

    Energy management in modern vehicles typically relates to optimizing the powerflow in the (hybrid) powertrain, whereas emission management is associated with the combustion engine and its aftertreatment system. To achieve maximum performance in both fuel economy and hazardous emissions, the concept

  12. Effect of c-f hybridization on electric and magnetic properties of some Heavy Fermion (HF) systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, J., E-mail: jitendrasahoo2008@gmail.com [Regional Office of Vocational Education, Sambalpur, Odisha -768 004 (India); Nayak, P. [School of Physics, Sambalpur University, Sambalpur, Odisha - 768 019 (India)

    2017-02-01

    Representing the heavy fermion systems by the Periodic Anderson Model (PAM), we have used Zubarev technique to see the effect of c-f hybridization on the temperature dependence of resistivity and magnetic susceptibility. The calculated resistivity and magnetic susceptibility show the general features observed in these materials experimentally. Further, we have shown how the strength of hybridization as well as the position of the f-level affects both the properties and the Kondo temperature of these systems.

  13. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation

    Directory of Open Access Journals (Sweden)

    Ivan Mareev

    2017-12-01

    Full Text Available The use of heavy-duty battery electric trucks for long-haul transportation is challenging because of the required high energy amounts and thus the high capacity of traction batteries. Furthermore a high capacity battery implies high initial costs for the electric vehicle. This study investigates the required battery capacity for battery electric trucks considering the requirements of long-haul transportation in Germany and compares the life cycle costs of battery electric trucks and conventional diesel trucks in different transportation scenarios. The average consumption is simulated for different battery electric truck configurations on the main German highways and transportation scenarios incorporating battery charging during driver rest periods. The results show that in average case the required battery would restrict the payload to only 80% of a usual diesel truck payload that might be acceptable considering the statistical payload use. The life cycle costs in the examined scenarios also considering the charging infrastructure show that battery electric trucks can already perform on the same costs level as diesel trucks in certain scenarios.

  14. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami [Eaton Corporation, Menomonee Falls, WI (United States)

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  15. Benefits of a parallel hybrid electric architecture on medium commercial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Boot, Marco Aimo; Consano, Ludovico [Iveco S.p.A, Turin (Italy)

    2009-07-01

    Hybrid electric technology is becoming an increasingly interesting solution for medium and heavy trucks involved in urban and suburban missions. The increasing demand for gas and oil, consequent price rises and environmental concerns are driving a market that is in need of alternative solutions. For these reasons, the growth in the global hybrid market significantly exceeded all the hybrid sales forecasts. The parallel hybrid electric vehicle (PHEV) employs an additional power source (electric motogenerator) in combination with the conventional diesel engine. This architecture exploits the benefits of both power sources in order to reduce the fuel consumption, increase the overall power, and above all, decrease CO2 emissions. Moreover, the emissions reduction target is lead by EU Regulations and local initiatives for traffic limitations, but the real drivers for the growth in the market are demonstrable fuel economy improvements and productivity costs optimization (global efficiency). This paper presents the results achieved by Iveco in the development and testing of parallel hybrid systems applied to medium range commercial vehicles, with the intent to evaluate the functionality, driveability performance and leading the best reduction in terms of fuel consumption and emissions in different real-world missions. The system architecture foresees one electric motor/generator and a single clutch unit. An external electrical power source for the battery recharging it is not necessary. The chosen configuration allows to implement the following functional modes: Stop and Start with Electric Launch, Hybrid Mode, Regenerative Braking Mode, Inertial Start and Creeping Mode. The software contained in the supervisor control unit has been tuned to the customer specific missions, taking in account on road data acquisition in order to demonstrate the reliability, driveability and the overall efficiency of the hybrid system. The field tests carried out in collaboration with

  16. Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine

    International Nuclear Information System (INIS)

    Shu, Gequn; Zhao, Mingru; Tian, Hua; Huo, Yongzhan; Zhu, Weijie

    2016-01-01

    Organic Rankine Cycle (ORC) on-board is a solution for vehicles to save energy and reduce emission. Considering the characteristics of waste heat from vehicle, the criterions of the suitable working fluid are very strict. R123 and R245fa have been widely used in companies and labs, however, the difference of their properties under different engine conditions still requires further study. During this research, a series of experiments have been done to compare the performance of these two working fluids, what's more, to determine under which engine conditions they are suitable separately. These experimental comparisons are new and important for the targeting design of ORC for vehicles. The result shows that, considering the difference of thermodynamic properties and the limited cooling capacity on board, R123 shows its advantage for the waste heat recovery at heavy duty, while R245fa is more suitable at light-and-medium duty. These properties make R123 suitable for the ORC designed for long-haul heavy-duty truck, while R245fa is suggested for city bus. The following performance test of R123 for waste heat recovery from heavy-duty diesel engine shows that the maximum fuel consumption improvement can be as much as 2.8%. - Highlights: • R123 is more suitable for heavy duty and steady working condition. • R245fa shows its advantage at light-and-medium duty and varying working condition. • R123 suits better for long-haul heavy-duty truck, while R245fa for city bus. • The maximum fuel consumption improvement is as much as 2.8%.

  17. Parameter estimation and analysis of an automotive heavy-duty SCR catalyst model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2017-01-01

    A single channel model for a heavy-duty SCR catalyst was derived based on first principles. The model considered heat and mass transfer between the channel gas phase and the wash coat phase. The parameters of the kinetic model were estimated using bench-scale monolith isothermal data. Validation ...

  18. Empirical membrane lifetime model for heavy duty fuel cell systems

    Science.gov (United States)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  19. Direct injection of a diesel-butane blend in a heavy duty engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; van den Berge, B.; Luijten, C.C.M.; Somers, L.M.T.; Jaasma, S.A.M.; Goey, de L.P.H.

    2011-01-01

    LPG (Liquefied Petroleum Gas) has for long been used in passenger cars. Presently, LPG sup-ply systems have also attracted considerable at-tention for heavy duty use. LPG can be applied in these engines combining port fuel injected LPG with a direct injection of diesel. These engines equipped with a

  20. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Longden, Thomas

    2013-01-01

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  1. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  2. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  3. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  4. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  5. Implementation and evaluation of change-over speed in plug-in hybrid electric two wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Sadagopan, P.; Neelakrishnan, S.

    2016-01-01

    In Asia, two wheelers are popular mode of transportation to a large group of people because of their relative affordability and ability to maneuver in heavy city traffic. However, the rate of fuel consumption and emission contribution by them, especially in urban areas need more attention to improve sustainability of energy and air quality. Recently, plug-in hybrid technology has been emerged as one of the most promising alternatives in reducing petroleum consumption and emission. This paper presents the implementation of plug-in hybrid technology on a two wheeler by formulation of novel control strategy suitable for Indian city driving needs. Experimental investigations on hub motor and IC (internal combustion) engine has been carried out to fix the change-over speed in hybrid mode, followed by road test on prototype vehicle. The performance of prototype vehicle on IDC (Indian driving cycle) simulated road pattern and actual road driving, confirmed the change-over speed of vehicle in hybrid mode. The converted plug-in hybrid electric two wheeler also demonstrated the drive strategy adopted for higher energy efficiency up to 2.5 times. So, plug-in hybrid electric two wheelers show significant improvements in fuel economy by replacing petroleum fuel with electricity for portions of trip to achieve nations' energy security. - Highlights: • Implementation of plug-in hybrid concept for two wheelers suitable for city driving. • Investigation on hub motor, engine and prototype vehicle to fix change-over speed. • Plug-in hybrid electric two wheeler demonstrates 2.48 times higher fuel efficiency. • Significant improvements in fuel economy help to achieve nations' energy security.

  6. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  7. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  8. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.

    Science.gov (United States)

    Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry

    2018-05-15

    Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.

  9. HEAVY-DUTY GREENHOUSE GAS EMISSIONS MODEL ...

    Science.gov (United States)

    Class 2b-8 vocational truck manufacturers and Class 7/8 tractor manufacturers would be subject to vehicle-based fuel economy and emission standards that would use a truck simulation model to evaluate the impact of the truck tires and/or tractor cab design on vehicle compliance with any new standards. The EPA has created a model called “GHG Emissions Model (GEM)”, which is specifically tailored to predict truck GHG emissions. As the model is designed for the express purpose of vehicle compliance demonstration, it is less configurable than similar commercial products and its only outputs are GHG emissions and fuel consumption. This approach gives a simple and compact tool for vehicle compliance without the overhead and costs of a more sophisticated model. Evaluation of both fuel consumption and CO2 emissions from heavy-duty highway vehicles through a whole-vehicle operation simulation model.

  10. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  11. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  12. Medium Duty Electric Vehicle Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Robin J. D. [Smith Electric Vehicles Corporation, Kansas City, MO (United States)

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  13. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  14. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  15. State-of-the-art assessment of electric and hybrid vehicles

    Science.gov (United States)

    1978-01-01

    Data are presented that were obtained from the electric and hybrid vehicles tested, information collected from users of electric vehicles, and data and information on electric and hybrid vehicles obtained on a worldwide basis from manufacturers and available literature. The data given include: (1) information and data base (electric and hybrid vehicle systems descriptions, sources of vehicle data and information, and sources of component data); (2) electric vehicles (theoretical background, electric vehicle track tests, user experience, literature data, and summary of electric vehicle status); (3) electric vehicle components (tires, differentials, transmissions, traction motors, controllers, batteries, battery chargers, and component summary); and (4) hybrid vehicles (types of hybrid vehicles, operating modes, hybrid vehicles components, and hybrid vehicles performance characteristics).

  16. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  17. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    International Nuclear Information System (INIS)

    Redelbach, Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements

  18. Parity-violating hybridization in heavy Weyl semimetals

    Science.gov (United States)

    Chang, Po-Yao; Coleman, Piers

    2018-04-01

    We introduce a simple model to describe the formation of heavy Weyl semimetals in noncentrosymmetric heavy fermion compounds under the influence of a parity-mixing, onsite hybridization. A key aspect of interaction-driven heavy Weyl semimetals is the development of surface Kondo breakdown, which is expected to give rise to a temperature-dependent reconfiguration of the Fermi arcs and the Weyl cyclotron orbits which connect them via the chiral bulk states. Our theory predicts a strong temperature-dependent transformation in the quantum oscillations at low temperatures. In addition to the effects of surface Kondo breakdown, the renormalization effects in heavy Weyl semimetals will appear in a variety of thermodynamic and transport measurements.

  19. Bandwidth based methodology for designing a hybrid energy storage system for a series hybrid electric vehicle with limited all electric mode

    Science.gov (United States)

    Shahverdi, Masood

    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller

  20. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  1. Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling

    Directory of Open Access Journals (Sweden)

    Sina Shojaei

    2017-12-01

    Full Text Available Ambient conditions can have a significant impact on the average and maximum temperature of the battery of electric and plug-in hybrid electric vehicles. Given the sensitivity of the ageing mechanisms of typical battery cells to temperature, a significant variability in battery lifetime has been reported with geographical location. In addition, high battery temperature and the associated cooling requirements can cause poor passenger thermal comfort, while extreme battery temperatures can negatively impact the power output of the battery, limiting the available electric traction torque. Avoiding such issues requires enabling battery cooling even when the vehicle is parked and not plugged in (key-off, but the associated extra energy requirements make applying key-off cooling a non-trivial decision. In this paper, a representative plug-in parallel hybrid electric vehicle model is used to simulate a typical 24-h duty cycle to quantify the impact of hot ambient conditions on three performance attributes of the vehicle: the battery lifetime, passenger thermal comfort and fuel economy. Key-off cooling is defined as an optimal control problem in view of the duty cycle of the vehicle. The problem is then solved using the dynamic programming method. Controlling key-off cooling through this method leads to significant improvements in the battery lifetime, while benefiting the fuel economy and thermal comfort attributes. To further improve the battery lifetime, partial charging of the battery is considered. An algorithm is developed that determines the optimum combination of key-off cooling and the level of battery charge. Simulation results confirm the benefits of the proposed method.

  2. Masses of open-flavour heavy-light hybrids from QCD sum-rules

    Energy Technology Data Exchange (ETDEWEB)

    Ho, J. [Department of Physics and Engineering Physics, University of Saskatchewan,Saskatoon, SK, S7N 5E2 (Canada); Harnett, D. [Department of Physics, University of the Fraser Valley,Abbotsford, BC, V2S 7M8 (Canada); Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,Saskatoon, SK, S7N 5E2 (Canada)

    2017-05-29

    We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light hybrids where one of the hybrid’s constituent quarks is a charm or bottom and the other is an up, down, or strange. We compute leading-order, diagonal correlation functions of several hybrid interpolating currents, taking into account QCD condensates up to dimension-six, and extract hybrid mass predictions for all J{sup P}∈{0"±, 1"±}, as well as explore possible mixing effects with conventional quark-antiquark mesons. Within theoretical uncertainties, our results are consistent with a degeneracy between the heavy-nonstrange and heavy-strange hybrids in all J{sup P} channels. We find a similar mass hierarchy of 1{sup +}, 1{sup −}, and 0{sup +} states (a 1{sup +} state lighter than essentially degenerate 1{sup −} and 0{sup +} states) in both the charm and bottom sectors, and discuss an interpretation for the 0{sup −} states. If conventional meson mixing is present the effect is an increase in the hybrid mass prediction, and we estimate an upper bound on this effect.

  3. Opportunities for High-Value Bioblendstocks to Enable Advanced Light- and Heavy-Duty Engines: Insights from the Co-Optima Project

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-25

    Co-Optima research and analysis have identified fuel properties that enable advanced light-duty and heavy-duty engines. There are a large number of blendstocks readily derived from biomass that possess beneficial properties. Key research needs have been identified for performance, technology, economic, and environmental metrics.

  4. Comparison of EGR-VTG control schemes for an EPA2010 heavy-duty diesel engine

    NARCIS (Netherlands)

    Criens, C.H.A.; Willems, F.P.T.; Steinbuch, M.

    2011-01-01

    Next generation heavy-duty diesel engines require tight air path control to meet upcoming emission legislation with minimal fuel consumption. This study concentrates on the emission control of a 13l, 360 kW EGR diesel engine, which is compliant with EPA2010 emission targets. Currently, an

  5. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Science.gov (United States)

    2010-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...

  6. Gas fuelled heavy-duty trucks for municipal services

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, A. (City of Helsinki Construction Services (Finland)); Hietanen, L. (Lassila and Tikanoja, Jyvaeskylae (Finland)); Nylund, N.-O. (TEC TransEnergy Consulting, Espoo (Finland))

    2009-07-01

    Helsinki City Public Works Department (HKR) and the environmental management company Lassila and Tikanoja joined forces to demonstrate the suitability of heavy-duty gas fuelled trucks for municipal services. HKR acquired two and Lassila and Tikanoja five Mercedes-Benz Econic trucks. HKR's trucks are equipped with interchangeable platforms, Lassila an Tikanoja's trucks with refuse collection equipment. The trucks are subjected to a two-year follow-up study to establish reliability, operational costs and exhaust emissions. Diesel trucks representing up-to-date technology are used as reference. If the gas fuelled trucks perform well, this can lead to increased numbers of natural gas trucks in municipal services, and in the long run to the introduction of biogas fuelled trucks. (orig.)

  7. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  8. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    Science.gov (United States)

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-02

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required.

  9. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  10. Improved Deep Belief Networks (IDBN Dynamic Model-Based Detection and Mitigation for Targeted Attacks on Heavy-Duty Robots

    Directory of Open Access Journals (Sweden)

    Lianpeng Li

    2018-04-01

    Full Text Available In recent years, the robots, especially heavy-duty robots, have become the hardest-hit areas for targeted attacks. These attacks come from both the cyber-domain and the physical-domain. In order to improve the security of heavy-duty robots, this paper proposes a detection and mitigation mechanism which based on improved deep belief networks (IDBN and dynamic model. The detection mechanism consists of two parts: (1 IDBN security checks, which can detect targeted attacks from the cyber-domain; (2 Dynamic model and security detection, used to detect the targeted attacks which can possibly lead to a physical-domain damage. The mitigation mechanism was established on the base of the detection mechanism and could mitigate transient and discontinuous attacks. Moreover, a test platform was established to carry out the performance evaluation test for the proposed mechanism. The results show that, the detection accuracy for the attack of the cyber-domain of IDBN reaches 96.2%, and the detection accuracy for the attack of physical-domain control commands reaches 94%. The performance evaluation test has verified the reliability and high efficiency of the proposed detection and mitigation mechanism for heavy-duty robots.

  11. The Federal electric and hybrid vehicle program

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The commercial development and use of electric and hybrid vehicles is discussed with respect to its application as a possible alternative transportation system. A market demonstration is described that seeks to place 10,000 electric hybrid vehicles into public and private sector demonstrations.

  12. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  13. Optimising the cam profile of an electronic unit pump for a heavy-duty diesel engine

    International Nuclear Information System (INIS)

    Qiu, Tao; Dai, Hefei; Lei, Yan; Cao, Chunlei; Li, Xuchu

    2015-01-01

    For a fuel system with a tangent cam or a constant-velocity cam, the peak injection pressure continues to rise as the injection duration increases, but overly high peak pressures induce mechanical loads and wear, limiting the maximum engine speed and injection quantity. To improve the performance of an EUP (Electronic Unit Pump) fuel system for heavy-duty diesel engines, this work proposes a new pump cam, namely the constant-pressure cam. It helps the EUP run at a higher speed and deliver larger fuel quantities while maintaining a constant peak injection pressure, which improves the power of the heavy-duty diesel engine. A model based on the EUP was built to determine the three constraints for optimising the constant-pressure cam: 1) the pump pressure should equal the nozzle pressure; 2) the cam speed should decrease with the increase in the injection duration; and 3) the cam acceleration gradient should be zero. An EUP system was tested with the tangent cam and the optimised cam under different conditions. The experimental results show that the EUP system with the optimised cam delivers more injection quantity and runs at higher engine speeds while maintaining the same peak pressure as the tangent cam. - Highlights: • We propose a constant-pressure cam to improve the power of heavy-duty diesel engine. • We deduce three constraints for the CP (constant-peak pressure) cam based on a model. • The EUP system with the new cam works well under higher engine speed. • The peak pressure of the constant-pressure cam fuel system maintains high

  14. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Science.gov (United States)

    Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng

    2018-03-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.

  15. Research on the Obstacle Negotiation Strategy for the Heavy-duty Six-legged Robot based on Force Control

    Directory of Open Access Journals (Sweden)

    Li Mantian

    2017-01-01

    Full Text Available To make heavy-duty six-legged robots without environment reconstruction system negotiate obstacles after the earthquake successfully, an obstacle negotiation strategy is described in this paper. The reflection strategy is generated by the information of plantar force sensors and Bezier Curve is used to plan trajectory. As the heavy-duty six-legged robot has a large inertia, force controller is necessary to ensure the robot not to lose stability while negotiating obstacles. Impedance control is applied to reduce the impact of collision and active force control is applied to adjust the pose of the robot. The robot can walk through zones that are filled with obstacles automatically because of force control. Finally, the algorithm is verified in a simulation environment.

  16. On particulate characterization in a heavy-duty diesel engine by time-resolved laser-induced incandescence

    NARCIS (Netherlands)

    Bougie, H.J.T.

    2007-01-01

    This dissertation describes the results of soot measurements acquired in the combustion chamber of an optically accessible heavy-duty Diesel engine. The Diesel engine is the most efficient internal combustion engine. Pollutant emissions from the engine, such as soot and NOx, however, form a

  17. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  18. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  19. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected......‐2013). Also the power capabilities may increase meaning that e.g. acceleration capabilities will improve as well as the top speed. This development occurs due to new battery technology that may experience substantial improvements in the coming years. When looking at plug‐in hybrid electric vehicles...... developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...

  20. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov (United States)

    primary fuel or to improve the efficiency of conventional vehicle designs. Hybrid Electric Vehicles Icon cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost

  1. Manitoba plug-in hybrid electric vehicle (PHEV) demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hoemsen, R. [Red River College, Winnipeg, MB (Canada); Parsons, R. [Government of Manitoba, Winnipeg, MB (Canada). Centre for Emerging Renewable Energy

    2010-07-01

    Manitoba has low electricity rates, the highest proportion of renewables, and a legislated commitment to reduce greenhouse gases. However, the province still relies heavily on oil as everyone else. The mix of energy opportunities in Manitoba were highlighted in this presentation, with particular reference to the commercialization of electric vehicles. Several photographs were presented of the Toyota plug-in hybrid vehicle and a plug-in hybrid electric demonstration vehicle. A demonstration project overview was offered that used technology from A123 Systems Inc. The conversion module and vehicle users were profiled. Topics that were presented related to the demonstration project included monitoring; gasoline fuel economy results; fuel economy variability; cold weather operation; cold weather issues; battery upgrade solutions; and highly qualified personnel. It was concluded that in terms of follow-up, there is a need to combine findings of current plug-in hybrid electric vehicle demonstration with those for the new Toyota production plug-in hybrid vehicles. Key next steps for the demonstration are to address cabin heating requirements; better characterizing winter performance; and implementation of IPLC units on all plug-in hybrid electric vehicles for electricity consumption. figs.

