A multiconfigurational hybrid density-functional theory
DEFF Research Database (Denmark)
Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard
2012-01-01
We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...
A multiconfigurational hybrid density-functional theory
DEFF Research Database (Denmark)
Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard
2012-01-01
We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...
A multiconfigurational hybrid density-functional theory
Sharkas, Kamal; Jensen, Hans Jørgen Aa; Toulouse, Julien; 10.1063/1.4733672
2012-01-01
We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension of the usual hybrid approximations by essentially adding a fraction \\lambda of exact static correlation in addition to the fraction \\lambda of exact exchange. Test calculations on the cycloaddition reactions of ozone with ethylene or acetylene and the dissociation of diatomic molecules with the Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) density functionals show that a good value of \\lambda is 0.25, as in the usual hybrid approximations. The results suggest that the proposed multiconfigurational hybrid approximations can improve over usual density-functional calculations for situations with strong static correlation effects.
Spin projection with double hybrid density functional theory.
Thompson, Lee M; Hratchian, Hrant P
2014-07-21
A spin projected double-hybrid density functional theory is presented that accounts for different scaling of opposite and same spin terms in the second order correction. This method is applied to three dissociation reactions which in the unprojected formalism exhibit significant spin contamination with higher spin states. This gives rise to a distorted potential surface and can lead to poor geometries and energies. The projected method presented is shown to improve the description of the potential over unprojected double hybrid density functional theory. Comparison is made with the reference states of the two double hybrid functionals considered here (B2PLYP and mPW2PLYP) in which the projected potential surface is degraded by an imbalance in the description of dynamic and static correlation.
Study of Magnesium Diboride Clusters Using Hybrid Density Functional Theory
Directory of Open Access Journals (Sweden)
D. Rodríguez
2007-12-01
Full Text Available Using hybrid density functional theory and a relatively large basis set, the lowest energy equilibrium structure, vibrational spectrum, and natural orbital analysis were obtained for magnesium diboride clusters [(MgB2x for x=1,2, and 3]. For comparison, boron clusters [BxÃ‚Â forÃ‚Â x=2,4,Ã‚Â andÃ‚Â 6] were also considered. The MgB2 and (MgB22 showed equilibrium structures with the boron atoms in arrangements similar to what was obtained for pure boron atoms, whereas, for (MgB23 a different arrangement of boron was obtained. From the population analysis, large electron density in the boron atoms forming the clusters was observed.
Hybrid density functional theory band structure engineering in hematite.
Pozun, Zachary D; Henkelman, Graeme
2011-06-14
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe(2)O(3), hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe(2)O(3) crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
Double-hybrid density-functional theory made rigorous
Sharkas, Kamal; Savin, Andreas
2010-01-01
We provide a rigorous derivation of a class of double-hybrid approximations, combining Hartree-Fock exchange and second-order Moller-Plesset correlation with a semilocal exchange-correlation density functional. These double-hybrid approximations contain only one empirical parameter and use a density-scaled correlation energy functional. Neglecting density scaling leads to an one-parameter version of the standard double-hybrid approximations. We assess the performance of these double-hybrid schemes on representative test sets of atomization energies and reaction barrier heights, and we compare to other hybrid approximations, including range-separated hybrids. Our best one-parameter double-hybrid approximation, called 1DH-BLYP, roughly reproduces the two parameters of the standard B2-PLYP or B2GP-PLYP double-hybrid approximations, which shows that these methods are not only empirically close to an optimum for general chemical applications but are also theoretically supported.
Computationally efficient double hybrid density functional theory using dual basis methods
Byrd, Jason N
2015-01-01
We examine the application of the recently developed dual basis methods of Head-Gordon and co-workers to double hybrid density functional computations. Using the B2-PLYP, B2GP-PLYP, DSD-BLYP and DSD-PBEP86 density functionals, we assess the performance of dual basis methods for the calculation of conformational energy changes in C$_4$-C$_7$ alkanes and for the S22 set of noncovalent interaction energies. The dual basis methods, combined with resolution-of-the-identity second-order M{\\o}ller-Plesset theory, are shown to give results in excellent agreement with conventional methods at a much reduced computational cost.
Hybrid density functional theory LCAO calculations on phonons in Ba (Ti,Zr,Hf) O3
Evaestov, Robert A
2010-01-01
Phonon frequencies at {\\Gamma},X,M,R-points of Brilloin zone in cubic phase of Ba(Ti,Zr,Hf)O3 were first time calculated by frozen phonon method using density functional theory (DFT) with hybrid exchange correlation functional PBE0. The calculations use linear combination of atomic orbitals (LCAO) basis functions as implemented in CRYSTAL09 computer code. The Powell algorithm was applied for basis set optimization. In agreement with the experimental observations the structural instability via...
Range-separated double-hybrid density-functional theory applied to periodic systems
Sansone, Giuseppe; Civalleri, Bartolomeo; Usvyat, Denis; Toulouse, Julien; Sharkas, Kamal; Maschio, Lorenzo
2015-01-01
International audience; Quantum chemistry methods exploiting density-functional approximations for short-range electron-electron interactions and second-order M{{\\o}}ller-Plesset (MP2) perturbation theory for long-range electron-electron interactions have been implemented for periodic systems using Gaussian-type basis functions and the local correlation framework. The performance of these range-separated double hybrids has been benchmarked on a significant set of systems including rare-gas, m...
Stochastic Optimally-Tuned Ranged-Separated Hybrid Density Functional Theory
Neuhauser, Daniel; Cytter, Yael; Baer, Roi
2015-01-01
We develop a stochastic formulation of the optimally-tuned range-separated hybrid density functional theory which enables significant reduction of the computational effort and scaling of the non-local exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band-edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advan...
Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation
Energy Technology Data Exchange (ETDEWEB)
Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)
2015-01-21
We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.
Enhanced NLO response in BODIPY-coumarin hybrids: density functional theory approach
Indian Academy of Sciences (India)
YOGESH ERANDE; NAGAIYAN SEKAR
2017-09-01
We have thoroughly investigated the first, second and third polarizability characteristics of four hybrid chromophores by spectroscopic and computational methods. B3LYP, CAMB3LYP and BHandHLYP functionals in combination with 6-311+G(d,p) basis set were used to evaluate the polarizability and hyperpolarizability characteristics of these chromophores. Generalized Mulliken Hush analysis and frontier molecular orbital electronic distribution images of chromophores obtained from Density functional theory computation has established the charge transfer characteristics of these hybrid chromophores. On the basis of charge transfer characteristic, these red absorbing and NIR emissive chromophores possess high nonlinear optical response. Comparison of isolated units with their analogous hybrid chromophores shows that fusion ofcoumarin with BODIPY enhances the nonlinear optical response.
Vacancy formation in MoO3: hybrid density functional theory and photoemission experiments
Salawu, Omotayo Akande
2016-09-29
Molybdenum oxide (MoO3) is an important material that is being considered for numerous technological applications, including catalysis and electrochromism. In the present study, we apply hybrid density functional theory to investigate O and Mo vacancies in the orthorhombic phase. We determine the vacancy formation energies of different defect sites as functions of the electron chemical potential, addressing different charge states. In addition, we investigate the consequences of defects for the material properties. Ultraviolet photoemission spectroscopy is employed to study the valence band of stoichiometric and O defective MoO3. We show that O vacancies result in occupied in-gap states.
Excitons in solids with non-empirical hybrid time-dependent density-functional theory
Ullrich, Carsten; Yang, Zeng-Hui; Sottile, Francesco
2015-03-01
The Bethe-Salpeter equation (BSE) accurately describes the optical properties of solids, but is computationally expensive. Time-dependent density-functional theory (TDDFT) is more efficient, but standard functionals do not produce excitons in extended systems. We present a new, non-empirical hybrid TDDFT approach whose computational cost is much less than BSE, while the accuracy for both bound excitons and the continuum spectra is comparable to that of the BSE. Good performance is observed for both small-gap semiconductors and large-gap insulators. Work supported by NSF Grant DMR-1408904.
G-centers in irradiated silicon revisited: A screened hybrid density functional theory approach
Wang, H.
2014-05-13
Electronic structure calculations employing screened hybrid density functional theory are used to gain fundamental insight into the interaction of carbon interstitial (Ci) and substitutional (Cs) atoms forming the CiCs defect known as G-center in silicon (Si). The G-center is one of the most important radiation related defects in Czochralski grown Si. We systematically investigate the density of states and formation energy for different types of CiCs defects with respect to the Fermi energy for all possible charge states. Prevalence of the neutral state for the C-type defect is established.
A-centers in silicon studied with hybrid density functional theory
Wang, Hao
2013-07-29
Density functional theory employing hybrid functional is used to gain fundamental insight into the interaction of vacancies with oxygen interstitials to form defects known as A-centers in silicon. We calculate the formation energy of the defect with respect to the Fermi energy for all possible charge states. It is found that the neutral and doubly negatively charged A-centers dominate. The findings are analyzed in terms of the density of states and discussed in view of previous experimental and theoretical studies.
VV and VO2 defects in silicon studied with hybrid density functional theory
Christopoulos, Stavros Richard G
2014-12-07
The formation of VO (A-center), VV and VO2 defects in irradiated Czochralski-grown silicon (Si) is of technological importance. Recent theoretical studies have examined the formation and charge states of the A-center in detail. Here we use density functional theory employing hybrid functionals to analyze the formation of VV and VO2 defects. The formation energy as a function of the Fermi energy is calculated for all possible charge states. For the VV and VO2 defects double negatively charged and neutral states dominate, respectively.
Neese, Frank; Schwabe, Tobias; Grimme, Stefan
2007-03-28
A recently proposed new family of density functionals [S. Grimme, J. Chem. Phys. 124, 34108 (2006)] adds a fraction of nonlocal correlation as a new ingredient to density functional theory (DFT). This fractional correlation energy is calculated at the level of second-order many-body perturbation theory (PT2) and replaces some of the semilocal DFT correlation of standard hybrid DFT methods. The new "double hybrid" functionals (termed, e.g., B2-PLYP) contain only two empirical parameters that have been adjusted in thermochemical calculations on parts of the G2/3 benchmark set. The methods have provided the lowest errors ever obtained by any DFT method for the full G3 set of molecules. In this work, the applicability of the new functionals is extended to the exploration of potential energy surfaces with analytic gradients. The theory of the analytic gradient largely follows the standard theory of PT2 gradients with some additional subtleties due to the presence of the exchange-correlation terms in the self-consistent field operator. An implementation is reported for closed-shell as well as spin-unrestricted reference determinants. Furthermore, the implementation includes external point charge fields and also accommodates continuum solvation models at the level of the conductor like screening model. The density fitting resolution of the identity (RI) approximation can be applied to the evaluation of the PT2 part with large gains in computational efficiency. For systems with approximately 500-600 basis functions the evaluation of the double hybrid gradient is approximately four times more expensive than the calculation of the standard hybrid DFT gradient. Extensive test calculations are provided for main group elements and transition metal containing species. The results reveal that the B2-PLYP functional provides excellent molecular geometries that are superior compared to those from standard DFT and MP2.
Hybrid density functional theory description of N- and C-doping of NiO.
Nolan, Michael; Long, Run; English, Niall J; Mooney, Damian A
2011-06-14
The large intrinsic bandgap of NiO hinders its potential application as a photocatalyst under visible-light irradiation. In this study, we have performed first-principles screened exchange hybrid density functional theory with the HSE06 functional calculations of N- and C-doped NiO to investigate the effect of doping on the electronic structure of NiO. C-doping at an oxygen site induces gap states due to the dopant, the positions of which suggest that the top of the valence band is made up primarily of C 2p-derived states with some Ni 3d contributions, and the lowest-energy empty state is in the middle of the gap. This leads to an effective bandgap of 1.7 eV, which is of potential interest for photocatalytic applications. N-doping induces comparatively little dopant-Ni 3d interactions, but results in similar positions of dopant-induced states, i.e., the top of the valence band is made up of dopant 2p states and the lowest unoccupied state is the empty gap state derived from the dopant, leading to bandgap narrowing. With the hybrid density functional theory (DFT) results available, we discuss issues with the DFT corrected for on-site Coulomb description of these systems.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
Garwood, T.; Modine, N. A.; Krishna, S.
2017-03-01
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.
DEFF Research Database (Denmark)
Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond
2009-01-01
We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid...... and time reversal symmetry on trial vectors to obtain even better reductions in terms of memory and run time, and without invoking approximations. Further reductions are obtained by exploiting point group symmetries for D2h and subgroups in a symmetry scheme where symmetry reductions translate...... into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...
Chai, Jeng-Da
2016-01-01
We propose hybrid schemes incorporating exact exchange into thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] for an improved description of nonlocal exchange effects. With a few simple modifications, global and range-separated hybrid functionals in Kohn-Sham density functional theory (KS-DFT) can be combined seamlessly with TAO-DFT. In comparison with global hybrid functionals in KS-DFT, the resulting global hybrid functionals in TAO-DFT yield promising performance for systems with strong static correlation effects (e.g., the H2 dissociation and electronic properties of linear acenes), while maintaining similar performance for systems without strong static correlation effects. Besides, a reasonably accurate description of noncovalent interactions can be efficiently achieved through the inclusion of dispersion corrections in hybrid TAO-DFT. Relative to TAO-DFAs (i.e., TAO-DFT with the conventional density functional approximations), global hybrid...
Quantal density functional theory
Sahni, Viraht
2016-01-01
This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...
Doping strategies to control A-centres in silicon: Insights from hybrid density functional theory
Wang, Hao
2014-01-01
Hybrid density functional theory is used to gain insights into the interaction of intrinsic vacancies (V) and oxygen-vacancy pairs (VO, known as A-centres) with the dopants (D) germanium (Ge), tin (Sn), and lead (Pb) in silicon (Si). We determine the structures as well as binding and formation energies of the DVO and DV complexes. The results are discussed in terms of the density of states and in view of the potential of isovalent doping to control A-centres in Si. We argue that doping with Sn is the most efficient isovalent doping strategy to suppress A-centres by the formation of SnVO complexes, as these are charge neutral and strongly bound. © 2014 the Owner Societies.
G-centers in irradiated silicon revisited: A screened hybrid density functional theory approach
Energy Technology Data Exchange (ETDEWEB)
Wang, H.; Schwingenschlögl, U., E-mail: Udo.Schwingenschlogl@kaust.edu.sa [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Chroneos, A., E-mail: Alex.Chroneos@open.ac.uk [Engineering and Innovation, The Open University, Milton Keynes MK7 6AA (United Kingdom); Department of Materials, Imperial College, London SW7 2AZ (United Kingdom); Londos, C. A.; Sgourou, E. N. [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece)
2014-05-14
Electronic structure calculations employing screened hybrid density functional theory are used to gain fundamental insight into the interaction of carbon interstitial (C{sub i}) and substitutional (C{sub s}) atoms forming the C{sub i}C{sub s} defect known as G-center in silicon (Si). The G-center is one of the most important radiation related defects in Czochralski grown Si. We systematically investigate the density of states and formation energy for different types of C{sub i}C{sub s} defects with respect to the Fermi energy for all possible charge states. Prevalence of the neutral state for the C-type defect is established.
Partition density functional theory
Nafziger, Jonathan
Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.
Range-separated double-hybrid density-functional theory applied to periodic systems
Sansone, Giuseppe; Usvyat, Denis; Toulouse, Julien; Sharkas, Kamal; Maschio, Lorenzo
2015-01-01
Quantum chemistry methods exploiting density-functional approximations for short-range electron-electron interactions and second-order M{{\\o}}ller-Plesset (MP2) perturbation theory for long-range electron-electron interactions have been implemented for periodic systems using Gaussian-type basis functions and the local correlation framework. The performance of these range-separated double hybrids has been benchmarked on a significant set of systems including rare-gas, molecular, ionic, and covalent crystals. The use of spin-component-scaled MP2 for the long-range part has been tested as well. The results show that the value of $\\mu$ = 0.5 bohr^{--1} for the range-separation parameter usually used for molecular systems is also a reasonable choice for solids. Overall, these range-separated double hybrids provide a good accuracy for binding energies using basis sets of moderate sizes such as cc-pVDZ and aug-cc-pVDZ.
Range-separated double-hybrid density-functional theory applied to periodic systems
Energy Technology Data Exchange (ETDEWEB)
Sansone, Giuseppe; Civalleri, Bartolomeo; Maschio, Lorenzo, E-mail: lorenzo.maschio@unito.it [Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, via Giuria 5, I-10125 Torino (Italy); Usvyat, Denis [Institute for Physical and Theoretical Chemistry, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg (Germany); Toulouse, Julien [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Sharkas, Kamal [Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000 (United States)
2015-09-14
Quantum chemistry methods exploiting density-functional approximations for short-range electron-electron interactions and second-order Møller-Plesset (MP2) perturbation theory for long-range electron-electron interactions have been implemented for periodic systems using Gaussian-type basis functions and the local correlation framework. The performance of these range-separated double hybrids has been benchmarked on a significant set of systems including rare-gas, molecular, ionic, and covalent crystals. The use of spin-component-scaled MP2 for the long-range part has been tested as well. The results show that the value of μ = 0.5 bohr{sup −1} for the range-separation parameter usually used for molecular systems is also a reasonable choice for solids. Overall, these range-separated double hybrids provide a good accuracy for binding energies using basis sets of moderate sizes such as cc-pVDZ and aug-cc-pVDZ.
Rare Earth Interstitials in Ge: A Hybrid Density Functional Theory Study
Igumbor, E.; Andrew, R. C.; Meyer, W. E.
2017-02-01
In this work, the results of density functional theory calculations for rare earth (Ce, Pr, Eu, and Er) interstitials in Ge are presented. We employed the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) for all the calculations. We calculated the formation energies and charge state transition levels for the tetrahedral (T) and hexagonal (H) configurations of the Ce, Pr, Eu, and Er interstitials in Ge. While for the T configuration, the charge states of the Ce and Pr did not induce any thermodynamic accessible transition state level within the band gap of Ge, for both the T and H configurations the Eu and Er interstitials in Ge induce deep levels in the band gap. The H configuration of the Ce interstitial in Ge induces a shallow donor level at 0.03 eV below the conduction band. The Eu interstitial exhibits negative-U properties for the (+2/-2) transition level and the Er interstitial displays characteristics of charge state controlled metastability.
Directory of Open Access Journals (Sweden)
Jacky Even
2014-01-01
Full Text Available Potentialities of density functional theory (DFT based methodologies are explored for photovoltaic materials through the modeling of the structural and optoelectronic properties of semiconductor hybrid organic-inorganic perovskites and GaAs/GaP heterostructures. They show how the properties of these bulk materials, as well as atomistic relaxations, interfaces, and electronic band-lineups in small heterostructures, can be thoroughly investigated. Some limitations of available standard DFT codes are discussed. Recent improvements able to treat many-body effects or based on density-functional perturbation theory are also reviewed in the context of issues relevant to photovoltaic technologies.
Chung, Kyung-Hoon; Koo, Bon-Gil; Kim, Howon; Yoon, Jong Keon; Kim, Ji-Hoon; Kwon, Young-Kyun; Kahng, Se-Jong
2012-05-28
The electronic structures of self-assembled hybrid chains comprising Ag atoms and organic molecules were studied using scanning tunneling microscopy (STM) and spectroscopy (STS) in parallel with density functional theory (DFT). Hybrid chains were prepared by catalytic breaking of Br-C bonds in 4,4″-dibromo-p-terphenyl molecules, followed by spontaneous formation of Ag-C bonds on Ag(111). An atomic model was proposed for the observed hybrid chain structures. Four electronic states were resolved using STS measurements, and strong energy dependence was observed in STM images. These results were explained using first-principles calculations based on DFT.
DEFF Research Database (Denmark)
Verma, Ashok K.; Modak, P.; Sharma, Surinder M.;
2013-01-01
First-principles calculations have been performed for americium (Am) metal using the generalized gradient approximation + orbital-dependent onsite Coulomb repulsion via Hubbard interaction (GGA+U) and hybrid density functional theory (HYB-DFT) methods to investigate various ground state properties...... spectrum at ambient pressure relate, for some parameter choices, well to peak positions in the calculated density of states function of Am-I....
Quantal Density Functional Theory II
Sahni, Viraht
2009-01-01
Discusses approximation methods and applications of Quantal Density Functional Theory (QDFT), a local effective-potential-energy theory of electronic structure. This book describes approximations methods based on the incorporation of different electron correlations, as well as a many-body perturbation theory within the context of QDFT
Ge, Xiaochuan; Rocca, Dario; Gebauer, Ralph; Baroni, Stefano
2014-01-01
We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville-Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C$_{21}$O$_{11}$H$_{21}$) molecule using the Gaussian09 and turboTDDFT 1.0 codes.
Yoosefian, Mehdi; Etminan, Nazanin
2016-07-01
In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.
Genovese, Luigi; Ospici, Matthieu; Deutsch, Thierry; Méhaut, Jean-François; Neelov, Alexey; Goedecker, Stefan
2009-07-21
We present the implementation of a full electronic structure calculation code on a hybrid parallel architecture with graphic processing units (GPUs). This implementation is performed on a free software code based on Daubechies wavelets. Such code shows very good performances, systematic convergence properties, and an excellent efficiency on parallel computers. Our GPU-based acceleration fully preserves all these properties. In particular, the code is able to run on many cores which may or may not have a GPU associated, and thus on parallel and massive parallel hybrid machines. With double precision calculations, we may achieve considerable speedup, between a factor of 20 for some operations and a factor of 6 for the whole density functional theory code.
Density functional theory: Foundations reviewed
Energy Technology Data Exchange (ETDEWEB)
Kryachko, Eugene S., E-mail: eugene.kryachko@ulg.ac.be [Bogolyubov Institute for Theoretical Physics, Kiev, 03680 (Ukraine); Ludeña, Eduardo V., E-mail: popluabe@yahoo.es [Centro de Química, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Prometheus Program, Senescyt (Ecuador); Grupo Ecuatoriano para el Estudio Experimental y Teórico de Nanosistemas, GETNano, USFQ, N104-E, Quito (Ecuador); Escuela Politécnica Superior del Litoral, ESPOL, Guayaquil (Ecuador)
2014-11-10
transformation (local-scaling of coordinates proceeds through density transformation) and so, because these functionals are constructed from prototype N-particle wavefunctions, the ensuing density functionals already have built-in N-representability conditions. This theory is presented in great detail with the purpose of illustrating an alternative way to HKS-DFT which could be used to improve the construction of HKS-DFT functionals. Let us clearly indicate, however, that although appealing from a theoretical point of view, the actual application of LS-DFT to large systems has not taken place mostly because of technical difficulties. Thus, our aim in introducing this theory is to foster a better understanding of its foundations with the hope that it may promote a cross-hybridization with the already existing approaches. Also, to complete our previous discussion on symmetry, in particular, spin-symmetry, we discuss this issue from the perspective of LS-DFT. Finally, in Section 6, we discuss dispersion molecular forces emphasizing their relevance to DFT approaches.
Semiclassics in Density Functional Theory
Lee, Donghyung; Cangi, Attila; Elliott, Peter; Burke, Kieron
2009-03-01
Recently, we published an article [1] about the semiclassical origin of density functional theory. We showed that the density and the kinetic energy density of one dimensional finite systems with hard walls can be expressed in terms of the external potential using the semiclassical Green's function method. Here, we show a uniformization scheme for the semiclassical density and the kinetic energy density for turning-point problems.[1] P. Elliott, D. Lee, A. Cangi, and K. Burke, Phys. Rev. Lett. 100, 256406 (2008).
Nishihara, S.; Otani, M.
2017-09-01
We present two hybrid solvation models for the calculation of the solvation structure with model 1 in a confined nanospace in bulk materials and model 2 at solid/liquid interfaces where an electrode is in contact with an electrolyte and a membrane is immersed into a solution. The hybrid theory is based on the reference interaction site method (RISM) for the solvent region. The electronic structure of a bulk material, an electrode, and a membrane is treated by density functional theory with the plane-wave basis and pseudopotentials technique. For model 1, we use the three-dimensional RISM (3D-RISM) by imposing a 3D periodic boundary condition on the system. However, for model 2, we reformulate the RISM by means of a two-dimensional boundary condition parallel to the surface and an open boundary condition normal to the surface. Four benchmark calculations are performed for the formaldehyde-water system, water packed into a zeolite framework, a NaCl solution in contact with an Al electrode, and an Al thin film immersed in a NaCl solution with different concentrations. The calculations are shown to be efficient and stable. Because of the flexibility of the RISM theory, the models are considered to be applicable to a wide range of solid/liquid interfaces.
Ihrig, Arvid Conrad; Wieferink, Jürgen; Zhang, Igor Ying; Ropo, Matti; Ren, Xinguo; Rinke, Patrick; Scheffler, Matthias; Blum, Volker
2015-09-01
A key component in calculations of exchange and correlation energies is the Coulomb operator, which requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals are most efficiently evaluated with the resolution of identity (RI) technique, which expands basis-function products in an auxiliary basis. In this work we show the practical applicability of a localized RI-variant (‘RI-LVL’), which expands products of basis functions only in the subset of those auxiliary basis functions which are located at the same atoms as the basis functions. We demonstrate the accuracy of RI-LVL for Hartree-Fock calculations, for the PBE0 hybrid density functional, as well as for RPA and MP2 perturbation theory. Molecular test sets used include the S22 set of weakly interacting molecules, the G3 test set, as well as the G2-1 and BH76 test sets, and heavy elements including titanium dioxide, copper and gold clusters. Our RI-LVL implementation paves the way for linear-scaling RI-based hybrid functional calculations for large systems and for all-electron many-body perturbation theory with significantly reduced computational and memory cost.
Ma, Li; Ray, Asok K.
2010-03-01
As a continuation of our studies of pure actinide metals using hybrid density functional theory,footnotetextR. Atta-Fynn and A. K. Ray, Europhysics Letters, 85, 27008-p1- p6 (2009); Chemical Physics Letters, 482, 223-227 (2009). we present here a systematic study of the electronic and geometric structure properties of mixed actinide dioxides, U0.5Pu0.5O2, U0.5Am0.5O2, Pu0.5Am0.5 O2 and U0.8Pu0.2O2. The fraction of exact Hartree-Fock exchange used was 40%. To investigate the effect of spin-orbit coupling on the ground state electronic and geometric structure properties, computations have been carried out at two theoretical levels, one at the scalar-relativistic level with no spin-orbit coupling and one at the fully relativistic level with spin-orbit coupling. Thermodynamic properties have been calculated by a coupling of first-principles calculation and lattice dynamics.
Mukhopadhyay, S.; Finnis, M. W.; Harrison, N. M.
2013-03-01
Hybrid-exchange density functional theory has been used to model the electronic structure of LaCoO3. Based on a rhombohedral unit cell of R3¯c symmetry containing two Co atoms we find a mixed spin phase, comprising alternating low and high spin Co+3 ions, with a total energy at 0 K just 57 meV per formula unit above that of a nonmagnetic semiconducting ground state. In the mixed spin phase the high-spin Co+3 ions have spin moments of 3.1μB and the state is insulating with a band gap of 2.2 eV. Our calculations suggest that the effective on-site Coulomb repulsion energy Ueff on Co+3 ions is spin dependent. The Ueff on Co+3 ions is 7.1 eV and 8.5 eV for the nonmagnetic ground state and for the magnetic high spin state, respectively. For the mixed spin state, two different Ueff are estimated for two Co+3 ions in the unit cell having different spin states, 8.0 eV for the high-spin Co+3 ion and 7.0 eV for the low-spin Co+3 ion. An estimate of the harmonic phonon free energy suggests that this mixed spin phase would become the more stable phase as the temperature increases, which is consistent with experimental evidence. An alternative intermediate spin state is higher in energy at all temperatures.
Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo
2013-08-01
One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.
A Density Functional Theory Study
Lim, XiaoZhi
2011-12-11
Complexes with pincer ligand moieties have garnered much attention in the past few decades. They have been shown to be highly active catalysts in several known transition metal-catalyzed organic reactions as well as some unprecedented organic transformations. At the same time, the use of computational organometallic chemistry to aid in the understanding of the mechanisms in organometallic catalysis for the development of improved catalysts is on the rise. While it was common in earlier studies to reduce computational cost by truncating donor group substituents on complexes such as tertbutyl or isopropyl groups to hydrogen or methyl groups, recent advancements in the processing capabilities of computer clusters and codes have streamlined the time required for calculations. As the full modeling of complexes become increasingly popular, a commonly overlooked aspect, especially in the case of complexes bearing isopropyl substituents, is the conformational analysis of complexes. Isopropyl groups generate a different conformer with each 120 ° rotation (rotamer), and it has been found that each rotamer typically resides in its own potential energy well in density functional theory studies. As a result, it can be challenging to select the most appropriate structure for a theoretical study, as the adjustment of isopropyl substituents from a higher-energy rotamer to the lowest-energy rotamer usually does not occur during structure optimization. In this report, the influence of the arrangement of isopropyl substituents in pincer complexes on calculated complex structure energies as well as a case study on the mechanism of the isomerization of an iPrPCP-Fe complex is covered. It was found that as many as 324 rotamers can be generated for a single complex, as in the case of an iPrPCP-Ni formato complex, with the energy difference between the global minimum and the highest local minimum being as large as 16.5 kcalmol-1. In the isomerization of a iPrPCP-Fe complex, it was found
Chan, Bun; Radom, Leo
2011-09-13
A variety of combinations of B-LYP-based double-hybrid density functional theory (DHDFT) procedures and basis sets have been examined. A general observation is that the optimal combination of exchange contributions is in the proximity of 30% Becke 1988 (B88) exchange and 70% Hartree-Fock (HF) exchange, while for the correlation contributions, the use of independently optimized spin-component-scaled Møller-Plesset second-order perturbation theory (SCS-MP2) parameters (MP2OS and MP2SS) is beneficial. The triple-ζ Dunning aug'-cc-pVTZ+d and Pople 6-311+G(3df,2p)+d basis sets are found to be cost-effective for DHDFT methods. As a result, we have formulated the DuT-D3 DHDFT procedure, which employs the aug'-cc-pVTZ+d basis set and includes 30% B88 and 70% HF exchange energies, 59% LYP, 47% MP2OS, and 36% MP2SS correlation energies, and a D3 dispersion correction with the parameters s6 = 0.5, sr,6 = 1.569, and s8 = 0.35. Likewise, the PoT-D3 DHDFT procedure was formulated with the 6-311+G(3df,2p)+d basis set and has 32% B88 and 68% HF exchange energies, 63% LYP, 46% MP2OS, and 27% MP2SS correlation energies, and the D3 parameters s6 = 0.5, sr,6 = 1.569, and s8 = 0.30. Testing using the large E3 set of 740 energies demonstrates the robustness of these methods. Further comparisons show that the performance of these methods, particularly DuT-D3, compares favorably with the previously reported DSD-B-LYP and DSD-B-LYP-D3 methods used in conjunction with quadruple-ζ aug'-pc3+d and aug'-def2-QZVP basis sets but at lower computational expense. The previously reported ωB97X-(LP)/6-311++G(3df,3pd) procedure also performs very well. Our findings highlight the cost-effectiveness of appropriate- and moderate-sized triple-ζ basis sets in the application of DHDFT procedures.
El-Mellouhi, Fadwa; Lucero, Melissa J; Scuseria, Gustavo E
2011-01-01
We have calculated the properties of SrTiO3 (STO) using a wide array of density functionals ranging from standard semi-local functionals to modern range-separated hybrids, combined with several basis sets of varying size/quality. We show how these combination's predictive ability varies signi?cantly, both for STO's cubic and antiferrodistortive (AFD) phases, with the greatest variation in functional/basis set e?cacy seen in modeling the AFD phase. The screened hybrid functionals we utilized predict the structural properties of both phases in very good agreement with experiment, especially if used with large (but still computationally tractable) basis sets. The most accurate results presented in this study, namely those from HSE06/modi?ed-def2-TZVP, stand as the most accurate modeling of STO to date when compared to the literature; these results agree well with experimental structural and electronic properties as well as providing insight into the band structure alteration during the phase transition.
Density functional theory in quantum chemistry
Tsuneda, Takao
2014-01-01
This book examines density functional theory based on the foundation of quantum chemistry. Unconventional in approach, it reviews basic concepts, then describes the physical meanings of state-of-the-art exchange-correlation functionals and their corrections.
Excitation Spectra of Nucleobases with Multiconfigurational Density Functional Theory
DEFF Research Database (Denmark)
Hubert, Mickaël; Jensen, Hans Jørgen Aa; Hedegård, Erik D.
2016-01-01
Range-separated hybrid methods between wave function theory and density functional theory (DFT) can provide high-accuracy results, while correcting some of the inherent flaws of both the underlying wave function theory and DFT. We here assess the accuracy for excitation energies of the nucleobases...
Smiga, Szymon; Mussard, Bastien; Buksztel, Adam; Grabowski, Ireneusz; Luppi, Eleonora; Toulouse, Julien
2016-01-01
We introduce an orbital-optimized double-hybrid (DH) scheme using the optimized-effective-potential (OEP) method. The orbitals are optimized using a local potential corresponding to the complete exchange-correlation energy expression including the second-order M{{\\o}}ller-Plesset (MP2) correlation contribution. We have implemented a one-parameter version of this OEP-based self-consistent DH scheme using the BLYP density-functional approximation and compared it to the corresponding non-self-consistent DH scheme for calculations on a few closed-shell atoms and molecules. While the OEP-based self-consistency does not provide any improvement for the calculations of ground-state total energies and ionization potentials, it does improve the accuracy of electron affinities and restores the meaning of the LUMO orbital energy as being connected to a neutral excitation energy. Moreover, the OEP-based self-consistent DH scheme provides reasonably accurate exchange-correlation potentials and correlated densities.
