Hybrid dynamics for currency modeling
Theodosopoulos, Ted; Trifunovic, Alex
2006-01-01
We present a simple hybrid dynamical model as a tool to investigate behavioral strategies based on trend following. The multiplicative symbolic dynamics are generated using a lognormal diffusion model for the at-the-money implied volatility term structure. Thus, are model exploits information from derivative markets to obtain qualititative properties of the return distribution for the underlier. We apply our model to the JPY-USD exchange rate and the corresponding 1mo., 3mo., 6mo. and 1yr. im...
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Energy Technology Data Exchange (ETDEWEB)
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Hybrid photovoltaic–thermal solar collectors dynamic modeling
International Nuclear Information System (INIS)
Amrizal, N.; Chemisana, D.; Rosell, J.I.
2013-01-01
Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.
Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle
Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani
2010-01-01
Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...
Hybrid neural network bushing model for vehicle dynamics simulation
International Nuclear Information System (INIS)
Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk
2008-01-01
Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers
Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications
Directory of Open Access Journals (Sweden)
Hong-Wen He
2010-11-01
Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.
Dynamic Model of Islamic Hybrid Securities: Empirical Evidence From Malaysia Islamic Capital Market
Directory of Open Access Journals (Sweden)
Jaafar Pyeman
2016-12-01
Full Text Available Capital structure selection is fundamentally important in corporate financial management as it influence on mutually return and risk to stakeholders. Despite of Malaysia’s position as one of the major players of Islamic Financial Market, there are still lack of studies has been conducted on the capital structure of shariah compliant firms especially related to hybrid securities. The objective of this study is to determine the hybrid securities issuance model among the shariah compliant firms in Malaysia. As such, this study is to expand the literature review by providing comprehensive analysis on the hybrid capital structure and to develop dynamic Islamic hybrid securities model for shariah compliant firms. We use panel data of 50 companies that have been issuing the hybrid securities from the year of 2004- 2012. The outcomes of the studies are based on the dynamic model GMM estimation for the determinants of hybrid securities. Based on our model, risk and growth are considered as the most determinant factors for issuing convertible bond and loan stock. These results suggest that, the firms that have high risk but having good growth prospect will choose hybrid securities of convertible bond. The model also support the backdoor equity listing hypothesis by Stein (1992 where the hybrid securities enable the profitable firms to venture into positive NPV project by issuing convertible bond as it offer lower coupon rate as compare to the normal debt rate
Chen, Xiangyong; Zhang, Ancai
2014-01-01
For the particularity of warfare hybrid dynamic process, a class of warfare hybrid dynamic systems is established based on Lanchester equation in a (n,1) battle, where a heterogeneous force of n different troop types faces a homogeneous force. This model can be characterized by the interaction of continuous-time models (governed by Lanchester equation), and discrete event systems (described by variable tactics). Furthermore, an expository discussion is presented on an optimal variable tact...
Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping
2018-05-01
Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.
Modelling the WWER-type reactor dynamics using a hybrid computer. Part 1
International Nuclear Information System (INIS)
Karpeta, C.
Results of simulation studies into reactor and steam generator dynamics of a WWER type power plant are presented. Spatial kinetics of the reactor core is described by a nodal approximation to diffusion equations, xenon poisoning equations and heat transfer equations. The simulation of the reactor model dynamics was performed on a hybrid computer. Models of both a horizontal and a vertical steam generator were developed. The dynamics was investigated over a large range of power by computing the transients on a digital computer. (author)
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Directory of Open Access Journals (Sweden)
Xiangyong Chen
2014-01-01
hybrid dynamic systems is established based on Lanchester equation in a (n,1 battle, where a heterogeneous force of n different troop types faces a homogeneous force. This model can be characterized by the interaction of continuous-time models (governed by Lanchester equation, and discrete event systems (described by variable tactics. Furthermore, an expository discussion is presented on an optimal variable tactics control problem for warfare hybrid dynamic system. The optimal control strategies are designed based on dynamic programming and differential game theory. As an example of the consequences of this optimal control problem, we take the (2, 1 case and solve the optimal strategies in a (2, 1 case. Simulation results show the feasibility of warfare hybrid system model and the effectiveness of the optimal control strategies designed.
Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models
Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris
2015-11-01
Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network
Formal verification of dynamic hybrid systems: a NuSMV-based model checking approach
Directory of Open Access Journals (Sweden)
Xu Zhi
2018-01-01
Full Text Available Software security is an important and challenging research topic in developing dynamic hybrid embedded software systems. Ensuring the correct behavior of these systems is particularly difficult due to the interactions between the continuous subsystem and the discrete subsystem. Currently available security analysis methods for system risks have been limited, as they rely on manual inspections of the individual subsystems under simplifying assumptions. To improve this situation, a new approach is proposed that is based on the symbolic model checking tool NuSMV. A dual PID system is used as an example system, for which the logical part and the computational part of the system are modeled in a unified manner. Constraints are constructed on the controlled object, and a counter-example path is ultimately generated, indicating that the hybrid system can be analyzed by the model checking tool.
Dynamic Modeling and Control Strategy Optimization for a Hybrid Electric Tracked Vehicle
Directory of Open Access Journals (Sweden)
Hong Wang
2015-01-01
Full Text Available A new hybrid electric tracked bulldozer composed of an engine generator, two driving motors, and an ultracapacitor is put forward, which can provide high efficiencies and less fuel consumption comparing with traditional ones. This paper first presents the terramechanics of this hybrid electric tracked bulldozer. The driving dynamics for this tracked bulldozer is then analyzed. After that, based on analyzing the working characteristics of the engine, generator, and driving motors, the power train system model and control strategy optimization is established by using MATLAB/Simulink and OPTIMUS software. Simulation is performed under a representative working condition, and the results demonstrate that fuel economy of the HETV can be significantly improved.
Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun
2018-05-01
In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.
Dynamics and control of hybrid mechanical systems
Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.
2010-01-01
The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and
Dynamic Modeling and Simulation of an Isolated Hybrid Power System in a Rural Area of China
Directory of Open Access Journals (Sweden)
Bojian Jiang
2018-01-01
Full Text Available In some rural areas in the northwest of China, people are suffering from not only the voltage drop due to long distance transmission but also the power outages due to remoteness and poorly maintained grid. In recent few years, the price of solar energy has been reduced drastically every year in China due to the government policy on renewable energy. In the near future, isolated hybrid power systems for home use could be affordable and used by residences in these rural areas. Thus, it is necessary to design a hybrid power system based on local load and weather condition to check system feasibility and expected performance. It includes load simulation, system sizing, and dynamic system modeling and simulation. This paper firstly introduces current development of renewable energy in China and then goes through the sizing, modeling, and simulation of the system design for a typical remote home in China and finally discusses the system’s availability based on the simulation results. In this paper, the NASA website is the source for weather data, and BEopt is used to generate load data. During system modeling, the MPPT algorithm is much simpler designed than the complex incremental method. A soft starter is adopted with the diesel generator for stability. The charge controller of the battery storage provides external command to the MPPT and diesel PID controller to prevent the battery storage from overcharging. The rms value of the fundamental load voltage is used in the voltage control loop of the inverter.
Bridge Deterioration Prediction Model Based On Hybrid Markov-System Dynamic
Directory of Open Access Journals (Sweden)
Widodo Soetjipto Jojok
2017-01-01
Full Text Available Instantaneous bridge failure tends to increase in Indonesia. To mitigate this condition, Indonesia’s Bridge Management System (I-BMS has been applied to continuously monitor the condition of bridges. However, I-BMS only implements visual inspection for maintenance priority of the bridge structure component instead of bridge structure system. This paper proposes a new bridge failure prediction model based on hybrid Markov-System Dynamic (MSD. System dynamic is used to represent the correlation among bridge structure components while Markov chain is used to calculate temporal probability of the bridge failure. Around 235 data of bridges in Indonesia were collected from Directorate of Bridge the Ministry of Public Works and Housing for calculating transition probability of the model. To validate the model, a medium span concrete bridge was used as a case study. The result shows that the proposed model can accurately predict the bridge condition. Besides predicting the probability of the bridge failure, this model can also be used as an early warning system for bridge monitoring activity.
Dynamic modeling of hybrid renewable energy systems for off-grid applications
Hasemeyer, Mark David
The volatile prices of fossil fuels and their contribution to global warming have caused many people to turn to renewable energy systems. Many developing communities are forced to use these systems as they are too far from electrical distribution. As a result, numerous software models have been developed to simulate hybrid renewable energy systems. However almost, if not all, implementations are static in design. A static design limits the ability of the model to account for changes over time. Dynamic modeling can be used to fill the gaps where other modeling techniques fall short. This modeling practice allows the user to account for the effects of technological and economic factors over time. These factors can include changes in energy demand, energy production, and income level. Dynamic modeling can be particularly useful for developing communities who are off-grid and developing at rapid rates. In this study, a dynamic model was used to evaluate a real world system. A non-governmental organization interested in improving their current infrastructure was selected. Five different scenarios were analyzed and compared in order to discover which factors the model is most sensitive to. In four of the scenarios, a new energy system was purchased in order to account for the opening of a restaurant that would be used as a source of local income generation. These scenarios were then compared to a base case in which a new system was not purchased, and the restaurant was not opened. Finally, the results were used to determine which variables had the greatest impact on the various outputs of the simulation.
Cosmological dynamics of a hybrid chameleon scenario
Nozari, Kourosh; Rashidi, N.
2013-01-01
We consider a hybrid scalar field which is non-minimally coupled to the matter and models a chameleon cosmology. By introducing an effective potential, we study the dependence of the effective potential's minimum and hybrid chameleon field's masses to the local matter density. In a dynamical system technique, we analyze the phase space of this two-field chameleon model, find its fixed points and study their stability. We show that the hybrid chameleon domination solution is a stable attractor...
Madi, Mahmoud K; Karameh, Fadi N
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate
Directory of Open Access Journals (Sweden)
Claudio Maruccio
2018-01-01
Full Text Available An effective hybrid computational framework is described here in order to assess the nonlinear dynamic response of piezoelectric energy harvesting devices. The proposed strategy basically consists of two steps. First, fully coupled multiphysics finite element (FE analyses are performed to evaluate the nonlinear static response of the device. An enhanced reduced-order model is then derived, where the global dynamic response is formulated in the state-space using lumped coefficients enriched with the information derived from the FE simulations. The electromechanical response of piezoelectric beams under forced vibrations is studied by means of the proposed approach, which is also validated by comparing numerical predictions with some experimental results. Such numerical and experimental investigations have been carried out with the main aim of studying the influence of material and geometrical parameters on the global nonlinear response. The advantage of the presented approach is that the overall computational and experimental efforts are significantly reduced while preserving a satisfactory accuracy in the assessment of the global behavior.
Compositional Modelling of Stochastic Hybrid Systems
Strubbe, S.N.
2005-01-01
In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete
International Nuclear Information System (INIS)
Milano, Giuseppe; De Nicola, Antonio; Kawakatsu, Toshihiro
2013-01-01
This paper gives an overview of the coarse-grained models of phospholipids recently developed by the authors in the frame of a hybrid particle–field molecular dynamics technique. This technique employs a special class of coarse-grained models that are gaining popularity because they allow simulations of large scale systems and, at the same time, they provide sufficiently detailed chemistry for the mapping scheme adopted. The comparison of the computational costs of our approach with standard molecular dynamics simulations is a function of the system size and the number of processors employed in the parallel calculations. Due to the low amount of data exchange, the larger the number of processors, the better are the performances of the hybrid particle–field models. This feature makes these models very promising ones in the exploration of several problems in biophysics. (paper)
Dynamic investigation of mode transition in inductively coupled plasma with a hybrid model
International Nuclear Information System (INIS)
Zhao Shuxia; Gao Fei; Wang Younian
2009-01-01
Industrial inductively coupled plasma (ICP) sources are always operated in low gas pressure 10-100 mTorr, therefore in order to accurately investigate the mode transition of ICP, we developed our pure fluid model (2009 J. Appl. Phys. 105 083306) into a hybrid fluid/Monte Carlo (MC) model, where the MC part is exploited to take in more dynamic characteristics of electrons and self-consistently calculate the rate coefficients and electron temperature used in the fluid module, and more crucially to study the electron energy distribution function (EEDF) evolution with mode transition. Due to the introduction of the nonlocal property of the electrons at relatively low pressures, the dependences of the plasma density on the coil current, including the mode transitions, are distinctly different at low and high pressures when simulated by this improved hybrid model (HM), while the trends for different pressures obtained from the original pure fluid model (PFM) are the same in all cases. Furthermore, the computed peaks of the electron density profile by the HM shift from the discharge centre in the E mode to the intense inductive field heating area (about half of the radius of the reaction chamber under the dielectric window) in H mode. In addition, the electron temperature profiles of two modes under different pressures simulated by HM are totally higher than the results of PFM. When the pressure is low, there is a minimum exhibited in the bulk plasma of the electron temperature profiles of the E mode, and along with the mode transition the distribution area of low temperature is substantially reduced. Moreover, this phenomenon disappears when the gas pressure is increased. Accompanied by this, the calculated EEDF of the E mode in the low pressure also demonstrates an absolutely dominant low energy electron fraction (about ≤5 eV); while transforming to the H discharge most of the electrons carry an energy of 1-10 eV. The tendencies of the calculated EEDF evolution with
Directory of Open Access Journals (Sweden)
Zhao Dawei
2016-01-01
Full Text Available In recent years, a significant number of large-scale solar photovoltaic (PV plants have been put into operation or been under planning around the world. The model accuracy of solar PV plant is the key factor to investigate the mutual influences between solar PV plants and a power grid. However, this problem has not been well solved, especially in how to apply the real measurements to validate the models of the solar PV plants. Taking fast-responding generator method as an example, this paper presents a model validation methodology for solar PV plant via the hybrid data dynamic simulation. First, the implementation scheme of hybrid data dynamic simulation suitable for DIgSILENT PowerFactory software is proposed, and then an analysis model of solar PV plant integration based on IEEE 9 system is established. At last, model validation of solar PV plant is achieved by employing hybrid data dynamic simulation. The results illustrate the effectiveness of the proposed method in solar PV plant model validation.
International Nuclear Information System (INIS)
Babykina, Génia; Brînzei, Nicolae; Aubry, Jean-François; Deleuze, Gilles
2016-01-01
The paper proposes a modeling framework to support Monte Carlo simulations of the behavior of a complex industrial system. The aim is to analyze the system dependability in the presence of random events, described by any type of probability distributions. Continuous dynamic evolutions of physical parameters are taken into account by a system of differential equations. Dynamic reliability is chosen as theoretical framework. Based on finite state automata theory, the formal model is built by parallel composition of elementary sub-models using a bottom-up approach. Considerations of a stochastic nature lead to a model called the Stochastic Hybrid Automaton. The Scilab/Scicos open source environment is used for implementation. The case study is carried out on an example of a steam generator of a nuclear power plant. The behavior of the system is studied by exploring its trajectories. Possible system trajectories are analyzed both empirically, using the results of Monte Carlo simulations, and analytically, using the formal system model. The obtained results are show to be relevant. The Stochastic Hybrid Automaton appears to be a suitable tool to address the dynamic reliability problem and to model real systems of high complexity; the bottom-up design provides precision and coherency of the system model. - Highlights: • A part of a nuclear power plant is modeled in the context of dynamic reliability. • Stochastic Hybrid Automaton is used as an input model for Monte Carlo simulations. • The model is formally built using a bottom-up approach. • The behavior of the system is analyzed empirically and analytically. • A formally built SHA shows to be a suitable tool to approach dynamic reliability.
Saleh, Chairul; Fatcha Mubiena, Ghaida; Immawan, Taufiq; Hassan, Azmi
2016-02-01
Supply Chain Operation Reference (SCOR) is a method to measure supply chain serving the business process framework, performance indicators and unique technologies to support communication and collaboration among supply chain partners. The objective of this paper is to measure Supply Chain Management performance by using SCOR version 11.0 for production typology of MTS-MTO in Indonesian Batik Industry. This research combines SCOR's model and System Dynamics in order to predict the complex activities on batik industry. The hybrid SCOR-SD could identify the interaction among five attributes with the associated variables simultaneously. The results are obtained after the performance of lean production application is increased and the targets are achieved, even exceeding the target. For reliability attributes that associated with perfect order fulfilment started from 2015 to 2019 respectively are calculated as 80.06%, 103.53%, 105.58%, 93.76%, and 72.17%. Responsiveness attributes associated with the order fulfilment cycle time, respectively 122.45%, 149.10%, 159.26%, 131.53%, and 119.36%. Attributes associated with the total cost of service charge respectively 93.46%, 93.53%, 93.45%, 93.49, and 93.49%. Attributes associated with cash management assets to cash cycle time in a row were 160%, 153%, 146.3%, 150%, and 126.7%. The latter attribute is agility attributes associated with supply chain flexibility upside respectively 100%, 87.2%, 100%, 82%, and 82%.
Control Systems for a Dynamic Multi-Physics Model of a Nuclear Hybrid Energy System
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Michael Scott [ORNL; Fugate, David W [ORNL; Cetiner, Sacit M [ORNL
2017-01-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as either thermal power, electrical power, or both. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different local markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Fathabadi, Hassan
2015-01-01
Highlights: • Novel technique to completely eliminate the harmful harmonics of fuel cell system. • Presenting a novel high accurate detailed electrochemical dynamic model of fuel cells. • Back-up battery system to compensate the slow dynamic response of fuel cell system. • Exact analysis of real electrochemical reactions occurring inside fuel cells. - Abstract: In this study, a novel dynamic model of fuel cells is presented. High accurate static and dynamic responses of the proposed model are experimentally validated by comparing simulated results with real experimental data. The obtained model together with theoretical results shows that a fuel cell or a fuel cell stack has very slow dynamic response, so that, it cannot adapt itself to the fast variations in load demand. It is shown that for adapting well a fuel cell stack to the load demand, the stack should be equipped with a proposed back-up battery system which compensates the slow dynamic response of the stack by providing a bidirectional path to transmit/absorb the extra instant power. It is proved that the conventional switching waveforms used in the converters of the stacks and back-up systems produce an enormous amount of harmful harmonics. Then, a novel technique is proposed to completely eliminate main harmful harmonics. It is worthwhile to note that all the other techniques only reduce the harmful harmonics. Simulated results verify that the back-up battery system together with applying the proposed technique provide a fast dynamic response for the fuel cell/back-up battery system, and also completely eliminate the main harmful harmonics
Nguyen, Gia Luong Huu
Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the
International Nuclear Information System (INIS)
Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi
2017-01-01
Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)
dall'Acqua, Luisa
2011-08-01
The teleology of our research is to propose a solution to the request of "innovative, creative teaching", proposing a methodology to educate creative Students in a society characterized by multiple reference points and hyper dynamic knowledge, continuously subject to reviews and discussions. We apply a multi-prospective Instructional Design Model (PENTHA ID Model), defined and developed by our research group, which adopts a hybrid pedagogical approach, consisting of elements of didactical connectivism intertwined with aspects of social constructivism and enactivism. The contribution proposes an e-course structure and approach, applying the theoretical design principles of the above mentioned ID Model, describing methods, techniques, technologies and assessment criteria for the definition of lesson modes in an e-course.
Disease processes as hybrid dynamical systems
Directory of Open Access Journals (Sweden)
Pietro Liò
2012-08-01
Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.
Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai
2018-06-13
An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.
International Nuclear Information System (INIS)
Yu Shiwei; Wei Yiming
2012-01-01
This paper proposes a hybrid model based on genetic algorithm (GA) and system dynamics (SD) for coal production–environmental pollution load in China. GA has been utilized in the optimization of the parameters of the SD model to reduce implementation subjectivity. The chain of “Economic development–coal demand–coal production–environmental pollution load” of China in 2030 was predicted, and scenarios were analyzed. Results show that: (1) GA performs well in optimizing the parameters of the SD model objectively and in simulating the historical data; (2) The demand for coal energy continuously increases, although the coal intensity has actually decreased because of China's persistent economic development. Furthermore, instead of reaching a turning point by 2030, the environmental pollution load continuously increases each year even under the scenario where coal intensity decreased by 20% and investment in pollution abatement increased by 20%; (3) For abating the amount of “three types of wastes”, reducing the coal intensity is more effective than reducing the polluted production per tonne of coal and increasing investment in pollution control. - Highlights: ► We propos a GA-SD model for China's coal production-pollution prediction. ► Genetic algorithm (GA) can objectively and accurately optimize parameters of system dynamics (SD) model. ► Environmental pollution in China is projected to grow in our scenarios by 2030. ► The mechanism of reducing waste production per tonne of coal mining is more effective than others.
Impact adding bifurcation in an autonomous hybrid dynamical model of church bell
Brzeski, P.; Chong, A. S. E.; Wiercigroch, M.; Perlikowski, P.
2018-05-01
In this paper we present the bifurcation analysis of the yoke-bell-clapper system which corresponds to the biggest bell "Serce Lodzi" mounted in the Cathedral Basilica of St Stanislaus Kostka, Lodz, Poland. The mathematical model of the system considered in this work has been derived and verified based on measurements of dynamics of the real bell. We perform numerical analysis both by direct numerical integration and path-following method using toolbox ABESPOL (Chong, 2016). By introducing the active yoke the position of the bell-clapper system with respect to the yoke axis of rotation can be easily changed and it can be used to probe the system dynamics. We found a wide variety of periodic and non-periodic solutions, and examined the ranges of coexistence of solutions and transitions between them via different types of bifurcations. Finally, a new type of bifurcation induced by a grazing event - an "impact adding bifurcation" has been proposed. When it occurs, the number of impacts between the bell and the clapper is increasing while the period of the system's motion stays the same.
Energy Technology Data Exchange (ETDEWEB)
Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Castro, Joseph Pete Jr. (; .); Giunta, Anthony Andrew
2006-01-01
Many engineering application problems use optimization algorithms in conjunction with numerical simulators to search for solutions. The formulation of relevant objective functions and constraints dictate possible optimization algorithms. Often, a gradient based approach is not possible since objective functions and constraints can be nonlinear, nonconvex, non-differentiable, or even discontinuous and the simulations involved can be computationally expensive. Moreover, computational efficiency and accuracy are desirable and also influence the choice of solution method. With the advent and increasing availability of massively parallel computers, computational speed has increased tremendously. Unfortunately, the numerical and model complexities of many problems still demand significant computational resources. Moreover, in optimization, these expenses can be a limiting factor since obtaining solutions often requires the completion of numerous computationally intensive simulations. Therefore, we propose a multifidelity optimization algorithm (MFO) designed to improve the computational efficiency of an optimization method for a wide range of applications. In developing the MFO algorithm, we take advantage of the interactions between multi fidelity models to develop a dynamic and computational time saving optimization algorithm. First, a direct search method is applied to the high fidelity model over a reduced design space. In conjunction with this search, a specialized oracle is employed to map the design space of this high fidelity model to that of a computationally cheaper low fidelity model using space mapping techniques. Then, in the low fidelity space, an optimum is obtained using gradient or non-gradient based optimization, and it is mapped back to the high fidelity space. In this paper, we describe the theory and implementation details of our MFO algorithm. We also demonstrate our MFO method on some example problems and on two applications: earth penetrators and
Molenaar, Peter C M
2017-01-01
Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.
Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.
2015-12-01
The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian
Directory of Open Access Journals (Sweden)
Yueling Wang
2013-01-01
Full Text Available A unique fuzzy self-tuning disturbance decoupling controller (FSDDC is designed for a serial-parallel hybrid humanoid arm (HHA to implement the throwing trajectory-tracking mission. Firstly, the dynamic model of the HHA is established and the input signal of the throwing process is obtained by studying the throwing process of human's arm. Secondly, the FSDDC, incorporating the disturbance decoupling controller (DDC and the fuzzy logic controller (FLC, is designed to ensure trajectory tracking of the HHA in the presence of uncertainties and disturbances. With the FSDDC method, the HHA system can be decoupled by actively estimating and rejecting the effects of both the internal plant dynamics and external disturbances. The self-tuning parameters are adapted online to improve the performance of the FSDDC; thus, it does not require detailed system parameters of the presented FSDDC. Finally, the controller introduced is compared with a PD controller which is commonly used for the robot manipulators control in industry. The effectiveness of the designed FSDDC is illustrated by simulations.
A NEW HYBRID DYNAMIC METROPOLITAN TRAIN MODEL UN NUEVO MODELO DINÁMICO HÍBRIDO DE TREN METROPOLITANO
Directory of Open Access Journals (Sweden)
Ingeborg Mahla
2010-12-01
Full Text Available An integral dynamic model of the metropolitan train type transport system is presented. The interactions between the trajectories of the trains in use and the passenger exchange between the cars and the platforms in the stations along the tracks are described. In contrast with the current traffic engineering models based on passenger flow, this model allows the simulation of passenger accumulation that occurs on the platforms when the train cannot transport the total number of passengers waiting for it. The dynamics of the metropolitan train is modeled with a hybrid system in which the platforms and the trains are considered as continuous modes and train arrival at the stations as discrete events.En este artículo se describe un modelo dinámico integral del sistema de transporte tipo tren metropolitano. En él se describen las interacciones entre las trayectorias de los trenes en circulación y el intercambio de pasajeros entre los coches y los andenes en las estaciones a lo largo de la vía. A diferencia de los actuales modelos de ingeniería de tráfico, basados en flujos de pasajeros, este modelo permite simular las acumulaciones que se producen en los andenes cuando el tren no logra transportar la cantidad total de pasajeros esperando en el andén. La dinámica del tren metropolitano es modelada como un sistema híbrido en el cual los andenes y los trenes son considerados modos continuos y los arribos de los trenes a las estaciones como eventos discretos.
Model Reduction of Hybrid Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza
gramians. Generalized gramians are the solutions to the observability and controllability Lyapunov inequalities. In the first framework the projection matrices are found based on the common generalized gramians. This framework preserves the stability of the original switched system for all switching...... is guaranteed to be preserved for arbitrary switching signal. To compute the common generalized gramians linear matrix inequalities (LMI’s) need to be solved. These LMI’s are not always feasible. In order to solve the problem of conservatism, the second framework is presented. In this method the projection......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...
HTTR plant dynamic simulation using a hybrid computer
International Nuclear Information System (INIS)
Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.
1990-01-01
A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)
A novel modelling approach for condensing boilers based on hybrid dynamical systems
Satyavada, H.; Baldi, S.
2016-01-01
Condensing boilers use waste heat from flue gases to pre-heat cold water entering the boiler. Flue gases are condensed into liquid form, thus recovering their latent heat of vaporization, which results in as much as 10%–12% increase in efficiency. Modeling these heat transfer phenomena is crucial to
Directory of Open Access Journals (Sweden)
Irawati Rina
2018-01-01
Full Text Available Diesel Generator with Photovoltaic Hybrid Power Plant is one of the solutions for supply electric demand to isolated area. The energy sources that can be used for hybrid system are such as photovoltaic, wind turbine, and biomass or biogas, because these sources are almost available in every isolated area. This research used a model of hybrid system from diesel generator and 1.28 kWp photovoltaic power plant. The reliability and some of power quality of this system tested by 1300VA house hold daily load characteristic effectively 24 hour. Power quality and some electricity parameters during transition mode for each resource will be analyzed. Furthermore the power quality analyze will be conducted and evaluated base on Electrical Engineers’ Association (EEA.
Irawati, Rina
2018-02-01
Diesel Generator with Photovoltaic Hybrid Power Plant is one of the solutions for supply electric demand to isolated area. The energy sources that can be used for hybrid system are such as photovoltaic, wind turbine, and biomass or biogas, because these sources are almost available in every isolated area. This research used a model of hybrid system from diesel generator and 1.28 kWp photovoltaic power plant. The reliability and some of power quality of this system tested by 1300VA house hold daily load characteristic effectively 24 hour. Power quality and some electricity parameters during transition mode for each resource will be analyzed. Furthermore the power quality analyze will be conducted and evaluated base on Electrical Engineers' Association (EEA).