  2. Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations

    Directory of Open Access Journals (Sweden)

    Yoon Seong Kim

    2017-01-01

    Full Text Available Makers of heavy-duty diesel engines (HDDEs need to reduce their inventory of old-generation products in preparation for the demand for next-generation products that satisfy new emission regulations. In this paper, a new demand forecasting model is proposed to reflect special conditions raised by the technological generational shift owing to new emission regulation enforcement. In addition, sensitivity analyses are conducted to better accommodate uncertainty involved at the time of prediction. Our proposed model can help support manufacturers’ production and sales management for a series of products in response to new emission regulations.

  3. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  4. Evaluation of the potential of the Stirling engine for heavy duty application

    Science.gov (United States)

    Meijer, R. J.; Ziph, B.

    1981-01-01

    A 150 hp four cylinder heavy duty Stirling engine was evaluated. The engine uses a variable stroke power control system, swashplate drive and ceramic insulation. The sensitivity of the design to engine size and heater temperature is investigated. Optimization shows that, with porous ceramics, indicated efficiencies as high as 52% can be achieved. It is shown that the gain in engine efficiency becomes insignificant when the heater temperature is raised above 200 degrees F.

  5. Analysis of the Journal Bearing Friction Losses in a Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Christoph Knauder

    2015-04-01

    Full Text Available Internal combustion engines (ICE for the use in heavy-duty trucks and buses have to fulfil demanding requirements for both vehicle efficiency as well as for emission of greenhouse gases. Beside the piston assembly the journal bearings are among the largest contributors to friction in the ICE. Through a combination of measurements and validated simulation methods the journal bearing friction losses of a state-of-the-art heavy-duty Diesel engine are investigated for a large range of real world operating conditions. To this task recently developed and extensively validated simulation methods are used together with realistic lubricant models that consider the Non-Newtonian behaviour as well as the piezoviscous effect. In addition, the potential for further friction reduction with the use of ultra-low viscosity lubricants is explored. The results reveal a potential of about 8% friction reduction in the journal bearings using a 0W20 ultra-low viscosity oil with an HTHS-viscosity (The HTHS-viscosity is defined as the dynamic viscosity of the lubricant measured at 150 °C and at a shear rate of 106 s

  6. QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing

    Science.gov (United States)

    Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.

    2018-02-01

    We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).

  7. Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines

    International Nuclear Information System (INIS)

    Kim, Joung Seok; Lee, Wu Sang; Ryu, Je Wook

    2013-01-01

    This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Docosan Heavy Industries. The design procedure mainly consists of three parts: namely, flow path design, airfoil design, and 3a performance calculation. To design the optimized flow path, through flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and had angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2a airfoil planar sections are designed carefully, followed by 2a B2 NS calculations. The designed planar sections are stacked along the span wise direction, leading to a 3a surfaced airfoil shape. To consider the 3a effect on turbine performance, 3a multistage Euler calculation, single row, and multistage NS calculations are performed

  8. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  9. Stoichiometric and lean burn heavy-duty gas engines: a dilemma between emissions and fuel consumption?

    NARCIS (Netherlands)

    Steen, M. van der; Rijke, J. de; Seppen, J.J.

    1996-01-01

    This paper compares stoichiometric with lean burn technology for heavy-duty gas engines (natural gas and LPG) and demonstrates that there is a future for both engine concepts on the multilateral global market. Emission limits in Europe as expected in the near future will facilitate both engine

  10. Personal Rotorcraft Design and Performance with Electric Hybridization

    Science.gov (United States)

    Snyder, Christopher A.

    2017-01-01

    Recent and projected improvements for more or all-electric aviation propulsion systems can enable greater personal mobility, while also reducing environmental impact (noise and emissions). However, all-electric energy storage capability is significantly less than present, hydrocarbon-fueled systems. A system study was performed exploring design and performance assuming hybrid propulsion ranging from traditional hydrocarbon-fueled cycles (gasoline Otto and diesel) to all-electric systems using electric motors generators, with batteries for energy storage and load leveling. Study vehicles were a conventional, single-main rotor (SMR) helicopter and an advanced vertical takeoff and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew); the design range for the VTOL aircraft was set to 150 miles (about one hour total flight). Search and rescue (SAR), loiter, and cruise-dominated missions were chosen to illustrate each vehicle and degree of hybrid propulsion strengths and weaknesses. The traditional, SMR helicopter is a hover-optimized design; electric hybridization was performed assuming a parallel hybrid approach by varying degree of hybridization. Many of the helicopter hybrid propulsion combinations have some mission capabilities that might be effective for short range or on-demand mobility missions. However, even for 30 year technology electrical components, all hybrid propulsion systems studied result in less available fuel, lower maximum range, and reduced hover and loiter duration than the baseline vehicle. Results for the VTOL aircraft were more encouraging. Series hybrid combinations reflective of near-term systems could improve range and loiter duration by 30. Advanced, higher performing series hybrid combinations could double or almost triple the VTOL aircrafts range and loiter duration. Additional details on the study assumptions and work performed are given, as well as suggestions for future study effort.

  11. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  12. Vehicle modeling and duty cycle analysis to validate technology feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, S. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The National Centre for Advanced Transportation (CNTA) is a non-profit organization with a board consisting of representatives from the transportation industry, public service and public transit organizations, research and teaching institutions, and from municipal and economic development organizations. The objectives of the CNTA are to accelerate the introduction of electric and hybrid vehicles; act as a catalyst in projects; assist in increasing Canadian technology assets; initiate and support electric vehicle conversion projects; increase Canadian business for electric vehicles, hybrid vehicles, and plug-in electric vehicles; and provide a cost-effective solution and aggressive payback for road/off-road vehicles. This presentation provided an overview of the objectives and services of the CNTA. It discussed various road and off-road vehicles, duty cycle and technology of electric vehicles. Specific topics related to the technology were discussed, including configuration; controls and interface; efficiency maps; models and simulation; validation; and support. figs.

  13. EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES

    Science.gov (United States)

    A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...

  14. Brazilian hybrid electric fuel cell bus

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.E.V.; Carreira, E.S. [Coppe-Federal Univ. of Rio de Janeiro (Brazil). Hydrogen Lab.

    2010-07-01

    The first prototype of a hybrid electric fuel cell bus developed with Brazilian technology is unveiled. It is a 12 m urban-type, low-floor, air-conditioned bus that possesses three doors, air suspension, 29 seats and reversible wheelchair site. The bus body was built based on a double-deck type monoblock vehicle that is able to sustain important load on its roof. This allowed positioning of the type 3 hydrogen tanks and the low weight traction batteries on the roof of the vehicles without dynamic stabilization problems. A novel hybrid energy configuration was designed in such a way that the low-power (77 kWe) fuel cell works on steady-state operation mode, not responding directly to the traction motor load demand. The rate of kinetic energy regeneration upon breaking was optimized by the use of an electric hybrid system with predominance of batteries and also by utilizing supercapacitors. The electric-electronic devices and the security control softwares for the auxiliary and traction systems were developed in-house. The innovative hybrid-electric traction system configuration led to the possibility to decrease the fuel cell power, with positive impact on weight and system volume reduction, as well as to significantly decrease the hydrogen consumption. (orig.)

  15. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    Science.gov (United States)

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  16. Field Evaluation of Medium-Duty Plug-in Electric Delivery Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ragatz, Adam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Walkowicz, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report focuses on medium-duty electric delivery vehicles operated by Frito-Lay North America (FLNA) at its Federal Way, Washington, distribution center. The 100% electric drive system is an alternative to conventional diesel delivery trucks and reduces both energy consumption and carbon dioxide (CO2) emissions. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific electric vehicle (EV) technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4% reduction in CO2 equivalent emissions based on the local energy generation source. In addition to characterizing the in-use performance of the EVs compared to the conventional diesels, detailed facility load data were collected at the main building power feed as well as from each of the 10 EV chargers to better understand the broader implications associated with commercial EV deployment. These facility loads were incorporated into several modeling scenarios to demonstrate the potential benefits of integrating onsite renewables.

  17. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov (United States)

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative

  18. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  19. Semivolatile organic compound emissions from heavy-duty trucks operating on diesel and bio-diesel fuel blends

    Science.gov (United States)

    This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...

  20. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  1. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, E.H.

    2002-07-22

    The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

  2. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Directory of Open Access Journals (Sweden)

    Mo Yang

    2018-03-01

    Full Text Available Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM, this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool. Keywords: CFRP drive-line system, Dynamic behavior, Transfer matrix, Vibration measurement

  3. Experimental study on the heavy-duty gas turbine combustor

    International Nuclear Information System (INIS)

    Antonovsky, V.; Ahn, Kook Young

    2000-01-01

    The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed in the scale 1:1. The model experiments were executed at a pressure smaller than in the real gas turbine. The combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure, and NOx emission were measured at partial and full load for both model and on-site testing. The comparison of these items of information, received on similar modes in the stand and field tests, has allowed the development of a method of calculation and the improvement of gas turbine combustors

  4. Quantitative nitric oxide measurements by means of laser-induced fluorescence in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Vliet, van A.P.; Klein-Douwel, R.J.H.; Ganippa, L.C.; Bougie, H.J.T.; Meerts, W.L.; Dam, N.J.; Meulen, ter J.J.

    2005-01-01

    Quantitative in-cylinder laser-induced fluorescence measurements ofnitric oxide in a heavy-duty Diesel engine are presented. Special attention is paid to experimental techniques to assess the attenuation of the laser beam and the fluorescence signal by the cylinder contents.This attenuation can be

  5. 77 FR 50502 - California State Nonroad Engine Pollution Control Standards; In-Use Heavy-Duty Vehicles (As...

    Science.gov (United States)

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL 9716-9] California State Nonroad Engine Pollution Control Standards; In- Use Heavy-Duty Vehicles (As Applicable to Yard Trucks and Two-Engine Sweepers); Opportunity... control of emissions from new nonroad engines which are used in construction equipment or vehicles or used...

  6. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  7. Hybrid-electric propulsion for automotive and aviation applications

    OpenAIRE

    Friedrich, C; Robertson, Paul Andrew

    2014-01-01

    In parallel with the automotive industry, hybrid-electric propulsion is becoming a viable alternative propulsion technology for the aviation sector and reveals potential advantages including fuel savings, lower pollution, and reduced noise emission. Hybrid-electric propulsion systems can take advantage of the synergy between two technologies by utilizing both internal combustion engines and electric motors together, each operating at their respective optimum conditions...

  8. Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction.

    Science.gov (United States)

    Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug

    2018-09-01

    On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Experimental Verification of Discretely Variable Compression Braking Control for Heavy Duty Vehicles

    OpenAIRE

    Vahidi, Ardalan; Stefanopoulou, Anna G.; Farias, Phil; Tsao, Tsu Chin

    2003-01-01

    In this report a recursive least square scheme with multiple forgetting factors is proposed for on-line estimation of road grade and vehicle mass. The estimated mass and grade can be used to robustify many automatic controllers in conventional or automated heavy-duty vehicles. We demonstrate with measured test data from the July 26-27, 2002 test dates in San Diego, CA, that the proposed scheme estimates mass within 5% of its actual value and tracks grade with good accuracy. The experimental s...

  10. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.

    Science.gov (United States)

    Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T

    2017-12-01

    Today's heavy-duty natural gas-fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas-fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas-fueled fleet penetration is low, today's total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas-fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "pump-to-wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Newly collected pump-to-wheels methane emissions data for current natural gas technologies

  11. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    OpenAIRE

    Mo Yang; Lin Gui; Yefa Hu; Guoping Ding; Chunsheng Song

    2018-01-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. ...

  12. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  13. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  14. Integrated powertrain control for hybrid electric vehicles with electric variable transmission

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Foster, D.L.; Bosch, van den P.P.J.

    2009-01-01

    The electric variable transmission (EVT) offers a powersplit for hybrid electric vehicles by integrating two motor/ generator sets into one electric machine. This double rotor concept implements a continuously variable transmission between the engine and the driveline, including the possibility for

  15. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523 and 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions... fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles, responding to the...

  16. 76 FR 59922 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-28

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel... comprehensive Heavy-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions...

  17. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  18. Hybrid CNG propulsion for fleet vehicles: emission reduction potential and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Drozdz, P. [BC Research Institute, BC (Canada)

    1997-12-31

    A project (1) to build an experimental hybrid electric vehicle to be used as a test bed for the development of EZEV-oriented technologies, (2) to develop a control system to manage the energy use in a series hybrid vehicle, (3) to evaluate the suitability of valve regulated lead acid batteries for hybrid propulsion, and (4) to investigate the feasibility of using hybrid propulsion for medium duty fleet vehicles was discussed. In this context, the electric G-Van, the BCRI hybrid G-Van battery, the hybrid power unit, and the electronic control unit were described. The concept of hybrid vehicle control, and the control system software were explained, and a summary of the hybrid system efficiency test was provided.

  19. Research Article Special Issue

    African Journals Online (AJOL)

    2017-09-10

    Sep 10, 2017 ... power coupler; diesel engine; accumulator; hydraulic motor .... Most hybrid hydraulic studies especially related to electrical motor u ystem as the suitable ... ed on heavy duty vehicles that commonly used diesel engine, it is pro.

  20. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Greenhouse gas emission standards for... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1818-12 Greenhouse gas emission standards for light-duty... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons...

  1. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  2. Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets

    Science.gov (United States)

    Haugen, M.; Bishop, G.

    2017-12-01

    New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver

  3. Direction and Policies Needed to Support Hybrid Electric Car Research

    Directory of Open Access Journals (Sweden)

    Ridwan Arief Subekti

    2012-07-01

    Full Text Available The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the problems and finds the solutions to prevent the same failure of electric car commercialization process from happening to hybrid electric car . This study was done by collecting and analyzing the primary and secondary data through interviews, discussing electric hybrid car with stakeholders, and examining earlier study results and regulations. Based on this study, several policies to support sustainability research of hybrid electric car were proposed. Some recommendations were the making of national roadmap and regulation for the usage of hybrid electric car on the road. For policy makers at LIPI, a research focus, research coordination, and pre-commercialization program were recommended.

  4. 75 FR 70237 - California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto...

    Science.gov (United States)

    2010-11-17

    ... for the current CARB categories of heavy-duty vehicles are within-the-scope of the previously granted...) (Diesel) and 53 FR 7022 (March 4, 1988) (Otto-cycle). \\3\\ 69 FR 59920 (October 6, 2004). CARB's current... threshold test of materiality and * * * thereafter assess such material evidence against a standard of proof...

  5. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-15

    ... CFR Parts 523, 534, and 535 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for...-2010-0079; FRL-9455-1] RIN 2060-AP61; 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency... Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road...

  6. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  7. Study on heavy duty truck stability control by braking force control; Seidoryoku seigyo ni yoru truck no sharyo kyodo anteika ni taisuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K; Shinjo, H; Harada, M; Ohata, K; Sakata, K [Mitsubishi Motors Corp., Tokyo (Japan)

    1997-10-01

    Now a days we are discussing about the vehicle stability control system which freely controls the braking force of each wheel to apply the yaw t and decelerate the vehicle. The system drastically improve the vehicle cornering performance and stabilize the vehicle behavior in its critical area. This paper discusses a point to notice in case of applying this technique for heavy duty trucks, and describes the possibility of the stabilization for vehicle cornering behavior about heavy duty truck. 3 refs., 10 figs., 2 tabs.

  8. Analysis of pavement structure sensitivity to passage of oversized heavy duty vehicle in terms of bearing capacity

    Science.gov (United States)

    Dawid, Rys; Piotr, Jaskula

    2018-05-01

    Oversized heavy duty vehicles occur in traffic very rarely but they reach extremely high weights, even up to 800 tonne. The detrimental impact of these vehicles on pavement structure is much higher than in case of commercial vehicles that comprise typical traffic, thus it is necessary to assess the sensitivity of pavement structure to passage of oversized vehicles. The paper presents results of sample calculations of load equivalency factor of a heavy duty oversized vehicle with usage of mechanistic-empirical approach. The effects of pavement thickness, type of distress (cracking or rutting) and pavement condition (new or old with structural damage) were considered in the paper. Analysis revealed that a single pass of an 800 tonne oversized vehicle is equivalent to pass of up to 377 standard 100 kN axles. Load equivalency factor calculated for thin structures is almost 3 times lower than for thick structures, however, the damage effect caused by one pass of an oversized vehicle is higher in the case of thin structure. Bearing capacity of a pavement structure may be qualified as sufficient for passage of an oversized heavy duty vehicle when the measured deflection, for example in an FWD test, does not exceed the maximum deflections derived from mechanistic-empirical analysis. The paper presents sample calculation of maximum deflections which allow to consider passage of an oversized vehicle as safe over different pavement structures. The paper provides road administration with a practical tool which helps to decide whether to issue a permit of passage for a given oversized vehicle.

  9. Energy improvement and performance evaluation of a novel full hybrid electric motorcycle with power split e-CVT

    International Nuclear Information System (INIS)

    Chung, Cheng-Ta; Hung, Yi-Hsuan

    2014-01-01

    Highlights: • Innovative hybrid powertrain system using a planetary gearset and dual one-way clutch. • Three operation modes: EV-mode, engine-driven mode and power split e-CVT mode. • Outstanding energy improvement (max. 32+%) compared to traditional vehicles. • Experimentally implemented for light-duty vehicles in the near future. - Abstract: The power split electronic-continuously variable transmission (e-CVT) has been globally accepted as a main architecture for developing a hybrid electric vehicle (HEV). In this paper, a novel full hybrid electric motorcycle with power split e-CVT is proposed. It consists of an engine, a reversible generator, a reversible driving motor, a set of the planetary gear, two one-way clutches, and transmission components arranged for a planetary gearset and dual one-way clutch transmission (PDOC). Three operation modes were properly switched for optimal output dynamics: EV-mode, engine-driven mode, and power split e-CVT mode. Performance simulation compared with that of a baseline system using the conventional rubber-belt CVT is conducted to evaluate its feasibility and potential. The results present superior driving performance and fuel economy for the proposed motorcycle (maximum 32% fuel economy improvement) and thus offer a favorable support for further development

  10. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Science.gov (United States)

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative

  11. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Frijters, P.J.M.; Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2009-01-01

    Formation of nonevaporating sprays from diesel fuel injection through a realistic heavy duty multihole common rail injector is studied in a newly developed high-pressure, high-temperature cell, using digital highspeed shadowgraphy at 4500 frames/s. Gas pressure was varied from 13 to 37 bar

  12. Chassis dynamometer study of emissions from 21 in-use heavy-duty diesel vehicles

    International Nuclear Information System (INIS)

    Yanowitz, J.; Graboski, M.S.; Ryan, L.B.A.; Alleman, T.L.; McCormick, R.L.

    1999-01-01

    Regulated emissions from 21 in-use heavy-duty diesel vehicles were measured on a heavy-duty chassis dynamometer via three driving cycles using a low-sulfur diesel fuel. Emissions of particulate matter (PM), nitrogen oxides (NO x ), carbon monoxide (CO), total hydrocarbon (THC), and PM sulfate fraction were measured. For hot start tests, emissions ranged from 0.30 to 7.43 g/mi (mean 1.96) for PM; 4.15--54.0 g/mi (mean 23.3) for NO x ; 2.09--86.2 g/mi (mean 19.5) for CO; and 0.25--8.25 g/mi (mean 1.70) for THC. When emissions are converted to a g/gal basis, the effect of driving cycle is eliminated for NO x and largely eliminated for PM. Sulfate comprised less than 1% of the emitted PM for all vehicles and test cycles. A strong correlation is observed between emissions of CO and PM. Cold starting at 77 F produced an 11% increase in PM emissions. Multivariate regression analyses indicate that in-use PM emissions have decreased at a slower rate than anticipated based on the stricter engine certification test standards put into effect since 1985. NO x emissions do not decrease with model year for the vehicles tested here. Smoke opacity measurements are not well correlated with mass emissions of regulated pollutants

  13. Modeling and control of a parallel waste heat recovery system for Euro-VI heavy-duty diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery systemfor a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  14. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  15. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Frijters, P.J.M.; Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2009-01-01

    Formation of nonevaporating sprays from diesel fuel injection through a realistic heavy duty multihole common rail injector is studied in a newly developed high-pressure, high-temperature cell, using digital high-speed shadowgraphy at 4500 frames/s. Gas pressure was varied from 13 to 37 bar

  16. Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank

    Science.gov (United States)

    Lototskyy, Mykhaylo V.; Tolj, Ivan; Parsons, Adrian; Smith, Fahmida; Sita, Cordellia; Linkov, Vladimir

    2016-06-01

    We present test results of a commercial 3-tonne electric forklift (STILL) equipped with a commercial fuel cell power module (Plug Power) and a MH hydrogen storage tank (HySA Systems and TF Design). The tests included: (i) performance evaluation of "hybrid" hydrogen storage system during refuelling at low (fuel cell power module (alone) - power module with integrated MH tank; and (iii) performance tests of the forklift during its operation under working conditions. It was found that (a) the forklift with power module and MH tank can achieve 83% of maximum hydrogen storage capacity during 6 min refuelling (for full capacity 12-15 min); (b) heavy-duty operation of the forklift is characterised by 25% increase in energy consumption, and during system operation more uniform power distribution occurs when operating in the fuel cell powering mode with MH, in comparison to the battery powering mode; (c) use of the fully refuelled fuel cell power module with the MH extension tank allows for uninterrupted operation for 3 h 6 min and 7 h 15 min, for heavy- and light-duty operation, respectively.