Neese, Frank
2007-10-28
The zero-field splitting (ZFS) (expressed in terms of the D tensor) is the leading spin-Hamiltonian parameter for systems with a ground state spin S>12. To first order in perturbation theory, the ZFS arises from the direct spin-spin dipole-dipole interaction. To second order, contributions arise from spin-orbit coupling (SOC). The latter contributions are difficult to treat since the SOC mixes states of different multiplicities. This is an aspect of dominant importance for the correct prediction of the D tensor. In this work, the theory of the D tensor is discussed from the point of view of analytic derivative theory. Starting from a general earlier perturbation treatment [F. Neese and E. I. Soloman, Inorg. Chem. 37, 6568 (1998)], straightforward response equations are derived that are readily transferred to the self-consistent field (SCF) Hartree-Fock (HF) or density functional theory (DFT) framework. The main additional effort in such calculations arises from the solution of nine sets of nonstandard coupled-perturbed SCF equations. These equations have been implemented together with the spin-orbit mean-field representation of the SOC operator and a mean-field treatment of the direct spin-spin interaction into the ORCA electronic structure program. A series of test calculations on diatomic molecules with accurately known zero-field splittings shows that the new approach corrects most of the shortcomings of previous DFT based methods and, on average, leads to predictions within 10% of the experimental values. The slope of the correlation line is essentially unity for the B3LYP and BLYP functionals compared to approximately 0.5 in previous treatments.
Cui, Wei; Lansac, Yves; Lee, Hochun; Hong, Seung-Tae; Jang, Yun Hee
2016-09-14
Complex formation between lithium (Li(+)) ions and electrolyte molecules would affect the ionic conductivity through the electrolyte in lithium-ion batteries (LIBs). We hence revisit the solvation number of Li(+) in the most commonly used ethylene carbonate (EC) electrolyte. The solvation number n of Li(+)(EC)n in the first solvation shell of Li(+) is estimated on the basis of the free energy calculated by the density functional theory combined with a hybrid solvation model where the explicit solvation shell of Li(+) is immersed in a free volume of an implicit bulk solvent. This new hybrid solvation (implicit and explicit) model predicts the most probable solvation number (n = 4) and solvation free energy (-91.3 kcal mol(-1)) of Li(+) in a good agreement with those predicted by calculations employing simpler solvation models (either implicit or explicit). The desolvation (n = 2) of Li(0)(EC)n upon reduction near anodes is also well described with this new hybrid model.
Multiconfiguration Pair-Density Functional Theory.
Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura
2014-09-09
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Noncovalent Interactions in Density-Functional Theory
DiLabio, Gino A
2014-01-01
Non-covalent interactions are essential in the description of soft matter, including materials of technological importance and biological molecules. In density-functional theory, common approaches fail to describe dispersion forces, an essential component in noncovalent binding interactions. In the last decade, great progress has been made in the development of accurate and computationally-efficient methods to describe noncovalently bound systems within the framework of density-functional theory. In this review, we give an account of the field from a chemical and didactic perspective, describing different approaches to the calculation of dispersion energies and comparing their accuracy, complexity, popularity, and general availability. This review should be useful to the newcomer who wants to learn more about noncovalent interactions and the different methods available at present to describe them using density-functional theory.
Connection formula for thermal density functional theory
Pribram-Jones, Aurora
2015-01-01
The adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upwards from the system's physical temperature to infinite temperatures. Several formulas yield one component of the thermal correlation free energy in terms of another, many of which can be expressed either in terms of temperature- or coupling-constant integration. We illustrate with the uniform electron gas.
Cao, Dapeng; Jiang, Tao; Wu, Jianzhong
2006-04-28
A hybrid method is proposed to investigate the microstructure of various polymeric fluids confined between two parallel surfaces. The hybrid method combines a single-chain Monte Carlo (MC) simulation for the ideal-gas part of the Helmholtz energy and a density functional theory (DFT) for the excess part that arises from nonbonded intersegment interactions. The latter consists of a modified fundamental measure theory for excluded-volume effect, the first-order thermodynamics perturbation theory for chain connectivity, and a mean-field approximation for the van der Waals attraction. In comparison with a conventional DFT, the hybrid method avoids calculation of the time-consuming recursive functions and is directly applicable to polymers with arbitrary molecular architecture. Its numerical performance has been validated by extensive comparisons with MC data for the density distributions of totally flexible, semiflexible, or rigid polymers and those with starlike architecture. Special attention is also given to the formation of a nematic monolayer by rigid molecules laying perpendicular to a planar surface. The hybrid method predicts the surface pressure versus surface coverage in good agreement with experiment.
Scaled density functional theory correlation functionals.
Ghouri, Mohammed M; Singh, Saurabh; Ramachandran, B
2007-10-18
We show that a simple one-parameter scaling of the dynamical correlation energy estimated by the density functional theory (DFT) correlation functionals helps increase the overall accuracy for several local and nonlocal functionals. The approach taken here has been described as the "scaled dynamical correlation" (SDC) method [Ramachandran, J. Phys. Chem. A 2006, 110, 396], and its justification is the same as that of the scaled external correlation (SEC) method of Brown and Truhlar. We examine five local and five nonlocal (hybrid) DFT functionals, the latter group including three functionals developed specifically for kinetics by the Truhlar group. The optimum scale factors are obtained by use of a set of 98 data values consisting of molecules, ions, and transition states. The optimum scale factors, found with a linear regression relationship, are found to differ from unity with a high degree of correlation in nearly every case, indicating that the deviation of calculated results from the experimental values are systematic and proportional to the dynamic correlation energy. As a consequence, the SDC scaling of dynamical correlation decreases the mean errors (signed and unsigned) by significant amounts in an overwhelming majority of cases. These results indicate that there are gains to be realized from further parametrization of several popular exchange-correlation functionals.
General degeneracy in density functional perturbation theory
Palenik, Mark C
2016-01-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. We develop the fully general degenerate perturbation theory for DFT without assuming that the degeneracy is required by symmetry. The resulting methodology is applied to the iron atom ground state in order to demonstrate the effects of degeneracy that appears both due to symmetry requirements and accidentally, between different representations of the symmetry group.
Density functional theory: Fixing Jacob's ladder
Car, Roberto
2016-09-01
Density functional theory calculations can be carried out with different levels of accuracy, forming a hierarchy that is often represented by the rungs of a ladder. Now a new method has been developed that significantly improves the accuracy of the 'third rung' when calculating the properties of diversely bonded systems.
Teaching Density Functional Theory Through Experiential Learning
Narasimhan, Shobhana
2015-09-01
Today, quantum mechanical density functional theory is often the method of choice for performing accurate calculations on atomic, molecular and condensed matter systems. Here, I share some of my experiences in teaching the necessary basics of solid state physics, as well as the theory and practice of density functional theory, in a number of workshops held in developing countries over the past two decades. I discuss the advantages of supplementing the usual mathematically formal teaching methods, characteristic of graduate courses, with the use of visual imagery and analogies. I also describe a successful experiment we carried out, which resulted in a joint publication co-authored by 67 lecturers and students participating in a summer school.
Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto
Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.
Quantal density functional theory. 2. ed.
Energy Technology Data Exchange (ETDEWEB)
Sahni, Viraht
2016-07-01
This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The time-independent QDFT constitutes a special case. The 2{sup nd} edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field. The theory is based on the 'quantal Newtonian' second and first laws for the individual electron. These laws are in terms of 'classical' fields that pervade all space, and their quantal sources. The fields are separately representative of the electron correlations that must be accounted for in local potential theory. Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects. Foundational to QDFT, the book describes Schroedinger theory from the new perspective of the single electron in terms of the 'quantal Newtonian' laws. Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described. The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.
Particle conservation in dynamical density functional theory.
de Las Heras, Daniel; Brader, Joseph M; Fortini, Andrea; Schmidt, Matthias
2016-06-22
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.
Magnetic fields and density functional theory
Energy Technology Data Exchange (ETDEWEB)
Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Density functional theory a practical introduction
Sholl, David
2009-01-01
Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to studen...
Density functional theory studies of etoricoxib
Sachdeva, Ritika; Kaur, Prabhjot; Singh, V. P.; Saini, G. S. S.
2016-05-01
Etoricoxib is a COX-2 selective inhibitor drug with molecular formula C18H15ClN2O2S. It is primarily used for the treatment of arthritis(rheumatoid, psoriatic, osteoarthritis), ankylosing spondylitis, gout and chronic low back pain. Theoretical studies of the molecule including geometry optimization and vibrational frequency calculations were carried out with the help of density functional theory calculations using 6-311++ g (d, p) basis set and B3LYP functional.
Zaffran, Jeremie; Caspary Toroker, Maytal
2016-08-09
NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.
Computing dispersion interactions in density functional theory
Cooper, V. R.; Kong, L.; Langreth, D. C.
2010-02-01
In this article techniques for including dispersion interactions within density functional theory are examined. In particular comparisons are made between four popular methods: dispersion corrected DFT, pseudopotential correction schemes, symmetry adapted perturbation theory, and a non-local density functional - the so called Rutgers-Chalmers van der Waals density functional (vdW-DF). The S22 benchmark data set is used to evaluate the relative accuracy of these methods and factors such as scalability and transferability are also discussed. We demonstrate that vdW-DF presents an excellent compromise between computational speed and accuracy and lends most easily to full scale application in solid materials. This claim is supported through a brief discussion of a recent large scale application to H2 in a prototype metal organic framework material (MOF), Zn2BDC2TED. The vdW-DF shows overwhelming promise for first-principles studies of physisorbed molecules in porous extended systems; thereby having broad applicability for studies as diverse as molecular adsorption and storage, battery technology, catalysis and gas separations.
Integer Discontinuity of Density Functional Theory
Mosquera, Martin A
2014-01-01
Density functional approximations to the exchange-correlation energy of Kohn-Sham theory, such as the local density approximation and generalized gradient approximations, lack the well-known integer discontinuity, a feature that is critical to describe molecular dissociation correctly. Moreover, standard approximations to the exchange-correlation energy also fail to yield the correct linear dependence of the ground-state energy on the number of electrons when this is a non-integer number obtained from the grand canonical ensemble statistics. We present a formal framework to restore the integer discontinuity of any density functional approximation. Our formalism derives from a formula for the exact energy functional and a new constrained search functional that recovers the linear dependence of the energy on the number of electrons.
Petretto, Guido; Bruneval, Fabien
2015-12-01
The identification of defect levels from photoluminescence spectroscopy is a useful but challenging task. Density-functional theory (DFT) is a highly valuable tool to this aim. However, the semilocal approximations of DFT that are affected by a band gap underestimation are not reliable to evaluate defect properties, such as charge transition levels. It is now established that hybrid functional approximations to DFT improve the defect description in semiconductors. Here we demonstrate that the use of hybrid functionals systematically stabilizes donor defect states in the lower part of the band gap for many defects, impurities or vacancies, in III-V and in II-VI semiconductors, even though these defects are usually considered as acceptors. These donor defect states are a very general feature and, to the best of our knowledge, have been overlooked in previous studies. The states we identify here may challenge the older assignments to photoluminescent peaks. Though appealing to screen quickly through the possible stable charge states of a defect, semilocal approximations should not be trusted for that purpose.
Insight and progress in density functional theory
Yang, Weitao; Mori-Sanchez, Paula; Cohen, Aron J.
2012-12-01
Density functional theory of electronic structure is widely and successfully applied in simulations throughout engineering and sciences. However, there are spectacular failures for many predicted properties. The errors include underestimation of the barriers of chemical reactions, the band gaps of materials, the energies of dissociating molecular ions and charge transfer excitation energies. Typical DFT calculations also fail to describe degenerate or near degenerate systems, as arise in the breaking of chemical bonds, and strongly correlated materials. These errors can all be characterized and understood through the perspective of fractional charges and fractional spins introduced recently.
Density-functional theory of thermoelectric phenomena.
Eich, F G; Di Ventra, M; Vignale, G
2014-05-16
We introduce a nonequilibrium density-functional theory of local temperature and associated local energy density that is suited for the study of thermoelectric phenomena. The theory rests on a local temperature field coupled to the energy-density operator. We identify the excess-energy density, in addition to the particle density, as the basic variable, which is reproduced by an effective noninteracting Kohn-Sham system. A novel Kohn-Sham equation emerges featuring a time-dependent and spatially varying mass which represents local temperature variations. The adiabatic contribution to the Kohn-Sham potentials is related to the entropy viewed as a functional of the particle and energy density. Dissipation can be taken into account by employing linear response theory and the thermoelectric transport coefficients of the electron gas.
General degeneracy in density functional perturbation theory
Palenik, Mark C.; Dunlap, Brett I.
2017-07-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting methodology, we apply it to the iron atom in the central field approximation, perturbed by an electric quadrupole. This system was chosen because it displays both symmetry required degeneracy, between the five 3 d orbitals, as well as accidental degeneracy, between the 3 d and 4 s orbitals. The quadrupole potential couples the degenerate 3 d and 4 s states, serving as an example of the most general perturbation.
Spin in Density-Functional Theory
Jacob, Christoph R; 10.1002/qua.24309
2012-01-01
The accurate description of open-shell molecules, in particular of transition metal complexes and clusters, is still an important challenge for quantum chemistry. While density-functional theory (DFT) is widely applied in this area, the sometimes severe limitations of its currently available approximate realizations often preclude its application as a predictive theory. Here, we review the foundations of DFT applied to open-shell systems, both within the nonrelativistic and the relativistic framework. In particular, we provide an in-depth discussion of the exact theory, with a focus on the role of the spin density and possibilities for targeting specific spin states. It turns out that different options exist for setting up Kohn-Sham DFT schemes for open-shell systems, which imply different definitions of the exchange-correlation energy functional and lead to different exact conditions on this functional. Finally, we suggest some possible directions for future developments.
Long, Run; English, Niall J
2011-10-04
The electronic properties of anatase-TiO(2) codoped by N and P at different concentrations have been investigated via generalized Kohn-Sham theory with the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for exchange-correlation in the context of density functional theory. At high doping concentrations, we find that the high photocatalytic activity of (N, P)-codoped anatase TiO(2) vis-à-vis the N-monodoped case can be rationalized by a double-hole-mediated coupling mechanism [Yin et al., Phys. Rev. Lett. 2011, 106, 066801] via the formation of an effective N-P bond. On the other hand, Ti(3+) and Ti(4+) ions' spin double-exchange results in more substantial gap narrowing for larger separations between N and P atoms. At low doping concentrations, double-hole-coupling is dominant, regardless of the N-P distance. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid density functional theory study of Cu(In1−xGaxSe2 band structure for solar cell application
Directory of Open Access Journals (Sweden)
Xu-Dong Chen
2014-08-01
Full Text Available Cu(In1−xGaxSe2 (CIGS alloy based thin film photovoltaic solar cells have attracted more and more attention due to its large optical absorption coefficient, long term stability, low cost and high efficiency. However, the previous theoretical investigation of this material with first principle calculation cannot fulfill the requirement of experimental development, especially the accurate description of band structure and density of states. In this work, we use first principle calculation based on hybrid density functional theory to investigate the feature of CIGS, with B3LYP applied in the CuIn1−xGaxSe2 stimulation of the band structure and density of states. We report the simulation of the lattice parameter, band gap and chemical composition. The band gaps of CuGaSe2, CuIn0.25Ga0.75Se2, CuIn0.5Ga0.5Se2, CuIn0.75Ga0.25Se2 and CuInSe2 are obtained as 1.568 eV, 1.445 eV, 1.416 eV, 1.275 eV and 1.205 eV according to our calculation, which agree well with the available experimental values. The band structure of CIGS is also in accordance with the current theory.
The Role of the Basis Set: Assessing Density Functional Theory
Boese, A D; Handy, N C; Martin, Jan M. L.; Handy, Nicholas C.
2003-01-01
When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalised gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.
Molecular Density Functional Theory of Water
Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel; 10.1021/jz301956b
2013-01-01
Three dimensional implementations of liquid state theories offer an efficient alternative to computer simulations for the atomic-level description of aqueous solutions in complex environments. In this context, we present a (classical) molecular density functional theory (MDFT) of water that is derived from first principles and is based on two classical density fields, a scalar one, the particle density, and a vectorial one, the multipolar polarization density. Its implementation requires as input the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric constants. It has to be complemented by a solute-solvent three-body term that reinforces tetrahedral order at short range. The approach is shown to provide the correct three-dimensional microscopic solvation profile around various molecular solutes, possibly possessing H-bonding sites, at a computer cost two-three orders of magnitude lower tha...
Yu, Hsiu-Yu
2014-09-15
© the Partner Organisations 2014. We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials. This journal is
Gelabert, Ricard; Moreno, Miquel; Lluch, José M
2006-01-26
The hybrid configuration interaction singles/time dependent density functional theory approach of Dreuw and Head-Gordon [Dreuw, A.; Head-Gordon, M. J. Am. Chem. Soc. 2004, 126, 4007] has been applied to study the potential energy landscape and accessibility of the charge-transfer pipi* excited state in the dimer of 7-azaindole, which has been traditionally considered a model for DNA base pairing. It is found that the charge-transfer pipi* excited state preferentially stabilizes the product of a single proton transfer. In this situation, the crossing between this state and the photoactive electronic state of the dimer is accessible. It is found that the charge-transfer pipi* excited state has a very steep potential energy profile with respect to any single proton-transfer coordinate and, in contrast, an extremely flat potential energy profile with respect to the stretch of the single proton-transfer complex. This is predicted to bring about a pair of rare fragments of the 7-azaindole dimer, physically separated and hence having very long lifetimes. This could have implications in the DNA base pairs of which the system is an analogue, in the form of replication errors.
Lutnaes, Ola B; Ruden, Torgeir A; Helgaker, Trygve
2004-10-01
Density functional theory, in particular, with the Becke-3-parameter-Lee-Yang-Parr (B3LYP) hybrid functional, has been shown to be a promising method for the calculation of indirect nuclear spin-spin coupling constants. However, no systematic investigation has so far been undertaken to evaluate the capability of B3LYP to calculate these coupling constants accurately, taking properly into account the vibrational contributions. In this work, vibrationally corrected indirect spin-spin coupling constants were calculated using the B3LYP functional for 10 rigid unsubstituted and substituted hydrocarbons: ethyne, ethene, allene, cyclopropene, cyclopropane, cyclobutene, pyrrole, furan, thiophene and benzene. The resulting spin-spin constants were compared with the available experimental values. The basis sets in these calculations give indirect nuclear spin-spin coupling constants of ethyne that are almost converged to the basis-set limit, making the intrinsic error of the computational method and the error in equilibrium geometry the main sources of error. On average, the B3LYP functional overestimates the indirect nuclear spin-spin coupling constants in hydrocarbons by 10%.
Sato, Shunsuke A.; Taniguchi, Yasutaka; Shinohara, Yasushi; Yabana, Kazuhiro
2015-12-01
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.
Energy Technology Data Exchange (ETDEWEB)
Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)
2015-12-14
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.
Pressure Correction in Density Functional Theory Calculations
Lee, S H
2008-01-01
First-principles calculations based on density functional theory have been widely used in studies of the structural, thermoelastic, rheological, and electronic properties of earth-forming materials. The exchange-correlation term, however, is implemented based on various approximations, and this is believed to be the main reason for discrepancies between experiments and theoretical predictions. In this work, by using periclase MgO as a prototype system we examine the discrepancies in pressure and Kohn-Sham energy that are due to the choice of the exchange-correlation functional. For instance, we choose local density approximation and generalized gradient approximation. We perform extensive first-principles calculations at various temperatures and volumes and find that the exchange-correlation-based discrepancies in Kohn-Sham energy and pressure should be independent of temperature. This implies that the physical quantities, such as the equation of states, heat capacity, and the Gr\\"{u}neisen parameter, estimat...
Phases of Polonium via Density Functional Theory
Verstraete, Matthieu J.
2010-01-01
The thermodynamical properties of the main phases of metallic polonium are examined using density functional theory. The exceptional nature of the solid-solid phase transition of α to β Po is underlined: it induces a lowering in symmetry, from cubic to rhombohedral, with increasing temperature. This is explained as the result of a delicate balance between bonding and entropic effects. Overall agreement with existing experimental data is good by state-of-the-art standards. The phonons of Po present Kohn anomalies, and it is shown that the effect of spin-orbit interactions is the inverse of that in normal metals: due to the nonspherical nature of the Fermi Surface, spin-orbit effects reduce nesting and harden most phonon frequencies.
Density Functional Theory An Advanced Course
Dreizler, Reiner M
2011-01-01
Density Functional Theory (DFT) has firmly established itself as the workhorse for the atomic-level simulation of condensed matter phases, pure or composite materials and quantum chemical systems. The present book is a rigorous and detailed introduction to the foundations up to and including such advanced topics as orbital-dependent functionals and both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, this text concentrates on the self-contained presentation of the basics of the most widely used DFT variants. This implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating strengths and weaknesses of a particular approach or functional. DFT for superconducting or nuclear and hadronic systems are not addressed in this work. The structure and material contain...
Adiabatic density-functional perturbation theory
Gonze, Xavier
1995-08-01
The treatment of adiabatic perturbations within density-functional theory is examined, at arbitrary order of the perturbation expansion. Due to the extremal property of the energy functional, standard variation-perturbation theorems can be used. The different methods (Sternheimer equation, extremal principle, Green's function, and sum over state) for obtaining the perturbation expansion of the wave functions are presented. The invariance of the Hilbert space of occupied wave functions with respect to a unitary transformation leads to the definition of a ``parallel-transport-gauge'' and a ``diagonal-gauge'' perturbation expansion. Then, the general expressions are specialized for the second, third, and fourth derivative of the energy, with an example of application of the method up to third order.
Density functional theory on phase space
Blanchard, Philippe; Várilly, Joseph C
2010-01-01
Forty-five years after the point de d\\'epart [1] of density functional theory, its applications in chemistry and the study of electronic structures keep steadily growing. However, the precise form of the "divine" energy functional in terms of the electron density [2] still eludes us --and possibly will do so forever [3]. In what follows we examine a formulation in the same spirit with phase-space variables. The validity of Hohenberg-Kohn-Levy-type theorems on phase space is recalled. We study the representability problem for reduced Wigner functions, and proceed to analyze properties of the new functional. Along the way, new results on states in the phase-space formalism of quantum mechanics are established. Natural Wigner orbital theory is developed in depth, with the final aim of constructing accurate correlation-exchange functionals on phase space. A new proof of the overbinding property of the Mueller functional is given. This exact theory supplies its home at long last to that illustrious ancestor, the T...
Density functional theory and multiscale materials modeling
Indian Academy of Sciences (India)
Swapan K Ghosh
2003-01-01
One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. In the intermediate mesoscopic length scale, an appropriate picture of the equilibrium and dynamical processes has been obtained through the single particle number density of the constituent atoms or molecules. A wide class of problems involving nanomaterials, interfacial science and soft condensed matter has been addressed using the density based theoretical formalism as well as atomistic simulation in this regime. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related density functions has been found to be quite appropriate. A unique single unified theoretical framework that emerges through the density concept at these diverse length scales and is applicable to both quantum and classical systems is the so called density functional theory (DFT) which essentially provides a vehicle to project the many-particle picture to a single particle one. Thus, the central equation for quantum DFT is a one-particle Schrödinger-like Kohn–Sham equation, while the same for classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential. Selected illustrative applications of quantum DFT to microscopic modeling of intermolecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are presented.
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.; Hammes-Schiffer, Sharon
2016-07-01
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF- molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Covariant density functional theory for nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Badarch, U.
2007-07-01
The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)
Chemistry by Way of Density Functional Theory
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Partridge, Harry; Langohff, Stephen R.; Arnold, James O. (Technical Monitor)
1996-01-01
In this work we demonstrate that density functional theory (DFT) methods make an important contribution to understanding chemical systems and are an important additional method for the computational chemist. We report calibration calculations obtained with different functionals for the 55 G2 molecules to justify our selection of the B3LYP functional. We show that accurate geometries and vibrational frequencies obtained at the B3LYP level can be combined with traditional methods to simplify the calculation of accurate heats of formation. We illustrate the application of the B3LYP approach to a variety of chemical problems from the vibrational frequencies of polycyclic aromatic hydrocarbons to transition metal systems. We show that the B3LYP method typically performs better than the MP2 method at a significantly lower computational cost. Thus the B3LYP method allows us to extend our studies to much larger systems while maintaining a high degree of accuracy. We show that for transition metal systems, the B3LYP bond energies are typically of sufficient accuracy that they can be used to explain experimental trends and even differentiate between different experimental values. We show that for boron clusters the B3LYP energetics are not as good as for many of the other systems presented, but even in this case the B3LYP approach is able to help understand the experimental trends.
Density functional theory in the solid state.
Hasnip, Philip J; Refson, Keith; Probert, Matt I J; Yates, Jonathan R; Clark, Stewart J; Pickard, Chris J
2014-03-13
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.
Combining Molecular Dynamics and Density Functional Theory
Kaxiras, Efthimios
2015-03-01
The time evolution of a system consisting of electrons and ions is often treated in the Born-Oppenheimer approximation, with electrons in their instantaneous ground state. This approach cannot capture many interesting processes that involved excitation of electrons and its effects on the coupled electron-ion dynamics. The time scale needed to accurately resolve the evolution of electron dynamics is atto-seconds. This poses a challenge to the simulation of important chemical processes that typically take place on time scales of pico-seconds and beyond, such as reactions at surfaces and charge transport in macromolecules. We will present a methodology based on time-dependent density functional theory for electrons, and classical (Ehrenfest) dynamics for the ions, that successfully captures such processes. We will give a review of key features of the method and several applications. These illustrate how the atomic and electronic structure evolution unravels the elementary steps that constitute a chemical reaction. In collaboration with: G. Kolesov, D. Vinichenko, G. Tritsaris, C.M. Friend, Departments of Physics and of Chemistry and Chemical Biology.
Chan, Bun; Radom, Leo
2016-08-09
In the present study, we have obtained geometries and frequency scale factors for a number of double-hybrid density functional theory (DH-DFT) procedures. We have evaluated their performance for obtaining thermochemical quantities [zero-point vibrational energies (ZPVE) and thermal corrections for 298 K enthalpies (ΔH298) and 298 K entropies (S298)] to be used within high-level composite protocols (using the W2X procedure as a probe). We find that, in comparison with the previously prescribed protocol for optimization and frequency calculations (B3-LYP/cc-pVTZ+d), the use of contemporary DH-DFT methods such as DuT-D3 and DSD-type procedures leads to a slight overall improved performance compared with B3-LYP. A major strength of this approach, however, lies in the better robustness of the DH-DFT methods in that the largest deviations are notably smaller than those for B3-LYP. In general, the specific choices of the DH-DFT procedure and the associated basis set do not drastically change the performance. Nonetheless, we find that the DSD-PBE-P86/aug'-cc-pVTZ+d combination has a very slight edge over the others that we have examined, and we recommend its general use for geometry optimization and vibrational frequency calculations, in particular within high-level composite methods such as the higher-level members of the WnX series of protocols. The scale factors determined for DSD-PBE-P86/aug'-cc-pVTZ+d are 0.9830 (ZPVE), 0.9876 (ΔH298), and 0.9923 (S298).
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the
Shirayama, Masaki; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Tamakoshi, Masato; Kato, Masato; Fujiseki, Takemasa; Murata, Daisuke; Hara, Shota; Murakami, Takurou N.; Fujimoto, Shohei; Chikamatsu, Masayuki; Fujiwara, Hiroyuki
2016-01-01
Light-induced photocarrier generation is an essential process in all solar cells, including organic-inorganic hybrid (CH3NH3PbI3 ) solar cells, which exhibit a high short-circuit current density (Jsc ) of approximately 20 mA /cm2 . Although the high Jsc observed in the hybrid solar cells relies on strong electron-photon interaction, the optical transitions in the perovskite material remain unclear. Here, we report artifact-free CH3NH3PbI3 optical constants extracted from ultrasmooth perovskite layers without air exposure and assign all of the optical transitions in the visible and ultraviolet region unambiguously, based on density-functional theory (DFT) analysis that assumes a simple pseudocubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultrasmooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (α =3.8 ×104 cm-1 at 2.0 eV) are comparable to those of CuInGaSe2 and CdTe, and high α values reported in earlier studies are overestimated seriously by the extensive surface roughness of CH3NH3PbI3 layers. The polarization-dependent DFT calculations show that CH3NH3 + interacts strongly with the PbI3 - cage, modifying the CH3NH3PbI3 dielectric function in the visible region rather significantly. In particular, the transition matrix element of CH3NH3PbI3 varies, depending on the position of CH3NH3 + within the Pb—I network. When the effect of CH3NH3 + on the optical transition is eliminated in the DFT calculation, the CH3NH3PbI3 dielectric function deduced from DFT shows an excellent agreement with the experimental result. As a result, distinct optical transitions observed at E0(Eg)=1.61 eV , E1=2.53 eV , and E2=3.24 eV in CH3NH3PbI3 are attributed to the direct semiconductor-type transitions at the R , M , and X points in the pseudocubic Brillouin zone, respectively. We further perform the quantum efficiency (QE) analysis for a standard hybrid-perovskite solar cell incorporating a mesoporous TiO2
Universality principle and the development of classical density functional theory
Institute of Scientific and Technical Information of China (English)
周世琦; 张晓琪
2002-01-01
The universality principle of the free energy density functional and the ‘test particle' trick by Percus are combined to construct the approximate free energy density functional or its functional derivative. Information about the bulk fluid ralial distribution function is integrated into the density functional approximation directly for the first time in the present methodology. The physical foundation of the present methodology also applies to the quantum density functional theory.
Locality of correlation in density functional theory.
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-07
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.
Shirayama, Masaki; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Sugita, Takeshi; Tamakoshi, Masato; Kato, Masato; Fujiseki, Takemasa; Murata, Daisuke; Hara, Shota; Murakami, Takurou N.; Fujimoto, Shohei; Chikamatsu, Masayuki; FUJIWARA, HIROYUKI
2015-01-01
We report artifact-free CH3NH3PbI3 optical constants extracted from ultra-smooth perovskite layers without air exposure and assign all the optical transitions in the visible/ultraviolet region unambiguously based on density functional theory (DFT) analysis that assumes a simple pseudo-cubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultra-smooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (alpha = 3.8 x 10^4 cm-1 at 2.0...
Introduction to Classical Density Functional Theory by a Computational Experiment
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
Electrostatic potential of several small molecules from density functional theory
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A number of density functional theory (DFT) methods were used to calculate the electrostatic potential for the series of molecules N2, F2, NH3, H2O, CHF3, CHCl3, C6H6, TiF4, CO(NH2)2 and C4H5N3O compared with QCISD (quadratic configuration interaction method including single and double substitutions) results. Comparisons were made between the DFT computed results and the QCISD ab initio ones and MP2 ab initio ones, compared with the root-mean-square deviation and electrostatic potential difference contours figures. It was found that the hybrid DFT method B3LYP, yields electrostatic potential in good agreement with the QCISD results. It is suggest this is a useful approach, especially for large molecules that are difficult to study by ab initio methods.
SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters
Hui, Kerwin; Chai, Jeng-Da
2015-01-01
By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction probl...
Curvature and Frontier Orbital Energies in Density Functional Theory.
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi
2012-12-20
Perdew et al. discovered two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points. (ii) Across an integer number of electrons, the exchange-correlation potential "jumps" by a constant, known as the derivative discontinuity (DD). Here we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT the two properties are two sides of the same coin. The absence of a DD dictates deviation from piecewise linearity, but the latter, appearing as curvature, can be used to correct for the former, thereby restoring the physical meaning of orbital energies. A simple correction scheme for any semilocal and hybrid functional, even Hartree-Fock theory, is shown to be effective on a set of small molecules, suggesting a practical correction for the infamous DFT gap problem. We show that optimally tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and that this can be used as a sound theoretical basis for novel tuning strategies.
Density Functional Theory with Dissipation: Transport through Single Molecules
Energy Technology Data Exchange (ETDEWEB)
Kieron Burke
2012-04-30
A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.
Whitenack, Daniel L; Wasserman, Adam
2012-04-28
Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.
Reflection-asymmetric nuclear deformations within the Density Functional Theory
Olsen, E; Nazarewicz, W; Stoitsov, M; 10.1088/1742-6596/402/1/012034
2013-01-01
Within the nuclear density functional theory (DFT) we study the effect of reflection-asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver AxialHFB that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even-even isotopes of radium and thorium.
The benchmark of gutzwiller density functional theory in hydrogen systems
Energy Technology Data Exchange (ETDEWEB)
Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming
2012-02-23
We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.
The Benchmark of Gutzwiller Density Functional Theory in Hydrogen Systems
Energy Technology Data Exchange (ETDEWEB)
Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming
2011-01-13
We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Introduction to Classical Density Functional Theory by Computational Experiment
Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We present here an introductory practical course to classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely largely on nonintuitive abstract concepts and applied mathematics. They are nevertheless a powerful tool and an active field of research in physics and chemistry that led to the 1998 Nobel prize in chemistry. We here illustrate the DFT in its most mathematically simple and yet physically relevant form: the classical density functional theory of an ideal fluid in an external field, as applied to the prediction of the structure of liquid neon at the molecular scale. This introductory course is built around the production of a cDFT code written by students using the Mathematica language. In this way, they are brought to deal with (i) the cDFT theory itself, (ii) some basic concepts around the statistical mechanics of simple fluids, (iii) the underlying mathematical and numerical problem of functional minimization, and (iv) a functional programming languag...
