Accelerating Climate Simulations Through Hybrid Computing
Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark
2009-01-01
Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.
Computational simulation of intermingled-fiber hybrid composite behavior
Mital, Subodh K.; Chamis, Christos C.
1992-01-01
Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional graphite/epoxy primary composite with varying percentages of S-glass fibers used as hydridizing fibers at a total fiber volume of 0.54. The three-dimensional finite-element model used in the analyses consists of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite-element methods and the micromechanics equations embedded in the ICAN computer code can be used to obtain the properties of intermingled fiber hybrid composites needed for the analysis/design of hybrid composite structures. However, the finite-element model should be big enough to be able to simulate the conditions assumed in the micromechanics equations.
Accelerating Climate and Weather Simulations through Hybrid Computing
Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark
2011-01-01
Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.
Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas
Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi
2016-08-01
A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.
Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas
Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi
2016-11-01
A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.
Hybrid annealing using a quantum simulator coupled to a classical computer
Graß, Tobias
2016-01-01
Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Simulated annealing is a computational technique which explores the configuration space by mimicking thermal noise. By slow cooling, it freezes the system in a low-energy configuration, but the algorithm often gets stuck in local minima. In quantum annealing, the thermal noise is replaced by controllable quantum fluctuations, and the technique can be implemented in modern quantum simulators. However, quantum-adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configurati...
Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias
2011-10-01
Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.
Hybrid simulation of scatter intensity in industrial cone-beam computed tomography
Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.
2009-01-01
A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.
A hybrid model for the computationally-efficient simulation of the cerebellar granular layer
Directory of Open Access Journals (Sweden)
Anna eCattani
2016-04-01
Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.
Electric/Hybrid Vehicle Simulation
Slusser, R. A.; Chapman, C. P.; Brennand, J. P.
1985-01-01
ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.
Hyndman, D E
2013-01-01
Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl
Haq, Mahmoodul
Environmentally friendly bio-based composites with improved properties can be obtained by harnessing the synergy offered by hybrid constituents such as multiscale (nano- and micro-scale) reinforcement in bio-based resins composed of blends of synthetic and natural resins. Bio-based composites have recently gained much attention due to their low cost, environmental appeal and their potential to compete with synthetic composites. The advantage of multiscale reinforcement is that it offers synergy at various length scales, and when combined with bio-based resins provide stiffness-toughness balance, improved thermal and barrier properties, and increased environmental appeal to the resulting composites. Moreover, these hybrid materials are tailorable in performance and in environmental impact. While the use of different concepts of multiscale reinforcement has been studied for synthetic composites, the study of mukiphase/multiscale reinforcements for developing new types of sustainable materials is limited. The research summarized in this dissertation focused on development of multiscale reinforced bio-based composites and the effort to understand and exploit the synergy of its constituents through experimental characterization and computational simulations. Bio-based composites consisting of petroleum-based resin (unsaturated polyester), natural or bio-resin (epoxidized soybean and linseed oils), natural fibers (industrial hemp), and nanosilicate (nanoclay) inclusions were developed. The work followed the "materials by Mahmoodul Haq design" philosophy by incorporating an integrated experimental and computational approach to strategically explore the design possibilities and limits. Experiments demonstrated that the drawbacks of bio-resin addition, which lowers stiffness, strength and increases permeability, can be counter-balanced through nanoclay reinforcement. Bio-resin addition yields benefits in impact strength and ductility. Conversely, nanoclay enhances stiffness
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
Shershnev, Anton A.; Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Khotyanovsky, Dmitry V.
2016-10-01
The present paper describes HyCFS code, developed for numerical simulation of compressible high-speed flows on hybrid CPU/GPU (Central Processing Unit / Graphical Processing Unit) computational clusters on the basis of full unsteady Navier-Stokes equations, using modern shock capturing high-order TVD (Total Variation Diminishing) and WENO (Weighted Essentially Non-Oscillatory) schemes on general curvilinear structured grids. We discuss the specific features of hybrid architecture and details of program implementation and present the results of code verification.
Energy Technology Data Exchange (ETDEWEB)
Ko, Soon Heum [Linkoeping University, Linkoeping (Sweden); Kim, Na Yong; Nikitopoulos, Dimitris E.; Moldovan, Dorel [Louisiana State University, Baton Rouge (United States); Jha, Shantenu [Rutgers University, Piscataway (United States)
2014-01-15
Numerical approaches are presented to minimize the statistical errors inherently present due to finite sampling and the presence of thermal fluctuations in the molecular region of a hybrid computational fluid dynamics (CFD) - molecular dynamics (MD) flow solution. Near the fluid-solid interface the hybrid CFD-MD simulation approach provides a more accurate solution, especially in the presence of significant molecular-level phenomena, than the traditional continuum-based simulation techniques. It also involves less computational cost than the pure particle-based MD. Despite these advantages the hybrid CFD-MD methodology has been applied mostly in flow studies at high velocities, mainly because of the higher statistical errors associated with low velocities. As an alternative to the costly increase of the size of the MD region to decrease statistical errors, we investigate a few numerical approaches that reduce sampling noise of the solution at moderate-velocities. These methods are based on sampling of multiple simulation replicas and linear regression of multiple spatial/temporal samples. We discuss the advantages and disadvantages of each technique in the perspective of solution accuracy and computational cost.
Directory of Open Access Journals (Sweden)
Chandana Kodiweera
2016-06-01
Full Text Available This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI, “Hybrid diffusion imaging” [1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI model, “NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain” [2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid, anisotropic hindered diffusion (e.g., extracellular space, and anisotropic restricted diffusion (e.g., intracellular space. The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article “Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study” [3].
Manninen, L. M.; Lund, P. D.; Virkkula, A.
1990-11-01
The version 3.0 is described of the program package PHOTO for the simulation and sizing of hybrid power systems (photovoltaic and wind power plants) on IBM PC, XT, AT, PS/2 and compatibles. The minimum memory requirement is 260 kB. Graphical output is created with HALO'88 graphics subroutine library. In the simulation model, special attention is given to the battery storage unit. A backup generator can also be included in the system configuration. The dynamic method developed uses accurate system component models accounting for component interactions and losses in e.g. wiring and diodes. The photovoltaic array can operate in a maximum power mode or in a clamped voltage mode together with the other subsystems. Various control strategies can also be considered. Individual subsystem models were verified against real measurements. Illustrative simulation example is also discussed. The presented model can be used to simulate various system configurations accurately and evaluate system performance, such as energy flows and power losses in photovoltaic array, wind generator, backup generator, wiring, diodes, maximum power point tracking device, inverter and battery. Energy cost is also an important consideration.
Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters
Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel
2010-01-01
HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.
Shuhaiber, Jeffrey H; Niehaus, Justin; Gottliebson, William; Abdallah, Shaaban
2013-08-01
The theoretical differences in energy losses as well as coronary flow with different band sizes for branch pulmonary arteries (PA) in hypoplastic left heart syndrome (HLHS) remain unknown. Our objective was to develop a computational fluid dynamic model (CFD) to determine the energy losses and pulmonary-to-systemic flow rates. This study was done for three different PA band sizes. Three-dimensional computer models of the hybrid procedure were constructed using the standard commercial CFD softwares Fluent and Gambit. The computer models were controlled for bilateral PA reduction to 25% (restrictive), 50% (intermediate) and 75% (loose) of the native branch pulmonary artery diameter. Velocity and pressure data were calculated throughout the heart geometry using the finite volume numerical method. Coronary flow was measured simultaneously with each model. Wall shear stress and the ratio of pulmonary-to-systemic volume flow rates were calculated. Computer simulations were compared at fixed points utilizing echocardiographic and catheter-based metric dimensions. Restricting the PA band to a 25% diameter demonstrated the greatest energy loss. The 25% banding model produced an energy loss of 16.76% systolic and 24.91% diastolic vs loose banding at 7.36% systolic and 17.90% diastolic. Also, restrictive PA bands had greater coronary flow compared with loose PA bands (50.2 vs 41.9 ml/min). Shear stress ranged from 3.75 Pascals with restrictive PA banding to 2.84 Pascals with loose banding. Intermediate PA banding at 50% diameter achieved a Qp/Qs (closest to 1) at 1.46 systolic and 0.66 diastolic compared with loose or restrictive banding without excess energy loss. CFD provides a unique platform to simulate pressure, shear stress as well as energy losses of the hybrid procedure. PA banding at 50% provided a balanced pulmonary and systemic circulation with adequate coronary flow but without extra energy losses incurred.
Directory of Open Access Journals (Sweden)
Devesh Ramphal Upadhyay
2016-02-01
Full Text Available The paper introduces an idea which adds itself into contribution of getting best fuel economy of a passenger car when it is running at high speed on a highway. A six speed (forward gear box is addressed in the paper which is controlled manually and automatically as well. The paper introduces an advancement in manual transmission gear box for passenger cars. Hydraulic circuit is designed with mechatronics point of view and resulting in making the shifting of gear automatically. A computational design is made of the Hybrid Gear Box (HGB using CATIA P3 V5 as a designing software. A new gear meshing in 5 speed manual transmission gear box which synchronizes with the output shaft of the transmission automatically after getting command by the automated system designed. Parameters are considered on the basis of practical model and is been simulated by using Simdriveline as the Simulink tool of MATLAB r2010a. The mechanical properties of the components of the hybrid gear box is calculated on the basis of the functional parameters and with help of the fundamental and dependent properties formulation. The final result is the graphical analysis of the model forobtaining at least 15% fuel efficient than any of the vehicle of same configurations.
Energy Technology Data Exchange (ETDEWEB)
Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph
2012-07-31
This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.
Hybridity in Embedded Computing Systems
Institute of Scientific and Technical Information of China (English)
虞慧群; 孙永强
1996-01-01
An embedded system is a system that computer is used as a component in a larger device.In this paper,we study hybridity in embedded systems and present an interval based temporal logic to express and reason about hybrid properties of such kind of systems.
Hybrid Simulation of Composite Structures
DEFF Research Database (Denmark)
Høgh, Jacob Herold
Hybrid simulation is a substructural method combining a numerical simulation with a physical experiment. A structure is thereby simulated under the assumption that a substructure’s response is well known and easily modelled while a given substructure is studied more accurately in a physical...... of freedom. In this dissertation the main focus is to develop hybrid simulation for composite structures e.g. wind turbine blades where the boundary between the numerical model and the physical experiment is continues i.e. in principal infinite amount of degrees of freedom. This highly complicates...
Advanced Hybrid Computer Systems. Software Technology.
This software technology final report evaluates advances made in Advanced Hybrid Computer System software technology . The report describes what...automatic patching software is available as well as which analog/hybrid programming languages would be most feasible for the Advanced Hybrid Computer...compiler software . The problem of how software would interface with the hybrid system is also presented.
Adaptation and hybridization in computational intelligence
Jr, Iztok
2015-01-01
This carefully edited book takes a walk through recent advances in adaptation and hybridization in the Computational Intelligence (CI) domain. It consists of ten chapters that are divided into three parts. The first part illustrates background information and provides some theoretical foundation tackling the CI domain, the second part deals with the adaptation in CI algorithms, while the third part focuses on the hybridization in CI. This book can serve as an ideal reference for researchers and students of computer science, electrical and civil engineering, economy, and natural sciences that are confronted with solving the optimization, modeling and simulation problems. It covers the recent advances in CI that encompass Nature-inspired algorithms, like Artificial Neural networks, Evolutionary Algorithms and Swarm Intelligence –based algorithms.
Simulation of quantum computers
De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB
2001-01-01
We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software con
Hybrid simulation: an active power filter case study
Directory of Open Access Journals (Sweden)
Y. A. Garcés
2011-10-01
Full Text Available The hybrid simulation concept consisting of a combination of computer simulation and laboratory tests. This approach is a cost effective alternative to physically testing the whole system and allows better understanding of complex coupled systems.This paper describes implementing an active power filter (APF hybrid prototype where the source system and load are implemented as a real-time simulation and the system of static power converter acting as an active power filter is implemented in physical hardware. It also confirmed the hybrid simulation results by implementing the simulation in MATLAB-Simulink regarding the same system implemented during the active power filter analysis and design stage.
Computer simulation of liquid crystals
Energy Technology Data Exchange (ETDEWEB)
McBride, C.
1999-01-01
Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe[sub 2]Si)[sub 2]O, using ab initio quantum mechanical calculations. (author)
Computer simulation of liquid crystals
Energy Technology Data Exchange (ETDEWEB)
McBride, C
1999-09-01
Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4`-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe{sub 2}Si){sub 2}O, using ab initio quantum mechanical calculations. (author)
Hybrid soft computing approaches research and applications
Dutta, Paramartha; Chakraborty, Susanta
2016-01-01
The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis, (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.