Ecodriving for Reduction of Bus Transit Emission with Vehicle’s Hybrid Dynamic Model
Directory of Open Access Journals (Sweden)
Xiuzheng Zheng
2015-01-01
Full Text Available This paper formulates a global ecodriving optimal control to advise the green driving speed for bus transit to minimize the exhaust emission using Vehicle-to-Infrastructure (V2I communication. Assuming communication between vehicles and infrastructure (V2I and knowledge of traffic signal timings and waiting passengers at stations are known, an optimal driving speed is proposed to minimize the total vehicle emissions of the bus route. The dwell time of the bus transit at each station which includes two parts is proposed. A traffic lights timing model is employed as constraints to control the formation of the green wave band. Vehicle specific power (VSP model is further applied to evaluate the exhaust emission level linked with the speed and acceleration of the bus transit. An approximate sixteen-kilometer traffic network including fourteen intersections and fifteen stations of Beijing bus transit line 1 in Chaoyang District, Beijing, is chosen to investigate the performance of the developed ecodriving approach.
Hybrid Predictive Control for Dynamic Transport Problems
Núñez, Alfredo A; Cortés, Cristián E
2013-01-01
Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...
Application of Hybrid Dynamical Theory to the Cardiovascular System
Laleg-Kirati, Taous-Meriem
2014-10-14
In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.
Modelling dependable systems using hybrid Bayesian networks
International Nuclear Information System (INIS)
Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter
2008-01-01
A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems
DEFF Research Database (Denmark)
Mihet-Popa, Lucian; Camacho, Oscar Mauricio Forero; Nørgård, Per Bromand
2013-01-01
This paper presents a battery test platform including two Li-ion battery designed for hybrid and EV applications, and charging/discharging tests under different operating conditions carried out for developing an accurate dynamic electro-thermal model of a high power Li-ion battery pack system....... The aim of the tests has been to study the impact of the battery degradation and to find out the dynamic characteristics of the cells including nonlinear open circuit voltage, series resistance and parallel transient circuit at different charge/discharge currents and cell temperature. An equivalent...... circuit model, based on the runtime battery model and the Thevenin circuit model, with parameters obtained from the tests and depending on SOC, current and temperature has been implemented in MATLAB/Simulink and Power Factory. A good alignment between simulations and measurements has been found....
Hybrid dynamical systems observation and control
Defoort, Michael
2015-01-01
This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systems – systems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...
Martinez, AS; Brouwer, J; Samuelsen, GS
2012-01-01
This work presents the development of a dynamic SOFC-GT hybrid system model applied to a long-haul freight locomotive in operation. Given the expectations of the rail industry, the model is used to develop a preliminary analysis of the proposed system's operational capability on conventional diesel fuel as well as natural gas and hydrogen as potential fuels in the future. It is found that operation of the system on all three of these fuels is feasible with favorable efficiencies and reasonabl...
International Nuclear Information System (INIS)
Gritli, Hassène; Belghith, Safya
2017-01-01
Highlights: • We study the passive walking dynamics of the compass-gait model under OGY-based state-feedback control. • We analyze local bifurcations via a hybrid Poincaré map. • We show exhibition of the super(sub)-critical flip bifurcation, the saddle-node(saddle) bifurcation and a saddle-flip bifurcation. • An analysis via a two-parameter bifurcation diagram is presented. • Some new hidden attractors in the controlled passive walking dynamics are displayed. - Abstract: In our previous work, we have analyzed the passive dynamic walking of the compass-gait biped model under the OGY-based state-feedback control using the impulsive hybrid nonlinear dynamics. Such study was carried out through bifurcation diagrams. It was shown that the controlled bipedal gait exhibits attractive nonlinear phenomena such as the cyclic-fold (saddle-node) bifurcation, the period-doubling (flip) bifurcation and chaos. Moreover, we revealed that, using the controlled continuous-time dynamics, we encountered a problem in finding, identifying and hence following branches of (un)stable solutions in order to characterize local bifurcations. The present paper solves such problem and then provides a further investigation of the controlled bipedal walking dynamics using the developed analytical expression of the controlled hybrid Poincaré map. Thus, we show that analysis via such Poincaré map allows to follow branches of both stable and unstable fixed points in bifurcation diagrams and hence to explore the complete dynamics of the controlled compass-gait biped model. We demonstrate the generation, other than the conventional local bifurcations in bipedal walking, i.e. the flip bifurcation and the saddle-node bifurcation, of a saddle-saddle bifurcation, a subcritical flip bifurcation and a new type of a local bifurcation, the saddle-flip bifurcation. In addition, to further understand the occurrence of the local bifurcations, we present an analysis with a two-parameter bifurcation
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
A hybrid mammalian cell cycle model
Directory of Open Access Journals (Sweden)
Vincent Noël
2013-08-01
Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.
Liu, Shiyong; Triantis, Konstantinos P; Zhao, Li; Wang, Youfa
2018-01-01
In practical research, it was found that most people made health-related decisions not based on numerical data but on perceptions. Examples include the perceptions and their corresponding linguistic values of health risks such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understanding the mechanisms that affect the implementations of health-related interventions, we employ fuzzy variables to quantify linguistic variable in healthcare modeling where we employ an integrated system dynamics and agent-based model. In a nonlinear causal-driven simulation environment driven by feedback loops, we mathematically demonstrate how interventions at an aggregate level affect the dynamics of linguistic variables that are captured by fuzzy agents and how interactions among fuzzy agents, at the same time, affect the formation of different clusters(groups) that are targeted by specific interventions. In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties manifested among interacting heterogeneous agents (individuals) and intervention decisions that affect homogeneous agents (groups of individuals) in a hybrid model that combines an agent-based simulation model (ABM) and a system dynamics models (SDM). Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model, this paper demonstrates how one can obtain the state variable behaviors in the SDM and the corresponding values of linguistic variables in the ABM. This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM model. This research not only enriches the application of fuzzy set theory by capturing the dynamics of variables associated with interacting fuzzy agents that lead to aggregate behaviors but also informs implementation research by enabling the incorporation of linguistic variables at both individual and institutional levels, which makes unstructured linguistic data
Curvature perturbation and waterfall dynamics in hybrid inflation
International Nuclear Information System (INIS)
Abolhasani, Ali Akbar; Firouzjahi, Hassan; Sasaki, Misao
2011-01-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here
Curvature perturbation and waterfall dynamics in hybrid inflation
Energy Technology Data Exchange (ETDEWEB)
Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, Misao, E-mail: abolhasani@mail.ipm.ir, E-mail: firouz@mail.ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2011-10-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.
Directory of Open Access Journals (Sweden)
Lan-Rong Dung
2016-01-01
Full Text Available A new battery simulator based on a hybrid model is proposed in this paper for dynamic discharging behavior and runtime predictions in existing electronic simulation environments, e.g., PSIM, so it can help power circuit designers to develop and optimize their battery-powered electronic systems. The hybrid battery model combines a diffusion model and a switching overpotential model, which automatically switches overpotential resistance mode or overpotential voltage mode to accurately describe the voltage difference between battery electro-motive force (EMF and terminal voltage. Therefore, this simulator can simply run in an electronic simulation software with less computational efforts and estimate battery performances by further considering nonlinear capacity effects. A linear extrapolation technique is adopted for extracting model parameters from constant current discharging tests, so the EMF hysteresis problem is avoided. For model validation, experiments and simulations in MATLAB and PSIM environments are conducted with six different profiles, including constant loads, an interrupted load, increasing and decreasing loads and a varying load. The results confirm the usefulness and accuracy of the proposed simulator. The behavior and runtime prediction errors can be as low as 3.1% and 1.2%, respectively.
International Nuclear Information System (INIS)
Di Gaeta, Alessandro; Reale, Fabrizio; Chiariello, Fabio; Massoli, Patrizio
2017-01-01
The paper deals with the development of a dynamic model of a commercial 100 kW Micro Gas Turbine (MGT) fuelled with mixtures of standard (i.e. natural gas or methane) and alternative fuels (i.e. hydrogen). The model consists of a first-order differential equation (ODE) describing the dominant dynamics of the MGT imposed by its own control system during production electrical power. The differential equation is coupled to a set of nonlinear maps derived numerically from a detailed 0D thermodynamic matching model of the MGT evaluated over a wide range of operating conditions (i.e. mechanical power, fraction of hydrogen and ambient temperature). The efficiency of the electrical machine with power inverter and power absorbed by auxiliary devices is also taken into account. The resulting model is experimentally validated for a sequence of power step responses of the MGT at different ambient conditions and with different fuel mixtures. The model is suited for simulation and control of hybrid energy grids (HEGs) which rely on advanced use of MGT and hydrogen as energy carrier. In this regard, the MGT model is used in the simulation of an HEG based on an appropriate mix of renewable (non-programmable) and non-renewable (programmable) energy sources with hydrogen storage and its reuse in the MGT. Here, the MGT is used as a programmable energy vector for compensating the deficits of renewable energies (such as solar and wind) with respect to user demand, while excess renewable energy is used to produce hydrogen via electrolysis of water. The simulated HEG comprises a solar PhotoVoltaic (PV) plant (300 kW), an MGT (100 kW) fuelled with natural gas and hydrogen blends, a water electrolyzer (WE) system (8 bar, 56 Nm 3 /h), a hydrogen tank (54 m 3 ), and an Energy Management Control System (EMCS). - Highlights: • A dynamic model of a commercial 100 kW MGT fuelled with natural gas and hydrogen blends is developed. • The model reproduces the electrical power generated by
Directory of Open Access Journals (Sweden)
Jing Lian
2017-01-01
Full Text Available Plug-in hybrid electric vehicles (PHEVs can be considered as a hybrid system (HS which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC strategy for PHEVs based on the mixed logical dynamical (MLD model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial improvement in fuel economy in the simulation results.
DEFF Research Database (Denmark)
Costa, Rafael S.; Machado, Daniel; Rocha, Isabel
2010-01-01
, represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis–Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action......The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters...
Towards Modelling of Hybrid Systems
DEFF Research Database (Denmark)
Wisniewski, Rafal
2006-01-01
system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...
Bataille, Christopher G. F.
2005-11-01
Are further energy efficiency gains, or more recently greenhouse gas reductions, expensive or cheap? Analysts provide conflicting advice to policy makers based on divergent modelling perspectives, a 'top-down/bottom-up debate' in which economists use equation based models that equilibrate markets by maximizing consumer welfare, and technologists use technology simulation models that minimize the financial cost of providing energy services. This thesis summarizes a long term research project to find a middle ground between these two positions that is more useful to policy makers. Starting with the individual components of a behaviourally realistic and technologically explicit simulation model (ISTUM---Inter Sectoral Technology Use Model), or "hybrid", the individual sectors of the economy are linked using a framework of micro and macro economic feedbacks. These feedbacks are taken from the economic theory that informs the computable general equilibrium (CGE) family of models. Speaking in the languages of both economists and engineers, the resulting "physical" equilibrium model of Canada (CIMS---Canadian Integrated Modeling System), equilibrates energy and end-product markets, including imports and exports, for seven regions and 15 economic sectors, including primary industry, manufacturing, transportation, commerce, residences, governmental infrastructure and the energy supply sectors. Several different policy experiments demonstrate the value-added of the model and how its results compare to top-down and bottom-up practice. In general, the results show that technical adjustments make up about half the response to simulated energy policy, and macroeconomic demand adjustments the other half. Induced technical adjustments predominate with minor policies, while the importance of macroeconomic demand adjustment increases with the strength of the policy. Results are also shown for an experiment to derive estimates of future elasticity of substitution (ESUB) and
Hybrid Differential Dynamic Programming with Stochastic Search
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Dynamical baryogenesis through complex hybrid inflation
International Nuclear Information System (INIS)
Delepine, D; MartInez, C; Urena-Lopez, L A
2008-01-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U (1) global symmetry associated to the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry [1
Dynamical baryogenesis through complex hybrid inflation
Energy Technology Data Exchange (ETDEWEB)
Delepine, D; MartInez, C; Urena-Lopez, L A [Instituto de Fisica de la Universidad de Guanajuato, C.P. 37150, Leon, Guanajuato (Mexico)], E-mail: delepine@fisica.ugto.mx, E-mail: crmtz@fisica.ugto.mx, E-mail: lurena@fisica.ugto.mx
2008-06-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U (1) global symmetry associated to the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry [1].
Dissipative dynamics of superconducting hybrid qubit systems
International Nuclear Information System (INIS)
Montes, Enrique; Calero, Jesus M; Reina, John H
2009-01-01
We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a σ x x σ z interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.
A Novel Hybrid Similarity Calculation Model
Directory of Open Access Journals (Sweden)
Xiaoping Fan
2017-01-01
Full Text Available This paper addresses the problems of similarity calculation in the traditional recommendation algorithms of nearest neighbor collaborative filtering, especially the failure in describing dynamic user preference. Proceeding from the perspective of solving the problem of user interest drift, a new hybrid similarity calculation model is proposed in this paper. This model consists of two parts, on the one hand the model uses the function fitting to describe users’ rating behaviors and their rating preferences, and on the other hand it employs the Random Forest algorithm to take user attribute features into account. Furthermore, the paper combines the two parts to build a new hybrid similarity calculation model for user recommendation. Experimental results show that, for data sets of different size, the model’s prediction precision is higher than the traditional recommendation algorithms.
Model predictive control of hybrid systems : stability and robustness
Lazar, M.
2006-01-01
This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior
Directory of Open Access Journals (Sweden)
Jalalifar Mehran
2007-01-01
Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.
Martinez, Andrew S.; Brouwer, Jacob; Samuelsen, G. Scott
2012-09-01
This work presents the development of a dynamic SOFC-GT hybrid system model applied to a long-haul freight locomotive in operation. Given the expectations of the rail industry, the model is used to develop a preliminary analysis of the proposed system's operational capability on conventional diesel fuel as well as natural gas and hydrogen as potential fuels in the future. It is found that operation of the system on all three of these fuels is feasible with favorable efficiencies and reasonable dynamic response. The use of diesel fuel reformate in the SOFC presents a challenge to the electrochemistry, especially as it relates to control and optimization of the fuel utilization in the anode compartment. This is found to arise from the large amount of carbon monoxide in diesel reformate that is fed to the fuel cell, limiting the maximum fuel utilization possible. This presents an opportunity for further investigations into carbon monoxide electrochemical oxidation and/or system integration studies where the efficiency of the fuel reformer can be balanced against the needs of the SOFC.
International Nuclear Information System (INIS)
Chen, B.; Song, Y.; Ohsumi, T.; AIST, Ibaraki; Nishio, M.; Akai, M.
2004-01-01
A numerical modeling system has been developed, based on an engineering background, of the direct disposal of liquid carbon dioxide into the ocean by a moving-ship, to predict the physico-chemical dynamics of liquid carbon dioxide droplets and carbon dioxide enriched seawater in the ocean. This is a hybrid simulation model system consisting of a three-dimensional small-scale near-field model and a two-dimensional horizontal turbulent dispersion model. The dynamics near to release sites include double-plume creation, interaction, evolution, and coupling with ocean currents; these are described by using two-fluid large-eddy simulation technology. The further development of carbon dioxide enriched seawater, as a passive-inert scalar, in relatively larger spatial and time scales (28x28 km and up to 100 h) is then simulated by a horizontal turbulent dispersion model. For the case of liquid carbon dioxide release at a depth of 2000 m with mass flow rate of 100 kg/s and initial droplet diameter of 8.0 mm, and with ship speed of 3.0 m/s, the model predicts a vertically separated carbon dioxide enriched seawater plume, 330 m in height and 40 m in width at time about 1 h after release with a minimum pH of 6.20 corresponding to carbon dioxide concentration of 0.18 kg/m 3 , in the surrounding area. This carbon dioxide enriched seawater plume diffused turbulently in the horizontal surface to an area of 9.8x10.5 km 2 after 100 h. (author)
Hybrid2 - The hybrid power system simulation model
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.
Robinson, Patrick J.
simulators Aspen Plus and Aspen Dynamics. This dissertation first presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. Limitations in the software dealing with solids make this a necessary task. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudo fuel. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macro-scale thermal, flow, composition and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers, but merely presents an idea of how to dynamically simulate coal gasification in an approximate way. This dissertation also presents models of the downstream units of a typical IGCC. Dynamic simulations of the H2S absorption/stripping unit, Water-gas Shift (WGS) reactors, and CO2 absorption/stripping unit are essential for the development of stable and agile plantwide control structures of this hybrid power/chemical plant. Due to the high pressure of the system, hydrogen sulfide is removed by means of physical absorption. SELEXOLRTM (a mixture of the dimethyl ethers of polyethylene glycol) is used to achieve a gas purity of less than 5 ppm H2S. This desulfurized synthesis gas is sent to two water gas shift reactors that convert a total of 99% of carbon monoxide to hydrogen. Physical absorption of carbon dioxide with Selexol produces a hydrogen rich stream (90 mol% H2) to be fed into combustion turbines or to a methanol plant. Steady-state economic designs and plantwide control structures are developed in this dissertation. A steady-state economic design, control structure, and successful turndown of the methanol plant are shown in this dissertation. The Plantwide
DYNAMIC HYBRIDS UNDER SOLVENCY II: RISK ANALYSIS AND MODIFICATION POSSIBILITIES
Directory of Open Access Journals (Sweden)
Christian Maier
2017-06-01
Full Text Available In this study, we investigate the new and standardized European system of supervisory called Solvency II. In essence, asymmetric distribution of information between policyholder and insurer triggered this new regulation which aims at better protecting policyholders. Its three-pillar model is about to challenge both, insurers as well as policyholders. The first pillar includes quantitative aspects, the second pillar contains qualitative aspects and the third pillar comprises market transparency and reporting obligations. Underwriting risks, the default risk of a bank and market risks can be identified for the dynamic hybrid. Solvency II covers all these risks in the first pillar and insurers shall deposit sufficient risk-bearing capital. In our analysis, we first identify the dynamic hybrid specific risks under the Solvency II regime und then develop product modifications to reduce this risk.
Dynamical Baryogenesis in Complex Hybrid Inflation
International Nuclear Information System (INIS)
Delepine, David; Martinez, Carlos; Urena-Lopez, L. Arturo
2008-01-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U (1) global symmetry associated to the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vev of the waterfall field, which is well constrained by diverse cosmological observations
Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy
Directory of Open Access Journals (Sweden)
Zhu Dongyong
2016-12-01
Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.
Hybrid Model of Content Extraction
DEFF Research Database (Denmark)
Qureshi, Pir Abdul Rasool; Memon, Nasrullah
2012-01-01
We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict...... significance of the node towards overall content provided by the document. Once significance of the nodes is determined, the formatting characteristics like fonts, styles and the position of the nodes are evaluated to identify the nodes with similar formatting as compared to the significant nodes. The proposed...
Dissipative dynamics of superconducting hybrid qubit systems
Energy Technology Data Exchange (ETDEWEB)
Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)
2009-05-01
We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.
Filtering in Hybrid Dynamic Bayesian Networks
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2000-01-01
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2015-01-01
Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.
Evaporator modeling - A hybrid approach
International Nuclear Information System (INIS)
Ding Xudong; Cai Wenjian; Jia Lei; Wen Changyun
2009-01-01
In this paper, a hybrid modeling approach is proposed to model two-phase flow evaporators. The main procedures for hybrid modeling includes: (1) Based on the energy and material balance, and thermodynamic principles to formulate the process fundamental governing equations; (2) Select input/output (I/O) variables responsible to the system performance which can be measured and controlled; (3) Represent those variables existing in the original equations but are not measurable as simple functions of selected I/Os or constants; (4) Obtaining a single equation which can correlate system inputs and outputs; and (5) Identify unknown parameters by linear or nonlinear least-squares methods. The method takes advantages of both physical and empirical modeling approaches and can accurately predict performance in wide operating range and in real-time, which can significantly reduce the computational burden and increase the prediction accuracy. The model is verified with the experimental data taken from a testing system. The testing results show that the proposed model can predict accurately the performance of the real-time operating evaporator with the maximum error of ±8%. The developed models will have wide applications in operational optimization, performance assessment, fault detection and diagnosis
Mathematical Modeling of Hybrid Electrical Engineering Systems
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2016-01-01
Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the
International Nuclear Information System (INIS)
Rusinowski, Henryk; Stanek, Wojciech
2010-01-01
In the case of big energy boilers energy efficiency is usually determined with the application of the indirect method. Flue gas losses and unburnt combustible losses have a significant influence on the boiler's efficiency. To estimate these losses the knowledge of the operating parameters influence on the flue gases temperature and the content of combustible particles in the solid combustion products is necessary. A hybrid model of a boiler developed with the application of both analytical modelling and artificial intelligence is described. The analytical part of the model includes the balance equations. The empirical models express the dependence of the flue gas temperature and the mass fraction of the unburnt combustibles in solid combustion products on the operating parameters of a boiler. The empirical models have been worked out by means of neural and regression modelling.
Corley, R A; Minard, K R; Kabilan, S; Einstein, D R; Kuprat, A P; Harkema, J R; Kimbell, J S; Gargas, M L; Kinzell, John H
2009-05-01
The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.
Deriving simulators for hybrid Chi models
Beek, van D.A.; Man, K.L.; Reniers, M.A.; Rooda, J.E.; Schiffelers, R.R.H.
2006-01-01
The hybrid Chi language is formalism for modeling, simulation and verification of hybrid systems. The formal semantics of hybrid Chi allows the definition of provably correct implementations for simulation, verification and realtime control. This paper discusses the principles of deriving an
Bond graph model-based fault diagnosis of hybrid systems
Borutzky, Wolfgang
2015-01-01
This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...
Fluid and hybrid models for streamers
Bonaventura, Zdeněk
2016-09-01
Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed
2014-11-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.
2014-01-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
Effect of surface modification and hybridization on dynamic ...
Indian Academy of Sciences (India)
Epoxy; Roystonea regia; glass; surface modification; hybridization; dynamic mechanical ... other advantages such as light weight, low cost, high specific ... ful technique to study the mechanical behaviour of mate- ... The test reveals response.
1-D hybrid code for FRM dynamics
International Nuclear Information System (INIS)
Stark, R.A.; Miley, G.H.
1985-01-01
A 1-D radial hybrid code has been written to study the start-up of the FRM via neutral-beam injection. This code, named FROST (Field Reversed One-dimensional STart-up), models the plasma as azimuthal symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. This method is designed to be more efficient than those employing particle tracking, since the characteristic timescale of the simulation is the ion slowing down time, rather than the much shorter cyclotron period. A time-differentiated Grad-Shafranov equation couples the ion current to massless fluid equations describing electrons and low energy ions. Flux coordinates are used in this fluid model, in preference to an Eulerian framework, so that coupling of plasma at the two different radii of a closed flux surface may be treated with ease. Since a fluid treatment for electrons is invalid near a field null, a separate model for the electron current has been included for this region, a unique feature. Results of simulation of injection into a 2XIIB-like plasma are discussed. Electron currents are found to retard, but not prevent reversal of the magnetic field at the plasma center
Origin and cross-century dynamics of an avian hybrid zone.
Morales-Rozo, Andrea; Tenorio, Elkin A; Carling, Matthew D; Cadena, Carlos Daniel
2017-12-15
Characterizations of the dynamics of hybrid zones in space and time can give insights about traits and processes important in population divergence and speciation. We characterized a hybrid zone between tanagers in the genus Ramphocelus (Aves, Thraupidae) located in southwestern Colombia. We evaluated whether this hybrid zone originated as a result of secondary contact or of primary differentiation, and described its dynamics across time using spatial analyses of molecular, morphological, and coloration data in combination with paleodistribution modeling. Models of potential historical distributions based on climatic data and genetic signatures of demographic expansion suggested that the hybrid zone likely originated following secondary contact between populations that expanded their ranges out of isolated areas in the Quaternary. Concordant patterns of variation in phenotypic characters across the hybrid zone and its narrow extent are suggestive of a tension zone, maintained by a balance between dispersal and selection against hybrids. Estimates of phenotypic cline parameters obtained using specimens collected over nearly a century revealed that, in recent decades, the zone appears to have moved to the east and to higher elevations, and may have become narrower. Genetic variation was not clearly structured along the hybrid zone, but comparisons between historical and contemporary specimens suggested that temporal changes in its genetic makeup may also have occurred. Our data suggest that the hybrid zone likey resulted from secondary contact between populations. The observed changes in the hybrid zone may be a result of sexual selection, asymmetric gene flow, or environmental change.
Modeling Propellant Tank Dynamics
National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...
An energy management for series hybrid electric vehicle using improved dynamic programming
Peng, Hao; Yang, Yaoquan; Liu, Chunyu
2018-02-01
With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.
A muscle model for hybrid muscle activation
Directory of Open Access Journals (Sweden)
Klauer Christian
2015-09-01
Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.
Scalable and balanced dynamic hybrid data assimilation
Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa
2017-04-01
Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them
Modelling and Verifying Communication Failure of Hybrid Systems in HCSP
DEFF Research Database (Denmark)
Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis
2016-01-01
Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, in the presence of communication failure, the expected control from the controller will get lost and as a consequence the physical process cannot behave as expected. In this paper, we mainly consider the communication failure caused by the non-engagement of one party in communication action, i.......e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems...
Wu, Guang; Dong, Zuomin
2017-09-01
Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.
Hybrid Inflation: Multi-field Dynamics and Cosmological Constraints
Clesse, Sébastien
2011-09-01
The dynamics of hybrid models is usually approximated by the evolution of a scalar field slowly rolling along a nearly flat valley. Inflation ends with a waterfall phase, due to a tachyonic instability. This final phase is usually assumed to be nearly instantaneous. In this thesis, we go beyond these approximations and analyze the exact 2-field dynamics of hybrid models. Several effects are put in evidence: 1) the possible slow-roll violations along the valley induce the non existence of inflation at small field values. Provided super-planckian fields, the scalar spectrum of the original model is red, in agreement with observations. 2) The initial field values are not fine-tuned along the valley but also occupy a considerable part of the field space exterior to it. They form a structure with fractal boundaries. Using bayesian methods, their distribution in the whole parameter space is studied. Natural bounds on the potential parameters are derived. 3) For the original model, inflation is found to continue for more than 60 e-folds along waterfall trajectories in some part of the parameter space. The scalar power spectrum of adiabatic perturbations is modified and is generically red, possibly in agreement with CMB observations. Topological defects are conveniently stretched outside the observable Universe. 4) The analysis of the initial conditions is extended to the case of a closed Universe, in which the initial singularity is replaced by a classical bounce. In the third part of the thesis, we study how the present CMB constraints on the cosmological parameters could be ameliorated with the observation of the 21cm cosmic background, by future giant radio-telescopes. Forecasts are determined for a characteristic Fast Fourier Transform Telescope, by using both Fisher matrix and MCMC methods.
Energy Technology Data Exchange (ETDEWEB)
Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)
2013-09-15
As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)
Dynamic force profile in hydraulic hybrid vehicles: a numerical investigation
Mohaghegh-Motlagh, Amin; Elahinia, Mohammad H.
2010-04-01
A hybrid hydraulic vehicle (HHV) combines a hydraulic sub-system with the conventional drivetrain in order to improve fuel economy for heavy vehicles. The added hydraulic module manages the storage and release of fluid power necessary to assist the motion of the vehicle. The power collected by a pump/motor (P/M) from the regenerative braking phase is stored in a high-pressure accumulator and then released by the P/M to the driveshaft during the acceleration phase. This technology is effective in significantly improving fuel-economy for heavy-class vehicles with frequent stop-and-go drive schedules. Despite improved fuel economy and higher vehicle acceleration, noise and vibrations are one of the main problems of these vehicles. The dual function P/Ms are the main source of noise and vibration in a HHV. This study investigates the dynamics of a P/M and particularly the profile and frequency-dependence of the dynamic forces generated by a bent-axis P/M unit. To this end, the fluid dynamics side of the problem has been simplified for investigating the system from a dynamics perspective. A mathematical model of a bent axis P/M has been developed to investigate the cause of vibration and noise in HHVs. The forces are calculated in time and frequency domains. The results of this work can be used to study the vibration response of the chassis and to design effective vibration isolation systems for HHVs.