  17. Analysis of a gas turbine driven hybrid drive system for heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malmquist, Anders

    1999-07-01

    The goal of this thesis has been to analyze the performance and behavior of a gas turbine driven hybrid drive train. The thesis covers both computer simulations and experimental tests. In two case studies, a number of measurements have been made on gas turbine driven hybrid vehicles that are developed by Volvo and ABB. In the recent years, much effort is currently put into the design and analysis of hybrid drive trains. Many studies involve computer simulations, but they are often made on a general level. This thesis concentrate on gas turbine driven hybrids for heavy vehicles, a field that has previously not been covered to a large extent in academic studies. A major contribution to the field of hybrid drive train design is the development of detailed simulation models that have a close connection to hybrids that are actually built and tested. The access to detailed gas turbine data has further enhanced the possibility to design a dynamic model of the gas turbine driven and the electric circuits. The combination of simulations and extensive field experience gains new knowledge on the properties of gas turbines in hybrid drive trains. Two simulation models have been developed in Matlab and Simulink. One is a quasi-steady state model that can be used for drive cycle simulations, e.g. a complete bus line. The other is a transient model that combines the thermodynamic properties of the gas turbine, the mechanical properties of the combined turbine-generator shaft, the electric power circuit and the control system. The transient model has been used to simulate the power response during accelerations and retardation. An analysis of the internal energy flows and the system efficiency of a hybrid drive train contributes to the understanding of the properties of series hybrid drive trains. An important part of the topology is that the system is based on a DC/DC-converter that is connected between the battery and the DC-bus. It controls the DC-bus voltage and by this

  18. 75 FR 39251 - Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty...

    Science.gov (United States)

    2010-07-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9173-5] Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty Diesel Engines Employing Selective Catalyst Reduction Technology... engine manufacturers have recently begun utilizing a NO X emission control technology called selective...

  19. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  20. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  1. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  2. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  3. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  4. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Hang, Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, Anant [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  5. Separately removable tubes in heavy duty heat exchanger assemblies

    International Nuclear Information System (INIS)

    Neudeck, G.T.

    1980-01-01

    The invention is directed to removable heat exchanger tube assemblies in heavy duty equipment radiators in which the tubes are each separately removable if they become defective in service. An inwardly facing annular ledge or abutment is molded into the inside diameter of each upper and lower sealing member to receive the respective ends of the tubes and prevent vertical movement of the tubes in service. A flange or shoulder is also provided on the lower portions of each tube and engages the inside of the lower sealing member to further restrain downward movement of the tubes in service. Each tube may be removed by pushing the tube upwardly to overcome the upper ledge abutment and thereby lift the tube free of the lower seal. Each tube may then be removed sidewise from the radiator. Variations of the removable sealing arrangement can be made and are described herein

  6. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag--30 wt.% ball clay--10 wt.% feldspar--20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Sri Raja Varman, K.; Arjunan, T.V.

    2011-01-01

    Recently plug-in hybrid electric vehicles (PHEVs) are emerging as one of the promising alternative to improve the sustainability of transportation energy and air quality especially in urban areas. The all-electric range in PHEV design plays a significant role in sizing of battery pack and cost. This paper presents the evaluation of battery energy and power requirements for a plug-in hybrid electric two-wheeler for different all-electric ranges. An analytical vehicle model and MATLAB simulation analysis has been discussed. The MATLAB simulation results estimate the impact of driving cycle and all-electric range on energy capacity, additional mass and initial cost of lead-acid, nickel-metal hydride and lithium-ion batteries. This paper also focuses on influence of cycle life on annual cost of battery pack and recommended suitable battery pack for implementing in plug-in hybrid electric two-wheelers. -- Research highlights: → Evaluates the battery energy and power requirements for a plug-in hybrid electric two-wheeler. → Simulation results reveal that the IDC demand more energy and cost of battery compared to ECE R40. → If cycle life is considered, the annual cost of Ni-MH battery pack is lower than lead-acid and Li-ion.

  8. Designing Optimal LNG Station Network for U.S. Heavy-Duty Freight Trucks using Temporally and Spatially Explicit Supply Chain Optimization

    Science.gov (United States)

    Lee, Allen

    The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions

  9. Soot particulate size characterisation in a heavy-duty diesel engine for different engine loads by laser-induced incandescence

    NARCIS (Netherlands)

    Bougie, B.; Ganippa, L.C.; Vliet, van A.P.; Meerts, W.L.; Dam, N.J.; Meulen, ter J.J.

    2007-01-01

    Time-resolved laser-induced incandescence was used to estimate primary particle size distributions inside the combustion chamber of a heavy-duty diesel engine as a function of the crank angle, for two different engine loads at two different probe locations. Assuming a log-normal particle size

  10. Optimal Day-Ahead Scheduling of a Hybrid Electric Grid Using Weather Forecasts

    Science.gov (United States)

    2013-12-01

    with 214 turbines [22]. In July 2011, the DoD declared that a complete study of 217 wind farm projects proposed in 35 states and Puerto Rico found...14. SUBJECT TERMS Hybrid electric grid , Microgrid , Hybrid renewable energy system , energy management center, optimization, Day...electric grid. In the case of a hybrid electric grid (HEG), or hybrid renewable energy system (HRES) where the microgrid can be connected to the commercial

  11. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General.... HEV—Hybrid electric vehicle. HFID—Heated flame ionization detector. Hg—Mercury. HLDT—Heavy light-duty...). SAE—Society of Automotive Engineers. SBC—Standard Bench Cycle SFTP—Supplemental Federal Test Procedure...

  12. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  13. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    Science.gov (United States)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  14. Design and implementation of a hybrid electric motorcycle management system

    International Nuclear Information System (INIS)

    Hsu, Yuan-Yong; Lu, Shao-Yuan

    2010-01-01

    This paper presents a successful design and implement of a shunt-winding hybrid electric motorcycle management system which utilizes an electronic control unit (ECU) to integrate two major subsystems together, one being the traditional system of 125 c.c. internal combustion engine and the other an electric power motor. The hybrid electric motorcycle is assembled together robustly by these two major subsystems and eventually leads to successful road tests. The hybrid power system thus implemented can recharge its own batteries with electricity provided by the electrical recharge system and thus increasing the cruising mileages largely. The testing results obtained by using the proposed experimental platform indicate that lead-acid cells can boost their state of charge (SOC) by approximately 4% when it is operated under the hybrid mode for four driving cycles (about 1600 s) with the recharger on in a standard ECE-40 testing procedure. The results of road tests also clearly show that the pollutant emissions of the engine can be reduced at a lower speed or idling condition, and the problem of insufficient cruising range for electric motorcycles can also be greatly enhanced.

  15. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  16. Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)

    Science.gov (United States)

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...

  17. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    Science.gov (United States)

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...

  18. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    Directory of Open Access Journals (Sweden)

    D. Čundev

    2008-01-01

    Full Text Available This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Faculty of Electrical Engineering (FEE at CTU in Prague. 

  19. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  20. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines

    Science.gov (United States)

    Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially

  1. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  2. Gender identity and the electric guitar in heavy metal music

    OpenAIRE

    Kelly, Philip

    2009-01-01

    In this chapter I will attempt to outline the gendered characteristics of heavy metal and the electric guitar and address the question: has society’s impression of heavy metal as a primarily masculine pursuit been so imbedded in Western culture that we will never see a female heavy metal band achieve the same level of success as a male heavy metal band?

  3. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  4. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  5. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies. [various hybrid/electric power train configurations and electrical and mechanical drive-line components

    Science.gov (United States)

    1979-01-01

    The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.

  6. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    OpenAIRE

    D. Čundev

    2008-01-01

    This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Fac...

  7. Selection of appropriate working fluids for Rankine cycles used for recovery of heat from exhaust gases of ICE in heavy-duty series hybrid electric vehicles

    International Nuclear Information System (INIS)

    Jung, Daebong; Park, Sungjin; Min, Kyoungdoug

    2015-01-01

    Recently, the waste heat recovery system is studied for application in vehicles to improve fuel economy. Especially, Rankine cycle is representative and attractive technology as waste heat recovery system. In order to maximize efficiency of Rankine cycle in the vehicle application, selection of optimal working fluid is important. Thus, in this study, thermodynamic analysis with consideration of practical operating condition was conducted to find out optimal working fluids. Thermodynamic efficiency, recovery efficiency, and overall cycle efficiency were adopted to estimate Rankine cycle performance. In order to reflect practical operating condition on the analysis, limitations due to working fluid physical properties and components specifications are taken into account. 5 working fluids including dry and wet fluid were used to estimate efficiency. Consequently, R245fa which shows high efficiency and environment-friendly is suggested as optimal working fluid in vehicle application. - Highlights: • 5 different working fluids were analyzed in respect of hybrid electric vehicle waste heat recovery system. • Real world operational conditions and limits are applied. • Optimal heating temperature of each working fluid show different trend. • R245fa is preferable among other fluids due to its high efficiency and impact on environment

  8. Averthermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Javani, N.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: nader.javani@uoit.ca

    2011-07-01

    The transportation sector is a heavy consumer of energy and better energy use is needed to reduce fuel consumption. One way to improve energy usage is to recover waste heat for cabin heating, cooling, or to produce electricity. The aim of this paper is to examine the use of waste heat in hybrid electric vehicles (HEV) and electric vehicles for cooling purposes using an ejector cooling cycle and an absorption cooling cycle. Energy and exergy analyses were conducted using waste heat from the battery pack and the exhaust gases to power the boiler and generator. Results showed that waste energy from the battery pack does not provide enough energy to produce cabin cooling but that exhaust gases can produce 7.32 kW and 7.91 kW cooling loads in the ejector and absorption systems. This study demonstrated that both ejector and absorption systems can reduce energy consumption in vehicles through the use of waste heat from exhaust gases.

  9. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    Science.gov (United States)

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  10. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    Science.gov (United States)

    1995-04-01

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  11. Model Predictive Control for Connected Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Kaijiang Yu

    2015-01-01

    Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.

  12. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  13. The integration of electrical axle drives in hybrid vehicle and electric vehicles; Die Integration elektrischer Achsantriebe in Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Heinz [hofer eds GmbH, Wuerzburg (Germany)

    2009-07-01

    In the following contribution the advantages of a high integrated electrical axle module will be explained. Furthermore different electrical machines will be introduced and the specific operational behavior will be described. After a short introduction regarding the utilization of electrical machines some proposals regarding the gear ratio will be given. At the end a novel hybrid transmission with electrical power split will be introduced. (orig.)

  14. Modeling, hybridization, and optimal charging of electrical energy storage systems

    Science.gov (United States)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems

  15. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  16. Field Measurement of Dynamic Compressive Stress Response of Pavement-Subgrade Induced by Moving Heavy-Duty Trucks

    Directory of Open Access Journals (Sweden)

    Lingshi An

    2018-01-01

    Full Text Available This paper presents the dynamic compressive stress response of pavement-subgrade induced by moving heavy-duty trucks. In order to study the distribution characteristic of dynamic pressure of pavement-subgrade in more detail, truck loadings, truck speeds, and dynamic pressure distributions at different depths were monitored under twenty-five working conditions on the section of Qiqihar-Nenjiang Highway in Heilongjiang Province, China. The effects of truck loading, truck speed, and depth on dynamic compressive stress response can be concluded as follows: (1 increasing truck loading will increase the dynamic pressure amplitude of subgrade-pavement and dominant frequencies are close to the characteristic frequencies caused by heavy-duty trucks at the speed of 70 km/h; (2 as truck speed increases, the dynamic pressure amplitudes of measuring points have an increasing tendency; the dynamic pressure spectrums are also significantly influenced by truck speed: the higher the truck speed, the wider the spectrum and the higher the dominant frequencies; (3 as depth increases, the dynamic pressure amplitudes of measuring points decrease rapidly. The influence of the front axle decreases gradually until disappearing and the compressive stress superposition phenomenon caused by rear double axles can be found with increasing depth.

  17. Modelling of NO{sub x} emission factors from heavy and light-duty vehicles equipped with advanced aftertreatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.L.M., E-mail: monalisa@unifor.br [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Silva, C.M. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Moreno-Tost, R. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Farias, T.L. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Jimenez-Lopez, Antonio [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain)

    2011-08-15

    Highlights: {yields} Alternative SCR materials. {yields} Catalysts used in heavy-duty vehicles are based on V{sub 2}O{sub 5}-WO{sub 3}-TiO{sub 2}. {yields}Zeolites containing transition metal ions as catalysts for urea SCR has increased. {yields} FeZSM5 catalyst can be a possible candidate as far as pollutants regulation is considered. {yields} Regarding N{sub 2}O emissions mordenite based SCR do not emit this pollutant. - Abstract: NO{sub x} emission standards are becoming stringiest over the world especially for heavy-duty vehicles. To comply with current and future regulations some vehicle manufacturers are adopting exhaust aftertreatment systems known as Selective Catalytic Reduction (SCR). The catalysts are based on Vanadium (Va) and the reductant agent based on ammonia. However, Va is listed on the California Proposition 65 List as potentially causing cancer and alternatives are being studied. This paper presents a model based on neural networks that integrated with a road vehicle simulator allows to estimate NO{sub x} emission factors for different powertrain configurations, along different driving conditions, and covering commercial, zeolite and mordenite alternatives as the base monolith for SCR. The research included the experimental study of copper based and iron based zeolites (ZSM5 and Cuban natural mordenite). The response of NO{sub x} conversion efficiency was monitored in a laboratory for varying space velocity, oxygen, sulfur, water, NO{sub x} and SO{sub 2} emulating the conditions of a Diesel engine exhaust along a trip. The experimental data was used for training neural networks and obtaining a mathematical correlation between the outputs and inputs of the SCR system. The developed correlation was integrated with ADVISOR road vehicle simulator to obtain NO{sub x} emission factors and to test each SCR system installed on light-duty and heavy-duty vehicles for standardized driving cycles and real measured driving cycles. Despite having lower NO

  18. Substantial improvements of fuel economy. Potentials of electric and hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, K [Technical Univ. of Denmark (Denmark); Nielsen, L H [Forskningscenter Risoe (Denmark)

    1996-12-01

    This paper evaluates the scope for improvement of the energy and environmental impacts of road traffic by means of electrical and hybrid electric propulsion. These technologies promise considerable improvements of the fuel economy of vehicles compared to the present vehicle types as well as beneficial effects for the energy and traffic system. The paper - based on work carried out in the project `Transportation fuel based on renewable energy`, funded by the National Energy Agency of Denmark and carried out by Department of Buildings and Energy, Technical University of Denmark and System Analysis Department, Risoe National Laboratory - assesses the potentials for reduction of the primary energy consumption and emissions, and points to the necessary technical development to reap these benefits. A case study concerning passenger cars is analysed by means of computer simulations, comparing electric and hybrid electric passenger car to an equivalent reference vehicle (a conventional gasoline passenger car). (au) 10 refs.

  19. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui

    2008-01-01

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  20. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  1. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...

  2. Modeling light-duty plug-in electric vehicles for national energy and transportation planning

    International Nuclear Information System (INIS)

    Wu, Di; Aliprantis, Dionysios C.

    2013-01-01

    This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources. - Highlights: • We model plug-in electric vehicles (PEVs) for long-term national planning studies. • Realistic travel patterns are used to estimate the vehicles' energy consumption. • National energy and transportation system interdependencies are considered. • Case studies illustrate optimum investments in energy and transportation sectors. • PEVs synergistically with renewable energy can aggressively reduce GHG emissions

  3. Deterioration Models for Cement Bound Materials in Structural Design and Evaluation of Heavy Duty Pavements

    DEFF Research Database (Denmark)

    Skar, Asmus; Holst, Mogens Løvendorf

    Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design of such ......Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design...... of such pavements are today based on Mechanistic-Empirical (M-E) methods. The M-E method is appropriate for many situations, in other situations it may lead to overdesign, or maybe worse, underdesign. The method has limited capabilities and cannot account for signicant factors affecting the pavement response...... number of model parameters. In order to move a step towards more generalised structural design methods for analysis of heavy duty pavements, this study aims at developing a mechanistic approach based on constitutive models. A simple framework for engineering application is sought; creating a rational...

  4. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  5. A distributed optimization approach to energy management for a heavy-duty truck

    NARCIS (Netherlands)

    Romijn, Constantijn; Donkers, Tijs; Weiland, Siep; Kessels, John

    2014-01-01

    Energy management systems (EMS) aim at minimizing the vehicle fuel consumption and tailpipe emissions under the wide range of driving conditions. Classical energy management systems for hybrid vehicles control the powersplit between the internal combustion engine (ICE) and the electric motor (EM)

  6. A Taxonomy for Heavy-Duty Telemanipulation Tasks Using Elemental Actions

    Directory of Open Access Journals (Sweden)

    Alexander Owen-Hill

    2013-10-01

    Full Text Available In the maintenance of large scientific facilities, telemanipulation procedures can involve various subprocedures which in turn are made up of a sequence of subtasks. This work presents a taxonomy which describes a set of elemental actions for heavy-duty telemanipulation, along with an example of these actions in a standard maintenance subprocedure. As maintenance tasks are often very different at high-level, this generalized way of deconstructing tasks allows a highly adaptable approach to describe the sequence of any procedure, which can then be used for such applications as task monitoring, automation or detection of incomplete tasks. We describe in detail the properties of each elemental action and apply the taxonomy to an example subprocedure to show how the process can be generalizable. An automatic state-machine creation stage is shown, which would be used at the task scheduling stage to simplify calculations carried out during the moment-by-moment execution of the task.

  7. 46 CFR 111.25-15 - Duty cycle.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Duty cycle. 111.25-15 Section 111.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motors § 111.25-15 Duty cycle. Each motor must be rated for continuous duty, except a motor for an...

  8. DIAGNOSTICS CONCEPTION OF ELECTRICAL DRIVE OF A HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    Y. Borodenko

    2012-01-01

    Full Text Available Conceptual approach to creat the diagnostic system of the power elements of the electric drive of the hybrid vehicle has been considered. Approbation of the imitation model of electric drive with brushless DC electric motor as a diagnostic object has been carried out.

  9. Energy storage devices for future hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Karden, Eckhard; Ploumen, Serve; Fricke, Birger [Ford Research and Advanced Engineering Europe, Suesterfeldstr. 200, D-52072 Aachen (Germany); Miller, Ted; Snyder, Kent [Ford Sustainable Mobility Technologies, 15050 Commerce Drive North, Dearborn, MI 48120 (United States)

    2007-05-25

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential ''battery pack'' system suppliers are discussed. (author)

  10. Energy storage devices for future hybrid electric vehicles

    Science.gov (United States)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  11. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

    Energy Technology Data Exchange (ETDEWEB)

    LeePhD, John [Aramco Services Company; TzanetakisPhD, Tom [Aramco Services Company; Travers, Michael [Aramco Services Company; Storey, John Morse [ORNL; DeBusk, Melanie Moses [ORNL; Lance, Michael J [ORNL; Partridge Jr, William P [ORNL

    2017-01-01

    With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modification to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.

  12. Dynamic simulation of urban hybrid electric vehicles; Dynamische Simulation von Stadthybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)

    2013-09-15

    As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)

  13. Electrical-Loss Analysis of Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglio

    2017-12-01

    Full Text Available The growing development of hybrid electric vehicles (HEVs has seen the spread of architectures with transmission based on planetary gear train, realized thanks to two electric machines. This architecture, by continuously regulating the transmission ratio, allows the internal combustion engine (ICE to work in optimal conditions. On the one hand, the average ICE efficiency is increased thanks to better loading situations, while, on the other hand, electrical losses are introduced due to the power circulation between the two electrical machines mentioned above. The aim of this study is then to accurately evaluate electrical losses and the average ICE efficiency in various operating conditions and over different road missions. The models used in this study are presented for both the Continuously Variable Transmission (CVT architecture and the Discontinuously Variable Transmission (DVT architecture. In addition, efficiency maps of the main components are shown. Finally, the simulation results are presented to point out strengths and weaknesses of the CVT architecture.

  14. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  15. Sensorless Suitability Analysis of Hybrid PM Machines for Electric Vehicles

    DEFF Research Database (Denmark)

    Matzen, Torben Nørregaard; Rasmussen, Peter Omand

    2009-01-01

    Electrical machines for traction in electric vehicles are an essential component which attract attention with respect to machine design and control as a part of the emerging renewable industry. For the hybrid electric machine to replace the familiar behaviour of the combustion engine torque......, control seems necessary to implement. For hybrid permanent magnet (PM) machines torque control in an indirect fashion using dq-current control is frequently done. This approach requires knowledge about the machine shaft position which may be obtained sensorless. In this article a method based on accurate...

  16. Appliance of high EGR rates with a short and long route EGR system on a heavy duty diesel engine

    NARCIS (Netherlands)

    Aken, van M.; Willems, F.P.T.; Jong, de D.J.

    2007-01-01

    The goal of this work was to investigate the possibilities of applying high EGR rates with low NOx and PM emission levels on a two-stage turbocharged 12 liter heavy duty diesel engine. The EGR is applied by using a long and short route EGR system. For the ESC operating points A25 and C100 EGR is

  17. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  18. NREL/Industry Range-Extended Electric Vehicle for Package Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duran, Adam W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lammert, Michael P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miller, Eric S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-15

    Range-extended electric vehicle (EV) technology can be a viable option for reducing fuel consumption from medium-duty (MD) and heavy-duty (HD) engines by approximately 50 percent or more. Such engines have wide variations in use and duty cycles, however, and identifying the vocations/duty cycles most suitable for range-extended applications is vital for maximizing the potential benefits. This presentation provides information about NREL's research on range-extended EV technologies, with a focus on NREL's real-world data collection and analysis approach to identifying the vocations/duty cycles best suited for range-extender applications and to help guide related powertrain optimization and design requirements. The presentation also details NREL's drive cycle development process as it pertains to package delivery applications.