Long, Run; English, Niall J
2011-08-14
In this study, we have used cation-passivated codoping of Nb with Ga/In and also of W with Zn/Cd to modulate the band structure of anatase-TiO(2) to extend absorption to longer visible-light wavelengths. We adopted generalized Kohn-Sham theory with the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for exchange and correlation. It has been found that (W, Cd)-doped TiO(2) should be a strong candidate for visible-light photocatalyst materials owing to the largest extent of band gap narrowing and the formation of continuum band, without movement of the valence band. It is argued that this design principle for band-edge modification can also be applied to other wide-band-gap semiconductors.
Multicomponent density-functional theory for time-dependent systems
Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.
2007-01-01
We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried ou
Basis convergence of range-separated density-functional theory
Franck, Odile; Luppi, Eleonora; Toulouse, Julien
2014-01-01
Range-separated density-functional theory is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components, and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whe...
Density-functional perturbation theory goes time-dependent
Gebauer, Ralph; Rocca, Dario; Baroni, Stefano
2009-01-01
The scope of time-dependent density-functional theory (TDDFT) is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most). In the static regime, density-functional perturbation theory (DFPT) allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix e...
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Effective Maxwell Equations from Time-dependent Density Functional Theory
Institute of Scientific and Technical Information of China (English)
Weinan E; Jianfeng LU; Xu YANG
2011-01-01
The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.
Density functional theory in surface science and heterogeneous catalysis
DEFF Research Database (Denmark)
Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.
2006-01-01
amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...
Charge and spin fluctuations in the density functional theory
Energy Technology Data Exchange (ETDEWEB)
Gyoerffy, B.L.; Barbieri, A. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Staunton, J.B. (Warwick Univ., Coventry (UK). Dept. of Physics); Shelton, W.A.; Stocks, G.M. (Oak Ridge National Lab., TN (USA))
1990-01-01
We introduce a conceptual framework which allow us to treat charge and spin fluctuations about the Local density Approximation (LDA) to the Density Functional Theory (DFT). We illustrate the approach by explicit study of the Disordered Local Moment (DLM) state in Fe above the Curie Temperature {Tc} and the Mott insulating state in MnO. 27 refs., 6 figs.
Orbital-Free Density Functional Theory for Molecular Structure Calculations
Institute of Scientific and Technical Information of China (English)
Huajie Chen; Aihui Zhou
2008-01-01
We give here an overview of the orbital-free density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.
A Tryst With Density: Walter Kohn and Density Functional Theory
Indian Academy of Sciences (India)
Shobhana Narasimhan
2017-08-01
Walter Kohn transformed theoretical chemistry and solid statephysics with his development of density functional theory, forwhich he was awarded the Nobel Prize. This article tries toexplain, in simple terms, why this was an important advancein the field, and to describe precisely what it was that he (togetherwith his collaborators Pierre Hohenberg and Lu JeuSham) achieved.
Exact ensemble density-functional theory for excited states
Yang, Zeng-hui; Pribram-Jones, Aurora; Burke, Kieron; Needs, Richard J; Ullrich, Carsten A
2014-01-01
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) of excited states from the ground and excited states of helium. The exchange-correlation potential is compared with current approximations, which miss prominent features. The ensemble derivative discontinuity is tested, and the virial theorem is proven and illustrated.
Reproducibility in density functional theory calculations of solids
DEFF Research Database (Denmark)
Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn
2016-01-01
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We r...
Linear-response thermal time-dependent density functional theory
Pribram-Jones, Aurora; Burke, Kieron
2015-01-01
The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation (XC) approximations.
Ab initio molecular dynamics using hybrid density functionals
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost
2008-06-01
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Density Functional Theory Studies of Magnetically Confined Fermi Gas
Institute of Scientific and Technical Information of China (English)
陈宇俊; 马红孺
2001-01-01
A theory is developed for magnetically confined Fermi gas at a low temperature based on the density functional theory. The theory is illustrated by the numerical calculation of the density distributions of Fermi atoms 40K with parameters according to DeMarco and Jin's experiment [Science, 285(1999)1703]. Our results are in close agreement with the experiment. To check the theory, we also performed calculations using our theory at a high temperature, which compared very well to the results of the classical limit.
Particle vibrational coupling in covariant density functional theory
Ring, P; 10.1134/S1063778809080055
2009-01-01
A consistent combination of covariant density functional theory (CDFT) and Landau-Migdal Theory of Finite Fermi Systems (TFFS) is presented. Both methods are in principle exact, but Landau-Migdal theory cannot describe ground state properties and density functional theory does not take into account the energy dependence of the self-energy and therefore fails to yield proper single-% particle spectra as well as the coupling to complex configurations in the width of giant resonances. Starting from an energy functional, phonons and their vertices are calculated without any further parameters. They form the basis of particle-vibrational coupling leading to an energy dependence of the self-energy and an induced energy-dependent interaction in the response equation. A subtraction procedure avoids double counting. Applications in doubly magic nuclei and in a chain of superfluid nuclei show excellent agreement with experimental data.
Inclusion of Dispersion Effects in Density Functional Theory
DEFF Research Database (Denmark)
Møgelhøj, Andreas
In this thesis, applications and development will be presented within the field of van der Waals interactions in density functional theory. The thesis is based on the three projects: i) van der Waals interactions effect on the structure of liquid water at ambient conditions, ii) development...... and benchmarking of a new van der Waals density functional, and iii) the application of the newly developed functional to CO desorption from Ru(0001). The effect of van der Waals interactions in water was studied by performing ab initio molecular dynamics simulations using PBE and the two recent van der Waals...... density functionals optPBE-vdW and vdW-DF2 with identical computational setup. The two van der Waals functionals have been found to give excellent descriptions of the constituents of water (e.g., water dimers and hexamers). Including van der Waals interactions gives a softer water structure as seen from...
Fihey, Arnaud; Kloss, Benedikt; Perrier, Aurélie; Maurel, François
2014-07-01
We present a theoretical study of Aun-dithienylethene hybrid systems (n = 3, 19, 25), where the organic molecule is covalently linked to a nanometer-scaled gold nanoparticle (NP). We aim at gaining insights on the optical properties of such photochromic devices and proposing a size-limited gold aggregate model able to recover the optical properties of the experimental system. We thus present a DFT-based calculation scheme to model the ground-state (conformation, energetic parameters) and excited-state properties (UV-visible absorption spectra) of this type of hybrid systems. Within this framework, the structural parameters (adsorption site, orientation, and internal structure of the photochrome) are found to be slightly dependent on the size/shape of the gold aggregate. The influence of the gold fragment on the optical properties of the resulting hybrid system is then discussed with the help of TD-DFT combined with an analysis of the virtual orbitals involved in the photochromic transitions. We show that, for the open hybrid isomer, the number of gold atoms is the key parameter to recover the photoactive properties that are experimentally observed. On the contrary, for hybrid closed systems, the three-dimensional structure of the metallic aggregate is of high impact. We thus conclude that Au25 corresponds to the most appropriate fragment to model nanometer-sized NP-DTE hybrid device.
Semilocal density functional theory with correct surface asymptotics
Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio
2016-03-01
Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.
Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory
2017-04-23
quantitatively and non-empirically within the framework of time-dependent density functional theory (TDDFT), using the recently-developed optimally-tuned...showing that fundamental gaps and optical spectra of molecular solids can be predicted quantitatively and non-empirically within the framework of...II. THEORETICAL AND COMPUTATIONAL APPROACH A. Optimally-tuned range-separated hybrid functionals In the range-separated hybrid (RSH) method, the
Perspective: Fundamental aspects of time-dependent density functional theory
Maitra, Neepa T.
2016-06-01
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Multistate Density Functional Theory for Effective Diabatic Electronic Coupling.
Ren, Haisheng; Provorse, Makenzie R; Bao, Peng; Qu, Zexing; Gao, Jiali
2016-06-16
Multistate density functional theory (MSDFT) is presented to estimate the effective transfer integral associated with electron and hole transfer reactions. In this approach, the charge-localized diabatic states are defined by block localization of Kohn-Sham orbitals, which constrain the electron density for each diabatic state in orbital space. This differs from the procedure used in constrained density functional theory that partitions the density within specific spatial regions. For a series of model systems, the computed transfer integrals are consistent with experimental data and show the expected exponential attenuation with the donor-acceptor separation. The present method can be used to model charge transfer reactions including processes involving coupled electron and proton transfer.
Nitrogenase structure and function relationships by density functional theory.
Harris, Travis V; Szilagyi, Robert K
2011-01-01
Modern density functional theory has tremendous potential with matching popularity in metalloenzymology to reveal the unseen atomic and molecular details of structural data, spectroscopic measurements, and biochemical experiments by providing insights into unobservable structures and states, while also offering theoretical justifications for observed trends and differences. An often untapped potential of this theoretical approach is to bring together diverse experimental structural and reactivity information and allow for these to be critically evaluated at the same level. This is particularly applicable for the tantalizingly complex problem of the structure and molecular mechanism of biological nitrogen fixation. In this chapter we provide a review with extensive practical details of the compilation and evaluation of experimental data for an unbiased and systematic density functional theory analysis that can lead to remarkable new insights about the structure-function relationships of the iron-sulfur clusters of nitrogenase.
Relativistic density functional theory for finite nuclei and neutron stars
Piekarewicz, J
2015-01-01
The main goal of the present contribution is a pedagogical introduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful--and perhaps unique--framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich matter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics--particularly certain kind of laboratory experiments--can provide significant constrains on the behavior of neutron-rich matter.
Is Density Functional Theory adequate for quantum transport?
Burke, Kieron
2007-03-01
Density functional calculations for the electronic conductance of single molecules attached to leads are now common. I'll examine the methodology from a rigorous point of view, discussing where it can be expected to work, and where it should fail. When molecules are weakly coupled to leads, local and gradient-corrected approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias regime, XC corrections to the current are missed by the standard methodology. Finally, I will compare and contrast several new methodologies that go beyond the present standard approach of applying the Landauer formula to ground-state DFT. Self-interaction errors in density functional calculations of electronictransport, C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett. 95, 146402 (2005) The Dramatic Role of the Exchange-Correlation Potential in ab initio Electron Transport Calculations, S-H. Ke, H.U. Baranger, and W. Yang, cond-mat/0609367. Zero-bias molecular electronics: Exchange-correlation corrections to Landauer's formula, M. Koentopp, K. Burke, and F. Evers, Phys. Rev. B Rapid Comm., 73, 121403 (2006). Density Functional Theory of the Electrical Conductivity of Molecular Devices, K. Burke, Roberto Car, and Ralph Gebauer, Phys. Rev. Lett. 94, 146803 (2005). Density functional calculations of nanoscale conductance, Connie Chang, Max Koentopp, Kieron Burke, and Roberto Car, in prep.
Density functional theory across chemistry, physics and biology.
van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre
2014-03-13
The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT.
Buckled graphene: A model study based on density functional theory
Khan, Mohammad A.
2010-09-01
We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.
Reproducibility in density functional theory calculations of solids
2016-01-01
This is the author accepted manuscript.The final version is available from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/science.aad3000 The widespread popularity of density-functional theory has given rise to a vast range of dedicated codes to predict molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions on the reproducibility of such predictions. We report the results of a community-...
Density functional theory studies of transition metal nanoparticles in catalysis
DEFF Research Database (Denmark)
Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua
2013-01-01
Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...... and to subnanometer metal clusters. Descriptions of catalysis on truly nanosized structures, however, are generally not as well developed. In this talk, I will illustrate different approaches to analyzing nanocatalytic phenomena with DFT calculations. I will describe case studies from heterogeneous catalysis...
SCAN-based hybrid and double-hybrid density functionals from parameter-free models
Hui, Kerwin
2015-01-01
By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free of any empirical parameter. The SCAN-based hybrid and double-hybrid functionals consistently outperform their parent SCAN semilocal functional for a wide range of applications. The SCAN-based semilocal, hybrid, and double-hybrid functionals generally perform better than the corresponding PBE-based functionals. In addition, the SCAN0-2 and SCAN-QIDH double-hybrid functionals significantly reduce the qualitative failures of the SCAN semilocal functional, such as the self-interaction error and noncovalent interaction error, extending the applicability of the SCAN-based functionals to a very diverse range of systems.
Open-system Kohn-Sham density functional theory.
Zhou, Yongxi; Ernzerhof, Matthias
2012-03-07
A simple model for electron transport through molecules is provided by the source-sink potential (SSP) method [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)]. In SSP, the boundary conditions of having an incoming and outgoing electron current are enforced through complex potentials that are added to the Hamiltonian. Depending on the sign of the imaginary part of the potentials, current density is generated or absorbed. In this way, a finite system can be used to model infinite molecular electronic devices. The SSP has originally been developed for the Hückel method and subsequently it has been extended [F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011)] to the Hubbard model. Here we present a step towards its generalization for first-principles electronic structure theory methods. In particular, drawing on our earlier work, we discuss a new generalized density functional theory for complex non-Hermitian Hamiltonians. This theory enables us to combine SSP and Kohn-Sham theory to obtain a method for the description of open systems that exchange current density with their environment. Similarly, the Hartree-Fock method is extended to the realm of non-Hermitian, SSP containing Hamiltonians. As a proof of principle, we present the first applications of complex-density functional theory (CODFT) as well as non-Hermitian Hartree-Fock theory to electron transport through molecules. © 2012 American Institute of Physics
Energy Continuity in Degenerate Density Functional Perturbation Theory
Palenik, Mark C
2016-01-01
Fractional occupation numbers can produce open-shell degeneracy in density functional theory. We develop the corresponding perturbation theory by requiring that a differentiable map connects the initial and perturbed states. The degenerate state connects to a single perturbed state which extremizes, but does not necessarily minimize or maximize, the energy with respect to occupation numbers. Using a system of three electrons in a harmonic oscillator potential, we relate the counterintuitive sign of first-order occupation numbers to eigenvalues of the electron-electron interaction Hessian.
Nuclear charge radii: Density functional theory meets Bayesian neural networks
Utama, Raditya; Piekarewicz, Jorge
2016-01-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonst...
Density Functional Theory and Materials Modeling at Atomistic Length Scales
Directory of Open Access Journals (Sweden)
Swapan K. Ghosh
2002-04-01
Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.
Clustering and pasta phases in nuclear density functional theory
Schuetrumpf, Bastian; Nazarewicz, Witold
2016-01-01
Nuclear density functional theory (DFT) is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we use the concept of nucleonic localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.
Differentiable but exact formulation of density-functional theory.
Kvaal, Simen; Ekström, Ulf; Teale, Andrew M; Helgaker, Trygve
2014-05-14
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density-in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg-Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau-Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ((ε)E, (ε)F) that converge to (E, F) pointwise everywhere as ε → 0(+), and such that (ε)F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau-Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy (ε)E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ((ε)E, (ε)F). The Moreau-Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of (ε)F, a rigorous formulation of Kohn-Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn-Sham theory.
Differentiable but exact formulation of density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Kvaal, Simen, E-mail: simen.kvaal@kjemi.uio.no; Ekström, Ulf; Helgaker, Trygve [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, Andrew M. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2014-05-14
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg–Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau–Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ({sup ε}E, {sup ε}F) that converge to (E, F) pointwise everywhere as ε → 0{sup +}, and such that {sup ε}F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau–Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy {sup ε}E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ({sup ε}E, {sup ε}F). The Moreau–Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of {sup ε}F, a rigorous formulation of Kohn–Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn–Sham theory.
THz spectroscopic investigation of chlorotoluron by solid-state density functional theory
Wang, Qiang; Wang, H. L.
2012-05-01
The terahertz time-domain spectrum (THz-TDS) of chlorotoluron has been simulated and assigned with solid-state density functional theory (DFT) in the range of 0.5-2.2 THz. The calculations based on the hybrid density functionals B3LYP and PW91 are performed to analyze the origins of observed spectral features in chlorotoluron THz spectra of solid-state forms using the software package CRYSTAL09. The computed THz spectrum of the B3LYP provides better agreements with observed THz spectral characters. Moreover, all the experimental THz absorption peaks are assigned utilizing the B3LYP method.
Application of Density Functional Theory to Systems Containing Metal Atoms
Bauschlicher, Charles W., Jr.
2006-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.
Bayesian error estimation in density-functional theory
DEFF Research Database (Denmark)
Mortensen, Jens Jørgen; Kaasbjerg, Kristen; Frederiksen, Søren Lund
2005-01-01
We present a practical scheme for performing error estimates for density-functional theory calculations. The approach, which is based on ideas from Bayesian statistics, involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies...... for molecules and solids. Fluctuations within the ensemble can then be used to estimate errors relative to experiment on calculated quantities such as binding energies, bond lengths, and vibrational frequencies. It is demonstrated that the error bars on energy differences may vary by orders of magnitude...
Formation energies of rutile metal dioxides using density functional theory
DEFF Research Database (Denmark)
Martinez, Jose Ignacio; Hansen, Heine Anton; Rossmeisl, Jan
2009-01-01
We apply standard density functional theory at the generalized gradient approximation (GGA) level to study the stability of rutile metal oxides. It is well known that standard GGA exchange and correlation in some cases is not sufficient to address reduction and oxidation reactions. Especially...... and due to a more accurate description of exchange for this particular GGA functional compared to PBE. Furthermore, we would expect the self-interaction problem to be largest for the most localized d orbitals; that means the late 3d metals and since Co, Fe, Ni, and Cu do not form rutile oxides...
Atomistic force field for alumina fit to density functional theory.
Sarsam, Joanne; Finnis, Michael W; Tangney, Paul
2013-11-28
We present a force field for bulk alumina (Al2O3), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.
Density functional theory studies of doping in Titania
2010-01-01
The structural and electronic properties of rutile and anatase, and the influence of both mono- and co-doping, have been studied using Density Functional Theory. Ge-doped anatase and rutile exhibit different band gap-narrowing mechanisms; in particular, host Ti 3d states move to lower energy regions in anatase and Ge 4s impurities states locate below the conduction band of rutile. For S-doping, S 3p states locate above the top of the valence band and mix with O 2p states, leading to band gap ...
Time-dependent density-functional theory concepts and applications
Ullrich, Carsten A
2011-01-01
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s
Use of density functional theory in drug metabolism studies
DEFF Research Database (Denmark)
Rydberg, Patrik; Jørgensen, Flemming Steen; Olsen, Lars
2014-01-01
INTRODUCTION: The cytochrome P450 enzymes (CYPs) metabolize many drug compounds. They catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be generated. Density functional theory (DFT) has, over the past decade, been shown to be a powerful tool...... isoforms. This is probably due to the fact that the binding of the substrates is not the major determinant. When binding of the substrate plays a significant role, the well-known issue of determining the free energy of binding is the challenge. How approaches taking the protein environment into account...
Dynamical density functional theory with hydrodynamic interactions in confined geometries
Goddard, B. D.; Nold, A.; Kalliadasis, S.
2016-12-01
We study the dynamics of colloidal fluids in both unconfined geometries and when confined by a hard wall. Under minimal assumptions, we derive a dynamical density functional theory (DDFT) which includes hydrodynamic interactions (HI; bath-mediated forces). By using an efficient numerical scheme based on pseudospectral methods for integro-differential equations, we demonstrate its excellent agreement with the full underlying Langevin equations for systems of hard disks in partial confinement. We further use the derived DDFT formalism to elucidate the crucial effects of HI in confined systems.
Augmented Lagrangian Method for Constrained Nuclear Density Functional Theory
Staszczak, A; Baran, A; Nazarewicz, W
2010-01-01
The augmented Lagrangiam method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multidimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia; and is well adapted to supercomputer applications.
Multiphase aluminum equations of state via density functional theory
Sjostrom, Travis; Crockett, Scott; Rudin, Sven
2016-10-01
We have performed density functional theory (DFT) based calculations for aluminum in extreme conditions of both pressure and temperature, up to five times compressed ambient density, and over 1 000 000 K in temperature. In order to cover such a domain, DFT methods including phonon calculations, quantum molecular dynamics, and orbital-free DFT are employed. The results are then used to construct a SESAME equation of state for the aluminum 1100 alloy, encompassing the fcc, hcp, and bcc solid phases as well as the liquid regime. We provide extensive comparison with experiment, and based on this we also provide a slightly modified equation of state for the aluminum 6061 alloy.
Quantification of Uncertainties in Nuclear Density Functional theory
Schunck, N; Higdon, D; Sarich, J; Wild, S
2014-01-01
Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.
Benchmark density functional theory calculations for nanoscale conductance
DEFF Research Database (Denmark)
Strange, Mikkel; Bækgaard, Iben Sig Buur; Thygesen, Kristian Sommer;
2008-01-01
We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code...... in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIESTA which applies an atomic orbital basis set. All calculations have been converged with respect to the supercell size and the number of k(parallel to) points in the surface plane. For all systems we find...
Dynamic density functional theory with hydrodynamic interactions and fluctuations
Energy Technology Data Exchange (ETDEWEB)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@courant.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-06-21
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.
Multireference spin-adapted variant of density functional theory.
Khait, Yuriy G; Hoffmann, Mark R
2004-03-15
A new Kohn-Sham formalism is developed for studying the lowest molecular electronic states of given space and spin symmetry whose densities are represented by weighted sums of several reference configurations. Unlike standard spin-density functional theory, the new formalism uses total spin conserving spin-density operators and spin-invariant density matrices so that the method is fully spin-adapted and solves the so-called spin-symmetry dilemma. The formalism permits the use of an arbitrary set of reference (noninteracting) configurations with any number of open shells. It is shown that the requirement of degeneracy of the total noninteracting energies of the reference configurations (or configuration state functions) is equivalent to the stationary condition of the exact energy relative to the weights of the configurations (or configuration state functions). Consequently, at any molecular geometry, the weights can be determined by minimization of the energy, and, for given reference weights, the Kohn-Sham orbitals can be determined. From this viewpoint, the developed theory can be interpreted as an analog of the multiconfiguration self-consistent field approach within density functional theory.
Stochastic Time-Dependent Current-Density Functional Theory
D'Agosta, Roberto
2008-03-01
Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) [1]: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation [2], we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.[1] M. Di Ventra and R. D'Agosta, Physical Review Letters 98, 226403 (2007)[2] N.G. van Kampen, Stochastic processes in Physics and Chemistry, (North Holland, 2001), 2nd ed.
Density-functional perturbation theory goes time-dependent
Directory of Open Access Journals (Sweden)
Gebauer, Ralph
2008-05-01
Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.
Covariant density functional theory: Reexamining the structure of superheavy nuclei
Agbemava, S E; Nakatsukasa, T; Ring, P
2015-01-01
A systematic investigation of even-even superheavy elements in the region of proton numbers $100 \\leq Z \\leq 130$ and in the region of neutron numbers from the proton-drip line up to neutron number $N=196$ is presented. For this study we use five most up-to-date covariant energy density functionals of different types, with a non-linear meson coupling, with density dependent meson couplings, and with density-dependent zero-range interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov (RHB) theory based on an effective separable particle-particle interaction of finite range and deformation effects are taken into account. This allows us to assess the spread of theoretical predictions within the present covariant models for the binding energies, deformation parameters, shell structures and $\\alpha$-decay half-lives. Contrary to the previous studies in covariant density functional theory, it was found that the impact of $N=172$ spherical shell gap on the structure of superheavy elemen...
Chemical reactivity in the framework of pair density functional theories.
Otero, Nicolás; Mandado, Marcos
2012-05-15
Chemical reactivity descriptors are derived within the framework of the pair density functional theory. These indices provide valuable information about bonding rearrangements and activating mechanisms upon electrophilic or nucleophilic reactions. Indices derived and tested in this work represent nonlocal counterparts of the local reactivity indices derived in the context of conceptual density functional theory (CDFT) and frequently used in reactivity studies; the Fukui function, the local softness and the dual descriptor. In this work, we show how these nonlocal indices provide a quantum chemical basis to explain the success of qualitative resonance models in chemical reactivity predictions. Also, local information is implicitly contained as CDFT indices are obtained by simple integration. As illustrative examples, we have considered in this work the Markovnikov's rule, the reactivity of enolate anion, the nucleophilic conjugate addition to α,β-unsaturated compounds and the electrophilic aromatic substitution of benzene derivatives. The densities used in this work were obtained with Hartree-Fock, Kohn-Sham DFT, and singles and doubles configuration interaction (CISD) approaches. Copyright © 2012 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.;
2008-01-01
Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...... moments are computed using the same geometries (MP2/6-31G*) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio...
Mazurek, A. P.; Sadlej-Sosnowska, N.
2000-11-01
A comparison of the ab initio quantum chemical methods: Hartree-Fock (HF) and hybrid density functional theory (DFT)/B3LYP for the treatment of tautomeric equilibria both in the gas phase and in the solution is made. The solvent effects were investigated in terms of the self-consistent reaction field (SCRF). Ionization potentials (IP), calculated by DFT/B3LYP, are also compared with those calculated previously within the HF frame.
Zaitsevskii, Andréi V
2012-01-01
Interactions of Cn (element 112) atoms with small Au clusters are studied using accurate ab initio scalar relativistic coupled cluster method for correlation treatment and two-component relativistic density functional theory (RDFT) to account for spin-dependent relativistic effect. The results demonstrate the failure of RDFT with simple generalized-gradient and hybrid functionals in describing Cn--Au bonds in complex systems.
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-09
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.
Descriptions of carbon isotopes within the energy density functional theory
Energy Technology Data Exchange (ETDEWEB)
Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Energy Technology Data Exchange (ETDEWEB)
Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M
2015-03-17
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Time-dependent density functional theory for quantum transport.
Zheng, Xiao; Chen, GuanHua; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing
2010-09-21
Based on our earlier works [X. Zheng et al., Phys. Rev. B 75, 195127 (2007); J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.
A molecular density functional theory to study solvation in water
Jeanmairet, Guillaume
2014-01-01
A classical density functional theory is applied to study solvation of solutes in water. An approx- imate form of the excess functional is proposed for water. This functional requires the knowledge of pure solvent direct correlation functions. Those functions can be computed by using molecular simulations such as molecular dynamic or Monte Carlo. It is also possible to use functions that have been determined experimentally. The functional minimization gives access to the solvation free energy and to the equilibrium solvent density. Some correction to the functional are also proposed to get the proper tetrahedral order of solvent molecules around a charged solute and to reproduce the correct long range hydrophobic behavior of big apolar solutes. To proceed the numerical minimization of the functional, the theory has been discretized on two tridimensional grids, one for the space coordinates, the other for the angular coordinates, in a functional minimization code written in modern Fortran, mdft. This program i...
Density functional theory for inhomogeneous associating chain fluids.
Bryk, P; Sokołowski, S; Pizio, O
2006-07-14
We propose a nonlocal density functional theory for associating chain molecules. The chains are modeled as tangent spheres, which interact via Lennard-Jones (12,6) attractive interactions. A selected segment contains additional, short-ranged, highly directional interaction sites. The theory incorporates an accurate treatment of the chain molecules via the intramolecular potential formalism and should accurately describe systems with strongly varying external fields, e.g., attractive walls. Within our approach we investigate the structure of the liquid-vapor interface and capillary condensation of a simple model of associating chains with only one associating site placed on the first segment. In general, the properties of inhomogeneous associating chains depend on the association energy. Similar to the bulk systems we find the behavior of associating chains of a given length to be in between that for the nonassociating chains of the same length and that for the nonassociating chains twice as large.
Nuclear charge radii: density functional theory meets Bayesian neural networks
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
Differentiable but exact formulation of density-functional theory
Kvaal, Simen; Teale, Andrew M; Helgaker, Trygve
2013-01-01
The universal density functional $F$ of density-functional theory is a complicated and ill-behaved function of the density--in particular, $F$ is not differentiable, making many formal manipulations more complicated. Whilst $F$ has been well characterized in terms of convex analysis as forming a conjugate pair $(F,E)$ with the ground-state energy $E$ via the Hohenberg-Kohn and Lieb variation principles, $F$ is only subdifferentiable on a small (but dense) set of its domain. In this article, we apply a tool from convex analysis, Moreau-Yosida regularization, to construct, for any $\\epsilon>0$, pairs of conjugate functionals $({}^\\epsilon\\!E,{}^\\epsilon\\! F)$ that converge to $(E,F)$ pointwise everywhere as $\\epsilon\\rightarrow 0^+$, and such that ${}^\\epsilon\\!F$ is (Fr\\'echet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box, which does not change the physics. It is noteworthy that no information is lost in the Moreau-Yosida regularization...
Balawender, Robert
2009-01-01
The formalism developed in the first paper of the series [arXiv:0901.1060v3] is applied to two thermodynamic systems: (i) of three global observables (the energy, the total electron number and the spin number), (ii) of one global observable (the internal electron energy) and two local (position-dependent) observables (the total electron density and the spin density). The two-component potential of the many-electron system of interest is constructed of a scalar external potential and a collinear magnetic field (coupled only with the spin operator). Various equilibrium characteristics of two systems are defined and investigated. Conditions for the equivalence between two systems (the same equilibrium density matrix demanded) are derived and thoroughly discussed. The applicability of the Hohenberg-Kohn theorem is extended to the thermodynamic spin-density functional theory. Obtained results provide a rigorous mathematical foundation for future derivation of the zero-temperature limit of this theory and determina...
Revisiting the Fermi Surface in Density Functional Theory
Das, Mukunda P.; Green, Frederick
2016-06-01
The Fermi surface is an abstract object in the reciprocal space of a crystal lattice, enclosing the set of all those electronic band states that are filled according to the Pauli principle. Its topology is dictated by the underlying lattice structure and its volume is the carrier density in the material. The Fermi surface is central to predictions of thermal, electrical, magnetic, optical and superconducting properties in metallic systems. Density functional theory is a first-principles method used to estimate the occupied-band energies and, in particular, the isoenergetic Fermi surface. In this review we survey several key facts about Fermi surfaces in complex systems, where a proper theoretical understanding is still lacking. We address some critical difficulties.
Density Function Theory Studies on Reaction of HCS with OH
Institute of Scientific and Technical Information of China (English)
PEI Ke-Mei; LI Yi-Min; LI Hai-Yang
2003-01-01
The exothermic reaction of HCS with OH on the single-state potential energy surface was explored by means of Density Function Theory(DFT). The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies and the zero point energies(ZPE) of all the species in the reaction were computed. Six intermediates and seven transition states were located, three exothermic channels were found. The frequency analysis and the Intrinsic Reaction Coordinate(IRC) calculation confirm that the transitions are truthful. The results indicate that there are three exothermic channels and their corresponding products are: P1(H2O+CS), P2(H2S+CO), P3(OCS+H2), and P1 has a larger branch ratio.
Excitations and benchmark ensemble density functional theory for two electrons
Pribram-Jones, Aurora; Trail, John R; Burke, Kieron; Needs, Richard J; Ullrich, Carsten A
2014-01-01
A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange (SEHX), is derived. Exact conditions that are proven include the signs of the correlation energy components, the virial theorem for both exchange and correlation, and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.
Excitations and benchmark ensemble density functional theory for two electrons
Energy Technology Data Exchange (ETDEWEB)
Pribram-Jones, Aurora; Burke, Kieron [Department of Chemistry, University of California-Irvine, Irvine, California 92697 (United States); Yang, Zeng-hui; Ullrich, Carsten A. [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States); Trail, John R.; Needs, Richard J. [Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)
2014-05-14
A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.
Density functional theory studies of HCOOH decomposition on Pd(111)
Scaranto, Jessica; Mavrikakis, Manos
2016-08-01
The investigation of formic acid (HCOOH) decomposition on transition metal surfaces is important to derive useful insights for vapor phase catalysis involving HCOOH and for the development of direct HCOOH fuel cells (DFAFC). Here we present the results obtained from periodic, self-consistent, density functional theory (DFT-GGA) calculations for the elementary steps involved in the gas-phase decomposition of HCOOH on Pd(111). Accordingly, we analyzed the minimum energy paths for HCOOH dehydrogenation to CO2 + H2 and dehydration to CO + H2O through the carboxyl (COOH) and formate (HCOO) intermediates. Our results suggest that HCOO formation is easier than COOH formation, but HCOO decomposition is more difficult than COOH decomposition, in particular in the presence of co-adsorbed O and OH species. Therefore, both paths may contribute to HCOOH decomposition. CO formation goes mainly through COOH decomposition.
Nonequilibrium Anderson model made simple with density functional theory
Kurth, S.; Stefanucci, G.
2016-12-01
The single-impurity Anderson model is studied within the i-DFT framework, a recently proposed extension of density functional theory (DFT) for the description of electron transport in the steady state. i-DFT is designed to give both the steady current and density at the impurity, and it requires the knowledge of the exchange-correlation (xc) bias and on-site potential (gate). In this work we construct an approximation for both quantities which is accurate in a wide range of temperatures, gates, and biases, thus providing a simple and unifying framework to calculate the differential conductance at negligible computational cost in different regimes. Our results mark a substantial advance for DFT and may inform the construction of functionals applicable to other correlated systems.
Dynamic density functional theory of solid tumor growth: Preliminary models
Directory of Open Access Journals (Sweden)
Arnaud Chauviere
2012-03-01
Full Text Available Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.
Nucleation for Lennard-Jones Fluid by Density Functional Theory
Institute of Scientific and Technical Information of China (English)
FU Dong
2005-01-01
@@ A non-mean field density functional theory is employed to investigate the vapour-liquid nucleation. The excess Helmholtz free energy functional is formulated in terms of a local density approximation for short ranged repulsion and a density-gradient expansion for long-ranged attractions. An analytical expression for the direct correlation function of a Lennard-Jones fluid is utilized to take into account the effect of long-ranged attractions on intermolecular correlations. With the predicted bulk properties and surface tension as input, the nucleation properties including density profile, work of formation and number of particles at the reduced temperatures T* = 0.694 and 0.741 are inuestigated. The obtained number of particles in the critical nucleus agrees well with the simulation data.