Optimal management with hybrid dynamics : The shallow lake problem
Reddy, P.V.; Schumacher, Hans; Engwerda, Jacob; Camlibel, M.K.; Julius, A.A.; Pasumarthy, R.
2015-01-01
In this article we analyze an optimal management problem that arises in ecological economics using hybrid systems modeling. First, we introduce a discounted autonomous infinite horizon hybrid optimal control problem and develop few tools to analyze the necessary conditions for optimality. Next,
HYbrid Coordinate Ocean Model (HYCOM): Global
National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...
Ghanem, Bernard; Ahuja, Narendra
2013-01-01
This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal
Hybrid rocket engine, theoretical model and experiment
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
A hybrid computer simulation of reactor spatial dynamics
International Nuclear Information System (INIS)
Hinds, H.W.
1977-08-01
The partial differential equations describing the one-speed spatial dynamics of thermal neutron reactors were converted to a set of ordinary differential equations, using finite-difference approximations for the spatial derivatives. The variables were then normalized to a steady-state reference condition in a novel manner, to yield an equation set particularly suitable for implementation on a hybrid computer. One Applied Dynamics AD/FIVE analog-computer console is capable of solving, all in parallel, up to 30 simultaneous differential equations. This corresponds roughly to eight reactor nodes, each with two active delayed-neutron groups. To improve accuracy, an increase in the number of nodes is usually required. Using the Hsu-Howe multiplexing technique, an 8-node, one-dimensional module was switched back and forth between the left and right halves of the reactor, to simulate a 16-node model, also in one dimension. These two versions (8 or 16 nodes) of the model were tested on benchmark problems of the loss-of-coolant type, which were also solved using the digital code FORSIM, with two energy groups and 26 nodes. Good agreement was obtained between the two solution techniques. (author)
Dynamic Latent Classification Model
DEFF Research Database (Denmark)
Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre
as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...
Hybrid computer modelling in plasma physics
International Nuclear Information System (INIS)
Hromadka, J; Ibehej, T; Hrach, R
2016-01-01
Our contribution is devoted to development of hybrid modelling techniques. We investigate sheath structures in the vicinity of solids immersed in low temperature argon plasma of different pressures by means of particle and fluid computer models. We discuss the differences in results obtained by these methods and try to propose a way to improve the results of fluid models in the low pressure area. There is a possibility to employ Chapman-Enskog method to find appropriate closure relations of fluid equations in a case when particle distribution function is not Maxwellian. We try to follow this way to enhance fluid model and to use it in hybrid plasma model further. (paper)
Control-relevant modeling and simulation of a SOFC-GT hybrid system
Directory of Open Access Journals (Sweden)
Rambabu Kandepu
2006-07-01
Full Text Available In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.
Control-relevant modeling and simulation of a SOFC-GT hybrid system
Rambabu Kandepu; Lars Imsland; Christoph Stiller; Bjarne A. Foss; Vinay Kariwala
2006-01-01
In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.
Effect of surface modification and hybridization on dynamic ...
Indian Academy of Sciences (India)
Storage and loss modulus values increased after treatments with simultaneous decrease in tan values. Roystonea regia and glass fibres were used together with varying proportions as reinforcement in epoxy matrix to study the hybridization effect on dynamic mechanical properties. Storage and loss modulus values ...
Reactor systems modeling for ICF hybrids
International Nuclear Information System (INIS)
Berwald, D.H.; Meier, W.R.
1980-10-01
The computational models of ICF reactor subsystems developed by LLNL and TRW are described and a computer program was incorporated for use in the EPRI-sponsored Feasibility Assessment of Fusion-Fission Hybrids. Representative parametric variations have been examined. Many of the ICF subsystem models are very preliminary and more quantitative models need to be developed and included in the code
A Hybrid 3D Indoor Space Model
Directory of Open Access Journals (Sweden)
A. Jamali
2016-10-01
Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.
Hybrid simulation models of production networks
Kouikoglou, Vassilis S
2001-01-01
This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.
Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration
Directory of Open Access Journals (Sweden)
Alberto Policriti
2009-10-01
Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The speciﬁc contribution in this work consists in an increase of the ﬂexibility of the translation scheme, obtained by allowing a dynamic reconﬁguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.
Hybrid approximations via second order combined dynamic derivatives on time scales
Directory of Open Access Journals (Sweden)
Qin Sheng
2007-09-01
Full Text Available This article focuses on the approximation of conventional second order derivative via the combined (diamond-$\\alpha$ dynamic derivative on time scales with necessary smoothness conditions embedded. We will show the constraints under which the second order dynamic derivative provides a consistent approximation to the conventional second derivative; the cases where the dynamic derivative approximates the derivative only via a proper modification of the existing formula; and the situations in which the dynamic derivative can never approximate consistently even with the help of available structure correction methods. Constructive error analysis will be given via asymptotic expansions for practical hybrid modeling and computational applications.
Weather forecasting based on hybrid neural model
Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.
2017-11-01
Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.
Models for Dynamic Applications
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina
2011-01-01
This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor...... be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....
Application of Hybrid Dynamical Theory to the Cardiovascular System
Laleg-Kirati, Taous-Meriem; Belkhatir, Zehor; Ledezma, Fernando
2014-01-01
thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study
Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.
Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao
2017-07-19
Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.
DEFF Research Database (Denmark)
Andreasen, Martin Møller; Meldrum, Andrew
This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...
Hybrid quantum teleportation: A theoretical model
Energy Technology Data Exchange (ETDEWEB)
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
Hybrid computer simulation of the dynamics of the Hoger Onderwijs Reactor
International Nuclear Information System (INIS)
Moers, J.C.; Vries, J.W. de.
1976-01-01
A distributed parameter model for the dynamics of the Hoger Onderwijs Reactor (HOR) at Delft is presented. The neutronic and the thermodynamic part of this model have been separately implemented on the AD4-IBM1800 Hybrid Computer of the Delft University of Technology Computation Centre. A continuous Space/Discrete Time solution method has been employed. Some test results of the simulation are included
Nuclear Hybrid Energy System Model Stability Testing
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-04-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.
Directory of Open Access Journals (Sweden)
Pengdong Zhang
2018-01-01
Full Text Available Benefiting from recent advantages in location-aware technologies, movement data are becoming ubiquitous. Hence, numerous research topics with respect to movement data have been undertaken. Yet, the research of dynamic interactions in movement data is still in its infancy. In this paper, we propose a hybrid approach combining the multi-temporal scale spatio-temporal network (MTSSTN and the continuous triangular model (CTM for exploring dynamic interactions in movement data. The approach mainly includes four steps: first, the relative trajectory calculus (RTC is used to derive three types of interaction patterns; second, for each interaction pattern, a corresponding MTSSTN is generated; third, for each MTSSTN, the interaction intensity measures and three centrality measures (i.e., degree, betweenness and closeness are calculated; finally, the results are visualized at multiple temporal scales using the CTM and analyzed based on the generated CTM diagrams. Based on the proposed approach, three distinctive aims can be achieved for each interaction pattern at multiple temporal scales: (1 exploring the interaction intensities between any two individuals; (2 exploring the interaction intensities among multiple individuals, and (3 exploring the importance of each individual and identifying the most important individuals. The movement data obtained from a real football match are used as a case study to validate the effectiveness of the proposed approach. The results demonstrate that the proposed approach is useful in exploring dynamic interactions in football movement data and discovering insightful information.
International Nuclear Information System (INIS)
Nishimura, Hiroshi.
1993-05-01
Object-Oriented Programming has been used extensively to model the LBL Advanced Light Source 1.5 GeV electron storage ring. This paper is on the present status of the class library construction with emphasis on a dynamic modeling
Bun, M.J.G.; Sarafidis, V.
2013-01-01
This Chapter reviews the recent literature on dynamic panel data models with a short time span and a large cross-section. Throughout the discussion we considerlinear models with additional endogenous covariates. First we give a broad overview of available inference methods placing emphasis on GMM.
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin; Xue, Chuan; Painter, Kevin J.; Erban, Radek
2013-01-01
. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death
Ghanem, Bernard
2013-01-01
This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Birgit Goversen
2018-01-01
Full Text Available An important aspect of the Comprehensive In Vitro Proarrhythmia Assay (CiPA proposal is the use of human stem cell-derived cardiomyocytes and the confirmation of their predictive power in drug safety assays. The benefits of this cell source are clear; drugs can be tested in vitro on human cardiomyocytes, with patient-specific genotypes if needed, and differentiation efficiencies are generally excellent, resulting in a virtually limitless supply of cardiomyocytes. There are, however, several challenges that will have to be surmounted before successful establishment of hSC-CMs as an all-round predictive model for drug safety assays. An important factor is the relative electrophysiological immaturity of hSC-CMs, which limits arrhythmic responses to unsafe drugs that are pro-arrhythmic in humans. Potentially, immaturity may be improved functionally by creation of hybrid models, in which the dynamic clamp technique joins simulations of lacking cardiac ion channels (e.g., IK1 with hSC-CMs in real-time during patch clamp experiments. This approach has been used successfully in manual patch clamp experiments, but throughput is low. In this study, we combined dynamic clamp with automated patch clamp of iPSC-CMs in current clamp mode, and demonstrate that IK1 conductance can be added to iPSC-CMs on an automated patch clamp platform, resulting in an improved electrophysiological maturity.
New MPPT algorithm for PV applications based on hybrid dynamical approach
Elmetennani, Shahrazed
2016-10-24
This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.
New MPPT algorithm for PV applications based on hybrid dynamical approach
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Djemai, M.; Tadjine, M.
2016-01-01
This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
Hybrid Energy System Modeling in Modelica
Energy Technology Data Exchange (ETDEWEB)
William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia
2014-03-01
In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.
Stochastic linear hybrid systems: Modeling, estimation, and application
Seah, Chze Eng
Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS
Calibrated and Interactive Modelling of Form-Active Hybrid Structures
DEFF Research Database (Denmark)
Quinn, Gregory; Holden Deleuran, Anders; Piker, Daniel
2016-01-01
Form-active hybrid structures (FAHS) couple two or more different structural elements of low self weight and low or negligible bending flexural stiffness (such as slender beams, cables and membranes) into one structural assembly of high global stiffness. They offer high load-bearing capacity...... software packages which introduce interruptions and data exchange issues in the modelling pipeline. The mechanical precision, stability and open software architecture of Kangaroo has facilitated the development of proof-of-concept modelling pipelines which tackle this challenge and enable powerful...... materially-informed sketching. Making use of a projection-based dynamic relaxation solver for structural analysis, explorative design has proven to be highly effective....
Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems
International Nuclear Information System (INIS)
Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; Vilim, Richard B.; Binder, William R.; Bragg Sitton, Shannon M.; Boardman, Richard D.; McKellar, Michael G.; Paredis, Christiaan J.J.
2016-01-01
In support of more efficient utilization of clean energy generation sources, including renewable and nuclear options, HES (hybrid energy systems) can be designed and operated as FER (flexible energy resources) to meet both electrical and thermal energy needs in the electric grid and industrial sectors. These conceptual systems could effectively and economically be utilized, for example, to manage the increasing levels of dynamic variability and uncertainty introduced by VER (variable energy resources) such as renewable sources (e.g., wind, solar), distributed energy resources, demand response schemes, and modern energy demands (e.g., electric vehicles) with their ever changing usage patterns. HES typically integrate multiple energy inputs (e.g., nuclear and renewable generation) and multiple energy outputs (e.g., electricity, gasoline, fresh water) using complementary energy conversion processes. This paper reports a dynamic analysis of two realistic HES including a nuclear reactor as the main baseload heat generator and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by their application in scenarios with multiple commodity production and high renewable penetration. It is performed for regional cases – not generic examples – based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses. - Highlights: • Hybrids including renewables can operate as dispatchable flexible energy resources. • Nuclear energy can address high variability and uncertainty in energy systems. • Nuclear hybrids can reliably provide grid services over various time horizons. • Nuclear energy can provide operating reserves and grid inertia under high renewables. • Nuclear hybrids can greatly reduce GHG emissions and support grid and industry needs.
A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Daqing Wu
2012-01-01
Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
International Nuclear Information System (INIS)
Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.
2011-01-01
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.
Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling
Directory of Open Access Journals (Sweden)
Samar Hayat Khan Tareen
2015-07-01
Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model
Optimization of hybrid model on hajj travel
Cahyandari, R.; Ariany, R. L.; Sukono
2018-03-01
Hajj travel insurance is an insurance product offered by the insurance company in preparing funds to perform the pilgrimage. This insurance product helps would-be pilgrims to set aside a fund of saving hajj with regularly, but also provides funds of profit sharing (mudharabah) and insurance protection. Scheme of insurance product fund management is largely using the hybrid model, which is the fund from would-be pilgrims will be divided into three account management, that is personal account, tabarru’, and ujrah. Scheme of hybrid model on hajj travel insurance was already discussed at the earlier paper with titled “The Hybrid Model Algorithm on Sharia Insurance”, taking the example case of Mitra Mabrur Plus product from Bumiputera company. On these advanced paper, will be made the previous optimization model design, with partition of benefit the tabarru’ account. Benefits such as compensation for 40 critical illness which initially only for participants of insurance only, on optimization is intended for participants of the insurance and his heir, also to benefit the hospital bills. Meanwhile, the benefits of death benefit is given if the participant is fixed die.
Gravitational waves in hybrid quintessential inflationary models
Energy Technology Data Exchange (ETDEWEB)
Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2011-09-22
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.
Gravitational waves in hybrid quintessential inflationary models
International Nuclear Information System (INIS)
Sa, Paulo M; Henriques, Alfredo B
2011-01-01
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.
Modelling Chemical Preservation of Plantain Hybrid Fruits
Directory of Open Access Journals (Sweden)
Ogueri Nwaiwu
2017-08-01
Full Text Available New plantain hybrids plants have been developed but not much has been done on the post-harvest keeping quality of the fruits and how they are affected by microbial colonization. Hence fruits from a tetraploid hybrid PITA 2 (TMPx 548-9 obtained by crossing plantain varieties Obino l’Ewai and Calcutta 4 (AA and two local triploid (AAB plantain landraces Agbagba and Obino l’Ewai were subjected to various concentrations of acetic, sorbic and propionic acid to determine the impact of chemical concentration, chemical type and plantain variety on ripening and weight loss of plantain fruits. Analysis of titratable acidity, moisture content and total soluble solids showed that there were no significant differences between fruits of hybrid and local varieties. The longest time to ripening from harvest (24 days was achieved with fruits of Agbagba treated with 3% propionic acid. However, fruits of PITA 2 hybrid treated with propionic and sorbic acid at 3% showed the longest green life which indicated that the chemicals may work better at higher concentrations. The Obino l’Ewai cultivar had the highest weight loss for all chemical types used. Modelling data obtained showed that plantain variety had the most significant effect on ripening and indicates that ripening of the fruits may depend on the plantain variety. It appears that weight loss of fruits from the plantain hybrid and local cultivars was not affected by the plantain variety, chemical type. The chemicals at higher concentrations may have an effect on ripening of the fruits and will need further investigation.
Dynamic models in research and management of biological invasions.
Buchadas, Ana; Vaz, Ana Sofia; Honrado, João P; Alagador, Diogo; Bastos, Rita; Cabral, João A; Santos, Mário; Vicente, Joana R
2017-07-01
Invasive species are increasing in number, extent and impact worldwide. Effective invasion management has thus become a core socio-ecological challenge. To tackle this challenge, integrating spatial-temporal dynamics of invasion processes with modelling approaches is a promising approach. The inclusion of dynamic processes in such modelling frameworks (i.e. dynamic or hybrid models, here defined as models that integrate both dynamic and static approaches) adds an explicit temporal dimension to the study and management of invasions, enabling the prediction of invasions and optimisation of multi-scale management and governance. However, the extent to which dynamic approaches have been used for that purpose is under-investigated. Based on a literature review, we examined the extent to which dynamic modelling has been used to address invasions worldwide. We then evaluated how the use of dynamic modelling has evolved through time in the scope of invasive species management. The results suggest that modelling, in particular dynamic modelling, has been increasingly applied to biological invasions, especially to support management decisions at local scales. Also, the combination of dynamic and static modelling approaches (hybrid models with a spatially explicit output) can be especially effective, not only to support management at early invasion stages (from prevention to early detection), but also to improve the monitoring of invasion processes and impact assessment. Further development and testing of such hybrid models may well be regarded as a priority for future research aiming to improve the management of invasions across scales. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal
2017-07-01
The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.
Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.
Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui
2017-01-01
To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.
Comments On Clock Models In Hybrid Automata And Hybrid Control Systems
Directory of Open Access Journals (Sweden)
Virginia Ecaterina OLTEAN
2001-12-01
Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.
Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal
Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi
Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).
Dynamic performance of self-operated three-way valve used in a hybrid air conditioner
International Nuclear Information System (INIS)
Zhang, Penglei; Zhou, Dehai; Shi, Wenxing; Li, Xianting; Wang, Baolong
2014-01-01
A hybrid air conditioner combining a thermosyphon cycle with a vapor compression refrigeration cycle has a large energy saving potential compared with a common air conditioner for spaces requiring year-round cooling. The performance of the switch between the vapor compression mode and the thermosyphon mode largely impacts the safety and reliability of hybrid air conditioners. Therefore, a self-operated three-way valve is proposed. A thermodynamic model and a kinetic model are developed in this paper to evaluate the dynamic performance of the switch valve. The effects of the spring force constant, compressor discharging volume, fit clearance and piston length on the dynamic performance of the switch valve are analyzed. In conclusion, the proposed self-operated three-way valve can realize the switch operation accurately. - Highlights: •A self-operated three-way valve is proposed for hybrid air conditioners. •The thermodynamic model and kinetic model of the self-operated three-way valve are developed. •The validity of models is verified by experiments. •Effects of four main design parameters on the operating performance of the valve are researched
Directory of Open Access Journals (Sweden)
Loktev Aleksey Alekseevich
2013-01-01
Full Text Available The authors present their findings associated with their modeling of a dynamic load damper. According to the authors, the damper is to be installed onto a structure or its element that may be exposed to impact, vibration or any other dynamic loading. The damper is composed of paralleled or consecutively connected viscous and elastic elements. The authors study the influence of viscosity and elasticity parameters of the damper produced onto the regular displacement of points of the structure to be protected and onto the regular acceleration transmitted immediately from the damper to the elements positioned below it.
Dynamic behavior of the mechanical systems from the structure of a hybrid automobile
Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu
2017-10-01
In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.
Dynamic Resource Allocation in Hybrid Access Femtocell Network
Directory of Open Access Journals (Sweden)
Afaz Uddin Ahmed
2014-01-01
Full Text Available Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femto-tier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP owners’ satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners’ satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network.
Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach
Directory of Open Access Journals (Sweden)
Oliveira Rui
2010-09-01
Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.
Zi, Bin; Zhou, Bin
2016-07-01
For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .
Design of Xen Hybrid Multiple Police Model
Sun, Lei; Lin, Renhao; Zhu, Xianwei
2017-10-01
Virtualization Technology has attracted more and more attention. As a popular open-source virtualization tools, XEN is used more and more frequently. Xsm, XEN security model, has also been widespread concern. The safety status classification has not been established in the XSM, and it uses the virtual machine as a managed object to make Dom0 a unique administrative domain that does not meet the minimum privilege. According to these questions, we design a Hybrid multiple police model named SV_HMPMD that organically integrates multiple single security policy models include DTE,RBAC,BLP. It can fullfill the requirement of confidentiality and integrity for security model and use different particle size to different domain. In order to improve BLP’s practicability, the model introduce multi-level security labels. In order to divide the privilege in detail, we combine DTE with RBAC. In order to oversize privilege, we limit the privilege of domain0.
Dynamic wake meandering modeling
Energy Technology Data Exchange (ETDEWEB)
Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)
2007-06-15
We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by analytical as well as by numerical studies. The dynamic wake meandering philosophy has been verified by comparing model predictions with extensive full-scale measurements. These comparisons have demonstrated good agreement, both qualitatively and quantitatively, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as
Causality in Psychiatry: A Hybrid Symptom Network Construct Model
Directory of Open Access Journals (Sweden)
Gerald eYoung
2015-11-01
Full Text Available Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved that inform approaches to nosology, or classification, such as in the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; American Psychiatric Association, 2013. However, network approaches to symptom interaction (i.e., symptoms are formative of the construct; e.g., McNally, Robinaugh, Wu, Wang, Deserno, & Borsboom, 2014, for PTSD (posttraumatic stress disorder are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth nonlinear dynamical systems theory (NLDST. The article applies the concept of emergent circular causality (Young, 2011 to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning and universal (e.g., causal processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.
International Nuclear Information System (INIS)
Colanero, K.; Chu, M.-C.
2002-01-01
We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results
Model for macroevolutionary dynamics.
Maruvka, Yosef E; Shnerb, Nadav M; Kessler, David A; Ricklefs, Robert E
2013-07-02
The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution.
Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation
Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.
2016-10-01
The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.
Infectious disease modeling a hybrid system approach
Liu, Xinzhi
2017-01-01
This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.
International Nuclear Information System (INIS)
McFadden, J.H.; Paulsen, M.P.; Gose, G.C.
1981-01-01
Thermal-hydraulic codes in general use for system calculations are based on extensive analyses of loss-of-coolant accidents following the postulated rupture of a large coolant pipe. In this study, time-dependent equation for the slip velocity in a two-phase flow condition has been incorporated into the RETRAN-02 computer code. This model addition was undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. The dynamic slip equation was derived from a set of two-fluid conservation equations. 18 refs
Warren, Kerryn A; Ritzman, Terrence B; Humphreys, Robyn A; Percival, Christopher J; Hallgrímsson, Benedikt; Ackermann, Rebecca Rogers
2018-03-01
Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F 1 ) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F 1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F 1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record. Copyright © 2017 Elsevier Ltd. All rights reserved.
A hybrid modeling approach for option pricing
Hajizadeh, Ehsan; Seifi, Abbas
2011-11-01
The complexity of option pricing has led many researchers to develop sophisticated models for such purposes. The commonly used Black-Scholes model suffers from a number of limitations. One of these limitations is the assumption that the underlying probability distribution is lognormal and this is so controversial. We propose a couple of hybrid models to reduce these limitations and enhance the ability of option pricing. The key input to option pricing model is volatility. In this paper, we use three popular GARCH type model for estimating volatility. Then, we develop two non-parametric models based on neural networks and neuro-fuzzy networks to price call options for S&P 500 index. We compare the results with those of Black-Scholes model and show that both neural network and neuro-fuzzy network models outperform Black-Scholes model. Furthermore, comparing the neural network and neuro-fuzzy approaches, we observe that for at-the-money options, neural network model performs better and for both in-the-money and an out-of-the money option, neuro-fuzzy model provides better results.
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
HyLTL: a temporal logic for model checking hybrid systems
Directory of Open Access Journals (Sweden)
Davide Bresolin
2013-08-01
Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.
Energy Technology Data Exchange (ETDEWEB)
Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent
2016-01-04
We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.
Modeling of renewable hybrid energy sources
Directory of Open Access Journals (Sweden)
Dumitru Cristian Dragos
2009-12-01
Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.
Recent developments on the UrQMD hybrid model
Energy Technology Data Exchange (ETDEWEB)
Steinheimer, J., E-mail: steinheimer@th.physik.uni-frankfurt.de; Nahrgang, M., E-mail: nahrgang@th.physik.uni-frankfurt.de; Gerhard, J., E-mail: jochen.gerhard@compeng.uni-frankfurt.de; Schramm, S., E-mail: schramm@fias.uni-frankfurt.de; Bleicher, M., E-mail: bleicher@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (FIAS) (Germany)
2012-06-15
We present recent results from the UrQMD hybrid approach investigating the influence of a deconfinement phase transition on the dynamics of hot and dense nuclear matter. In the hydrodynamic stage an equation of state that incorporates a critical end-point (CEP) in line with lattice data is used. The equation of state describes chiral restoration as well as the deconfinement phase transition. We compare the results from this new equation of state to results obtained by applying a hadron resonance gas equation of state, focusing on bulk observables. Furthermore we will discuss future improvements of the hydrodynamic model. This includes the formulation of chiral fluid dynamics to be able to study the effects of a chiral critical point as well as considerable improvements in terms of computational time which would open up possibilities for observables that require high statistics.
Modeling of Hybrid Permanent Magnetic-Gas Bearings
DEFF Research Database (Denmark)
Morosi, Stefano; Santos, Ilmar
2009-01-01
Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper, a detailed mathematical modeling of the gas bearing based on the compressible form of the Reynolds equation is presented. Perturbation theory is applied in order to identify the dynamic characteristic of the bearing. Due to the simple design of the magnetic bearings elements - being...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....
Modelling and Investigation of a Hybrid Thermal Energy Harvester
Directory of Open Access Journals (Sweden)
Todorov Todor
2018-01-01
Full Text Available The presented paper deals with dynamical and experimental investigations of a hybrid energy harvester containing shape memory alloy (SMA wire and elastic cantilever with piezoelectric layer. The SMA wire periodically changes its temperature under the influence of a heated plate that approaches and moves away from the SMA wire. The change of SMA wire length causes rotation of the hot plate. The plate is heated by a heater with constant temperature. The repeated SMA wire extensions and contractions bend the piezoelectric cantilever which generates electric charges. The shape memory effect is presented as a temperature approximation of the Young’s modulus. A dynamical model of the energy harvester is created and some analytical investigations are presented. With the help of an experimental setup the acceleration, the force, the temperature, and the output voltage have been measured. The theoretical results are validated experimentally. Some conclusions are made about the best performance of the energy harvester.
Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing
Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.
2010-12-01
The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.
Hybrid Models of Alternative Current Filter for Hvdc
Directory of Open Access Journals (Sweden)
Ufa Ruslan A.
2017-01-01
Full Text Available Based on a hybrid simulation concept of HVDC, the developed hybrid AC filter models, providing the sufficiently full and adequate modeling of all single continuous spectrum of quasi-steady-state and transient processes in the filter, are presented. The obtained results suggest that usage of the hybrid simulation approach is carried out a methodically accurate with guaranteed instrumental error solution of differential equation systems of mathematical models of HVDC.
Scalability of Sustainable Business Models in Hybrid Organizations
Directory of Open Access Journals (Sweden)
Adam Jabłoński
2016-02-01
Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed
Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.
Directory of Open Access Journals (Sweden)
Zhiwen Yu
Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M.; Meyer, R.
2017-10-01
This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.
Hybrid finite element and Brownian dynamics method for charged particles
Energy Technology Data Exchange (ETDEWEB)
Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)
2016-04-28
Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.
Hybrid Modeling Improves Health and Performance Monitoring
2007-01-01
Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.
Analysis of chromosome aberration data by hybrid-scale models
International Nuclear Information System (INIS)
Indrawati, Iwiq; Kumazawa, Shigeru
2000-02-01
This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)
Hybrid perturbation methods based on statistical time series models
San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario
2016-04-01
In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.
Bayesian inference for hybrid discrete-continuous stochastic kinetic models
International Nuclear Information System (INIS)
Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S
2014-01-01
We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)
A hybrid model for electricity spot prices
International Nuclear Information System (INIS)
Anderson, C.L.D.
2004-01-01
Electricity prices were highly regulated prior to the deregulation of the electric power industry. Prices were predictable, allowing generators and wholesalers to calculate their production costs and revenues. With deregulation, electricity has become the most volatile of all commodities. Electricity must be consumed as soon as it is generated due to the inability to store it in any sufficient quantity. Economic uncertainty exists because the supply of electricity cannot shift as quickly as the demand, which is highly variable. When demand increases quickly, the price must respond. Therefore, price spikes occur that are orders of magnitude higher than the base electricity price. This paper presents a robust and realistic model for spot market electricity prices used to manage risk in volatile markets. The model is a hybrid of a top down data driven method commonly used for financial applications, and a bottom up system driven method commonly used in regulated electricity markets. The advantage of the model is that it incorporates primary system drivers and demonstrates their effects on final prices. The 4 primary modules of the model are: (1) a model for forced outages, (2) a model for maintenance outages, (3) an electrical load model, and (4) a price model which combines the results of the previous 3 models. The performance of each model was tested. The forced outage model is the first of its kind to simulate the system on an aggregate basis using Weibull distributions. The overall spot price model was calibrated to, and tested with, data from the electricity market in Pennsylvania, New Jersey and Maryland. The model performed well in simulated market prices and adapted readily to changing system conditions and new electricity markets. This study examined the pricing of derivative contracts on electrical power. It also compared a range of portfolio scenarios using a Cash Flow at Risk approach
A hybrid model for electricity spot prices
Energy Technology Data Exchange (ETDEWEB)
Anderson, C.L.D.