Computer Modeling and Simulation
Energy Technology Data Exchange (ETDEWEB)
Pronskikh, V. S. [Fermilab
2014-05-09
Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes
Analysis of hybrid viscous damper by real time hybrid simulations
DEFF Research Database (Denmark)
Brodersen, Mark Laier; Ou, Ge; Høgsberg, Jan Becker
2016-01-01
Results from real time hybrid simulations are compared to full numerical simulations for a hybrid viscous damper, composed of a viscous dashpot in series with an active actuator and a load cell. By controlling the actuator displacement via filtered integral force feedback the damping performance...... of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift...... in the actuator displacement, and only a fraction of the measured damper force can therefore be used as input to the investigated integral force feedback in the real time hybrid simulations....
Checkpointing for a hybrid computing node
Energy Technology Data Exchange (ETDEWEB)
Cher, Chen-Yong
2016-03-08
According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.
Reachability computation for hybrid systems with Ariadne
L. Benvenuti; D. Bresolin; A. Casagrande; P.J. Collins (Pieter); A. Ferrari; E. Mazzi; T. Villa; A. Sangiovanni-Vincentelli
2008-01-01
htmlabstractAriadne is an in-progress open environment to design algorithms for computing with hybrid automata, that relies on a rigorous computable analysis theory to represent geometric objects, in order to achieve provable approximation bounds along the computations. In this paper we discuss the
Computer code for intraply hybrid composite design
Chamis, C. C.; Sinclair, J. H.
1981-01-01
A computer program has been developed and is described herein for intraply hybrid composite design (INHYD). The program includes several composite micromechanics theories, intraply hybrid composite theories and a hygrothermomechanical theory. These theories provide INHYD with considerable flexibility and capability which the user can exercise through several available options. Key features and capabilities of INHYD are illustrated through selected samples.
Universal blind quantum computation for hybrid system
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Hybrid2 - The hybrid power system simulation model
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.
Hybrid Systems: Computation and Control.
2007-11-02
elbow) and a pinned first joint (shoul- der) (see Figure 2); it is termed an underactuated system since it is a mechanical system with fewer...Montreal, PQ, Canada, 1998. [10] M. W. Spong. Partial feedback linearization of underactuated mechanical systems . In Proceedings, IROS, pages 314-321...control mechanism and search for optimal combinations of control variables. Besides the nonlinear and hybrid nature of powertrain systems , hardware
Hybrid and Electric Advanced Vehicle Systems Simulation
Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.
1985-01-01
Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.
Simulation of a Hybrid Locomotion Robot Vehicle
Aarnio, P.
2002-10-01
This study describes a simulation process of a mobile robot. The focus is in kinematic and dynamic behavior simulations of hybrid locomotion robot vehicles. This research is motivated by the development needs of the WorkPartner field service robot. The whole robot system consists of a mobile platform and a two-hand manipulator. The robot platform, called Hybtor, is a hybrid locomotion robot capable of walking and driving by wheels as well as combining these two locomotion modes. This study describes first the general problems and their solutions in the dynamic simulation of mobile robots. A kinematic and dynamic virtual model of the Hybtor robot was built and simulations were carried out using one commercial simulation tool. Walking, wheel driven and rolking mode locomotion, which is a special hybrid locomotion style, has been simulated and analyzed. Position and force control issues during obstacle overrun and climbing were also studied.
Massively parallel quantum computer simulator
De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.
2007-01-01
We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray
Towards Hybrid Overset Grid Simulations of the Launch Environment
Moini-Yekta, Shayan
A hybrid overset grid approach has been developed for the design and analysis of launch vehicles and facilities in the launch environment. The motivation for the hybrid grid methodology is to reduce the turn-around time of computational fluid dynamic simulations and improve the ability to handle complex geometry and flow physics. The LAVA (Launch Ascent and Vehicle Aerodynamics) hybrid overset grid scheme consists of two components: an off-body immersed-boundary Cartesian solver with block-structured adaptive mesh refinement and a near-body unstructured body-fitted solver. Two-way coupling is achieved through overset connectivity between the off-body and near-body grids. This work highlights verification using code-to-code comparisons and validation using experimental data for the individual and hybrid solver. The hybrid overset grid methodology is applied to representative unsteady 2D trench and 3D generic rocket test cases.
Zhang, Jiapu
2013-01-01
Simulated annealing (SA) was inspired from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects, both are attributes of the material that depend on its thermodynamic free energy. In this Paper, firstly we will study SA in details on its practical implementation. Then, hybrid pure SA with local (or global) search optimization methods allows us to be able to design several effective and efficient global search optimization methods. In order to keep the original sense of SA, we clarify our understandings of SA in crystallography and molecular modeling field through the studies of prion amyloid fibrils.
Modelling of data uncertainties on hybrid computers
Energy Technology Data Exchange (ETDEWEB)
Schneider, Anke (ed.)
2016-06-15
The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the
A Novel Software Simulator Model Based on Active Hybrid Architecture
Directory of Open Access Journals (Sweden)
Amr AbdElHamid
2015-01-01
Full Text Available The simulated training is an important issue for any type of missions such as aerial, ground, sea, or even space missions. In this paper, a new flexible aerial simulator based on active hybrid architecture is introduced. The simulator infrastructure is applicable to any type of training missions and research activities. This software-based simulator is tested on aerial missions to prove its applicability within time critical systems. The proposed active hybrid architecture is introduced via using the VB.NET and MATLAB in the same simulation loop. It exploits the remarkable computational power of MATLAB as a backbone aircraft model, and such mathematical model provides realistic dynamics to the trainee. Meanwhile, the Human-Machine Interface (HMI, the mission planning, the hardware interfacing, data logging, and MATLAB interfacing are developed using VB.NET. The proposed simulator is flexible enough to perform navigation and obstacle avoidance training missions. The active hybrid architecture is used during the simulated training, and also through postmission activities (like the generation of signals playback reports for evaluation purposes. The results show the ability of the proposed architecture to fulfill the aerial simulator demands and to provide a flexible infrastructure for different simulated mission requirements. Finally, a comparison with some existing simulators is introduced.
A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling
Institute of Scientific and Technical Information of China (English)
SHU Wanneng; ZHENG Shijue
2006-01-01
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing .It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively.When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole.From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.
Grid computing and biomolecular simulation.
Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W
2005-08-15
Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.
Massive Parallel Quantum Computer Simulator
De Raedt, K; De Raedt, H; Ito, N; Lippert, T; Michielsen, K; Richter, M; Trieu, B; Watanabe, H; Lippert, Th.
2006-01-01
We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.
Lyapunov exponents computation for hybrid neurons.
Bizzarri, Federico; Brambilla, Angelo; Gajani, Giancarlo Storti
2013-10-01
Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.
Hybrid simulation models of production networks
Kouikoglou, Vassilis S
2001-01-01
This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.
Hybrid Parallel Computation of Integration in GRACE
Yuasa, F; Kawabata, S; Perret-Gallix, D; Itakura, K; Hotta, Y; Okuda, M; Yuasa, Fukuko; Ishikawa, Tadashi; Kawabata, Setsuya; Perret-Gallix, Denis; Itakura, Kazuhiro; Hotta, Yukihiko; Okuda, Motoi
2000-01-01
With an integrated software package {\\tt GRACE}, it is possible to generate Feynman diagrams, calculate the total cross section and generate physics events automatically. We outline the hybrid method of parallel computation of the multi-dimensional integration of {\\tt GRACE}. We used {\\tt MPI} (Message Passing Interface) as the parallel library and, to improve the performance we embedded the mechanism of the dynamic load balancing. The reduction rate of the practical execution time was studied.
Hybrid Nanoelectronics: Future of Computer Technology
Institute of Scientific and Technical Information of China (English)
Wei Wang; Ming Liu; Andrew Hsu
2006-01-01
Nanotechnology may well prove to be the 21st century's new wave of scientific knowledge that transforms people's lives. Nanotechnology research activities are booming around the globe. This article reviews the recent progresses made on nanoelectronic research in US and China, and introduces several novel hybrid solutions specifically useful for future computer technology. These exciting new directions will lead to many future inventions, and have a huge impact to research communities and industries.
Huang, L. C. P.; Cook, R. A.
1973-01-01
Models utilizing various sub-sets of the six degrees of freedom are used in trajectory simulation. A 3-D model with only linear degrees of freedom is especially attractive, since the coefficients for the angular degrees of freedom are the most difficult to determine and the angular equations are the most time consuming for the computer to evaluate. A computer program is developed that uses three separate subsections to predict trajectories. A launch rail subsection is used until the rocket has left its launcher. The program then switches to a special 3-D section which computes motions in two linear and one angular degrees of freedom. When the rocket trims out, the program switches to the standard, three linear degrees of freedom model.
STEM image simulation with hybrid CPU/GPU programming.
Yao, Y; Ge, B H; Shen, X; Wang, Y G; Yu, R C
2016-07-01
STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. Copyright © 2016 Elsevier B.V. All rights reserved.
Methane production in simulated hybrid bioreactor landfill.
Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac
2014-09-01
The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).
Fornaro, Teresa; Carnimeo, Ivan; Biczysko, Malgorzata
2015-05-28
Feasible and comprehensive computational protocols for simulating the spectroscopic properties of large and complex molecular systems are very sought after. Indeed, due to the great variety of intra- and intermolecular interactions that may take place, the interpretation of experimental data becomes more and more difficult as the system under study increases in size or is placed in a complex environment, such as condensed phases. In this framework, we are actively developing a comprehensive and robust computational protocol aimed at quantitative reproduction of the spectra of nucleic acid base complexes, with increasing complexity toward condensed phases and monolayers of biomolecules on solid supports. We have resorted to fully anharmonic quantum mechanical computations within the generalized second-order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective B3LYP-D3 method, in conjunction with basis sets of double-ζ plus polarization quality. Such an approach has been validated in a previous work ( Phys. Chem. Chem. Phys. 2014 , 16 , 10112 - 10128 ) for simulating the IR spectra of the monomers of nucleobases and some of their dimers. In the present contribution we have extended such computational protocol to simulate spectroscopic properties of a molecular solid, namely polycrystalline uracil. First we have selected a realistic molecular model for representing the spectroscopic properties of uracil in the solid state, the uracil heptamer, and then we have computed the relative anharmonic frequencies combining less demanding approaches such as the hybrid B3LYP-D3/DFTBA one, in which the harmonic frequencies are computed at a higher level of theory (B3LYP-D3/N07D) whereas the anharmonic shifts are evaluated at a lower level of theory (DFTBA), and the reduced dimensionality VPT2 (RD-VPT2) approach, where only selected vibrational modes are computed anharmonically along with the couplings with other modes. The good agreement between the
Computer simulation in materials science
Energy Technology Data Exchange (ETDEWEB)
Arsenault, R.J.; Beeler, J.R.; Esterling, D.M.
1988-01-01
This book contains papers on the subject of modeling in materials science. Topics include thermodynamics of metallic solids and fluids, grain-boundary modeling, fracture from an atomistic point of view, and computer simulation of dislocations on an atomistic level.
TRNSYS HYBRID wind diesel PV simulator
Energy Technology Data Exchange (ETDEWEB)
Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)
1996-12-31
The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.
Directory of Open Access Journals (Sweden)
Luciano T. Costa
2010-01-01
Full Text Available Computational methods for the calculation of dynamical properties of fluids might consider the system as a continuum or as an assembly of molecules. Molecular dynamics (MD simulation includes molecular resolution, whereas computational fluid dynamics (CFD considers the fluid as a continuum. This work provides a review of hybrid methods MD/CFD recently proposed in the literature. Theoretical foundations, basic approaches of computational methods, and dynamical properties typically calculated by MD and CFD are first presented in order to appreciate the similarities and differences between these two methods. Then, methods for coupling MD and CFD, and applications of hybrid simulations MD/CFD, are presented.
Fluid simulation for computer graphics
Bridson, Robert
2008-01-01
Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.
Hybrid simulation theory for a classical nonlinear dynamical system
Drazin, Paul L.; Govindjee, Sanjay
2017-03-01
Hybrid simulation is an experimental and computational technique which allows one to study the time evolution of a system by physically testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion via sensors and actuators. The technique allows one to study large or complicated mechanical systems while only requiring a subset of the complete system to be present in the laboratory. This results in vast cost savings as well as the ability to study systems that simply can not be tested due to scale. However, the errors that arise from splitting the system in two requires careful attention, if a valid simulation is to be guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have been restricted to linear dynamical systems. In this work we consider the behavior of hybrid simulation when applied to nonlinear dynamical systems. As a model problem, we focus on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear characteristics, in particular periodic and chaotic motions. We are able to show that the application of hybrid simulation to nonlinear systems requires a careful understanding of what one expects from such an experiment. In particular, when system response is chaotic we advocate the need for the use of multiple metrics to characterize the difference between two chaotic systems via Lyapunov exponents and Lyapunov dimensions, as well as correlation exponents. When system response is periodic we advocate the use of L2 norms. Further, we are able to show that hybrid simulation can falsely predict chaotic or periodic response when the true system has the opposite characteristic. In certain cases, we are able to show that control system parameters can mitigate this issue.