  19. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    Science.gov (United States)

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90

  20. Transit experience with hydrogen fueled hybrid electric buses

    International Nuclear Information System (INIS)

    Scott, P.B.; Mazaika, D.M.; Levin, J.; Edwards, T.

    2006-01-01

    Both AC Transit and SunLine Transit operate hybrid electric hydrogen fueled buses in their transit service. ACT presently operates three fuel cell buses in daily revenue service, and SunLine operates a fuel cell bus and a HHICE (Hybrid Hydrogen Internal Combustion Engine) bus. All these buses use similar electric drive train and electric accessories, although the detailed design differs notably between the fuel cell and the hybrid ICE buses. The fuel cell buses use a 120kW UTC fuel cell and a Van Hool Chassis, whereas the HHICE bus uses a turbocharged Ford engine which is capable of 140kW generator output in a New Flyer Chassis. The HHICE bus was the first in service, and has been subjected to both winter testing in Manitoba, Canada and summer testing in the Palm Springs, CA region. The winter testing included passenger sampling using questionnaires to ascertain passenger response. The fuel cell buses were introduced to service at the start of 2006. All five buses are in daily revenue service use. The paper will describe the buses and the experience of the transit properties in operating the buses. (author)

  1. Electrical Load Survey and Forecast for a Decentralized Hybrid ...

    African Journals Online (AJOL)

    Electrical Load Survey and Forecast for a Decentralized Hybrid Power System at Elebu, Kwara State, Nigeria. ... Nigerian Journal of Technology ... The paper reports the results of electrical load demand and forecast for Elebu rural community ...

  2. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... to Otto-cycle engines used in such MDPVs, except as specified in subpart S of this part. The term... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later...

  3. The structure and control method of hybrid power source for electric vehicle

    International Nuclear Information System (INIS)

    Li, Maobing; Xu, Hui; Li, Weimin; Liu, Yin; Li, Fade; Hu, Yue; Liu, Li

    2016-01-01

    In this paper, an electric vehicle powertrain configuration is presented, which the lithium-ion battery integrated with ultracapacitors is developed as the hybrid power system to improve the transient performance of an electric vehicle, and to decrease the damage to the battery pack. In the proposed system, a bidirectional direct current/direct current converter is used to couple the ultracapacitors bank to the main battery pack. The energy management strategy based on fuzzy logic for hybrid power system has been proposed to promote the performance of energy flow in the electric vehicle. The experiment results in urban driving cycles show remarkable advantages of the proposed hybrid system configuration and energy management strategy. About 30% of the battery capacity energy is saved while using the hybrid power source. Besides, the voltage and current curves of battery become smoother than that with the single power. - Highlights: • A hybrid power source electric vehicle powertrain configuration is presented. • The energy management strategy based on fuzzy logic is proposed. • The experiment results show remarkable advantages of the configuration and method.

  4. Hybrid Electric Transit Bus

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.

  5. Performance and energy management of a novel full hybrid electric powertrain system

    International Nuclear Information System (INIS)

    Chung, Cheng-Ta; Hung, Yi-Hsuan

    2015-01-01

    This study compared the performance and energy management between a novel full hybrid electric powertrain and a traditional power-split hybrid system. The developed planetary gearset and dual clutch configuration provides five operation modes. Equations for the torque and speed of power sources for the planetary gearset and dual clutch system and the Toyota Hybrid System are firstly derived. By giving vehicle performance of gradability, maximal speeds in hybrid and pure electric modes, the power sources of the 210 kg target vehicle are: a 125 cc engine and two 1.8 kW motor and generator. The optimal tank-to-wheel efficiencies, ratios of circulating power, and operation points at specific vehicle speeds and out loads are calculated. Simulation results show that the dual-motor electric vehicle mode offers superior performance regarding electric drive; the low capacity of the battery is conducive to reducing manufacturing and maintenance costs; the tank-to-wheel efficiency is mainly operated above 20% while the power split electronic-continuously-variable-transmission mode is the major operation mode, and a maximum of 17% fuel economy improvement is achieved compared with the Toyota Hybrid System in most of the vehicle speed ranges. The outstanding performance warrants further real-system development, especially regarding the implementation in plug-in and sport hybrid powertrain designs. - Highlights: • An innovative power split hybrid powertrain was designed. • Dual-motor electric-vehicle mode highlighted for plug-in function. • Power circulation ratios and five driving modes were analyzed. • Global search method utilized for optimal energy management. • Maximal 17+% fuel improvement compared to Toyota Hybrid System

  6. PERBEDAAN RISK PRIORITY NUMBER DALAM FAILURE MODE AND EFFECTS ANALYSIS FMEA SISTEM ALAT BERAT HEAVY DUTY TRUCK HD 785-7

    Directory of Open Access Journals (Sweden)

    M. Syafwansyah Effendi

    2015-04-01

    Full Text Available Failure Mode and Efect Analysis (FMEA adalah jenis desain dan teknologi untuk menganalisis keandalan pencegahan, yang merupakan formula yang sistematis terstruktur untuk mengidentifikasi modus kerusakan yang potensial dalam desain atau manufaktur, kemudian mempelajari pengaruh kerusakan pada sistem, kemudian mengambil langkah-langkah yang diperlukan untuk mengkoreksi dan sebagai metode pencegahan sementara yang mengarah pada masalah dalam sistam keandalan. Secara tradisional, menggunakan teknologi dari FMEA adalah untuk memperbaiki keputusan dalam urutan dari besar Risk Priority Number (RPN ke yang lebih kecil State of art permasalahan yang mendasar dari RPN Failure and Efect Analysis adalah bagaimana menerapkannya dalam cakupan cukup luas dalam berbagai bidang sebagai alat atau metode yang bermanfaat untuk membantu menjustifikasi pengambilan suatu keputusan dalam menentukan keandalan suatu sistem. Dari penelitian-penelitian yang sudah dilakukan penerapan Model ini banyak dilakukan di lingkungan industri, dan belum ada yang mengapilikasikannya dalam menganalisa mode kegagalan sistem pada peralatan Berat terutama yang dioperasikan disektor pertambangan. Sehingga pada penelitian ini, adalah perlu untuk menguji apakah ada Perbedaan Dalam Risk Priority Number Failure Mode and Effects Analysis Pada Unit Sistem Alat Berat Heavy Duty Truck HD 785-7. Data diambil dari data History Preventive Maintanance pada sebuah perusahaan tambang di Kalimantan Selatan, selama periode 5 tahun. Unit yang diuji nilai RPN dan sistem adalah Mine Truck Heavy Duty Truck HD 785-7 sebagai sampel diambil 10 unit. Dari data tersebut nilai RPN dihitung masing-masing sistem. Selanjutnya data olahan tersebut di uji dengan uji ANOVA, dengan menggunakan uji F selanjutnya ilakukan analisis untuk setiap kelompok rata-rata atau pasangan rata-rata. Pengujian data dengan menggunakan uji Posteriori (Post Hoc uji Tukey HSD dan Duncan untuk melihat sistem yang mana dari 15 sistem yang rata

  7. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  8. Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers

    International Nuclear Information System (INIS)

    Walker, Paul D.; Roser, Holger M.

    2015-01-01

    Highlights: • We analyse several driving cycles to for the preliminary design of hybrid two wheelers. • Simulation of alternate configurations to compare achievable driving range and economy. • Demonstrate that pure electric vehicles provide cost benefits over the vehicle life. • Hybrid and plug-in hybrid two wheelers have comparable costs to conventional vehicles. - Abstract: The development of hybrid electric two wheelers in recent years has targeted the reduction of on road emissions produced by these vehicles. However, added cost and complexity have resulted in the failure of these systems to meet consumer expectations. This paper presents a comparative study of the energy economy and essential costs of alternative forms of small two wheelers such as scooters or low capacity motorcycles. This includes conventional, hybrid, plug-in hybrid and electric variants. Through simulations of vehicle driving range using two popular driving cycles it is demonstrated that there is considerable benefit in fuel economy realised by hybridising such vehicles. However, the added costs associated with electrification, i.e. motor/generator, power electronics, and energy storage provide a significant cost obstacle to the purchase of such vehicles. Only the pure electric configuration is demonstrated to be cost effective over its life in comparison to conventional two wheelers. Both the hybrid electric and plug-in equivalents must overcome significant upfront costs to be cost competitive with conventional vehicles. This is demonstrated to be achieved if the annual driving range of the vehicle is increased substantially from the assumed mean. Given the shorter distances travelled by most two wheeler drivers it can therefore be concluded that the development of similar hybrid electric vehicles are unlikely to achieve the desired acceptance that pure electric or conventional equivalents currently achieve

  9. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  10. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  11. The effect of the position of oxygen group to the aromatic ring to emission performance in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Zhou, L.; Boot, M.D.; Goey, de L.P.H.

    2012-01-01

    In this paper the soot-NOx trade-off and fuel efficiency of various aromatic oxygenates is investigated in a modern DAF heavy-duty diesel engine. All oxygenates were blended to diesel fuel such that the blend oxygen concentration was 2.59 wt.-%. The oxygenates in question, anisole, benzyl alcohol

  12. Test/QA plan for the verification testing of selective catalytic reduction control technologies for highway, nonroad use heavy-duty diesel engines

    Science.gov (United States)

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  13. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Acevedo, Helmer; Mantilla, Juan

    2011-01-01

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  14. Performance assessment of a hybrid electric-powered long-range commercial airliner

    OpenAIRE

    Zöld, Thomas

    2012-01-01

    Despite the recent increase in the amount of smaller electric general aviation aircrafts, a fully electric airliner is not likely to fly in the near future. Partially inspired by the automotive industry’s success with the hybrid car, this thesis investigated the feasibility of an electric-hybrid propulsion system for an Airbus A340-600 on a long-haul flight and its effect on the aircraft’s performance. First, an analysis was done of the reference aircraft, A340-600, using conventional propuls...

  15. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  16. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  17. THE ELECTRIC DRIVE FOR A CONVERSION HYBRID CAR

    Directory of Open Access Journals (Sweden)

    A. Bazhinov

    2012-01-01

    Full Text Available The concept of converting a car with an internal combustion engine and manual transmission in a hybrid is regarded. Is regarded the technique of choosing the parameters of the electric and simple technical solution to achieve the efficient operation of the brushless electric motor in the traction mode and into recovery mode.

  18. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  19. Conceptual Design of Operation Strategies for Hybrid Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Julian Hoelzen

    2018-01-01

    Full Text Available Ambitious targets to reduce emissions caused by aviation in the light of an expected ongoing rise of the air transport demand in the future drive the research of propulsion systems with lower CO2 emissions. Regional hybrid electric aircraft (HEA powered by conventional gas turbines and battery powered electric motors are investigated to test hybrid propulsion operation strategies. Especially the role of the battery within environmentally friendly concepts with significantly reduced carbon footprint is analyzed. Thus, a new simulation approach for HEA is introduced. The main findings underline the importance of choosing the right power-to-energy-ratio of a battery according to the flight mission. The gravimetric energy and power density of the electric storages determine the technologically feasibility of hybrid concepts. Cost competitive HEA configurations are found, but do not promise the targeted CO2 emission savings, when the well-to-wheel system is regarded with its actual costs. Sensitivity studies are used to determine external levers that favor the profitability of HEA.

  20. Ventajas del uso de la inyección electrónica para vehículos diesel pesados en las condiciones de Cuba. // Advantages of electronic injection for diesel engines in heavy duty equipment.

    Directory of Open Access Journals (Sweden)

    J. Luis Reyes González

    2002-09-01

    Full Text Available Tomando en cuenta la importancia que tiene para Cuba el obtener una eficiencia energética elevada en los motores decombustión interna, al igual que el control de las emanaciones de gases tóxicos en los mismos, se realizó este trabajo dondese demuestran las ventajas tanto en el orden económico como ecológico de los motores diesel con mando electrónico paraequipos pesados empleados en la transportación de carga por camiones en la empresa Cubalse.Por medio de métodos experimentales y estadísticos, se obtuvo el consumo de combustible y la humosidad en motores coninyección electrónica (Detroit y en motores que utilizan los métodos tradicionales (Cummins. Los rresultadosdemostraron la superioridad en ambos aspectos de los motores con inyección electrónica.Se realizó una valoración del tiempo de amortización de la inversión inicial necesaria para utilizar en el parque existenteesta novedosa técnica de la inyección electrónica.Palabras claves: Eficiencia energética, inyección electrónica, consumo de combustible, motores de combustióninterna.__________________________________________________________________Abstract.Taking into consideration the importance of achieving a high efficiency in the internal combustion engines and emissioncontrol of the exhaust gases, this paper deals with economical and environmental advantages of the electronic controlleddiesel engines in heavy-duty trucks, which are used by Cubalse in the transportation. The fuel consumption and the sootemission in Detroit motors (with electronic injection system and Cummins (with traditional system, were studied usingstatistic and experimental methods, and the Detroit proved to be superior in both parameters. The pay back time for theinvestment needed to change the systems of all the existent trucks were calculatedKey words: Energetic efficiency, electronic injection, fuel consumption, internal combustion engine.

  1. Electric dipole transitions of heavy quarkonium

    Energy Technology Data Exchange (ETDEWEB)

    Pietrulewicz, Piotr [Universitaet Wien (Austria)

    2012-07-01

    In this talk we present the theoretical treatment of electric dipole transitions of heavy quarkonia within an effective field theory formalism. Inside the effective field theory called potential nonrelativistic QCD (pNRQCD) we account for the relativistic corrections to the decay rate in a systematic and model-independent way. Former results from potential model calculations are scrutinized, and a phenomenological analysis in relation to the experimental data is presented.

  2. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    Science.gov (United States)

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger

  3. Predictive cruise control in hybrid electric vehicles

    NARCIS (Netherlands)

    Keulen, T. van; Naus, M.J.G.; Jager, B. de; Molengraft, G.J.L. van de; Steinbuch, M.; Aneke, N.P.I.

    2009-01-01

    Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To

  4. Heavy hybrid stars from multi-quark interactions

    International Nuclear Information System (INIS)

    Benic, Sanjin

    2014-01-01

    We explore the possibility of obtaining heavy hybrid stars within the framework of the two flavor Nambu-Jona-Lasinio model that includes 8-quark interactions in the scalar and in the vector channel. The main impact of the 8-quark scalar channel is to reduce the onset of quark matter, while the 8-quark vector channel acts to stiffen the equation of state at high densities. Within the parameter space where the 4-quark vector channel is small, and the 8-quark vector channel sizeable, stable stars with masses of 2 M ⊙ and above are found to hold quark matter in their cores. (orig.)

  5. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

    2013-09-30

    The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

  6. Retrofit SCR system for NOx control from heavy-duty mining equipment

    International Nuclear Information System (INIS)

    Mannan, M.A.

    2009-01-01

    Diesel engines are used extensively in the mining industry and offer many advantages. However, particulate matter (PM) emissions and nitrogen oxide emissions (NOx) are among its disadvantages. A significant concern related to PM and NOx in an underground mine involves the use of diesel exhaust after treatment systems such as diesel particulate filters and selective catalytic reduction (SCR). This presentation discussed NOx and PM control and provided a description of an SCR system and examples of SCR retrofits. Options for NOx control were discussed and a case study involving the installation of an SCR retrofit system in an underground mine operated by Sifto Salt was also presented. The purpose of the case study was to identify cost effective retrofit solutions to lower nitrogen dioxide emissions from heavy-duty trucks operating in underground mines. The case study illustrated and presented the candidate vehicle, baseline emissions, a BlueMax SCR retrofit solution, and BlueMax installation. 1 tab., 6 figs.

  7. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  8. Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

    Science.gov (United States)

    2014-09-10

    Studies At the macroscale, the surface of a Taylor cone just before ion emission is an equipotential with a normal electric field strength found from...AFRL-OSR-VA-TR-2014-0246 Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering M Gamero-Castano UNIVERSITY OF CALIFORNIA IRVINE Final...298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 1 Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

  9. Influence of electrical and hybrid heating on bread quality during baking.

    Science.gov (United States)

    Chhanwal, N; Ezhilarasi, P N; Indrani, D; Anandharamakrishnan, C

    2015-07-01

    Energy efficiency and product quality are the key factors for any food processing industry. The aim of the study was to develop energy and time efficient baking process. The hybrid heating (Infrared + Electrical) oven was designed and fabricated using two infrared lamps and electric heating coils. The developed oven can be operated in serial or combined heating modes. The standardized baking conditions were 18 min at 220°C to produce the bread from hybrid heating oven. Effect of baking with hybrid heating mode (H-1 and H-2, hybrid oven) on the quality characteristics of bread as against conventional heating mode (C-1, pilot scale oven; C-2, hybrid oven) was studied. The results showed that breads baked in hybrid heating mode (H-2) had higher moisture content (28.87%), higher volume (670 cm(3)), lower crumb firmness value (374.6 g), and overall quality score (67.0) comparable to conventional baking process (68.5). Moreover, bread baked in hybrid heating mode showed 28% reduction in baking time.

  10. PRICING ELECTRIC POWER UNDER A HYBRID WHOLESALE MECHANISM: EVALUATING THE TURKISH ELECTRICITY MARKET

    Directory of Open Access Journals (Sweden)

    Hatice Karahan

    2013-01-01

    Full Text Available During the restructuring process, Turkish electricity sector has gone through significant changes both in wholesale and retail markets. In this framework, the Market Financial Settlement Mechanism established for handling market imbalances has become a spot market in time. So, it can be claimed that the wholesale electricity market in Turkey is a hybrid mechanism composed of bilateral contracts and the balancing market. On the other hand, the main target of liberalization program is providing consumers with affordable electric power. Hence, this study attempts to explore the link between retail tariffs for ineligible consumers and prices in the two wholesale mechanisms, in the period after the launch of the day-ahead market. Findings suggest that regulated wholesale prices are more effective in the determination of end-user prices, whereas unregulated ones might have a price reduction effect in case the free market dominates. However, the volatility in spot market prices implies that the sector would better continue with the hybrid mechanism for quite some time.

  11. Mild hybrids with CVT: comparison of electrical and mechanical torque assist

    NARCIS (Netherlands)

    Druten, van R.M.; Serrarens, A.F.A.; Vroemen, B.G.; Tillaart, van den E.L.; de Haas, J.

    2001-01-01

    This paper evaluates two mild hybrid drive trains for a mid-class passenger car with a gasoline engine by means of comptuer simulation. The term mild hybrid is used for vehicles with sustained electric propulsion. The mild hybrid drive trains both have a Continuously Variable Transmission (CVT) with

  12. Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Ping-Feng [Department of Information Management, National Chi Nan University, 1 University Road, Puli, Nantou 545, Taiwan (China)

    2006-09-15

    Because of the privatization of electricity in many countries, load forecasting has become one of the most crucial issues in the planning and operations of electric utilities. In addition, accurate regional load forecasting can provide the transmission and distribution operators with more information. The hybrid ellipsoidal fuzzy system was originally designed to solve control and pattern recognition problems. The main objective of this investigation is to develop a hybrid ellipsoidal fuzzy system for time series forecasting (HEFST) and apply the proposed model to forecast regional electricity loads in Taiwan. Additionally, a scaled conjugate gradient learning method is employed in the supervised learning phase of the HEFST model. Subsequently, numerical data taken from the existing literature is used to demonstrate the forecasting performance of the HEFST model. Simulation results reveal that the proposed model has better forecasting performance than the artificial neural network model and the regression model. Thus, the HEFST model is a valid and promising alternative for forecasting regional electricity loads. (author)

  13. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    Science.gov (United States)

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  14. Program Guide for Diesel Engine Mechanics 8742000 (IN47.060500) and Heavy Duty Truck and Bus Mechanics DIM0991 (IN47.060501).

    Science.gov (United States)

    University of South Florida, Tampa. Coll. of Education.

    This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…

  15. Lithium-ion batteries for hybrid and electric vehicles; Lithium-Ionen-Batterie-Entwicklung fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Michael; Birke, Peter; Schiemann, Michael; Moerstaedt, Uwe [Continental AG, Berlin (Germany). Geschaeftsbereich HEV

    2009-03-15

    Continental is the first company worldwide to produce lithium-ion batteries for a serial production vehicle (Mercedes S 400 Hybrid). The supplier describes cell and system strategies, as well as safety relevant production details and integration strategies, which determine the application in hybrid and electric vehicles. (orig.)

  16. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  17. Electric control of wave vector filtering in a hybrid magnetic-electric-barrier nanostructure

    Science.gov (United States)

    Kong, Yong-Hong; Lu, Ke-Yu; He, Ya-Ping; Liu, Xu-Hui; Fu, Xi; Li, Ai-Hua

    2018-06-01

    We theoretically investigate how to manipulate the wave vector filtering effect by a traverse electric field for electrons across a hybrid magnetic-electric-barrier nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe and a Schottky-metal stripe on top and bottom of a GaAs/Al x Ga1- x As heterostructure, respectively. The wave vector filtering effect is found to be related closely to the applied electric field. Moreover, the wave vector filtering efficiency can be manipulated by changing direction or adjusting strength of the traverse electric field. Therefore, such a nanostructure can be employed as an electrically controllable electron-momentum filter for nanoelectronics applications.