2004-07-01
Electricity prices were highly regulated prior to the deregulation of the electric power industry. Prices were predictable, allowing generators and wholesalers to calculate their production costs and revenues. With deregulation, electricity has become the most volatile of all commodities. Electricity must be consumed as soon as it is generated due to the inability to store it in any sufficient quantity. Economic uncertainty exists because the supply of electricity cannot shift as quickly as the demand, which is highly variable. When demand increases quickly, the price must respond. Therefore, price spikes occur that are orders of magnitude higher than the base electricity price. This paper presents a robust and realistic model for spot market electricity prices used to manage risk in volatile markets. The model is a hybrid of a top down data driven method commonly used for financial applications, and a bottom up system driven method commonly used in regulated electricity markets. The advantage of the model is that it incorporates primary system drivers and demonstrates their effects on final prices. The 4 primary modules of the model are: (1) a model for forced outages, (2) a model for maintenance outages, (3) an electrical load model, and (4) a price model which combines the results of the previous 3 models. The performance of each model was tested. The forced outage model is the first of its kind to simulate the system on an aggregate basis using Weibull distributions. The overall spot price model was calibrated to, and tested with, data from the electricity market in Pennsylvania, New Jersey and Maryland. The model performed well in simulated market prices and adapted readily to changing system conditions and new electricity markets. This study examined the pricing of derivative contracts on electrical power. It also compared a range of portfolio scenarios using a Cash Flow at Risk approach.
A Hybrid Teaching and Learning Model
Juhary, Jowati Binti
This paper aims at analysing the needs for a specific teaching and learning model for the National Defence University of Malaysia (NDUM). The main argument is that whether there are differences between teaching and learning for academic component versus military component at the university. It is further argued that in order to achieve excellence, there should be one teaching and learning culture. Data were collected through interviews with military cadets. It is found that there are variations of teaching and learning strategies for academic courses, in comparison to a dominant teaching and learning style for military courses. Thus, in the interest of delivering quality education and training for students at the university, the paper argues that possibly a hybrid model for teaching and learning is fundamental in order to generate a one culture of academic and military excellence for the NDUM.
Modelling supervisory controller for hybrid power systems
Energy Technology Data Exchange (ETDEWEB)
Pereira, A; Bindner, H; Lundsager, P [Risoe National Lab., Roskilde (Denmark); Jannerup, O [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)
1999-03-01
Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)
Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System
DEFF Research Database (Denmark)
Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik
2012-01-01
This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...
DEFF Research Database (Denmark)
Coman, Paul Tiberiu; Veje, Christian
2014-01-01
This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....
DEFF Research Database (Denmark)
Borregaard, Michael K.; Matthews, Thomas J.; Whittaker, Robert James
2016-01-01
Aim: Island biogeography focuses on understanding the processes that underlie a set of well-described patterns on islands, but it lacks a unified theoretical framework for integrating these processes. The recently proposed general dynamic model (GDM) of oceanic island biogeography offers a step...... towards this goal. Here, we present an analysis of causality within the GDM and investigate its potential for the further development of island biogeographical theory. Further, we extend the GDM to include subduction-based island arcs and continental fragment islands. Location: A conceptual analysis...... of evolutionary processes in simulations derived from the mechanistic assumptions of the GDM corresponded broadly to those initially suggested, with the exception of trends in extinction rates. Expanding the model to incorporate different scenarios of island ontogeny and isolation revealed a sensitivity...
Non-linear hybrid control oriented modelling of a digital displacement machine
DEFF Research Database (Denmark)
Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.
2017-01-01
Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...
A Hybrid Tsunami Risk Model for Japan
Haseemkunju, A. V.; Smith, D. F.; Khater, M.; Khemici, O.; Betov, B.; Scott, J.
2014-12-01
Around the margins of the Pacific Ocean, denser oceanic plates slipping under continental plates cause subduction earthquakes generating large tsunami waves. The subducting Pacific and Philippine Sea plates create damaging interplate earthquakes followed by huge tsunami waves. It was a rupture of the Japan Trench subduction zone (JTSZ) and the resultant M9.0 Tohoku-Oki earthquake that caused the unprecedented tsunami along the Pacific coast of Japan on March 11, 2011. EQECAT's Japan Earthquake model is a fully probabilistic model which includes a seismo-tectonic model describing the geometries, magnitudes, and frequencies of all potential earthquake events; a ground motion model; and a tsunami model. Within the much larger set of all modeled earthquake events, fault rupture parameters for about 24000 stochastic and 25 historical tsunamigenic earthquake events are defined to simulate tsunami footprints using the numerical tsunami model COMCOT. A hybrid approach using COMCOT simulated tsunami waves is used to generate inundation footprints, including the impact of tides and flood defenses. Modeled tsunami waves of major historical events are validated against observed data. Modeled tsunami flood depths on 30 m grids together with tsunami vulnerability and financial models are then used to estimate insured loss in Japan from the 2011 tsunami. The primary direct report of damage from the 2011 tsunami is in terms of the number of buildings damaged by municipality in the tsunami affected area. Modeled loss in Japan from the 2011 tsunami is proportional to the number of buildings damaged. A 1000-year return period map of tsunami waves shows high hazard along the west coast of southern Honshu, on the Pacific coast of Shikoku, and on the east coast of Kyushu, primarily associated with major earthquake events on the Nankai Trough subduction zone (NTSZ). The highest tsunami hazard of more than 20m is seen on the Sanriku coast in northern Honshu, associated with the JTSZ.
A Lookahead Behavior Model for Multi-Agent Hybrid Simulation
Directory of Open Access Journals (Sweden)
Mei Yang
2017-10-01
Full Text Available In the military field, multi-agent simulation (MAS plays an important role in studying wars statistically. For a military simulation system, which involves large-scale entities and generates a very large number of interactions during the runtime, the issue of how to improve the running efficiency is of great concern for researchers. Current solutions mainly use hybrid simulation to gain fewer updates and synchronizations, where some important continuous models are maintained implicitly to keep the system dynamics, and partial resynchronization (PR is chosen as the preferable state update mechanism. However, problems, such as resynchronization interval selection and cyclic dependency, remain unsolved in PR, which easily lead to low update efficiency and infinite looping of the state update process. To address these problems, this paper proposes a lookahead behavior model (LBM to implement a PR-based hybrid simulation. In LBM, a minimal safe time window is used to predict the interactions between implicit models, upon which the resynchronization interval can be efficiently determined. Moreover, the LBM gives an estimated state value in the lookahead process so as to break the state-dependent cycle. The simulation results show that, compared with traditional mechanisms, LBM requires fewer updates and synchronizations.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
Xu, Yunzhen; Du, Pei; Wang, Jianzhou
2017-04-01
As the atmospheric environment pollution has been becoming more and more serious in China, it is highly desirable to develop a scientific and effective early warning system that plays a great significant role in analyzing and monitoring air quality. However, establishing a robust early warning system for warning the public in advance and ameliorating air quality is not only an extremely challenging task but also a public concerned problem for human health. Most previous studies are focused on improving the prediction accuracy, which usually ignore the significance of uncertainty information and comprehensive evaluation concerning air pollutants. Therefore, in this paper a novel robust early warning system was successfully developed, which consists of three modules: evaluation module, forecasting module and characteristics estimating module. In this system, a new dynamic fuzzy synthetic evaluation is proposed and applied to determine air quality levels and primary pollutants, which can be regarded as the research objectives; Moreover, to further mine and analyze the characteristics of air pollutants, four different distribution functions and interval forecasting method are also employed that can not only provide predictive range, confidence level and the other uncertain information of the pollutants future values, but also assist decision-makers in reducing and controlling the emissions of atmospheric pollutants. Case studies utilizing hourly PM 2.5 , PM 10 and SO 2 data collected from Tianjin and Shanghai in China are applied as illustrative examples to estimate the effectiveness and efficiency of the proposed system. Experimental results obviously indicated that the developed novel early warning system is much suitable for analyzing and monitoring air pollution, which can also add a novel viable option for decision-makers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jooyoung Park
2015-05-01
Full Text Available Recently, the optimization of power flows in portable hybrid power-supply systems (HPSSs has become an important issue with the advent of a variety of mobile systems and hybrid energy technologies. In this paper, a control strategy is considered for dynamically managing power flows in portable HPSSs employing batteries and supercapacitors. Our dynamic power management strategy utilizes the concept of approximate dynamic programming (ADP. ADP methods are important tools in the fields of stochastic control and machine learning, and the utilization of these tools for practical engineering problems is now an active and promising research field. We propose an ADP-based procedure based on optimization under constraints including the iterated Bellman inequalities, which can be solved by convex optimization carried out offline, to find the optimal power management rules for portable HPSSs. The effectiveness of the proposed procedure is tested through dynamic simulations for smartphone workload scenarios, and simulation results show that the proposed strategy can successfully cope with uncertain workload demands.
Dynamics of CTAB in hybrid CTAB-hydroxyapatite system
Energy Technology Data Exchange (ETDEWEB)
Dubey, P., E-mail: purushd@barc.gov.in; Sharma, V. K.; Mitra, S.; Mukhopadhyay, R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 40085 (India); Verma, G.; Hassan, P. A. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 40085 (India); Johnson, M. [Institut Laue-Langevin, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)
2016-05-23
Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. Here we report dynamics of cetyltrimethylammonium bromide (CTAB) in HAp composite, prepared by co-precipitation method, as studied by quasielastic neutron scattering (QENS) technique. It is found that the observed dynamics involved two time scales associated with fast torsional motion and segmental motion of the CTAB monomers. In addition to segmental motion of the hydrogen atoms, few undergo torsional motion as well. Torsional dynamics was described by a 2-fold jump diffusion model. The segmental dynamics of CTAB has been described assumimg the hydrogen atoms undergoing diffusion inside a sphere of confined volume. While the diffusivity is found to increase with temperature, the spherical volumes within which the hydrogen atoms are undergoing diffusion remain almost unchanged.
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
Hybrid discrete choice models: Gained insights versus increasing effort
International Nuclear Information System (INIS)
Mariel, Petr; Meyerhoff, Jürgen
2016-01-01
Hybrid choice models expand the standard models in discrete choice modelling by incorporating psychological factors as latent variables. They could therefore provide further insights into choice processes and underlying taste heterogeneity but the costs of estimating these models often significantly increase. This paper aims at comparing the results from a hybrid choice model and a classical random parameter logit. Point of departure for this analysis is whether researchers and practitioners should add hybrid choice models to their suite of models routinely estimated. Our comparison reveals, in line with the few prior studies, that hybrid models gain in efficiency by the inclusion of additional information. The use of one of the two proposed approaches, however, depends on the objective of the analysis. If disentangling preference heterogeneity is most important, hybrid model seems to be preferable. If the focus is on predictive power, a standard random parameter logit model might be the better choice. Finally, we give recommendations for an adequate use of hybrid choice models based on known principles of elementary scientific inference. - Highlights: • The paper compares performance of a Hybrid Choice Model (HCM) and a classical Random Parameter Logit (RPL) model. • The HCM indeed provides insights regarding preference heterogeneity not gained from the RPL. • The RPL has similar predictive power as the HCM in our data. • The costs of estimating HCM seem to be justified when learning more on taste heterogeneity is a major study objective.
Hybrid discrete choice models: Gained insights versus increasing effort
Energy Technology Data Exchange (ETDEWEB)
Mariel, Petr, E-mail: petr.mariel@ehu.es [UPV/EHU, Economía Aplicada III, Avda. Lehendakari Aguire, 83, 48015 Bilbao (Spain); Meyerhoff, Jürgen [Institute for Landscape Architecture and Environmental Planning, Technical University of Berlin, D-10623 Berlin, Germany and The Kiel Institute for the World Economy, Duesternbrooker Weg 120, 24105 Kiel (Germany)
2016-10-15
Hybrid choice models expand the standard models in discrete choice modelling by incorporating psychological factors as latent variables. They could therefore provide further insights into choice processes and underlying taste heterogeneity but the costs of estimating these models often significantly increase. This paper aims at comparing the results from a hybrid choice model and a classical random parameter logit. Point of departure for this analysis is whether researchers and practitioners should add hybrid choice models to their suite of models routinely estimated. Our comparison reveals, in line with the few prior studies, that hybrid models gain in efficiency by the inclusion of additional information. The use of one of the two proposed approaches, however, depends on the objective of the analysis. If disentangling preference heterogeneity is most important, hybrid model seems to be preferable. If the focus is on predictive power, a standard random parameter logit model might be the better choice. Finally, we give recommendations for an adequate use of hybrid choice models based on known principles of elementary scientific inference. - Highlights: • The paper compares performance of a Hybrid Choice Model (HCM) and a classical Random Parameter Logit (RPL) model. • The HCM indeed provides insights regarding preference heterogeneity not gained from the RPL. • The RPL has similar predictive power as the HCM in our data. • The costs of estimating HCM seem to be justified when learning more on taste heterogeneity is a major study objective.
Halliwell, George R.
Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.
GIS and dynamic phenomena modeling
Czech Academy of Sciences Publication Activity Database
Klimešová, Dana
2006-01-01
Roč. 4, č. 4 (2006), s. 11-15 ISSN 0139-570X Institutional research plan: CEZ:AV0Z10750506 Keywords : dynamic modelling * temporal analysis * dynamics evaluation * temporal space Subject RIV: BC - Control Systems Theory
Exploratory Topology Modelling of Form-Active Hybrid Structures
DEFF Research Database (Denmark)
Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin
2016-01-01
The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS...... that enables designers and engineers to iteratively construct and manipulate form-active hybrid assembly topology on the fly. The pipeline implements Kangaroo2's projection-based methods for modelling hybrid structures consisting of slender beams and cable networks. A selection of design modelling sketches...
The Hybrid Monte Carlo (HMC) method and dynamic fermions
International Nuclear Information System (INIS)
Amaral, Marcia G. do
1994-01-01
Nevertheless the Monte Carlo method has been extensively used in the simulation of many types of theories, the successful application has been established only for models containing boson fields. With the present computer generation, the development of faster and efficient algorithms became necessary and urgent. This paper studies the HMC and the dynamic fermions
Winkelmann, Stefanie; Schütte, Christof
2017-09-01
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Winkelmann, Stefanie; Schütte, Christof
2017-09-21
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Dynamic Behavior Sequencing in a Hybrid Robot Architecture
2008-03-01
robots to represent and execute procedures, scripts , and plans in dynamic environ- ments [24]. Ingrand et al. describe the PRS as the link between the...based language in a similar style to Java that follows a model-based programming approach. A model-based programming approach refers to embedded...refers to the angular orientation of the robot from its initial heading. Therefore, the θ parameter value of zero (0) indicates that the desired
Dynamic simulation of a fuel cell hybrid vehicle during the federal test procedure-75 driving cycle
International Nuclear Information System (INIS)
Kang, Sanggyu; Min, Kyoungdoug
2016-01-01
Highlights: • Development of a FCHV dynamic model. • Integration of a PEMFC system dynamic model with the electric vehicle model. • Investigation of the dynamic behavior of the FCEV and PEMFC system during FTP-75. • Capturing the dynamic correlation among components in PEMFC system during FTP-75. - Abstract: The dynamic behavior of a proton exchange membrane fuel cell (PEMFC) system is a crucial factor to ensure the safe and effective operation of fuel cell hybrid vehicles (FCHVs). Specifically, water and thermal management are critical to stabilize the performance of the PEMFC during severe load changes. In the present study, the FCHV dynamic model is developed. The dynamic model of the PEMFC system developed by Matlab–Simulink® is integrated into the electric vehicle model embedded in the Amesim®. The dynamic model of the PEMFC system is composed of a PEMFC stack, an air feeding system, and a thermal management system (TMS). The component models of PEMFC, a shell-and-tube gas-to-gas membrane humidifier, and a heat exchanger are validated via a comparison with the experimental data. The FCHV model is simulated during a federal test procedure (FTP)-75 driving cycle. One system configuration and control strategy is adopted to attain optimal water and thermal management in the PEMFC system. The vehicle speed obtained from the FCHV model aptly tracks the target velocity profile of the FTP-75 cycle within an error of ±0.5%. The dynamic behavior and correlation of each component in the PEMFC system is investigated. The mass and heat transfer in the PEMFC, a humidifier, and a heat exchanger are resolved to determine the species concentration and the temperature more accurately with discretization in the flow’s perpendicular direction. Discretization in the flow parallel direction of humidifier and heat exchanger model makes it possible to capture the distribution of the characteristics. The present model can be used to attain the optimization of the system
Study on driver model for hybrid truck based on driving simulator experimental results
Directory of Open Access Journals (Sweden)
Dam Hoang Phuc
2018-04-01
Full Text Available In this paper, a proposed car-following driver model taking into account some features of both the compensatory and anticipatory model representing the human pedal operation has been verified by driving simulator experiments with several real drivers. The comparison between computer simulations performed by determined model parameters with the experimental results confirm the correctness of this mathematical driver model and identified model parameters. Then the driver model is joined to a hybrid vehicle dynamics model and the moderate car following maneuver simulations with various driver parameters are conducted to investigate influences of driver parameters on vehicle dynamics response and fuel economy. Finally, major driver parameters involved in the longitudinal control of drivers are clarified. Keywords: Driver model, Driver-vehicle closed-loop system, Car Following, Driving simulator/hybrid electric vehicle (B1
Directory of Open Access Journals (Sweden)
Xinlei Liu
2012-08-01
Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.
International Nuclear Information System (INIS)
Gritli, Hassène; Belghith, Safya
2015-01-01
Highlights: • A numerical calculation method of the Lyapunov exponents in the compass-gait model under OGY control is proposed. • A new linearization method of the impulsive hybrid dynamics around a one-periodic hybrid limit cycle is achieved. • We develop a simple analytical expression of a controlled hybrid Poincaré map. • A dimension reduction of the hybrid Poincaré map is realized. • We describe the numerical computation procedure of the Lyapunov exponents via the designed hybrid Poincaré map. - Abstract: This paper aims at providing a numerical calculation method of the spectrum of Lyapunov exponents in a four-dimensional impulsive hybrid nonlinear dynamics of a passive compass-gait model under the OGY control approach by means of a controlled hybrid Poincaré map. We present a four-dimensional simplified analytical expression of such hybrid map obtained by linearizing the uncontrolled impulsive hybrid nonlinear dynamics around a desired one-periodic passive hybrid limit cycle. In order to compute the spectrum of Lyapunov exponents, a dimension reduction of the controlled hybrid Poincaré map is realized. The numerical calculation of the spectrum of Lyapunov exponents using the reduced-dimension controlled hybrid Poincaré map is given in detail. In order to show the effectiveness of the developed method, the spectrum of Lyapunov exponents is calculated as the slope (bifurcation) parameter varies and hence used to predict the walking dynamics behavior of the compass-gait model under the OGY control.
Modelling dynamic roughness during floods
Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.
2007-01-01
In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most
Nandola, Naresh N.; Rivera, Daniel E.
2011-01-01
This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087
Design, Dynamics, and Workspace of a Hybrid-Driven-Based Cable Parallel Manipulator
Directory of Open Access Journals (Sweden)
Bin Zi
2013-01-01
Full Text Available The design, dynamics, and workspace of a hybrid-driven-based cable parallel manipulator (HDCPM are presented. The HDCPM is able to perform high efficiency, heavy load, and high-performance motion due to the advantages of both the cable parallel manipulator and the hybrid-driven planar five-bar mechanism. The design is performed according to theories of mechanism structure synthesis for cable parallel manipulators. The dynamic formulation of the HDCPM is established on the basis of Newton-Euler method. The workspace of the manipulator is analyzed additionally. As an example, a completely restrained HDCPM with 3 degrees of freedom is studied in simulation in order to verify the validity of the proposed design, workspace, and dynamic analysis. The simulation results, compared with the theoretical analysis, and the case study previously performed show that the manipulator design is reasonable and the mathematical models are correct, which provides the theoretical basis for future physical prototype and control system design.
Energy Technology Data Exchange (ETDEWEB)
Calvo, Robson A.; Martinkoski, Ricardo [Centro Federal de Educacao Tecnologica do Parana (CEFET), Curitiba, PR (Brazil); Neves Junior, Flavio [Centro Federal de Educacao Tecnologica do Parana (CEFET), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial
2003-07-01
The objective of this article is to apply techniques of formal specification in modelling of natural gas transmission and distribution systems. In this case the formal models are characterized by using hybrid automata. Initially the existent components in the net are modeled and represented by independent hybrid automata. The global dynamics is obtained through the product hybrid automata. Languages representing the desirable states of the system are obtained from the hybrid automata, allowing a hybrid control procedure. An automatic tool as SHIFT must be used to modelling and simulation. (author)
Modelling of data uncertainties on hybrid computers
Energy Technology Data Exchange (ETDEWEB)
Schneider, Anke (ed.)
2016-06-15
The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the
Modeling and design of a high-performance hybrid actuator
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-12-01
This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic
Directory of Open Access Journals (Sweden)
Javid Jouzdani
2016-01-01
Full Text Available With the constantly increasing pressure of the competitive environment, supply chain (SC decision makers are forced to consider several aspects of business climate. More specifically, they should take into account the endogenous features (e.g., available means of transportation, and the variety of products and exogenous criteria (e.g., the environmental uncertainty, and transportation system conditions. In this paper, a mixed integer nonlinear programming (MINLP model for dynamic design of a supply chain network is proposed. In this model, multiple products and multiple transportation modes, the time value of money, traffic congestion, and both supply-side and demand-side uncertainties are considered. Due to the complexity of such models, conventional solution methods are not applicable; therefore, two hybrid Electromagnetism-Like Algorithms (EMA are designed and discussed for tackling the problem. The numerical results show the applicability of the proposed model and the capabilities of the solution approaches to the MINLP problem.
Transient Model of Hybrid Concentrated Photovoltaic with Thermoelectric Generator
DEFF Research Database (Denmark)
Mahmoudi Nezhad, Sajjad; Qing, Shaowei; Rezaniakolaei, Alireza
2017-01-01
Transient performance of a concentrated photovoltaic thermoelectric (CPV-TEG) hybrid system is modeled and investigated. A heat sink with water, as the working fluid has been implemented as the cold reservoir of the hybrid system to harvest the heat loss from CPV cell and to increase the efficiency...
CSIR Research Space (South Africa)
Pothan, LA
2009-01-01
Full Text Available Hybrid composites of glass and banana fiber (obtained from the pseudo stem of Musa sapientum) in polyester matrix, are subjected to dynamic mechanical analysis over a range of temperature and three different frequencies. The effect of temperature...
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
Hybrid CMS methods with model reduction for assembly of structures
Farhat, Charbel
1991-01-01
Future on-orbit structures will be designed and built in several stages, each with specific control requirements. Therefore there must be a methodology which can predict the dynamic characteristics of the assembled structure, based on the dynamic characteristics of the subassemblies and their interfaces. The methodology developed by CSC to address this issue is Hybrid Component Mode Synthesis (HCMS). HCMS distinguishes itself from standard component mode synthesis algorithms in the following features: (1) it does not require the subcomponents to have displacement compatible models, which makes it ideal for analyzing the deployment of heterogeneous flexible multibody systems, (2) it incorporates a second-level model reduction scheme at the interface, which makes it much faster than other algorithms and therefore suitable for control purposes, and (3) it does answer specific questions such as 'how does the global fundamental frequency vary if I change the physical parameters of substructure k by a specified amount?'. Because it is based on an energy principle rather than displacement compatibility, this methodology can also help the designer to define an assembly process. Current and future efforts are devoted to applying the HCMS method to design and analyze docking and berthing procedures in orbital construction.
Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †
Directory of Open Access Journals (Sweden)
René Felix Reinhart
2017-02-01
Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.
Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob
2017-02-08
Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †
Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob
2017-01-01
Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697
Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid
2016-07-01
Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Hybrid model for simulation of plasma jet injection in tokamak
Galkin, Sergei A.; Bogatu, I. N.
2016-10-01
Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Directory of Open Access Journals (Sweden)
Natalie Berestovsky
Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them
Zhai, Liang-Jun; Wang, Huai-Yu; Yin, Shuai
2018-04-01
The conventional Kibble-Zurek scaling describes the scaling behavior in the driven dynamics across a single critical region. In this paper, we study the driven dynamics across an overlapping critical region, in which a critical region (Region A) is overlaid by another critical region (Region B). We develop a hybridized Kibble-Zurek scaling (HKZS) to characterize the scaling behavior in the driven process. According to the HKZS, the driven dynamics in the overlapping region can be described by the critical theories for both Region A and Region B simultaneously. This results in a constraint on the scaling function in the overlapping critical region. We take the quantum Ising chain in an imaginary longitudinal field as an example. In this model, the critical region of the Yang-Lee edge singularity and the critical region of the ferromagnetic-paramagnetic phase transition overlap with each other. We numerically confirm the HKZS by simulating the driven dynamics in this overlapping critical region. The HKZSs in other models are also discussed.
Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles
DEFF Research Database (Denmark)
Colombo, Stefano; Cun, Dongmei; Remaut, Katrien
2015-01-01
Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...
Model for optimum design of standalone hybrid renewable energy ...
African Journals Online (AJOL)
An optimization model for the design of a hybrid renewable energy microgrid ... and increasing the rated power of the wind energy conversion system (WECS) or solar ... a 70% reduction in gas emissions and an 80% reduction in energy costs.
Directory of Open Access Journals (Sweden)
Kecheng Yang
Full Text Available Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE, is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD-Monte Carlo (MC approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.
Hybrid Modelling of Individual Movement and Collective Behaviour
Franz, Benjamin
2013-01-01
Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.
Computer Modelling of Dynamic Processes
Directory of Open Access Journals (Sweden)
B. Rybakin
2000-10-01
Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.
Directory of Open Access Journals (Sweden)
Berber Hagedoorn
2013-06-01
Full Text Available In this article, television is reconsidered as a hybrid ‘repertoire’ ofmemory. It is demonstrated how new dynamic production and scheduling practicesin connection with highly accessible and participatory forms of user engagementoffer opportunities for television users to engage with the past, and how suchpractices affect television as a practice of memory. The media platform HollandDoc is discussed as a principal casestudy. By adopting and expanding Aleida Assmann’s model of the dynamics ofcultural memory between remembering and forgetting, a new model to studytelevision as cultural memory is proposed which represents the medium’shybridity in the multi-platform era.
Modeling and Simulation of Multi-scale Environmental Systems with Generalized Hybrid Petri Nets
Directory of Open Access Journals (Sweden)
Mostafa eHerajy
2015-07-01
Full Text Available Predicting and studying the dynamics and properties of environmental systems necessitates the construction and simulation of mathematical models entailing different levels of complexities. Such type of computational experiments often require the combination of discrete and continuous variables as well as processes operating at different time scales. Furthermore, the iterative steps of constructing and analyzing environmental models might involve researchers with different background. Hybrid Petri nets may contribute in overcoming such challenges as they facilitate the implementation of systems integrating discrete and continuous dynamics. Additionally, the visual depiction of model components will inevitably help to bridge the gap between scientists with distinct expertise working on the same problem. Thus, modeling environmental systems with hybrid Petri nets enables the construction of complex processes while keeping the models comprehensible for researchers working on the same project with significantly divergent education path. In this paper we propose the utilization of a special class of hybrid Petri nets, Generalized Hybrid Petri Nets (GHPN, to model and simulate environmental systems exposing processes interacting at different time-scales. GHPN integrate stochastic and deterministic semantics as well as other types of special basic events. Moreover, a case study is presented to illustrate the use of GHPN in constructing and simulating multi-timescale environmental scenarios.