Oxygen adsorption on pyrite (100) surface by density functional theory
Institute of Scientific and Technical Information of China (English)
孙伟; 胡岳华; 邱冠周; 覃文庆
2004-01-01
Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference.The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.
Superconductivity in layered binary silicides: A density functional theory study
Flores-Livas, José A.; Debord, Régis; Botti, Silvana; San Miguel, Alfonso; Pailhès, Stéphane; Marques, Miguel A. L.
2011-11-01
A class of metal disilicides (of the form XSi2, where X is a divalent metal) crystallizes in the EuGe2 structure, formed by hexagonal corrugated silicon planes intercalated with metal atoms. These compounds are superconducting like other layered superconductors, such as MgB2. Moreover, their properties can be easily tuned either by external pressure or by negative chemical pressure (i.e., by changing the metal), which makes disilicides an ideal testbed to study superconductivity in layered systems. In view of this, we present an extensive density functional theory study of the electronic and phonon band structures as well as the electron-phonon interaction of metal disilicides. Our results explain the variation of the superconducting transition temperature with pressure and the species of the intercalating atom, and allow us to predict superconductivity for compounds not yet synthesized belonging to this family.
Nuclear energy density functional inspired by an effective field theory
Papakonstantinou, Panagiota; Lim, Yeunhwan; Hyun, Chang Ho
2016-01-01
Inspired by an effective field theory (EFT) for Fermi systems, we write the nuclear energy density functional (EDF) as an expansion in powers of the Fermi momentum $k_F$, or the cubic root of the density $\\rho^{1/3}$. With the help of pseudodata from microscopic calculations we fit the coefficients of the functional within a wide range of densities relevant for nuclei and neutron stars. The functional already at low order can reproduce known or adopted values of nuclear matter near saturation, a range of existing microscopic results on asymmetric matter, and a neutron-star mass-radius relation consistent with observations. Our approach leads to a transparent expansion of Skyrme-type EDFs and opens up many possibilities for future explorations in nuclei and homogeneous matter.
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-01-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest. PMID:28198471
Geometry-based density functional theory an overview
Schmidt, M
2003-01-01
An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls.
Solvation of complex surfaces via molecular density functional theory
Levesque, Maximilien; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel
2012-01-01
We show that classical molecular density functional theory (MDFT), here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular CLAYFF force field. Solvent energetics and structure are found to depend weakly upon ...
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-02-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.
Scalable Nuclear Density Functional Theory with Sky3D
Afibuzzaman, Md; Aktulga, Hasan Metin
2016-01-01
In nuclear astro-physics, the quantum simulation of large inhomogenous dense systems as present in the crusts of neutron stars presents big challenges. The feasible number of particles in a simulation box with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe the techniques used to parallelize Sky3D, a nuclear density functional theory code that operates on an equidistant grid, and optimize its performance on distributed memory architectures. We also describe cache blocking techniques to accelerate the compute-intensive matrix calculation part in Sky3D. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on Edison, a Cray XC30 supercomputer.
Applications of large-scale density functional theory in biology
Cole, Daniel J.; Hine, Nicholas D. M.
2016-10-01
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Time-dependent density functional theory: Causality and other problems
Energy Technology Data Exchange (ETDEWEB)
Ruggenthaler, Michael; Bauer, Dieter [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)
2007-07-01
Time-dependent density functional theory (TDDFT) is a reformulation of the time dependent many-body problem in quantum mechanics which is capable of reducing the computational cost to calculate, e.g., strongly driven many-electron systems enormously. Recent developments were able to overcome fundamental problems associated with ionization processes. Still vital issues have to be clarified. Besides the construction of the underlying functionals we investigate the causality problem of TDDFT by general considerations and by studying a exactly solvable system of two correlated electrons in an intense laser-pulse. For the latter system, the two alternative approaches to the construction of the action functional or a constrained functional derivative by van Leeuwen and Gal, respectively, are explored.
A numerical efficient way to minimize classical density functional theory.
Edelmann, Markus; Roth, Roland
2016-02-21
The minimization of the functional of the grand potential within the framework of classical density functional theory in three spatial dimensions can be numerically very demanding. The Picard iteration, that is often employed, is very simple and robust but can be rather slow. While a number of different algorithms for optimization problems have been suggested, there is still great need for additional strategies. Here, we present an approach based on the limited memory Broyden algorithm that is efficient and relatively simple to implement. We demonstrate the performance of this algorithm with the minimization of an inhomogeneous bulk structure of a fluid with competing interactions. For the problems we studied, we find that the presented algorithm improves performance by roughly a factor of three.
Calculations of Optical Rotation from Density Functional Theory
Institute of Scientific and Technical Information of China (English)
António Canal Neto; Francisco Elias Jorge
2007-01-01
Density function theory calculations of frequency-dependent optical rotations [α]ω for three rigid chiral molecules are reported. Calculations have been carried out at the sodium D line frequency, using the ADZP basis set and a wide variety of functionals. Gauge-invariant atomic orbitals are used to guarantee origin-independent values of [α]D. In addition, study of geometry dependence of [α]D. Is reported. Using the geometries optimized at the B3LYP/ADZP level, the mean absolute deviation of B3LYP/ADZP and experimental [α]D values yields 60.1°/(dm g/cm3). According to our knowledge, this value has not been achieved until now with any other model.
Bushnell, Eric A C; Gauld, James W
2013-01-15
The performance of a range density functional theory functionals combined in a quantum mechanical (QM)/molecular mechanical (MM) approach was investigated in their ability to reliably provide geometries, electronic distributions, and relative energies of a multicentered open-shell mechanistic intermediate in the mechanism 8R-Lipoxygenase. With the use of large QM/MM active site chemical models, the smallest average differences in geometries between the catalytically relevant quartet and sextet complexes were obtained with the B3LYP(*) functional. Moreover, in the case of the relative energies between (4) II and (6) II, the use of the B3LYP(*) functional provided a difference of 0.0 kcal mol(-1). However, B3LYP(±) and B3LYP also predicted differences in energies of less than 1 kcal mol(-1). In the case of describing the electronic distribution (i.e., spin density), the B3LYP(*), B3LYP, or M06-L functionals appeared to be the most suitable. Overall, the results obtained suggest that for systems with multiple centers having unpaired electrons, the B3LYP(*) appears most well rounded to provide reliable geometries, electronic structures, and relative energies. Copyright © 2012 Wiley Periodicals, Inc.
Fermi Surface Topology of Na0.5CoO2 from the Hybrid Density Functional
Institute of Scientific and Technical Information of China (English)
CHEN Zhao-Ying; XIANG Hong-Jun; YANG Jin-Long
2005-01-01
@@ The Fermi surface topology of Na0.5CoO2 is studied using the hybrid density functional theory. We first study a single (CoO2)0.5- layer model with the percentage of the nonlocal Hartree-Fock exchange changing from 0% to 20%. The results show that only when the mixed nonlocal Hartree-Fock exchange is between 1% and 5%, the Fermi surface topology is similar to the experimental one. With 3% HF exchange in the hybrid density functional,considering the effects of Na ions in the Na0.sCoO2 system, we find that the Fermi surface is split to double holes and small gaps open near the intersections between the Brillouin zone and the Fermi surface. Our results show that both the amounts of the nonlocal Hartree-Fock exchange in the hybrid density functional and the Na ions have much influence on the Fermi surface topology.
Exact maps in density functional theory for lattice models
Dimitrov, Tanja; Appel, Heiko; Fuks, Johanna I.; Rubio, Angel
2016-08-01
In the present work, we employ exact diagonalization for model systems on a real-space lattice to explicitly construct the exact density-to-potential and graphically illustrate the complete exact density-to-wavefunction map that underly the Hohenberg-Kohn theorem in density functional theory. Having the explicit wavefunction-to-density map at hand, we are able to construct arbitrary observables as functionals of the ground-state density. We analyze the density-to-potential map as the distance between the fragments of a system increases and the correlation in the system grows. We observe a feature that gradually develops in the density-to-potential map as well as in the density-to-wavefunction map. This feature is inherited by arbitrary expectation values as functional of the ground-state density. We explicitly show the excited-state energies, the excited-state densities, and the correlation entropy as functionals of the ground-state density. All of them show this exact feature that sharpens as the coupling of the fragments decreases and the correlation grows. We denominate this feature as intra-system steepening and discuss how it relates to the well-known inter-system derivative discontinuity. The inter-system derivative discontinuity is an exact concept for coupled subsystems with degenerate ground state. However, the coupling between subsystems as in charge transfer processes can lift the degeneracy. An important conclusion is that for such systems with a near-degenerate ground state, the corresponding cut along the particle number N of the exact density functionals is differentiable with a well-defined gradient near integer particle number.
Mean Spherical Approximation-Based Partitioned Density Functional Theory
Institute of Scientific and Technical Information of China (English)
ZHOU Shi-Qi
2003-01-01
Previous literature claims that the density functional theory for non-uniform non-hard sphere interaction potential fluid can be improved on by treating the tail part by the third order functional perturbation expansion approximation (FPEA) with the symmetrical and intuitive consideration-based simple function C0(3)(r1, r2, r3) =ζ∫ dr4a(r4 - r1)a(r4 - r2)a(r4 - r3) as the uniform third order direct correlation function (DCF) for the tail part,here kernel function a(r) = (6/πσ3)Heaviside(σ/2 - r). The present contribution concludes that for the mean spherical approximation-based second order DCF, the terms higher than second order in the FPEA of the tail part of the non-uniform first order DCF are exactly zero. The reason for the partial success of the previous a kernel function-based third order FPEA for the tail part is due to the adjustable parameter ζ and the short range of the a kernel function.Improvement over the previous theories is proposed and tested.
Mean Spherical Approximation-Based Partitioned Density Functional Theory
Institute of Scientific and Technical Information of China (English)
ZHOUShi-Qi
2003-01-01
Previous literature claims that the density functional theory for non-uniform non-hard sphere interaction potential fluid can be improved on by treating the tail part by the third order functional perturbation expansion approximation (FPEA) with the symmetrical and intuitive consideration-based simple function C0(3)(r1, r2, r3) =(∫dr4a(r4-r1)a(r4-r2)a(r4-r3) as the uniform third order direct correlation function (DCF) for the tail part,here kernel function a(r) = (6/πσ3)Heaviside(σ/2 - r). The present contribution concludes that for the mean spherical approximation-based second order DCF, the terms higher than second order in the FPEA of the tail part of the non-uniform first order DCF are exactly zero. The reason for the partial success of the previous a kernel function-based third order FPEA for the tail part is due to the adjustable parameter ξ and the short range of the a kernel function.Improvement over the previous theories is proposed and tested.
Dynamics of localized particles from density functional theory
Reinhardt, J.; Brader, J. M.
2012-01-01
A fundamental assumption of the dynamical density functional theory (DDFT) of colloidal systems is that a grand-canonical free-energy functional may be employed to generate the thermodynamic driving forces. Using one-dimensional hard rods as a model system, we analyze the validity of this key assumption and show that unphysical self-interactions of the tagged particle density fields, arising from coupling to a particle reservoir, are responsible for the excessively fast relaxation predicted by the theory. Moreover, our findings suggest that even employing a canonical functional would not lead to an improvement for many-particle systems, if only the total density is considered. We present several possible schemes to suppress these effects by incorporating tagged densities. When applied to confined systems, we demonstrate, using a simple example, that DDFT necessarily leads to delocalized tagged particle density distributions, which do not respect the fundamental geometrical constraints apparent in Brownian dynamics simulation data. The implication of these results for possible applications of DDFT to treat the glass transition are discussed.
Chiroptical Properties of Amino Acids: A Density Functional Theory Study
Directory of Open Access Journals (Sweden)
Martine Adrian-Scotto
2010-04-01
Full Text Available Amino acids are involved in many scientific theories elucidating possible origins of life on Earth. One of the challenges when discussing the evolutionary origin of biopolymers such as proteins and oligonucleotides in living organisms is the phenomenon that these polymers implement monomers of exclusively one handedness, a feature called biomolecular homochirality. Many attempts have been made to understand this process of racemic symmetry breaking. Assuming an extraterrestrial origin of the molecular building blocks of living organisms, their susceptibility to asymmetric photolysis by the absorption of circularly polarized electromagnetic radiation in interstellar space was proposed. In order to predict whether the interaction of circularly polarized light with various racemic amino acids can induce an enantiomeric excess, we investigated the electronic and chiroptical properties of the amino acids valine and isovaline by a molecular modelling approach based on quantum chemistry (Density Functional Theory. The average spectra of both L-valine and L-isovaline have been produced on the basis of Boltzmann population analysis using computed spectra for the various conformations of each amino acid.
Time-dependent density-functional theory for extended systems
Energy Technology Data Exchange (ETDEWEB)
Botti, Silvana [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Schindlmayr, Arno [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Del Sole, Rodolfo [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Reining, Lucia [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown)
2007-03-15
For the calculation of neutral excitations, time-dependent density functional theory (TDDFT) is an exact reformulation of the many-body time-dependent Schroedinger equation, based on knowledge of the density instead of the many-body wavefunction. The density can be determined in an efficient scheme by solving one-particle non-interacting Schroedinger equations-the Kohn-Sham equations. The complication of the problem is hidden in the-unknown-time-dependent exchange and correlation potential that appears in the Kohn-Sham equations and for which it is essential to find good approximations. Many approximations have been suggested and tested for finite systems, where even the very simple adiabatic local-density approximation (ALDA) has often proved to be successful. In the case of solids, ALDA fails to reproduce optical absorption spectra, which are instead well described by solving the Bethe-Salpeter equation of many-body perturbation theory (MBPT). On the other hand, ALDA can lead to excellent results for loss functions (at vanishing and finite momentum transfer). In view of this and thanks to recent successful developments of improved linear-response kernels derived from MBPT, TDDFT is today considered a promising alternative to MBPT for the calculation of electronic spectra, even for solids. After reviewing the fundamentals of TDDFT within linear response, we discuss different approaches and a variety of applications to extended systems.
Charge transfer in time-dependent density functional theory
Maitra, Neepa T.
2017-10-01
Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.
Density functional theory study of BnC clusters.
Liu, Chunhui; Han, Peilin; Tang, Mingsheng
2011-05-15
B(n)C clusters (n = 3-10) were studied at the density functional theory (DFT) (B3LYP)/6-311G** level of theory. The calculations predicted that the most stable configurations of the B(n) C clusters are the (n + 1)-membered cyclic structures. For boron-carbon clusters, the configurations containing greater numbers of three-membered boron rings are more favorable, except for the B(7)C and B(9)C clusters. Through molecular orbital analysis of these B(n)C clusters, we have concluded that π-electron delocalization plays a crucial role in the stability of n + 1-membered cyclic structures. In this paper, the relative stability of each cluster is discussed based on their single atomic-binding energies. The capability of clusters to obtain or lose an electron was also discussed, based on their vertical electron detachment energies (VDEs), adiabatic electron detachment energies (ADEs), vertical electron affinities (VEAs) and adiabatic electron affinities (AEAs). Copyright © 2011 John Wiley & Sons, Ltd.
Band Anticrossing in Dilute Germanium Carbides Using Hybrid Density Functionals
Stephenson, Chad A.; O'brien, William A.; Qi, Meng; Penninger, Michael; Schneider, William F.; Wistey, Mark A.
2016-04-01
Dilute germanium carbides (Ge1- x C x ) offer a direct bandgap for compact silicon photonics, but widely varying properties have been reported. This work reports improved band structure calculations for Ge1- x C x using ab initio simulations that employ the HSE06 exchange-correlation density functional. Contrary to Vegard's law, the conduction band minimum at Γ is consistently found to decrease with increasing C content, while L and X valleys change much more slowly. The calculated Ge bandgap is within 11% of experimental values. A decrease in energy at the Γ conduction band valley of (170 meV ± 50)/%C is predicted, leading to a direct bandgap for x > 0.008. These results indicate a promising material for Group IV lasers.
Density Functional Theory for Phase-Ordering Transitions
Energy Technology Data Exchange (ETDEWEB)
Wu, Jianzhong [Univ. of California, Riverside, CA (United States)
2016-03-30
Colloids display astonishing structural and dynamic properties that can be dramatically altered by modest changes in the solution condition or an external field. This complex behavior stems from a subtle balance of colloidal forces and intriguing mesoscopic and macroscopic phase transitions that are sensitive to the processing conditions and the dispersing environment. Whereas the knowledge on the microscopic structure and phase behavior of colloidal systems at equilibrium is now well-advanced, quantitative predictions of the dynamic properties and the kinetics of phase-ordering transitions in colloids are not always realized. Many important mesoscopic and off-equilibrium colloidal states remain poorly understood. The proposed research aims to develop a new, unifying approach to describe colloidal dynamics and the kinetics of phase-ordering transitions based on accomplishments from previous work for the equilibrium properties of both uniform and inhomogeneous systems and on novel concepts from the state-of-the-art dynamic density functional theory. In addition to theoretical developments, computational research is designed to address a number of fundamental questions on phase-ordering transitions in colloids, in particular those pertinent to a competition of the dynamic pathways leading to various mesoscopic structures, off-equilibrium states, and crystalline phases. By providing a generic theoretical framework to describe equilibrium, metastable as well as non-ergodic phase transitions concurrent with the colloidal self-assembly processes, accomplishments from this work will have major impacts on both fundamental research and technological applications.
Density functional theory predictions of isotropic hyperfine coupling constants.
Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C
2005-02-17
The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.
Density functional theory investigation of antiproton-helium collisions
Henkel, N; Lüdde, H J; Kirchner, T; 10.1103/PhysRevA.80.032704
2011-01-01
We revisit recent developments in the theoretical foundations of time-dependent density functional theory (TDDFT). TDDFT is then applied to the calculation of total cross sections for ionization processes in the antiproton-Helium collision system. The Kohn-Sham potential is approximated as the sum of the Hartree-exchange potential and a correlation potential that was proposed in the context of laser-induced ionization. Furthermore, some approaches to the problem of calculating the ionization probabilities from the density are discussed. Small projectile energies below 5keV are considered as well as those in the range from 5 to 1000 keV. Results are compared with former calculations and with experimental data. We find that the correlation potential yields no obvious improvement of the results over the exchange-only approximation where the correlation potential is neglected. Furthermore, we find the problem of calculating the desired observables crucial, introducing errors of at least the same order of magnitud...
Density functional theory study of phase IV of solid hydrogen
Pickard, Chris J.; Martinez-Canales, Miguel; Needs, Richard J.
2012-06-01
We have studied solid hydrogen up to pressures of 300 GPa and temperatures of 350 K using density functional theory methods and have found “mixed structures” that are more stable than those predicted earlier. Mixed structures consist of alternate layers of strongly bonded molecules and weakly bonded graphene-like sheets. Quasiharmonic vibrational calculations show that mixed structures are the most stable at room temperature over the pressure range 250-295 GPa. These structures are stabilized with respect to strongly bonded molecular phases at room temperature by the presence of lower frequency vibrational modes arising from the graphene-like sheets. Our results for the mixed structures are consistent with the experimental Raman data [M. I. Eremets and I. A. Troyan, Nat. Mater.1476-112210.1038/nmat3175 10, 927 (2011) and R. T. Howie , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.125501 108, 125501 (2012)]. We find that mixed phases are reasonable structural models for phase IV of hydrogen.
Applications of density functional theory in materials science and engineering
Alvarado, Manuel, Jr.
Density Functional Theory (DFT) is a powerful tool that can be used to model various systems in materials science. Our research applies DFT to two problems of interest. First, an organic/inorganic complex dye system known as a Mayan pigment is modeled to determine chemical binding sites, verifying each model with physical data such as UV/Vis spectra. Preliminary studies on palygorskite-based mayan pigments (mayacrom blue, mayacrom purple) show excellent agreement with experimental studies when using a dimer dye geometry binding with tetrahedrally-coordinated aluminum impurity sites in palygorksite. This approach is applied to a sepiolite-based organic/inorganic dye system using thioindigo attached to a tetrahedral aluminum impurity site with an additional aluminum impurity site in close proximity to the binding site. As a second application of DFT, various grain orientations in beta-Sn are modeled under imposed strains in order to calculate elastic properties of this system. These calculations are intended to clarify discrepancies in published, experimental crystal compliance values.
Exact Maps in Density Functional Theory for Lattice Models
Dimitrov, Tanja; Fuks, Johanna I; Rubio, Angel
2015-01-01
In the present work, we employ exact diagonalization for model systems on a real-space lattice to explicitly construct the exact density-to-potential and for the first time the exact density-to-wavefunction map that underly the Hohenberg-Kohn theorem in density functional theory. Having the explicit wavefunction-to- density map at hand, we are able to construct arbitrary observables as functionals of the ground-state density. We analyze the density-to-potential map as the distance between the fragments of a system increases and the correlation in the system grows. We observe a feature that gradually develops in the density-to-potential map as well as in the density-to-wavefunction map. This feature is inherited by arbitrary expectation values as functional of the ground-state density. We explicitly show the excited-state energies, the excited-state densities, and the correlation entropy as functionals of the ground-state density. All of them show this exact feature that sharpens as the coupling of the fragmen...
Embedding germanium in graphene: A density functional theory study
Xu, Zhuo; Li, Yangping; Tan, Tingting; Liu, Zhengtang
2017-03-01
Based on the density functional theory, we investigate the structural, electronic, and magnetic properties of graphene sheet with substitutional Ge atoms in both single and double vacancies, and graphene sheet with Ge-chain impurity. We find the substitutional Ge is chemically bonded to graphene, and is more stable in the double vacancy site. The electronic properties indicate that metallic and semiconductor states with a range of band gaps from 0 to 0.87 eV could be obtained depending on different substitution sites, concentrations, and vacancy types. Magnetic moment is observed in graphene with single vacancy. Tunable electronic behaviors are also observed in graphene sheet with Ge-chain impurity, and a magnetic moment of 2.9 μB is observed in single Ge-chain incorporated 4 × 4 graphene supercell. From these investigations, we conclude that by doping of Ge in vacancy-contained graphene, it could provide great advantages for its application in future nanoscale devices.
Density Functional Theory Study of Spirodienone Stereoisomers in Lignin
Energy Technology Data Exchange (ETDEWEB)
Elder, Thomas [USDA-Forest; Berstis, Laura [National; Biosciences; Beckham, Gregg T. [National; Crowley, Michael F. [National; Biosciences
2017-07-10
The spirodienone structure in lignin is a relatively recent discovery, and it has been found to occur in lignin of various plant species at concentrations of ~3%, which is sufficiently high to be important for better understanding of its properties and reactivity. The cyclic structure, with a ..beta..-1 bond, has been proposed to be a precursor for acyclic ..beta..-1 linkages in lignin. Previous analytical work has revealed the presence, but not the absolute configuration, of two stereoisomeric forms of spirodienone. The objective of the current work was to determine if there are thermodynamic differences that could help identify the experimentally observed stereoisomers. Results from density functional theory calculations reveal the presence of clusters of stereoisomers with varying stability that may be of use in narrowing the list of possible structures. Furthermore, the bond dissociation enthalpy of the cyclic ring exhibited a particularly high value for the C-O cleavage reaction relative to more conventional ether bonds in lignin, perhaps due to limited electron delocalization possibilities.
Hardness of FeB4: density functional theory investigation.
Zhang, Miao; Lu, Mingchun; Du, Yonghui; Gao, Lili; Lu, Cheng; Liu, Hanyu
2014-05-07
A recent experimental study reported the successful synthesis of an orthorhombic FeB4 with a high hardness of 62(5) GPa [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013)], which has reignited extensive interests on whether transition-metal borides compounds will become superhard materials. However, it is contradicted with some theoretical studies suggesting transition-metal boron compounds are unlikely to become superhard materials. Here, we examined structural and electronic properties of FeB4 using density functional theory. The electronic calculations show the good metallicity and covalent Fe-B bonding. Meanwhile, we extensively investigated stress-strain relations of FeB4 under various tensile and shear loading directions. The calculated weakest tensile and shear stresses are 40 GPa and 25 GPa, respectively. Further simulations (e.g., electron localization function and bond length along the weakest loading direction) on FeB4 show the weak Fe-B bonding is responsible for this low hardness. Moreover, these results are consistent with the value of Vickers hardness (11.7-32.3 GPa) by employing different empirical hardness models and below the superhardness threshold of 40 GPa. Our current results suggest FeB4 is a hard material and unlikely to become superhard (>40 GPa).
Solvation of complex surfaces via molecular density functional theory.
Levesque, Maximilien; Marry, Virginie; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel
2012-12-14
We show that classical molecular density functional theory, here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational, and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular Clay Force Field (CLAYFF). Solvent energetics and structure are found to depend weakly upon the atomic charges distribution of the clay surface, even for a rather polar solvent. We conclude on the consequences of such findings for force-field development.
Metal catalyzed ethylene epoxidation: A comparative density functional theory study
Institute of Scientific and Technical Information of China (English)
Ruipeng Ren; Yongkang Lü; Xianyong Pang; Guichang Wang
2011-01-01
Ethylene epoxidation on Ag(111), Pt(111), Rh(111) and Mo(100) has been studied by density functional theory (DFT) calculations. The results show that the adsorption energies of possible adsorbed species involved in the ethylene epoxidation increase in the order: Ag＜Pt＜Rh＜Mo, and the activation energies of the formation of epoxide (EtO) and acetaldehyde (Ac) follow the same order. Moreover, it is found that the smallest difference in the activation energies between EtO formation and Ac formation is shown on Ag. These results indicate that the metallic Ag shows the highest between activity and selectivity for ethylene epoxidation among the studied metal surfaces. Perhaps, the stability of OMME intermediate is the crucial factor in controlling the activity and selectivity. And the stronger the binding of OMME, the lower the activity and selectivity are. In addition, the relationships between the reaction enthalpy and activation energy on these four metal surfaces are investigated,and it is found that such a correlation is only applied for OMME(a) → EtO(a) and OMME(a) → Ac(a), while invalid for the case of C2H4(a) +O(a) → OMME(a).
Insights into phase transitions and entanglement from density functional theory
Wei, Bo-Bo
2016-11-01
Density functional theory (DFT) has met great success in solid state physics, quantum chemistry and in computational material sciences. In this work we show that DFT could shed light on phase transitions and entanglement at finite temperatures. Specifically, we show that the equilibrium state of an interacting quantum many-body system which is in thermal equilibrium with a heat bath at a fixed temperature is a universal functional of the first derivatives of the free energy with respect to temperature and other control parameters respectively. This insight from DFT enables us to express the average value of any physical observable and any entanglement measure as a universal functional of the first derivatives of the free energy with respect to temperature and other control parameters. Since phase transitions are marked by the nonanalytic behavior of free energy with respect to control parameters, the physical quantities and entanglement measures may present nonanalytic behavior at critical point inherited from their dependence on the first derivative of free energy. We use two solvable models to demonstrate these ideas. These results give new insights for phase transitions and provide new profound connections between entanglement and phase transitions in interacting quantum many-body physics.
Simple preconditioning for time-dependent density functional perturbation theory
Lehtovaara, Lauri; Marques, Miguel A. L.
2011-07-01
By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states — such as the Sternheimer method — as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach.
Daubechies wavelets for linear scaling density functional theory
Energy Technology Data Exchange (ETDEWEB)
Mohr, Stephan [Institut für Physik, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France); Ratcliff, Laura E.; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France); Boulanger, Paul [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France); Institut Néel, CNRS and Université Joseph Fourier, B.P. 166, 38042 Grenoble Cedex 09 (France); Goedecker, Stefan [Institut für Physik, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland)
2014-05-28
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10 000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.
2007-01-01
Recently, time-dependent current-density functional theory has been extended to include the dynamical interaction of quantum systems with external environments [Phys. Rev. Lett. {\\bf 98}, 226403 (2007)]. Here we show that such a theory allows us to study a fundamentally important class of phenomena previously inaccessible by standard density-functional methods: the decay of excited systems. As an example we study the decay of an ensemble of excited He atoms, and discuss these results in the c...
Informing saccharide structural NMR studies with density functional theory calculations.
Klepach, Thomas; Zhao, Hongqiu; Hu, Xiaosong; Zhang, Wenhui; Stenutz, Roland; Hadad, Matthew J; Carmichael, Ian; Serianni, Anthony S
2015-01-01
Density functional theory (DFT) is a powerful computational tool to enable structural interpretations of NMR spin-spin coupling constants ( J-couplings) in saccharides, including the abundant (1)H-(1)H ( JHH), (13)C-(1)H ( JCH), and (13)C-(13)C ( JCC) values that exist for coupling pathways comprised of 1-4 bonds. The multiple hydroxyl groups in saccharides, with their attendant lone-pair orbitals, exert significant effects on J-couplings that can be difficult to decipher and quantify without input from theory. Oxygen substituent effects are configurational and conformational in origin (e.g., axial/equatorial orientation of an OH group in an aldopyranosyl ring; C-O bond conformation involving an exocyclic OH group). DFT studies shed light on these effects, and if conducted properly, yield quantitative relationships between a specific J-coupling and one or more conformational elements in the target molecule. These relationships assist studies of saccharide structure and conformation in solution, which are often challenged by the presence of conformational averaging. Redundant J-couplings, defined as an ensemble of J-couplings sensitive to the same conformational element, are particularly helpful when the element is flexible in solution (i.e., samples multiple conformational states on the NMR time scale), provided that algorithms are available to convert redundant J-values into meaningful conformational models. If the latter conversion is achievable, the data can serve as a means of testing, validating, and refining theoretical methods like molecular dynamics (MD) simulations, which are currently relied upon heavily to assign conformational models of saccharides in solution despite a paucity of experimental data needed to independently validate the method.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
What Density Functional Theory could do for Quantum Information
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Energetics of H$_2$ clusters from density functional and coupled cluster theories
Trail, J R; Needs, R J
2016-01-01
We use coupled-cluster quantum chemical methods to calculate the energetics of molecular clusters cut out of periodic molecular hydrogen structures that model observed phases of solid hydrogen. The hydrogen structures are obtained from Kohn-Sham density functional theory (DFT) calculations at pressures of 150, 250 and 350 GPa, which are within the pressure range in which phases II, III and IV are found to be stable. The calculated deviations in the DFT energies from the coupled-cluster data are reported for different functionals, and optimized functionals are generated which provide reduced errors. We give recommendations for semi-local and hybrid density functionals that are expected to accurately describe hydrogen at high pressures.
Energetics of H2 clusters from density functional and coupled cluster theories
Trail, J. R.; López Ríos, P.; Needs, R. J.
2017-03-01
We use coupled-cluster quantum chemical methods to calculate the energetics of molecular clusters cut out of periodic molecular hydrogen structures that model observed phases of solid hydrogen. The hydrogen structures are obtained from Kohn-Sham density functional theory (DFT) calculations at pressures of 150, 250, and 350 GPa, which are within the pressure range in which phases II, III, and IV are found to be stable. The calculated deviations in the DFT energies from the coupled-cluster data are reported for different functionals, and optimized functionals are generated which provide reduced errors. We give recommendations for semilocal and hybrid density functionals that are expected to provide an accurate description of hydrogen at high pressures.
Rinkevicius, Zilvinas; Murugan, N Arul; Kongsted, Jacob; Aidas, Kestutis; Steindal, Arnfinn Hykkerud; Agren, Hans
2011-04-21
A general density functional theory/molecular mechanics approach for computation of electronic g-tensors of solvated molecules is presented. We apply the theory to the commonly studied di-tert-butyl nitroxide molecule, the simplest model compound for nitroxide spin labels, and explore the role of an aqueous environment and of various approximations for its treatment. It is found that successive improvements of the solvent shift of the g-tensor are obtained by going from the polarizable continuum model to discrete solvent models of various levels of sophistication. The study shows that an accurate parametrization of the electrostatic potential and polarizability of the solvent molecules in terms of distributed multipole expansions and anisotropic polarizabilities to a large degree relieves the need to explicitly include water molecules in the quantum region, which is the common case in density functional/continuum model approaches. It is also shown that the local dynamics of the solvent around the solute significantly influences the electronic g-tensor and should be included in benchmarking of exchange-correlation functionals for evaluation of solvent shifts of g-tensors. These findings can have important ramifications for the use of advanced hybrid density functional theory/molecular mechanics approaches for modeling spin labels in solvents, proteins, and membrane environments.
Fractional-charge and fractional-spin errors in range-separated density-functional theory
Mussard, Bastien
2016-01-01
We investigate fractional-charge and fractional-spin errors in range-separated density-functional theory. Specifically, we consider the range-separated hybrid (RSH) method which combines long-range Hartree-Fock (HF) exchange with a short-range semilocal exchange-correlation density functional, and the RSH+MP2 method which adds long-range second-order M{{\\o}}ller-Plesset (MP2) correlation. Results on atoms and molecules show that the fractional-charge errors obtained in RSH are much smaller than in the standard Kohn-Sham (KS) scheme applied with semilocal or hybrid approximations, and also generally smaller than in the standard HF method. The RSH+MP2 method tends to have smaller fractional-charge errors than standard MP2 for the most diffuse systems, but larger fractional-charge errors for the more compact systems. Even though the individual contributions to the fractional-spin errors in the H atom coming from the short-range exchange and correlation density-functional approximations are smaller than the corre...
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the
Density functional theory based generalized effective fragment potential method
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Kiet A., E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States); Pachter, Ruth, E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States)
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
Transport through correlated systems with density functional theory
Kurth, S.; Stefanucci, G.
2017-10-01
We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer–Büttiker(LB) + DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB + DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.