  18. The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle

    Science.gov (United States)

    Juda, Z.; Noga, M.

    2016-09-01

    The article describes results of an analysis of the impact of degradation level of battery made in lead-acid technology on selected traction parameters of an electric light duty vehicle. Lead-acid batteries are still used in these types of vehicles. They do not require complex systems of performance management and monitoring and are easy to maintaining. Despite the basic disadvantage, which is the low value of energy density, low price is a decisive factor for their use in low-speed electric vehicles. The process of aging of the battery related with an increase in internal resistance of the cells and the loss of electric capacity of the battery was considered. A simplified model of cooperation of the DC electric motor with the battery assuming increased internal resistance was presented. In the paper the results of comparative traction research of the light-duty vehicle equipped with a set of new batteries and set of batteries having a significant degradation level were showed. The analysis of obtained results showed that the correct exploitation of the battery can slow down the processes of degradation and, thus, extend battery life cycle.

  19. Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors

    International Nuclear Information System (INIS)

    Ouyang, Minggao; Zhang, Weilin; Wang, Enhua; Yang, Fuyuan; Li, Jianqiu; Li, Zhongyan; Yu, Ping; Ye, Xiao

    2015-01-01

    Highlights: • Four different types of hybrid powertrain for heavy-duty vehicles are reviewed. • A novel coaxial power-split hybrid powertrain is proposed and models are developed. • Performance characteristics are analyzed and compared to a conventional powertrain. • Fuel saving potential is evaluated and explained using energy efficiency method. - Abstract: Energy conservation is a very important task for the automotive industry. The use of hybrid electric vehicles can improve energy efficiency, thus reducing fuel consumption and carbon emissions. In this research, the performance characteristics of a novel coaxial power-split hybrid powertrain for a transit bus are presented. The power sources are a combination of a compressed natural gas (CNG) engine and supercapacitors. A mathematical model for the coaxial power-split hybrid powertrain is established. Subsequently, an analysis program is developed based on Matlab and Advisor. The parameters are specified using experimental data. Afterwards, a rule-based control strategy is designed and optimized from the viewpoint of energy efficiency. Later, the system performance is evaluated using the Chinese Transit Bus City Driving Cycle and compared to a conventional powertrain. The results indicate that the proposed coaxial power-split hybrid powertrain can fulfill the requirements of the transit bus and enhance the energy efficiency dramatically. Moreover, the average energy efficiency of the supercapacitors was found to be above 97% over the entire driving cycle. Using supercapacitors as energy storage devices for the coaxial power-split hybrid powertrain can effectively recover the kinetic energy during regenerative braking and is a good solution for transit buses that require frequent acceleration and deceleration.

  20. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  1. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  2. State-of-the-art assessment of electric vehicles and hybrid vehicles

    Science.gov (United States)

    1977-01-01

    The Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976 (PL 94-413) requires that data be developed to characterize the state of the art of vehicles powered by an electric motor and those propelled by a combination of an electric motor and an internal combustion engine or other power sources. Data obtained from controlled tests of a representative number of sample vehicles, from information supplied by manufacturers or contained in the literature, and from surveys of fleet operators of individual owners of electric vehicles is discussed. The results of track and dynamometer tests conducted by NASA on 22 electric, 2 hybrid, and 5 conventional vehicles, as well as on 5 spark-ignition-engine-powered vehicles, the conventional counterparts of 5 of the vehicles, are presented.

  3. Hybrid Electric Vehicle Experimental Model with CAN Network Real Time Control

    Directory of Open Access Journals (Sweden)

    RATOI, M.

    2010-05-01

    Full Text Available In this paper an experimental model with a distributed control system of a hybrid electrical vehicle is presented. A communication CAN network of high speed (1 Mbps assures a distributed control of the all components. The modeling and the control of different operating regimes are realized on an experimental test-bench of a hybrid electrical vehicle. The experimental results concerning the variations of the mains variables (currents, torques, speeds are presented.

  4. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  5. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  6. Electricity-price arbitrage with plug-in hybrid electric vehicle: Gain or loss?

    International Nuclear Information System (INIS)

    Shang, Duo; Sun, Guodong

    2016-01-01

    Customers, utilities, and society can gain many benefits from distributed energy resources (DERs), including plug-in hybrid electric vehicles (PHEVs). Using battery on PHEV to arbitrage electricity price is one of the potential benefits to PHEV owners. There is, however, disagreement on the magnitude of such profit. This study uses a stochastic optimization model to estimate the potential profit from electricity price arbitrage of two types of PHEVs (PHEV-10, and PHEV-40) under three scenarios with variant electricity tariff and PHEV owners over a five-year period. The simulation results indicate that under current market structure, even with significant improvement in battery technologies (e.g., higher efficiency, lower cost), the PHEV owners can't achieve a positive arbitrage profit. This finding implies that expected arbitrage profit solely is not a viable option to engage PHEVs larger adoption. Subsidy and combining PHEV arbitraging with alternative PHEV services are required. - Highlights: •A stochastic optimization model is proposed to assess the arbitrage value of plug-in hybrid electric vehicle (PHEV). •Under current market condition, PHEV owners lose money from conducting PHEV arbitrage if counting battery degradation cost. •PHEV owner loses more money at real time pricing (RTP) than at time of use (TOU) scheme. •Battery improvement will reduce but can't even the arbitrage loss. •Expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing ancillary services.

  7. 75 FR 70775 - Submission for OMB Review; Comment Request

    Science.gov (United States)

    2010-11-18

    ... for taxpayers to establish the postmark date and prima facie evidence of delivery when using... approved collection. Title: Notice 2007-46--Credit for New Medium-Duty and Heavy-Duty Hybrid Motor Vehicles. Abstract: This notice sets forth a process that allows taxpayers who purchase medium-duty and heavy-duty...

  8. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  9. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  10. Fuel Economy Improvement of a Heavy-Duty Powertrain by Using Hardware-in-Loop Simulation and Calibration

    Directory of Open Access Journals (Sweden)

    Bolan Liu

    2015-09-01

    Full Text Available Fuel economy efficiency is one of the most important parameters for vehicle powertrains, which is of particular interest for heavy-duty powertrain calibration. Conventionally, this work relies heavily on road tests, which cost more and may lead to long duration product development cycles. The paper proposes a novel hardware-in-loop modeling and calibration method to work it out. A dSPACE hardware-based test bench was successfully established and validated, which is valuable for a more efficient and easier shift schedule in calibration. Meanwhile, a real-time dynamic powertrain model, including a diesel engine, torque converter, gear box and driver model was built. Typical driving cycles that both velocity and slope information were constructed for different road conditions. A basic economic shift schedule was initially calculated and then optimal calibrated by the test bench. The results show that there is an optimal relationship between an economic shift schedule and speed regulation. By matching the best economic shift schedule regulation to different road conditions; the fuel economy of vehicles can be improved. In a smooth driving cycle; when the powertrain applies a larger speed regulation such as 12% and the corresponding shift schedule; the fuel consumption is smaller and is reduced by 13%. In a complex driving cycle, when the powertrain applies a smaller speed regulation such as 5% along with the corresponding shift schedule; the fuel consumption is smaller and is reduced by 5%. The method thus can provide guidance for economic calibration experiments of off-road heavy-duty vehicles.

  11. Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge

    Science.gov (United States)

    Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian

    2016-04-01

    A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH-3 and SiH-2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)

  12. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    OpenAIRE

    Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani

    2010-01-01

    Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...

  13. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  14. Study on Two-segment Electric-mechanical Composite Braking Strategy of Tracked Vehicle Hybrid Transmission System

    OpenAIRE

    Ma, Tian; Gai, Jiangtao; Ma, Xiaofeng

    2010-01-01

    In order to lighten abrasion of braking system of hybrid electric tracked vehicle, according to characteristic of hybrid electric transmission, electric-mechanical composite braking method was proposed. By means of analyzing performance of electric braking and mechanical braking and three-segment composite braking strategy, two-segment electric-mechanical composite braking strategy was put forward in this paper. Simulation results of Matlab/Simulink indicated that the two-segment electric-mec...

  15. Research on Braking Stability of Electro-mechanical Hybrid Braking System in Electric Vehicles

    OpenAIRE

    Ji, Fenzhu; Tian, Mi

    2010-01-01

    For the electro-mechanical hybrid braking system, which is composed of electric brake and general friction brake, the models of electric braking force, total braking force and the utilization adhesion coefficient for front and rear axles were established based on the analysis of braking torque distribution. The variation relationship between electric braking force and friction braking force in different braking intensity was calculated and analyzed with the paralleled-hybridized braking contr...

  16. Transit experience with hydrogen fueled hybrid electric buses

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.B.; Mazaika, D.M. [ISE Corp., Poway, CA (United States)

    2006-07-01

    Mass transit buses are ideal candidates for hydrogen implementation due to their capability of carrying 30 to 60 kg of hydrogen. ISE Corporation is a supplier of hydrogen fueled buses, including the first hybrid electric fuel cell bus which was commercialized in 2002, the hybrid electric fuel cell bus, and the hybrid hydrogen internal combustion engine (HHICE) bus which was commercialized in 2004. The configuration of a HHICE bus was illustrated with reference to its engine, control system, energy storage, generator, drive motor, inverter and accessories. Although these vehicles are expensive, the cost is amortized over a large base of hours used and passengers carried. The buses are operated primarily in urban areas where quiet and clean operation is needed the most. ISE has established a joint venture with Thor industries to develop a series of fuel cell buses equipped with a 60 kW PEM fuel cell. A schematic illustrating the energy flow in HHICE bus was also presented. It was shown that regenerative braking recovers the energy of motion. When using regenerative braking, most of the braking energy is saved in the battery. ISE drive systems convert 30 per cent or more of the bus energy to electrical energy to be used in later acceleration. Reduced fuel consumption also reduces the vehicle emissions. Testing of HHICE buses in both summer and winter operating conditions have shown that the range needs to be improved along with engine component reliability and durability. Fuel supply is also a major issue. A comparison with a fuel cell hybrid system was also presented. In the United States, more than 100,000 miles have been logged for the use of hydrogen hybrid buses, fuel cell buses and HHICE buses. The HHICE bus offers low capital cost, familiar technologies, but some NOx. CAT absorber technology offers the possibility of near zero emission capability. The fuel cell bus was found to be more fuel efficient, and can travel nearly twice as far per unit energy as

  17. Contribution to design and to integrate a flywheel-based storage system in a test bench for electric vehicles with hybrid source; Contribution a la conception et a l'integration d'un accumulateur cinetique d'energie dans une plate-forme de test pour vehicules electriques a source hybride

    Energy Technology Data Exchange (ETDEWEB)

    Briat, O.

    2002-11-01

    This work deals with the design and the integration of a flywheel-based storage system in a test bench for EV with hybrid source. The flywheel used to supply/recover the peak power during acceleration/braking is associated to a battery which supplies the average power. The main goal is to prove the interest of such a sources hybridization for heavy duty EV. First, a simulation tool has been used for EV studies. Models have been validated thanks to on-board vehicle measurements. Then, a EV test bench has been designed on a reduced power scale. The representativeness of this experimental tool has allowed us to validate simulation models. A flywheel module has been integrated and associated to a battery in order to validate the hybridization principle. Experimental results have shown the performances of the battery power limitation and have proved the interest of a systematic regenerative braking on the battery. In these conditions, an increase of the vehicle payload can be expected. (author)

  18. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Paul H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deter, Dean D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  19. Electric Motors for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  20. A hybrid electrical power system for aircraft application.

    Science.gov (United States)

    Lee, C. H.; Chin, C. Y.

    1971-01-01

    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  1. Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Chien, Chia-ling

    2018-02-20

    Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.

  2. Carbonyl compounds and PAH emissions from CNG heavy-duty engine

    International Nuclear Information System (INIS)

    Gambino, M.; Cericola, R.; Corbo, P.; Iannaccone, S.

    1993-01-01

    Previous works carried out in Istituto Motori laboratories have shown that natural gas is a suitable fuel for general means of transportation. This is because of its favorable effects on engine performance and pollutant emissions. The natural gas fueled engine provided the same performance as the diesel engine, met R49 emission standards, and showed very low smoke levels. On the other hand, it is well known that internal combustion engines emit some components that are harmful for human health, such as carbonyl compounds and polycyclic aromatic hydrocarbons (PAH). This paper shows the results of carbonyl compounds and PAH emissions analysis for a heavy-duty Otto cycle engine fueled with natural gas. The engine was tested using the R49 cycle that is used to measure the regulated emissions. The test analysis has been compared with an analysis of a diesel engine, tested under the same conditions. Total PAH emissions from the CNG engine were about three orders of magnitude lower than from the diesel engine. Formaldehyde emission from the CNG engine was about ten times as much as from the diesel engine, while emissions of other carbonyl compounds were comparable

  3. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    Science.gov (United States)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  4. Report on electric cars and plug-in hybrid cars; Redegoerelse - elbiler og plug-in hybridbiler

    Energy Technology Data Exchange (ETDEWEB)

    Elkjaer Toennesen, A.; Winther, K.; Noerregaard, K. (Teknologisk Institut, Taastrup (Denmark)); Larsen, Esben; Christensen, Linda; Kveiborg, O. (Danmarks Teknologiske Univ., Kgs. Lyngby (DTU) (Denmark))

    2010-04-15

    The Center for Green Transport at the Danish Transport Authority has prepared this statement in order to uncover driving technical aspects, user expectations and needs, and the environmental consequences of using electric and plug-in hybrid cars. An electric car is defined as a car driven by an electric motor that has a battery that can be charged with power from the grid. A plug-in hybrid car is defined as a car that combines gasoline or diesel engine with an electric motor with a battery which can be recharged with power from the grid. From an overall consideration related to the transport sector electric cars and plug-in hybrid cars have the major advantage that negative impacts on environment and climate from traffic can be reduced while the high mobility is maintained. Through an increased use of electric cars and plug-in hybrid cars, the many advantages attached to the car as an individual transportation form is maintained, while CO{sub 2} emissions etc. are reduced. Electric cars and plug-in hybrid cars is one of the technologies that are considered to have particularly great prospects in the medium term when it comes to promoting new technologies in transport. Another advantage of using electric vehicles is the power supply factor. An increased use of electricity in transport will reduce the need for and dependence on fossil fuels in the sector. Both electric cars and plug-in hybrid cars are expected to be used for storage of wind power, a possibility which is hardly available today. The plug-in hybrid car could meet some of the challenges facing the pure electric car, because it also can use conventional fuel. The report presents analyses based on three focus areas: a) Users' needs, expectations and economics in relation to vehicles; b) The technology - and hence the manufacturers' opportunities and challenges; c) Connection to the power grid. (ln)

  5. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses

    International Nuclear Information System (INIS)

    Lajunen, Antti; Lipman, Timothy

    2016-01-01

    This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels. - Highlights: • Alternative powertrains can significantly improve energy efficiency of transit buses. • Operating environment has an important impact on the lifecycle costs of buses. • Diesel hybrid buses are already cost effective solution for public transportation. • The cost of fuel cell technology is the major challenge for fuel cell hybrid buses. • Fully-electric buses have potential to significantly reduce carbon dioxide emissions.

  6. Removal of heavy-metal ions from dilute waste streams using membrane-based hybrid systems

    International Nuclear Information System (INIS)

    Friesen, D.T.; Edlund, D.J.

    1993-01-01

    At Bend research, the authors have developed hybrid systems that couple a process that removes solvent (water) and a process that removes solute (metal ions) such that toxic heavy-metal ions can be efficiently and selectively removed to very low levels while simultaneously concentrating the heavy-metal ions in relatively pure form. Although this technology is broadly applicable, the authors are focusing on the development of a system to treat groundwater that is contaminated with heavy-metal ions. The process utilizes coupled transport and reverse osmosis to reduce chromium and uranium concentration down to parts-per-billion levels

  7. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    Science.gov (United States)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  8. Velocity trajectory optimization in Hybrid Electric trucks

    NARCIS (Netherlands)

    Keulen, T. van; Jager, B. de; Foster, D.L.; Steinbuch, M.

    2010-01-01

    Hybrid Electric Vehicles (HEVs) enable fuel savings by re-using kinetic and potential energy that was recovered and stored in a battery during braking or driving down hill. Besides, the vehicle itself can be seen as a storage device, where kinetic energy can be stored and retrieved by changing the

  9. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    Science.gov (United States)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric

  10. Influence of electrical and hybrid heating on bread quality during baking

    OpenAIRE

    Chhanwal, N.; Ezhilarasi, P. N.; Indrani, D.; Anandharamakrishnan, C.

    2014-01-01

    Energy efficiency and product quality are the key factors for any food processing industry. The aim of the study was to develop energy and time efficient baking process. The hybrid heating (Infrared + Electrical) oven was designed and fabricated using two infrared lamps and electric heating coils. The developed oven can be operated in serial or combined heating modes. The standardized baking conditions were 18 min at 220°C to produce the bread from hybrid heating oven. Effect of baking with h...

  11. COMPARISON OF THE PARTICLE SIZE DISTRIBUTION OF HEAVY-DUTY DIESEL EXHAUST USING A DILUTION TAIL-PIPE SAMPLER AND IN-PLUME SAMPLER DURING ON-ROAD OPERATION

    Science.gov (United States)

    The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...

  12. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  13. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  14. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    Science.gov (United States)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  15. Quasi-Dimensional Modelling and Parametric Studies of a Heavy-Duty HCCI Engine

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Pandey

    2011-01-01

    Full Text Available A quasi-dimensional modelling study is conducted for the first time for a heavy duty, diesel-fuelled, multicylinder engine operating in HCCI mode. This quasidimensional approach involves a zero-dimensional single-zone homogeneous charge compression ignition (HCCI combustion model along with a one-dimensional treatment of the intake and exhaust systems. A skeletal chemical kinetic scheme for n-heptane was used in the simulations. Exhaust gas recirculation (EGR and compression ratio (CR were the two parameters that were altered in order to deal with the challenges of combustion phasing control and operating load range extension. Results from the HCCI mode simulations show good potential when compared to conventional diesel performance with respect to important performance parameters such as peak firing pressure, specific fuel consumption, peak pressure rise, and combustion noise. This study shows that HCCI combustion mode can be employed at part load of 25% varying the EGR rates between 0 and 60%.

  16. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

    Science.gov (United States)

    2013-01-14

    ... Sound Requirements for Hybrid and Electric Vehicles; Draft Environmental Assessment for Rulemaking To Establish Minimum Sound Requirements for Hybrid and Electric Vehicles; Proposed Rules #0;#0;Federal Register...-0148] RIN 2127-AK93 Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and...

  17. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  18. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  19. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  20. Experimental study on transportation safety of package in side collision of heavy duty truck

    International Nuclear Information System (INIS)

    Suga, M.; Sasaki, T.

    1989-01-01

    The accidents in road transportation of package may be collision, fall and fire. It is necessary to examine all cases very carefully because collision might be caused by other vehicle. Collisions are classified into head-on collision, rear-end collision, side collision. A lot of experiments and analyses are reported on head-on collision, so the behavior of vehicle and package may be predicted without difficulty. Rear-end collisions bring about less impact and may be applied corresponding to the head-on collisions. About side collisions, few experiments or analyses are reported, and most of them are about passenger cars not about trucks. So it becomes important to study the transportation safety of package carried on a heavy duty truck when hit on the side by another truck similar in size

  1. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  2. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  3. A new parallel-type hybrid electric-vehicle

    International Nuclear Information System (INIS)

    David Huang, K.; Tzeng, S.-C.

    2004-01-01

    This new system promises an internal-combustion engine that always maintains optimal operating conditions. The system comprises two parts: (1) an internal-combustion power-distribution device and (2) an integrated design involving the engine and electronic motor. The internal-combustion power-distribution device provides an engine capable of constantly operating in an optimal fashion, minimizing emissions and maximizing thermal-efficiency. The electric motor can generate extra power. Notably, the integrated torque design comprises three helical gears. This design can release the power of the engine or electric motor separately, or can integrate these two different powers into a hybridized power system

  4. Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cell and Super-Capacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius

    2012-01-01

    Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements...... by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimizes the number of switches and their associated gate driver components by using two high frequency...

  5. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  6. Advanced continuously variable transmissions for electric and hybrid vehicles

    Science.gov (United States)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  7. Field weakening performance of flux-switching machines for hybrid/electric vehicles

    NARCIS (Netherlands)

    Tang, Y.; Paulides, J.J.H.; Lomonova, E.A.