Energy Technology Data Exchange (ETDEWEB)
Kelz, Gerald; Hirschberg, Wolfgang [Inst. fuer Fahrzeugtechnik, Technische Univ. Graz (Austria)
2009-07-01
The power train of a hybrid vehicle is considerably more complex than that of conventional vehicles. Whilst the topology of a conventional vehicle is normally fixed, the arrangement of the power train components for innovative propulsion systems is a flexible one. The aim is to find those topologies and configurations which are optimal for the intended use. Fuel consumption potentials can be derived with the aid of vehicle longitudinal dynamics simulation. Mostly these simulations are carried out using commercial software which is optimized for the standard topology and do not offer the flexibility to calculate arbitrary topologies. This article covers the modular modeling and the fuel consumption simulation of complex hybrid power trains for topology analysis. A component library for the development of arbitrary hybrid propulsion systems is introduced. The focus lies on an efficient and fast modeling which provides exact simulation results. Several models of power train components are introduced. (orig.)
A hybrid Scatter/Transform cloaking model
Directory of Open Access Journals (Sweden)
Gad Licht
2015-01-01
Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.
Hybrid modelling of bed-discordant river confluences
Franca, M. J.; Guillén-Ludeña, S.; Cheng, Z.; Cardoso, A. H.; Constantinescu, G.
2016-12-01
In fluvial networks, tributaries are the main providers of sediment and water to the main rivers. Furthermore, confluences are environmental hotspots since they provide ecological connectivity and flow and morphology diversity. Mountain confluences, in particular, are characterized by narrow and steep tributaries that provide important sediment load to the confluence, whereas the main channel supplies the dominant flow discharge. This results in a marked bed discordance between the tributary and main channel. This discordance has been observed to be a key feature that alters the dynamics of the confluence, when compared to concordant confluences. The processes of initiation and maintenance of the morphology of confluences is still unknown, and research linking morphodynamics and hydrodynamics of river confluences is required to understand this. Here, a hybrid approach combining laboratory experiments made in a live-bed model of a river confluence, with 3D numerical simulations using advanced turbulence models is presented. We use the laboratory experiments performed by Guillén-Ludeña et al. (2016) for a 70o channel confluence, which focused on sediment transport and morphology changes rather than on the structure of the flow. Highly eddy resolving simulations were performed for two extreme bathymetric conditions, at the start of the experiment and at equilibrium scour conditions. The first allows to understand the initiation mechanisms which will condition later the equilibrium morphology. The second allows to understand the hydrodynamics actions which keep the equilibrium morphology. The patterns of the mean flow, turbulence and dynamics of the large-scale coherent structures, show how the main sediment-entrainment mechanisms evolve during the scour process. The present results contribute to a better understanding of the interaction between bed morphology and flow dynamics at discordant mountain river confluences.
Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L
2016-08-01
Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.
Benchmarking novel approaches for modelling species range dynamics.
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E
2016-08-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches
Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant
Directory of Open Access Journals (Sweden)
Francesco Calise
2015-04-01
Full Text Available This paper presents a dynamic simulation model and a parametric analysis of a solar-geothermal hybrid cogeneration plant based on an Organic Rankine Cycle (ORC powered by a medium-enthalpy geothermal resource and a Parabolic Trough Collector solar field. The fluid temperature supplying heat to the ORC varies continuously as a function of the solar irradiation, affecting both the electrical and thermal energies produced by the system. Thus, a dynamic simulation was performed. The ORC model, developed in Engineering Equation Solver, is based on zero-dimensional energy and mass balances and includes specific algorithms to evaluate the off-design system performance. The overall simulation model of the solar-geothermal cogenerative plant was implemented in the TRNSYS environment. Here, the ORC model is imported, whereas the models of the other components of the system are developed on the basis of literature data. Results are analyzed on different time bases presenting energetic, economic and exergetic performance data. Finally, a rigorous optimization has been performed to determine the set of system design/control parameters minimizing simple payback period and exergy destruction rate. The system is profitable when a significant amount of the heat produced is consumed. The highest irreversibilities are due to the solar field and to the heat exchangers.
Multi-level and hybrid modelling approaches for systems biology.
Bardini, R; Politano, G; Benso, A; Di Carlo, S
2017-01-01
During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.
Structural dynamic modifications via models
Indian Academy of Sciences (India)
The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).
Dynamic programming models and applications
Denardo, Eric V
2003-01-01
Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.
Modeling is a useful tool for quantifying ecosystem services and understanding their temporal dynamics. Here we describe a hybrid regional modeling approach for sub-basins of the Calapooia watershed that incorporates both a precipitation-runoff model and an indexed regression mo...
Dynamical models of the Galaxy
Directory of Open Access Journals (Sweden)
McMillan P.J.
2012-02-01
Full Text Available I discuss the importance of dynamical models for exploiting survey data, focusing on the advantages of “torus” models. I summarize a number of applications of these models to the study of the Milky Way, including the determination of the peculiar Solar velocity and investigation of the Hyades moving group.
Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach
Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil
2016-01-01
Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.
Superconductivity in the periodic Anderson model with anisotropic hybridization
International Nuclear Information System (INIS)
Sarasua, L.G.; Continentino, Mucio A.
2003-01-01
In this work we study superconductivity in the periodic Anderson model with both on-site and intersite hybridization, including the interband Coulomb repulsion. We show that the presence of the intersite hybridization together with the on-site hybridization significantly affects the superconducting properties of the system. The symmetry of the hybridization has a strong influence in the symmetry of the superconducting order parameter of the ground state. The interband Coulomb repulsion may increase or decrease the superconducting critical temperature at small values of this interaction, while is detrimental to superconductivity for strong values. We show that the present model can give rise to positive or negative values of dT c /dP, depending on the values of the system parameters
Electron currents in field reversed mirror dynamics: Theory and hybrid simulation
International Nuclear Information System (INIS)
Stark, R.A.
1987-01-01
To model the dynamics of the Field-Reversed Mirror (FRM) as a whole we have developed a 1-D radical hybrid code which also incorporates the above electron null current model. This code, named FROST, models the plasma as azimuthally symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. Massless fluid equations describe electrons and low energy ions. Since a fluid treatment for electrons is invalid near a field null, the null region electron current model discussed above has been included for this region, a unique feature. Results of simulation of neutral beam start-up in a 2XIIB-like plasma is discussed. There FROST predicts that electron currents will retard, but not prevent reversal of the magnetic field at the plasma center. These results are optimistic when compared to actual reversal experiments in 2XIIB, because there finite axial length effects and micro-instabilities substantially deteriorated the ion confinement. Nevertheless, because of the importance of the electron current in a low field region in the FRM, FROST represents a valuable intermediate step toward a more complete description of FRM dynamics. 54 refs., 50 figs., 3 tabs
Rapidity distributions of hadrons in the HydHSD hybrid model
Energy Technology Data Exchange (ETDEWEB)
Khvorostukhin, A. S., E-mail: hvorost@theor.jinr.ru; Toneev, V. D. [Joint Institute for Nuclear Research (Russian Federation)
2017-03-15
A multistage hybrid model intended for describing heavy-ion interactions in the energy region of the NICA collider under construction in Dubna is proposed. The model combines the initial, fast, interaction stage described by the model of hadron string dynamics (HSD) and the subsequent evolution that the expanding system formed at the first stage experiences at the second stage and which one treats on the basis of ideal hydrodynamics; after the completion of the second stage, the particles involved may still undergo rescattering (third interaction stage). The model admits three freeze-out scenarios: isochronous, isothermal, and isoenergetic. Generally, the HydHSD hybrid model developed in the present study provides fairly good agreement with available experimental data on proton rapidity spectra. It is shown that, within this hybrid model, the two-humped structure of proton rapidity distributions can be obtained either by increasing the freeze-out temperature and energy density or by more lately going over to the hydrodynamic stage. Although the proposed hybrid model reproduces rapidity spectra of protons, it is unable to describe rapidity distributions of pions, systematically underestimating their yield. It is necessary to refine the model by including viscosity effects at the hydrodynamic stage of evolution of the system and by considering in more detail the third interaction stage.
Fluid Survival Tool: A Model Checker for Hybrid Petri Nets
Postema, Björn Frits; Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Ghasemieh, Hamed
2014-01-01
Recently, algorithms for model checking Stochastic Time Logic (STL) on Hybrid Petri nets with a single general one-shot transition (HPNG) have been introduced. This paper presents a tool for model checking HPNG models against STL formulas. A graphical user interface (GUI) not only helps to
Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation
Directory of Open Access Journals (Sweden)
Silviya Popova
2009-10-01
Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.
A hybrid model for the computationally-efficient simulation of the cerebellar granular layer
Directory of Open Access Journals (Sweden)
Anna eCattani
2016-04-01
Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.
Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2018-04-01
A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.
A hybrid model of primary radiation damage in crystals
International Nuclear Information System (INIS)
Samarin, S.I.; Dremov, V.V.
2009-01-01
The paper offers a hybrid model which combines molecular dynamics and Monte Carlo (MD+MC) methods to describe primary radiation damage in crystals, caused by particles whose energies are no higher than several tens of keV. The particles are tracked in accord with equations of motion with account for pair interaction. The model also considers particle interaction with the mean-field potential (MFP) of the crystal. Only particles involved in cascading are tracked. Equations of motion for these particles include dissipative forces which describe energy exchange between cascade particles and electrons. New particles - the atoms of the crystal in the cascade region - have stochastic parameters (phase coordinates); they are sampled by the Monte Carlo method from the distribution that describes the classic canonical ensemble of non-interacting particles subjected to the external MFP. The introduction of particle interaction with the MFP helps avoid difficulties related to crystal stability and the choice of an adequate interparticle interaction potential in the traditional MD methods. Our technique is many times as fast as the traditional MD methods because we consider only particles which are involved in cascading and apply special methods to speedup the calculation of forces by accounting for the short-range pair potential used
Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.
Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J
2015-10-01
The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
McFadden, J.H.; Paulsen, M.P.; Gose, G.C.
1981-01-01
A time dependent equation for the slip velocity in a two-phase flow condition has been incorporated into a developmental version of the RETRAN computer code. This model addition has been undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. In this paper, the development of the slip model is summarized and the corresponding constitutive equations are discussed. Comparisons of RETRAN analyses with steady-state void fraction data and data from the Semiscale S-02-6 small break test are also presented
Quantum-classical hybrid dynamics – a summary
International Nuclear Information System (INIS)
Elze, Hans-Thomas
2013-01-01
A summary of a recently proposed description of quantum-classical hybrids is presented, which concerns quantum and classical degrees of freedom of a composite object that interact directly with each other. This is based on notions of classical Hamiltonian mechanics suitably extended to quantum mechanics.
Plug-in hybrid electric vehicles in dynamical energy markets
Kessels, J.T.B.A.; Bosch, P.P.J. van den
2008-01-01
The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.
Modeling, hybridization, and optimal charging of electrical energy storage systems
Parvini, Yasha
The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems
Some hybrid models applicable to dose-response relationships
International Nuclear Information System (INIS)
Kumazawa, Shigeru
1992-01-01
A new type of models of dose-response relationships has been studied as an initial stage to explore a reliable extrapolation of the relationships decided by high dose data to the range of low dose covered by radiation protection. The approach is to use a 'hybrid scale' of linear and logarithmic scales; the first model is that the normalized surviving fraction (ρ S > 0) in a hybrid scale decreases linearly with dose in a linear scale, and the second is that the induction in a log scale increases linearly with the normalized dose (τ D > 0) in a hybrid scale. The hybrid scale may reflect an overall effectiveness of a complex system against adverse events caused by various agents. Some data of leukemia in the atomic bomb survivors and of rodent experiments were used to show the applicability of hybrid scale models. The results proved that proposed models fit these data not less than the popular linear-quadratic models, providing the possible interpretation of shapes of dose-response curves, e.g. shouldered survival curves varied by recovery time. (author)
Modelling group dynamic animal movement
DEFF Research Database (Denmark)
Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.
2014-01-01
makes its movement decisions relative to the group centroid. The basic idea is framed within the flexible class of hidden Markov models, extending previous work on modelling animal movement by means of multi-state random walks. While in simulation experiments parameter estimators exhibit some bias......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual......Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However...
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
Optimization of a Continuous Hybrid Impeller Mixer via Computational Fluid Dynamics
Directory of Open Access Journals (Sweden)
N. Othman
2014-01-01
Full Text Available This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD using computational fluid dynamics (CFD. In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT. Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.
Optimization of a continuous hybrid impeller mixer via computational fluid dynamics.
Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Meor Adnan, M A K
2014-01-01
This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.
Modeling Internet Topology Dynamics
Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.
Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements,
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a...
Gritli, Hassène; Belghith, Safya
2017-06-01
An analysis of the passive dynamic walking of a compass-gait biped model under the OGY-based control approach using the impulsive hybrid nonlinear dynamics is presented in this paper. We describe our strategy for the development of a simplified analytical expression of a controlled hybrid Poincaré map and then for the design of a state-feedback control. Our control methodology is based mainly on the linearization of the impulsive hybrid nonlinear dynamics around a desired nominal one-periodic hybrid limit cycle. Our analysis of the controlled walking dynamics is achieved by means of bifurcation diagrams. Some interesting nonlinear phenomena are displayed, such as the period-doubling bifurcation, the cyclic-fold bifurcation, the period remerging, the period bubbling and chaos. A comparison between the raised phenomena in the impulsive hybrid nonlinear dynamics and the hybrid Poincaré map under control was also presented.
DEFF Research Database (Denmark)
Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu
2017-01-01
This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...
A global hybrid coupled model based on atmosphere-SST feedbacks
Energy Technology Data Exchange (ETDEWEB)
Cimatoribus, Andrea A.; Drijfhout, Sybren S. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Dijkstra, Henk A. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands)
2012-02-15
A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic. (orig.)
Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors
DEFF Research Database (Denmark)
Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo
2014-01-01
This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel...... a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operating window. The second is a non-linear static model, while the third takes into account first......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....
Ghobadi, Ahmadreza F; Jayaraman, Arthi
2016-02-28
In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.
A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment
International Nuclear Information System (INIS)
Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir
2015-01-01
This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL ® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0–238 N s m −1 through the viscous and electromagnetic components, respectively. (paper)
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Vehicle dynamics modeling and simulation
Schramm, Dieter; Bardini, Roberto
2014-01-01
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
Hybrid programming model for implicit PDE simulations on multicore architectures
Kaushik, Dinesh; Keyes, David E.; Balay, Satish; Smith, Barry F.
2011-01-01
The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.
Hybrid modeling of microbial exopolysaccharide (EPS) production: The case of Enterobacter A47.
Marques, Rodolfo; von Stosch, Moritz; Portela, Rui M C; Torres, Cristiana A V; Antunes, Sílvia; Freitas, Filomena; Reis, Maria A M; Oliveira, Rui
2017-03-20
Enterobacter A47 is a bacterium that produces high amounts of a fucose-rich exopolysaccharide (EPS) from glycerol residue of the biodiesel industry. The fed-batch process is characterized by complex non-linear dynamics with highly viscous pseudo-plastic rheology due to the accumulation of EPS in the culture medium. In this paper, we study hybrid modeling as a methodology to increase the predictive power of models for EPS production optimization. We compare six hybrid structures that explore different levels of knowledge-based and machine-learning model components. Knowledge-based components consist of macroscopic material balances, Monod type kinetics, cardinal temperature and pH (CTP) dependency and power-law viscosity models. Unknown dependencies are set to be identified by a feedforward artificial neural network (ANN). A semiparametric identification schema is applied resorting to a data set of 13 independent fed-batch experiments. A parsimonious hybrid model was identified that describes the dynamics of the 13 experiments with the same parameterization. The final model is specific to Enterobacter A47 but can be easily extended to other microbial EPS processes. Copyright © 2017 Elsevier B.V. All rights reserved.
A Hybrid Dynamic System Assessment Methodology for Multi-Modal Transportation-Electrification
Directory of Open Access Journals (Sweden)
Thomas J.T. van der Wardt
2017-05-01
Full Text Available In recent years, electrified transportation, be it in the form of buses, trains, or cars have become an emerging form of mobility. Electric vehicles (EVs, especially, are set to expand the amount of electric miles driven and energy consumed. Nevertheless, the question remains as to whether EVs will be technically feasible within infrastructure systems. Fundamentally, EVs interact with three interconnected systems: the (physical transportation system, the electric power grid, and their supporting information systems. Coupling of the two physical systems essentially forms a nexus, the transportation-electricity nexus (TEN. This paper presents a hybrid dynamic system assessment methodology for multi-modal transportation-electrification. At its core, it utilizes a mathematical model which consists of a marked Petri-net model superimposed on the continuous time microscopic traffic dynamics and the electrical state evolution. The methodology consists of four steps: (1 establish the TEN structure; (2 establish the TEN behavior; (3 establish the TEN Intelligent Transportation-Energy System (ITES decision-making; and (4 assess the TEN performance. In the presentation of the methodology, the Symmetrica test case is used throughout as an illustrative example. Consequently, values for several measures of performance are provided. This methodology is presented generically and may be used to assess the effects of transportation-electrification in any city or area; opening up possibilities for many future studies.
A Hybrid Dynamic Programming for Solving Fixed Cost Transportation with Discounted Mechanism
Directory of Open Access Journals (Sweden)
Farhad Ghassemi Tari
2016-01-01
Full Text Available The problem of allocating different types of vehicles for transporting a set of products from a manufacturer to its depots/cross docks, in an existing transportation network, to minimize the total transportation costs, is considered. The distribution network involves a heterogeneous fleet of vehicles, with a variable transportation cost and a fixed cost in which a discount mechanism is applied on the fixed part of the transportation costs. It is assumed that the number of available vehicles is limited for some types. A mathematical programming model in the form of the discrete nonlinear optimization model is proposed. A hybrid dynamic programming algorithm is developed for finding the optimal solution. To increase the computational efficiency of the solution algorithm, several concepts and routines, such as the imbedded state routine, surrogate constraint concept, and bounding schemes, are incorporated in the dynamic programming algorithm. A real world case problem is selected and solved by the proposed solution algorithm, and the optimal solution is obtained.
Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL
Energy Technology Data Exchange (ETDEWEB)
Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-09-01
A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.
Containing Terrorism: A Dynamic Model
Directory of Open Access Journals (Sweden)
Giti Zahedzadeh
2017-06-01
Full Text Available The strategic interplay between counterterror measures and terror activity is complex. Herein, we propose a dynamic model to depict this interaction. The model generates stylized prognoses: (i under conditions of inefficient counterterror measures, terror groups enjoy longer period of activity but only if recruitment into terror groups remains low; high recruitment shortens the period of terror activity (ii highly efficient counterterror measures effectively contain terror activity, but only if recruitment remains low. Thus, highly efficient counterterror measures can effectively contain terrorism if recruitment remains restrained. We conclude that the trajectory of the dynamics between counterterror measures and terror activity is heavily altered by recruitment.
Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements
Koprubasi, Kerem
The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV
Static stiffness modeling of a novel hybrid redundant robot machine
International Nuclear Information System (INIS)
Li Ming; Wu Huapeng; Handroos, Heikki
2011-01-01
This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.
Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.
2012-08-01
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.
Computational social dynamic modeling of group recruitment.
Energy Technology Data Exchange (ETDEWEB)
Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken (Sandia National Laboratories, Albuquerque, NM); Smrcka, Julianne D. (Sandia National Laboratories, Albuquerque, NM); Ko, Teresa H.; Moy, Timothy David (Sandia National Laboratories, Albuquerque, NM); Wu, Benjamin C.
2004-01-01
The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.
A dynamical model of terrorism
Directory of Open Access Journals (Sweden)
Firdaus Udwadia
2006-01-01
Full Text Available This paper develops a dynamical model of terrorism. We consider the population in a given region as being made up of three primary components: terrorists, those susceptible to both terrorist and pacifist propaganda, and nonsusceptibles, or pacifists. The dynamical behavior of these three populations is studied using a model that incorporates the effects of both direct military/police intervention to reduce the terrorist population, and nonviolent, persuasive intervention to influence the susceptibles to become pacifists. The paper proposes a new paradigm for studying terrorism, and looks at the long-term dynamical evolution in time of these three population components when such interventions are carried out. Many important features—some intuitive, others not nearly so—of the nature of terrorism emerge from the dynamical model proposed, and they lead to several important policy implications for the management of terrorism. The different circumstances in which nonviolent intervention and/or military/police intervention may be beneficial, and the specific conditions under which each mode of intervention, or a combination of both, may be useful, are obtained. The novelty of the model presented herein is that it deals with the time evolution of terrorist activity. It appears to be one of the few models that can be tested, evaluated, and improved upon, through the use of actual field data.
Simulation of Mercury's magnetosheath with a combined hybrid-paraboloid model
Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku
2017-08-01
In this paper we introduce a novel approach for modeling planetary magnetospheres that involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further refer to it as the combined hybrid model. While both of these individual models have been successfully applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in the PMM. We then use this combined model to simulate Mercury's magnetosphere and investigate the geometry and configuration of Mercury's magnetosheath controlled by various conditions in the interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's magnetospheric environment for the first time. Using this setup, we compare the locations of the bow shock and the magnetopause as determined by simulations with the locations predicted by stand-alone PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also compare the results produced by these simulations with observational data obtained by the magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with a self-consistent global kinetic model creates new modeling possibilities which individual models cannot provide on their own.
Two-field axion-monodromy hybrid inflation model: Dante's Waterfall
Carone, Christopher D.; Erlich, Joshua; Sensharma, Anuraag; Wang, Zhen
2015-02-01
We describe a hybrid axion-monodromy inflation model motivated by the Dante's Inferno scenario. In Dante's Inferno, a two-field potential features a stable trench along which a linear combination of the two fields slowly rolls, rendering the dynamics essentially identical to that of single-field chaotic inflation. A shift symmetry allows for the Lyth bound to be effectively evaded as in other axion-monodromy models. In our proposal, the potential is concave downward near the origin and the inflaton trajectory is a gradual downward spiral, ending at a point where the trench becomes unstable. There, the fields begin falling rapidly towards the minimum of the potential and inflation terminates as in a hybrid model. We find parameter choices that reproduce observed features of the cosmic microwave background, and discuss our model in light of recent results from the BICEP2 and Planck experiments.
Chiadamrong, N.; Piyathanavong, V.
2017-12-01
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
MIL-STD-1553 dynamic bus controller/remote terminal hybrid set
Friedman, S. N.
This paper describes the performance, physical and electrical requirements of a Dual Redundant BUS Interface Unit (BIU) acting as a BUS Controller Interface Unit (BCIU) or Remote Terminal Unit (RTU) between a Motorola 68000 VME BUS and MIL-STD-1553B Multiplex Data Bus. A discussion of how the BIU Hybrid set is programmed, and operates as a BCIU or RTU, will be included. This paper will review Dynamic Bus Control and other Mode Code capabilities. The BIU Hybrid Set interfaces to a 68000 Microprocessor with a VME Bus using programmed I/O transfers. This special interface will be discussed along with the internal Dual Access Memory (4K x 16) used to support the data exchanges between the CPU and the BIU Hybrid Set. The hybrid set's physical size and power requirements will be covered. This includes the present Double Eurocard the BIU function is presently being offered on.
Generative Models of Conformational Dynamics
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term ‘generative’ refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GrAphical Models of Energy LANdscapes), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc) from long timescale simulation data. PMID:24446358
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Hybrid attacks on model-based social recommender systems
Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao
2017-10-01
With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.
Experimental Modeling of Dynamic Systems
DEFF Research Database (Denmark)
Knudsen, Morten Haack
2006-01-01
An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...
Hybrid control of bifurcation and chaos in stroboscopic model of Internet congestion control system
International Nuclear Information System (INIS)
Ding Dawei; Zhu Jie; Luo Xiaoshu
2008-01-01
Interaction between transmission control protocol (TCP) and random early detection (RED) gateway in the Internet congestion control system has been modelled as a discrete-time dynamic system which exhibits complex bifurcating and chaotic behaviours. In this paper, a hybrid control strategy using both state feedback and parameter perturbation is employed to control the bifurcation and stabilize the chaotic orbits embedded in this discrete-time dynamic system of TCP/RED. Theoretical analysis and numerical simulations show that the bifurcation is delayed and the chaotic orbits are stabilized to a fixed point, which reliably achieves a stable average queue size in an extended range of parameters and even completely eliminates the chaotic behaviour in a particular range of parameters. Therefore it is possible to decrease the sensitivity of RED to parameters. By using the hybrid strategy, we may improve the stability and performance of TCP/RED congestion control system significantly
Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions
International Nuclear Information System (INIS)
Sinclair, D.K.
1986-10-01
Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 10 3 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass
A hybrid modelling approach to simulating foot-and-mouth disease outbreaks in Australian livestock
Directory of Open Access Journals (Sweden)
Richard A Bradhurst
2015-03-01
Full Text Available Foot-and-mouth disease (FMD is a highly contagious and economically important viral disease of cloven-hoofed animals. Australia's freedom from FMD underpins a valuable trade in live animals and animal products. An outbreak of FMD would result in the loss of export markets and cause severe disruption to domestic markets. The prevention of, and contingency planning for, FMD are of key importance to government, industry, producers and the community. The spread and control of FMD is complex and dynamic due to a highly contagious multi-host pathogen operating in a heterogeneous environment across multiple jurisdictions. Epidemiological modelling is increasingly being recognized as a valuable tool for investigating the spread of disease under different conditions and the effectiveness of control strategies. Models of infectious disease can be broadly classified as: population-based models that are formulated from the top-down and employ population-level relationships to describe individual-level behaviour, individual-based models that are formulated from the bottom-up and aggregate individual-level behaviour to reveal population-level relationships, or hybrid models which combine the two approaches into a single model.The Australian Animal Disease Spread (AADIS hybrid model employs a deterministic equation-based model (EBM to model within-herd spread of FMD, and a stochastic, spatially-explicit agent-based model (ABM to model between-herd spread and control. The EBM provides concise and computationally efficient predictions of herd prevalence and clinical signs over time. The ABM captures the complex, stochastic and heterogeneous environment in which an FMD epidemic operates. The AADIS event-driven hybrid EBM/ABM architecture is a flexible, efficient and extensible framework for modelling the spread and control of disease in livestock on a national scale. We present an overview of the AADIS hybrid approach and a description of the model
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Directory of Open Access Journals (Sweden)
Bo Li
2015-01-01
Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.
Best practices in the use of hybrid static-dynamic signs.
2012-12-01
Static signs are traditionally used to convey messages to the road users. The need to quickly communicate up-to-date messages to the road users has given rise to the increasing use of dynamic message signs (DMS). An alternative to DMS is hybrid signs...
Martínez-Álvarez, Patricia
2017-01-01
This study explores the impact of hybrid instructional spaces on the purposeful and expansive use of translanguaging practices. Utilizing technology, the study explores the role of multimodality in bilinguals' language multiplicity and dynamism. The research addresses: (a) how do emergent bilinguals in dual language programs deploy their full…
A dynamic-epistemic hybrid logic for intentions and information changes in strategic games
Roy, O.
2009-01-01
In this paper I present a dynamic-epistemic hybrid logic for reasoning about information and intention changes in situations of strategic interaction. I provide a complete axiomatization for this logic, and then use it to study intentions-based transformations of decision problems.
Snijder-van As, M.I.
2010-01-01
This thesis describes the development, validation, and application of a hybrid microscopy technique to study cell-substrate and cell-cell interactions in a controlled and quantitative manner. We studied the spatial and temporal dynamics of the selected membrane molecules CD6 and the activated
Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles.
Colombo, Stefano; Cun, Dongmei; Remaut, Katrien; Bunker, Matt; Zhang, Jianxin; Martin-Bertelsen, Birte; Yaghmur, Anan; Braeckmans, Kevin; Nielsen, Hanne M; Foged, Camilla
2015-03-10
Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix. Copyright © 2015 Elsevier B.V. All rights reserved.
A New Model for Baryogenesis through Hybrid Inflation
International Nuclear Information System (INIS)
Delepine, D.; Prieto, C. Martinez; Lopez, L. A. Urena
2009-01-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated to the waterfall field charge. The asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry.