Density functional theory study of neutral and oxidized thiophene oligomers
Energy Technology Data Exchange (ETDEWEB)
Dai, Yafei; Wei, Chengwei [School of Physics Science and Technology and Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210023 (China); Blaisten-Barojas, Estela, E-mail: blaisten@gmu.edu [Computational Materials Science Center and School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, Virginia 22030 (United States)
2013-11-14
The effect of oxidation on the energetics and structure of thiophene (Th) oligomers is studied with density functional theory at the B3PW91/6-311++G(d,p) level. Neutral n-Th oligomers (2 < n < 13) are gently curved planar chains. Ionization potential and electron affinity results show that n-Th oligomers are easier to be oxidized as their chain length increases. Oxidation states +2, +4, +6, and +8 are energetically stable in 12-Th. Upon oxidation the conjugated backbone of 12-Th switches from extended benzenoid phase to quinoid phase localized on groups of monomers regularly spaced along the chain. Oxidized states +2, +4, +6, and +8 of 12-Th display two +1e localized at the ends of their chains only because of the finite size of the chains. In 12-Th this end-effect extends over the two terminal monomers forming a positive-negative charge duet. This peculiar charge localization makes n-Th oligomers different from other conducting polymers with similar structure, such as polypyrrole. The spectrum of single-electron molecular states of oxidized 12-Th displays two localized single-electron states in the HOMO-LUMO energy gap per +2 oxidation state. Oligothiophene 12-Th doped with F atoms at 1:2 concentration presents a charge transfer of 3.4 e from oligomer to dopants that increases to 4.8 e in the presence of solvent. The charge distribution in these F-doped oligomers is similar to the +4 oxidation state of 12-Th. It is predicted that dopants produce an enhanced charge transfer localized in the proximity of their locations enhancing the formation of bipolarons in the central part of the oligomer chain.
Global and local curvature in density functional theory
Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Extended screened exchange functional derived from transcorrelated density functional theory
Umezawa, Naoto
2017-09-01
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, HTC, is introduced by a similarity transformation of a many-body Hamiltonian, H , with respect to a complex function F: HTC=1/F H F . It is proved that an expectation value of HTC for a normalized single Slater determinant, Dn, corresponds to the total energy: E [n ] = ⟨Ψn|H |Ψn ⟩ /⟨Ψn|Ψn ⟩ = ⟨Dn|HTC|Dn ⟩ under the two assumptions: (1) The electron density n (r ) associated with a trial wave function Ψn = DnF is v -representable and (2) Ψn and Dn give rise to the same electron density n (r ). This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H- ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
Nori-Shargh, Davood; Mousavi, Seiedeh Negar; Kayi, Hakan
2014-05-01
Complete basis set CBS-4, hybrid-density functional theory (hybrid-DFT: B3LYP/6-311+G**) based methods and natural bond orbital (NBO) interpretations have been used to examine the contributions of the hyperconjugative, electrostatic, and steric effects on the conformational behaviors of trans-2,3-dihalo-1,4-diselenane [halo = F (1), Cl (2), Br (3)] and trans-2,5-dihalo-1,4-diselenane [halo = F (4), Cl (5), Br (6)]. Both levels of theory showed that the axial conformation stability, compared to its corresponding equatorial conformation, decreases from compounds 1 → 3 and 4 → 6. Based on the results obtained from the NBO analysis, there are significant anomeric effects for compounds 1-6. The anomeric effect associated with the electron delocalization is in favor of the axial conformation and increases from compounds 1 → 3 and 4 → 6. On the other hand, dipole moment differences between the axial and equatorial conformations [Δ(μ(eq)-μ(ax)] decrease from compounds 1 → 3. Although Δ(μ(eq)-μ(ax)) parameter decreases from compound 1 to compound 3, the dipole moment values of the axial conformations are smaller than those of their corresponding equatorial conformations. Therefore, the anomeric effect associated with the electron delocalizations (for halogen-C-Se segments) and the electrostatic model associated with the dipole-dipole interactions fail to account for the increase of the equatorial conformations stability on going from compound 1 to compound 3. Since there is no dipole moment for the axial and equatorial conformations of compounds 4-6, consequently, the conformational preferences in compounds 1-6 is in general dictated by the steric hindrance factor associated with the 1,3-syn-axial repulsions. Importantly, the CBS-4 results show that the entropy difference (∆S) between the equatorial axial conformations increases from compounds 1 → 3 and 4 → 6. This fact can be explained by the anomeric effect associated
Electronic and magnetic properties of Pd-Ni multilayers: Study using density functional theory
Gómez, Guillermina; Cabeza, Gabriela F.; Belelli, Patricia G.
2009-10-01
Electronic and magnetic properties of Pd-Ni multilayers have been studied using VASP method in the framework of the density functional theory (DFT). The calculations performed for different configurations (Pd n/Ni m(1 1 1), where n Pd layers are piled up over m Ni layers with n=0 to 4 and n+m=4), reveal that the important magnetic moment of Ni is significantly enhanced according as n increases due to hybridization effects between Pd and Ni mostly localized at the interface. The results also indicate that the Pd atoms are strongly polarized in the studied systems when compared with the pure metal.
Electronic and magnetic properties of Pd-Ni multilayers: Study using density functional theory
Energy Technology Data Exchange (ETDEWEB)
Gomez, Guillermina [Grupo de Materiales y Sistemas Cataliticos, Departamento de Fisica, Universidad Nacional del Sur, Avda. Alem 1253, Bahia Blanca, B8000CPB (Argentina); Cabeza, Gabriela F. [CONICET (Argentina)], E-mail: gcabeza@uns.edu.ar; Belelli, Patricia G. [CONICET (Argentina)
2009-10-15
Electronic and magnetic properties of Pd-Ni multilayers have been studied using VASP method in the framework of the density functional theory (DFT). The calculations performed for different configurations (Pd{sub n}/Ni{sub m}(1 1 1), where n Pd layers are piled up over m Ni layers with n=0 to 4 and n+m=4), reveal that the important magnetic moment of Ni is significantly enhanced according as n increases due to hybridization effects between Pd and Ni mostly localized at the interface. The results also indicate that the Pd atoms are strongly polarized in the studied systems when compared with the pure metal.
A Density Functional Theory Study on the Deformation Behaviors of Fe-Si-B Metallic Glasses
Directory of Open Access Journals (Sweden)
Guang-Ping Zheng
2012-08-01
Full Text Available Density functional theory has been employed to investigate the deformation behaviors of glassy Fe-Si-B model systems prepared by ab initio molecular dynamics. The atomistic deformation defects which are closely related to the local dilation volumes or excess volumes and unstable bonding have been systematically analyzed. It has been found that the icosahedral structures are relatively stable under shear deformation until fracture occurs. Plastic flow is indicated by interruption of percolating icosahedral structures, caused by unstable Fe-Si bonding of p-s hybridization in nature.
Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework.
Berger, Daniel; Logsdail, Andrew J; Oberhofer, Harald; Farrow, Matthew R; Catlow, C Richard A; Sherwood, Paul; Sokol, Alexey A; Blum, Volker; Reuter, Karsten
2014-07-14
We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).
Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework
Berger, Daniel; Logsdail, Andrew J.; Oberhofer, Harald; Farrow, Matthew R.; Catlow, C. Richard A.; Sherwood, Paul; Sokol, Alexey A.; Blum, Volker; Reuter, Karsten
2014-07-01
We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).
Quantum Drude friction for time-dependent density functional theory
Neuhauser, Daniel; Lopata, Kenneth
2008-10-01
way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.
Density Functional Theory for General Hard-Core Lattice Gases
Lafuente, Luis; Cuesta, José A.
2004-09-01
We put forward a general procedure to obtain an approximate free-energy density functional for any hard-core lattice gas, regardless of the shape of the particles, the underlying lattice, or the dimension of the system. The procedure is conceptually very simple and recovers effortlessly previous results for some particular systems. Also, the obtained density functionals belong to the class of fundamental measure functionals and, therefore, are always consistent through dimensional reduction. We discuss possible extensions of this method to account for attractive lattice models.
Density functional theory of the crystal field in dioxides
Diviš, M.; Kuriplach, J.; Richter, M.; Steinbeck, L.
1996-04-01
Presented are the results of ab-initio density functional calculations for PrO2 and UO2 using the general potential LAPW and optimized LCAO method in the local density approximation. The crystal field splitting of ionic Pr4+ and U4+ ground states was calculated and compared with predictions of a superposition model.
Density functional theory study of the oligomerization of carboxylic acids.
Di Tommaso, Devis; Watson, Ken L
2014-11-20
We present a density functional theory [M06-2X/6-31+G(d,p)] study of the structures and free energies of formation of oligomers of four carboxylic acids (formic acid, acetic acid, tetrolic acid, and benzoic acid) in water, chloroform, and carbon tetrachloride. Solvation effects were treated using the SMD continuum solvation model. The low-lying energy structures of molecular complexes were located by adopting an efficient search procedure to probe the potential energy surfaces of the oligomers of carboxylic acids (CA)n (n = 2-6). The free energies of the isomers of (CA)n in solution were determined as the sum of the electronic energy, vibrational-rotational-translational gas-phase contribution, and solvation free energy. The assessment of the computational protocol adopted in this study with respect to the dimerization of acetic acid, (AA)2, and formic acid, (FA)2, located new isomers of (AA)2 and (FA)2 and gave dimerization constants in good agreement with the experimental values. The calculation of the self-association of acetic acid, tetrolic acid, and benzoic acid shows the following: (i) Classic carboxylic dimers are the most stable isomer of (CA)2 in both the gas phase and solution. (ii) Trimers of carboxylic acid are stable in apolar aprotic solvents. (iii) Molecular clusters consisting of two interacting classic carboxylic dimers (CA)4,(D+D) are the most stable type of tetramers, but their formation from the self-association of classic carboxylic dimers is highly unfavorable. (iv) For acetic acid and tetrolic acid the reactions (CA)2 + 2CA → (CA)4,(D+D) and (CA)3 + CA → (CA)4,(D+D) are exoergonic, but these aggregation pathways go through unstable clusters that could hinder the formation of tetrameric species. (v) For tetrolic acid the prenucleation species that are more likely to form in solution are dimeric and trimeric structures that have encoded structural motifs resembling the α and β solid forms of tetrolic acid. (vi) Stable tetramers of
Zinc surface complexes on birnessite: A density functional theory study
Energy Technology Data Exchange (ETDEWEB)
Kwon, Kideok D.; Refson, Keith; Sposito, Garrison
2009-01-05
Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.
Energy Technology Data Exchange (ETDEWEB)
Bushong, Neil; Di Ventra, Massimiliano [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)], E-mail: diventra@physics.ucsd.edu
2008-10-01
Recently, time-dependent current-density-functional theory has been extended to include the dynamical interaction of quantum systems with external environments (Di Ventra and D'Agosta 2007 Phys. Rev. Lett. 98 226403). Here we show that such a theory allows us to study a fundamentally important class of phenomena previously inaccessible by standard density-functional methods: the decay of excited systems. As an example we study the decay of an ensemble of excited He atoms, and discuss these results in the context of quantum measurement theory.
Kweon, Kyoung E.; Hwang, Gyeong S.
2012-10-01
The structure and property prediction of metal oxides can significantly be improved by incorporating exact Hartree-Fock (HF) exchange into density functional theory (DFT), which is the so-called hybrid DFT. We explored the impact of HF exchange inclusion on the predicted structural, bonding, and electronic properties of bismuth vanadate (BiVO4), with particular attention to the difference between its monoclinic and tetragonal scheelite phases. The applied exchange-correlation (xc) functionals include the gradient corrected Perdew-Burke-Ernzerhof (PBE) and the PBE-HF hybrid functionals with HF exchange amounts of 10%, 25%, and 50%. We find that the PBE-HF25% yields a monoclinic structure in very close agreement with the experimentally determined structure, while the PBE-HF50% tends to overestimate the monoclinic distortion and the PBE/PBE-HF10% can hardly identify a distinct monoclinic configuration at ambient conditions. Electronic structure analysis reveals that the increasing monoclinic distortion with the amount of HF exchange is related to the enhancement of hybridization between Bi 6s-O 2p antibonding states and unoccupied Bi 6p states. The bonding mechanisms and band structures of the monoclinic and tetragonal phases of BiVO4 were also investigated, and we discuss how the predictions are sensitive to the xc functional choice.
Efficient Diffuse Basis Sets for Density Functional Theory.
Papajak, Ewa; Truhlar, Donald G
2010-03-09
Eliminating all but the s and p diffuse functions on the non-hydrogenic atoms and all diffuse functions on the hydrogen atoms from the aug-cc-pV(x+d)Z basis sets of Dunning and co-workers, where x = D, T, Q, ..., yields the previously proposed "minimally augmented" basis sets, called maug-cc-pV(x+d)Z. Here, we present extensive and systematic tests of these basis sets for density functional calculations of chemical reaction barrier heights, hydrogen bond energies, electron affinities, ionization potentials, and atomization energies. The tests show that the maug-cc-pV(x+d)Z basis sets are as accurate as the aug-cc-pV(x+d)Z ones for density functional calculations, but the computational cost savings are a factor of about two to seven.
Density functional theory study on the molecular structure of loganin
Pandey, Anoop Kumar; Siddiqui, Shamoon Ahmad; Dwivedi, Apoorva; Raj, Kanwal; Misra, Neeraj
2011-01-01
The computational Quantum Chemistry (QC) has been used for different types of problems, for example: structural biology, surface phenomena and liquid phase. In this paper we have employed the density functional method for the study of molecular structure of loganin. The equilibrium geometry, harmonic vibrational frequencies and infrared intensities were calculated by B3LYP/6-311G (d, p) method and basis set combinations. It was found that the optimized parameters obtained by the DFT/B3LYP met...
The electron-propagator approach to conceptual density-functional theory
Indian Academy of Sciences (India)
Junia Melin; Paul W Ayers; J V Ortiz
2005-09-01
Both electron propagator theory and density-functional theory provide conceptually useful information about chemical reactivity and, most especially, charge transfer. This paper elucidates thequalitative and quantitative links between the two theories, with emphasis on how the reactivity indicators of conceptual density-functional theory can be derived from electron propagator theory. Electron propagator theory could be used to compute reactivity indices with high accuracy at reasonable computational cost.
Tran, Fabien; Blaha, Peter
2017-05-04
Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.
Atomic volumes and polarizabilities in density-functional theory.
Kannemann, Felix O; Becke, Axel D
2012-01-21
Becke and Johnson introduced an ad hoc definition of atomic volume [J. Chem. Phys. 124, 014204 (2006)] in order to obtain atom-in-molecule polarizabilities from free-atom polarizabilities in their nonempirical exchange-hole dipole moment model of dispersion interactions. Here we explore the dependence of Becke-Johnson atomic volumes on basis sets and density-functional approximations and provide reference data for all atoms H-Lr. A persuasive theoretical foundation for the Becke-Johnson definition is also provided.
Wang, Dong; Wang, Haifeng; Hu, P
2015-01-21
Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.
Guido, Ciro A.; Cortona, Pietro; Adamo, Carlo
2014-03-01
We extend our previous definition of the metric Δr for electronic excitations in the framework of the time-dependent density functional theory [C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013)], by including a measure of the difference of electronic position variances in passing from occupied to virtual orbitals. This new definition, called Γ, permits applications in those situations where the Δr-index is not helpful: transitions in centrosymmetric systems and Rydberg excitations. The Γ-metric is then extended by using the Natural Transition Orbitals, thus providing an intuitive picture of how locally the electron density changes during the electronic transitions. Furthermore, the Γ values give insight about the functional performances in reproducing different type of transitions, and allow one to define a "confidence radius" for GGA and hybrid functionals.
Insight into Structural Phase Transitions from Density Functional Theory
Ruzsinszky, Adrienn
2014-03-01
Structural phase transitions caused by high pressure or temperature are very relevant in materials science. The high pressure transitions are essential to understand the interior of planets. Pressure or temperature induced phase transitions can be relevant to understand other phase transitions in strongly correlated systems or molecular crystals.Phase transitions are important also from the aspect of method development. Lower level density functionals, LSDA and GGAs all fail to predict the lattice parameters of different polymorphs and the phase transition parameters at the same time. At this time only nonlocal density functionals like HSE and RPA have been proved to resolve the geometry-energy dilemma to some extent in structural phase transitions. In this talk I will report new results from the MGGA_MS family of meta-GGAs and give an insight why this type of meta-GGAs can give a systematic improvement of the geometry and phase transition parameters together. I will also present results from the RPA and show a possible way to improve beyond RPA.
A hybrid density functional view of native vacancies in gallium nitride.
Gillen, Roland; Robertson, John
2013-10-09
We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the ϵ(0| - 1) transition level as an alternative candidate for the yellow luminescence in GaN.
Rong, Yang; Bin, Tang; Tao, Gao; BingYun, Ao
2016-06-01
Hybrid density functional theory is employed to systematically investigate the structural, magnetic, vibrational, thermodynamic properties of plutonium monocarbide (PuC and PuC0.75). For comparison, the results obtained by DFT, DFT + U are also given. For PuC and PuC0.75, Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic (AFM) structure. The calculated phonon spectra suggest that PuC and PuC0.75 are dynamically stable. Values of the Helmholtz free energy ΔF, internal energy ΔE, entropy S, and constant-volume specific heat C v of PuC and PuC0.75 are given. The results are in good agreement with available experimental or theoretical data. As for the chemical bonding nature, the difference charge densities, the partial densities of states and the Bader charge analysis suggest that the Pu-C bonds of PuC and PuC0.75 have a mixture of covalent character and ionic character. The effect of carbon vacancy on the chemical bonding is also discussed in detail. We expect that our study can provide some useful reference for further experimental research on the phonon density of states, thermodynamic properties of the plutonium monocarbide. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).
Study of spontaneous fission lifetimes using nuclear density functional theory
Directory of Open Access Journals (Sweden)
Sadhukhan Jhilam
2013-12-01
Full Text Available The spontaneous fission lifetimes have been studied microscopically by minimizing the collective action integral in a two-dimensional collective space of quadrupole moments (Q20, Q22 representing elongation and triaxiality. The microscopic collective potential and inertia tensor are obtained by solving the self-consistent Hartree-Fock-Bogoliubov (HFB equations with the Skyrme energy density functional and mixed pairing interaction. The mass tensor is computed within the perturbative Adiabatic Time-Dependent HFB (ATDHFB approach in the cranking approximation. The dynamic fission trajectories have been obtained by minimizing the collective action using two different numerical techniques. The values of spontaneous fission lifetimes obtained in this way are compared with the static results.
Pairing Nambu-Goldstone modes within nuclear density functional theory
Hinohara, Nobuo
2016-01-01
We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence of the $T=1$ pairing condensate offers a quantitative description of the binding energy differences of open-shell superfluid nuclei. We conclude that the pairing rotational moments of inertia are excellent pairing indicators, which are free from ambiguities attributed to odd-mass systems. We offer a new, unified interpretation of the binding-energy differences traditionally viewed in the shell model picture as signatures of the valence nucleon properties. We present the first systematic analysis of the off-diagonal pairing rotational moments of inertia, and demonstrate the mixing of the neutron and proton pairing rotational modes in the ground states of even-even nuclei. Finally, we discuss the importance of mass measurements of neutron-rich nuclei for constraining the pairing energy density functional.
Density Functional Theory of Polymer Structure and Conformations
Directory of Open Access Journals (Sweden)
Zhaoyang Wei
2016-04-01
Full Text Available We present a density functional approach to quantitatively evaluate the microscopic conformations of polymer chains with consideration of the effects of chain stiffness, polymer concentration, and short chain molecules. For polystyrene (PS, poly(ethylene oxide (PEO, and poly(methyl methacrylate (PMMA melts with low-polymerization degree, as chain length increases, they display different stretching ratios and show non-universal scaling exponents due to their different chain stiffnesses. In good solvent, increase of PS concentration induces the decline of gyration radius. For PS blends containing short (m1 = 1 − 100 and long (m = 100 chains, the expansion of long chains becomes unobvious once m 1 is larger than 40, which is also different to the scaling properties of ideal chain blends.
Periodic Density Functional Theory Solver using Multiresolution Analysis with MADNESS
Harrison, Robert; Thornton, William
2011-03-01
We describe the first implementation of the all-electron Kohn-Sham density functional periodic solver (DFT) using multi-wavelets and fast integral equations using MADNESS (multiresolution adaptive numerical environment for scientific simulation; http://code.google.com/p/m-a-d-n-e-s-s). The multiresolution nature of a multi-wavelet basis allows for fast computation with guaranteed precision. By reformulating the Kohn-Sham eigenvalue equation into the Lippmann-Schwinger equation, we can avoid using the derivative operator which allows better control of overall precision for the all-electron problem. Other highlights include the development of periodic integral operators with low-rank separation, an adaptable model potential for nuclear potential, and an implementation for Hartree Fock exchange. This work was supported by NSF project OCI-0904972 and made use of resources at the Center for Computational Sciences at Oak Ridge National Laboratory under contract DE-AC05-00OR22725.
Density Functional Theory using Multiresolution Analysis with MADNESS
Thornton, Scott; Harrison, Robert
2012-02-01
We describe the first implementation of the all-electron Kohn-Sham density functional periodic solver (DFT) using multi-wavelets and fast integral equations using MADNESS (multiresolution adaptive numerical environment for scientific simulation; http://code.google.com/p/m-a-d-n-e-s-s). The multiresolution nature of a multi-wavelet basis allows for fast computation with guaranteed precision. By reformulating the Kohn-Sham eigenvalue equation into the Lippmann-Schwinger equation, we can avoid using the derivative operator which allows better control of overall precision for the all-electron problem. Other highlights include the development of periodic integral operators with low-rank separation, an adaptable model potential for the nuclear potential, and an implementation for Hartree-Fock exchange.
Size-dependent error of the density functional theory ionization potential in vacuum and solution.
Sosa Vazquez, Xochitl A; Isborn, Christine M
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Energy Technology Data Exchange (ETDEWEB)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Antisites in III-V semiconductors: Density functional theory calculations
Chroneos, A.
2014-07-14
Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III=Al, Ga, and In and V=P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III V q) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V I I I q) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III V q defects dominate under III-rich conditions and V I I I q under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies. © 2014 AIP Publishing LLC.
Gedanken Densities and Exact Constraints in Density Functional Theory
Perdew, John P; Sun, Jianwei; Burke, Kieron
2014-01-01
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is no...
Antisites in III-V semiconductors: Density functional theory calculations
Energy Technology Data Exchange (ETDEWEB)
Chroneos, A., E-mail: alex.chroneos@open.ac.uk [Engineering and Innovation, The Open University, Milton Keynes MK7 6AA (United Kingdom); Tahini, H. A. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Schwingenschlögl, U., E-mail: udo.schwingenschlogl@kaust.edu.sa [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Grimes, R. W., E-mail: r.grimes@imperial.ac.uk [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)
2014-07-14
Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III{sub V}{sup q}) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V{sub III}{sup q}) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III{sub V}{sup q} defects dominate under III-rich conditions and V{sub III}{sup q} under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.
Using Density Functional Theory (DFT) for the Calculation of Atomization Energies
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.
The Density Functional Theory Study of Structural and Electronical Properties of ZnO Clusters
Directory of Open Access Journals (Sweden)
O.V. Bovgyra
2013-03-01
Full Text Available Density functional theory studies of structural and electronic properties of small clusters were performed. For each cluster an optimization of structure and the basic properties of the band structure were conducted. It was determined that with increasing (n energetically more efficient in the small clusters is stabilization from the ring to fulleren-like structures containing tetragonal and hexagonal faces and all atoms have coordination number equal three. Among the clusters (ZnO12 with doped atoms most stable are clusters where Zn was replaced by Mn, Cu and Co atoms. Band gap in the electronic spectrum of doped clusters decreases due to p-d hybridization orbitals of the impurity atom with the orbitals of the oxygen atom.
Cohesive properties of noble metals by van der Waals-corrected Density Functional Theory
Ambrosetti, Alberto
2016-01-01
The cohesive energy, equilibrium lattice constant, and bulk modulus of noble metals are computed by different van der Waals-corrected Density Functional Theory methods, including vdW-DF, vdW-DF2, vdW-DF-cx, rVV10 and PBE-D. Two specifically-designed methods are also developed in order to effectively include dynamical screening effects: the DFT/vdW-WF2p method, based on the generation of Maximally Localized Wannier Functions, and the RPAp scheme (in two variants), based on a single-oscillator model of the localized electron response. Comparison with results obtained without explicit inclusion of van der Waals effects, such as with the LDA, PBE, PBEsol, or the hybrid PBE0 functional, elucidates the importance of a suitable description of screened van der Waals interactions even in the case of strong metal bonding. Many-body effects are also quantitatively evaluated within the RPAp approach.
A comparative study of atomic oxygen adsorption at Pd surfaces from Density Functional Theory
Bukas, Vanessa J.; Reuter, Karsten
2017-04-01
Based on density functional theory, we present a detailed investigation into the on-surface adsorption of atomic oxygen at all three low-index Pd facets in the low-coverage regime. Relying on one consistent computational framework allows for a systematic comparison with respect to surface symmetry, while discerning trends in the adsorption geometries, energies, work functions, and electron densities. We overall find a persisting degree of O-Pd hybridization that is accompanied by minimal charge transfer from the substrate to the adsorbate, thereby resulting in comparable binding energies and diffusion barriers at the three surfaces. Small differences in reactivity are nevertheless reflected in subtle variations of the underlying electronic structure which do not, however, follow the expected order according to atom packing density.
Brorsen, Kurt R; Yang, Yang; Pak, Michael V; Hammes-Schiffer, Sharon
2017-05-04
The development of approximate exchange-correlation functionals is critical for modern density functional theory. A recent analysis of atomic systems suggested that some modern functionals are straying from the path toward the exact functional because electron densities are becoming less accurate while energies are becoming more accurate since the year 2000. To investigate this trend for more chemically relevant systems, the electron densities in the bonding regions and the atomization energies are analyzed for a series of diatomic molecules with 90 different functionals. For hybrid generalized gradient approximation functionals developed since the year 2000, the errors in densities and atomization energies are decoupled; the accuracy of the energies remains relatively consistent while the accuracy of the densities varies significantly. Such decoupling is not observed for generalized gradient and meta-generalized gradient approximation functionals. Analysis of electron densities in bonding regions is found to be important for the evaluation of functionals for chemical systems.
Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T
2014-01-21
We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.
Jain, Shekhar; Dominik, Aleksandra; Chapman, Walter G
2007-12-28
A density functional theory based on Wertheim's first order perturbation theory is developed for inhomogeneous complex fluids. The theory is derived along similar lines as interfacial statistical associating fluid theory [S. Tripathi and W. G. Chapman, J. Chem. Phys. 122, 094506 (2005)]. However, the derivation is more general and applies broadly to a range of systems, retaining the simplicity of a segment density based theory. Furthermore, the theory gives the exact density profile for ideal chains in an external field. The general avail of the theory has been demonstrated by applying the theory to lipids near surfaces, lipid bilayers, and copolymer thin films. The theoretical results show excellent agreement with the results from molecular simulations.
Current Density-Functional Theory using meta-Generalized Gradient Exchange--Correlation Functionals
Furness, James W; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-01-01
We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn--Sham current density-functional theory (KS-CDFT). A unique feature of the non-perturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. ($\\sim 235000$T) in strength. CDFT functionals based on the TPSS and B98 forms are investigated and their performance is assessed by comparison with accurate CCSD(T) data. In the weak field regime magnetic properties such as magnetizabilities and NMR shielding constants show modest but systematic improvements over GGA functionals. However, in strong field regime the mGGA based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T...
Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-09-08
We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-28
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Diaconu, C V; Doll, J D; Freeman, D L; Diaconu, Cristian V.; Cho, Art E.; Freeman, David L.
2004-01-01
In the present work we investigate the adequacy of broken-symmetry (BS) unrestricted (U) density functional theory (DFT) for constructing the potential energy curve of nickel dimer and nickel hydride, as model for larger bare and hydrogenated nickel cluster calculations. We use three hybrid functionals: B3LYP, Becke98, and FSLYP (50% Hartree-Fock and 50% Slater exchange and LYP correlation functional) with two basis sets: all-electron (AE) Wachters+f basis set and Stuttgart RSC effective core potential (ECP) and basis set. We find that, overall, B3LYP functional with Wachters+f AE basis set performs best, with only 1.3% root-mean-square (RMS) deviation from experiment, followed by Becke98/AE and B3LYP/ECP, with RMS deviation from experimental value of 2.5% and 2.7%, respectively. We also find that for Ni dimer, the spin-projection for the broken-symmetry unrestricted singlet states changes the ordering of the states, but the splittings are less than 10 meV. All our calculations predict a (delta)(delta)-hole g...
Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics
Falk von Rudorff, Guido; Jakobsen, Rasmus; Rosso, Kevin M.; Blumberger, Jochen
2016-10-01
The atom-scale characterisation of interfaces between transition metal oxides and liquid water is fundamental to our mechanistic understanding of diverse phenomena ranging from crystal growth to biogeochemical transformations to solar fuel production. Here we report on the results of large-scale hybrid density functional theory-based molecular dynamics simulations for the hematite(001)-liquid water interface. A specific focus is placed on understanding how different terminations of the same surface influence surface solvation. We find that the two dominant terminations for the hematite(001) surface exhibit strong differences both in terms of the active species formed on the surface and the strength of surface solvation. According to present simulations, we find that charged oxyanions (-O-) and doubly protonated oxygens (-OH2+ ) can be formed on the iron terminated layer via autoionization of neutral -OH groups. No such charged species are found for the oxygen terminated surface. In addition, the missing iron sublayer in the iron terminated surface strongly influences the solvation structure, which becomes less well ordered in the vicinity of the interface. These pronounced differences are likely to affect the reactivity of the two surface terminations, and in particular the energetics of excess charge carriers at the surface.
Density Functional Theory in Surface Chemistry and Catalysis
Energy Technology Data Exchange (ETDEWEB)
Norskov, Jens
2011-05-19
Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.
Density functional theory in surface chemistry and catalysis
DEFF Research Database (Denmark)
Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix
2011-01-01
Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...
Calculate Electric Field Gradient of TiO2 Within Density Functional Theory
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>TiO2 electric field gradient has been calculated utilizing WIEN2K program, which is ab initio based on density function theory (DFT). DFT uses the charge density as a variable instead of electronic wave
Energy Technology Data Exchange (ETDEWEB)
Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2014-01-21
We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.
Phase-Space Explorations in Time-Dependent Density Functional Theory
Rajam, Arun K.; Hessler, Paul; Gaun, Christian; Maitra, Neepa T.
2009-01-01
We discuss two problems which are particularly challenging for approximations in time-dependent density functional theory (TDDFT) to capture: momentum-distributions in ionization processes, and memory-dependence in real-time dynamics. We propose an extension of TDDFT to phase-space densities, discuss some formal aspects of such a "phase-space density functional theory" and explain why it could ameliorate the problems in both cases. For each problem, a two-electron model system is exactly nume...
Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan
2016-06-21
We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results.
Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura
2016-02-04
A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications.
Hussain, Tanveer; Maark, Tuhina Adit; Pathak, Biswarup; Ahuja, Rajeev
2013-10-01
This study deals with the investigations of structural, electronic and thermodynamic properties of MgH2 doped with selected transition metals (TMs) by means of hybrid density functional theory (PBE0). On the structural side, the calculated lattice parameters and equilibrium volumes increase in case of Sc, Zr and Y opposite to all the other dopants indicating volumetrically increased hydrogen density. Except Fe, all the dopants improve the kinetics of MgH2 by reducing the heat of adsorption with Cu, Nb, Ni and V proving more efficient than others studied TM's. The electronic properties have been studied by density of states and correlated with hydrogen adsorption energies.
Density functional theory + U modeling of polarons in organohalide lead perovskites
Directory of Open Access Journals (Sweden)
Eric Welch
2016-12-01
Full Text Available We investigate the possible formation of polarons in four organic perovskites (CH3NH3PbI3, CH3NH3PbBr3, CH3NH3PbCl3, and CH3NH3PbI2Cl1 using a density functional theory (DFT calculations with local potentials and hybrid functionals. We show that DFT+U method with U = 8 eV predicts a correct band-gap and matches the forces on ions from hybrid calculations. We then use the DFT + U approach to study the effect of polarons, i.e. to search the configuration space and locate the lowest energy localized band gap state self-trapped hole (STH. STH configurations were found for three pure halides and one mixed halide system. Spin orbit coupling (SOC was also taken into account and the results may be found in the supplementary material. This study focuses on the +U method; however, SOC corrections added to the DFT+U calculations also resulted in STH states in all four systems.
Full canonical information from grand-potential density-functional theory.
de Las Heras, Daniel; Schmidt, Matthias
2014-12-05
We present a general and formally exact method to obtain the canonical one-body density distribution and the canonical free energy from direct decomposition of classical density functional results in the grand ensemble. We test the method for confined one-dimensional hard-core particles for which the exact grand potential density functional is explicitly known. The results agree to within high accuracy with those from exact methods and our Monte Carlo many-body simulations. The method is relevant for treating finite systems and for dynamical density functional theory.
Toulouse, Julien; Angyan, Janos G; Savin, Andreas
2010-01-01
Using Green-function many-body theory, we present the details of a formally exact adiabatic-connection fluctuation-dissipation density-functional theory based on range separation, which was sketched in Toulouse, Gerber, Jansen, Savin and Angyan, Phys. Rev. Lett. 102, 096404 (2009). Range-separated density-functional theory approaches combining short-range density functional approximations with long-range random phase approximations (RPA) are then obtained as well-identified approximations on the long-range Green-function self-energy. Range-separated RPA-type schemes with or without long-range Hartree-Fock exchange response kernel are assessed on rare-gas and alkaline-earth dimers, and compared to range-separated second-order perturbation theory and range-separated coupled-cluster theory.
Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections
Energy Technology Data Exchange (ETDEWEB)
Chai, Jeng-Da; Head-Gordon, Martin
2008-06-14
We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical atom-atom dispersion corrections. The resulting functional, {omega}B97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, {omega}B97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our previous functionals, such as {omega}B97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.
Ground-state properties of rare-earth metals: an evaluation of density-functional theory.
Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V
2014-10-15
The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called 'standard model' of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.
DEFF Research Database (Denmark)
Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aagaard
2007-01-01
) adequately which, on the other hand, can be described in wave-function theory (WFT), for example, with a multiconfigurational self-consistent field (MCSCF) model. It is therefore of high interest to develop a hybrid model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can......In many cases, the dynamic correlation can be calculated quite accurately and at a fairly low computational cost in Kohn-Sham density-functional theory (KS-DFT), using current standard approximate functionals. However, in general, KS-DFT does not treat static correlation effects (near degeneracy...... be achieved by splitting the two-electron interaction into long-range and short-range parts. The long-range part is then treated by WFT and the short-range part by DFT. In this work the authors consider the so-called "erf" long-range interaction erf(µ r12) / r12, which is based on the standard error function...
Sternheimer shieldings and EFG polarizabilities: a density-functional theory study
Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve; Sałek, Paweł; Ågren, Hans; Vahtras, Olav
2003-04-01
The electric field gradient (EFG) at the nucleus, the generalized Sternheimer shielding constants, and the EFG hyperpolarizabilities of a set of reference molecules are computed using analytic density-functional (up to quadratic) response theory. At the three-parameter Becke-Lee-Yang-Parr (B3LYP) level, density functional theory (DFT) underestimates correlation effects compared with other approaches such as coupled-cluster and multiconfigurational self-consistent field. For the prediction of EFG properties of hydrogen nuclei and electron-rich atoms such as halides, DFT/B3LYP provides results even less reliable than Hartree-Fock theory.
Dispersion-corrected density functional theory for aromatic interactions in complex systems.
Ehrlich, Stephan; Moellmann, Jonas; Grimme, Stefan
2013-04-16
Aromatic interactions play a key role in many chemical and biological systems. However, even if very simple models are chosen, the systems of interest are often too large to be handled with standard wave function theory (WFT). Although density functional theory (DFT) can easily treat systems of more than 200 atoms, standard semilocal (hybrid) density functional approximations fail to describe the London dispersion energy, a factor that is essential for accurate predictions of inter- and intramolecular noncovalent interactions. Therefore dispersion-corrected DFT provides a unique tool for the investigation and analysis of a wide range of complex aromatic systems. In this Account, we start with an analysis of the noncovalent interactions in simple model dimers of hexafluorobenzene (HFB) and benzene, with a focus on electrostatic and dispersion interactions. The minima for the parallel-displaced dimers of HFB/HFB and HFB/benzene can only be explained when taking into account all contributions to the interaction energy and not by electrostatics alone. By comparison of saturated and aromatic model complexes, we show that increased dispersion coefficients for sp(2)-hybridized carbon atoms play a major role in aromatic stacking. Modern dispersion-corrected DFT yields accurate results (about 5-10% error for the dimerization energy) for the relatively large porphyrin and coronene dimers, systems for which WFT can provide accurate reference data only with huge computational effort. In this example, it is also demonstrated that new nonlocal, density-dependent dispersion corrections and atom pairwise schemes mutually agree with each other. The dispersion energy is also important for the complex inter- and intramolecular interactions that arise in the molecular crystals of aromatic molecules. In studies of hexahelicene, dispersion-corrected DFT yields "the right answer for the right reason". By comparison, standard DFT calculations reproduce intramolecular distances quite
Li, Wenxuan; Kotsis, Konstantinos; Manzhos, Sergei
2016-07-20
We present a comparative density functional theory (DFT) and density functional tight binding (DFTB) study of geometries and electronic structures of arginine (Arg), arginine adsorbed on the anatase (101) surface of titania in several adsorption configurations, and of an arginine-rich cell penetrating peptide TAT and its adsorption on the surface of TiO2. Two DFTB parameterizations are considered, tiorg-0-1/mio-1-1 and matsci-0-3. While there is good agreement in the structures and relative energies of Arg and peptide conformers between DFT and DFTB, both adsorption geometries and energies are noticeably different for Arg adsorbed on TiO2. The tiorg-0-1/mio-1-1 parameterization performs better than matsci-0-3. We relate this difference to the difference in electronic structures resulting from the two methods (DFT and DFTB) and specifically to the band alignment between the molecule and the oxide. We show that the band alignment of TAT and TiO2 modeled with DFTB is qualitatively correct but that with DFT using the PBE functional is not. This is specific to the modeling of large molecules where the HOMO is close to the conduction band of the oxide. We therefore report a case where the approximate DFT-based method - DFTB (with which the correct band structure can be effectively obtained) - performs better than the DFT itself with a functional approximation feasible for the modeling of large bio-inorganic interfaces, i.e. GGA (as opposed to hybrid functionals which are impractical at such a scale). Our results highlight the utility of the DFTB method for the modeling of bioinorganic interfaces not only from the CPU cost perspective but also from the accuracy point of view.
Energy Technology Data Exchange (ETDEWEB)
Holthaus, Svea große; Köppen, Susan, E-mail: koeppen@hmi.uni-bremen.de; Frauenheim, Thomas; Ciacchi, Lucio Colombi [Bremen Centre for Computational Materials Science, University of Bremen, 28359 Bremen (Germany)
2014-06-21
We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101{sup ¯}0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to form predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
International Workshop on Electronic Density Functional Theory : Recent Progress and New Directions
Vignale, Giovanni; Das, Mukunda
1998-01-01
This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on r...
Effective model hierarchies for dynamic and static classical density functional theories
Energy Technology Data Exchange (ETDEWEB)
Majaniemi, S [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11100, FI-00076 Aalto (Finland); Provatas, N [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S-4L7 (Canada); Nonomura, M, E-mail: maj@fyslab.hut.f [Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)
2010-09-15
The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
Non-Periodic Finite-Element Formulation of Orbital-Free Density Functional Theory
Energy Technology Data Exchange (ETDEWEB)
Gavini, V; Knap, J; Bhattacharya, K; Ortiz, M
2006-10-06
We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.
Nakatsukasa, Takashi
2012-01-01
We present the basic concepts and our recent developments in the density functional approaches with the Skyrme functionals for describing nuclear dynamics at low energy. The time-dependent density-functional theory (TDDFT) is utilized for the exact linear response with an external perturbation. For description of collective dynamics beyond the perturbative regime, we present a theory of a decoupled collective submanifold to describe for a slow motion based on the TDDFT. Selected applications are shown to demonstrate the quality of their performance and feasibility. Advantages and disadvantages in the numerical aspects are also discussed.
Applications of Density Functional Theory to Iron-Containing Molecules of Bioinorganic Interest
Directory of Open Access Journals (Sweden)
Hajime eHirao
2014-04-01
Full Text Available The past decades have seen an explosive growth in the application of density functional theory (DFT methods to molecular systems that are of interest in a variety of scientific fields. Owing to its balanced accuracy and efficiency, DFT plays particularly useful roles in the theoretical investigation of large molecules. Even for biological molecules such as proteins, DFT finds application in the form of, e.g., hybrid quantum mechanics and molecular mechanics (QM/MM, in which DFT may be used as a QM method to describe a higher prioritized region in the system, while a MM force field may be used to describe remaining atoms. Iron-containing molecules are particularly important targets of DFT calculations. From the viewpoint of chemistry, this is mainly because iron is abundant on earth, iron plays powerful (and often mysterious roles in enzyme catalysis, and iron thus has the great potential for biomimetic catalysis of chemically difficult transformations. In this paper, we present a brief overview of several recent applications of DFT to iron-containing nonheme synthetic complexes, heme-type cytochrome P450 enzymes, and nonheme iron enzymes, all of which are of particular interest in the field of bioinorganic chemistry. Emphasis will be placed on our own work.
A density functional theory investigation of the electronic structure and spin moments of magnetite
Noh, Junghyun
2014-08-01
We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.
A density functional theory investigation of the electronic structure and spin moments of magnetite
Noh, Junghyun; Osman, Osman I; Aziz, Saadullah G; Winget, Paul; Brédas, Jean-Luc
2014-01-01
We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts. PMID:27877697
Applications of density functional theory to iron-containing molecules of bioinorganic interest.
Hirao, Hajime; Thellamurege, Nandun; Zhang, Xi
2014-01-01
The past decades have seen an explosive growth in the application of density functional theory (DFT) methods to molecular systems that are of interest in a variety of scientific fields. Owing to its balanced accuracy and efficiency, DFT plays particularly useful roles in the theoretical investigation of large molecules. Even for biological molecules such as proteins, DFT finds application in the form of, e.g., hybrid quantum mechanics and molecular mechanics (QM/MM), in which DFT may be used as a QM method to describe a higher prioritized region in the system, while a MM force field may be used to describe remaining atoms. Iron-containing molecules are particularly important targets of DFT calculations. From the viewpoint of chemistry, this is mainly because iron is abundant on earth, iron plays powerful (and often enigmatic) roles in enzyme catalysis, and iron thus has the great potential for biomimetic catalysis of chemically difficult transformations. In this paper, we present a brief overview of several recent applications of DFT to iron-containing non-heme synthetic complexes, heme-type cytochrome P450 enzymes, and non-heme iron enzymes, all of which are of particular interest in the field of bioinorganic chemistry. Emphasis will be placed on our own work.
Directory of Open Access Journals (Sweden)
Hiroshi Kawabata et al
2008-01-01
Full Text Available Hybrid density functional theory (DFT calculations have been carried out for neutral and radical cation species of a fused selenophene oligomer, denoted by Se(n, where n represents the number of selenophene rings in the oligomer, to elucidate the electronic structures at ground and low-lying excited states. A polymer of fused selenophene was also investigated using one-dimensional periodic boundary conditions (PBC for comparison. It was found that the reorganization energy of a radical cation of Se(n from a vertical hole trapping point to its relaxed structure is significantly small. Also, the reorganization energy decreased gradually with increasing n, indicating that Se(n has an effective intramolecular hole transport property. It was found that the radical cation species of Se(n has a low-energy band in the near-IR region, which is strongly correlated to hole conductivity. The relationship between the electronic states and intramolecular hole conductivity was discussed on the basis of theoretical calculations.
Energy Technology Data Exchange (ETDEWEB)
Sarker, Pranab; Huda, Muhammad N., E-mail: huda@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States); Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)
2015-12-07
A quaternary oxide, CuSnW{sub 2}O{sub 8} (CTTO), has been predicted by density functional theory (DFT) to be a suitable material for sustainable photovoltaic applications. CTTO possesses band gaps of 1.25 eV (indirect) and 1.37 eV (direct), which were evaluated using the hybrid functional (HSE06) as a post-DFT method. The hole mobility of CTTO was higher than that of silicon. Further, optical absorption calculations demonstrate that CTTO is a better absorber of sunlight than Cu{sub 2}ZnSnS{sub 4} and CuIn{sub x}Ga{sub 1−x}Se{sub 2} (x = 0.5). In addition, CTTO exhibits rigorous thermodynamic stability comparable to WO{sub 3}, as investigated by different thermodynamic approaches such as bonding cohesion, fragmentation tendency, and chemical potential analysis. Chemical potential analysis further revealed that CTTO can be synthesized at flexible experimental growth conditions, although the co-existence of at least one secondary phase is likely. Finally, like other Cu-based compounds, the formation of Cu vacancies is highly probable, even at Cu-rich growth condition, which could introduce p-type activity in CTTO.
Marinescu, Maria; Tudorache, Diana Gabriela; Marton, George Iuliu; Zalaru, Christina-Marie; Popa, Marcela; Chifiriuc, Mariana-Carmen; Stavarache, Cristina-Elena; Constantinescu, Catalin
2017-02-01
Eco-friendly, one-pot, solvent-free synthesis of biologically active 2-substituted benzimidazoles is presented and discussed herein. Novel N-Mannich bases are synthesized from benzimidazoles, secondary amines and formaldehyde, and their structures are confirmed by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and elemental analysis. All benzimidazole derivatives are evaluated by qualitative and quantitative methods against 9 bacterial strains. The largest microbicide and anti-biofilm effect is observed for the 2-(1-hydroxyethyl)-compounds. Density functional theory (DFT) modeling of the molecular structure and frontier molecular orbitals, i.e. highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO/LUMO), is accomplished by using the GAMESS 2012 software. Antimicrobial activity is correlated with the electronic parameters (chemical hardness, electronic chemical potential, global electrophilicity index), Mullikan atomic charges and geometric parameters of the benzimidazole compounds. The planarity of the compound, symmetry of the molecule, and the presence of a nucleophilic group, are advantages for a high antimicrobial activity. Finally, we briefly show that further accurate processing of such compounds into thin films and hybrid structures, e.g. by laser ablation matrix-assisted pulsed laser evaporation and/or laser-induced forward transfer, may indeed provide simple and environmental friendly, state-of-the-art solutions for antimicrobial coatings.
Monte Carlo computation of the spectral density function in the interacting scalar field theory
Abbasi, Navid; Davody, Ali
2015-12-01
We study the ϕ4 field theory in d = 4. Using bold diagrammatic Monte Carlo method, we solve the Schwinger-Dyson equations and find the spectral density function of the theory beyond the weak coupling regime. We then compare our result with the one obtained from the perturbation theory. At the end, we utilize our Monte Carlo result to find the vertex function as the basis for the computation of the physical scattering amplitudes.
Ions in solution: density corrected density functional theory (DC-DFT).
Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2014-05-14
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl(-) and HO·H2O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
From dilute matter to the equilibrium point in the energy--density--functional theory
Yang, C J; Lacroix, D
2016-01-01
Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.
Ions in solution: Density Corrected Density Functional Theory (DC-DFT)
Kim, Min-Cheol; Burke, Kieron
2014-01-01
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO$\\cdot$Cl$^-$ and HO$\\cdot$H$_2$O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
Joint density-functional theory and its application to systems in solution
Petrosyan, Sahak A.
The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional
The importance of current contributions to shielding constants in density-functional theory.
Reimann, Sarah; Ekström, Ulf; Stopkowicz, Stella; Teale, Andrew M; Borgoo, Alex; Helgaker, Trygve
2015-07-28
The sources of error in the calculation of nuclear-magnetic-resonance shielding constants determined by density-functional theory are examined. Highly accurate Kohn-Sham wave functions are obtained from coupled-cluster electron density functions and used to define accurate-but current independent-density-functional shielding constants. These new reference values, in tandem with high-accuracy coupled-cluster shielding constants, provide a benchmark for the assessment of errors in common density-functional approximations. In particular the role of errors arising in the diamagnetic and paramagnetic terms is investigated, with particular emphasis on the role of current-dependence in the latter. For carbon and nitrogen the current correction is found to be, in some cases, larger than 10 ppm. This indicates that the absence of this correction in general purpose exchange-correlation functionals is one of the main sources of error in shielding calculations using density functional theory. It is shown that the current correction improves the shielding performance of many popular approximate DFT functionals.
Density-functional-theory studies of the infrared spectra of titanium carbide nanocrystals.
Patzschke, Michael; Sundholm, Dage
2005-06-30
The infrared (IR) spectra of cuboidic titanium carbide (TiC) nanocrystals have been studied at the density-functional-theory (DFT) level using the Becke-Perdew (BP) functional and triple-zeta quality basis sets augmented by one set of polarization functions (TZVP). The accuracy of the calculations was checked by DFT calculations using the Perdew-Burke-Ernzerhof hybrid functional (PBE0) and up to quadruple-zeta quality basis sets augmented by one set of polarization functions (QZVP). The calculated IR spectrum for Ti(14)C(13) (3 x 3 x 3) is found to be in fair agreement with the experimental IR spectrum obtained by infrared resonance-enhanced multiphoton ionization (IR-REMPI) measurements, whereas, for Ti(18)C(18) (4 x 3 x 3) and Ti(32)C(32) (4 x 4 x 4), the calculated IR spectra differ significantly from the experimental ones. The smallest TiC cluster (Ti(4)C(4), 2 x 2 x 2) considered has not been reported in any mass-spectrometer studies. The present DFT calculations show that the vibrational modes related to the in-plane vibrations of solid TiC are not observed in the IR-REMPI spectra of nanocrystals larger than Ti(14)C(13). Contrary to solid TiC, the studied TiC nanocrystals are nonmetallic with optical gaps of 0.62 eV (0.55 eV) and 0.028 eV (0.027 eV) for Ti(32)C(32) and Ti(108)C(108) (6 x 6 x 6), calculated at the time-dependent density-functional-theory (TDDFT) level using the BP functional. The HOMO-LUMO gaps obtained in the BP DFT calculations are given within parentheses. At the PBE0 DFT level, the HOMO-LUMO gaps for Ti(32)C(32) and Ti(108)C(108) are 1.74 and 0.32 eV, respectively.
Density functional theory investigations of radical scavenging activity of 3′-Methyl-quercetin
Directory of Open Access Journals (Sweden)
Abdullah G. Al-Sehemi
2016-09-01
Full Text Available The possible eight rotamers of 3′-Methyl-quercetin have been optimized by using density functional theory (DFT at B3LYP/6-31G∗ level of theory. The molecular structure and molecular properties of the most stable rotamers have been investigated at the same level of theory. We have computed the descriptors; electronegativity (χ, hardness (η, electrophilicity (ω, softness (S and electrophilicity index (ωi by DFT approach. We have shed light on the structure–property relationship. The absorption spectrum has been computed by time dependent density functional theory (TD-DFT at TD-B3LYP/6-31G∗ level of theory. Radical scavenging activity has been explained on the basis of bond dissociation enthalpy (BDE and the adiabatic ionization potential (IP. Two mechanisms have been explained for the radical scavenging processes, i.e., hydrogen atom transfer and one-electron transfer.
Hartley, Madeline K; Vine, Seanna; Walsh, Elizabeth; Avrantinis, Sara; Daub, G William; Cave, Robert J
2016-03-03
We investigate several representative density functional theory approaches for the calculation of relative activation energies and free energies of a set of model pericyclic reactions, some of which have been studied experimentally. In particular, we use a standard hybrid functional (B3LYP), the same hybrid functional augmented with a basis set superposition error and dispersion correction, a meta-hybrid functional developed to treat transition states and weak interactions (M06-2X), and the recently implemented random phase approximation (RPA) based on Kohn-Sham orbitals from conventional density functional theory by Furche and co-workers. We apply these methods to calculate relative activation energies and estimated free energies for the amide acetal Claisen rearrangement. We focus on relative activation energies to assess the effects of steric and weak interactions in the various methods and compare with experiment where possible. We also discuss the advantages of using this set of reactions as a test bed for the comparison of treatments of weak interactions. We conclude that all methods yield similar trends in relative reactivity, but the RPA yields results in best agreement with the experimental values.
Comparative study of patulin, ascladiol, and neopatulin by Density Functional Theory
Patulin, a secondary metabolite produced by several fungal species, is a potential contaminant of fruit and vegetable products. To better understand the structure and electronic properties of this mycotoxin and its biosynthetic precursors, a density functional theory (DFT) study was performed on co...
Systematic of Nuclear Ground State Properties in Sr Isotope by Covariant Density Functional Theory
Institute of Scientific and Technical Information of China (English)
TIAN; Yuan
2012-01-01
<正>The hyperfine structure and isotope shifts of Sr-isotopes, both even-even and odd-even nuclei, are studied in the covariant density functional theory (DFT) with the new parameter set DD-PC1. Pairing correlation is treated by using the Bogoliubov with a separable form of the pairing interaction. Spin-parity,
DEFF Research Database (Denmark)
Leth, Rasmus; Rydberg, Patrik; Jørgensen, Flemming Steen;
2015-01-01
Many drug compounds are oxidized by cytochrome P450 (CYP) enzymes to form reactive metabolites. This study presents density functional theory calculations of the CYP-mediated metabolism of acetaminophen and a series of related compounds that can form reactive metabolites by hydrogen abstraction...
Time-dependent current-density-functional theory for the metallic response of solids
Romaniello, P; de Boeij, PL
2005-01-01
We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both interba
DEFF Research Database (Denmark)
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...
Time-dependent current-density-functional theory for the metallic response of solids
Romaniello, P; de Boeij, PL
We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both
The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations
DEFF Research Database (Denmark)
Tripkovic, Vladimir; Skulason, Egill; Siahrostami, Samira;
2010-01-01
We study the oxygen reduction reaction (ORR) mechanism on a Pt(1 1 1) surface using density functional theory calculations We find that at low overpotentials the surface is covered with a half dissociated water layer We estimate the barrier for proton transfer to this surface and the barrier for ...
DEFF Research Database (Denmark)
Pennington, Robert S.
to analyze diffraction effects on the amplitude and the phase. There is relatively good comparison between image simulation and experimental data, but the experimental absorption parameter is found to differ between strongly and weakly diffracting conditions. Density functional theory simulations of the mean...
Time-dependent density-functional theory in the projector augmented-wave method
DEFF Research Database (Denmark)
Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri
2008-01-01
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...
The Keldysh formalism applied to time-dependent current-density-functional theory
Gidopoulos, NI; Wilson, S
2003-01-01
In this work we demonstrate how to derive the Kohn-Sham equations of time-dependent current-density functional theory from a generating action functional defined on a Keldysh time contour. These Kohn-Sham equations contain an exchange-correlation contribution to the vector potential. For this
Simple descriptors for proton-conducting perovskites from density functional theory
DEFF Research Database (Denmark)
Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan
2010-01-01
series of (pseudo)cubic perovskites, ABO3, have been investigated using density functional theory calculations. The structures have been optimized and thermodynamic properties and activation energies for the relevant steps of the hydrogen/proton diffusion mechanism have been calculated using...
Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory
DEFF Research Database (Denmark)
Andersson, Martin Peter; Sakuma, Hiroshi; Stipp, Susan Louise Svane
2014-01-01
We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral...
Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom
Baseden, Kyle A.; Tye, Jesse W.
2014-01-01
Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…
DEFF Research Database (Denmark)
Dohn, Asmus Ougaard; Møller, Klaus Braagaard; Sauer, Stephan P. A.
2013-01-01
The geometry of tetracyanoplatinate(II) (TCP) has been optimized with density functional theory (DFT) calculations in order to compare different computational strategies. Two approximate scalar relativistic methods, i.e. the scalar zeroth-order regular approximation (ZORA) and non-relativistic ca...
Magnetic edge states in MoS2 characterized using density-functional theory
DEFF Research Database (Denmark)
Vojvodic, Aleksandra; Hinnemann, B.; Nørskov, Jens Kehlet
2009-01-01
It is known that the edges of a two-dimensional slab of insulating MoS2 exhibit one-dimensional metallic edge states, the so-called "brim states." Here, we find from density-functional theory calculations that several edge structures, which are relevant for the hydrodesulfurization process, are m...
Institute of Scientific and Technical Information of China (English)
李卫华; 诸蔚朝; 马红孺
2003-01-01
One component hard-sphere fluid confined in two planar hard walls is studied by means of density functional theory with Rosenfeld functional and molecular dynamics simulation. The validity of the Rosenfeld functional is examined. Chemical potential, grand potential and free energy as functions of the wall separation are obtained.
Density functional theory studies of screw dislocation core structures in bcc metals
DEFF Research Database (Denmark)
Frederiksen, Søren Lund; Jacobsen, Karsten Wedel
2003-01-01
The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...
In this study density functional theory (DFT) was used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previously reported Brønsted–Evans–Polanyi (BEP) correlations for small open chain molecules are found to be inadequate in estimating the reaction...
Pillai, Sharad Babu; Narayan, Som; Jha, Prafulla K.
2017-05-01
The present paper reports the study of phonon properties of a two dimensional antimony nanosheet under the biaxial strain using first principles calculation based on density functional theory. Our calculations shows that the strain turns the quadratic dependence of wave vector on frequency to the linear dependency which can be linked with the removal of rippling in nanosheets.
Higher-Order Adaptive Finite-Element Methods for Kohn-Sham Density Functional Theory
2012-07-03
equation (25)). The constants c1 and c2 which correspond to the scaling and shifting are determined such that the unwanted eigen-spectrum is mapped into...U. Gross, A. Rubio, Octopus : A tool for the application of time- dependent density functional theory, Phys. Status Solidi B 243 (2006) 24652488. [12
Awuah, Joel B.; Dzade, N.Y.; Tia, Richard; Adei, Evans; Kwakye-Awuah, Bright; Catlow, C. Richard A.; de Leeuw, Nora H.
2016-01-01
We present density functional theory calculations of the adsorption of arsenic acid (AsO(OH)3) and arsenous acid (As(OH)3) on the Al(III)-modified natural zeolite clinoptilolite under anhydrous and hydrated conditions. From our calculated adsorption energies, we show that adsorption of both arsenic
Awuah, Joel B.; Dzade, N.Y.; Tia, Richard; Adei, Evans; Kwakye-Awuah, Bright; Catlow, C. Richard A.; de Leeuw, Nora H.
2016-01-01
We present density functional theory calculations of the adsorption of arsenic acid (AsO(OH)3) and arsenous acid (As(OH)3) on the Al(III)-modified natural zeolite clinoptilolite under anhydrous and hydrated conditions. From our calculated adsorption energies, we show that adsorption of both arsenic
Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom
Baseden, Kyle A.; Tye, Jesse W.
2014-01-01
Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…
NBO analysis and vibrational frequencies of tautomers of citrinin by density functional theory
Citrinin is a toxic polyketide contaminant of a number of agricultural commodities, notably Monascus-fermented red rice. Detailed structures and electronic properties of three tautomeric forms of citrinin were investigated using density functional theory calculations at various extended basis sets ...
Corrections to the density-functional theory electronic spectrum: Copper phthalocyanine
DEFF Research Database (Denmark)
Vazquez, Hector; Jelinek, P.; Brandbyge, Mads;
2009-01-01
A method for improving the electronic spectrum of standard Density-Functional Theory (DFT) calculations (i.e., LDA or GGA approximations) is presented, and its application is discussed for the case of the copper phthalocyanine (CuPc) molecule. The method is based on a treatment of exchange and co...
DEFF Research Database (Denmark)
Hedegård, Erik Donovan
2017-01-01
considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...
Wave-function and density functional theory studies of dihydrogen complexes
Fabiano, E; Della Sala, F
2014-01-01
We performed a benchmark study on a series of dihydrogen bond complexes and constructed a set of reference bond distances and interaction energies. The test set was employed to assess the performance of several wave-function correlated and density functional theory methods. We found that second-order correlation methods describe relatively well the dihydrogen complexes. However, for high accuracy inclusion of triple contributions is important. On the other hand, none of the considered density functional methods can simultaneously yield accurate bond lengths and interaction energies. However, we found that improved results can be obtained by the inclusion of non-local exchange contributions.
Ab-initio simulations of materials using VASP: Density-functional theory and beyond.
Hafner, Jürgen
2008-10-01
During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science-promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces
Cluster density functional theory for lattice models based on the theory of Möbius functions
Lafuente, Luis; Cuesta, José A.
2005-08-01
Rosenfeld's fundamental-measure theory for lattice models is given a rigorous formulation in terms of the theory of Möbius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed with a partial order, so that the coefficients of the cluster expansion are connected to its Möbius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice models with any kind of short-range interaction (repulsive or attractive, hard or soft, one or multicomponent ...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d' < d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.
Cluster density functional theory for lattice models based on the theory of Moebius functions
Energy Technology Data Exchange (ETDEWEB)
Lafuente, Luis; Cuesta, Jose A [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, 28911 Leganes, Madrid (Spain)
2005-08-26
Rosenfeld's fundamental-measure theory for lattice models is given a rigorous formulation in terms of the theory of Moebius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed with a partial order, so that the coefficients of the cluster expansion are connected to its Moebius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice models with any kind of short-range interaction (repulsive or attractive, hard or soft, one or multicomponent ...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d' < d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.
Ultra-nonlocality in density functional theory for photo-emission spectroscopy.
Uimonen, A-M; Stefanucci, G; van Leeuwen, R
2014-05-14
We derive an exact expression for the photocurrent of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photocurrent within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of the photo-electrons. Such information can, in principle, be obtained from TDCDFT by exactly modeling the experiment in which the photocurrent is split into energy contributions by means of an external electromagnetic field outside the sample, as is done in standard detectors. We find, however, that this procedure produces very nonlocal correlations between the exchange-correlation fields in the sample and the detector.
Laury, Marie L; Carlson, Matthew J; Wilson, Angela K
2012-11-15
Calculated harmonic vibrational frequencies systematically deviate from experimental vibrational frequencies. The observed deviation can be corrected by applying a scale factor. Scale factors for: (i) harmonic vibrational frequencies [categorized into low (1000 cm(-1))], (ii) vibrational contributions to enthalpy and entropy, and (iii) zero-point vibrational energies (ZPVEs) have been determined for widely used density functionals in combination with polarization consistent basis sets (pc-n, n = 0,1,2,3,4). The density functionals include pure functionals (BP86, BPW91, BLYP, HCTH93, PBEPBE), hybrid functionals with Hartree-Fock exchange (B3LYP, B3P86, B3PW91, PBE1PBE, mPW1K, BH&HLYP), hybrid meta functionals with the kinetic energy density gradient (M05, M06, M05-2X, M06-2X), a double hybrid functional with Møller-Plesset correlation (B2GP-PLYP), and a dispersion corrected functional (B97-D). The experimental frequencies for calibration were from 41 organic molecules and the ZPVEs for comparison were from 24 small molecules (diatomics, triatomics). For this family of basis sets, the scale factors for each property are more dependent on the functional selection than on basis set level, and thus allow for a suggested scale factor for each density functional when employing polarization consistent basis sets (pc-n, n = 1,2,3,4). A separate scale factor is recommended when the un-polarized basis set, pc-0, is used in combination with the density functionals.
Lovett, Ronald
1988-06-01
All predictive theories for the spatial variation of the density in an inhomogeneous system can be constructed by approximating exact, nonlinear integral equations which relate the density and pair correlation functions of the system. It is shown that the set of correct kernels in the exact integral equations for the density is on the boundary between the set of kernels for which the integral equations have no solution for the density and the set for which the integral equations have a multiplicity of solutions. Thus arbitrarily small deviations from the correct kernel can make these integral equations insoluble. A heuristic model equation is used to illustrate how the density functional problem can be so sensitive to the approximation made to the correlation function kernel and it is then shown explicitly that this behavior is realized in the relation between the density and the direct correlation function and in the lowest order BGYB equation. Functional equations are identified for the kernels in these equations which are satisified by the correct kernels, which guarantee a unique solution to the integral equations, and which provide a natural constraint on approximations which can be used in density functional theory. It is also shown that this sensitive behavior is a general property of density functional problems and that the methodology for constructing the constraints is equally general. A variety of applications of density functional theory are reviewed to illustrate practical consequences of this sensitivity.
Luzon, Javier; Castro, Miguel; Vertelman, Esther J.M.; Gengler, Régis Y.N.; van Koningsbruggen, Petra J.; Molodtsova, Olga; Knupfer, Martin; Rudolf, Petra; Loosdrecht, Paul H.M. van; Broer, Ria
2008-01-01
A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)(6)] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materia
Energy Technology Data Exchange (ETDEWEB)
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurelien; Blumberger, Jochen; Elstner, Marcus
2016-10-11
In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus
2016-10-11
In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.
Duran-Olivencia, Miguel A.; Yatsyshin, Peter; Lutsko, James F.; Kalliadasis, Serafim
2016-11-01
Classical density functional theory (DFT) for fluids and its dynamic extension (DDFT) provide an appealing mean-field framework for describing equilibrium and dynamics of complex soft matter systems. For a long time, homogeneous nucleation was considered to be outside the limits of applicability of DDFT. However, our recently developed mesoscopic nucleation theory (MeNT) based on fluctuating hydrodynamics, reconciles the inherent randomness of the nucleation process with the deterministic nature of DDFT. It turns out that in the weak-noise limit, the most likely path (MLP) for nucleation to occur is determined by the DDFT equations. We present computations of MLPs for homogeneous and heterogeneous nucleation in colloidal suspensions. For homogeneous nucleation, the MLP obtained is in excellent agreement with the reduced order-parameter description of MeNT, which predicts a multistage nucleation pathway. For heterogeneous nucleation, the presence of impurities in the fluid affects the MLP, but remarkably, the overall qualitative picture of homogeneous nucleation persists. Finally, we highlight the use of DDFT as a simulation tool, which is especially appealing as there are no known applications of MeNT to heterogeneous nucleation. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from EPSRC via Grants No. EP/L020564 and EP/L025159.
Large-Scale Density Functional Theory Transition State Searching in Enzymes.
Lever, Greg; Cole, Daniel J; Lonsdale, Richard; Ranaghan, Kara E; Wales, David J; Mulholland, Adrian J; Skylaris, Chris-Kriton; Payne, Mike C
2014-11-06
Linear-scaling quantum mechanical density functional theory calculations have been applied to study the rearrangement of chorismate to prephenate in large-scale models of the Bacillus subtilis chorismate mutase enzyme. By treating up to 2000 atoms at a consistent quantum mechanical level of theory, we obtain an unbiased, almost parameter-free description of the transition state geometry and energetics. The activation energy barrier is calculated to be lowered by 10.5 kcal mol(-1) in the enzyme, compared with the equivalent reaction in water, which is in good agreement with experiment. Natural bond orbital analysis identifies a number of active site residues that are important for transition state stabilization in chorismate mutase. This benchmark study demonstrates that linear-scaling density functional theory techniques are capable of simulating entire enzymes at the ab initio quantum mechanical level of accuracy.
Time-dependent density functional theory for many-electron systems interacting with cavity photons.