    2015-01-01

    Flux-switching machines (FSMs) are a viable candidate for electric propulsion of hybrid/electric vehicles. This paper investigates the field weakening performance of FSMs. The investigation starts with general torque and voltage expressions, which reveal the relationships between certain parameters

  8. Electric Motor Considerations for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  9. Application of flywheel energy storage for heavy haul locomotives

    International Nuclear Information System (INIS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Sun, Yan Quan; Cole, Colin; Nielsen, Dwayne

    2015-01-01

    Highlights: • A novel design for heavy haul locomotive equipped with a flywheel energy storage system is proposed. • The integrated intelligent traction control system was developed. • A flywheel energy storage system has been tested through a simulation process. • The developed hybrid system was verified using an existing heavy haul railway route. • Fuel efficiency analysis confirms advantages of the hybrid design. - Abstract: At the present time, trains in heavy haul operations are typically hauled by several diesel-electric locomotives coupled in a multiple unit. This paper studies the case of a typical consist of three Co–Co diesel-electric locomotives, and considers replacing one unit with an alternative version, with the same design parameters, except that the diesel-electric plant is replaced with flywheel energy storage equipment. The intelligent traction and energy control system installed in this unit is integrated into the multiple-unit control to allow redistribution of the power between all units. In order to verify the proposed design, a three-stage investigation has been performed as described in this paper. The initial stage studies a possible configuration of the flywheel energy storage system by detailed modelling of the proposed intelligent traction and energy control system. The second stage includes the investigation and estimation of possible energy flows using a longitudinal train dynamics simulation. The final stage compares the conventional and the proposed locomotive configurations considering two parameters: fuel efficiency and emissions reduction.

  10. A survey of electric and hybrid vehicle simulation programs

    Science.gov (United States)

    Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.

    1978-01-01

    Results of a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are summarized. Altogether, 111 programs were identified as being in a usable state. The complexity of the existing programs spans a range from a page of simple desktop calculator instructions to 300,000 lines of a high-level programming language. The capability to simulate electric vehicles was most common, heat-engines second, and hybrid vehicles least common. Batch-operated programs are slightly more common than interactive ones, and one-third can be operated in either mode. The most commonly used language was FORTRAN, the language typically used by engineers. The higher-level simulation languages (e.g. SIMSCRIPT, GPSS, SIMULA) used by "model builders" were conspicuously lacking.

  11. Impact of Spanish electricity mix, over the period 2008–2030, on the Life Cycle energy consumption and GHG emissions of Electric, Hybrid Diesel-Electric, Fuel Cell Hybrid and Diesel Bus of the Madrid Transportation System

    International Nuclear Information System (INIS)

    García Sánchez, Juan Antonio; López Martínez, José María; Lumbreras Martín, Julio; Flores Holgado, María Nuria; Aguilar Morales, Hansel

    2013-01-01

    Highlights: • We assess the performance of 4 buses that run on different alternative fuel types and technologies. • The buses assessed are Fuel Cell-Hybrid Bus, Hybrid Diesel-Electric Bus, Battery Electric Bus, and a Diesel Bus. • We examine the environmental impact caused by the Life Cycle of each vehicle technology, fossil fuel and energy carrier. • Life Cycle of Battery Electric Bus shows that it has a big potential of improvement in terms of environmental impact. - Abstract: In spite of the advanced research in automotive technology, and the improvement of fuels, the road transport sector continues to be an environmental concern, since the increase in transport demand is offsetting the effects of these technological improvements. Therefore, this poses the following question: what combination of technology and fuel is more efficient in terms of energy consumption and green house gas (GHG) emissions? To fully address this question it is necessary to carry out a Life Cycle Assessment (LCA). This paper presents a global LCA of 4 buses that run on the following fuel types and technologies: (1) Fuel Cell- Hybrid Bus, (2) Hybrid Diesel-Electric Bus (series configuration), (3) Battery Electric Bus and (4) Combustion Ignition Engine Bus. The impact categories assessed are: primary energy consumption, fossil energy and GHG emissions. Among the principal results, we can conclude that the Global LCA of buses (3) and (1) (which are the more sensitive pathways to the electricity mix variation) have for the 2008–2030 period a room for improvement of 25.62% and 28.16% in terms of efficiency of fossil energy consumption and a potential GHG emission reduction of 28.70% and 30.88% respectively

  12. Hybrid emulsion spectrometer for the detection of hadronically produced heavy flavor states

    International Nuclear Information System (INIS)

    Kodama, K.; Ushida, N.; Lander, R.L.; Mokhtarani, A.; Paolone, V.S.; Wilcox, J.O.; Yager, P.M.; Edelstein, R.M.; Freyberger, A.P.; Gibaut, D.B.; Lipton, R.J.; Nichols, W.R.; Potter, D.M.; Russ, J.R.; Zhang, Y.; Jang, H.I.; Kim, J.Y.; Pac, M.Y.; Baller, B.R.; Stefanski, R.J.; Nakazawa, K.; Tasaka, S.; Choi, Y.S.; Chung, K.H.; Kim, D.C.; Park, I.G.; Song, J.S.; Yoon, C.S.; Chikawa, M.; Abe, T.; Fujii, T.; Fujioka, G.; Fujiwara, K.; Fukushima, H.; Hara, T.; Takahashi, Y.; Taruma, K.; Tsuzuki, Y.; Yokoyama, C.; Chang, S.D.; Cheon, B.G.; Cho, J.H.; Kang, J.S.; Kim, C.O.; Kim, K.Y.; Kim, T.Y.; Lee, J.C.; Lee, S.B.; Lim, G.Y.; Lim, I.T.; Nam, S.W.; Shin, T.S.; Sim, K.S.; Woo, J.K.; Isokane, Y.; Tsuneoka, Y.; Aoki, S.; Gauthier, A.; Hoshino, K.; Kitamura, H.; Kobayashi, M.; Miyanishi, M.; Nakamura, K.; Nakamura, M.; Nakamura, Y.; Nakanishi, S.; Niu, K.; Niwa, K.; Tajima, H.; Dunlea, J.M.; Frederiksen, S.G.; Kuramata, S.; Lundberg, B.G.; Oleynik, G.A.; Reay, N.W.; Reibel, K.; Rush, C.J.; Sidwell, R.A.; Stanton, N.R.; Moriyama, K.; Shibata, H.; Jaffery, T.S.; Kalbfleisch, G.R.; Skubic, P.L.; Snow, J.M.; Willis, S.E.; Yuan, W.Y.; Kusumoto, O.; Okusawa, T.; Teranaka, M.; Tominaga, T.; Watanabe, T.; Yamato, J.; Okabe, H.; Yokota, J.; Sato, Y.; Tezuka, I.; Bahk, S.Y.; Kim, S.K.

    1990-01-01

    A hybrid apparatus consisting of a movable emulsion target and a magnetic spectrometer was used in a fixed target Fermilab Tevatron experiment to study the production of heavy quarks by high-energy hadron beams. High-resolution silicon microstrip detectors were used for precise tracking in the dense particle environment. Details of the experimental apparatus, including the data acquisition system, are described. (orig.)

  13. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses

    International Nuclear Information System (INIS)

    Li, Liang; You, Sixiong; Yang, Chao; Yan, Bingjie; Song, Jian; Chen, Zheng

    2016-01-01

    Highlights: • The novel approximated global optimal energy management strategy has been proposed for hybrid powertrains. • Eight typical driving behaviors have been classified with K-means to deal with the multiplicative traffic conditions. • The stochastic driver models of different driving behaviors were established based on the Markov chains. • ECMS was used to modify the SMPC-based energy management strategy to improve its fuel economy. • The approximated global optimal energy management strategy for plug-in hybrid electric buses has been verified and analyzed. - Abstract: Driving cycles of a city bus is statistically characterized by some repetitive features, which makes the predictive energy management strategy very desirable to obtain approximate optimal fuel economy of a plug-in hybrid electric bus. But dealing with the complicated traffic conditions and finding an approximated global optimal strategy which is applicable to the plug-in hybrid electric bus still remains a challenging technique. To solve this problem, a novel driving-behavior-aware modified stochastic model predictive control method is proposed for the plug-in hybrid electric bus. Firstly, the K-means is employed to classify driving behaviors, and the driver models based on Markov chains is obtained under different kinds of driving behaviors. While the obtained driver behaviors are regarded as stochastic disturbance inputs, the local minimum fuel consumption might be obtained with a traditional stochastic model predictive control at each step, taking tracking the reference battery state of charge trajectory into consideration in the finite predictive horizons. However, this technique is still accompanied by some working points with reduced/worsened fuel economy. Thus, the stochastic model predictive control is modified with the equivalent consumption minimization strategy to eliminate these undesirable working points. The results in real-world city bus routines show that the

  14. Auditory detectability of hybrid electric vehicles by pedestrians who are blind

    Science.gov (United States)

    2010-11-15

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  15. Power electronics and electric machinery challenges and opportunities in electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.J.; Hsu, J.S.; Young, R.W. [Oak Ridge National Lab., TN (United States); Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-06-01

    The development of power electronics and electric machinery presents significant challenges to the advancement of electric and hybrid vehicles. Electronic components and systems development for vehicle applications have progressed from the replacement of mechanical systems to the availability of features that can only be realized through interacting electronic controls and devices. Near-term applications of power electronics in vehicles will enable integrated powertrain controls, integrated chassis system controls, and navigation and communications systems. Future applications of optimized electric machinery will enable highly efficient and lightweight systems. This paper will explore the areas where research and development is required to ensure the continued development of power electronics and electric machines to meet the rigorous demands of automotive applications. Additionally, recent advances in automotive related power electronics and electric machinery at Oak Ridge National Laboratory will be explained. 3 refs., 5 figs.

  16. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  17. An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine

    OpenAIRE

    Benajes Calvo, Jesus Vicente; Pastor Soriano, José Vicente; García Martínez, Antonio; Monsalve Serrano, Javier

    2015-01-01

    This experimental work investigates the effects of piston bowl geometry on RCCI performance and emissions at low, medium and high engine loads. For this purpose three different piston bowl geometries with compression ratio 14.4:1 have been evaluated using single and double injection strategies. The experiments were conducted in a heavy-duty single-cylinder engine adapted for dual fuel operation. All the tests were carried out at 1200 rev/min. Results suggest that piston geometry has grea...

  18. Particulate matters from diesel heavy duty trucks exhaust versus cigarettes emissions: a new educational antismoking instrument.

    Science.gov (United States)

    De Marco, Cinzia; Ruprecht, Ario Alberto; Pozzi, Paolo; Munarini, Elena; Ogliari, Anna Chiara; Mazza, Roberto; Boffi, Roberto

    2015-01-01

    Indoor smoking in public places and workplaces is forbidden in Italy since 2003, but some health concerns are arising from outdoor secondhand smoke (SHS) exposure for non-smokers. One of the biggest Italian Steel Manufacturer, with several factories in Italy and abroad, the Marcegaglia Group, recently introduced the outdoor smoking ban within the perimeter of all their factories. In order to encourage their smoker employees to quit, the Marcegaglia management decided to set up an educational framework by measuring the PM1, PM2.5 and PM10 emissions from heavy duty trucks and to compare them with the emissions of cigarettes in an indoor controlled environment under the same conditions. The exhaust pipe of two trucks powered by a diesel engine of about 13.000/14.000 cc(3) were connected with a flexible hose to a hole in the window of a container of 36 m(3) volume used as field office. The trucks operated idling for 8 min and then, after adequate office ventilation, a smoker smoked a cigarette. Particulate matter emission was thereafter analyzed. Cigarette pollution was much higher than the heavy duty truck one. Mean of the two tests was: PM1 truck 125.0(47.0), cigarettes 231.7(90.9) p = 0.002; PM2.5 truck 250.8(98.7), cigarettes 591.8(306.1) p = 0.006; PM10 truck 255.8(52.4), cigarettes 624.0(321.6) p = 0.002. Our findings may be important for policies that aim reducing outdoor SHS exposure. They may also help smokers to quit tobacco dependence by giving them an educational perspective that rebuts the common alibi that traffic pollution is more dangerous than cigarettes pollution.

  19. Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector.

    Science.gov (United States)

    Clark, Nigel N; McKain, David L; Johnson, Derek R; Wayne, W Scott; Li, Hailin; Akkerman, Vyacheslav; Sandoval, Cesar; Covington, April N; Mongold, Ronald A; Hailer, John T; Ugarte, Orlando J

    2017-01-17

    Pump-to-wheels (PTW) methane emissions from the heavy-duty (HD) transportation sector, which have climate change implications, are poorly documented. In this study, methane emissions from HD natural gas fueled vehicles and the compressed natural gas (CNG) and liquefied natural gas (LNG) fueling stations that serve them were characterized. A novel measurement system was developed to quantify methane leaks and losses. Engine related emissions were characterized from twenty-two natural gas fueled transit buses, refuse trucks, and over-the-road (OTR) tractors. Losses from six LNG and eight CNG stations were characterized during compression, fuel delivery, storage, and from leaks. Cryogenic boil-off pressure rise and pressure control venting from LNG storage tanks were characterized using theoretical and empirical modeling. Field and laboratory observations of LNG storage tanks were used for model development and evaluation. PTW emissions were combined with a specific scenario to view emissions as a percent of throughput. Vehicle tailpipe and crankcase emissions were the highest sources of methane. Data from this research are being applied by the authors to develop models to forecast methane emissions from the future HD transportation sector.

  20. Piezo-based motion stages for heavy duty operation in clean environments

    Science.gov (United States)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Gissin, Michael; Feinstein, Alan

    2018-02-01

    A range of heavy duty, ultra-precise motion stages had been developed for precise positioning in semiconductor manufacturing and metrology, for use in a clean room and high vacuum (HV and UHV) environments, to meet the precision requirements for 7, 5 nm nodes and beyond. These stages are powered by L1B2 direct drive ultrasonic motors, which allows combining long motion range, sub-nanometer positioning accuracy, high stiffness (in the direction of motion), low power consumption and active compensation of thermal and structural drift while holding position. The mechanical design, material selection for clean room and high vacuum preparation techniques are reviewed. Test results in a clean room are reported for a two-axis (X-Y) stage, having a load capacity of 30 kg, a motion range of 450 mm, a positioning accuracy of 200 mm/s and a profile has a trapezoidal shape with an acceleration of 1m/s2 and a constant velocity of 100 mm/s. The operational parameters (average absolute position error during constant velocity, motor force, dead zone level) remain stable over more than 370000 passes (experiment duration).

  1. The Development and Verification of a Novel ECMS of Hybrid Electric Bus

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-01-01

    Full Text Available This paper presents the system modeling, control strategy design, and hardware-in-the-loop test for a series-parallel hybrid electric bus. First, the powertrain mathematical models and the system architecture were proposed. Then an adaptive ECMS is developed for the real-time control of a hybrid electric bus, which is investigated and verified in a hardware-in-the-loop simulation system. The ECMS through driving cycle recognition results in updating the equivalent charge and discharge coefficients and extracting optimized rules for real-time control. This method not only solves the problems of mode transition frequently and improves the fuel economy, but also simplifies the complexity of control strategy design and provides new design ideas for the energy management strategy and gear-shifting rules designed. Finally, the simulation results show that the proposed real-time A-ECMS can coordinate the overall hybrid electric powertrain to optimize fuel economy and sustain the battery SOC level.

  2. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  3. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    International Nuclear Information System (INIS)

    Askin, Amanda C.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2015-01-01

    We present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. The model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives. -- Highlights: •We present a parametric analysis of factors U.S. Class 7–8 trucks through 2050. •Conventional diesels will be more than 70% of U.S. heavy-duty vehicles through 2050. •CNG trucks are well suited to large, urban fleets with private refueling. •Ultra-efficient long haul diesel trucks are preferred over LNG at current fuel prices

  4. Electrofishing power requirements in relation to duty cycle

    Science.gov (United States)

    Miranda, L.E.; Dolan, C.R.

    2004-01-01

    Under controlled laboratory conditions we measured the electrical peak power required to immobilize (i.e., narcotize or tetanize) fish of various species and sizes with duty cycles (i.e., percentage of time a field is energized) ranging from 1.5% to 100%. Electrofishing effectiveness was closely associated with duty cycle. Duty cycles of 10-50% required the least peak power to immobilize fish; peak power requirements increased gradually above 50% duty cycle and sharply below 10%. Small duty cycles can increase field strength by making possible higher instantaneous peak voltages that allow the threshold power needed to immobilize fish to radiate farther away from the electrodes. Therefore, operating within the 10-50% range of duty cycles would allow a larger radius of immobilization action than operating with higher duty cycles. This 10-50% range of duty cycles also coincided with some of the highest margins of difference between the electrical power required to narcotize and that required to tetanize fish. This observation is worthy of note because proper use of duty cycle could help reduce the mortality associated with tetany documented by some authors. Although electrofishing with intermediate duty cycles can potentially increase effectiveness of electrofishing, our results suggest that immobilization response is not fully accounted for by duty cycle because of a potential interaction between pulse frequency and duration that requires further investigation.

  5. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries

    International Nuclear Information System (INIS)

    Suri, Girish; Onori, Simona

    2016-01-01

    In this paper, a semi-empirical Lithium-iron phosphate-graphite battery aging model is identified over data mimicking actual cycling conditions that a hybrid electric vehicle battery encounters under real driving scenarios. The aging model is then used to construct the severity factor map, used to characterize relative aging of the battery under different operating conditions. This is used as a battery degradation criterion within a multi-objective optimization problem where battery aging minimization is to be achieved along with fuel consumption minimization. The method proposed is general and can be applied to other battery chemistry as well as different vehicular applications. Finally, simulations conducted using a hybrid electric vehicle simulator show how the two modeling tools developed in this paper, i.e., the severity factor map and the aging model, can be effectively used in a multi-objective optimization problem to predict and control battery degradation. - Highlights: • Battery aging model for hybrid electric vehicles using real driving conditions data. • Development of a modeling tool to assess battery degradation for real time optimization. • "3"1P NMR analysis of an enzyme-treated extract showed expected hydrolysis of P forms. • Development of an energy management strategy to minimize battery degradation. • Simulation results from hybrid electric vehicle simulator.

  6. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  7. Performance and emissions of a heavy-duty diesel/LPG dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, Paul [Sasol Technology, Cape Town (South Africa)

    2013-06-01

    This paper describes an investigation into the combustion characteristics and exhaust emissions of a heavy-duty truck engine which has been equipped with an aftermarket conversion kit to enable operation as a diesel/LPG (Liquefied Petroleum Gas) dual fuel engine. During operation diesel fuel is displaced by LPG which is vaporised and metered into the inlet manifold by means of solenoid injectors. It was found that, as the LPG fuelling rate is increased, the cylinder pressure rise rates and peak cylinder pressures increase, as do the carbon monoxide and unburned hydrocarbon emissions. At higher loads it was found that the LPG autoignites independently of the diesel fuel, resulting in very high rates of cylinder pressure rise. Particulate and nitrogen oxide emissions remain largely unchanged, and carbon dioxide emissions are reduced due to the lower carbon content of the LPG fuel. Different LPG compositions were also investigated and it was found that the LPG properties that have the most significant effect on combustion and emissions were the autoignition and volatility characteristics. (orig.)

  8. Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles

    Science.gov (United States)

    Shah, Sandip D.; Johnson, Kent C.; Wayne Miller, J.; Cocker, David R.

    Emissions from heavy-duty diesel (HDD) vehicles are affected by many factors. Changes in engine technology, operating mode, fuel properties, vehicle speed and ambient conditions can have significant effects on emission rates of regulated species. This paper presents the results of on-road emissions testing of 11 HDD vehicles (model years 1996-2000) over the ARB Four Phase driving schedule and the urban dynamometer driving schedule (UDDS). Emission rates were found to be highly dependent on vehicle operating mode. Per mile NO x emission rates for vehicle operation at low speeds, in simulated congested traffic, were three times higher per mile emissions then while cruising on the freeway. Comparisons of NO x emission factors to EMFAC baseline emission factors were within 5-40% for vehicles of various model years tested over the UDDS. A comparison of NO x emission factors for a weighted average of the ARB four phase driving schedule yielded values within 17-57% of EMFAC values. Generally, particulate matter (PM) emission rates were lower than EMFAC values.

  9. Price forecasting of day-ahead electricity markets using a hybrid forecast method

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Moghaddam, M. Parsa; Sheikh-El-Eslami, M.K.

    2011-01-01

    Research highlights: → A hybrid method is proposed to forecast the day-ahead prices in electricity market. → The method combines Wavelet-ARIMA and RBFN network models. → PSO method is applied to obtain optimum RBFN structure for avoiding over fitting. → One of the merits of the proposed method is lower need to the input data. → The proposed method has more accurate behavior in compare with previous methods. -- Abstract: Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy.

  10. Price forecasting of day-ahead electricity markets using a hybrid forecast method

    Energy Technology Data Exchange (ETDEWEB)

    Shafie-khah, M., E-mail: miadreza@gmail.co [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Moghaddam, M. Parsa, E-mail: parsa@modares.ac.i [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheikh-El-Eslami, M.K., E-mail: aleslam@modares.ac.i [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} A hybrid method is proposed to forecast the day-ahead prices in electricity market. {yields} The method combines Wavelet-ARIMA and RBFN network models. {yields} PSO method is applied to obtain optimum RBFN structure for avoiding over fitting. {yields} One of the merits of the proposed method is lower need to the input data. {yields} The proposed method has more accurate behavior in compare with previous methods. -- Abstract: Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy.

  11. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  12. A hybrid approach for probabilistic forecasting of electricity price

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Wang, Yelei

    2014-01-01

    to the nonstationarities involved in market clearing prices (MCPs), it is rather difficult to accurately predict MCPs in advance. The challenge is getting intensified as more and more renewable energy and other new technologies emerged in smart grids. Therefore transformation from traditional point forecasts...... electricity price forecasting is proposed in this paper. The effectiveness of the proposed hybrid method has been validated through comprehensive tests using real price data from Australian electricity market.......The electricity market plays a key role in realizing the economic prophecy of smart grids. Accurate and reliable electricity market price forecasting is essential to facilitate various decision making activities of market participants in the future smart grid environment. However, due...