Model Predictive Control of the Hybrid Ventilation for Livestock
DEFF Research Database (Denmark)
Wu, Zhuang; Stoustrup, Jakob; Trangbæk, Klaus
2006-01-01
In this paper, design and simulation results of Model Predictive Control (MPC) strategy for livestock hybrid ventilation systems and associated indoor climate through variable valve openings and exhaust fans are presented. The design is based on thermal comfort parameters for poultry in barns...
A novel Monte Carlo approach to hybrid local volatility models
A.W. van der Stoep (Anton); L.A. Grzelak (Lech Aleksander); C.W. Oosterlee (Cornelis)
2017-01-01
textabstractWe present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant.
Evaluation of models generated via hybrid evolutionary algorithms ...
African Journals Online (AJOL)
2016-04-02
Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.
New Models of Hybrid Leadership in Global Higher Education
Tonini, Donna C.; Burbules, Nicholas C.; Gunsalus, C. K.
2016-01-01
This manuscript highlights the development of a leadership preparation program known as the Nanyang Technological University Leadership Academy (NTULA), exploring the leadership challenges unique to a university undergoing rapid growth in a highly multicultural context, and the hybrid model of leadership it developed in response to globalization.…
Modeling of Hybrid Growth Wastewater Bio-reactor
International Nuclear Information System (INIS)
EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.
2004-01-01
The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future
Hybrid time/frequency domain modeling of nonlinear components
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...
Efficient Proof Engines for Bounded Model Checking of Hybrid Systems
DEFF Research Database (Denmark)
Fränzle, Martin; Herde, Christian
2005-01-01
In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...
Hybrid modelling of soil-structure interaction for embedded structures
International Nuclear Information System (INIS)
Gupta, S.; Penzien, J.
1981-01-01
The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)
Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility
Tuba, Zoltán; Bottyán, Zsolt
2018-04-01
Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.
International Nuclear Information System (INIS)
Kıyan, Metin; Bingöl, Ekin; Melikoğlu, Mehmet; Albostan, Ayhan
2013-01-01
Highlights: • Matlab/Simulink modelling of a solar hybrid greenhouse. • Estimation of greenhouse gas emission reductions. • Feasibility and cost analysis of the system. - Abstract: Solar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Şanlıurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes
International Nuclear Information System (INIS)
Turati, Pietro; Pedroni, Nicola; Zio, Enrico
2016-01-01
The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-10-06
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.
A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media
Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.
2017-12-01
Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.
Dynamic wavefront creation for processing units using a hybrid compactor
Energy Technology Data Exchange (ETDEWEB)
Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri
2018-02-20
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment to be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.
A dynamic simulation tool for the battery-hybrid hydrogen fuel cell vehicle
Energy Technology Data Exchange (ETDEWEB)
Moore, R.M. [Hawaii Natural Energy Institute, University of Hawaii, Manoa (United States); Ramaswamy, S.; Cunningham, J.M. [California Univ., Berkeley, CA (United States); Hauer, K.H. [xcellvision, Major-Hirst-Strasse 11, 38422 Wolfsburg (Germany)
2006-10-15
This paper describes a dynamic fuel cell vehicle simulation tool for the battery-hybrid direct-hydrogen fuel cell vehicle. The emphasis is on simulation of the hybridized hydrogen fuel cell system within an existing fuel cell vehicle simulation tool. The discussion is focused on the simulation of the sub-systems that are unique to the hybridized direct-hydrogen vehicle, and builds on a previous paper that described a simulation tool for the load-following direct-hydrogen vehicle. The configuration of the general fuel cell vehicle simulation tool has been previously presented in detail, and is only briefly reviewed in the introduction to this paper. Strictly speaking, the results provided in this paper only serve as an example that is valid for the specific fuel cell vehicle design configuration analyzed. Different design choices may lead to different results, depending strongly on the parameters used and choices taken during the detailed design process required for this highly non-linear and n-dimensional system. The primary purpose of this paper is not to provide a dynamic simulation tool that is the ''final word'' for the ''optimal'' hybrid fuel cell vehicle design. The primary purpose is to provide an explanation of a simulation method for analyzing the energetic aspects of a hybrid fuel cell vehicle. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
A control-oriented simulation model of a power-split hybrid electric vehicle
International Nuclear Information System (INIS)
Cipek, Mihael; Pavković, Danijel; Petrić, Joško
2013-01-01
Highlights: ► A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed. ► Modeling the energy losses in the HEV transmission components are presented. ► The control optimization model implementation aspects are discussed. -- Abstract: A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed in this paper for the purpose of HEV dynamics analysis and control system design. The bond graph methodology is used to model dominant dynamic effects of the mechanical part of the HEV transmission. Simple quasi-static battery model, the environment model, the tire and the power losses model of a vehicle are included, as well. A low-level electric generator speed control loop is designed, which includes a PI controller tuned according to the symmetrical optimum tuning procedure. Finally, off-line optimization by conjugate gradient-based BPTT-like optimal control algorithm, which is based on the presented mathematical model, is also given in the paper.
Business model dynamics and innovation
DEFF Research Database (Denmark)
Cavalcante, Sergio Andre; Kesting, Peter; Ulhøi, John Parm
2011-01-01
the impact of specific changes to a firm's business model. Such a tool would be particularly useful in identifying path dependencies and resistance at the process level, and would therefore allow a firm's management to take focused action on this in advance. Originality/value – The paper makes two main...... and specifies four different types of business model change: business model creation, extension, revision, and termination. Each type of business model change is associated with specific challenges. Practical implications – The proposed typology can serve as a basis for developing a management tool to evaluate......Purpose – This paper aims to discuss the need to dynamize the existing conceptualization of business model, and proposes a new typology to distinguish different types of business model change. Design/methodology/approach – The paper integrates basic insights of innovation, business process...
On whole Abelian model dynamics
Energy Technology Data Exchange (ETDEWEB)
Chauca, J.; Doria, R. [CBPF, Rio de Janeiro (Brazil); Aprendanet, Petropolis, 25600 (Brazil)
2012-09-24
Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.
A hybrid parallel framework for the cellular Potts model simulations
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV
2009-01-01
The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).
Modelling and analysis of real-time and hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Olivero, A
1994-09-29
This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.
Relating structure and dynamics in organisation models
Jonkers, C.M.; Treur, J.
2002-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,
Mathematical model for spreading dynamics of social network worms
International Nuclear Information System (INIS)
Sun, Xin; Liu, Yan-Heng; Han, Jia-Wei; Liu, Xue-Jie; Li, Bin; Li, Jin
2012-01-01
In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks
Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates
Yeh, Po-Ching
2011-12-01
This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.
Modelling MIZ dynamics in a global model
Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto
2016-04-01
Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.
A 'simple' hybrid model for power derivatives
International Nuclear Information System (INIS)
Lyle, Matthew R.; Elliott, Robert J.
2009-01-01
This paper presents a method for valuing power derivatives using a supply-demand approach. Our method extends work in the field by incorporating randomness into the base load portion of the supply stack function and equating it with a noisy demand process. We obtain closed form solutions for European option prices written on average spot prices considering two different supply models: a mean-reverting model and a Markov chain model. The results are extensions of the classic Black-Scholes equation. The model provides a relatively simple approach to describe the complicated price behaviour observed in electricity spot markets and also allows for computationally efficient derivatives pricing. (author)
On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models
Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.
2017-12-01
Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.
Optimal control on hybrid ode systems with application to a tick disease model.
Ding, Wandi
2007-10-01
We are considering an optimal control problem for a type of hybrid system involving ordinary differential equations and a discrete time feature. One state variable has dynamics in only one season of the year and has a jump condition to obtain the initial condition for that corresponding season in the next year. The other state variable has continuous dynamics. Given a general objective functional, existence, necessary conditions and uniqueness for an optimal control are established. We apply our approach to a tick-transmitted disease model with age structure in which the tick dynamics changes seasonally while hosts have continuous dynamics. The goal is to maximize disease-free ticks and minimize infected ticks through an optimal control strategy of treatment with acaricide. Numerical examples are given to illustrate the results.
A hybrid society model for simulating residential electricity consumption
Energy Technology Data Exchange (ETDEWEB)
Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)
2008-12-15
In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)
A hybrid society model for simulating residential electricity consumption
International Nuclear Information System (INIS)
Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui
2008-01-01
In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)
Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using
Dynamic Analysis of a Hybrid Energy Storage System (H-ESS Coupled to a Photovoltaic (PV Plant
Directory of Open Access Journals (Sweden)
Linda Barelli
2018-02-01
Full Text Available Nowadays energy storage is strongly needed to allow grid safety and stability due to the wide penetration of renewable plants. Mainly economic and technological issues impede a relevant integration of conventional storage devices in the energy system. In this scenario, the hybridization of different storage technologies can be a techno-economic solution useful to overcome these issues and promote their diffusion. Hybridization allows multi-operation modes of the Energy Storage System (ESS, merging the positive features of base-technologies and extending their application ranges. This paper provides a dynamic analysis of a hybrid energy storage system (H-ESS consisting of a flywheel and a battery pack coupled to a photovoltaic generation plant and a residential load up to 20 kW. A dynamic model of the overall micro-grid (MG was developed implementing the H-ESS preliminary sizing and a suitable management algorithm. The instantaneous behavior of each component was evaluated. A brief summary of the MG performance at different weather and load conditions was provided together with a characterization of the impact of power fluctuations on the battery current and on the power exchange with the grid.
The semantics of hybrid process models
Slaats, T.; Schunselaar, D.M.M.; Maggi, F.M.; Reijers, H.A.; Debruyne, C.; Panetto, H.; Meersman, R.; Dillon, T.; Kuhn, E.; O'Sullivan, D.; Agostino Ardagna, C.
2016-01-01
In the area of business process modelling, declarative notations have been proposed as alternatives to notations that follow the dominant, imperative paradigm. Yet, the choice between an imperative or declarative style of modelling is not always easy to make. Instead, a mixture of these styles is
Strategy and gaps for modeling, simulation, and control of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, Rob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-04-01
, dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.
A computational model for lower hybrid current drive
International Nuclear Information System (INIS)
Englade, R.C.; Bonoli, P.T.; Porkolab, M.
1983-01-01
A detailed simulation model for lower hybrid (LH) current drive in toroidal devices is discussed. This model accounts reasonably well for the magnitude of radio frequency (RF) current observed in the PLT and Alcator C devices. It also reproduces the experimental dependencies of RF current generation on toroidal magnetic field and has provided insights about mechanisms which may underlie the observed density limit of current drive. (author)
A Hybrid Model for Forecasting Sales in Turkish Paint Industry
Alp Ustundag
2009-01-01
Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI) w...
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
Apricot - An Object-Oriented Modeling Language for Hybrid Systems
Fang, Huixing; Zhu, Huibiao; Shi, Jianqi
2013-01-01
We propose Apricot as an object-oriented language for modeling hybrid systems. The language combines the features in domain specific language and object-oriented language, that fills the gap between design and implementation, as a result, we put forward the modeling language with simple and distinct syntax, structure and semantics. In addition, we introduce the concept of design by convention into Apricot.As the characteristic of object-oriented and the component architecture in Apricot, we c...
Hierarchical models and iterative optimization of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)
2016-06-08
A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.
Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin
2018-01-01
A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
Directory of Open Access Journals (Sweden)
Naji A. Alibeji
2018-04-01
Full Text Available A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
Social Dynamics Modeling and Inference
2018-03-29
the experiment(s)/ theory and equipment or analyses. Development of innovative theoretical model and methodologies with experimental verifications...information. The methodology based on communication and information theory (thanks to leave at MIT supported by this research) is described in [J1], [C2...a dynamic system [C1] and as a social learning mechanism in details [J4]. Furthermore, by incentive seeding and rewiring connections, information
McLarty, Dustin Fogle
Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.
Hagen, Espen; Dahmen, David; Stavrinou, Maria L; Lindén, Henrik; Tetzlaff, Tom; van Albada, Sacha J; Grün, Sonja; Diesmann, Markus; Einevoll, Gaute T
2016-12-01
With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm 2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail. © The Author 2016. Published by Oxford University Press.
A model for particle acceleration in lower hybrid collapse
International Nuclear Information System (INIS)
Retterer, J.M.
1997-01-01
A model for particle acceleration during the nonlinear collapse of lower hybrid waves is described. Using the Musher-Sturman wave equation to describe the effects of nonlinear processes and a velocity diffusion equation for the particle velocity distribution, the model self-consistently describes the exchange of energy between the fields and the particles in the local plasma. Two-dimensional solutions are presented for the modulational instability of a plane wave and the collapse of a cylindrical wave packet. These calculations were motivated by sounding rocket observations in the vicinity of auroral arcs in the Earth close-quote s ionosphere, which have revealed the existence of large-amplitude lower-hybrid wave packets associated with ions accelerated to energies of 100 eV. The scaling of the sizes of these wave packets is consistent with the theory of lower-hybrid collapse and the observed lower-hybrid field amplitudes are adequate to accelerate the ionospheric ions to the observed energies
Hybrid reduced order modeling for assembly calculations
International Nuclear Information System (INIS)
Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur
2015-01-01
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Youngsuk, E-mail: ysbang00@fnctech.com [FNC Technology, Co. Ltd., Yongin-si (Korea, Republic of); Abdel-Khalik, Hany S., E-mail: abdelkhalik@purdue.edu [Purdue University, West Lafayette, IN (United States); Jessee, Matthew A., E-mail: jesseema@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mertyurek, Ugur, E-mail: mertyurek@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2015-12-15
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa
Directory of Open Access Journals (Sweden)
R. R. Kuechler
2018-01-01
Full Text Available The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0–4.6 Ma, 3.6–3.0 Ma, which we compare with records from the last glacial cycle (Kuechler et al., 2013. Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.
Design and implementation of dynamic hybrid Honeypot network
Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang
2013-05-01
The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.
Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles
Directory of Open Access Journals (Sweden)
Xiaoling Fu
2014-01-01
Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.
Hajarolasvadi, Setare; Elbanna, Ahmed E.
2017-11-01
The finite difference (FD) and the spectral boundary integral (SBI) methods have been used extensively to model spontaneously-propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modelling approach in which these two methods are combined through consistent exchange of boundary tractions and displacements. Benefiting from the flexibility of FD and the efficiency of SBI methods, the proposed hybrid scheme will solve a wide range of problems in a computationally efficient way. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low-velocity layer and the other in which off-fault plasticity is permitted. We discuss possible potential uses of the hybrid scheme in earthquake cycle simulations as well as an exact absorbing boundary condition.
Dynamic behavior of hybrid sodium bearings. Theoretical and experimental studies
International Nuclear Information System (INIS)
Guidez, J.; Juignet, N.; Queval, M.
1981-08-01
The primary sodium pump shaft lower section of a fast breeder reactor is guided by a hydrostatic sodium bearing. This recess type bearing is supplied via orifices restrictors. Sodium is sampled at hight pressure at the diffuser outlet and is then centrifuged towards the orifices restrictors. Bearing stiffness and damping data is essential for the study of rotor dynamic behavior. Two points in particular may then be studied: - calculation of rotor instability ranges and critical speeds, - dynamic behavior of the rotor in the event of an earthquake. As regards the bearing design, the problem is to obtain the pressure fields in the liquid film. The integration of these pressure fields will then give the stiffness coefficients. The damping coefficients can then be obtained by the same calculation after slight displacement. The Reynolds equation can be used to study the liquid film (under any conditions for the turbulent and inertia effects). Then the computer code DELPAL is explained that solves the modified Reynolds equation using a finite element method. The presentation of tests conducted in 1981 on the Super-Phenix 1 full scall bearing (diameter 850 mm) in water is made. In conclusion this paper describes a method for calculating the stiffness and damping matrices of a hydrostatic bearing using the DELPAL calculation code and shows the loop of behavior tests on a bearing with sinusoidal excitation. The results, obtained by calculation and by testing, are indispensable when calculating the dynamic behavior of the shaft line
A Hybrid Model for Forecasting Sales in Turkish Paint Industry
Directory of Open Access Journals (Sweden)
Alp Ustundag
2009-12-01
Full Text Available Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI with multiple linear regression (MLR to predict product sales for the largest Turkish paint producer. In the hybrid model, three different AI methods, fuzzy rule-based system (FRBS, artificial neural network (ANN and adaptive neuro fuzzy network (ANFIS, are used and compared to each other. The results indicate that FRBS yields better forecasting accuracy in terms of root mean squared error (RMSE and mean absolute percentage error (MAPE.
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Y.; Abdel-Khalik, H. S. [North Carolina State University, Raleigh, NC (United States); Jessee, M. A.; Mertyurek, U. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2013-07-01
While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)
PUMP: analog-hybrid reactor coolant hydraulic transient model
International Nuclear Information System (INIS)
Grandia, M.R.
1976-03-01
The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated
Cosmological models with a hybrid scale factor in an extended gravity theory
Mishra, B.; Tripathy, S. K.; Tarai, Sankarsan
2018-03-01
A general formalism to investigate Bianchi type V Ih universes is developed in an extended theory of gravity. A minimally coupled geometry and matter field is considered with a rescaled function of f(R,T) substituted in place of the Ricci scalar R in the geometrical action. Dynamical aspects of the models are discussed by using a hybrid scale factor (HSF) that behaves as power law in an initial epoch and as an exponential form at late epoch. The power law behavior and the exponential behavior appear as two extreme cases of the present model.
Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2014-01-01
The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model
The Cheshire Cat principle for hybrid bag models
International Nuclear Information System (INIS)
Nielsen, H.B.
1987-05-01
The Cheshire Cat point of view where the bag in the chiral bag model has no physical significance, but only a notational one is argued for. It is explained how a fermion - in, say, a 1+1 dimensional exact Cheshire Cat model - escapes the bag by means of an anomaly. The possibility to construct sophisticated hybrid bag models is suggested which use the lack of physical significance of the bag to fix the many parameters so as to anyway give hope of a phenomenologically sensible model. (orig.)
Modelling of a Hybrid Energy System for Autonomous Application
Directory of Open Access Journals (Sweden)
Yang He
2013-10-01
Full Text Available A hybrid energy system (HES is a trending power supply solution for autonomous devices. With the help of an accurate system model, the HES development will be efficient and oriented. In spite of various precise unit models, a HES system is hardly developed. This paper proposes a system modelling approach, which applies the power flux conservation as the governing equation and adapts and modifies unit models of solar cells, piezoelectric generators, a Li-ion battery and a super-capacitor. A generalized power harvest, storage and management strategy is also suggested to adapt to various application scenarios.
HYBRID WAYS OF DOING: A MODEL FOR TEACHING PUBLIC SPACE
Directory of Open Access Journals (Sweden)
Gabrielle Bendiner-Viani
2010-07-01
Full Text Available This paper addresses an exploratory practice undertaken by the authors in a co-taught class to hybridize theory, research and practice. This experiment in critical transdisciplinary design education took the form of a “critical studio + practice-based seminar on public space”, two interlinked classes co-taught by landscape architect Elliott Maltby and environmental psychologist Gabrielle Bendiner-Viani at the Parsons, The New School for Design. This design process was grounded in the political and social context of the contested East River waterfront of New York City and valued both intensive study (using a range of social science and design methods and a partnership with a local community organization, engaging with the politics, issues and human needs of a complex site. The paper considers how we encouraged interdisciplinary collaboration and dialogue between teachers as well as between liberal arts and design students and developed strategies to overcome preconceived notions of traditional “studio” and “seminar” work. By exploring the challenges and adjustments made during the semester and the process of teaching this class, this paper addresses how we moved from a model of intertwining theory, research and practice, to a hybrid model of multiple ways of doing, a model particularly apt for teaching public space. Through examples developed for and during our course, the paper suggests practical ways of supporting this transdisciplinary hybrid model.
Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona
2013-11-01
This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.
Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model
Directory of Open Access Journals (Sweden)
E. Kallio
2003-11-01
Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma
Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation
Directory of Open Access Journals (Sweden)
Mizrahi Joseph
2006-11-01
Full Text Available Abstract Background Hybrid muscle activation is a modality used for muscle force enhancement, in which muscle contraction is generated from two different excitation sources: volitional and external, by means of electrical stimulation (ES. Under hybrid activation, the overall EMG signal is the combination of the volitional and ES-induced components. In this study, we developed a computational scheme to extract the volitional EMG envelope from the overall dynamic EMG signal, to serve as an input signal for control purposes, and for evaluation of muscle forces. Methods A "synthetic" database was created from in-vivo experiments on the Tibialis Anterior of the right foot to emulate hybrid EMG signals, including the volitional and induced components. The database was used to evaluate the results obtained from six signal processing schemes, including seven different modules for filtration, rectification and ES component removal. The schemes differed from each other by their module combinations, as follows: blocking window only, comb filter only, blocking window and comb filter, blocking window and peak envelope, comb filter and peak envelope and, finally, blocking window, comb filter and peak envelope. Results and conclusion The results showed that the scheme including all the modules led to an excellent approximation of the volitional EMG envelope, as extracted from the hybrid signal, and underlined the importance of the artifact blocking window module in the process. The results of this work have direct implications on the development of hybrid muscle activation rehabilitation systems for the enhancement of weakened muscles.
Zhai, Pei; Williams, Eric D
2010-10-15
This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.
Properties of hybrid stars in an extended MIT bag model
International Nuclear Information System (INIS)
Bao Tmurbagan; Liu Guangzhou; Zhu Mingfeng
2009-01-01
The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(ρ) decreases with baryon density ρ; this decrement makes the strange quark matter become more energetically favorable than ever; which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii. (authors)
Multiscale modeling of pedestrian dynamics
Cristiani, Emiliano; Tosin, Andrea
2014-01-01
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
A light neutralino in hybrid models of supersymmetry breaking
Dudas, Emilian; Parmentier, Jeanne; 10.1016
2008-01-01
We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides mu and B mu parameters in the TeV range.
A Novel of Hybrid Maintenance Management Models for Industrial Applications
Tahir, Zulkifli
2010-01-01
It is observed through empirical studies that the effectiveness of industrial process have been increased by a well organized of machines maintenance structure. In current research, a novel of maintenance concept has been designed by hybrid several maintenance management models with Decision Making Grid (DMG), Analytic Hierarchy Process (AHP) and Fuzzy Logic. The concept is designed for maintenance personnel to evaluate and benchmark the maintenance operations and to reveal important maintena...
A light neutralino in hybrid models of supersymmetry breaking
International Nuclear Information System (INIS)
Dudas, Emilian; Lavignac, Stephane; Parmentier, Jeanne
2009-01-01
We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino LSP much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides μ and Bμ parameters of the appropriate size for electroweak symmetry breaking
Hybrid Model for e-Learning Quality Evaluation
Directory of Open Access Journals (Sweden)
Suzana M. Savic
2012-02-01
Full Text Available E-learning is becoming increasingly important for the competitive advantage of economic organizations and higher education institutions. Therefore, it is becoming a significant aspect of quality which has to be integrated into the management system of every organization or institution. The paper examines e-learning quality characteristics, standards, criteria and indicators and presents a multi-criteria hybrid model for e-learning quality evaluation based on the method of Analytic Hierarchy Process, trend analysis, and data comparison.
Hybrid Speaker Recognition Using Universal Acoustic Model
Nishimura, Jun; Kuroda, Tadahiro
We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.
Cai, Shuiming; Zhou, Peipei; Liu, Zengrong
2014-09-01
This paper concerns the problem of exponential synchronization for a class of general delayed dynamical networks with hybrid coupling via pinning periodically intermittent control. Both the internal delay and coupling delay are taken into account in the network model. Meanwhile, the transmission delay and self-feedback delay are involved in the delayed coupling term. By establishing a new differential inequality, several simple and useful exponential synchronization criteria are derived analytically. It is shown that the controlled synchronization state can vary in comparison with the conventional synchronized solution, and the degree of the node and the inner delayed coupling matrix play important roles in the controlled synchronization state. By choosing different inner delayed coupling matrices and the degrees of the node, different controlled synchronization states can be obtained. Furthermore, the detail pinning schemes deciding what nodes should be chosen as pinned candidates and how many nodes are needed to be pinned for a fixed coupling strength are provided. The simple procedures illuminating how to design suitable intermittent controllers in real application are also given. Numerical simulations, including an undirected scale-free network and a directed small-world network, are finally presented to demonstrate the effectiveness of the theoretical results.
DEFF Research Database (Denmark)
Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo
2017-01-01
This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear....... Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs...
International Nuclear Information System (INIS)
Ko, Soon Heum; Kim, Na Yong; Nikitopoulos, Dimitris E.; Moldovan, Dorel; Jha, Shantenu
2014-01-01
Numerical approaches are presented to minimize the statistical errors inherently present due to finite sampling and the presence of thermal fluctuations in the molecular region of a hybrid computational fluid dynamics (CFD) - molecular dynamics (MD) flow solution. Near the fluid-solid interface the hybrid CFD-MD simulation approach provides a more accurate solution, especially in the presence of significant molecular-level phenomena, than the traditional continuum-based simulation techniques. It also involves less computational cost than the pure particle-based MD. Despite these advantages the hybrid CFD-MD methodology has been applied mostly in flow studies at high velocities, mainly because of the higher statistical errors associated with low velocities. As an alternative to the costly increase of the size of the MD region to decrease statistical errors, we investigate a few numerical approaches that reduce sampling noise of the solution at moderate-velocities. These methods are based on sampling of multiple simulation replicas and linear regression of multiple spatial/temporal samples. We discuss the advantages and disadvantages of each technique in the perspective of solution accuracy and computational cost.
The Cheshire Cat principle applied to hybrid bag models
International Nuclear Information System (INIS)
Nielsen, H.B.; Wirzba, A.
1987-05-01
Here is argued for the Cheshire Cat point of view according to which the bag (itself) has only notational, but no physical significance. It is explained in a 1+1 dimensional exact Cheshire Cat model how a fermion can escape from the bag by means of an anomaly. We also suggest that suitably constructed hybrid bag models may be used to fix such parameters of effective Lagrangians that can otherwise be obtained from experiments only. This idea is illustrated in a calculation of the mass of the pseudoscalar η' meson in 1+1 dimension. Thus there is hope to find a construction principle for a phenomenologically sensible model. (orig.)
Hybrid model for the decay of nuclear giant resonances
International Nuclear Information System (INIS)
Hussein, M.S.
1986-12-01
The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt
Model Predictive Control for Connected Hybrid Electric Vehicles
Directory of Open Access Journals (Sweden)
Kaijiang Yu
2015-01-01
Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.
Characterizing and Modeling Citation Dynamics
Eom, Young-Ho; Fortunato, Santo
2011-01-01
Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well. PMID:21966387
MATHEMATICAL MODEL FOR RIVERBOAT DYNAMICS
Directory of Open Access Journals (Sweden)
Aleksander Grm
2017-01-01
Full Text Available Present work describes a simple dynamical model for riverboat motion based on the square drag law. Air and water interactions with the boat are determined from aerodynamic coefficients. CFX simulations were performed with fully developed turbulent flow to determine boat aerodynamic coefficients for an arbitrary angle of attack for the air and water portions separately. The effect of wave resistance is negligible compared to other forces. Boat movement analysis considers only two-dimensional motion, therefore only six aerodynamics coefficients are required. The proposed model is solved and used to determine the critical environmental parameters (wind and current under which river navigation can be conducted safely. Boat simulator was tested in a single area on the Ljubljanica river and estimated critical wind velocity.
Energy Technology Data Exchange (ETDEWEB)
Cipiti, Benjamin B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-03-01
The Co-Decontamination (CoDCon) Demonstration project is designed to test the separation of a mixed U and Pu product from dissolved spent nuclear fuel. The primary purpose of the project is to quantify the accuracy and precision to which a U/Pu mass ratio can be achieved without removing a pure Pu product. The system includes an on-line monitoring system using spectroscopy to monitor the ratios throughout the process. A dynamic model of the CoDCon flowsheet and on-line monitoring system was developed in order to expand the range of scenarios that can be examined for process control and determine overall measurement uncertainty. The model development and initial results are presented here.