Tokatly, I V
2013-06-07
Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.
Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory
Chremos, Alexandros
2011-01-01
The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hard-sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American Institute of Physics.
Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure
Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel
2015-01-01
The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantita...
Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections
Lin, You-Sheng; Mao, Shan-Ping; Chai, Jeng-Da
2012-01-01
By incorporating the improved empirical atom-atom dispersion corrections from DFT-D3 [Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104], two long-range corrected (LC) hybrid density functionals are proposed. Our resulting LC hybrid functionals, omegaM06-D3 and omegaB97X-D3, are shown to be accurate for a very wide range of applications, such as thermochemistry, kinetics, noncovalent interactions, frontier orbital energies, fundamental gaps, and long-range charge-transfer excitations, when compared with common global and LC hybrid functionals. Relative to omegaB97X-D [Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615], omegaB97X-D3 (reoptimization of omegaB97X-D with improved dispersion corrections) is shown to be superior for non-bonded interactions, and similar in performance for bonded interactions, while omegaM06-D3 is shown to be superior for general applications.
A hybrid density functional study on the electron and hole trap states in anatase titanium dioxide.
Yamamoto, Takenori; Ohno, Takahisa
2012-01-14
We present a theoretical study on electron and hole trap states in the bulk and (001) surface of anatase titanium dioxide using screened hybrid density functional calculations. In both the bulk and surface, calculations suggest that the neutral and ionized oxygen vacancies are possible electron traps. The doubly ionized oxygen vacancy is the most stable in the bulk, and is a candidate for a shallow donor in colorless anatase crystals. The hole trap states are localized at oxygen anions in both the bulk and surface. The self-trapped electron centered at a titanium cation cannot be produced in the bulk, but can be formed at the surface. The electron trap level at the surface oxygen vacancy is consistent with observations by photoelectron spectroscopy. The optical absorptions and luminescence in UV-irradiated anatase nanoparticles are found to come from the surface self-trapped hole and the surface oxygen vacancy.
Directory of Open Access Journals (Sweden)
Tanveer Hussain
2013-10-01
Full Text Available This study deals with the investigations of structural, electronic and thermodynamic properties of MgH2 doped with selected transition metals (TMs by means of hybrid density functional theory (PBE0. On the structural side, the calculated lattice parameters and equilibrium volumes increase in case of Sc, Zr and Y opposite to all the other dopants indicating volumetrically increased hydrogen density. Except Fe, all the dopants improve the kinetics of MgH2 by reducing the heat of adsorption with Cu, Nb, Ni and V proving more efficient than others studied TM’s. The electronic properties have been studied by density of states and correlated with hydrogen adsorption energies.
Zhang, Yachao
2014-12-07
A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.
Dimakis, Nicholas; Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin
2017-08-01
The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic properties could be well-described by specific DFT functionals paired with high-quality adatom basis sets. For Li, K, and Na adsorbed on graphene, increased adatom surface coverage weakens the adatom-graphene interaction. However, this statement does not apply for Ca adsorbed on graphene. In this case, the Ca adsorption strength, which is stronger at higher coverages, is opposite to increases in the Ca-4s orbital population.
Water cluster anions studied by the long-range corrected density functional theory.
Yagi, Kiyoshi; Okano, Yuko; Sato, Takeshi; Kawashima, Yukio; Tsuneda, Takao; Hirao, Kimihiko
2008-10-09
Long-range corrected density functional theory (LC-DFT) is applied to a series of small water cluster anions(n= 2-6) to compute their vertical detachment energies (VDEs). The LC scheme is shown to eliminate an unphysical overestimation of the electron-water attraction in the hybrid functional by properly accounting for the long-range exchange repulsions. It is shown that a correct correlation energy behavior for a rapidly varying density is also important for describing a spatially extent, excess electron. The one-parameter progressive (OP) correlation functional, which satisfies this condition, leads to a remarkable improvement in the calculated VDE over the conventional one. The LC-BOP method produces highly accurate VDEs with a mean absolute deviation of 13.8 meV from the reference CCSD(T) results, reducing the error of B3LYP by more than 15 times. LC-BOP is found to be more accurate than MP2 which yields an excess electron underbound by 43.6 meV. The effect of basis sets on the calculated VDE is also examined. The aug-cc-pVDZ basis set with an extra diffuse function is found to be more accurate and reliable than the extended Pople-type basis sets used in the previous works. The extrapolation of the calculated VDE of different electron binding motifs is compared with the VDEs of experimentally observed three isomers (Verlet, J. R. R.; Bragg,A. E.; Kammrath, A.; Cheshnovsky, O.; Neumark, D. M. Science 2005, 307, 93).
Faber, C; Boulanger, P; Attaccalite, C; Duchemin, I; Blase, X
2014-03-13
Many-body Green's function perturbation theories, such as the GW and Bethe-Salpeter formalisms, are starting to be routinely applied to study charged and neutral electronic excitations in molecular organic systems relevant to applications in photovoltaics, photochemistry or biology. In parallel, density functional theory and its time-dependent extensions significantly progressed along the line of range-separated hybrid functionals within the generalized Kohn-Sham formalism designed to provide correct excitation energies. We give an overview and compare these approaches with examples drawn from the study of gas phase organic systems such as fullerenes, porphyrins, bacteriochlorophylls or nucleobases molecules. The perspectives and challenges that many-body perturbation theory is facing, such as the role of self-consistency, the calculation of forces and potential energy surfaces in the excited states, or the development of embedding techniques specific to the GW and Bethe-Salpeter equation formalisms, are outlined.
Wong, Bryan M; 10.1021/ct100529s
2010-01-01
The optoelectronic and excitonic properties in a series of linear acenes (naphthalene up to heptacene) are investigated using range-separated methods within time-dependent density functional theory (TDDFT). In these rather simple systems, it is well-known that TDDFT methods using conventional hybrid functionals surprisingly fail in describing the low-lying La and Lb valence states, resulting in large, growing errors for the La state and an incorrect energetic ordering as a function of molecular size. In this work, we demonstrate that the range-separated formalism largely eliminates both of these errors and also provides a consistent description of excitonic properties in these systems. We further demonstrate that re-optimizing the percentage of Hartree-Fock exchange in conventional hybrids to match wavefunction-based benchmark calculations still yields serious errors, and a full 100% Hartree-Fock range separation is essential for simultaneously describing both of the La and Lb transitions. Based on an analysi...
Singh, Gurpreet; Dogra, Sukh Dev; Kaur, Sarvpreet; Tripathi, S K; Prakash, Satya; Rai, Bimal; Saini, G S S
2015-01-01
The vibrational properties of glutathione have been investigated by infrared absorption and Raman spectroscopic techniques, and density functional theory calculations at the B3LYP/6-31+G(d,p) level. Assignments of all the experimentally observed vibrational bands have been done with the help of simulated vibrational spectra and potential energy distribution calculations of glutathione water cluster, which includes the effect of hydrogen bonding. Optimized molecular parameters of energy minimized structure have been compared with the available experimental values. Calculated molecular parameters of glutathione-water cluster match well with the experimental values. Some of the calculated molecular parameters and vibrational frequencies of vapor phase glutathione-water cluster suggest participation of some atoms of glutathione in hydrogen bonding. Experimentally observed UV-Visible absorption spectrum of glutathione has also been reported. Observed band at 203 nm has been assigned to electronic transitions calculated with time dependent density functional theory. Copyright © 2015 Elsevier B.V. All rights reserved.
Shankar, Sadasivan; Simka, Harsono; Haverty, Michael
2008-02-13
In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development.
Quantum electronic stress: density-functional-theory formulation and physical manifestation.
Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng
2012-08-01
The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)
2014-10-07
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Ringholm, Magnus; Bast, Radovan; Oggioni, Luca; Ekström, Ulf; Ruud, Kenneth
2014-10-01
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Wesolowski, Tomasz A
2013-01-01
This is a comprehensive overview of state-of-the-art computational methods based on orbital-free formulation of density functional theory completed by the most recent developments concerning the exact properties, approximations, and interpretations of the relevant quantities in density functional theory. The book is a compilation of contributions stemming from a series of workshops which had been taking place since 2002. It not only chronicles many of the latest developments but also summarises some of the more significant ones. The chapters are mainly reviews of sub-domains but also include original research. Readership: Graduate students, academics and researchers in computational chemistry. Atomic & molecular physicists, theoretical physicists, theoretical chemists, physical chemists and chemical physicists.
Steady-State Density Functional Theory for Non-equilibrium Quantum Systems
Shuanglong, Liu
Recently, electron transport properties of molecular junctions under finite bias voltages have attracted a lot of attention because of the potential application of molecular electronic devices. When a molecular junction is under zero bias voltage at zero temperature, it is in equilibrium ground state and all its properties can be solved by ground-state density functional theory (GS-DFT) where ground-state electron density determines everything. Under finite bias voltage, the molecular junction is in non-equilibrium steady state. According to Hershfield's non-equilibrium statistics, a system in non-equilibrium steady state corresponds to an effective equilibrium system. This correspondence provides the basis for the steady-state density functional theory (SS-DFT) which will be developed in this thesis. (Abstract shortened by UMI.).
Quantum Electronic Stress: Density-Functional-Theory Formulation and Physical Manifestation
Hu, Hao; Liu, Miao; Wang, Z. F.; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng
2012-08-01
The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σQE) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σQE=ΞΔn as a quantum analog of classical Hooke’s law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.
Institute of Scientific and Technical Information of China (English)
HE Xiang; WANG Fan
2006-01-01
@@ Thioaldehydes and thioketones are candidates of new photoluminescence materials. The time-dependent density functional theory is applied to calculate the absorption and emission wavelengths of ten thiocarbonyl compounds using both B3LYP and PBE0 functionals. The theoretical results are in agreement with the measurable ones.Furthermore, it is found that the maximum absorption and emission wavelengths are linearly correlated to the C-S bond lengths.
Neutron-star matter within the energy-density functional theory and neutron-star structure
Energy Technology Data Exchange (ETDEWEB)
Fantina, A. F.; Chamel, N.; Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP226, Université Libre de Bruxelles (ULB), 1050 Brussels (Belgium); Pearson, J. M. [Dépt. de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 (Canada)
2015-02-24
In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.
DEFF Research Database (Denmark)
Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.
2002-01-01
For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic ammo......-principle quantum mechanical calculations of gas-surface interactions, reactor design, and catalyst selection has been established for the first time....
Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.
Domingo, Luis R; Ríos-Gutiérrez, Mar; Pérez, Patricia
2016-06-09
Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k - Parr functions, as the most relevant indices for the study of organic reactivity, are discussed.
Energy Technology Data Exchange (ETDEWEB)
Fattebert, J
2008-07-29
We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.
Molecular density functional theory of water including density–polarization coupling
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2016-01-01
International audience; We present a three-dimensional molecular density functional theory of water derived fromfirst-principles that relies on the particle’s density and multipolar polarization density andincludes the density–polarization coupling. This brings two main benefits: (i) scalar densityand vectorial multipolar polarization density fields are much more tractable and give morephysical insight than the full position and orientation densities, and (ii) it includes the fulldensity–pola...
Time-dependent density functional theory for strong-field ionization by circularly polarized pulses
Chirilă, Ciprian C.; Lein, Manfred
2017-03-01
By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.
Steam Reforming on Transition-metal Carbides from Density-functional Theory
Energy Technology Data Exchange (ETDEWEB)
Vojvodic, Aleksandra
2012-05-11
A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.
Optical properties of Al nanostructures from time dependent density functional theory
Mokkath, Junais Habeeb
2016-04-05
The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.
Benchmarking Fermi orbital self-interaction corrected density functional theory on molecules
Hahn, Torsten; Kortus, Jens; Pederson, Mark R
2015-01-01
The correction of the self-interaction error (SIE) that is inherent to all standard density functional theory (DFT) calculations is an object of increasing interest. In this article we apply the very recently developed Fermi-orbital based approach for the self-interaction correction (FOSIC) to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues.
Isospin effects in N~Z nuclei in extended Density Functional Theory
Satula, Wojciech
2015-01-01
This paper overviews various phenomena related to the concept of isospin symmetry. The focus is on N~Z nuclei, which are excellent laboratories of isospin physics. The theoretical framework applied is nuclear Density Functional Theory and its isospin- and angular-momentum projected extensions, as well as symmetry-projected multi-reference models. The topics covered include: isospin impurities, superallowed beta decays, beta-transitions in mirror nuclei, isospin breaking hadronic interactions, mirror and triplet binding energy differences, and isoscalar pairing.
Short- and long-range corrected hybrid density functionals with the D3 dispersion corrections
Wang, Chih-Wei; Chai, Jeng-Da
2016-01-01
We propose a short- and long-range corrected (SLC) hybrid scheme employing 100% Hartree-Fock (HF) exchange at both zero and infinite interelectronic distances, wherein three SLC hybrid density functionals with the D3 dispersion corrections (SLC-LDA-D3, SLC-PBE-D3, and SLC-B97-D3) are developed. SLC-PBE-D3 and SLC-B97-D3 are shown to be accurate for a very diverse range of applications, such as core ionization and excitation energies, thermochemistry, kinetics, noncovalent interactions, dissociation of symmetric radical cations, vertical ionization potentials, vertical electron affinities, fundamental gaps, and valence, Rydberg, and long-range charge-transfer excitation energies. Relative to omegaB97X-D, SLC-B97-D3 provides significant improvement for core ionization and excitation energies and noticeable improvement for the self-interaction, asymptote, energy-gap, and charge-transfer problems, while performing similarly for thermochemistry, kinetics, and noncovalent interactions.
Di Valentin, Cristiana; Pacchioni, Gianfranco
2014-11-18
CONSPECTUS: Very rarely do researchers use metal oxides in their pure and fully stoichiometric form. In most of the countless applications of these compounds, ranging from catalysis to electronic devices, metal oxides are either doped or defective because the most interesting chemical, electronic, optical, and magnetic properties arise when foreign components or defects are introduced in the lattice. Similarly, many metal oxides are diamagnetic materials and do not show a response to specific spectroscopies such as electron paramagnetic resonance (EPR) spectroscopy. However, doped or defective oxides may exhibit an interesting and informative paramagnetic behavior. Doped and defective metal oxides offer an expanding range of applications in contemporary condensed matter science; therefore researchers have devoted enormous effort to the understanding their physical and chemical properties. The interplay between experiment and computation is particularly useful in this field, and contemporary simulation techniques have achieved high accuracies with these materials. In this Account, we show how the direct comparison between spectroscopic experimental and computational data for some selected and relevant materials provides ways to understand and control these complex systems. We focus on the EPR properties and electronic transitions that arise from the presence of dopants and defects in bulk metal oxide materials. We analyze and compare the effect of nitrogen doping in TiO2 and ZnO (two semiconducting oxides) and MgO (a wide gap insulator) and examine the effect of oxygen deficiency in the semiconducting properties of TiO2-x, ZnO1-x, and WO3-x materials. We chose these systems because of their relevance in applications including photocatalysis, touch screens, electrodes in magnetic random access memories, and smart glasses. Density functional theory (DFT) provides the general computational framework used to illustrate the electronic structure of these systems. However
Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G
2015-11-05
Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.
Archer, A J
2009-01-07
In recent years, a number of dynamical density functional theories (DDFTs) have been developed for describing the dynamics of the one-body density of both colloidal and atomic fluids. In the colloidal case, the particles are assumed to have stochastic equations of motion and theories exist for both the case when the particle motion is overdamped and also in the regime where inertial effects are relevant. In this paper, we extend the theory and explore the connections between the microscopic DDFT and the equations of motion from continuum fluid mechanics. In particular, starting from the Kramers equation, which governs the dynamics of the phase space probability distribution function for the system, we show that one may obtain an approximate DDFT that is a generalization of the Euler equation. This DDFT is capable of describing the dynamics of the fluid density profile down to the scale of the individual particles. As with previous DDFTs, the dynamical equations require as input the Helmholtz free energy functional from equilibrium density functional theory (DFT). For an equilibrium system, the theory predicts the same fluid one-body density profile as one would obtain from DFT. Making further approximations, we show that the theory may be used to obtain the mode coupling theory that is widely used for describing the transition from a liquid to a glassy state.
A density functional theory based approach for predicting melting points of ionic liquids.
Chen, Lihua; Bryantsev, Vyacheslav S
2017-02-01
Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro
Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas
2015-08-01
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods
Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas
2015-08-07
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods
Energy Technology Data Exchange (ETDEWEB)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn (Germany)
2015-08-07
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT
Study on Surface Properties for Non-polar Fluids with Density Functional Theory
Institute of Scientific and Technical Information of China (English)
吴畏; 陆九芳; 付东; 刘金晨; 李以圭
2004-01-01
The density functional theory, simplified by the local density approximation and mean-field approximation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used as the perturbation term. Three parameters, elk, d and ms, are regressed from the vapor-liquid equilibria, and the surface properties, including density profile, surface tension and local surface tension profile are predicted with these parameters.
Indian Academy of Sciences (India)
Amita Wadehra; Swapan K Ghosh
2005-09-01
The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.
DEFF Research Database (Denmark)
Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard;
2013-01-01
An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead...... expression when expanded in perturbation theory. In contrast to the usual RSDH functionals, RSDHf describes the coupling between long- and short-range correlations as an orbital-dependent contribution. Calculations on the first four noble-gas dimers show that this coupling has a significant effect...
Density Functional Theory Approach for Charged Hard Sphere Fluids Confined in Spherical Micro-Cavity
Institute of Scientific and Technical Information of China (English)
KANG Yan-Shuang; WANG Hai-Jun
2009-01-01
Within the framework of the density functional theory for classical fluids,the equilibrium density profiles of charged hard sphere fluid confined in micro-cavity are studied by means of the modified fundamental measure theory.The dimension of micro-cavity,the charge of hard sphere and the applied electric field are found to have significant effects on the density profiles.In particular,it is shown that Coulomb interaction,excluded volume interaction and applied electric Geld play the central role in controlling the aggregated structure of the system.
Time-dependent density functional theory for open quantum systems with unitary propagation.
Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán
2010-01-29
We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.
Density functional theory of the Seebeck coefficient in the Coulomb blockade regime
Yang, Kaike; Perfetto, Enrico; Kurth, Stefan; Stefanucci, Gianluca; D'Agosta, Roberto
2016-08-01
The Seebeck coefficient plays a fundamental role in identifying the efficiency of a thermoelectric device. Its theoretical evaluation for atomistic models is routinely based on density functional theory calculations combined with the Landauer-Büttiker approach to quantum transport. This combination, however, suffers from serious drawbacks for devices in the Coulomb blockade regime. We show how to cure the theory through a simple correction in terms of the temperature derivative of the exchange correlation potential. Our results compare well with both rate equations and experimental findings on carbon nanotubes.
Nafziger, Jonathan; Wasserman, Adam
2015-12-21
One of the most important open challenges in modern Kohn-Sham (KS) density-functional theory (DFT) is the correct treatment of systems involving fractional electron charges and spins. Approximate exchange-correlation functionals struggle with such systems, leading to pervasive delocalization and static correlation errors. We demonstrate how these errors, which plague density-functional calculations of bond-stretching processes, can be avoided by employing the alternative framework of partition density-functional theory (PDFT) even using the local density approximation for the fragments. Our method is illustrated with explicit calculations on simple systems exhibiting delocalization and static-correlation errors, stretched H2 (+), H2, He2 (+), Li2 (+), and Li2. In all these cases, our method leads to greatly improved dissociation-energy curves. The effective KS potential corresponding to our self-consistent solutions displays key features around the bond midpoint; these are known to be present in the exact KS potential, but are absent from most approximate KS potentials and are essential for the correct description of electron dynamics.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth
2016-09-01
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
Improving band gap prediction in density functional theory from molecules to solids.
Zheng, Xiao; Cohen, Aron J; Mori-Sánchez, Paula; Hu, Xiangqian; Yang, Weitao
2011-07-08
A novel nonempirical scaling correction method is developed to tackle the challenge of band gap prediction in density functional theory. For finite systems the scaling correction largely restores the straight-line behavior of electronic energy at fractional electron numbers. The scaling correction can be generally applied to a variety of mainstream density functional approximations, leading to significant improvement in the band gap prediction. In particular, the scaled version of a modified local density approximation predicts band gaps with an accuracy consistent for systems of all sizes, ranging from atoms and molecules to solids. The scaled modified local density approximation thus provides a useful tool to quantitatively characterize the size-dependent effect on the energy gaps of nanostructures.
Nobel Prize in Chemistry 1998 "for his development of the density-functional theory" : Walter Kohn
1999-01-01
Prof. Walter Kohn presents "Electronic structure of matter : wave functions and density functionals".Since the 1920's Schroedinger wave functions have been the principal theoretical concept for understanding and computing the electronic structure of matter. More recently, Density Functional Theory (DFT), couched in terms of the electronic density distribution, n(r), has provided a new perspective and new computational possibilities, especially for systems consisting of very many (up to ~1000) atoms. In this talk some fundamental limitations of wave function methods for very-many-atom-systems will be discussed. The DFT approach will be explained together with some physical/chemical applications and a discussion of its strenghts and weaknesses. W Kohn has received the prize with J A Pople for his development of computational methods in quantum chemistr.
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.
Isospin mixing within the symmetry restored density functional theory and beyond
Satula, W; Konieczka, M; Nazarewicz, W
2014-01-01
We present results of systematic calculations of the isospin-symmetry-breaking corrections to the superallowed I=$0+,T=1 --> I=0+,T=1 beta-decays, based on the self-consistent isospin- and angular-momentum-projected nuclear density functional theory (DFT). We discuss theoretical uncertainties of the formalism related to the basis truncation, parametrization of the underlying energy density functional, and ambiguities related to determination of Slater determinants in odd-odd nuclei. A generalization of the double-projected DFT model towards a no core shell-model-like configuration-mixing approach is formulated and implemented. We also discuss new opportunities in charge-symmetry- and charge-independence-breaking studies offered by the newly developed DFT formalism involving proton-neutron mixing in the particle-hole channel.
Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.
Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Zheng, Xiao; Chen, Guan Hua
2013-12-14
Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.
Excited state surfaces in density functional theory: a new twist on an old problem.
Wiggins, Paul; Williams, J A Gareth; Tozer, David J
2009-09-07
Excited state surfaces in density functional theory and the problem of charge transfer are considered from an orbital overlap perspective. For common density functional approximations, the accuracy of the surface will not be uniform if the spatial overlap between the occupied and virtual orbitals involved in the excitation has a strong conformational dependence; the excited state surface will collapse toward the ground state in regions where the overlap is very low. This characteristic is used to predict and to provide insight into the breakdown of excited state surfaces in the classic push-pull 4-(dimethylamino)benzonitrile molecule, as a function of twist angle. The breakdown is eliminated using a Coulomb-attenuated functional. Analogous situations will arise in many molecules.
Verdict: Time-Dependent Density Functional Theory "Not Guilty" of Large Errors for Cyanines.
Jacquemin, Denis; Zhao, Yan; Valero, Rosendo; Adamo, Carlo; Ciofini, Ilaria; Truhlar, Donald G
2012-04-10
We assess the accuracy of eight Minnesota density functionals (M05 through M08-SO) and two others (PBE and PBE0) for the prediction of electronic excitation energies of a family of four cyanine dyes. We find that time-dependent density functional theory (TDDFT) with the five most recent of these functionals (from M06-HF through M08-SO) is able to predict excitation energies for cyanine dyes within 0.10-0.36 eV accuracy with respect to the most accurate available Quantum Monte Carlo calculations, providing a comparable accuracy to the latest generation of CASPT2 calculations, which have errors of 0.16-0.34 eV. Therefore previous conclusions that TDDFT cannot treat cyanine dyes reasonably accurately must be revised.
DEFF Research Database (Denmark)
Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs
2015-01-01
through first principle methods. Ensembles generated using a Bayesian error estimation functional, in this case the BEEF-vdW functional[6], are used for the error identification. The ensembles, which consist of perturbations of the main van der Waals density functional, can be generated at low......Density functional theory (DFT) calculations have greatly contributed to the atomic level understanding of electrochemical reactions. However, in some cases, the accuracy can be prohibitively low for a detailed understanding of, e.g. reaction mechanisms. Two cases are examined here, i...... that the systematic error is due to carbon-oxygen double bonds, as the change in number of carbon-oxygen double bonds in the reaction to methanol is two as compared to one for reaction to formic acid. This is subsequently confirmed by further comparisons of functional dependence and a significant source of systematic...
McDonnell, J D; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W
2015-01-01
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models; to estimate model errors and thereby improve predictive capability; to extrapolate beyond the regions reached by experiment; and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, w...
A density functional theory for colloids with two multiple bonding associating sites.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2016-06-22
Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.
Higher order classical density functional theory for branched chains and rings.
Marshall, Bennett D; Chapman, Walter G
2011-12-22
We develop a general density functional theory for polyatomic molecules by taking the complete association limit of Wertheim's thermodynamic perturbation theory in a general way. By enforcing the complete association limit at an early point in the derivation and introducing the concept of molecular graphs, a general form for the free energy functional and segment densities are developed for both rigid and semiflexible molecules. The theory is applicable to branched chains, rings, or any other molecular structure. As an example the theory is applied as a second order perturbation theory to the case of molecules with a rigid three segment head and a fully flexible tail in a slit pore where bond angle of the rigid portion is an independent variable.
Haataja, Mikko; Gránásy, László; Löwen, Hartmut
2010-08-01
Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid
Huang, Huisheng; Zhang, Tonglai; Zhang, Jianguo; Wang, Liqiong
2010-07-15
The molecular geometry, electronic structure, infrared spectra and thermochemical properties of cobalt and nickel tris(carbohydrazide) perchlorates (CoCP and NiCP) as well as copper bis(carbohydrazide) perchlorate (CuCP) were investigated using the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional. The results show that both perchlorate ions coordinate with the copper atom, and the interactions between copper and perchlorate are ionic, whereas all the metal-carbohydrazide interactions are covalent. Due to the delocalization from the sigma(N-H) bond orbital to the n*(M) antibond orbital, the amino stretching vibrations of these complexes show considerable red-shift compared with those of free carbohydrazide ligand. The calculated heats of reaction and formation indicate that the formations of these complexes are exothermic, and the order of their thermal stability is NiCP>CoCP>CuCP. These agree well with the experimental results. Finally, we find that there is a relationship between the energy gap and impact sensitivity.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Monte Carlo Computation of Spectral Density Function in Real-Time Scalar Field Theory
Abbasi, Navid
2014-01-01
Non-perturbative study of "real-time" field theories is difficult due to the sign problem. We use Bold Schwinger-Dyson (SD) equations to study the real-time $\\phi^4$ theory in $d=4$ beyond the perturbative regime. Combining SD equations in a particular way, we derive a non-linear integral equation for the two-point function. Then we introduce a new method by which one can analytically perform the momentum part of loop integrals in this equation. The price we must pay for such simplification is to numerically solve a non-linear integral equation for the spectral density function. Using Bold diagrammatic Monte Carlo method we find non-perturbative spectral function of theory and compare it with the one obtained from perturbation theory. At the end we utilize our Monte Carlo result to find the full vertex function as the basis for the computation of real-time scattering amplitudes.
Density functional theory for nearest-neighbor exclusion lattice gases in two and three dimensions
Lafuente, Luis; Cuesta, José A.
2003-12-01
To speak about fundamental measure theory obliges us to mention dimensional crossover. This feature, inherent to the systems themselves, was incorporated in the theory almost from the beginning. Although at first it was thought to be a consistency check for the theory, it rapidly became its fundamental pillar, thus becoming the only density functional theory which possesses such a property. It is straightforward that dimensional crossover connects, for instance, the parallel hard cube system (three dimensional) with that of squares (two dimensional) and rods (one dimensional). We show here that there are many more connections which can be established in this way. Through them we deduce from the functional for parallel hard (hyper)cubes in the simple (hyper)cubic lattice the corresponding functionals for the nearest-neighbor exclusion lattice gases in the square, triangular, simple cubic, face-centered-cubic, and body-centered-cubic lattices. As an application, the bulk phase diagram for all these systems is obtained.
Molecular dynamics, density functional theory of the metal--electrolyte interface
Energy Technology Data Exchange (ETDEWEB)
Price, D.L. [Department of Physics, University of Memphis, Memphis Tennessee 38152 (United States); Halley, J.W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
1995-04-22
Quantitative, predictive theories for metal--electrolyte interfaces require an atomic-scale representation of the interface, which must include an accurate statistical description of a polar fluid in contact with a solid surface; and also a description of the electronic density and structure of a metal surface in contact with a fluid. Such a complex system presents a difficult computational problem, and has been dealt with in the past essentially by parts; either by molecular dynamics calculations of the fluid structure, or density functional calculations of the metal--surface electronic structure. A complete and self-consistent determination of the surface structure would, however, involve a simultaneous calculation of both the atomic and electronic structure of the interface. This suggests a combination of these two calculational techniques, and it is just this sort of molecular dynamics and density functional combination which comprises the Car--Parrinello, and related, methods. We have developed a Car--Parrinello type combination of molecular dynamics and density functional methods, suitable for application to the metal--electrolyte interface. We briefly describe this calculation and discuss our initial results for a fairly simple metal--water interface.
Dynamic kinetic energy potential for orbital-free density functional theory.
Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang
2011-04-14
A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.
Density functional theory for field emission from carbon nano-structures.
Li, Zhibing
2015-12-01
Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission.
DEFF Research Database (Denmark)
Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas;
2009-01-01
Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....
Generating the Infrared Spectra of Large Interstellar Molecules with Density Functional Theory
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
1999-01-01
It is now possible to compute IR (infrared) spectra of large molecules with an accuracy of 30 per cm, or better, using density function theory. This is true for cations, anions, and neutrals. Thus it possible to generate synthetic IR spectra that can help interpret experimental spectra and fill in for missing experimental data. These synthetic spectra can be used as input into interstellar models. In addition to IR spectra, it is possible to compute energetic properties to help understand which molecules can be formed in the interstellar environment.
Solvation of coumarin6 studied by vibrational spectroscopy and density functional theory
Singh, Randhir; Sathe, Vasant; Sharma, Amit; Kaur, Sarvpreet; Saini, G. S. S.
2016-02-01
Effect of solvation on coumarin6 dye has been studied with density functional theory (DFT). Optimized structure of the dye has been obtained in various solvents and frequencies of various vibrational bands have been calculated in these solvents. Calculations predict shift in the frequency of certain bands in the solvents. Similar shifts have been observed experimentally in the vibrational spectra of the dye in solvents. In order to ascertain the origin of these shifts, the interactions of solvent molecules with the coumarin6 molecule have been studied using various tools of DFT like donor-acceptor interactions, Molecular Electrostatic potential (MEP) and HOMO-LUMO analysis etc.
Highly accurate local pseudopotentials of Li, Na, and Mg for orbital free density functional theory
Legrain, Fleur; Manzhos, Sergei
2015-02-01
We present a method to make highly accurate pseudopotentials for use with orbital-free density functional theory (OF-DFT) with given exchange-correlation and kinetic energy functionals, which avoids the compounding of errors of Kohn-Sham DFT and OF-DFT. The pseudopotentials are fitted to reference (experimental or highly accurate quantum chemistry) values of interaction energies, geometries, and mechanical properties, using a genetic algorithm. This can enable routine large-scale ab initio simulations of many practically relevant materials. Pseudopotentials for Li, Na, and Mg resulting in accurate geometries and energies of different phases as well as of vacancy formation and bulk moduli are presented as examples.
Li, Hui; Shi, LiLi; Zhang, Min; Su, Zhongmin; Wang, XiuJun; Hu, LiHong; Chen, GuanHua
2007-04-14
The combination of genetic algorithm and neural network approach (GANN) has been developed to improve the calculation accuracy of density functional theory. As a demonstration, this combined quantum mechanical calculation and GANN correction approach has been applied to evaluate the optical absorption energies of 150 organic molecules. The neural network approach reduces the root-mean-square (rms) deviation of the calculated absorption energies of 150 organic molecules from 0.47 to 0.22 eV for the TDDFTB3LYP6-31G(d) calculation, and the newly developed GANN correction approach reduces the rms deviation to 0.16 eV.
DEFF Research Database (Denmark)
Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa
2016-01-01
inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theory-MC-srDFT-as a new tool in the toolbox. While initial applications for systems with multireference character......-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2...
2017-05-05
frequencies within the IR and UV - visible ranges. The absorption spectrum corresponding to excitation states of SixOy-nH2O molecular clusters consisting of...Energies and IR Spectra……………………….......................….4 DFT Calculation of UV -Vis Spectra………………………………………………………….……5 Conclusion...calculation of approximate UV -Vis absorption spectra for SixOy molecular clusters, which uses time-dependent density functional theory (TD-DFT) as
Maghsoumi, Ali; Narita, Akimitsu; Dong, Renhao; Feng, Xinliang; Castiglioni, Chiara; Müllen, Klaus; Tommasini, Matteo
2016-04-28
We investigate the molecular structure and vibrational properties of perchlorinated hexa-peri-hexabenzocoronene (HBC-Cl) by density functional theory (DFT) calculations and IR and Raman spectroscopy, in comparison to the parent HBC. The theoretical and experimental IR and Raman spectra demonstrated very good agreement, elucidating a number of vibrational modes corresponding to the observed peaks. Compared with the parent HBC, the edge chlorination significantly alters the planarity of the molecule. Nevertheless, the results indicated that such structural distortion does not significantly impair the π-conjugation of such polycyclic aromatic hydrocarbons.