  13. Direction and Policies Needed to Support Hybrid Electric Car Research

    OpenAIRE

    Subekti, Ridwan Arief; Hartanto, Agus; Susanti, Vita

    2012-01-01

    The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the probl...

  14. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  15. Evaluation of sounds for hybrid and electric vehicles operating at low speed

    Science.gov (United States)

    2012-10-22

    Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...

  16. Analysis and design of hybrid electric regional turboprop aircraft

    NARCIS (Netherlands)

    Voskuijl, M.; van Bogaert, J.; Gangoli Rao, A.

    2017-01-01

    The potential environmental benefits of hybrid electric regional turboprop aircraft in terms of fuel consumption are investigated. Lithium–air batteries are used as energy source in combination with conventional fuel. A validated design and analysis framework is extended with sizing and analysis

  17. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  18. REDUCING ENERGY CONSUMPTION BY PASSENGER CAR WITH USING OF NON-ELECTRICAL HYBRID DRIVE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Tomas Skrucany

    2017-03-01

    Full Text Available Not only electrical hybrid technology is used for drivetrain of passenger cars. Also other systems using non-electrical principles (hydraulic or air pressure, mechanical energy storage can be found in current vehicles. There is a quantification of the spared energy by using a hybrid vehicle in the paper. Driving cy-cle ECE 15 was chosen as a platform for simulation of driving resistances.

  19. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  20. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  1. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault

    Science.gov (United States)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.

    2017-12-01

    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  2. Simulation of speed control in acceleration mode of a heavy duty vehicle; Ogatasha no kasokuji ni okeru shasoku seigyo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Endo, S; Ukawa, H [Isuzu Advanced Engineering Center, Ltd., Tokyo (Japan); Sanada, K; Kitagawa, A [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-01

    A control law of speed of a heavy duty vehicle in acceleration mode is presented, which is an extended version of a control law in deceleration mode proposed by the authors. The control law is based on constant acceleration strategy. Using the control law, target velocity and target distance can be performed. Both control laws for acceleration and deceleration mode can be represented by a unified mathematical formulae. Some simulation results are shown to demonstrate the control performance. 7 refs., 9 figs., 2 tabs.

  3. Design of digital load torque observer in hybrid electric vehicle

    Science.gov (United States)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  4. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    Science.gov (United States)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  5. Exhaust Fine Particle and Nitrogen Oxide Emissions from Individual Heavy-Duty Trucks at the Port of Oakland

    Science.gov (United States)

    Dallmann, T. R.; Harley, R. A.; Kirchstetter, T.

    2010-12-01

    Heavy-duty (HD) diesel trucks are a source of nitrogen oxide (NOx) emissions as well as primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. Heavy-duty trucks contribute significantly to elevated levels of diesel particulate matter found near highways and in communities surrounding major freight-handling facilities. To reduce the air quality impact of diesel engine emissions, the California Air Resources Board has adopted new rules requiring the retrofit or replacement of in-use HD trucks. These rules take effect during 2010 at ports and railyards, and apply to all trucks operating in California by 2014. This study involves on-road measurements of PM2.5, BC, and NOx emission factor distributions from individual HD trucks driving into the Port of Oakland in the San Francisco Bay area. Measurements of exhaust plumes from individual trucks were made using a mobile laboratory equipped with fast time response (1 Hz) PM2.5, BC, NOx, and carbon dioxide (CO2) sensors. The mobile laboratory was stationed on an overpass above an arterial roadway that connects the Port to a nearby highway (I-880). The air sampling inlet was thereby located above the vertical exhaust pipes of HD diesel trucks passing by on the arterial roadway below. Fuel-specific PM2.5, BC, and NOx emission factors for individual trucks were calculated using a carbon balance method in which concentrations of these species in an exhaust plume are normalized to CO2 concentrations. Initial field sampling was conducted in November, 2009 prior to the implementation of new emission rules. Additional emission measurements were made at the same location during June 2010 and emission factor distributions and averages will be compared.

  6. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  7. Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach

    Energy Technology Data Exchange (ETDEWEB)

    Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2011-02-15

    In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (author)

  8. Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach

    International Nuclear Information System (INIS)

    Catalao, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F.

    2011-01-01

    In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (author)

  9. Research on minimum sound specifications for hybrid and electric vehicles

    Science.gov (United States)

    2012-06-30

    This report documents research by the National Highway Traffic Safety Administration (NHTSA) to identify ways : to develop sound specifications for electric and hybrid vehicles. The research was conducted to support activities : related to the implem...

  10. Hybridizing DEMD and Quantum PSO with SVR in Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Li-Ling Peng

    2016-03-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents an SVR model hybridized with the differential empirical mode decomposition (DEMD method and quantum particle swarm optimization algorithm (QPSO for electric load forecasting. The DEMD method is employed to decompose the electric load to several detail parts associated with high frequencies (intrinsic mode function—IMF and an approximate part associated with low frequencies. Hybridized with quantum theory to enhance particle searching performance, the so-called QPSO is used to optimize the parameters of SVR. The electric load data of the New South Wales (Sydney, Australia market and the New York Independent System Operator (NYISO, New York, USA are used for comparing the forecasting performances of different forecasting models. The results illustrate the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  11. On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin K.; Junginger, Martin; Perujo, Adolfo; Bonnel, Pierre; Grootveld, Geert van

    2012-01-01

    Hybrid-electric vehicles (HEVs) and battery-electric vehicles (BEVs) are currently more expensive than conventional passenger cars but may become cheaper due to technological learning. Here, we obtain insight into the prospects of future price decline by establishing ex-post learning rates for HEVs and ex-ante price forecasts for HEVs and BEVs. Since 1997, HEVs have shown a robust decline in their price and price differential at learning rates of 7±2% and 23±5%, respectively. By 2010, HEVs were only 31±22 € 2010 kW −1 more expensive than conventional cars. Mass-produced BEVs are currently introduced into the market at prices of 479±171 € 2010 kW −1 , which is 285±213 € 2010 kW −1 and 316±209 € 2010 kW −1 more expensive than HEVs and conventional cars. Our forecast suggests that price breakeven with these vehicles may only be achieved by 2026 and 2032, when 50 and 80 million BEVs, respectively, would have been produced worldwide. We estimate that BEVs may require until then global learning investments of 100–150 billion € which is less than the global subsidies for fossil fuel consumption paid in 2009. These findings suggest that HEVs, including plug-in HEVs, could become the dominant vehicle technology in the next two decades, while BEVs may require long-term policy support. - Highlights: ► Learning rates for hybrid-electric and battery-electric vehicles. ► Prices and price differentials of hybrid-electric vehicles show a robust decline. ► Battery-electric vehicles may require policy support for decades.

  12. Electricity/electronics in electric-powered vehicles and electric management III; Elektrik/Elektronik in Hybrid- und Elektrofahrzeugen und elektrisches Energiemanagement III

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Carsten; Sirch, Ottmar

    2012-07-01

    The concept of e-Mobility currently is on everyone's lips. Worldwide, manufacturers and suppliers work with high pressure on new concepts and vehicles. Hybrid vehicles pave the way for pure electric-powered vehicles. Due to the problems of energy saving, electric-powered vehicles will take a long time for an extensively utilization. In the book underconsideration, experts from research and practice report on the latest technologies.

  13. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    world, the paragon of animals -William Shakespeare I would not have made it this far without the love and support of my parents. Their work-ethic...xiii  I.  Introduction ...Condition 1 SIZING ANALYSIS FOR AIRCRAFT UTILIZING HYBRID- ELECTRIC PROPULSION SYSTEMS I. Introduction 1. Background Physically

  14. Analyzing the performance index for a hybrid electric vehicle

    NARCIS (Netherlands)

    Ngo, D. V.; Hofman, T.; Steinbuch, M.; Serrarens, A. F A

    2011-01-01

    The definition of a performance index for the optimization design and optimal control problem of a Hybrid Electric Vehicle is not often considered and analyzed explicitly. In literature, there is no study about proposing a method of building or evaluating whether a performance index is appropriate.

  15. Multiple target sound quality balance for hybrid electric powertrain noise

    Science.gov (United States)

    Mosquera-Sánchez, J. A.; Sarrazin, M.; Janssens, K.; de Oliveira, L. P. R.; Desmet, W.

    2018-01-01

    The integration of the electric motor to the powertrain in hybrid electric vehicles (HEVs) presents acoustic stimuli that elicit new perceptions. The large number of spectral components, as well as the wider bandwidth of this sort of noises, pose new challenges to current noise, vibration and harshness (NVH) approaches. This paper presents a framework for enhancing the sound quality (SQ) of the hybrid electric powertrain noise perceived inside the passenger compartment. Compared with current active sound quality control (ASQC) schemes, where the SQ improvement is just an effect of the control actions, the proposed technique features an optimization stage, which enables the NVH specialist to actively implement the amplitude balance of the tones that better fits into the auditory expectations. Since Loudness, Roughness, Sharpness and Tonality are the most relevant SQ metrics for interior HEV noise, they are used as performance metrics in the concurrent optimization analysis, which, eventually, drives the control design method. Thus, multichannel active sound profiling systems that feature cross-channel compensation schemes are guided by the multi-objective optimization stage, by means of optimal sets of amplitude gain factors that can be implemented at each single sensor location, while minimizing cross-channel effects that can either degrade the original SQ condition, or even hinder the implementation of independent SQ targets. The proposed framework is verified experimentally, with realistic stationary hybrid electric powertrain noise, showing SQ enhancement for multiple locations within a scaled vehicle mock-up. The results show total success rates in excess of 90%, which indicate that the proposed method is promising, not only for the improvement of the SQ of HEV noise, but also for a variety of periodic disturbances with similar features.

  16. Aerodynamic design of electric and hybrid vehicles: A guidebook

    Science.gov (United States)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  17. Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains

    International Nuclear Information System (INIS)

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The improvement of the efficiency of vehicle energy systems promotes an active search to find innovative solutions during the design process. This requires more accurate modeling of complex systems, which offers new ways to improve the design efficiency of energy systems. The vehicle is a highly dynamic system. The size and the efficiency of the convertors are dependent on the dynamic driving profile. In order to increase the energy efficiency, using energy integration techniques, an adapted methodology is required to choose the best points for the integrated system design. The idea is to clusterize the dynamic profile on typical multi-periods of the vehicle use. The energy system design is then optimized for these typical multi-periods. In this article a new methodology is applied on hybrid electric vehicles, in order to define the energy integrated powertrain configuration of the vehicle. The energy recovery potential of a single stage Organic Rankine Cycle for a thermal engine in combination with a hybrid electric powertrain is assessed for different drive cycles profiles and comfort situations. After the energy integration, a multi-objective optimization is applied to define the optimal design of a hybrid electric vehicle with a waste heat recovery system. - Highlights: • K-means algorithm transforms the dynamic driving profile on static multi-periods. • The clusters represent the typical powertrain use and size the heat recovery utility. • The maximal heat recovery potential on thermal powertrains is 11% for urban driving. • The maximal heat recovery potential on hybrid electric powertrains is 5%. • Engine downsizing increases heat recovery potential on hybrid electric powertrains

  18. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki

    2018-03-01

    We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.

  19. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    Science.gov (United States)

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  20. Hybrid system concepts

    International Nuclear Information System (INIS)

    Landeyro, P.A.

    1995-01-01

    Hybrid systems studied for fissile material production, were reconsidered for minor actinide and long-lived fission product destruction as alternative to the traditional final disposal of nuclear waste. Now there are attempts to extend the use of the concepts developed for minor actinide incineration to plutonium burning. The most promising hybrid system concept considers fuel and target both as liquids. From the results obtained, the possibility to adopt composite targets seems the most promising solution, but still there remains the problem of Pu production, not acceptable in a burning system. This kind of targets can be mainly used for fissile material production, while for accelerator driven burners it is most convenient to use a liquid lead target. The most suitable solvent is heavy water for minor actinide annihilation in the blanket of a hybrid system. Due to the criticality conditions and the necessity of electric energy production, the blanket using plutonium dissolved in molten salts is the most convenient one. (author)

  1. Fretting fatigue cracking of a center guide bolt supporting the combustion chamber in a heavy-duty gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Fischer, Boromir; Gaedicke, Tobias [Siemens AG, Energy Sector, Gasturbinenwerk Berlin (Germany). Werkstoffprueflabor

    2018-04-01

    The slotted center guide bolt of the center guide feature of the lower part of the outer shell of an annular combustion chamber was found fractured in a heavy-duty gas turbine engine used for power generation, after approximately 5.500 operating hours. The incident was a one-off event and not a recurring incident. No similar events were reported from the fleet; hence the failure was not considered a field issue. The metallurgical root cause investigation that was ordered to determine the failure mechanism revealed that the incident center guide bolt failed by fretting fatigue cracking, a high cycle fatigue (HCF) phenomenon.

  2. Effective technical service in the life cycle of heavy dumpers

    Directory of Open Access Journals (Sweden)

    Михайло Валерійович Помазков

    2016-11-01

    Full Text Available A comparative analysis of the known systems of technical reliability of heavy dumpers functionality has been made. It has been stated that the previously proposed methods to determine the optimal service life of heavy-duty dumpers are not effective enough and do not take into account the whole range of factors specific to the operation of heavy dumpers in the current economic realities of industrial enterprises. Based on the analysis results, a mechanism of determining the optimal service life of heavy-duty dumpers and their constituent technical systems ensuring the operational reliability of heavy-duty dumpers has been offered. The article takes into account the analysis of resource factors, general description of system logistic tasks, the main provisions of serviceability, the resource forming in route charts at ore mining and metallurgical enterprises, the use of theoretical developments in practice. Heavy dumpers generalized description modelling shown in the article, the principle of resource use by using interchangable work at different intensity routes has received confirmation in the dumpers’ work schedule

  3. Alkaline batteries for hybrid and electric vehicles

    Science.gov (United States)

    Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.

  4. Alkaline batteries for hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Haschka, F.; Warthmann, W.; Benczur-Uermoessy, G. [DAUG Deutsche Automobilgesellschaft, Esslingen (Germany)

    1998-03-30

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g. nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries. (orig.)

  5. A hybrid model for electricity spot prices

    International Nuclear Information System (INIS)

    Anderson, C.L.D.

    2004-01-01

    Electricity prices were highly regulated prior to the deregulation of the electric power industry. Prices were predictable, allowing generators and wholesalers to calculate their production costs and revenues. With deregulation, electricity has become the most volatile of all commodities. Electricity must be consumed as soon as it is generated due to the inability to store it in any sufficient quantity. Economic uncertainty exists because the supply of electricity cannot shift as quickly as the demand, which is highly variable. When demand increases quickly, the price must respond. Therefore, price spikes occur that are orders of magnitude higher than the base electricity price. This paper presents a robust and realistic model for spot market electricity prices used to manage risk in volatile markets. The model is a hybrid of a top down data driven method commonly used for financial applications, and a bottom up system driven method commonly used in regulated electricity markets. The advantage of the model is that it incorporates primary system drivers and demonstrates their effects on final prices. The 4 primary modules of the model are: (1) a model for forced outages, (2) a model for maintenance outages, (3) an electrical load model, and (4) a price model which combines the results of the previous 3 models. The performance of each model was tested. The forced outage model is the first of its kind to simulate the system on an aggregate basis using Weibull distributions. The overall spot price model was calibrated to, and tested with, data from the electricity market in Pennsylvania, New Jersey and Maryland. The model performed well in simulated market prices and adapted readily to changing system conditions and new electricity markets. This study examined the pricing of derivative contracts on electrical power. It also compared a range of portfolio scenarios using a Cash Flow at Risk approach

  6. A hybrid model for electricity spot prices

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.L.D.

    2004-07-01

    Electricity prices were highly regulated prior to the deregulation of the electric power industry. Prices were predictable, allowing generators and wholesalers to calculate their production costs and revenues. With deregulation, electricity has become the most volatile of all commodities. Electricity must be consumed as soon as it is generated due to the inability to store it in any sufficient quantity. Economic uncertainty exists because the supply of electricity cannot shift as quickly as the demand, which is highly variable. When demand increases quickly, the price must respond. Therefore, price spikes occur that are orders of magnitude higher than the base electricity price. This paper presents a robust and realistic model for spot market electricity prices used to manage risk in volatile markets. The model is a hybrid of a top down data driven method commonly used for financial applications, and a bottom up system driven method commonly used in regulated electricity markets. The advantage of the model is that it incorporates primary system drivers and demonstrates their effects on final prices. The 4 primary modules of the model are: (1) a model for forced outages, (2) a model for maintenance outages, (3) an electrical load model, and (4) a price model which combines the results of the previous 3 models. The performance of each model was tested. The forced outage model is the first of its kind to simulate the system on an aggregate basis using Weibull distributions. The overall spot price model was calibrated to, and tested with, data from the electricity market in Pennsylvania, New Jersey and Maryland. The model performed well in simulated market prices and adapted readily to changing system conditions and new electricity markets. This study examined the pricing of derivative contracts on electrical power. It also compared a range of portfolio scenarios using a Cash Flow at Risk approach.

  7. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    Suntharalingam, P

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  8. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    OpenAIRE

    G.D.Anbarasi Jebaselvi; S.Paramasivam

    2014-01-01

    Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the ...

  9. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  10. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    Science.gov (United States)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  11. In-use fuel economy of hybrid-electric school buses in Iowa.

    Science.gov (United States)

    Hallmark, Shauna; Sperry, Bob; Mudgal, Abhisek

    2011-05-01

    Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

  12. Heavy metals uptake by the hybrid aspen and rowan-tree clones

    Czech Academy of Sciences Publication Activity Database

    Malá, J.; Máchová, P.; Cvrčková, H.; Vaněk, Tomáš

    2007-01-01

    Roč. 53, č. 11 (2007), s. 491-497 ISSN 1212-4834 R&D Projects: GA ČR GA526/04/0135; GA MŠk 2B06187 Grant - others:Výzkumný ústav lesního hospodářství a myslivosti, v.v (CZ) OC 118 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : phytoremediation * heavy metals * hybrid aspen Subject RIV: EB - Genetics ; Molecular Biology http://journals.uzpi.cz:8050/uniqueFiles/00437.pdf

  13. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  14. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  15. Electric and hybrid vehicle technology: TOPTEC

    Science.gov (United States)

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  16. LP compressor blade vibration characteristics at starting conditions of a 100 MW heavy-duty gas turbine

    International Nuclear Information System (INIS)

    Lee, An Sung; Vedichtchev, Alexandre F.

    2004-01-01

    In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions

  17. FEV's new parallel hybrid transmission with single dry clutch and electric torque support

    Energy Technology Data Exchange (ETDEWEB)

    Hellenbroich, Gereon [VKA, RWTH Aachen (Germany); Rosenburg, Volker [FEV Motorentechnik GmbH, Aachen (Germany)

    2009-07-01

    FEV is currently developing a new 7-speed hybrid transmission for transverse installation. The transmission with a design torque of 320 Nm is based on AMT (automated manual transmission) technology and uses a single electric motor. The innovative gear set layout combines the advantages of modern AMTs such as best efficiency, low costs and few components with full hybrid capabilities and electric torque support during all gear shifts. Furthermore, the gear set layout allows for very short-shift-times due to the favorable distribution of inertias. Other features include an A/C compressor being electrically driven by the electric motor of the transmission during start/stop phases. (orig.)

  18. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  19. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  20. Cloud computing-based energy optimization control framework for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Liang; You, Sixiong; Yan, Bingjie; Du, Xian

    2017-01-01

    Considering the complicated characteristics of traffic flow in city bus route and the nonlinear vehicle dynamics, optimal energy management integrated with clustering and recognition of driving conditions in plug-in hybrid electric bus is still a challenging problem. Motivated by this issue, this paper presents an innovative energy optimization control framework based on the cloud computing for plug-in hybrid electric bus. This framework, which includes offline part and online part, can realize the driving conditions clustering in offline part, and the energy management in online part. In offline part, utilizing the operating data transferred from a bus to the remote monitoring center, K-means algorithm is adopted to cluster the driving conditions, and then Markov probability transfer matrixes are generated to predict the possible operating demand of the bus driver. Next in online part, the current driving condition is real-time identified by a well-trained support vector machine, and Markov chains-based driving behaviors are accordingly selected. With the stochastic inputs, stochastic receding horizon control method is adopted to obtain the optimized energy management of hybrid powertrain. Simulations and hardware-in-loop test are carried out with the real-world city bus route, and the results show that the presented strategy could greatly improve the vehicle fuel economy, and as the traffic flow data feedback increases, the fuel consumption of every plug-in hybrid electric bus running in a specific bus route tends to be a stable minimum. - Highlights: • Cloud computing-based energy optimization control framework is proposed. • Driving cycles are clustered into 6 types by K-means algorithm. • Support vector machine is employed to realize the online recognition of driving condition. • Stochastic receding horizon control-based energy management strategy is designed for plug-in hybrid electric bus. • The proposed framework is verified by simulation and hard

  1. An optimal control-based algorithm for hybrid electric vehicle using preview route information

    NARCIS (Netherlands)

    Ngo, D.V.; Hofman, T.; Steinbuch, M.; Serrarens, A.F.A.