Modeling the dynamics of choice.
Baum, William M; Davison, Michael
2009-06-01
A simple linear-operator model both describes and predicts the dynamics of choice that may underlie the matching relation. We measured inter-food choice within components of a schedule that presented seven different pairs of concurrent variable-interval schedules for 12 food deliveries each with no signals indicating which pair was in force. This measure of local choice was accurately described and predicted as obtained reinforcer sequences shifted it to favor one alternative or the other. The effect of a changeover delay was reflected in one parameter, the asymptote, whereas the effect of a difference in overall rate of food delivery was reflected in the other parameter, rate of approach to the asymptote. The model takes choice as a primary dependent variable, not derived by comparison between alternatives-an approach that agrees with the molar view of behaviour.
Numerical modeling of hybrid fiber-reinforced concrete (hyfrc)
International Nuclear Information System (INIS)
Hameed, R.; Turatsinze, A.
2015-01-01
A model for numerical simulation of mechanical response of concrete reinforced with slipping and non slipping metallic fibers in hybrid form is presented in this paper. Constitutive law used to model plain concrete behaviour is based on plasticity and damage theories, and is capable to determine localized crack opening in three dimensional (3-D) systems. Behaviour law used for slipping metallic fibers is formulated based on effective stress carried by these fibers after when concrete matrix is cracked. A continuous approach is proposed to model the effect of addition of non-slipping metallic fibers in plain concrete. This approach considers the constitutive law of concrete matrix with increased fracture energy in tension obtained experimentally in direct tension tests on Fiber Reinforced Concrete (FRC). To simulate the mechanical behaviour of hybrid fiber-reinforced concrete (HyFRC), proposed approaches to model non-slipping metallic fibers and constitutive law of plain concrete and slipping fibers are used simultaneously without any additive equation. All the parameters used by the proposed model have physical meanings and are determined through experiments or drawn from literature. The model was implemented in Finite Element (FE) Code CASTEM and tested on FRC prismatic notched specimens in flexure. Model prediction showed good agreement with experimental results. (author)
A HYBRID BALANCED SCORECARD AND SYSTEM DYNAMICS FOR MEASURING PUBLIC SECTOR PERFORMANCE
Directory of Open Access Journals (Sweden)
TRI GUNARSIH
2016-04-01
Full Text Available Performance measurement on an organization whether it is a profit or nonprofit, has to be conducted in order to evaluate plan attainment. This measurement is considered incomplete as the performance of a company is not only based on financial perspective, but also other perspectives. Balanced Score Card (BSC is a performance measurement method using four perspectives: financial, customers, internal business processes and learning and growth. BSC measurement can be applied on profit and non-profit organizations. BSC focuses on causality (cause and effect which is based only on linear correlation. This situation is the weakness on BSC because it cannot continue to the specific forward step that can predict the future activities. In this study, BSC is combined with System Dynamics (SD that can identify the interaction among four perspectives and also related variable through a causal loop design model. Hybrid modelling design between BSC and SD gives an effective and interesting contemporary study. Then, the model performed with 2012 data input and performance forecasting until 2017. The result obtained for the financial perspectives related to fund absorption from 2013 until 2017 consecutively 100%, 100%, 85%, 72% and 100% with the most influential variable of tax and non-tax by 44.3% and the smallest variable effect is levies variable with 0,08%.Perspectives toward customers related to the efficiency and effective value by 50%, 43%, 43%, 48%, 49 % to customer dissatisfaction variable 48.09%, and 12.03% of customer's satisfaction. Internal business process perspective relates to the value of the total effective capacity by 80%, 71%, 69%, 71%, and 70%. With the most influential variable is the productivity and innovation for 50.77% and 1.94% variable staff morale. The last perspectives is learning and growth effective value for 50%, 44%, 56%, 47%, 46% with the most influential variable is the skill level of workers 27.98% and the smallest effect is
Modelling and control of a light-duty hybrid electric truck
Park, Jong-Kyu
2006-01-01
This study is concentrated on modelling and developing the controller for the light-duty hybrid electric truck. The hybrid electric vehicle has advantages in fuel economy. However, there have been relatively few studies on commercial HEVs, whilst a considerable number of studies on the hybrid electric system have been conducted in the field of passenger cars. So the current status and the methodologies to develop the LD hybrid electric truck model have been studied through the ...
Dynamical modeling of tidal streams
International Nuclear Information System (INIS)
Bovy, Jo
2014-01-01
I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.
Directory of Open Access Journals (Sweden)
Huei Peng
2013-04-01
Full Text Available This paper compares two optimal energy management methods for parallel hybrid electric vehicles using an Automatic Manual Transmission (AMT. A control-oriented model of the powertrain and vehicle dynamics is built first. The energy management is formulated as a typical optimal control problem to trade off the fuel consumption and gear shifting frequency under admissible constraints. The Dynamic Programming (DP and Pontryagin’s Minimum Principle (PMP are applied to obtain the optimal solutions. Tuning with the appropriate co-states, the PMP solution is found to be very close to that from DP. The solution for the gear shifting in PMP has an algebraic expression associated with the vehicular velocity and can be implemented more efficiently in the control algorithm. The computation time of PMP is significantly less than DP.
Directory of Open Access Journals (Sweden)
Charles M. Reinke
2011-12-01
Full Text Available Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.
Maximum Mass of Hybrid Stars in the Quark Bag Model
Alaverdyan, G. B.; Vartanyan, Yu. L.
2017-12-01
The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.
Directory of Open Access Journals (Sweden)
S.M. Ibrahim
Full Text Available Abstract This paper investigates the stress-strain characteristics of Hybrid fiber reinforced concrete (HFRC composites under dynamic compression using Split Hopkinson Pressure Bar (SHPB for strain rates in the range of 25 to 125 s-1. Three types of fibers - hooked ended steel fibers, monofilament crimped polypropylene fibers and staple Kevlar fibers were used in the production of HFRC composites. The influence of different fibers in HFRC composites on the failure mode, dynamic increase factor (DIF of strength, toughness and strain are also studied. Degree of fragmentation of HFRC composite specimens increases with increase in the strain rate. Although the use of high percentage of steel fibers leads to the best performance but among the hybrid fiber combinations studied, HFRC composites with relatively higher percentage of steel fibers and smaller percentage of polypropylene and Kevlar fibers seem to reflect the equally good synergistic effects of fibers under dynamic compression. A rate dependent analytical model is proposed for predicting complete stress-strain curves of HFRC composites. The model is based on a comprehensive fiber reinforcing index and complements well with the experimental results.
MODEL APLIKASI FIKIH MUAMALAH PADA FORMULASI HYBRID CONTRACT
Directory of Open Access Journals (Sweden)
Ali Murtadho
2013-10-01
Full Text Available Modern literatures of fiqh mu’āmalah talk alot about various contract formulation with capability of maximizing profit in shariah finance industry. This new contract modification is the synthesis among existing contracts which is formulated in such a way to be an integrated contract. This formulation is known as a hybrid contract or multicontract (al-'uqūd al-murakkabah. Some of them are, bay' bi thaman 'ājil, Ijārah muntahiyah bi ’l-tamlīk dan mushārakah mutanāqiṣah. This study intends to further describe models of hybrid contract, and explore the shari'ah principles in modern financial institutions. This study found a potential shift from the ideal values of the spirit of shari'ah into the spirit of competition based shari'ah formally.
Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.
Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui
2006-01-01
This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.
arXiv Hybrid Fluid Models from Mutual Effective Metric Couplings
Kurkela, Aleksi; Preis, Florian; Rebhan, Anton; Soloviev, Alexander
Motivated by a semi-holographic approach to the dynamics of quark-gluon plasma which combines holographic and perturbative descriptions of a strongly coupled infrared and a more weakly coupled ultraviolet sector, we construct a hybrid two-fluid model where interactions between its two sectors are encoded by their effective metric backgrounds, which are determined mutually by their energy-momentum tensors. We derive the most general consistent ultralocal interactions such that the full system has a total conserved energy-momentum tensor in flat Minkowski space and study its consequences in and near thermal equilibrium by working out its phase structure and its hydrodynamic modes.
A Simple Hybrid Model for Short-Term Load Forecasting
Directory of Open Access Journals (Sweden)
Suseelatha Annamareddi
2013-01-01
Full Text Available The paper proposes a simple hybrid model to forecast the electrical load data based on the wavelet transform technique and double exponential smoothing. The historical noisy load series data is decomposed into deterministic and fluctuation components using suitable wavelet coefficient thresholds and wavelet reconstruction method. The variation characteristics of the resulting series are analyzed to arrive at reasonable thresholds that yield good denoising results. The constitutive series are then forecasted using appropriate exponential adaptive smoothing models. A case study performed on California energy market data demonstrates that the proposed method can offer high forecasting precision for very short-term forecasts, considering a time horizon of two weeks.
Hybrid Wing Body Model Identification Using Forced-Oscillation Water Tunnel Data
Murphy, Patrick C.; Vicroy, Dan D.; Kramer, Brian; Kerho, Michael
2014-01-01
Static and dynamic testing of the NASA 0.7 percent scale Hybrid Wing Body (HWB) configuration was conducted in the Rolling Hills Research Corporation water tunnel to investigate aerodynamic behavior over a large range of angle-of-attack and to develop models that can predict aircraft response in nonlinear unsteady flight regimes. This paper reports primarily on the longitudinal axis results. Flow visualization tests were also performed. These tests provide additional static data and new dynamic data that complement tests conducted at NASA Langley 14- by 22-Foot Subsonic Tunnel. HWB was developed to support the NASA Environmentally Responsible Aviation Project goals of lower noise, emissions, and fuel burn. This study also supports the NASA Aviation Safety Program efforts to model and control advanced transport configurations in loss-of-control conditions.
Energy Technology Data Exchange (ETDEWEB)
Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science
2006-07-01
The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non
Modeling, analysis and control of fuel cell hybrid power systems
Suh, Kyung Won
Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise
System Dynamics Modelling for a Balanced Scorecard
DEFF Research Database (Denmark)
Nielsen, Steen; Nielsen, Erland Hejn
2008-01-01
/methodology/approach - We use a case study model to develop time or dynamic dimensions by using a System Dynamics modelling (SDM) approach. The model includes five perspectives and a number of financial and non-financial measures. All indicators are defined and related to a coherent number of different cause...... have a major influence on other indicators and profit and may be impossible to predict without using a dynamic model. Practical implications - The model may be used as the first step in quantifying the cause-and-effect relationships of an integrated BSC model. Using the System Dynamics model provides......Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design...
Hybrid computing using a neural network with dynamic external memory.
Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis
2016-10-27
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.
International Nuclear Information System (INIS)
Garcia, Humberto E.; Mohanty, Amit; Lin, Wen-Chiao; Cherry, Robert S.
2013-01-01
Dynamic analysis of HES (hybrid energy systems) under flexible operation and variable renewable generation is considered in this two-part communication to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Advanced HES solutions are investigated in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. In particular, a comparative dynamic cost analysis is conducted in this part two of the communication to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance and overnight capital costs, and also variable operational costs, such as cost of operational variability, variable operations and maintenance cost, and cost of environmental impact, together with revenues. Assuming natural gas, coal, and nuclear as primary heat sources, preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation. - Highlights: ► Dynamic analysis of HES to investigate challenges related to renewable penetration. ► Evaluation of dynamic synergies among HES constituents on system performance. ► Comparison of traditional versus advanced HES candidates. ► Dynamic cost analysis of HES candidates to investigate their economic viability. ► Identification of conditions under which an energy commodity may be best utilized
Li, Zhi; Li, Chunhui; Wang, Xuan; Peng, Cong; Cai, Yanpeng; Huang, Weichen
2018-01-01
Problems with water resources restrict the sustainable development of a city with water shortages. Based on system dynamics (SD) theory, a model of sustainable utilization of water resources using the STELLA software has been established. This model consists of four subsystems: population system, economic system, water supply system and water demand system. The boundaries of the four subsystems are vague, but they are closely related and interdependent. The model is applied to Zhengzhou City, China, which has a serious water shortage. The difference between the water supply and demand is very prominent in Zhengzhou City. The model was verified with data from 2009 to 2013. The results show that water demand of Zhengzhou City will reach 2.57 billion m3 in 2020. A water resources optimization model is developed based on interval-parameter two-stage stochastic programming. The objective of the model is to allocate water resources to each water sector and make the lowest cost under the minimum water demand. Using the simulation results, decision makers can easily weigh the costs of the system, the water allocation objectives, and the system risk. The hybrid system dynamics method and optimization model is a rational try to support water resources management in many cities, particularly for cities with potential water shortage and it is solidly supported with previous studies and collected data.
Investigating actinide compounds within a hybrid MCSCF-DFT model
International Nuclear Information System (INIS)
Fromager, E.; Jensen, H.J.A.; Wahlin, P.; Real, F.; Wahlgren, U.
2007-01-01
Complete text of publication follows: Investigations of actinide chemistry with quantum chemical methods still remain a complicated task since it requires an accurate and efficient treatment of the environment (crystal or solvent) as well as relativistic and electron correlation effects. Concerning the latter, the current correlated methods, based on either Density-Functional Theory (DFT) or Wave-Function Theory (WFT), have their advantages and drawbacks. On the one hand, Kohn-Sham DFT (KS-DFT) calculates the dynamic correlation quite accurately and at a fairly low computational cost. However, it does not treat adequately the static correlation, which is significant in some actinide compounds because of the near-degeneracy of the 5f orbitals: a first example is the bent geometry obtained in KS-DFT(B3LYP) for the neptunyl ion NpO 2 3+ , which is found to be linear within a Multi-Configurational Self-Consistent Field (MCSCF) model [1]. A second one is the stable and bent geometry obtained in KS-DFT(B3LYP) for the plutonyl ion PuO 2 4+ , which disintegrates at the MCSCF level [1]. On the other hand, WFT can describe the static correlation, using for example a MCSCF model, but then an important part of the dynamic correlation has to be neglected. This can be recovered with perturbation-theory based methods like for example CASPT2 or NEVPT2, but their computational complexity prevents large scale calculations. It is therefore of great interest to develop a hybrid MCSCF-DFT model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts [2]. The long-range part is then treated by WFT and the short-range part by DFT. We use the so-called 'erf' long-range interaction erf(μr 12 )/r 12 , which is based on the standard error function, and where μ is a free parameter which controls the long/short-range decomposition. The newly proposed recipe for the
A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics
Directory of Open Access Journals (Sweden)
E. Kaas
2013-11-01
Full Text Available A new hybrid Eulerian–Lagrangian numerical scheme (HEL for solving prognostic equations in fluid dynamics is proposed. The basic idea is to use an Eulerian as well as a fully Lagrangian representation of all prognostic variables. The time step in Lagrangian space is obtained as a translation of irregularly spaced Lagrangian parcels along downstream trajectories. Tendencies due to other physical processes than advection are calculated in Eulerian space, interpolated, and added to the Lagrangian parcel values. A directionally biased mixing amongst neighboring Lagrangian parcels is introduced. The rate of mixing is proportional to the local deformation rate of the flow. The time stepping in Eulerian representation is achieved in two steps: first a mass-conserving Eulerian or semi-Lagrangian scheme is used to obtain a provisional forecast. This forecast is then nudged towards target values defined from the irregularly spaced Lagrangian parcel values. The nudging procedure is defined in such a way that mass conservation and shape preservation is ensured in Eulerian space. The HEL scheme has been designed to be accurate, multi-tracer efficient, mass conserving, and shape preserving. In Lagrangian space only physically based mixing takes place; i.e., the problem of artificial numerical mixing is avoided. This property is desirable in atmospheric chemical transport models since spurious numerical mixing can impact chemical concentrations severely. The properties of HEL are here verified in two-dimensional tests. These include deformational passive transport on the sphere, and simulations with a semi-implicit shallow water model including topography.
Applying a Dynamic Resource Supply Model in a Smart Grid
Directory of Open Access Journals (Sweden)
Kaiyu Wan
2014-09-01
Full Text Available Dynamic resource supply is a complex issue to resolve in a cyber-physical system (CPS. In our previous work, a resource model called the dynamic resource supply model (DRSM has been proposed to handle resources specification, management and allocation in CPS. In this paper, we are integrating the DRSM with service-oriented architecture and applying it to a smart grid (SG, one of the most complex CPS examples. We give the detailed design of the SG for electricity charging request and electricity allocation between plug-in hybrid electric vehicles (PHEV and DRSM through the Android system. In the design, we explain a mechanism for electricity consumption with data collection and re-allocation through ZigBee network. In this design, we verify the correctness of this resource model for expected electricity allocation.
Improvement of Dynamic Performance of Hybrid Gas Bearings via Adjustable Lubrication
DEFF Research Database (Denmark)
Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar
2013-01-01
and the pressure and velocity fields in the injection nozzle are compared. The simplified theoretical model has been validated against the CFD results and experimentally using a test rig. The test rig consists of a flexible rotor supported by a ball bearing and a controllable hybrid gas bearing. The results show...
Design, test and model of a hybrid magnetostrictive hydraulic actuator
International Nuclear Information System (INIS)
Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M
2009-01-01
The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm 3 s −1 and 22.7 cm 3 s −1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation
Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
International Nuclear Information System (INIS)
Sun, Zhe; Wang, Ning; Bi, Yunrui; Srinivasan, Dipti
2015-01-01
In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. - Highlights: • We propose a hybrid adaptive differential evolution algorithm (HADE). • The search efficiency is enhanced in low and high dimension search space. • The effectiveness is confirmed by testing benchmark functions. • The identification of the PEMFC model is conducted by adopting HADE.
Quasiparticle many-body dynamics of the Anderson model
International Nuclear Information System (INIS)
Kuzemskij, A.L.
1996-01-01
The paper addresses the many-body quasiparticle dynamics of the Anderson impurity model at finite temperatures in the framework of the equation-of-motion method. We find a new exact identity relating the one-particle and many-particle Green's Functions. Using this identity we present a consistent and general scheme for a construction of generalised mean fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of the Dyson equation. A new approach for the complex expansion for the single-particle propagator in terms of the Coulomb repulsion U and hybridization V is proposed. Using the exact identity, the essentially new many-body dynamical solution of SIAM has been derived. This approach offers a new way for the systematic construction of the approximative interpolating dynamical solutions of the strongly correlated electron systems. 47 refs
Tsiaras, Kostas P.
2017-04-20
A hybrid ensemble data assimilation scheme (HYBRID), combining a flow-dependent with a static background covariance, was developed and implemented for assimilating satellite (SeaWiFS) Chl-a data into a marine ecosystem model of the Mediterranean. The performance of HYBRID was assessed against a model free-run, the ensemble-based singular evolutive interpolated Kalman (SEIK) and its variant with static covariance (SFEK), with regard to the assimilated variable (Chl-a) and non-assimilated variables (dissolved inorganic nutrients). HYBRID was found more efficient than both SEIK and SFEK, reducing the Chl-a error by more than 40% in most areas, as compared to the free-run. Data assimilation had a positive overall impact on nutrients, except for a deterioration of nitrates simulation by SEIK in the most productive area (Adriatic). This was related to SEIK pronounced update in this area and the phytoplankton limitation on phosphate that lead to a built up of excess nitrates. SEIK was found more efficient in productive and variable areas, where its ensemble exhibited important spread. SFEK had an effect mostly on Chl-a, performing better than SEIK in less dynamic areas, adequately described by the dominant modes of its static covariance. HYBRID performed well in all areas, due to its “blended” covariance. Its flow-dependent component appears to track changes in the system dynamics, while its static covariance helps maintaining sufficient spread in the forecast. HYBRID sensitivity experiments showed that an increased contribution from the flow-dependent covariance results in a deterioration of nitrates, similar to SEIK, while the improvement of HYBRID with increasing flow-dependent ensemble size quickly levels off.
Tsiaras, Kostas P.; Hoteit, Ibrahim; Kalaroni, Sofia; Petihakis, George; Triantafyllou, George
2017-06-01
A hybrid ensemble data assimilation scheme (HYBRID), combining a flow-dependent with a static background covariance, was developed and implemented for assimilating satellite (SeaWiFS) Chl-a data into a marine ecosystem model of the Mediterranean. The performance of HYBRID was assessed against a model free-run, the ensemble-based singular evolutive interpolated Kalman (SEIK) and its variant with static covariance (SFEK), with regard to the assimilated variable (Chl-a) and non-assimilated variables (dissolved inorganic nutrients). HYBRID was found more efficient than both SEIK and SFEK, reducing the Chl-a error by more than 40% in most areas, as compared to the free-run. Data assimilation had a positive overall impact on nutrients, except for a deterioration of nitrates simulation by SEIK in the most productive area (Adriatic). This was related to SEIK pronounced update in this area and the phytoplankton limitation on phosphate that lead to a built up of excess nitrates. SEIK was found more efficient in productive and variable areas, where its ensemble exhibited important spread. SFEK had an effect mostly on Chl-a, performing better than SEIK in less dynamic areas, adequately described by the dominant modes of its static covariance. HYBRID performed well in all areas, due to its "blended" covariance. Its flow-dependent component appears to track changes in the system dynamics, while its static covariance helps maintaining sufficient spread in the forecast. HYBRID sensitivity experiments showed that an increased contribution from the flow-dependent covariance results in a deterioration of nitrates, similar to SEIK, while the improvement of HYBRID with increasing flow-dependent ensemble size quickly levels off.
Tsiaras, Kostas P.; Hoteit, Ibrahim; Kalaroni, Sofia; Petihakis, George; Triantafyllou, George
2017-01-01
A hybrid ensemble data assimilation scheme (HYBRID), combining a flow-dependent with a static background covariance, was developed and implemented for assimilating satellite (SeaWiFS) Chl-a data into a marine ecosystem model of the Mediterranean. The performance of HYBRID was assessed against a model free-run, the ensemble-based singular evolutive interpolated Kalman (SEIK) and its variant with static covariance (SFEK), with regard to the assimilated variable (Chl-a) and non-assimilated variables (dissolved inorganic nutrients). HYBRID was found more efficient than both SEIK and SFEK, reducing the Chl-a error by more than 40% in most areas, as compared to the free-run. Data assimilation had a positive overall impact on nutrients, except for a deterioration of nitrates simulation by SEIK in the most productive area (Adriatic). This was related to SEIK pronounced update in this area and the phytoplankton limitation on phosphate that lead to a built up of excess nitrates. SEIK was found more efficient in productive and variable areas, where its ensemble exhibited important spread. SFEK had an effect mostly on Chl-a, performing better than SEIK in less dynamic areas, adequately described by the dominant modes of its static covariance. HYBRID performed well in all areas, due to its “blended” covariance. Its flow-dependent component appears to track changes in the system dynamics, while its static covariance helps maintaining sufficient spread in the forecast. HYBRID sensitivity experiments showed that an increased contribution from the flow-dependent covariance results in a deterioration of nitrates, similar to SEIK, while the improvement of HYBRID with increasing flow-dependent ensemble size quickly levels off.
International Nuclear Information System (INIS)
Shin, Seung Ki; Seong, Poong Hyun
2008-01-01
Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing Reliability Graph with General Gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables
An Evaluation of Molecular Dynamics Performance on the Hybrid Cray XK6 Supercomputer
International Nuclear Information System (INIS)
Brown, W. Michael; Nguyen, Trung D.; Fuentes-Cabrera, Miguel A.; Fowlkes, Jason Davidson; Rack, Philip D.; Berger, Mark
2012-01-01
For many years, the drive towards computational physics studies that match the size and time-scales of experiment has been fueled by increases in processor and interconnect performance that could be exploited with relatively little modification to existing codes. Engineering and electrical power constraints have disrupted this trend, requiring more drastic changes to both hardware and software solutions. Here, we present details of the Cray XK6 architecture that achieves increased performance with the use of GPU accelerators. We review software development efforts in the LAMMPS molecular dynamics package that have been implemented in order to utilize hybrid high performance computers. We present benchmark results for solid-state, biological, and mesoscopic systems and discuss some challenges for utilizing hybrid systems. We present some early work in improving application performance on the XK6 and performance results for the simulation of liquid copper nanostructures with the embedded atom method.
A viable D-term hybrid inflation model
Kadota, Kenji; Kobayashi, Tatsuo; Sumita, Keigo
2017-11-01
We propose a new model of the D-term hybrid inflation in the framework of supergravity. Although our model introduces, analogously to the conventional D-term inflation, the inflaton and a pair of scalar fields charged under a U(1) gauge symmetry, we study the logarithmic and exponential dependence on the inflaton field, respectively, for the Kähler and superpotential. This results in a characteristic one-loop scalar potential consisting of linear and exponential terms, which realizes the small-field inflation dominated by the Fayet-Iliopoulos term. With the reasonable values for the coupling coefficients and, in particular, with the U(1) gauge coupling constant comparable to that of the Standard Model, our D-term inflation model can solve the notorious problems in the conventional D-term inflation, namely, the CMB constraints on the spectral index and the generation of cosmic strings.
Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales
Directory of Open Access Journals (Sweden)
Yonghe Zhang
2010-11-01
Full Text Available Ionocovalency (IC, a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table.
A hybrid spatiotemporal drought forecasting model for operational use
Vasiliades, L.; Loukas, A.
2010-09-01
Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.
On The Modelling Of Hybrid Aerostatic - Gas Journal Bearings
DEFF Research Database (Denmark)
Morosi, Stefano; Santos, Ilmar
2011-01-01
modeling for hybrid lubrication of a compressible fluid film journal bearing. Additional forces are generated by injecting pressurized air into the bearing gap through orifices located on the bearing walls. A modified form of the compressible Reynolds equation for active lubrication is derived. By solving......Gas journal bearing have been increasingly adopted in modern turbo-machinery applications, as they meet the demands of operation at higher rotational speeds, in clean environment and great efficiency. Due to the fact that gaseous lubricants, typically air, have much lower viscosity than more...
Active diagnosis of hybrid systems - A model predictive approach
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Ravn, Anders P.; Izadi-Zamanabadi, Roozbeh
2009-01-01
A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and fault...... can be used as a test signal for sanity check at the commissioning or for detection of faults hidden by regulatory actions of the controller. The method is tested on the two tank benchmark example. ©2009 IEEE....
Software development infrastructure for the HYBRID modeling and simulation project
International Nuclear Information System (INIS)
Epiney, Aaron S.; Kinoshita, Robert A.; Kim, Jong Suk; Rabiti, Cristian; Greenwood, M. Scott
2016-01-01
One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers
The Hybrid Airline Model. Generating Quality for Passengers
Directory of Open Access Journals (Sweden)
Bogdan AVRAM
2017-12-01
Full Text Available This research aims to investigate the different strategies adopted by the airline companies in adapting to the ongoing changes while developing products and services for passengers in order to increase their yield, load factor and passenger satisfaction. Finding a balance between costs and services quality in the airline industry is a crucial task for every airline wanting to gain a competitive advantage on the market. Also, the rise of the hybrid business operating model has brought up many challenges for airlines as the line between legacy carriers and low-cost carriers is getting thinner in terms of costs and innovative ideas to create a superior product for the passengers.
Software development infrastructure for the HYBRID modeling and simulation project
Energy Technology Data Exchange (ETDEWEB)
Epiney, Aaron S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenwood, M. Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers
Chen, Yunjie; Roux, Benoît
2014-09-21
Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct
Chen, Yunjie; Roux, Benoît
2014-09-01
Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
Suh, Donghyuk; Radak, Brian K.; Chipot, Christophe; Roux, Benoît
2018-01-01
Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield
Sartori, Massimo; Farina, Dario; Lloyd, David G
2014-11-28
Current electromyography (EMG)-driven musculoskeletal models are used to estimate joint moments measured from an individual׳s extremities during dynamic movement with varying levels of accuracy. The main benefit is the underlying musculoskeletal dynamics is simulated as a function of realistic, subject-specific, neural-excitation patterns provided by the EMG data. The main disadvantage is surface EMG cannot provide information on deeply located muscles. Furthermore, EMG data may be affected by cross-talk, recording and post-processing artifacts that could adversely influence the EMG׳s information content. This limits the EMG-driven model׳s ability to calculate the multi-muscle dynamics and the resulting joint moments about multiple degrees of freedom. We present a hybrid neuromusculoskeletal model that combines calibration, subject-specificity, EMG-driven and static optimization methods together. In this, the joint moment tracking errors are minimized by balancing the information content extracted from the experimental EMG data and from that generated by a static optimization method. Using movement data from five healthy male subjects during walking and running we explored the hybrid model׳s best configuration to minimally adjust recorded EMGs and predict missing EMGs while attaining the best tracking of joint moments. Minimally adjusted and predicted excitations substantially improved the experimental joint moment tracking accuracy than current EMG-driven models. The ability of the hybrid model to predict missing muscle EMGs was also examined. The proposed hybrid model enables muscle-driven simulations of human movement while enforcing physiological constraints on muscle excitation patterns. This might have important implications for studying pathological movement for which EMG recordings are limited.