Density functional theory studies of screw dislocation core structures in bcc metals
DEFF Research Database (Denmark)
Frederiksen, Søren Lund; Jacobsen, Karsten Wedel
2003-01-01
The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to the dislocation line. The magnetic moment in the Fe core is shown to be reduced relative to the bulk value. Calculations of gamma surfaces and the elastic constants B, C' and c(44) are reported for Fe and all group VB and VIB metals. Using a criterion suggested by Vitek and Duesbery the calculations point...
Ferromagnetism in GaN: Gd: A density functional theory study
Energy Technology Data Exchange (ETDEWEB)
Stevenson, Cynthia; Stevenson, Cynthia
2008-02-04
First principle calculations of the electronic structure and magnetic interaction of GaN:Gd have been performed within the Generalized Gradient Approximation (GGA) of the density functional theory (DFT) with the on-site Coulomb energy U taken into account (also referred to as GGA+U). The ferromagnetic p-d coupling is found to be over two orders of magnitude larger than the s-d exchange coupling. The experimental colossal magnetic moments and room temperature ferromagnetism in GaN:Gd reported recently are explained by the interaction of Gd 4f spins via p-d coupling involving holes introduced by intrinsic defects such as Ga vacancies.
Electronic band structure of Cu(2)O by spin density functional theory.
French, M; Schwartz, R; Stolz, H; Redmer, R
2009-01-07
The band structure of Cu(2)O is calculated using density functional theory in the generalized gradient approximation. By taking spin-orbit coupling into account the split between the Γ(7)(+) and the Γ(8)(+) valence band states is obtained as 128 meV. The highest valence band shows a noticeable nonparabolicity close to the Γ point. This is important for the quantitative description of excitons in this material, which is considered to be the best candidate for the confirmation that Bose-Einstein condensation also occurs in excitonic systems.
Khan, Md Shahzad; Ratn, Rahul; Srivastava, Anurag
2017-07-01
Electronic and structural analysis of buckled antimonene has been performed using density functional theory-based ab-initio approach. Geometrical parameters such as bond length and bond angle are very close to the single ruffle layer of rhombohedral antimony. Phonon dispersion along the high symmetry point of the Brillouin zone does not signify any soft mode. Electronic indirect band gap of 1.61 eV is observed for the single-layer antimonene. However, the occurrence of bilayered quasi-2D sheet consequent to metallic behaviour is due to significant electronic charge dispersion between interlayer region.
Orbital localization, charge transfer, and band gaps in semilocal density-functional theory.
Armiento, R; Kümmel, S
2013-07-19
We derive an exchange energy functional of generalized gradient form with a corresponding potential that changes discontinuously at integer particle numbers. The functional is semilocal, yet incorporates key features that are connected to the derivative discontinuity of Kohn-Sham density-functional theory. We validate our construction for several paradigm systems and explain how it addresses central well-known deficiencies of antecedent semilocal methods, i.e., the description of charge transfer, properly localized orbitals, and band gaps. We find, e.g., an improved shell structure for atoms, eigenvalues that more closely correspond to ionization energies, and an improved description of band structure where localized states are lowered in energy.
A MinMax self-consistent-field approach for auxiliary density functional theory
Köster, Andreas M.; del Campo, Jorge M.; Janetzko, Florian; Zuniga-Gutierrez, Bernardo
2009-03-01
A MinMax self-consistent-field (SCF) approach is derived in the framework of auxiliary density functional theory. It is shown that the SCF convergence can be guided by the fitting coefficients that arise from the variational fitting of the Coulomb potential. An in-core direct inversion of the iterative subspace (DIIS) algorithm is presented. Due to its reduced memory demand this new in-core DIIS method can be applied without overhead to very large systems with tens of thousands of basis and auxiliary functions. Due to the new DIIS error definition systems with fractional occupation numbers can be treated, too.
A density-functional theory study of electrochemical adsorption of sulfuric acid anions on Pt(111).
Santana, Juan A; Cabrera, Carlos R; Ishikawa, Yasuyuki
2010-08-28
A density-functional theory study of the electrochemical adsorption of sulfuric acid anions was conducted at the Pt(111)/electrolyte interface over a wide range of electrode potential, including the anomalous region of the hydrogen voltammogram of this electrode. We focus on the precise nature of the binding species and their bonding to the surface, identifying the adsorbed species as a function of electrode potential. In particular, the origin of anomalous or so-called "butterfly" feature in this voltammogram between +0.30 and +0.50 V vs. the reference hydrogen electrode and the nature of the adsorbed species on the Pt(111) surface in this potential range were explicated.
Indian Academy of Sciences (India)
MD SHAHZAD KHAN; RAHUL RATN; ANURAG SRIVASTAVA
2017-07-01
Electronic and structural analysis of buckled antimonene has been performed using density functional theory-based $\\it{ab-initio}$ approach. Geometrical parameters such as bond length and bond angle are very close to the single ruffle layer of rhombohedral antimony. Phonon dispersion along the high symmetry point of the Brillouin zone does not signify any soft mode. Electronic indirect band gap of 1.61 eV is observed for the single-layer antimonene. However, the occurrence of bilayered quasi-2D sheet consequent to metallic behaviour is due to significant electronic charge dispersion between interlayer region.
Excitons in solids with time-dependent density-functional theory: the bootstrap kernel and beyond
Byun, Young-Moo; Yang, Zeng-Hui; Ullrich, Carsten
Time-dependent density-functional theory (TDDFT) is an efficient method to describe the optical properties of solids. Lately, a series of bootstrap-type exchange-correlation (xc) kernels have been reported to produce accurate excitons in solids, but different bootstrap-type kernels exist in the literature, with mixed results. In this presentation, we reveal the origin of the confusion and show a new empirical TDDFT xc kernel to compute excitonic properties of semiconductors and insulators efficiently and accurately. Our method can be used for high-throughput screening calculations and large unit cell calculations. Work supported by NSF Grant DMR-1408904.
Path Integral Molecular Dynamics for Hydrogen with Orbital-Free Density Functional Theory
Runge, Keith; Karasiev, Valentin; Deymier, Pierre
2014-03-01
The computational bottleneck for performing path-integral molecular dynamics (PIMD) for nuclei on a first principles electronic potential energy surface has been the speed with which forces from the electrons can be generated. Recent advances in orbital-free density functional theory (OF-DFT) not only allow for faster generation of first principles forces but also include the effects of temperature on the electron density. We will present results of calculations on hydrogen in warm dense matter conditions where the protons are described by PIMD and the electrons by OF-DFT. Work supported by U.S. Dept. of Energy, grant DE-SC0002139.
Density functional theory calculations of the stress of oxidised (110) silicon surfaces
Melis, C; Colombo, L; Mana, G
2016-01-01
The measurement of the lattice-parameter of silicon by x-ray interferometry assumes the use of strain-free crystals. This might not be the case because surface relaxation, reconstruction, and oxidation cause strains without the application of any external force. In a previous work, this intrinsic strain was estimated by a finite element analysis, where the surface stress was modeled by an elastic membrane having a 1 N/m tensile strength. The present paper quantities the surface stress by a density functional theory calculation. We found a value exceeding the nominal value used, which potentially affects the measurement accuracy.
Reducing Systematic Errors in Oxide Species with Density Functional Theory Calculations
DEFF Research Database (Denmark)
Christensen, Rune; Hummelshøj, Jens S.; Hansen, Heine Anton
2015-01-01
Density functional theory calculations can be used to gain valuable insight into the fundamental reaction processes in metal−oxygen systems, e.g., metal−oxygen batteries. Here, the ability of a range of different exchange-correlation functionals to reproduce experimental enthalpies of formation...... for different types of alkali and alkaline earth metal oxide species has been examined. Most examined functionals result in significant overestimation of the stability of superoxide species compared to peroxides and monoxides, which can result in erroneous prediction of reaction pathways. We show that if metal...
DEFF Research Database (Denmark)
Skulason, Egill; Tripkovic, Vladimir; Björketun, Mårten
2010-01-01
Density functional theory calculations have been performed for the three elementary steps―Tafel, Heyrovsky, and Volmer―involved in the hydrogen oxidation reaction (HOR) and its reverse, the hydrogen evolution reaction (HER). For the Pt(111) surface a detailed model consisting of a negatively...... charged Pt(111) slab and solvated protons in up to three water bilayers is considered and reaction energies and activation barriers are determined by using a newly developed computational scheme where the potential can be kept constant during a charge transfer reaction. We determine the rate limiting...
Density functional theory study on water-gas-shift reaction over molybdenum disulfide
DEFF Research Database (Denmark)
Shi, X. R.; Wang, Shengguang; Hu, J.
2009-01-01
Density functional theory calculations have been carried out to investigate the adsorption of reaction intermediates appearing during water-gas-shift reaction at the sulfur covered MoS2 (1 0 0)surfaces, Mo-termination with 37.5% S coverage and S-termination with 50% S coverage using periodic slabs....... The pathway for water-gas-shift reaction on both terminations has been carefully studied where the most favorable reaction path precedes the redox mechanism, namely the reaction takes place as follows: CO + H2O --> CO + OH + H --> CO + O + 2H --> CO2 + H-2. The most likely reaction candidates for the formate...
Energy Technology Data Exchange (ETDEWEB)
Magyar, R.J.; Shulenburger, L.; Baczewski, A.D. [Sandia National Laboratories - Multi-scale Physics 1444 MS 1322, Albuquerque, NM (United States)
2016-06-15
In these proceedings, we show that time-dependent density functional theory is capable of stopping calculations at the extreme conditions of temperature and pressure seen in warm dense matter. The accuracy of the stopping curves tends to be up to about 20% lower than empirical models that are in use. However, TDDFT calculations are free from fitting parameters and assumptions about the model form of the dielectric function. This work allows the simulation of ion stopping in many materials that are difficult to study experimentally. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Matrix Structure Exploitation in Generalized Eigenproblems Arising in Density Functional Theory
Di Napoli, Edoardo
2010-01-01
In this short paper, the authors report a new computational approach in the context of Density Functional Theory (DFT). It is shown how it is possible to speed up the self-consistent cycle (iteration) characterizing one of the most well-known DFT implementations: FLAPW. Generating the Hamiltonian and overlap matrices and solving the associated generalized eigenproblems $Ax = \\lambda Bx$ constitute the two most time-consuming fractions of each iteration. Two promising directions, implementing the new methodology, are presented that will ultimately improve the performance of the generalized eigensolver and save computational time.
Ab-initio density functional theory study of a WO3 NH3-sensing mechanism
Institute of Scientific and Technical Information of China (English)
Hu Ming; Zhang Jie; Wang Wei-Dan; Qin Yu-Xiang
2011-01-01
WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO3 bulk are investigated.The surface energies of different WO3 surfaces are compared and then the(002)surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c,the NH3 sensing mechanism is obtained.
Interaction of atomic hydrogen with anthracene and polyacene from density functional theory
Ferullo, Ricardo M.; Castellani, Norberto J.; Belelli, Patricia G.
2016-03-01
The interaction of atomic hydrogen with two linear polycyclic aromatic hydrocarbons (PAHs), anthracene and polyacene (the polymer of benzene), was studied within the density functional theory (DFT). Using a proper dispersion-corrected method (DFT-D) the preferential physisorption sites were explored. The activation barrier for the bond formation between a peripheral C and the incoming H was calculated to be 58.5 and 34.1 meV with pure DFT on anthracene and polyacene at its antiferromagnetic ground state, respectively. DFT-D, although improves the description of the physisorbed state, tends to underestimate the chemisorption barriers due an artifact arising from the dispersion correction.
Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity
Directory of Open Access Journals (Sweden)
Luis R. Domingo
2016-06-01
Full Text Available Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k − Parr functions, as the most relevant indices for the study of organic reactivity, are discussed.
Investigation of the metal binding site in methionine aminopeptidase by density functional theory
DEFF Research Database (Denmark)
Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy
2002-01-01
All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions...... oxygen, which is part of either a water molecule or a hydroxide ion. Within the site of hMetAP-2 the results strongly indicate that a hydroxide ion bridges the metal ions. By contrast, the nature of the oxygen bridging the metal ions within the metal binding site of eMetAP-1 cannot be determined based...
Generating the Infrared Spectra of Large Interstellar Molecules with Density Functional Theory
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
1999-01-01
It is now possible to compute IR (infrared) spectra of large molecules with an accuracy of 30 per cm, or better, using density function theory. This is true for cations, anions, and neutrals. Thus it possible to generate synthetic IR spectra that can help interpret experimental spectra and fill in for missing experimental data. These synthetic spectra can be used as input into interstellar models. In addition to IR spectra, it is possible to compute energetic properties to help understand which molecules can be formed in the interstellar environment.
Density functional theory and demixing of binary hard-rod-polymer mixtures.
Bryk, P
2003-12-01
A density functional theory for a mixture of hard rods and polymers modeled as chains built of hard tangent spheres is proposed by combining the functional due to Yu and Wu for the polymer mixtures [J. Chem. Phys. 117, 2368 (2002)] with Schmidt's functional [Phys. Rev. E 63, 50 201 (2001)] for rod-sphere mixtures. As a simple application of the functional, the demixing transition into polymer-rich and rod-rich phases is examined. When the chain length increases, the phase boundary broadens and the critical packing fraction decreases. The shift of the critical point of a demixing transition is most noticeable for short chains.
Cornaton, Yann; Stoyanova, Alexandrina; Jensen, Hans Jørgen Aa.; Fromager, Emmanuel
2013-01-01
An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] and relies on a long-range interacting wavefunction instead of the non-interacting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hyb...
Tuning Range-Separated Density Functional Theory for Photocatalytic Water Splitting Systems
Bokareva, Olga S; Bokarev, Sergey I; Kühn, Oliver
2015-01-01
We discuss the applicability of long-range separated density functional theory (DFT) to the prediction of electronic transitions of a particular photocatalytic system based on an Ir(III) photosensitizer (IrPS). Special attention is paid to the charge-transfer properties which are of key importance for the photoexcitation dynamics, but and cannot be correctly described by means of conventional DFT. The optimization of the range-separation parameter is discussed for IrPS including its complexes with electron donors and acceptors used in photocatalysis. Particular attention is paid to the problems arising for a description of medium effects by a polarizable continuum model.
Equilibrium gas-liquid-solid contact angle from density-functional theory
Pereira, Antonio; Kalliadasis, Serafim
2010-01-01
We investigate the equilibrium of a fluid in contact with a solid boundary through a density-functional theory. Depending on the conditions, the fluid can be in one phase, gas or liquid, or two phases, while the wall induces an external field acting on the fluid particles. We first examine the case of a liquid film in contact with the wall. We construct bifurcation diagrams for the film thickness as a function of the chemical potential. At a specific value of the chemical potential, two equal...
Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z
2016-09-01
The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations.
A Dynamic Density Functional Theory Approach to Diffusion in White Dwarfs and Neutron Star Envelopes
Diaw, A.; Murillo, M. S.
2016-09-01
We develop a multicomponent hydrodynamic model based on moments of the Born-Bogolyubov-Green-Kirkwood-Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.
Density-functional theory of a lattice-gas model with vapour, liquid, and solid phases
Prestipino, S.; Giaquinta, P. V.
2003-01-01
We use the classical version of the density-functional theory in the weighted-density approximation to build up the entire phase diagram and the interface structure of a two-dimensional lattice-gas model which is known, from previous studies, to possess three stable phases -- solid, liquid, and vapour. Following the common practice, the attractive part of the potential is treated in a mean-field-like fashion, although with different prescriptions for the solid and the fluid phases. It turns o...
DEFF Research Database (Denmark)
Greeley, Jeffrey Philip; Nørskov, Jens Kehlet
2009-01-01
A density functional theory (DFT)-based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous......, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active...
Calaminici, Patrizia; Janetzko, Florian; Köster, Andreas M; Mejia-Olvera, Roberto; Zuniga-Gutierrez, Bernardo
2007-01-28
Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.
Application of Time-Dependent Density-Functional Theory to C6
Institute of Scientific and Technical Information of China (English)
ZHOU Xiao-Lin; BAI Yu-Lin; CHEN Xiang-Rong; YANG Xiang-Dong
2004-01-01
@@ We employ a real-space pseudopotential method to determine the ground state structure of the carbon cluster C6 via simulated annealing and the corresponding optical absorption spectra from the adiabatic time-dependent density-functional theory (TDDFT) and the local density approximation (TDLDA). It is found that the ground state structure of the carbon cluster C6 belongs to a monocyclic D3h structure and the calculated spectra exhibit a variety of features that can be used for comparison against future experimental investigations.
Theoretical structure and vibrational spectra of ciprofloxacin: Density functional theory study
Yang, Yue; Gao, Hongwei
2013-02-01
The molecular structure and vibrational spectra of ciprofloxacin(1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid) have been calculated using the different density functional theory (DFT) methods and various basis sets. This paper examines the comparative performance of different DFT methods at various basis sets in predicting molecular and vibrational spectra of ciprofloxacin. The calculation results show that SVWN/LANL2DZ level and SVWN/6-31G level offer the highest certainty to predict the structure and vibrational spectra of ciprofloxacin, respectively.
Robust acceleration of self consistent field calculations for density functional theory.
Baarman, K; Eirola, T; Havu, V
2011-04-07
We show that the type 2 Broyden secant method is a robust general purpose mixer for self consistent field problems in density functional theory. The Broyden method gives reliable convergence for a large class of problems and parameter choices. We directly mix the approximation of the electronic density to provide a basis independent mixing scheme. In particular, we show that a single set of parameters can be chosen that give good results for a large range of problems. We also introduce a spin transformation to simplify treatment of spin polarized problems. The spin transformation allows us to treat these systems with the same formalism as regular fixed point iterations.
Density Functional Theory Study of Infrared and Ultraviolet Spectra of Urea L-Malic Acid
Institute of Scientific and Technical Information of China (English)
Yan-lan Zhang; Hong-yan Wang; Dong-sheng Jiao; Yong-hong Hu
2008-01-01
Urea L-malic acid, a new second order nonlinear optical crystal, was studied using density functional theory (DFT). PBEPBE/6-31+G(d,p) method, the optimal method for comparing the results from thc sevcral DFT methods, was chosen to study the molecular structure. Infrared and ultraviolet-visible spectra were obtained and compared with experiments. The ultraviolet-visible spectrum was also analyzed by the molecular orbital population. The geometries, and the infrared and ultraviolet-visible spectra in water were studied using DFT methods in combination with the polarized continuum model to predict the perturbations by the solvent effect.
Multi-configuration time-dependent density-functional theory based on range separation
DEFF Research Database (Denmark)
Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard
2013-01-01
Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... in Be and the 11u+ state in the stretched H molecule are improved, although the latter is still significantly underestimated. Exploratory TD-MC-srDFT/GGA calculations for ferrocene yield in general excitation energies at least as good as TD-DFT using the Coulomb attenuated method based on the three-parameter Becke...
Nuclear reactivity indices in the context of spin polarized density functional theory
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Carlos [Departamento de Quimica, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Republica 275, Santiago (Chile)], E-mail: car.cardenas@uandresbello.edu; Lamsabhi, Al Mokhtar [Departamento de Quimica C-9, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Fuentealba, Patricio [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile)
2006-03-20
In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented.
Anero, Jesús G; Español, Pep; Tarazona, Pedro
2013-07-21
We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.
Lopez-Encarnacion, Juan M.
2016-06-01
In this talk, the power and synergy of combining experimental measurements with density functional theory computations as a single tool to unambiguously characterize the molecular structure of complex atomic systems is shown. Here, we bring three beautiful cases where the interaction between the experiment and theory is in very good agreement for both finite and extended systems: 1) Characterizing Metal Coordination Environments in Porous Organic Polymers: A Joint Density Functional Theory and Experimental Infrared Spectroscopy Study 2) Characterization of Rhenium Compounds Obtained by Electrochemical Synthesis After Aging Process and 3) Infrared Study of H(D)2 + Co4+ Chemical Reaction: Characterizing Molecular Structures. J.M. López-Encarnación, K.K. Tanabe, M.J.A. Johnson, J. Jellinek, Chemistry-A European Journal 19 (41), 13646-13651 A. Vargas-Uscategui, E. Mosquera, J.M. López-Encarnación, B. Chornik, R. S. Katiyar, L. Cifuentes, Journal of Solid State Chemistry 220, 17-21
DEFF Research Database (Denmark)
Johnston, Karen; Kleis, Jesper; Lundqvist, Bengt
2008-01-01
Two different adsorption configurations of benzene on the Si(001)-(2×1) surface, the tight-bridge and butterfly structures, were studied using density functional theory. Several exchange and correlation functionals were used, including the recently developed van der Waals density functional (vdW-...
Jeanmairet, Guillaume; Borgis, Daniel
2013-01-01
We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619, 2013] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields, the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional ...
Kinetic theory of correlated fluids: from dynamic density functional to Lattice Boltzmann methods.
Marconi, Umberto Marini Bettolo; Melchionna, Simone
2009-07-07
Using methods of kinetic theory and liquid state theory we propose a description of the nonequilibrium behavior of molecular fluids, which takes into account their microscopic structure and thermodynamic properties. The present work represents an alternative to the recent dynamic density functional theory, which can only deal with colloidal fluids and is not apt to describe the hydrodynamic behavior of a molecular fluid. The method is based on a suitable modification of the Boltzmann transport equation for the phase space distribution and provides a detailed description of the local structure of the fluid and its transport coefficients. Finally, we propose a practical scheme to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the Lattice Boltzmann method.
Hard spheres at a planar hard wall: Simulations and density functional theory
Directory of Open Access Journals (Sweden)
R.L. Davidchack
2016-03-01
Full Text Available Hard spheres are a central and important model reference system for both homogeneous and inhomogeneous fluid systems. In this paper we present new high-precision molecular-dynamics computer simulations for a hard sphere fluid at a planar hard wall. For this system we present benchmark data for the density profile ρ(z at various bulk densities, the wall surface free energy γ, the excess adsorption Γ, and the excess volume v_{ex}, which is closely related to Γ. We compare all benchmark quantities with predictions from state-of-the-art classical density functional theory calculations within the framework of fundamental measure theory. While we find overall good agreement between computer simulations and theory, significant deviations appear at sufficiently high bulk densities.
Magnetic circular dichroism in real-time time-dependent density functional theory
Lee, K -M; Bertsch, G F
2010-01-01
We apply the adiabatic time-dependent density functional theory to magnetic ci the real-space, real-time computational method. The standard formulas for the MCD response and its A and B terms are derived from the observables in the time-dependent wave function. We find the real time method is well suited for calculating the overall spectrum, particularly at higher excitation energies where individual excited states are numerous and overlapping. The MCD sum rules are derived and interpreted in the real-time formalism; we find that they are very useful for normalization purposes and assessing the accuracy of the theory. The method is applied to MCD spectrum of C-60 using the adiabatic energy functional from the local density approximation. The theory correctly predicts the signs of the A and B terms for the lowest allowed excitations. However, the magnitudes of the terms only show qualitative agreement with experiment.
Hyperon effects in covariant density functional theory with recent astrophysical observations
Long, W H; Hagino, K; Sagawa, H; Tamura, H
2011-01-01
Motivated by recent observational data, the equations of state with the inclusion of strangeness-bearing $\\Lambda$-hyperons and the corresponding properties of neutron stars are studied, based on the covariant density functional (CDF) theory. To this end, we specifically employ the density dependent relativistic Hartree-Fock (DDRHF) theory and the relativistic mean field theory (RMF). The inclusion of $\\Lambda$-hyperons in neutron stars shows substantial effects in softening the equation of state. Because of the extra suppression effect originated from the Fock channel, large reductions on both the star mass and radius are predicted by the DDRHF calculations. It is also found that the mass-radius relations of neutron stars with $\\Lambda$-hyperons determined by DDRHF with the PKA1 parameter set are in fairly good agreement with the observational data where a relatively small neutron stars radius is required. Therefore, it is expected that the exotic degrees of freedom such as the strangeness-bearing structure ...
Solvation of ions in bulk and at interfaces: What can density functional theory teach us?
Mundy, Christopher
2012-02-01
Insights from molecular simulation have influenced both experiment and theory regarding the understanding of the specific ion effect. Although there seems to be a consensus that large polarizable anions exist at the air-water interface, the understanding of the precise molecular interactions that give rise to surface adsorption remain elusive. I will present our work on the adsorption of iodide at the air-water interface using density functional theory (DFT) based interaction potentials. I will discuss similarities and differences of the results obtained using different descriptions of molecular interaction. Last, we are able to reconcile the results obtained with molecular simulation using standard empirical potentials with the dielectric continuum theory of Levin and co-workers.[4pt] In collaboration with Marcel Baer, Pacific Northwest National Laboratory; Douglas Tobias, Abe Stern, University of California, Irvine, CA; and Yan Levin, Instituto de F'isica, UFRGS, Porto Alegre, RS, 91501-970, Brazil.
Directory of Open Access Journals (Sweden)
Falko Schmidt
2017-01-01
Full Text Available We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3 in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of KNbO3. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.
Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.
Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang
2015-04-14
In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.
Gao, Yi; Neuhauser, Daniel
2012-08-21
We develop an approach for dynamical (ω > 0) embedding of mixed quantum mechanical (QM)/classical (or more precisely QM/electrodynamics) systems with a quantum sub-region, described by time-dependent density functional theory (TDDFT), within a classical sub-region, modeled here by the recently proposed near-field (NF) method. Both sub-systems are propagated simultaneously and are coupled through a common Coulomb potential. As a first step we implement the method to study the plasmonic response of a metal film which is half jellium-like QM and half classical. The resulting response is in good agreement with both full-scale TDDFT and the purely classical NF method. The embedding method is able to describe the optical response of the whole system while capturing quantum mechanical effects, so it is a promising approach for studying electrodynamics in hybrid molecules-metals nanostructures.
Hahn, Torsten; Rückerl, Florian; Liebing, Simon; Pederson, Mark
We present our experimental and theoretical results on novel Picene/F4TCNQ and Manganese-Phthalocyanine/F4TCNQ donor / acceptor systems. We apply the recently developed Fermi-orbital based approach for self-interaction corrected density functional theory (FO-SIC DFT) to these materials and compare the results to standard DFT calculations and to experimental data obtained by photoemission spectroscopy. We focus our analysis on the description of the magnitude of the ground state charge transfer and on the details of the formed hybrid orbitals. Further, we show that for weakly bound donor / acceptor systems the FO-SIC approach delivers a more realistic description of the electronic structure compared to standard DFT calculations Support by DFG FOR1154 is greatly acknowledged.
Energy Technology Data Exchange (ETDEWEB)
Nakano, Masayoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Minami, Takuya, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Fukui, Hitoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Yoneda, Kyohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Shigeta, Yasuteru, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Kishi, Ryohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Champagne, Benoît; Botek, Edith [Laboratoire de Chimie Théorique, Facultés Universitaires Notre-Dame de la Paix (FUNDP), rue de Bruxelles, 61, 5000 Namur (Belgium)
2015-01-22
We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.
Energy Technology Data Exchange (ETDEWEB)
Dimakis, Nicholas, E-mail: dimakis@utpa.edu [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States); Navarro, Nestor E. [Department of Chemistry, University of Texas-Pan American, Edinburg, TX (United States); Velazquez, Julian; Salgado, Andres [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States)
2015-04-15
Highlights: • Periodic density functional calculations were performed on graphene monolayers with and without an iron adatom. • Densities of states, charge transfers, and overlap populations were used to elucidate the effects of weak iron adsorption on graphene compared to CO adsorption on Pt. • Infrared intensities and normal mode analysis verify weak iron adsorption on graphene by studying the shift in prominent vibrational modes and changes in lattice dynamics. - Abstract: Periodic density functional calculations on graphene monolayers with and without an iron adatom have been used to elucidate iron-graphene adsorption and its effects on graphene electronic and vibrational properties. Density-of-states calculations and charge density contour plots reveal charge transfer from the iron s orbitals to the d orbitals, in agreement with past reports. Adsorbed iron atoms covalently bind to the graphene substrate, verified by the strong hybridization of iron d-states with the graphene bands in the energy region just below the Fermi level. This adsorption is weak and compared to the well-analyzed CO adsorption on Pt: It is indicated by its small adsorption energy and the minimal change of the substrate geometry due to the presence of the iron adatoms. Graphene vibrational spectra are analyzed though a systematic variation of the graphene supercell size. The shifts of graphene most prominent infrared active vibrational modes due to iron adsorption are explored using normal mode eigenvectors.
Performance of density functional theory methods to describe intramolecular hydrogen shifts
Indian Academy of Sciences (India)
Nelly González-Rivas; Andrés Cedillo
2005-09-01
The performance of three exchange and correlation density functionals, LDA, BLYP and B3LYP, with four basis sets is tested in three intramolecular hydrogen shift reactions. The best reaction and activation energies come from the hybrid functional B3LYP with triple- basis sets, when they are compared with high-level post-Hartree-Fock results from the literature. For a fixed molecular geometry, the electrophilic Fukui function is computed from a finite difference approximation. Fukui function shows a small dependence with both the exchange and correlation functional and the basis set. Evolution of the Fukui function along the reaction path describes important changes in the basic sites of the corresponding molecules. These results are in agreement with the chemical behavior of those species.
Wong, Bryan M; Piacenza, Manuel; Della Sala, Fabio
2009-06-14
The absorption and fluorescence properties in a class of oligothiophene push-pull biomarkers are investigated with a long-range-corrected (LC) density functional method. Using linear-response time-dependent density functional theory (TDDFT), we calculate excitation energies, fluorescence energies, oscillator strengths, and excited-state dipole moments. To benchmark and assess the quality of the LC-TDDFT formalism, an extensive comparison is made between LC-BLYP excitation energies and approximate coupled cluster singles and doubles (CC2) calculations. When using a properly-optimized value of the range parameter, mu, we find that the LC technique provides an accurate description of charge-transfer excitations as a function of biomarker size and chemical functionalization. In contrast, we find that re-optimizing the fraction of Hartree Fock exchange in conventional hybrid functionals still yields an inconsistent description of excitation energies and oscillator strengths for the two lowest excited states in our series of biomarkers. The results of the present study emphasize the importance of a distance-dependent contribution of exchange in TDDFT for investigating excited-state properties.
Pressure and surface tension of soild-liquid interface using Tarazona density functional theory
Directory of Open Access Journals (Sweden)
M. M.
2000-12-01
Full Text Available The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.
Density functional theory and evolution algorithm calculations of elastic properties of AlON
Energy Technology Data Exchange (ETDEWEB)
Batyrev, I. G.; Taylor, D. E.; Gazonas, G. A.; McCauley, J. W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)
2014-01-14
Different models for aluminum oxynitride (AlON) were calculated using density functional theory and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional theory (DFT) calculations starting from several models of AlON with different Al or O vacancy locations and different positions for the N atoms relative to the vacancy were carried out. The results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223 (2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and 440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant predictions were found to approach the experimentally determined AlON single crystal elastic constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic constants found from simulated stress-strain relations were in overall agreement with experimental measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman spectra are compared with available experimental data.
Energy Technology Data Exchange (ETDEWEB)
Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; Haynes, P. D.; Hine, N. D. M.
2016-04-20
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.
Energy Technology Data Exchange (ETDEWEB)
McDonnell, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Higdon, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarich, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wild, S. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, W. [Michigan State Univ., East Lansing, MI (United States); Oak Ridge National Lab., Oak Ridge, TN (United States); Univ. of Warsaw, Warsaw (Poland)
2015-03-24
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.
Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.
Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael
2009-04-14
The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.
Hydrogenated Microstructure and Its Hydrogenation Properties: A Density Functional Theory Study
Directory of Open Access Journals (Sweden)
M. Abdus Salam
2014-01-01
Full Text Available The relationship between microstructure and hydrogenation properties of the mixed metals has been investigated via different spectroscopic techniques and the density functional theory (DFT. FESEM and TEM analyses demonstrated the nano-grains of Mg2NiH4 and MgH2 on the hydrogenated microstructure of the adsorbents that were confirmed by using XPS analysis technique. SAED pattern of hydrogenated metals attributed the polycrystalline nature of mixed metals and ensured the hydrogenation to Mg2NiH4 and MgH2 compounds. Flower-like rough surface of mixed metals showed high hydrogenation capacity. The density functional theory (DFT predicted hydrogenation properties; enthalpy and entropy changes of hydrogenated microstructure of MgH2 and Mg2NiH4 are −62.90 kJ/mol, −158 J/mol·K and −52.78 kJ/mol, −166 J/mol·K, respectively. The investigation corresponds to the hydrogen adsorption feasibility, reversible range hydrogenation thermodynamics, and hydrogen desorption energy of 54.72 kJ/mol. DFT predicted IR band for MgH2 and Mg2NiH4 attributed hydrogen saturation on metal surfaces.
Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib
2015-04-15
Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than
Molecular density functional theory of water including density-polarization coupling.
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2016-06-22
We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.
Calculating the Lifetimes of Metastable States with Complex Density Functional Theory.
Zhou, Yongxi; Ernzerhof, Matthias
2012-07-19
Among other applications, complex absorbing potentials (CAPs) have proven to be useful tools in the theory of metastable states. They facilitate the conversion of unbound states of a finite lifetime into normalized bound states with a complex energy. Adding CAPs to a conventional Hamiltonian turns it into a non-Hermitian operator. Recently, we introduced a complex density functional theory (CODFT) that extends the Kohn-Sham method to the realm of non-Hermitian systems. Here, we combine CAPs with CODFT and present the first application of CODFT to metastable systems. In particular, we consider the negative ions of the beryllium atom and the nitrogen molecule. Using conventional exchange-correlation functionals as functionals of a complex density, the resonance positions and the resonance lifetimes are obtained, and they are in line with the findings of other studies.
Analytic cubic and quartic force fields using density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Jonsson, Dan [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); High Performance Computing Group, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden and PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Ekström, Ulf; Helgaker, Trygve [Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo (Norway)
2014-01-21
We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.