    2010-01-01

    Control strategies for Hybrid Electric Vehicles (HEVs) are generally aimed at optimally choosing the power distribution between the internal combustion engine and the electric motor in order to minimize the fuel consumption and/or emissions. Using vehicle navigation systems in combination with

  2. Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan

    Directory of Open Access Journals (Sweden)

    Kevin R. Mallon

    2017-07-01

    Full Text Available Heavy-duty electric powertrains provide a potential solution to the high emissions and low fuel economy of trucks, buses, and other heavy-duty vehicles. However, the cost, weight, and lifespan of electric vehicle batteries limit the implementation of such vehicles. This paper proposes supplementing the battery with on-board photovoltaic modules. In this paper, a bus model is created to analyze the impact of on-board photovoltaics on electric bus range and battery lifespan. Photovoltaic systems that cover the bus roof and bus sides are considered. The bus model is simulated on a suburban bus drive cycle on a bus route in Davis, CA, USA for a representative sample of yearly weather conditions. Roof-mounted panels increased vehicle driving range by 4.7% on average annually, while roof and side modules together increased driving range by 8.9%. However, variations in weather conditions meant that this additional range was not reliably available. For constant vehicle range, rooftop photovoltaic modules extended battery cycle life by up to 10% while modules on both the roof and sides extended battery cycle life by up to 19%. Although side-mounted photovoltaics increased cycle life and range, they were less weight- and cost-effective compared to the roof-mounted panels.

  3. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-12-15

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low

  4. Electrically driven hybrid photonic metamaterials for multifunctional control

    Science.gov (United States)

    Kang, Lei; Liu, Liu; Campbell, Sawyer D.; Yue, Taiwei; Ren, Qiang; Mayer, Theresa S.; Werner, Douglas H.

    2017-08-01

    The unique light-matter interaction in metamaterials, a type of artificial medium in which the geometrical features of subunits dominate their optical responses, have been utilized to achieve exotic material properties that are rare or nonexistent in natural materials. Furthermore, to extend their behaviors, active materials have been introduced into metamaterial systems to advance tunability, switchability and nonlinearity. Nevertheless, practical examples of versatile photonic metamaterials remain exceedingly rare for two main reasons. On the one hand, in sharp contrast to the broad material options available at lower frequencies, it is less common to find active media in the optical regime that can provide pronounced dielectric property changes under external stimuli, such as electric and magnetic fields. Vanadium dioxide (VO2), offering a large refractive index variation over a broad frequency range due to its near room temperature insulator-to-metal transition (IMT), has been favored in recent studies on tunable metamaterials. On the other hand, it turns out that regulating responses of hybrid metamaterials to external forces in an integrated manner is not a straightforward task. Recently, metamaterial-enabled devices (i.e., metadevices) with `self-sufficient' or `self-contained' electrical and optical properties have enabled complex functionalities. Here, we present a design methodology along with the associated experimental validation of a VO2 thin film integrated optical metamaterial absorber as a hybrid photonic platform for electrically driven multifunctional control, including reflectance switching, a rewritable memory process and manageable localized camouflage. The nanoengineered topologically continuous metal structure simultaneously supports the optical resonance and electrical functionality that actuates the phase transition in VO2 through the process of Joule heating. This work provides a universal approach to creating self-sufficient and highly

  5. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury: Effect of duty cycle

    NARCIS (Netherlands)

    MSc Karin J.A. Legemate; MD Christof A. J. Smit; MSc Anja de Koning; PhD Sonja de Groot; MD, PhD Janneke M. Stolwijk-Swuste; PhD Thomas W.H. Janssen

    2013-01-01

    Abstract—Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation

  6. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury : Effect of duty cycle

    NARCIS (Netherlands)

    Smit, Christof A. J.; Legemate, Karin J. A.; de Koning, Anja; de Groot, Sonja; Stolwijk-Swuste, Janneke M.; Janssen, Thomas W. J.

    2013-01-01

    Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation on

  7. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li, Yi, E-mail: envly@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Lianos, Panagiotis [Department of Chemical Engineering, University of Patras, 26500 Patras (Greece); Wang, Chao; Wang, Peifang [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China)

    2017-02-05

    Highlights: • Polymer capped TiO{sub 2} photoanode consumes photogenerated holes. • Heavy metals reduce on the cathode according to their reduction potentials. • Simultaneous recovery of heavy metals and production of electricity. • Industrial wastewater treatment and production of renewable energy. - Abstract: The feasibility of simultaneous recovery of heavy metals from wastewater (e.g., acid mining and electroplating) and production of electricity is demonstrated in a novel photoelectrochemical cell (PEC). The photoanode of the cell bears a nanoparticulate titania (TiO{sub 2}) film capped with the block copolymer [poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)] hole scavenger, which consumed photogenerated holes, while the photogenerated electrons transferred to a copper cathode reducing dissolved metal ions and produced electricity. Dissolved silver Ag{sup +}, copper Cu{sup 2+}, hexavalent chromium as dichromate Cr{sub 2}O{sub 7}{sup 2−} and lead Pb{sup 2+} ions in a mixture (0.2 mM each) were removed at different rates, according to their reduction potentials. Reduced Ag{sup +}, Cu{sup 2+} and Pb{sup 2+} ions produced metal deposits on the cathode electrode which were mechanically recovered, while Cr{sub 2}O{sub 7}{sup 2−} reduced to the less toxic Cr{sup 3+} in solution. The cell produced a current density J{sub sc} of 0.23 mA/cm{sup 2}, an open circuit voltage V{sub oc} of 0.63 V and a maximum power density of 0.084 mW/cm{sup 2}. A satisfactory performance of this PEC for the treatment of lead-acid battery wastewater was observed. The cathodic reduction of heavy metals was limited by the rate of electron-hole generation at the photoanode. The PEC performance decreased by 30% after 9 consecutive runs, caused by the photoanode progressive degradation.

  8. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses

    Energy Technology Data Exchange (ETDEWEB)

    M.C.H. Lim; G.A. Ayoko; L. Morawska; Z.D. Ristovski; E.R. Jayaratne [Queensland University of Technology, Brisbane, Qld. (Australia). International Laboratory for Air Quality and Health, School of Physical and Chemical Sciences

    2007-08-15

    The effects of fuel characteristics and engine operating conditions on elemental composition of emissions from twelve heavy duty diesel buses have been investigated. Two types of diesel fuels - low sulfur diesel (LSD) and ultra low sulfur diesel (ULSD) fuels with 500 ppm and 50 ppm sulfur contents respectively and 3 driving modes corresponding to 25%, 50% and 100% power were used. Elements present in the tailpipe emissions were quantified by inductively coupled plasma mass spectrometry (ICPMS) and those found in measurable quantities included Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge. Multivariate analyses using multi-criteria decision making methods (MCDM), principal component analysis (PCA) and partial least squares (PLS) facilitated the extraction of information about the structure of the data. MCDM showed that the emissions of the elements were strongly influenced by the engine driving conditions while the PCA loadings plots showed that the emission factors of the elements were correlated with those of other pollutants such as particle number, total suspended particles, CO, CO{sub 2} and NOx. Partial least square analysis revealed that the emission factors of the elements were strongly dependent on the fuel parameters such as the fuel sulfur content, fuel density, distillation point and cetane index. Strong correlations were also observed between these pollutants and the engine power or exhaust temperature. The study provides insights into the possible role of fuel sulfur content in the emission of inorganic elements from heavy duty diesel vehicles. 39 refs., 1 fig., 4 tabs.

  9. On-road emission characteristics of heavy-duty diesel vehicles in Shanghai

    Science.gov (United States)

    Chen, Changhong; Huang, Cheng; Jing, Qiguo; Wang, Haikun; Pan, Hansheng; Li, Li; Zhao, Jing; Dai, Yi; Huang, Haiying; Schipper, Lee; Streets, David G.

    On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NO x for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km -1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.

  10. Increasing the reliability of electric energy supply to consumers in ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Barta, Ioan; Hanes, Marian . E-mail electrica@romag.ro

    2004-01-01

    Full text: This work aims at achieving an analysis of time evolution of the status of electrical installations, their performances and reliability, at describing the refurbishment measures adopted, at assessing the efficiency of these measures and also to suggest solutions for improving the reliability in the electric energy supply of ROMAG-PROD Heavy Water Plant. The analysis started from the original design, the manner the electrical installations were mounted, the technological level of this equipment and gives an evaluation of the deficiencies and the evolution of incidents occurred during the operation period. On the basis of the experience gathered one advances new items for equipment renewing and refurbishment of electric installations which together with the existing ones would ensure an electric energy supply more secure and efficient, leading directly to a more safe and efficient operation of the ROMAG-PROD Heavy Water Plant. In this work the incidents of electric energy nature which occurred are analyzed, the equipment which generated events identified and measures to solve these problems proposed

  11. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    International Nuclear Information System (INIS)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J.

    2016-01-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume ''CURRENT TECHNOLOGY'' cases (nominally 2015) and a high-volume ''FUTURE TECHNOLOGY'' lower-carbon case (nominally 2025-2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  12. Cradle-to-Grave Lifecycle Analysis of U.S. Light Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy

    2016-06-01

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  13. An energy management for series hybrid electric vehicle using improved dynamic programming

    Science.gov (United States)

    Peng, Hao; Yang, Yaoquan; Liu, Chunyu

    2018-02-01

    With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.

  14. Dynamic Modeling and Control Strategy Optimization for a Hybrid Electric Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2015-01-01

    Full Text Available A new hybrid electric tracked bulldozer composed of an engine generator, two driving motors, and an ultracapacitor is put forward, which can provide high efficiencies and less fuel consumption comparing with traditional ones. This paper first presents the terramechanics of this hybrid electric tracked bulldozer. The driving dynamics for this tracked bulldozer is then analyzed. After that, based on analyzing the working characteristics of the engine, generator, and driving motors, the power train system model and control strategy optimization is established by using MATLAB/Simulink and OPTIMUS software. Simulation is performed under a representative working condition, and the results demonstrate that fuel economy of the HETV can be significantly improved.

  15. Hybridization in Kondo lattice heavy fermions via quasiparticle scattering spectroscopy (QPS)

    Science.gov (United States)

    Narasiwodeyar, Sanjay; Dwyer, Matt; Greene, Laura; Park, Wan Kyu; Bauer, Eric; Tobash, Paul; Baumbach, Ryan; Ronning, Filip; Sarrao, John; Thompson, Joe; Canfield, Paul

    2014-03-01

    Band renormalization in a Kondo lattice via hybridization of the conduction band with localized states has been a hot topic over the last several years. In part, this has to do with recently reignited interest in the hidden order problem in URu2Si2. Despite recent developments regarding the electronic structure in this compound, it remains to be resolved whether the hidden order phase transition is related to the opening of a hybridization gap. Our quasiparticle scattering spectroscopy (QPS) has shown they are not related directly. This can be understood naturally since in principle band renormalization does not involve symmetry breaking. To deepen our understanding, we extend to other Kondo lattice compounds. For instance, when applied to YbAl3, a vegetable heavy-fermion system, QPS reveals conductance signatures for hybridization in a Kondo lattice such as asymmetric Fano background along with characteristic energy scales. Presenting new results on these materials, we will discuss a broader picture. The work at UIUC is supported by the NSF DMR 12-06766, the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science, and the work done at Ames Lab. was supported under Contract No. DE-AC02-07CH11358.

  16. Swift heavy ion irradiation induced electrical degradation in deca-nanometer MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yao; Yang, Zhimei; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo; Li, Yun; Lin, Wei; Li, Jinbo; Xia, Zhuohui [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2016-09-15

    In this work, degradation of the electrical characteristics of 65 nm nMOSFETs under swift heavy ion irradiation is investigated. It was found that a heavy ion can generate a localized region of physical damage (ion latent track) in the gate oxide. This is the likely cause for the increased gate leakage current and soft breakdown (SBD) then hard breakdown (HBD) of the gate oxide. Except in the case of HBD, the devices retain their functionality but with degraded transconductance. The degraded gate oxide exhibits early breakdown behavior compatible with the model of defect generation and percolation path formation in the percolation model.

  17. The electric motor in the hybrid vehicle. A comparison of three different types of electric motors; Der Elektromotor im Hybridfahrzeug. Vergleich von drei unterschiedlichen Elektromotorentypen

    Energy Technology Data Exchange (ETDEWEB)

    Petschnik, Harald

    2009-07-01

    According to the experts, hybrid technology is the key technology in the automotive industry for the next few decades. Many of the well established automobile manufacturers are focusing their research and development activities on this upcoming technology. The big advantage of hybrid vehicles is the electrified powertrain. Due to intelligent combination of the combustion- and electric engine, the benefits of the two different powertrain configurations can be used. The following research is concerned and closely examines the role of the electric engine in the hybrid vehicle. The scope of the research is focused on the demands of an electric engine, the technical configuration, functionality and economy of three different engine types which are often used in the serial production and prototyping. In order to make a direct comparison of the performance of this different engine types, they were all tested in a go-cart. The go-carts for each engine were constructed in the same way. The interpretation of the measurement results showed that the synchronous engine with permanent magnets had the best performance when considering the level of electrical efficiency, closely followed by the switched reluctance motor. The efficiency of the electrical motor makes a high contribution to the total efficiency of the vehicle. The measurement result confirms the selection of a synchronous motor is, under consideration of the electrical efficiency, the most advantageous solution for hybrid vehicles. (orig.)

  18. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  19. The impact of government incentives for hybrid-electric vehicles: Evidence from US states

    International Nuclear Information System (INIS)

    Diamond, David

    2009-01-01

    This paper examines the impact of government incentives policies designed to promote the adoption of hybrid-electric vehicles (HEVs). As a primary methodology, it employs cross-sectional analysis of hybrid registration data over time from US states to test the relationship between hybrid adoption and a variety of socioeconomic and policy variables. It also compares hybrid adoption patterns over time to the US average for specific states that have changed incentive policies, to examine how differences in incentive schemes influence their efficacy. The results of these analyses suggest a strong relationship between gasoline prices and hybrid adoption, but a much weaker relationship between incentive policies and hybrid adoption. Incentives that provide payments upfront also appear to be the most effective

  20. Cost Effectiveness Analysis of Quasi-In-Motion Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses from Fleet Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud; Markel, Tony

    2016-05-16

    This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.

  1. Electric and hybrid vehicle program. Quarterly report, January-February-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Highlights of program developments are discussed, and ETV-1 test results are described. The temperature effects on lead-acid battery performance from 27 to 55/sup 0/C are reported, and the status of demonstration electric vehicle orders and deliveries is summarized. The certification and testing status of demonstration project vehicles is outlined, and a personnel directory for the DOE Electric and Hybrid Vehicle Program is included. (WHK)

  2. Design and implementation of a hybrid electric motorcycle

    Energy Technology Data Exchange (ETDEWEB)

    Tong, C.C.; Jwo, W.S.; Chien, W.L.; Liu, Y.L.; Chen, S.W.; Hsu, C.Y. [Chienkuo Technology Univ., Changhua, Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    A hybrid electric motorcycle (HEM) was described. The HEM was developed from a modified 50 cc motorcycle currently available on the market. The motorcycle gearbox was attached to the back wheel. A master-slave tracking control method was used to expedite the HEM's development phases and cost. A 600 watt DC servo-motor was used to track the speed of the rear wheel of the HEM as well as to increase torque. The real time master-slave composite was comprised of a gearbox, a frequency-voltage converter, and a proportional, integrative, and derivative (PID) speed tracking controller. The frequency-voltage converter was used to convert the frequency signals of the rear wheels and electric motor rotational speeds into voltage signals. A Hall was used to sense 4 permanent magnets place along the rear wheel. A Schmitt trigger gate was used to detect signals from the rear wheel. An actuation system consisted of a motor driving circuit, a current-limiting protection circuit, and a low battery voltage protection circuit. It was concluded that the HEM design is both feasible and highly marketable. Artificial intelligence will be used to build a high performance hybrid motorcycle in the future. 10 refs., 1 tab., 11 figs.

  3. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  4. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  5. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Ward, Jacob [Dept. of Energy (DOE), Washington DC (United States); Joseck, Fred [Dept. of Energy (DOE), Washington DC (United States); Gohlke, David [Dept. of Energy (DOE), Washington DC (United States); Lindauer, Alicia [Dept. of Energy (DOE), Washington DC (United States); Ramsden, Todd [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Alexander, Marcus [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Barnhart, Steven [Fiat Chrysler Automobiles (FCA) US LLC, Auburn Hills, MI (United States); Sutherland, Ian [General Motors, Warren, MI (United States); Verduzco, Laura [Chevron Corporation, San Ramon, CA (United States); Wallington, Timothy J. [Ford Motor Company, Dearborn, MI (United States)

    2016-09-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  6. 40 CFR 86.1725-99 - Maintenance.

    Science.gov (United States)

    2010-07-01

    ... the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86... subpart, with the following additions: (a) Hybrid electric vehicles that use Otto-cycle or diesel engines...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and...

  7. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  8. Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

    International Nuclear Information System (INIS)

    Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2014-01-01

    Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge

  9. A control-oriented simulation model of a power-split hybrid electric vehicle

    International Nuclear Information System (INIS)

    Cipek, Mihael; Pavković, Danijel; Petrić, Joško

    2013-01-01

    Highlights: ► A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed. ► Modeling the energy losses in the HEV transmission components are presented. ► The control optimization model implementation aspects are discussed. -- Abstract: A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed in this paper for the purpose of HEV dynamics analysis and control system design. The bond graph methodology is used to model dominant dynamic effects of the mechanical part of the HEV transmission. Simple quasi-static battery model, the environment model, the tire and the power losses model of a vehicle are included, as well. A low-level electric generator speed control loop is designed, which includes a PI controller tuned according to the symmetrical optimum tuning procedure. Finally, off-line optimization by conjugate gradient-based BPTT-like optimal control algorithm, which is based on the presented mathematical model, is also given in the paper.

  10. Electric and hybrid vehicle system R/D

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  11. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    Science.gov (United States)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  12. Software architecture for hybrid electrical/optical data center network

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    This paper presents hardware and software architecture based on Software-Defined Networking (SDN) paradigm and OpenFlow/NETCONF protocols for enabling topology management of hybrid electrical/optical switching data center networks. In particular, a development on top of SDN open-source controller...... OpenDaylight is presented to control an optical switching matrix based on Micro-Electro-Mechanical System (MEMS) technology....

  13. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Impllitti, Joseph [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Pascal, Amar [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States)

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  14. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  15. PILCs for trapping phosphorus in a heavy duty engine exhaust system : An experimental evaluation of the phosphorus sorption capability of different clay materials

    OpenAIRE

    Kvarned, Anders

    2016-01-01

    In order to fulfil the requirements in the EURO VI standard, regulating emissions from heavy duty vehicles, the exhaust aftertreatment system needs to maintain its efficiency for at least seven years or 700 000 km. In diesel applications the diesel oxidation catalyst (DOC) is located closest to the engine and is thus the most vulnerable to poisoning contaminants, such as phosphorus originating from fuel and oil additives, which deactivates the catalyst. An idea to reduce the impact from phosp...

  16. The Use of Electrical Resistivity Method to Mapping The Migration of Heavy Metals by Electrokinetic

    Science.gov (United States)

    Azhar, A. T. S.; Ayuni, S. A.; Ezree, A. M.; Nizam, Z. M.; Aziman, M.; Hazreek, Z. A. M.; Norshuhaila, M. S.; Zaidi, E.

    2017-08-01

    The presence of heavy metals contamination in soil environment highly needs innovative remediation. Basically, this contamination was resulted from ex-mining sites, motor workshop, petrol station, landfill and industrial sites. Therefore, soil treatment is very important due to metal ions are characterized as non-biodegradable material that may be harmful to ecological system, food chain, human health and groundwater sources. There are various techniques that have been proposed to eliminate the heavy metal contamination from the soil such as bioremediation, phytoremediation, electrokinetic remediation, solidification and stabilization. The selection of treatment needs to fulfill some criteria such as cost-effective, easy to apply, green approach and high remediation efficiency. Electrokinetic remediation technique (EKR) offers those solutions in certain area where other methods are impractical. While, electrical resistivity method offers an alternative geophysical technique for soil subsurface profiling to mapping the heavy metals migration by the influece of electrical gradient. Consequently, this paper presents an overview of the use of EKR to treat contaminated soil by using ERM method to verify their effectiveness to remove heavy metals.

  17. 75 FR 60161 - WTO Dispute Settlement Proceeding Regarding China-Countervailing and Antidumping Duties on Grain...

    Science.gov (United States)

    2010-09-29

    ... Proceeding Regarding China--Countervailing and Antidumping Duties on Grain Oriented Flat-Rolled Electrical... States of grain oriented flat-rolled electrical steel. That request may be found at http://www.wto.org... countervailing and antidumping duties on grain oriented flat-rolled electrical steel (``GOES'') exported from the...

  18. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

    Science.gov (United States)

    Samiey, Babak; Cheng, Chil-Hung; Wu, Jiangning

    2014-01-01

    Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores), assembling of nanobuilding blocks (e.g., layered or core-shell compounds) and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied. PMID:28788483

  19. Component sizing optimization of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Wu, Xiaolan; Cao, Binggang; Li, Xueyan; Xu, Jun; Ren, Xiaolong

    2011-01-01

    Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance.

  20. Acoustic characteristics of hybrid electric vehicles and the safety of pedestrians who are blind

    Science.gov (United States)

    2010-08-01

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...