SKIRT: Hybrid parallelization of radiative transfer simulations
Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.
2017-07-01
We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.
Energy efficient hybrid computing systems using spin devices
Sharad, Mrigank
Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.
A hybrid approach to simulating mechanical properties of polymer nanocomposites.
Mccarron, Andy P; Raj, Sharad; Hyers, Robert; Kim, Moon K
2009-12-01
Empirical studies indicate that a polymer reinforced with nanoscale particles could enhance its mechanical properties such as stiffness and toughness. To give insight into how and why this nanoparticle reinforcement is effective, it is necessary to develop computational models that can accurately simulate the effects of nanoparticles on the fracture characteristics of polymer composites. Furthermore, a hybrid model that can account for both continuum and non-continuum effects will hasten the development of not only new hierarchical composite materials but also new theories to explain their behavior. This paper presents a hybrid modeling scheme for simulating fracture of polymer nanocomposites by utilizing an atomistic modeling approach called Elastic Network Model (ENM) in conjunction with a traditional Finite Element Analysis (FEA). The novelty of this hybrid ENM-FEA approach lies in its ability to model less interesting outer domains with FEA while still accounting for areas of interest such as crack tip reion and the interface between a nanoparticle and the polymer matrix at atomic scale with ENM. Various simulation conditions have been tested to determine the feasibility of the proposed hybrid model. For instance, an iterative result from a uniaxial loading with isotropic properties in an ENM-FEA model shows accuracy and convergence to the analytic solution.
Hybrid and electric advanced vehicle systems (heavy) simulation
Hammond, R. A.; Mcgehee, R. K.
1981-01-01
A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.
Hybrid Method Simulation of Slender Marine Structures
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye
This present thesis consists of an extended summary and five appended papers concerning various aspects of the implementation of a hybrid method which combines classical simulation methods and artificial neural networks. The thesis covers three main topics. Common for all these topics...... is that they deal with time domain simulation of slender marine structures such as mooring lines and flexible risers used in deep sea offshore installations. The first part of the thesis describes how neural networks can be designed and trained to cover a large number of different sea states. Neural networks can...... that a single neural network can cover all relevant sea states. The applicability and performance of the present hybrid method is demonstrated on a numerical model of a mooring line attached to a floating offshore platform. The second part of the thesis demonstrates how sequential neural networks can be used...
Simulating chemistry using quantum computers
Kassal, Ivan; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán
2010-01-01
The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
Simulating chemistry using quantum computers.
Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán
2011-01-01
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
Computational Modeling of Simulation Tests.
1980-06-01
Mexico , March 1979. 14. Kinney, G. F.,.::. IeiN, .hoce 1h Ir, McMillan, p. 57, 1962. 15. Courant and Friedrichs, ,U: r. on moca an.: Jho...AD 79 275 NEW MEXICO UNIV ALBUGUERGUE ERIC H WANG CIVIL ENGINE-ETC F/6 18/3 COMPUTATIONAL MODELING OF SIMULATION TESTS.(U) JUN 80 6 LEIGH, W CHOWN, B...COMPUTATIONAL MODELING OF SIMULATION TESTS00 0G. Leigh W. Chown B. Harrison Eric H. Wang Civil Engineering Research Facility University of New Mexico
A Dynamical Simulation Facility for Hybrid Systems
Back, A; Myers, M; Back, Allen; Guckenheimer, John; Myers, Mark
1993-01-01
Abstract: This paper establishes a general framework for describing hybrid dynamical systems which is particularly suitable for numerical simulation. In this context, the data structures used to describe the sets and functions which comprise the dynamical system are crucial since they provide the link between a natural mathematical formulation of a problem and the correct application of standard numerical algorithms. We describe a partial implementation of the design methodology and use this simulation tool for a specific control problem in robotics as an illustration of the utility of the approach for practical applications.
1981-01-01
The characteristics of a digital-analog hybrid system composed of a DJS-8 digital computer and a HMJ-200 analog computer are described as well as its applications to simulation research for an automatic flight control system. A hybrid computational example is included to illustrate the application.
Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation
Energy Technology Data Exchange (ETDEWEB)
Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)
2011-08-15
This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.
Developing integrated patient pathways using hybrid simulation
Zulkepli, Jafri; Eldabi, Tillal
2016-10-01
Integrated patient pathways includes several departments, i.e. healthcare which includes emergency care and inpatient ward; intermediate care which patient(s) will stay for a maximum of two weeks and at the same time be assessed by assessment team to find the most suitable care; and social care. The reason behind introducing the intermediate care in western countries was to reduce the rate of patients that stays in the hospital especially for elderly patients. This type of care setting has been considered to be set up in some other countries including Malaysia. Therefore, to assess the advantages of introducing this type of integrated healthcare setting, we suggest develop the model using simulation technique. We argue that single simulation technique is not viable enough to represent this type of patient pathways. Therefore, we suggest develop this model using hybrid techniques, i.e. System Dynamics (SD) and Discrete Event Simulation (DES). Based on hybrid model result, we argued that the result is viable to be as references for decision making process.
Hybrid Simulations of Particle Acceleration at Shocks
Caprioli, Damiano
2014-01-01
We present the results of large hybrid (kinetic ions - fluid electrons) simulations of particle acceleration at non-relativistic collisionless shocks. Ion acceleration efficiency and magnetic field amplification are investigated in detail as a function of shock inclination and strength, and compared with predictions of diffusive shock acceleration theory, for shocks with Mach number up to 100. Moreover, we discuss the relative importance of resonant and Bell's instability in the shock precursor, and show that diffusion in the self-generated turbulence can be effectively parametrized as Bohm diffusion in the amplified magnetic field.
Cluster hybrid Monte Carlo simulation algorithms
Plascak, J. A.; Ferrenberg, Alan M.; Landau, D. P.
2002-06-01
We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially reduce the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
Plasma physics via computer simulation
Birdsall, CK
2004-01-01
PART 1: PRIMER Why attempting to do plasma physics via computer simulation using particles makes good sense Overall view of a one dimensional electrostatic program A one dimensional electrostatic program ES1 Introduction to the numerical methods used Projects for ES1 A 1d electromagnetic program EM1 Projects for EM1 PART 2: THEORY Effects of the spatial grid Effects of the finitw time ste Energy-conserving simulation models Multipole models Kinetic theory for fluctuations and noise; collisions Kinetic properties: theory, experience and heuristic estimates PART 3: PRACTIC
Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy
Directory of Open Access Journals (Sweden)
Zhu Dongyong
2016-12-01
Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.
An Effective Data Representation and Computation Scheme in Computer Simulation for Neural Networks
Institute of Scientific and Technical Information of China (English)
CHENHoujin; YUANBaozong
2004-01-01
A Biological neural network (BNN) is composed of a vast number of neurons interconnected by synapses. It has the ability to process information and generate a specific pattern of electrical activity. To analyze its interior structure and exterior properties, computational models were combined with experimental data and one computer simulation system was implemented. As BNN is a complicated nonlinear system and the simulation deals with a great amount of numeric computations,so data representation and computation scheme are critical to simulation process. In this paper, Object-oriented data representation (OODR) was designed to have sharable and reusable properties, and one novel hybrid computation scheme was presented. With OODR, data share and computation share were simultaneously achieved. According to the hybrid computation scheme, individual computation method was applied to corresponding object based on its model characteristics and the computation efficiency was obviously increased. Now they were adopted in one BNN simulation system which was implemented in platform independent language JAVA. As the simulation system took advantage of the data representation and the computation scheme, so its performances were greatly improved, and it has got practical applications in many countries.
Inversion based on computational simulations
Energy Technology Data Exchange (ETDEWEB)
Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.
1998-09-01
A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.
Hybrid Simulations of Pluto's Plasma Interaction
Feyerabend, M.; Simon, S.; Motschmann, U.; Liuzzo, L.
2016-12-01
We study the interaction between Pluto and the solar wind at the time of the New Horizons (NH) flyby by applying a hybrid (kinetic ions, fluid electrons) simulation model. The use of a hybrid model is necessary since the gyroradii of the involved ion species are more than an order of magnitude larger than the obstacle to the solar wind and thus, Pluto's interaction region displays considerable asymmetries. We investigate the three-dimensional structure and extension of the various plasma signatures seen along the NH trajectory. Especially, we will constrain possible asymmetries in the shape of Pluto's bow shock, plasma tail and Plutopause (i.e., the boundary between the solar wind and the population of plutogenic ions) which may arise from the large ion gyroradii. Starting from the upstream solar wind parameters measured by NH, we investigate the dependency of these plasma signatures on the density of Pluto's ionosphere and on the solar wind ram pressure. We also include Pluto's largest moon Charon into the simulation model and study the simultaneous interaction between both bodies and the solar wind. Data from NH suggest that Charon mainly acts as a plasma absorber without an appreciable atmosphere. For various relative positions of Pluto and Charon, we investigate the deformation of Charon's wake when exposed to the inhomogeneous plasma flow in the Pluto interaction region, as well as a possible feedback of Charon on the structure of Pluto's induced magnetosphere.
Multiscale Hy3S: Hybrid stochastic simulation for supercomputers
Directory of Open Access Journals (Sweden)
Kaznessis Yiannis N
2006-02-01
Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users
FPGA-accelerated simulation of computer systems
Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S
2014-01-01
To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f
Radar Landmass Simulation Computer Programming (Interim Report).
RADAR SCANNING, TERRAIN), (*NAVAL TRAINING, RADAR OPERATORS), (*FLIGHT SIMULATORS, TERRAIN AVOIDANCE), (* COMPUTER PROGRAMMING , INSTRUCTION MANUALS), PLAN POSITION INDICATORS, REAL TIME, DISPLAY SYSTEMS, RADAR IMAGES, SIMULATION
Directory of Open Access Journals (Sweden)
Toru Higaki
2017-08-01
Full Text Available This article describes a quantitative evaluation of visualizing small vessels using several image reconstruction methods in computed tomography. Simulated vessels with diameters of 1–6 mm made by 3D printer was scanned using 320-row detector computed tomography (CT. Hybrid iterative reconstruction (hybrid IR and model-based iterative reconstruction (MBIR were performed for the image reconstruction.
Zhang, Jiapu
2010-01-01
Evolutionary algorithms are parallel computing algorithms and simulated annealing algorithm is a sequential computing algorithm. This paper inserts simulated annealing into evolutionary computations and successful developed a hybrid Self-Adaptive Evolutionary Strategy $\\mu+\\lambda$ method and a hybrid Self-Adaptive Classical Evolutionary Programming method. Numerical results on more than 40 benchmark test problems of global optimization show that the hybrid methods presented in this paper are very effective. Lennard-Jones potential energy minimization is another benchmark for testing new global optimization algorithms. It is studied through the amyloid fibril constructions by this paper. To date, there is little molecular structural data available on the AGAAAAGA palindrome in the hydrophobic region (113-120) of prion proteins.This region belongs to the N-terminal unstructured region (1-123) of prion proteins, the structure of which has proved hard to determine using NMR spectroscopy or X-ray crystallography ...
Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project
National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...
Digital Potentiometer for Hybrid Computer EAI 680-PDP-8/I
DEFF Research Database (Denmark)
Højberg, Kristian Søe; Olsen, Jens V.
1974-01-01
In this article a description is given of a 12 bit digital potentiometer for hybrid computer application. The system is composed of standard building blocks. Emphasis is laid on the development problems met and the problem solutions developed.......In this article a description is given of a 12 bit digital potentiometer for hybrid computer application. The system is composed of standard building blocks. Emphasis is laid on the development problems met and the problem solutions developed....
Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong
2016-07-01
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
Energy Technology Data Exchange (ETDEWEB)
Marchetti, Luca, E-mail: marchetti@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); University of Trento, Department of Mathematics (Italy); Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy)
2016-07-15
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
Computational fluid dynamics challenges for hybrid air vehicle applications
Carrin, M.; Biava, M.; Steijl, R.; Barakos, G. N.; Stewart, D.
2017-06-01
This paper begins by comparing turbulence models for the prediction of hybrid air vehicle (HAV) flows. A 6 : 1 prolate spheroid is employed for validation of the computational fluid dynamics (CFD) method. An analysis of turbulent quantities is presented and the Shear Stress Transport (SST) k-ω model is compared against a k-ω Explicit Algebraic Stress model (EASM) within the unsteady Reynolds-Averaged Navier-Stokes (RANS) framework. Further comparisons involve Scale Adaptative Simulation models and a local transition transport model. The results show that the flow around the vehicle at low pitch angles is sensitive to transition effects. At high pitch angles, the vortices generated on the suction side provide substantial lift augmentation and are better resolved by EASMs. The validated CFD method is employed for the flow around a shape similar to the Airlander aircraft of Hybrid Air Vehicles Ltd. The sensitivity of the transition location to the Reynolds number is demonstrated and the role of each vehicle£s component is analyzed. It was found that the ¦ns contributed the most to increase the lift and drag.