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks
DEFF Research Database (Denmark)
Hagen, Espen; Dahmen, David; Stavrinou, Maria L
2016-01-01
on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network......With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical...... and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely...
Hybrid Model Predictive Control as a LFC solution in Hydropower Plants
Directory of Open Access Journals (Sweden)
Donaisky Emerson
2015-01-01
Full Text Available For Electric Power System safety and stable operation, planning and analysis by using simulation environments are necessary. An important point for frequency stability analysis is, on one hand, an adequate representation of Load-Frequency Control (LFC loops and, on the other hand, the design of advanced control strategies to deal with the power system dynamic complexity. Therefore, in this paper we propose to represent the group turbine/penstock, found in hydropower plants, in a Piecewise Affine (PWA modelling structure. Based on such modelling, we also propose the use of a Hybrid Model Predictive algorithm to be use as a control law in LFC loops. Among the advantages of this PWA representation is the use of this model in the controller algorithm, thereby improving the Load-Frequency Control performance. Simulation results, on a 200 MW hydropower plant compares the performance of predictive control strategy presented with the classical PID control strategy in an isolated condition.
Characterizing and modeling citation dynamics.
Directory of Open Access Journals (Sweden)
Young-Ho Eom
Full Text Available Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.
Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration
2016-11-01
A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.
Supply based on demand dynamical model
Levi, Asaf; Sabuco, Juan; Sanjuán, Miguel A. F.
2018-04-01
We propose and numerically analyze a simple dynamical model that describes the firm behaviors under uncertainty of demand. Iterating this simple model and varying some parameter values, we observe a wide variety of market dynamics such as equilibria, periodic, and chaotic behaviors. Interestingly, the model is also able to reproduce market collapses.
Opinion dynamics model based on quantum formalism
Energy Technology Data Exchange (ETDEWEB)
Artawan, I. Nengah, E-mail: nengahartawan@gmail.com [Theoretical Physics Division, Department of Physics, Udayana University (Indonesia); Trisnawati, N. L. P., E-mail: nlptrisnawati@gmail.com [Biophysics, Department of Physics, Udayana University (Indonesia)
2016-03-11
Opinion dynamics model based on quantum formalism is proposed. The core of the quantum formalism is on the half spin dynamics system. In this research the implicit time evolution operators are derived. The analogy between the model with Deffuant dan Sznajd models is discussed.
Dynamic modelling of tearing mode stabilization by RF current drive
International Nuclear Information System (INIS)
Giruzzi, G.; Zabiego, M.; Gianakon, T.A.; Garbet, X.; Bernabei, S.
1998-01-01
The theory of tearing mode stabilization in toroidal plasmas by RF-driven currents that are modulated in phase with the island rotation is investigated. A time scale analysis of the phenomena involved indicates that transient effects, such as finite time response of the driven currents, island rotation during the power pulses, and the inductive response of the plasma, are intrinsically important. A dynamic model of such effects is developed, based on a 3-D Fokker-Planck code coupled to both the electric field diffusion and the island evolution equations. Extensive applications to both Electron Cyclotron and Lower Hybrid current drive in ITER are presented. (author)
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2017-05-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites
Directory of Open Access Journals (Sweden)
Mehdi Roohani
2016-06-01
Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.
Relating structure and dynamics in organisation models
Jonker, C.M.; Treur, J.
2003-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on
Energy Technology Data Exchange (ETDEWEB)
Kuhn, E.
2004-09-15
This work deals with the dynamical and energetic modeling of a 42 V NiMH battery, the model of which is taking into account into a control law for an hybrid electrical vehicle. Using an inventory of the electrochemical phenomena, an equivalent electrical scheme has been established. In this model, diffusion phenomena were represented using non integer derivatives. This tool leads to a very good approximation of diffusion phenomena, nevertheless such a pure mathematical approach did not allow to represent energetic losses inside the battery. Consequently, a second model, made of a series of electric circuits has been proposed to represent energetic transfers. This second model has been used in the determination of a control law which warrants an autonomous management of electrical energy embedded in a parallel hybrid electrical vehicle, and to prevent deep discharge of the battery. (author)
Hybrid Modeling Method for a DEP Based Particle Manipulation
Directory of Open Access Journals (Sweden)
Mohamad Sawan
2013-01-01
Full Text Available In this paper, a new modeling approach for Dielectrophoresis (DEP based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results.
Hybrid Modelling of a Traveling Wave Piezoelectric Motor
DEFF Research Database (Denmark)
El, Ghouti N.
a theoretical model is derived. Since the dynamic characteristics of the real motor are difficult to capture in an analytical model, and the parameters of the motor are time varying and highly nonlinear, then some assumptions are required in order to simplify the modeling task and thus provide a suitable model......This thesis considers the modeling of the traveling wave piezoelectric motor (PEM). The rotary traveling wave ultrasonic motor "Shinsei type USR60" is the case study considered in this work. The traveling wave PEM has excellent performance and many useful features such as high holding torque, high....... Despite many attempts a lumped motor model of the PEM is unavailable so far. The dynamical characteristics of the PEM are complicated, highly nonlinear, and the motor parameters are time varying due to temperature rise and changes in motor drive operating conditions. Therefore it is difficult to predict...
A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models
Directory of Open Access Journals (Sweden)
Volker Kuell
2008-12-01
Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.
The influence of nonlocal hybridization on ground-state properties of the Falicov-Kimball model
International Nuclear Information System (INIS)
Farkasovsky, Pavol
2005-01-01
The density matrix renormalization group is used to examine effects of nonlocal hybridization on ground-state properties of the Falicov-Kimball model (FKM) in one dimension. Special attention is devoted to the problem of hybridization-induced insulator-metal transition. It is shown that the picture of insulator-metal transitions found for the FKM with nonlocal hybridization strongly differs from one found for the FKM without hybridization (as well as with local hybridization). The effect of nonlocal hybridization is so strong that it can induce the insulator-metal transition, even in the half-filled band case where the ground states of the FKM without hybridization are insulating for all finite Coulomb interactions. Outside the half-filled band case the metal-insulator transition driven by pressure is found for finite values of nonlocal hybridization
An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows
Liang, Tengfei
2013-01-01
Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.
International Nuclear Information System (INIS)
Cruz, Roberto de la; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-01-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction–diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction–diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge
Hybrid systems with constraints
Daafouz, Jamal; Sigalotti, Mario
2013-01-01
Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to
International Nuclear Information System (INIS)
Liao Xiaofeng; Wong, K.-W.; Yang Shizhong
2003-01-01
In this Letter, the characteristics of the convergence dynamics of hybrid bidirectional associative memory neural networks with distributed transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the Lyapunov functionals are constructed and the generalized Halanay-type inequalities are employed to derive the delay-independent sufficient conditions under which the networks converge exponentially to the equilibria associated with temporally uniform external inputs. Some examples are given to illustrate the correctness of our results
A templated approach for multi-physics modeling of hybrid energy systems in Modelica
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Michael Scott [ORNL; Cetiner, Sacit M. [ORNL; Harrison, Thomas J. [ORNL; Fugate, David [Oak Ridge National Laboratory (ORNL)
2018-01-01
A prototypical hybrid energy system (HES) couples a primary thermal power generator (i.e., nuclear power plant) with one or more additional subsystems beyond the traditional balance of plant electricity generation system. The definition and architecture of an HES can be adapted based on the needs and opportunities of a given local market. For example, locations in need of potable water may be best served by coupling a desalination plant to the HES. A location near an oil refinery may have a need for emission-free hydrogen production. The flexible, multidomain capabilities of Modelica are being used to investigate the dynamics (e.g., thermal hydraulics and electrical generation/consumption) of such a hybrid system. This paper examines the simulation infrastructure created to enable the coupling of multiphysics subsystem models for HES studies. A demonstration of a tightly coupled nuclear hybrid energy system implemented using the Modelica based infrastructure is presented for two representative cases. An appendix is also included providing a step-by-step procedure for using the template-based infrastructure.
An Interactive Personalized Recommendation System Using the Hybrid Algorithm Model
Directory of Open Access Journals (Sweden)
Yan Guo
2017-10-01
Full Text Available With the rapid development of e-commerce, the contradiction between the disorder of business information and customer demand is increasingly prominent. This study aims to make e-commerce shopping more convenient, and avoid information overload, by an interactive personalized recommendation system using the hybrid algorithm model. The proposed model first uses various recommendation algorithms to get a list of original recommendation results. Combined with the customer’s feedback in an interactive manner, it then establishes the weights of corresponding recommendation algorithms. Finally, the synthetic formula of evidence theory is used to fuse the original results to obtain the final recommendation products. The recommendation performance of the proposed method is compared with that of traditional methods. The results of the experimental study through a Taobao online dress shop clearly show that the proposed method increases the efficiency of data mining in the consumer coverage, the consumer discovery accuracy and the recommendation recall. The hybrid recommendation algorithm complements the advantages of the existing recommendation algorithms in data mining. The interactive assigned-weight method meets consumer demand better and solves the problem of information overload. Meanwhile, our study offers important implications for e-commerce platform providers regarding the design of product recommendation systems.
A Probability-Based Hybrid User Model for Recommendation System
Directory of Open Access Journals (Sweden)
Jia Hao
2016-01-01
Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.
Hybrid quantum-classical modeling of quantum dot devices
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Axelrod Model of Social Influence with Cultural Hybridization
Radillo-Díaz, Alejandro; Pérez, Luis A.; Del Castillo-Mussot, Marcelo
2012-10-01
Since cultural interactions between a pair of social agents involve changes in both individuals, we present simulations of a new model based on Axelrod's homogenization mechanism that includes hybridization or mixture of the agents' features. In this new hybridization model, once a cultural feature of a pair of agents has been chosen for the interaction, the average of the values for this feature is reassigned as the new value for both agents after interaction. Moreover, a parameter representing social tolerance is implemented in order to quantify whether agents are similar enough to engage in interaction, as well as to determine whether they belong to the same cluster of similar agents after the system has reached the frozen state. The transitions from a homogeneous state to a fragmented one decrease in abruptness as tolerance is increased. Additionally, the entropy associated to the system presents a maximum within the transition, the width of which increases as tolerance does. Moreover, a plateau was found inside the transition for a low-tolerance system of agents with only two cultural features.
Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model
Directory of Open Access Journals (Sweden)
E. Kallio
Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.
In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.
The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.
Key words. Magnetospheric physics
Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks
Zhelavskaya, I. S.; Shprits, Y.; Spasojevic, M.
2017-12-01
We present a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2 ≤ L ≤ 6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in-situ observations by using machine learning techniques.
Nina, Mafalda; Fonné-Pfister, Raymonde; Beaudegnies, Renaud; Chekatt, Habiba; Jung, Pierre M J; Murphy-Kessabi, Fiona; De Mesmaeker, Alain; Wendeborn, Sebastian
2005-04-27
Thermodynamic and structural properties of a chemically modified DNA-RNA hybrid in which a phosphodiester linkage is replaced by a neutral amide-3 linkage (3'-CH(2)-CONH-5') were investigated using UV melting experiments, molecular dynamics simulations in explicit water, and continuum solvent models. van't Hoff analysis of the experimental UV melting curves suggests that the significant increase of the thermodynamic stability of a 15-mer DNA-RNA with seven alternated amide-3 modifications (+11 degrees C) is mainly due to an increased binding enthalpy. To further evaluate the origin in the observed affinities differences, the electrostatic contribution to the binding free energy was calculated by solving the Poisson-Boltzmann equation numerically. The nonelectrostatic contribution was estimated as the product of a hydrophobic surface tension coefficient and the surface area that is buried upon double strand formation. Structures were taken from 10 ns molecular dynamics simulations computed in a consistent fashion using explicit solvent, counterions, and the particle-mesh Ewald procedure. The present preliminary thermodynamic study suggests that the favorable binding free energy of the amide-3 DNA single strand to the complementary RNA is equally driven by electrostatic and nonpolar contributions to the binding compared to their natural analogues. In addition, molecular dynamics simulations in explicit water were performed on an amide-3 DNA single strand and the corresponding natural DNA. Results from the conformations cluster analysis of the simulated amide-3 DNA single strand ensembles suggest that the 25% of the population sampled within 10 ns has a pre-organized conformation where the sugar C3' endo pucker is favored at the 3'-flanking nucleotides. These structural and thermodynamic features contribute to the understanding of the observed increased affinities of the amide-3 DNA-RNA hybrids at the microscopic level.
Electromagnetic moments of hadrons and quarks in a hybrid model
International Nuclear Information System (INIS)
Gerasimov, S.B.
1989-01-01
Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig
A Hybrid Multiple Criteria Decision Making Model for Supplier Selection
Directory of Open Access Journals (Sweden)
Chung-Min Wu
2013-01-01
Full Text Available The sustainable supplier selection would be the vital part in the management of a sustainable supply chain. In this study, a hybrid multiple criteria decision making (MCDM model is applied to select optimal supplier. The fuzzy Delphi method, which can lead to better criteria selection, is used to modify criteria. Considering the interdependence among the selection criteria, analytic network process (ANP is then used to obtain their weights. To avoid calculation and additional pairwise comparisons of ANP, a technique for order preference by similarity to ideal solution (TOPSIS is used to rank the alternatives. The use of a combination of the fuzzy Delphi method, ANP, and TOPSIS, proposing an MCDM model for supplier selection, and applying these to a real case are the unique features of this study.
Agent-based modeling of the energy network for hybrid cars
International Nuclear Information System (INIS)
Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz
2015-01-01
Highlights: • An approach to represent and calculate multicarrier energy networks has been developed. • It provides a modeling method based on agents, for multicarrier energy networks. • It allows the system representation on a single sheet. • Energy flows circulating in the system can be observed dynamically during simulation. • The method is technology independent. - Abstract: Studies in complex energy networks devoted to the modeling of electrical power grids, were extended in previous work, where a computational multi-layered ontology, implemented using agent-based methods, was adopted. This structure is compatible with recently introduced Multiplex Networks which using Multi-linear Algebra generalize some of classical results for single-layer networks, to multilayer networks in steady state. Static results do not assist overly in understanding dynamic networks in which the values of the variables in the nodes and edges can change suddenly, driven by events, and even where new nodes or edges may appear or disappear, also because of other events. To address this gap, a computational agent-based model is developed to extend the multi-layer and multiplex approaches. In order to demonstrate the benefits of a dynamical extension, a model of the energy network in a hybrid car is presented as a case study
Dynamic modelling of nuclear steam generators
International Nuclear Information System (INIS)
Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.
1980-01-01
Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)
Dynamic Airspace Managment - Models and Algorithms
Cheng, Peng; Geng, Rui
2010-01-01
This chapter investigates the models and algorithms for implementing the concept of Dynamic Airspace Management. Three models are discussed. First two models are about how to use or adjust air route dynamically in order to speed up air trafï¬c ï¬‚ow and reduce delay. The third model gives a way to dynamically generate the optimal sector conï¬guration for an air trafï¬c control center to both balance the controllerâ€™s workload and save control resources. The ï¬rst model, called the Dynami...
Hybrid continuum-coarse-grained modeling of erythrocytes
Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc
2018-06-01
The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.
A hybrid absorbing boundary condition for frequency-domain finite-difference modelling
International Nuclear Information System (INIS)
Ren, Zhiming; Liu, Yang
2013-01-01
Liu and Sen (2010 Geophysics 75 A1–6; 2012 Geophys. Prospect. 60 1114–32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased. (paper)
Wind Farm Decentralized Dynamic Modeling With Parameters
DEFF Research Database (Denmark)
Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran
2010-01-01
Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...
System dynamics modelling of situation awareness
CSIR Research Space (South Africa)
Oosthuizen, R
2015-11-01
Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...
Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof
2018-03-01
Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.
Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis
2011-03-01
This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.
An Agent Model Integrating an Adaptive Model for Environmental Dynamics
Treur, J.; Umair, M.
2011-01-01
The environments in which agents are used often may be described by dynamical models, e.g., in the form of a set of differential equations. In this paper, an agent model is proposed that can perform model-based reasoning about the environment, based on a numerical (dynamical system) model of the
Hydration dynamics near a model protein surface
International Nuclear Information System (INIS)
Russo, Daniela; Hura, Greg; Head-Gordon, Teresa
2003-01-01
The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces
Energy Technology Data Exchange (ETDEWEB)
Jaschke, P.
2000-02-01
Mathematical models of the dynamic performance of hydrodynamic couplings are developed using hybrid modelling, i.e. a combination of analytical physical modelling and black box identification. The models developed were verified by measurements on a model powertrain. [German] In dieser Arbeit werden mit Hilfe der hybriden Modellierung mathematische Modelle zur Beschreibung des dynamischen Betriebsverhaltens hydrodynamischer Kupplungen ermittelt. Die Hybride Modellierung stellt eine Kombination der analytisch physikalischen Modellierung und der Black-Box-Identifikation dar. Diese Modellierungsart ist ausgewaehlt worden, um die Vorteile der analytisch physikalischen Modellierung und der Black-Box-Identifikation hydrodynamischer Kupplungen zu verbinden und deren Nachteile gering zu halten. Auf dieser Basis ist eine Vorgehensweise vorgestellt worden, die die Ermittlung der Modelle mit wenig Aufwand ermoeglicht. Mit Hilfe der Modelltheorie wird gezeigt, wie die ermittelten mathematischen Modelle zur Simulation des dynamischen Betriebsverhaltens geometrisch aehnlicher Kupplungen unterschiedlicher Baugroessen verwendet werden koennen. Darueber hinaus wird dargelegt, wie die ermittelten Modelle mit Modellen anderer Antriebsstrangelemente gekoppelt werden koennen, um Antriebsstrangsimulationen zu ermoeglichen. Verifikationsmessungen an einem Modellantriebsstrang verdeutlichen die Guete und Verwendbarkeit der mathematischen Modelle. (orig.)
Suresh, Gorle; Priyakumar, U Deva
2015-09-01
Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.
Lyu, Mengjiao; Isaka, Masahiro; Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro; Yamada, Taiichi
2018-01-01
Many-body correlations play an essential role in the ab initio description of nuclei with nuclear bare interactions. We propose a new framework to describe light nuclei by the hybridization of the tensor-optimized antisymmetrized molecular dynamics (TOAMD) and the high-momentum AMD (HM-AMD), which we call "HM-TOAMD." In this framework, we describe the many-body correlations in terms of not only the correlation functions in TOAMD, but also the high-momentum pairs in the AMD wave function. With the bare nucleon-nucleon interaction AV8^', we sufficiently reproduce the energy and radius of the {^3}H nucleus in HM-TOAMD. The effects of tensor force and short-range repulsion in the bare interaction are nicely described in this new framework. We also discuss the convergence in calculation and flexibility of the model space for this new method.
A Hybrid Model of a Brushless DC Motor
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Hansen, Hans Brink; Kallesøe, Carsten Skovmose
2007-01-01
in this work consists of a general automaton with discrete states, combined with a set of continuous dynamic equations describing the electro-mechanical behavior of the motor. One of the significant benefits of this strategy is that the model describes the motor under all possible operating conditions...
Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît
2016-04-12
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.
A new approach to flow simulation using hybrid models
Solgi, Abazar; Zarei, Heidar; Nourani, Vahid; Bahmani, Ramin
2017-11-01
The necessity of flow prediction in rivers, for proper management of water resource, and the need for determining the inflow to the dam reservoir, designing efficient flood warning systems and so forth, have always led water researchers to think about models with high-speed response and low error. In the recent years, the development of Artificial Neural Networks and Wavelet theory and using the combination of models help researchers to estimate the river flow better and better. In this study, daily and monthly scales were used for simulating the flow of Gamasiyab River, Nahavand, Iran. The first simulation was done using two types of ANN and ANFIS models. Then, using wavelet theory and decomposing input signals of the used parameters, sub-signals were obtained and were fed into the ANN and ANFIS to obtain hybrid models of WANN and WANFIS. In this study, in addition to the parameters of precipitation and flow, parameters of temperature and evaporation were used to analyze their effects on the simulation. The results showed that using wavelet transform improved the performance of the models in both monthly and daily scale. However, it had a better effect on the monthly scale and the WANFIS was the best model.
Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection
DEFF Research Database (Denmark)
Bork, Lasse; Møller, Stig Vinther
2015-01-01
We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...
Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis
Xu, Jinyang; El Mansori, Mohamed
2016-01-01
In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824
Energy Technology Data Exchange (ETDEWEB)
Xiong, Qi-lin, E-mail: xiongql@hust.edu.cn [Department of Mechanics, Huazhong University of Science & Technology, 1037 Luoyu Road, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China); Tian, Xiao Geng [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi’an Jiaotong University, Xi’an 710049 (China)
2015-10-15
The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs), single-walled carbon nanotubes (SWCNTs), and their hybrid structures (SWBN-CNTs) are investigated using molecular dynamics (MD) simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs), including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length on the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X) and the angles of bonds.
International Nuclear Information System (INIS)
Tsuanyo, David; Azoumah, Yao; Aussel, Didier; Neveu, Pierre
2015-01-01
This paper presents a new model and optimization procedure for off-grid hybrid PV (photovoltaic)/Diesel systems operating without battery storage. The proposed technico-economic model takes into account the variability of both the solar irradiation and the electrical loads. It allows optimizing the design and the operation of the hybrid systems by searching their lowest LCOE (Levelized Cost of Electricity). Two cases have been investigated: identical Diesel generators and Diesel generators with different sizes, and both are compared to conventional standalone Diesel generator systems. For the same load profile, the optimization results show that the LCOE of the optimized batteryless hybrid solar PV/Diesel (0.289 €/kWh for the hybrid system with identical Diesel generators and 0.284 €/kWh for the hybrid system with different sizes of Diesel generators) is lower than the LCOE obtained with standalone Diesel generators (0.32 €/kWh for the both cases). The obtained results are then confirmed by HOMER (Hybrid Optimization Model for Electric Renewables) software. - Highlights: • A technico-economic model for optimal design and operation management of batteryless hybrid systems is developed. • The model allows optimizing design and operation of hybrid systems by ensuring their lowest LCOE. • The model was validated by HOMER. • Batteryless hybrid system are suitable for off-grid applications
Modelling of hybrid energy system - Part I: Problem formulation and model development
Energy Technology Data Exchange (ETDEWEB)
Gupta, Ajai; Saini, R.P.; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)
2011-02-15
A well designed hybrid energy system can be cost effective, has a high reliability and can improve the quality of life in remote rural areas. The economic constraints can be met, if these systems are fundamentally well designed, use appropriate technology and make use effective dispatch control techniques. The first paper of this tri-series paper, presents the analysis and design of a mixed integer linear mathematical programming model (time series) to determine the optimal operation and cost optimization for a hybrid energy generation system consisting of a photovoltaic array, biomass (fuelwood), biogas, small/micro-hydro, a battery bank and a fossil fuel generator. The optimization is aimed at minimizing the cost function based on demand and potential constraints. Further, mathematical models of all other components of hybrid energy system are also developed. This is the generation mix of the remote rural of India; it may be applied to other rural areas also. (author)
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
PWR hybrid computer model for assessing the safety implications of control systems
International Nuclear Information System (INIS)
Smith, O.L.; Renier, J.P.; Difilippo, F.C.; Clapp, N.E.; Sozer, A.; Booth, R.S.; Craddick, W.G.; Morris, D.G.
1986-03-01
The ORNL study of safety-related aspects of nuclear power plant control systems consists of two interrelated tasks: (1) failure mode and effects analysis (FMEA) that identified single and multiple component failures that might lead to significant plant upsets and (2) computer models that used these failures as initial conditions and traced the dynamic impact on the control system and remainder of the plant. This report describes the simulation of Oconee Unit 1, the first plant analyzed. A first-principles, best-estimate model was developed and implemented on a hybrid computer consisting of AD-4 analog and PDP-10 digital machines. Controls were placed primarily on the analog to use its interactive capability to simulate operator action. 48 refs., 138 figs., 15 tabs
The angular structure of jet quenching within a hybrid strong/weak coupling model
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-08-01
Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.
Simulation of hybrid vehicle propulsion with an advanced battery model
Energy Technology Data Exchange (ETDEWEB)
Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)
2011-07-01
In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect
Model-based framework for multi-axial real-time hybrid simulation testing
Fermandois, Gaston A.; Spencer, Billie F.
2017-10-01
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six
Applying a Hybrid MCDM Model for Six Sigma Project Selection
Directory of Open Access Journals (Sweden)
Fu-Kwun Wang
2014-01-01
Full Text Available Six Sigma is a project-driven methodology; the projects that provide the maximum financial benefits and other impacts to the organization must be prioritized. Project selection (PS is a type of multiple criteria decision making (MCDM problem. In this study, we present a hybrid MCDM model combining the decision-making trial and evaluation laboratory (DEMATEL technique, analytic network process (ANP, and the VIKOR method to evaluate and improve Six Sigma projects for reducing performance gaps in each criterion and dimension. We consider the film printing industry of Taiwan as an empirical case. The results show that our study not only can use the best project selection, but can also be used to analyze the gaps between existing performance values and aspiration levels for improving the gaps in each dimension and criterion based on the influential network relation map.
RF modeling of the ITER-relevant lower hybrid antenna
International Nuclear Information System (INIS)
Hillairet, J.; Ceccuzzi, S.; Belo, J.; Marfisi, L.; Artaud, J.F.; Bae, Y.S.; Berger-By, G.; Bernard, J.M.; Cara, Ph.; Cardinali, A.; Castaldo, C.; Cesario, R.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hoang, G.T.
2011-01-01
In the frame of the EFDA task HCD-08-03-01, a 5 GHz Lower Hybrid system which should be able to deliver 20 MW CW on ITER and sustain the expected high heat fluxes has been reviewed. The design and overall dimensions of the key RF elements of the launcher and its subsystem has been updated from the 2001 design in collaboration with ITER organization. Modeling of the LH wave propagation and absorption into the plasma shows that the optimal parallel index must be chosen between 1.9 and 2.0 for the ITER steady-state scenario. The present study has been made with n || = 2.0 but can be adapted for n || = 1.9. Individual components have been studied separately giving confidence on the global RF design of the whole antenna.
Exploring the lambda model of the hybrid superstring
Energy Technology Data Exchange (ETDEWEB)
Schmidtt, David M. [Instituto de Física Teórica IFT/UNESP,Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, CEP 01140-070, São Paulo-SP (Brazil)
2016-10-26
The purpose of this contribution is to initiate the study of integrable deformations for different superstring theory formalisms that manifest the property of (classical) integrability. In this paper we choose the hybrid formalism of the superstring in the background AdS{sub 2}×S{sup 2} and explore in detail the most immediate consequences of its λ-deformation. The resulting action functional corresponds to the λ-model of the matter part of the fairly more sophisticated pure spinor formalism, which is also known to be classical integrable. In particular, the deformation preserves the integrability and the one-loop conformal invariance of its parent theory, hence being a marginal deformation.
Modeling Gas Dynamics in California Sea Lions
2015-09-30
W. and Fahlman, A. (2009). Could beaked whales get the bends?. Effect of diving behaviour and physiology on modelled gas exchange for three species...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Modeling Gas Dynamics in California Sea Lions Andreas...to update a current gas dynamics model with recently acquired data for respiratory compliance (P-V), and body compartment size estimates in