Hybrid system for computing reachable workspaces for redundant manipulators
Alameldin, Tarek K.; Sobh, Tarek M.
1991-03-01
An efficient computation of 3D workspaces for redundant manipulators is based on a " hybrid" a!- gorithm between direct kinematics and screw theory. Direct kinematics enjoys low computational cost but needs edge detection algorithms when workspace boundaries are needed. Screw theory has exponential computational cost per workspace point but does not need edge detection. Screw theory allows computing workspace points in prespecified directions while direct kinematics does not. Applications of the algorithm are discussed.
Hybrid framework for the simulation of stochastic chemical kinetics
Duncan, Andrew; Erban, Radek; Zygalakis, Konstantinos
2016-12-01
Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the "fast" reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.
Computer Simulation of Radial Immunodiffusion
Trautman, Rodes
1972-01-01
Theories of diffusion with chemical reaction are reviewed as to their contributions toward developing an algorithm needed for computer simulation of immunodiffusion. The Spiers-Augustin moving sink and the Engelberg stationary sink theories show how the antibody-antigen reaction can be incorporated into boundary conditions of the free diffusion differential equations. For this, a stoichiometric precipitate was assumed and the location of precipitin lines could be predicted. The Hill simultaneous linear adsorption theory provides a mathematical device for including another special type of antibody-antigen reaction in antigen excess regions of the gel. It permits an explanation for the lowered antigen diffusion coefficient, observed in the Oudin arrangement of single linear diffusion, but does not enable prediction of the location of precipitin lines. The most promising mathematical approach for a general solution is implied in the Augustin alternating cycle theory. This assumes the immunodiffusion process can be evaluated by alternating computation cycles: free diffusion without chemical reaction and chemical reaction without diffusion. The algorithm for the free diffusion update cycle, extended to both linear and radial geometries, is given in detail since it was based on gross flow rather than more conventional expressions in terms of net flow. Limitations on the numerical integration process using this algorithm are illustrated for free diffusion from a cylindrical well. PMID:4629869
Computer Simulations on a Multidimensional Continuum:
DEFF Research Database (Denmark)
Girault, Isabelle; Pfeffer, Melanie; Chiocarriello, Augusto
2016-01-01
Computer simulations exist on a multidimensional continuum with other educational technologies including static animations, serious games, and virtual worlds. The act of defining simulations is context dependent. In our context of science education, we define simulations as algorithmic, dynamic...... with emphasis on simulations’ algorithmic, dynamic, and simple features. Defined as models, simulations can be computational or conceptual in nature and may reflect hypothetical or real events; such distinctions are addressed. Examples of programs that demonstrate the features of simulations emphasized in our...
Optically simulated universal quantum computation
Francisco, D.; Ledesma, S.
2008-04-01
Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.
QCE : A Simulator for Quantum Computer Hardware
Michielsen, Kristel; Raedt, Hans De
2003-01-01
The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms.
Strange attractor simulated on a quantum computer
2002-01-01
We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.
A hybrid approach to simulate multiple photon scattering in X-ray imaging
Energy Technology Data Exchange (ETDEWEB)
Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)
2005-01-01
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.
Hybrid2: The hybrid system simulation model, Version 1.0, user manual
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.
1996-06-01
In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.
Computational analysis on plug-in hybrid electric motorcycle chassis
Teoh, S. J.; Bakar, R. A.; Gan, L. M.
2013-12-01
Plug-in hybrid electric motorcycle (PHEM) is an alternative to promote sustainability lower emissions. However, the PHEM overall system packaging is constrained by limited space in a motorcycle chassis. In this paper, a chassis applying the concept of a Chopper is analysed to apply in PHEM. The chassis 3dimensional (3D) modelling is built with CAD software. The PHEM power-train components and drive-train mechanisms are intergraded into the 3D modelling to ensure the chassis provides sufficient space. Besides that, a human dummy model is built into the 3D modelling to ensure the rider?s ergonomics and comfort. The chassis 3D model then undergoes stress-strain simulation. The simulation predicts the stress distribution, displacement and factor of safety (FOS). The data are used to identify the critical point, thus suggesting the chassis design is applicable or need to redesign/ modify to meet the require strength. Critical points mean highest stress which might cause the chassis to fail. This point occurs at the joints at triple tree and bracket rear absorber for a motorcycle chassis. As a conclusion, computational analysis predicts the stress distribution and guideline to develop a safe prototype chassis.
Hybrid molecular dynamics simulation for plasma induced damage analysis
Matsukuma, Masaaki
2016-09-01
In order to enable further device size reduction (also known as Moore's law) and improved power performance, the semiconductor industry is introducing new materials and device structures into the semiconductor fabrication process. Materials now include III-V compounds, germanium, cobalt, ruthenium, hafnium, and others. The device structure in both memory and logic has been evolving from planar to three dimensional (3D). One such device is the FinFET, where the transistor gate is a vertical fin made either of silicon, silicon-germanium or germanium. These changes have brought renewed interests in the structural damages caused by energetic ion bombardment of the fin sidewalls which are exposed to the ion flux from the plasma during the fin-strip off step. Better control of the physical damage of the 3D devices requires a better understanding of the damage formation mechanisms on such new materials and structures. In this study, the damage formation processes by ion bombardment have been simulated for Si and Ge substrate by Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid simulations and compared to the results from the classical molecular dynamics (MD) simulations. In our QM/MM simulations, the highly reactive region in which the structural damage is created is simulated with the Density Functional based Tight Binding (DFTB) method and the region remote from the primary region is simulated using classical MD with the Stillinger-Weber and Moliere potentials. The learn on the fly method is also used to reduce the computational load. Hence our QM/MM simulation is much faster than the full QC-MD simulations and the original QM/MM simulations. The amorphous layers profile simulated with QM/MM have obvious differences in their thickness for silicon and germanium substrate. The profile of damaged structure in the germanium substrate is characterized by a deeper tail then in silicon. These traits are also observed in the results from the mass selected ion beam
A Fast Hybrid Approach to Air Shower Simulations and Applications
Drescher, H J; Bleicher, M; Reiter, M; Soff, S; Stöcker, H; Stoecker, Horst
2003-01-01
The SENECA model, a new hybrid approach to air shower simulations, is presented. It combines the use of efficient cascade equations in the energy range where a shower can be treated as one-dimensional, with a traditional Monte Carlo method which traces individual particles. This allows one to reproduce natural fluctuations of individual showers as well as the lateral spread of low energy particles. The model is quite efficient in computation time. As an application of the new approach, the influence of the low energy hadronic models on shower properties for AUGER energies is studied. We conclude that these models have a significant impact on the tails of lateral distribution functions, and deserve therefore more attention.
A Hybrid Model for Smoke Simulation
Institute of Scientific and Technical Information of China (English)
童若锋; 董金祥
2002-01-01
A smoke simulation approach based on the integration of traditional particlesystems and density functions is presented in this paper. By attaching a density function toeach particle as its attribute, the diffusion of smoke can be described by the variation of parti-cles' density functions, along with the effect on airflow by controlling particles' movement andfragmentation. In addition, a continuous density field for realistic rendering can be generatedquickly through the look-up tables of particle's density functions. Compared with traditionalparticle systems, this approach can describe smoke diffusion, and provide a continuous densityfield for realistic rendering with much less computation. A quick rendering scheme is also pre-sented in this paper as a useful preview tool for tuning appropriate parameters in the smokemodel.
Battery thermal models for hybrid vehicle simulations
Pesaran, Ahmad A.
This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.
Managing resource capacity using hybrid simulation
Ahmad, Norazura; Ghani, Noraida Abdul; Kamil, Anton Abdulbasah; Tahar, Razman Mat
2014-12-01
Due to the diversity of patient flows and interdependency of the emergency department (ED) with other units in hospital, the use of analytical models seems not practical for ED modeling. One effective approach to study the dynamic complexity of ED problems is by developing a computer simulation model that could be used to understand the structure and behavior of the system. Attempts to build a holistic model using DES only will be too complex while if only using SD will lack the detailed characteristics of the system. This paper discusses the combination of DES and SD in order to get a better representation of the actual system than using either modeling paradigm solely. The model is developed using AnyLogic software that will enable us to study patient flows and the complex interactions among hospital resources for ED operations. Results from the model show that patients' length of stay is influenced by laboratories turnaround time, bed occupancy rate and ward admission rate.
Generalised Computability and Applications to Hybrid Systems
DEFF Research Database (Denmark)
Korovina, Margarita V.; Kudinov, Oleg V.
2001-01-01
We investigate the concept of generalised computability of operators and functionals defined on the set of continuous functions, firstly introduced in [9]. By working in the reals, with equality and without equality, we study properties of generalised computable operators and functionals. Also we...
Computer Simulation and Computabiblity of Biological Systems
Baianu, I C
2004-01-01
The ability to simulate a biological organism by employing a computer is related to the ability of the computer to calculate the behavior of such a dynamical system, or the "computability" of the system. However, the two questions of computability and simulation are not equivalent. Since the question of computability can be given a precise answer in terms of recursive functions, automata theory and dynamical systems, it will be appropriate to consider it first. The more elusive question of adequate simulation of biological systems by a computer will be then addressed and a possible connection between the two answers given will be considered as follows. A symbolic, algebraic-topological "quantum computer" (as introduced in Baianu, 1971b) is here suggested to provide one such potential means for adequate biological simulations based on QMV Quantum Logic and meta-Categorical Modeling as for example in a QMV-based, Quantum-Topos (Baianu and Glazebrook,2004.
The Guide to Computer Simulations and Games
Becker, K
2011-01-01
The first computer simulation book for anyone designing or building a game Answering the growing demand for a book catered for those who design, develop, or use simulations and games this book teaches you exactly what you need to know in order to understand the simulations you build or use all without having to earn another degree. Organized into three parts, this informative book first defines computer simulations and describes how they are different from live-action and paper-based simulations. The second section builds upon the previous, with coverage of the technical details of simulations
Electric and plug-in hybrid vehicles advanced simulation methodologies
Varga, Bogdan Ovidiu; Moldovanu, Dan; Iclodean, Calin
2015-01-01
This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain
1979-01-01
A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.
Computer simulation of FCC riser reactors.
Energy Technology Data Exchange (ETDEWEB)
Chang, S. L.; Golchert, B.; Lottes, S. A.; Petrick, M.; Zhou, C. Q.
1999-04-20
A three-dimensional computational fluid dynamics (CFD) code, ICRKFLO, was developed to simulate the multiphase reacting flow system in a fluid catalytic cracking (FCC) riser reactor. The code solve flow properties based on fundamental conservation laws of mass, momentum, and energy for gas, liquid, and solid phases. Useful phenomenological models were developed to represent the controlling FCC processes, including droplet dispersion and evaporation, particle-solid interactions, and interfacial heat transfer between gas, droplets, and particles. Techniques were also developed to facilitate numerical calculations. These techniques include a hybrid flow-kinetic treatment to include detailed kinetic calculations, a time-integral approach to overcome numerical stiffness problems of chemical reactions, and a sectional coupling and blocked-cell technique for handling complex geometry. The copyrighted ICRKFLO software has been validated with experimental data from pilot- and commercial-scale FCC units. The code can be used to evaluate the impacts of design and operating conditions on the production of gasoline and other oil products.
Biomes computed from simulated climatologies
National Research Council Canada - National Science Library
Claussen, M; Esch, M
1992-01-01
The biome model of Prentice is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max...
Computer simulation technology in inertial confinement (ICF)
Energy Technology Data Exchange (ETDEWEB)
Yabe, Takashi (Gunma Univ., Kiryu (Japan). Faculty of Engineering)
1994-12-01
Recent development of computational technologies in inertial confinement fusion (ICF) is reviewed with a special emphasis on hydrodynamic simulations. The CIP method developed for ICF simulations is one of the typical examples that are used in various fields of physics such as variety of computational fluid dynamics, astrophysics, laser applications, geophysics, and so on. (author).
Temperature field simulation of laser-TIG hybrid welding
Institute of Scientific and Technical Information of China (English)
陈彦宾; 李俐群; 方俊飞; 封小松; 吴林
2003-01-01
The three-dimensional transient temperature distribution of laser-TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross-sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross-sections objectively, and the simulation results are well agreed with the experimental results.
Framework for utilizing computational devices within simulation
Directory of Open Access Journals (Sweden)
Miroslav Mintál
2013-12-01
Full Text Available Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the mathematic field. Described framework is adjusted to use in a multi-agent simulations. Here it provides an option to accelerate computations when preparing simulation and mainly to accelerate a computation of simulation itself.
Simulation of hybrid solar power plants
Dieckmann, Simon; Dersch, Jürgen
2017-06-01
Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.
Cost Optimization Using Hybrid Evolutionary Algorithm in Cloud Computing
Directory of Open Access Journals (Sweden)
B. Kavitha
2015-07-01
Full Text Available The main aim of this research is to design the hybrid evolutionary algorithm for minimizing multiple problems of dynamic resource allocation in cloud computing. The resource allocation is one of the big problems in the distributed systems when the client wants to decrease the cost for the resource allocation for their task. In order to assign the resource for the task, the client must consider the monetary cost and computational cost. Allocation of resources by considering those two costs is difficult. To solve this problem in this study, we make the main task of client into many subtasks and we allocate resources for each subtask instead of selecting the single resource for the main task. The allocation of resources for the each subtask is completed through our proposed hybrid optimization algorithm. Here, we hybrid the Binary Particle Swarm Optimization (BPSO and Binary Cuckoo Search algorithm (BCSO by considering monetary cost and computational cost which helps to minimize the cost of the client. Finally, the experimentation is carried out and our proposed hybrid algorithm is compared with BPSO and BCSO algorithms. Also we proved the efficiency of our proposed hybrid optimization algorithm.
Hybrid Multilevel Monte Carlo Simulation of Stochastic Reaction Networks
Moraes, Alvaro
2015-01-07
Stochastic reaction networks (SRNs) is a class of continuous-time Markov chains intended to describe, from the kinetic point of view, the time-evolution of chemical systems in which molecules of different chemical species undergo a finite set of reaction channels. This talk is based on articles [4, 5, 6], where we are interested in the following problem: given a SRN, X, defined though its set of reaction channels, and its initial state, x0, estimate E (g(X(T))); that is, the expected value of a scalar observable, g, of the process, X, at a fixed time, T. This problem lead us to define a series of Monte Carlo estimators, M, such that, with high probability can produce values close to the quantity of interest, E (g(X(T))). More specifically, given a user-selected tolerance, TOL, and a small confidence level, η, find an estimator, M, based on approximate sampled paths of X, such that, P (|E (g(X(T))) − M| ≤ TOL) ≥ 1 − η; even more, we want to achieve this objective with near optimal computational work. We first introduce a hybrid path-simulation scheme based on the well-known stochastic simulation algorithm (SSA)[3] and the tau-leap method [2]. Then, we introduce a Multilevel Monte Carlo strategy that allows us to achieve a computational complexity of order O(T OL−2), this is the same computational complexity as in an exact method but with a smaller constant. We provide numerical examples to show our results.
Load flow computations in hybrid transmission - distributed power systems
Wobbes, E.D.; Lahaye, D.J.P.
2013-01-01
We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting
Strategy and gaps for modeling, simulation, and control of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, Rob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-04-01
The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled
Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias
2011-01-01
Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.
FEL Simulation Using Distributed Computing
Energy Technology Data Exchange (ETDEWEB)
Einstein, Joshua [Fermilab; Bernabeu Altayo, Gerard [Fermilab; Biedron, Sandra [Ljubljana U.; Freund, Henry [Colorado State U., Fort Collins; Milton, Stephen [Colorado State U., Fort Collins; van der Slot, Peter [Colorado State U., Fort Collins
2016-06-01
While simulation tools are available and have been used regularly for simulating light sources, the increasing availability and lower cost of GPU-based processing opens up new opportunities. This poster highlights a method of how accelerating and parallelizing code processing through the use of COTS software interfaces.
Energy Technology Data Exchange (ETDEWEB)
Stroh, Christoph; Schnoerch, Stefan; Rathberger, Christian [Magna Powertrain Engineering Center Steyr GmbH und Co. KG, St. Valentin (Austria)
2012-11-01
In the past few years hybrid vehicles have been in the center of automotive engineering efforts, in particular in the field of passenger cars. But hybrid powertrains will also be important for commercial trucks. This focus on hybrid vehicles leads to high demands on thermal management since the additional components in a hybrid vehicle need appropriate cooling or even heating. In the given paper the simulation of a complete cooling system of a hybrid commercial vehicle will be explained. For this virtual examination the commercial 1D thermal management software KULI will be used, a co-simulation with several programs will not be done deliberately. Yet all aspects which are relevant for a global assessment of the thermal management are considered. The main focus is put on the investigation of appropriate concepts for the fluid circuits, including low and high temperature circuits, electric water pumps, etc. Moreover, also a refrigerant circuit with a chiller for active battery cooling will be used, the appropriate control strategy is implemented as well. For simulating transient profiles a simple driving simulation model is included, using road profile, ambient conditions, and various vehicle parameters as input. In addition an engine model is included which enables the investigation of fuel consumption potentials. This simulation model shows how the thermal management of a hybrid vehicle can be investigated with a single program and with reasonable effort. (orig.)
Filtration theory using computer simulations
Energy Technology Data Exchange (ETDEWEB)
Bergman, W.; Corey, I. [Lawrence Livermore National Lab., CA (United States)
1997-08-01
We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three-dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements. 5 refs., 11 figs.
Computer simulation in physics and engineering
Steinhauser, Martin Oliver
2013-01-01
This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. The work conveys both: the theoretical foundations of computer simulation as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.
Secured Authorized Data Using Hybrid Encryption in Cloud Computing
Directory of Open Access Journals (Sweden)
Dinesh Shinde
2017-03-01
Full Text Available In today’s world to provide a security to a public network like a cloud network is become a toughest task however more likely to reduce the cost at the time of providing security using cryptographic technique to delegate the mask of the decryption task to the cloud servers to reduce the computing cost. As a result, attributebased encryption with delegation emerges. Still, there are caveats and questions remaining in the previous relevant works. For to solution to all problems the cloud servers could tamper or replace the delegated cipher text and respond a forged computing result with malicious intent. They may also cheat the eligible users by responding them that they are ineligible for the purpose of cost saving. Furthermore, during the encryption, the access policies may not be flexible enough as well. Since policy for general circuits enables to achieve the strongest form of access control, a construction for realizing circuit cipher text-policy attribute-based hybrid encryption with verifiable delegation has been considered in our work. In such a system, combined with verifiable computation and encrypt-then-mac mechanism, the data confidentiality, the fine-grained access control and the correctness of the delegated computing results are well guaranteed at the same time. Besides, our scheme achieves security against chosen-plaintext attacks under the k-multilinear Decisional Diffie-Hellman assumption. Moreover, an extensive simulation campaign confirms the feasibility and efficiency of the proposed solution. There are two complementary forms of attribute-based encryption. One is key-policy attribute-based encryption (KP-ABE [8], [9], [10], and the other is cipher text-policy attribute-based encryption. In a KP-ABE system, the decision of access policy is made by the key distributor instead of the enciphered, which limits the practicability and usability for the system in practical applicationsthe access policy for general circuits could be
An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays
Directory of Open Access Journals (Sweden)
Laurenzi Ian J
2009-12-01
Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.
Simulation of hybrid vehicle propulsion with an advanced battery model
Energy Technology Data Exchange (ETDEWEB)
Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)
2011-07-01
In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect
A simulation approach to sizing hybrid photovoltaic and wind systems
Anderson, L. A.
1983-12-01
A simulation approach to sizing hybrid photovoltaic and wind systems provides a combination of components to realize zero downtime and minimum initial or life-cycle cost. Using Dayton, OH as a test site for weather data, cost advantages in the neighborhood of four are predicted for a hybrid system with battery storage when compared to a wind-energy-only system for the same electrical load.
Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation
2015-07-01
1149. 8Goebel, D. M. and Katz, I., Fundamentals of Electric Propulsion : Ion and Hall Thrusters, John Wiley & Sons, Inc., 2008. 9Martin, R., J.W., K...Bilyeu, D., and Tran, J., “Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster Simulation,” 34th Int. Electric Propulsion Conf...Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall -effect thruster simulationect
Sizing and Simulation of PV-Wind Hybrid Power System
Mustafa Engin
2013-01-01
A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during t...
Distributed Heterogeneous Simulation of a Hybrid-Electric Vehicle
2006-03-29
operate as a generator to convert mechanical energy from the diesel t~nginc 01 from regenerative braking to electrical energy. A vehicle control module...Distributed Heterogeneous Simulation of a Hybrid- Electric Vehicle Ning Wu’, Curtis Rands t , Charles E. Lucas!, Eric A. Walters§, and Maher A...Masrurit US Army RDECOM-TARDEC, Warren, MI, 48397 Hybrid- electric military vehicles provide many advantages over conventional military vehicles powered
Augmented Reality Simulations on Handheld Computers
Squire, Kurt; Klopfer, Eric
2007-01-01
Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…
Computer Simulation in Information and Communication Engineering
Anton Topurov
2005-01-01
CSICE'05 Sofia, Bulgaria 20th - 22nd October, 2005 On behalf of the International Scientific Committee, we would like to invite you all to Sofia, the capital city of Bulgaria, to the International Conference in Computer Simulation in Information and Communication Engineering CSICE'05. The Conference is aimed at facilitating the exchange of experience in the field of computer simulation gained not only in traditional fields (Communications, Electronics, Physics...) but also in the areas of biomedical engineering, environment, industrial design, etc. The objective of the Conference is to bring together lectures, researchers and practitioners from different countries, working in the fields of computer simulation in information engineering, in order to exchange information and bring new contribution to this important field of engineering design and education. The Conference will bring you the latest ideas and development of the tools for computer simulation directly from their inventors. Contribution describ...
Study Development of the Cardiac Computer Simulations
Institute of Scientific and Technical Information of China (English)
VOLKERHellemanns; ZHANGHong; SEKOUSingare; ZHANGZhen-xi; KONGXiang-yun
2004-01-01
The technique of computer simulations is a very efficient method in investigating mechanisms of many diseases. This paper reviews how the simulations of the human heart started as a simple mathematical models in the past and developed to the point where genetic information is needed to do suitable work like finding out new medicaments against heart diseases. Also the Influence of the development of computer performance in the future as well as the data presentation is described.
Energy Technology Data Exchange (ETDEWEB)
Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn; Zhu, Weiliang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203 (China); Shi, Jiye, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [UCB Pharma, 216 Bath Road, Slough SL1 4EN (United Kingdom)
2015-03-28
The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.
Hybrid Algorithm for Optimal Load Sharing in Grid Computing
Directory of Open Access Journals (Sweden)
A. Krishnan
2012-01-01
Full Text Available Problem statement: Grid Computing is the fast growing industry, which shares the resources in the organization in an effective manner. Resource sharing requires more optimized algorithmic structure, otherwise the waiting time and response time are increased and the resource utilization is reduced. Approach: In order to avoid such reduction in the performances of the grid system, an optimal resource sharing algorithm is required. In recent days, many load sharing technique are proposed, which provides feasibility but there are many critical issues are still present in these algorithms. Results: In this study a hybrid algorithm for optimization of load sharing is proposed. The hybrid algorithm contains two components which are Hash Table (HT and Distributed Hash Table (DHT. Conclusion: The results of the proposed study show that the hybrid algorithm will optimize the task than existing systems.
Use of a hybrid computer in engineering-seismology research
Park, R.B.; Hays, W.W.
1977-01-01
A hybrid computer is an important tool in the seismological research conducted by the U.S. Geological Survey in support of the Energy Research and Development Administration nuclear explosion testing program at the Nevada Test Site and the U.S. Geological Survey Earthquake Hazard Reduction Program. The hybrid computer system, which employs both digital and analog computational techniques, facilitates efficient seismic data processing. Standard data processing operations include: (1) preview of dubbed magnetic tapes of data; (2) correction of data for instrument response; (3) derivation of displacement and acceleration time histories from velocity recordings; (4) extraction of peak-amplitude data; (5) digitization of time histories; (6) rotation of instrumental axes; (7) derivation of response spectra; and (8) derivation of relative transfer functions between recording sites. Catalog of time histories and response spectra of ground motion from nuclear explosions and earthquakes that have been processed by the hybrid computer are used in the Earthquake Hazard Research Program to evaluate the effects of source, propagation path, and site effects on recorded ground motion; to assess seismic risk; to predict system response; and to solve system design problems.
Quantum Simulations of Solvated Biomolecules Using Hybrid Methods
Hodak, Miroslav
2009-03-01
One of the most important challenges in quantum simulations on biomolecules is efficient and accurate inclusion of the solvent, because the solvent atoms usually outnumber those in the biomolecule of interest. We have developed a hybrid method that allows for explicit quantum-mechanical treatment of the solvent at low computational cost. In this method, Kohn-Sham (KS) density functional theory (DFT) is combined with an orbital-free (OF) DFT. Kohn-Sham (KS) DFT is used to describe the biomolecule and its first solvation shells, while the orbital-free (OF) DFT is employed for the rest of the solvent. The OF part is fully O(N) and capable of handling 10^5 solvent molecules on current parallel supercomputers, while taking only ˜ 10 % of the total time. The compatibility between the KS and OF DFT methods enables seamless integration between the two. In particular, the flow of solvent molecules across the KS/OF interface is allowed and the total energy is conserved. As the first large-scale applications, the hybrid method has been used to investigate the binding of copper ions to proteins involved in prion (PrP) and Parkinson's diseases. Our results for the PrP, which causes mad cow disease when misfolded, resolve a contradiction found in experiments, in which a stronger binding mode is replaced by a weaker one when concentration of copper ions is increased, and show how it can act as a copper buffer. Furthermore, incorporation of copper stabilizes the structure of the full-length PrP, suggesting its protective role in prion diseases. For alpha-synuclein, a Parkinson's disease (PD) protein, we show that Cu binding modifies the protein structurally, making it more susceptible to misfolding -- an initial step in the onset of PD. In collaboration with W. Lu, F. Rose and J. Bernholc.
Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities
Baylin-Stern, Adam C.
This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.
Reservoir Thermal Recover Simulation on Parallel Computers
Li, Baoyan; Ma, Yuanle
The rapid development of parallel computers has provided a hardware background for massive refine reservoir simulation. However, the lack of parallel reservoir simulation software has blocked the application of parallel computers on reservoir simulation. Although a variety of parallel methods have been studied and applied to black oil, compositional, and chemical model numerical simulations, there has been limited parallel software available for reservoir simulation. Especially, the parallelization study of reservoir thermal recovery simulation has not been fully carried out, because of the complexity of its models and algorithms. The authors make use of the message passing interface (MPI) standard communication library, the domain decomposition method, the block Jacobi iteration algorithm, and the dynamic memory allocation technique to parallelize their serial thermal recovery simulation software NUMSIP, which is being used in petroleum industry in China. The parallel software PNUMSIP was tested on both IBM SP2 and Dawn 1000A distributed-memory parallel computers. The experiment results show that the parallelization of I/O has great effects on the efficiency of parallel software PNUMSIP; the data communication bandwidth is also an important factor, which has an influence on software efficiency. Keywords: domain decomposition method, block Jacobi iteration algorithm, reservoir thermal recovery simulation, distributed-memory parallel computer
Salesperson Ethics: An Interactive Computer Simulation
Castleberry, Stephen
2014-01-01
A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…
Salesperson Ethics: An Interactive Computer Simulation
Castleberry, Stephen
2014-01-01
A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…
Computer simulation and vehicle front optimisation.
Sluis, J. van der
1993-01-01
The influence of the stiffness and shape of a car-front on injuries of bicyclists caused by side collisions was studied by computer simulation. Simulation was a suitable method in this case because of two reasons: variation of shape and stiffness is more difficult to perform in case of an experiment
Simulations of Probabilities for Quantum Computing
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
[Animal experimentation, computer simulation and surgical research].
Carpentier, Alain
2009-11-01
We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.
Computer simulation to arc spraying
Institute of Scientific and Technical Information of China (English)
梁志芳; 李午申; 王迎娜
2004-01-01
The arc spraying process is divided into two stages: the first stage is atomization-spraying stream (ASS) and the second one is spraying deposition (SD). Then study status is described of both stages' physical model and corresponding controlling-equation. Based on the analysis of study status, the conclusion as follows is got. The heat and mass transfer models with two or three dimensions in ASS stage should be established to far deeply analyses the dynamical and thermal behavior of the overheat droplet. The statistics law of overheated droplets should be further studied by connecting simulation with experiments. More proper validation experiments should be designed for flattening simulation to modify the models in SD stage.
Computer simulation of aeolian bedforms
Institute of Scientific and Technical Information of China (English)
苗天德; 慕青松; 武生智
2001-01-01
A discrete model is set up using the cellular automaton method and applied to simulate the formation and evolution of aeolian bedforms. The calculated bedforms resemble the actual shape of natural sand ripples and dunes.This reveals that the sand movement is a typical nonlinear dynamical process, and that the nesting configuration of sand ripples, dunes and draas are a self-organized system with a fractal characteristic, and evotves simultaneously at various scales in the sand-airflow.
A hybrid computational grid architecture for comparative genomics.
Singh, Aarti; Chen, Chen; Liu, Weiguo; Mitchell, Wayne; Schmidt, Bertil
2008-03-01
Comparative genomics provides a powerful tool for studying evolutionary changes among organisms, helping to identify genes that are conserved among species, as well as genes that give each organism its unique characteristics. However, the huge datasets involved makes this approach impractical on traditional computer architectures leading to prohibitively long runtimes. In this paper, we present a new computational grid architecture based on a hybrid computing model to significantly accelerate comparative genomics applications. The hybrid computing model consists of two types of parallelism: coarse grained and fine grained. The coarse-grained parallelism uses a volunteer computing infrastructure for job distribution, while the fine-grained parallelism uses commodity computer graphics hardware for fast sequence alignment. We present the deployment and evaluation of this approach on our grid test bed for the all-against-all comparison of microbial genomes. The results of this comparison are then used by phenotype--genotype explorer (PheGee). PheGee is a new tool that nominates candidate genes responsible for a given phenotype.
Computer simulations applied in materials
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La{sub 2}Zr{sub 2}O{sub 7} pyrochlores; first principle calculations of defects formation energies in the Y{sub 2}(Ti,Sn,Zr){sub 2}O{sub 7} pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO{sub 2}; composition defect maps for A{sup 3+}B{sup 3+}O{sub 3} perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)
Computer simulations applied in materials
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La{sub 2}Zr{sub 2}O{sub 7} pyrochlores; first principle calculations of defects formation energies in the Y{sub 2}(Ti,Sn,Zr){sub 2}O{sub 7} pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO{sub 2}; composition defect maps for A{sup 3+}B{sup 3+}O{sub 3} perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)
Computer simulation of gear tooth manufacturing processes
Mavriplis, Dimitri; Huston, Ronald L.
1990-01-01
The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.
A Hybrid Brain-Computer Interface-Based Mail Client
Directory of Open Access Journals (Sweden)
Tianyou Yu
2013-01-01
Full Text Available Brain-computer interface-based communication plays an important role in brain-computer interface (BCI applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG. With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI. An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
Energy Technology Data Exchange (ETDEWEB)
Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca [Department of Mathematics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.
Energy Technology Data Exchange (ETDEWEB)
Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)
2013-09-15
As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)
Atomistic computer simulations a practical guide
Brazdova, Veronika
2013-01-01
Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o
Reduction Methods for Real-time Simulations in Hybrid Testing
DEFF Research Database (Denmark)
Andersen, Sebastian
2016-01-01
Hybrid testing constitutes a cost-effective experimental full scale testing method. The method was introduced in the 1960's by Japanese researchers, as an alternative to conventional full scale testing and small scale material testing, such as shake table tests. The principle of the method...... is to divide a structure into a physical substructure and a numerical substructure, and couple these in a test. If the test is conducted in real-time it is referred to as real time hybrid testing. The hybrid testing concept has developed significantly since its introduction in the 1960', both with respect...... without introducing further unknowns into the system. The basis formulation is shown to exhibit high precision and to reduce the computational cost significantly. Furthermore, the basis formulation exhibits a significant higher stability, than standard nonlinear algorithms. A real-time hybrid test...
Polymer Composites Corrosive Degradation: A Computational Simulation
Chamis, Christos C.; Minnetyan, Levon
2007-01-01
A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.
Computer-Aided Simulation of Mastoidectomy
Institute of Scientific and Technical Information of China (English)
CHEN He-xin; MA Zhi-chao; Wang Zhang-feng; GUO Jie-bo; WEN Wei-ping; XU Geng
2008-01-01
Objective To establish a three-dimensional model of the temporal bone using CT scan images for study of temporal bone structures and simulation of mastoidectomy procedures. Methods CT scan images from 6 individuals (12 temporal bones) were used to reconstruct the Fallopian canal, internal auditory canal, cochlea, semicircular canals, sigmoid sinus, posterior fossa floor and jugular bulb on a computer platform. Their anatomical relations within the temporal bone were restored in the computed model. The same model was used to simulate mastoidectomy procedures. Results The reconstructed computer model provided accurate and clear three-dimensional images of temporal bone structures. Simulation of mastoidectomy using these images provided procedural experiences closely mimicking the real surgical procedure. Conclusion Computeraided three dimensional reconstruction of temporal bone structures using CT scan images is a useful tool in surgical simulation and can aid surgical procedure planning.
Fatigue of hybrid glass/carbon composites: 3D computational studies
DEFF Research Database (Denmark)
Dai, Gaoming; Mishnaevsky, Leon
2014-01-01
3D computational simulations of fatigue of hybrid carbon/glass fiber reinforced composites is carried out using X-FEM and multifiber unit cell models. A new software code for the automatic generation of unit cell multifiber models of composites with randomly misaligned fibers of various properties...... and geometrical parameters is developed. With the use of this program code and the X-FEM method, systematic investigations of the effect of microstructure of hybrid composites (fraction of carbon versus glass fibers, misalignment, and interface strength) and the loading conditions (tensile versus compression...... cyclic loading effects) on fatigue behavior of the materials are carried out. It was demonstrated that the higher fraction of carbon fibers in hybrid composites is beneficial for the fatigue lifetime of the composites under tension-tension cyclic loading, but might have negative effect on the lifetime...
DEFF Research Database (Denmark)
Dai, Gaoming; Mishnaevsky, Leon
2015-01-01
The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with and without secondary CNT reinforcement is simulated using multiscale 3D unit cells. The materials behavior under both mechanical cyclic loading and combined mechanical and environmental loading (with phase properties degraded due to the moisture effects) is studied. The multiscale unit cells are generated...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....
Computer Code for Nanostructure Simulation
Filikhin, Igor; Vlahovic, Branislav
2009-01-01
Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.
Simulation of the performance of a hybrid ventilation system in different climates
Energy Technology Data Exchange (ETDEWEB)
Charvat, P.; Jicha, M. [Brno Univ. of Technology, Brno (Czech Republic). Faculty of Mechanical Engineering; Niachou, A.; Santamouris, M. [National and Kapodistrian Univ. of Athens, Athens (Greece)
2005-07-01
Four different concepts of hybrid ventilation systems for 4 climates in Europe have been developed within the Framework of the European Union project called Residential Hybrid Ventilation (RESHYVENT). This study involved computational simulations to examine the performance of the hybrid ventilation system for a moderate climate in an urban environment under various climatic conditions. A hybrid ventilation system refers to a ventilation system that uses natural driving forces as long as possible and which switches to mechanical forces when needed. It therefore minimizes energy consumption while maintaining good indoor air quality and thermal comfort for occupants. The RESHYVENT hybrid ventilation system consists of a self-regulating air inlet, DC fan, motorized damper, flow meter, central control unit, carbon dioxide sensors and ductwork. If natural driving forces are not sufficient, the fan engages and its speed adjusts to match the demanded flow rate. This paper presents a case study in which the TRNSYS type 15 software package was used with the TRNFlow air flow network module to simulate natural driving forces such as wind and buoyancy in an apartment building situated in an urban canyon. Results were obtained for a specific geometry, occupancy scheme and other factors. The study showed that the hybrid ventilation system was able to maintain required indoor air quality regardless of weather conditions. As such, it was better than the natural ventilation system and holds promise for use in office and residential buildings. The complexity of hybrid and natural ventilation systems is due to the fact that air flow rates depend greatly on climatic conditions. Therefore, simulations must consider thermal and air flow models. Experiments conducted at a demonstration house in Brno, Czech Republic show that the RESHYVENT hybrid ventilation system could maintain the level of carbon dioxide concentration in rooms below 1200 ppm. refs., 7 tabs., 3 figs.
HF dissociation in water clusters by computer simulations
Elena, Alin Marin
2013-01-01
We perform Restrained hybrid Monte Carlo simulations to compute the equilibrium constant of the dissociation reaction of HF in HF(H2O)7. We find that, like in the bulk, hydrofluoric acid, is a weak acid also in the cubic HF(H2O)7 cluster, and that its acidity is higher at lower T. This latter phenomenon has a (vibrational) entropic origin, namely it is due to the reduction of the (negative) T∆S contribution to the variation of free energy between the reactant and product. We found also ...
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
High performance hybrid functional Petri net simulations of biological pathway models on CUDA.
Chalkidis, Georgios; Nagasaki, Masao; Miyano, Satoru
2011-01-01
Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7x for a model containing 1,600 cells.
Pressure calculation in hybrid particle-field simulations.
Milano, Giuseppe; Kawakatsu, Toshihiro
2010-12-07
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.
Numerical characteristics of quantum computer simulation
Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.
2016-12-01
The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.
Computer simulation of thermal plant operations
O'Kelly, Peter
2012-01-01
This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.
Simulating Strongly Correlated Electron Systems with Hybrid Monte Carlo
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2000-01-01
Using the path integral representation, the Hubbard and the periodic Anderson model on D-dimensional cubic lattice are transformed into field theories of fermions in D + 1 dimensions. These theories at half-filling possess a positive definite real symmetry fermion matrix and can be simulated using the hybrid Monte Carlo method.
A hybrid parallel framework for the cellular Potts model simulations
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV
2009-01-01
The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).
A hybrid multi-scale computational scheme for advection-diffusion-reaction equation
Karimi, S.; Nakshatrala, K. B.
2016-12-01
Simulation of transport and reaction processes in porous media and subsurface science has become more vital than ever. Over the past few decades, a variety of mathematical models and numerical methodologies for porous media simulations have been developed. As the demand for higher accuracy and validity of the models grows, the issue of disparate temporal and spatial scales becomes more problematic. The variety of reaction processes and complexity of pore geometry poses a huge computational burden in a real-world or reservoir scale simulation. Meanwhile, methods based on averaging or up- scaling techniques do not provide reliable estimates to pore-scale processes. To overcome this problem, development of hybrid and multi-scale computational techniques is considered a promising approach. In these methods, pore-scale and continuum-scale models are combined, hence, a more reliable estimate to pore-scale processes is obtained without having to deal with the tremendous computational overhead of pore-scale methods. In this presentation, we propose a computational framework that allows coupling of lattice Boltzmann method (for pore-scale simulation) and finite element method (for continuum-scale simulation) for advection-diffusion-reaction equations. To capture disparate in time and length events, non-matching grid and time-steps are allowed. Apart from application of this method to benchmark problems, multi-scale simulation of chemical reactions in porous media is also showcased.
Hybrid Techniques for Quantum Circuit Simulation
2014-02-01
15 Figure 10. (a) Ripple-carry (Cuccaro) adder for 3...bit numbers [17]. (b) Average runtime and memory needed by Quipu and QuIDDPro (QPLite) to simulate -bit Cuccaro adders ...b) scaled adder , (c) binary-to- stochastic converter, and (d) stochastic-to-binary converter
Evaluation of a Compact Hybrid Brain-Computer Interface System
Directory of Open Access Journals (Sweden)
Jaeyoung Shin
2017-01-01
Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.
Energy Technology Data Exchange (ETDEWEB)
Balaven-Clermidy, S.
2001-12-01
Oil reservoir simulations study multiphase flows in porous media. These flows are described and evaluated through numerical schemes on a discretization of the reservoir domain. In this thesis, we were interested in this spatial discretization and a new kind of hybrid mesh has been proposed where the radial nature of flows in the vicinity of wells is directly taken into account in the geometry. Our modular approach described wells and their drainage area through radial circular meshes. These well meshes are inserted in a structured reservoir mesh (a Corner Point Geometry mesh) made up with hexahedral cells. Finally, in order to generate a global conforming mesh, proper connections are realized between the different kinds of meshes through unstructured transition ones. To compute these transition meshes that we want acceptable in terms of finite volume methods, an automatic method based on power diagrams has been developed. Our approach can deal with a homogeneous anisotropic medium and allows the user to insert vertical or horizontal wells as well as secondary faults in the reservoir mesh. Our work has been implemented, tested and validated in 2D and 2D1/2. It can also be extended in 3D when the geometrical constraints are simplicial ones: points, segments and triangles. (author)
Efficient parabolic evaluation of coupling terms in hybrid quantum/classical simulations
Energy Technology Data Exchange (ETDEWEB)
Bastida, Adolfo, E-mail: bastida@um.es [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Soler, Miguel Angel; Zuniga, Jose; Requena, Alberto [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Miguel, Beatriz [Departamento de Ingenieria Quimica y Ambiental, Universidad Politecnica de Cartagena, 30203 Cartagena (Spain)
2009-03-30
A parabolic interpolation function of time is proposed to evaluate the non-adiabatic coupling matrix elements and the adiabatic energies at intermediate times within the classical time integration interval in hybrid quantum/classical simulations. The accuracy and the computational efficiency of this parabolic approximation are illustrated by carrying out a numerical application to the well-studied vibrational relaxation of I{sub 2} in liquid xenon.
Malkov, Ewgenij A.; Poleshkin, Sergey O.; Kudryavtsev, Alexey N.; Shershnev, Anton A.
2016-10-01
The paper presents the software implementation of the Boltzmann equation solver based on the deterministic finite-difference method. The solver allows one to carry out parallel computations of rarefied flows on a hybrid computational cluster with arbitrary number of central processor units (CPU) and graphical processor units (GPU). Employment of GPUs leads to a significant acceleration of the computations, which enables us to simulate two-dimensional flows with high resolution in a reasonable time. The developed numerical code was validated by comparing the obtained solutions with the Direct Simulation Monte Carlo (DSMC) data. For this purpose the supersonic flow past a flat plate at zero angle of attack is used as a test case.
CSP: A Multifaceted Hybrid Architecture for Space Computing
Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron
2014-01-01
Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.
Enabling Computational Technologies for Terascale Scientific Simulations
Energy Technology Data Exchange (ETDEWEB)
Ashby, S.F.
2000-08-24
We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.
Computer Simulation Instruction: Carrying out Chemical Experiments
Directory of Open Access Journals (Sweden)
Ibtesam Al-Mashaqbeh
2014-05-01
Full Text Available The purpose of this study was to investigate the effect of computer simulation Instruction (CSI on students' achievements: Carrying out chemical experiments to acquire chemical concepts for eleventh grade students. The subject of the study consisted two sections of a one girl's high school in Jordan. One section was randomly assigned to experimental group in which computer simulation Instruction (CSI was used, and the other section was randomly assigned to control group in which students were instructed by using the traditional teaching instruction. The findings indicated that there is progress on the part of the experimental group which used the computer simulation Instruction (CSI and this was reflected positively in the students’ achievement in carrying out chemical experiments to acquire chemical concepts.
Automatic temperature computation for realistic IR simulation
Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe
2000-07-01
Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.
Wind Solar Hybrid System Rectifier Stage Topology Simulation
Directory of Open Access Journals (Sweden)
Anup M. Gakare
2014-06-01
Full Text Available This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of the energy sources maximum power from the sun when it is available. An adaptive MPPT algorithm with a standard perturbs and observed method will be used for the Photo Voltaic system. The main advantage of the hybrid system is to give continuous power supply to the load. The gating pulses to the inverter switches are implemented with conventional and fuzzy controller. This hybrid wind-photo voltaic system is modeled in MATLAB/ SIMULINK environment. Simulation circuit is analyzed and results are presented for this hybrid wind and solar energy system.
Structural Composites Corrosive Management by Computational Simulation
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.
Electric Propulsion Plume Simulations Using Parallel Computer
Directory of Open Access Journals (Sweden)
Joseph Wang
2007-01-01
Full Text Available A parallel, three-dimensional electrostatic PIC code is developed for large-scale electric propulsion simulations using parallel supercomputers. This code uses a newly developed immersed-finite-element particle-in-cell (IFE-PIC algorithm designed to handle complex boundary conditions accurately while maintaining the computational speed of the standard PIC code. Domain decomposition is used in both field solve and particle push to divide the computation among processors. Two simulations studies are presented to demonstrate the capability of the code. The first is a full particle simulation of near-thruster plume using real ion to electron mass ratio. The second is a high-resolution simulation of multiple ion thruster plume interactions for a realistic spacecraft using a domain enclosing the entire solar array panel. Performance benchmarks show that the IFE-PIC achieves a high parallel efficiency of ≥ 90%
Time reversibility, computer simulation, and chaos
Hoover, William Graham
1999-01-01
A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful
Hybrid Network Simulation for the ATLAS Trigger and Data Acquisition (TDAQ) System
Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel; Foguelman, Daniel Jacob
2015-01-01
The poster shows the ongoing research in the ATLAS TDAQ group in collaboration with the University of Buenos Aires in the area of hybrid data network simulations. he Data Network and Processing Cluster filters data in real-time, achieving a rejection factor in the order of 40000x and has real-time latency constrains. The dataflow between the processing units (TPUs) and Readout System (ROS) presents a “TCP Incast”-type network pathology which TCP cannot handle it efficiently. A credits system is in place which limits rate of queries and reduces latency. This large computer network, and the complex dataflow has been modelled and simulated using a PowerDEVS, a DEVS-based simulator. The simulation has been validated and used to produce what-if scenarios in the real network. Network Simulation with Hybrid Flows: Speedups and accuracy, combined • For intensive network traffic, Discrete Event simulation models (packet-level granularity) soon becomes prohibitive: Too high computing demands. • Fluid Flow simul...
Simulation and Test of a Fuel Cell Hybrid Golf Cart
Directory of Open Access Journals (Sweden)
Jingming Liang
2014-01-01
Full Text Available This paper establishes the simulation model of fuel cell hybrid golf cart (FCHGC, which applies the non-GUI mode of the Advanced Vehicle Simulator (ADVISOR and the genetic algorithm (GA to optimize it. Simulation of the objective function is composed of fuel consumption and vehicle dynamic performance; the variables are the fuel cell stack power sizes and the battery numbers. By means of simulation, the optimal parameters of vehicle power unit, fuel cell stack, and battery pack are worked out. On this basis, GUI mode of ADVISOR is used to select the rated power of vehicle motor. In line with simulation parameters, an electrical golf cart is refitted by adding a 2 kW hydrogen air proton exchange membrane fuel cell (PEMFC stack system and test the FCHGC. The result shows that the simulation data is effective but it needs improving compared with that of the real cart test.
A Matlab—Based Simulation for Hybrid Electric Motorcycle
Institute of Scientific and Technical Information of China (English)
邵定国; 李永斌; 汪信尧; 江建中
2003-01-01
This paper presents a simulation and modeling package based on Matlab for a parallel hybrid electric motorcycle (HEM).The package consists of several main detailed models: internal combustion engine (ICE), motor, continuously variable transmission(CVT), battery, energy management system (EMS) etc. Each component is built as a library, and can be connected together accord-ing to the parallel HEM's topology. Simulation results, such as ICE power demand, motor power demand, battery instantaneous state-of-charge (SOC), pollution emissions etc. Are given and discussed. Lastly experimental data verify our simulation results.
Perspective: Computer simulations of long time dynamics
Energy Technology Data Exchange (ETDEWEB)
Elber, Ron [Department of Chemistry, The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712 (United States)
2016-02-14
Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances.
Autonomic Management of Application Workflows on Hybrid Computing Infrastructure
Directory of Open Access Journals (Sweden)
Hyunjoo Kim
2011-01-01
Full Text Available In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints. The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.
Uncertainty and error in computational simulations
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, W.L.; Diegert, K.V.; Alvin, K.F.; Rutherford, B.M.
1997-10-01
The present paper addresses the question: ``What are the general classes of uncertainty and error sources in complex, computational simulations?`` This is the first step of a two step process to develop a general methodology for quantitatively estimating the global modeling and simulation uncertainty in computational modeling and simulation. The second step is to develop a general mathematical procedure for representing, combining and propagating all of the individual sources through the simulation. The authors develop a comprehensive view of the general phases of modeling and simulation. The phases proposed are: conceptual modeling of the physical system, mathematical modeling of the system, discretization of the mathematical model, computer programming of the discrete model, numerical solution of the model, and interpretation of the results. This new view is built upon combining phases recognized in the disciplines of operations research and numerical solution methods for partial differential equations. The characteristics and activities of each of these phases is discussed in general, but examples are given for the fields of computational fluid dynamics and heat transfer. They argue that a clear distinction should be made between uncertainty and error that can arise in each of these phases. The present definitions for uncertainty and error are inadequate and. therefore, they propose comprehensive definitions for these terms. Specific classes of uncertainty and error sources are then defined that can occur in each phase of modeling and simulation. The numerical sources of error considered apply regardless of whether the discretization procedure is based on finite elements, finite volumes, or finite differences. To better explain the broad types of sources of uncertainty and error, and the utility of their categorization, they discuss a coupled-physics example simulation.
Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry
Xie, Tianwu; Kuster, Niels; Zaidi, Habib
2017-04-01
Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.
Hybrid simulation of electron cyclotron resonance heating
Ropponen, T; Suominen, P; Koponen, T K; Kalvas, T; Koivisto, H
2008-01-01
Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.
Hybrid simulation of electron cyclotron resonance heating
Energy Technology Data Exchange (ETDEWEB)
Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)
2008-03-11
Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.
Institute of Scientific and Technical Information of China (English)
XIE Hong; HE Yi-gang; ZENG Guan-da
2006-01-01
This paper presents the hybrid model identification for a class of nonlinear circuits and systems via a combination of the block-pulse function transform with the Volterra series.After discussing the method to establish the hybrid model and introducing the hybrid model identification,a set of relative formulas are derived for calculating the hybrid model and computing the Volterra series solution of nonlinear dynamic circuits and systems.In order to significantly reduce the computation cost for fault location,the paper presents a new fault diagnosis method based on multiple preset models that can be realized online.An example of identification simulation and fault diagnosis are given.Results show that the method has high accuracy and efficiency for fault location of nonlinear dynamic circuits and systems.
Macromod: Computer Simulation For Introductory Economics
Ross, Thomas
1977-01-01
The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)
Computer Simulation Study of Bipolaron Formation
Raedt, H. De; Lagendijk, A.
1986-01-01
Monte Carlo computer simulation techniques are used to study the formation of bipolarons on a lattice. The transition between the three possible states, extended, two-polaron, and bipolaron is studied. The phase diagram as a function of the strengths of the electron-phonon coupling and repulsive int
Computer simulations of phospholipid - membrane thermodynamic fluctuations
DEFF Research Database (Denmark)
Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.
2008-01-01
This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...
GENMAP--A Microbial Genetics Computer Simulation.
Day, M. J.; And Others
1985-01-01
An interactive computer program in microbial genetics is described. The simulation allows students to work at their own pace and develop understanding of microbial techniques as they choose donor bacterial strains, specify selective media, and interact with demonstration experiments. Sample questions and outputs are included. (DH)
Spiking network simulation code for petascale computers
Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz
2014-01-01
Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682
Spiking network simulation code for petascale computers
Directory of Open Access Journals (Sweden)
Susanne eKunkel
2014-10-01
Full Text Available Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.
Computer simulation of confined and flexoelectric liquid crystalline systems
Barmes, F
2003-01-01
In this Thesis, systems of confined and flexoelectric liquid crystal systems have been studied using molecular computer simulations. The aim of this work was to provide a molecular model of a bistable display cell in which switching is induced through the application of directional electric field pulses. In the first part of this Thesis, the study of confined systems of liquid crystalline particles has been addressed. Computation of the anchoring phase diagrams for three different surface interaction models showed that the hard needle wall and rod-surface potentials induce both planar and homeotropic alignment separated by a bistability region, this being stronger and wider for the rod-surface varant. The results obtained using the rod-sphere surface model, in contrast, showed that tilled surface arrangements can be induced by surface absorption mechanisms. Equivalent studies of hybrid anchored systems showed that a bend director structure can be obtained in a slab with monostable homeotropic anchoring at the...
Modelling and Simulation of System Dynamics of Hybrid-Driven Precision Press
Institute of Scientific and Technical Information of China (English)
LI Yonggang; ZHANG Ce; MENG Caifang; SONG Yimin
2005-01-01
Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via a two-DOF mechanism to provide flexible output. In order to make the feasibility clear, this paper studies theoretically the dynamic characteristics of this hybrid-driven mechanical system.Firstly,the dynamics model of the whole electromechanical system is set up by combining dynamic equations of DC motors with those of two-DOF nine-bar mechanism deduced by the Lagrange′s formula. Secondly through the numerical solution with the fourth Runge-Kutta, computer simulation about the dynamics is done, which shows that the designed and optimized hybrid-driven precision press is feasible in theory. These provide theoretical basis for later experimental research.
Electric and hybrid electric vehicle study utilizing a time-stepping simulation
Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.
1992-01-01
The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.
Computational algorithms for simulations in atmospheric optics.
Konyaev, P A; Lukin, V P
2016-04-20
A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.
Computational Simulation of Complex Structure Fancy Yarns
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A study is reported for mathematical model and simulation of complex structure fancy yarns. The investigated complex structure fancy yarns have a multithread structure composed of three components -core, effect, and binder yams. In current research the precondition was accepted that the cross-sections of the both two yarns of the effect intermediate product in the complex structure fancy yarn remain the circles shaped, and this shape does not change during manufacturing of the fancy yarn. Mathematical model of complex structure fancy yarn is established based on parameter equation of space helix line and computer simulation is further carried out using the computational mathematical tool Matlab 6.5. Theoretical structure of fancy yarn is compared with an experimental sample. The simulation system would help for further the set ofinformation in designing of new assortment of the complex structure fancy yarns and prediction of visual effects of fancy yarns in end-use fabrics.
Cosmological Simulations on a Grid of Computers
Depardon, Benjamin; Desprez, Frédéric; Blaizot, Jérémy; Courtois, Hélène M
2010-01-01
The work presented in this paper aims at restricting the input parameter values of the semi-analytical model used in GALICS and MOMAF, so as to derive which parameters influence the most the results, e.g., star formation, feedback and halo recycling efficiencies, etc. Our approach is to proceed empirically: we run lots of simulations and derive the correct ranges of values. The computation time needed is so large, that we need to run on a grid of computers. Hence, we model GALICS and MOMAF execution time and output files size, and run the simulation using a grid middleware: DIET. All the complexity of accessing resources, scheduling simulations and managing data is harnessed by DIET and hidden behind a web portal accessible to the users.
A Review of Hybrid Brain-Computer Interface Systems
Directory of Open Access Journals (Sweden)
Setare Amiri
2013-01-01
Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.
Numerical simulation of landfill aeration using computational fluid dynamics.
Fytanidis, Dimitrios K; Voudrias, Evangelos A
2014-04-01
The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.
Simulating Human Cognitive Using Computational Verb Theory
Institute of Scientific and Technical Information of China (English)
YANGTao
2004-01-01
Modeling and simulation of a life system is closely connected to the modeling of cognition,especially for advanced life systems. The primary difference between an advanced life system and a digital computer is that the advanced life system consists of a body with mind while a digital computer is only a mind in a formal sense. To model an advanced life system one needs to symbols into a body where a digital computer is embedded. In this paper, a computational verb theory is proposed as a new paradigm of grounding symbols into the outputs of sensors. On one hand, a computational verb can preserve the physical "meanings" of the dynamics of sensor data such that a symbolic system can be used to manipulate physical meanings instead of abstract tokens in the digital computer. On the other hand, the physical meanings of an abstract symbol/token, which is usually an output of a reasoning process in the digital computer, can be restored and fed back to the actuators. Therefore, the computational verb theory bridges the gap between symbols and physical reality from the dynamic cognition perspective.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Utilization of MATLAB in Simulation of Linear Hybrid Circuits
BRANCIK, L.
2003-01-01
In the paper a MATLAB-based method for simulating transient phenomena in linear hybrid circuits containing parts with both lumped and distributed parameters is presented. Distributed parts of the circuit are multiconductor transmission lines, which can generally be nonuniform, with frequency-dependent parameters, and under nonzero initial voltage and/or current distributions. In principle a solution is formulated using the modified nodal analysis method in the frequency domain. Subsequently a...
PWR hybrid computer model for assessing the safety implications of control systems
Energy Technology Data Exchange (ETDEWEB)
Smith, O L; Renier, J P; Difilippo, F C; Clapp, N E; Sozer, A; Booth, R S; Craddick, W G; Morris, D G
1986-03-01
The ORNL study of safety-related aspects of nuclear power plant control systems consists of two interrelated tasks: (1) failure mode and effects analysis (FMEA) that identified single and multiple component failures that might lead to significant plant upsets and (2) computer models that used these failures as initial conditions and traced the dynamic impact on the control system and remainder of the plant. This report describes the simulation of Oconee Unit 1, the first plant analyzed. A first-principles, best-estimate model was developed and implemented on a hybrid computer consisting of AD-4 analog and PDP-10 digital machines. Controls were placed primarily on the analog to use its interactive capability to simulate operator action. 48 refs., 138 figs., 15 tabs.
Hybrid cloud and cluster computing paradigms for life science applications.
Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey
2010-12-21
Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.
Computational Challenges in Nuclear Weapons Simulation
Energy Technology Data Exchange (ETDEWEB)
McMillain, C F; Adams, T F; McCoy, M G; Christensen, R B; Pudliner, B S; Zika, M R; Brantley, P S; Vetter, J S; May, J M
2003-08-29
After a decade of experience, the Stockpile Stewardship Program continues to ensure the safety, security and reliability of the nation's nuclear weapons. The Advanced Simulation and Computing (ASCI) program was established to provide leading edge, high-end simulation capabilities needed to meet the program's assessment and certification requirements. The great challenge of this program lies in developing the tools and resources necessary for the complex, highly coupled, multi-physics calculations required to simulate nuclear weapons. This paper describes the hardware and software environment we have applied to fulfill our nuclear weapons responsibilities. It also presents the characteristics of our algorithms and codes, especially as they relate to supercomputing resource capabilities and requirements. It then addresses impediments to the development and application of nuclear weapon simulation software and hardware and concludes with a summary of observations and recommendations on an approach for working with industry and government agencies to address these impediments.
Characteristic of Ion loss as determined by hybrid simulations
Brecht, Stephen H.; Ledvina, Stephen
2016-10-01
One of the major objectives of the MAVEN mission is to determine the loss rate of oxygen ions from the atmosphere of Mars. It is thought that the oxygen ion loss represents a conduit for the loss of water from Mars. However, the actual measurements and estimates of global loss rates are very difficult because one needs an average over many orbits and full coverage of the loss regions of Mars; something that MAVEN will only accomplish with an extended mission. In the meantime global kinetic simulations are an avenue to gain further insight into the loss process and perhaps offer insight into the data analysis that will be performed on the MAVEN data. Hybrid particle codes provide self-consistent simulations of the ion dynamics occurring when the solar wind interacts with Mars.This paper reports the results of HALFSHEL hybrid code simulations of the solar wind interaction with Mars and the subsequent loss of oxygen ions in the form of O+ and O2+. Four simulations were performed representing different orientations of the crustal magnetic fields with the subsolar regions using a solar EUV flux representative of the moderate solar activity experienced by MAVEN. Loss rates will be presented as will evaluations of the distribution functions of the various loss ion species as accumulated at roughly 2 Rm for each of the four simulations. The results will be presented as faces on a box surrounding Mars so that one can evaluate regions such as that of the measured plasma plume. The plume feature has now been measured and is often seen in simulations. Finally, the losses and the subsequent velocity distributions will be compared between the various crustal magnetic field orientations.In summary, results from the HALFSHEL hybrid code will be presented. These results will address characteristics of the oxygen ions lost from Mars as a function of crustal magnetic field orientation. Further, they will be compared with respect to the regions surrounding Mars and the associated
Kadoura, Ahmad Salim
2014-03-17
Molecular simulation could provide detailed description of fluid systems when compared to experimental techniques. They can also replace equations of state; however, molecular simulation usually costs considerable computational efforts. Several techniques have been developed to overcome such high computational costs. In this paper, two early rejection schemes, a conservative and a hybrid one, are introduced. In these two methods, undesired configurations generated by the Monte Carlo trials are rejected earlier than it would when using conventional algorithms. The methods are tested for structureless single-component Lennard-Jones particles in both canonical and NVT-Gibbs ensembles. The computational time reduction for both ensembles is observed at a wide range of thermodynamic conditions. Results show that computational time savings are directly proportional to the rejection rate of Monte Carlo trials. The proposed conservative scheme has shown to be successful in saving up to 40% of the computational time in the canonical ensemble and up to 30% in the NVT-Gibbs ensemble when compared to standard algorithms. In addition, it preserves the exact Markov chains produced by the Metropolis scheme. Further enhancement for NVT-Gibbs ensemble is achieved by combining this technique with the bond formation early rejection one. The hybrid method achieves more than 50% saving of the central processing unit (CPU) time.
Computational fluid dynamics for sport simulation
2009-01-01
All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes’ performance.
On the use of reverse Brownian motion to accelerate hybrid simulations
Bakarji, Joseph; Tartakovsky, Daniel M.
2017-04-01
Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategies for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.
Computer Simulation for Emergency Incident Management
Energy Technology Data Exchange (ETDEWEB)
Brown, D L
2004-12-03
This report describes the findings and recommendations resulting from the Department of Homeland Security (DHS) Incident Management Simulation Workshop held by the DHS Advanced Scientific Computing Program in May 2004. This workshop brought senior representatives of the emergency response and incident-management communities together with modeling and simulation technologists from Department of Energy laboratories. The workshop provided an opportunity for incident responders to describe the nature and substance of the primary personnel roles in an incident response, to identify current and anticipated roles of modeling and simulation in support of incident response, and to begin a dialog between the incident response and simulation technology communities that will guide and inform planned modeling and simulation development for incident response. This report provides a summary of the discussions at the workshop as well as a summary of simulation capabilities that are relevant to incident-management training, and recommendations for the use of simulation in both incident management and in incident management training, based on the discussions at the workshop. In addition, the report discusses areas where further research and development will be required to support future needs in this area.
Computer Simulation of Convective Plasma Cells
Carboni, Rodrigo
2015-01-01
Computer simulations of plasmas are relevant nowadays, because it helps us understand physical processes taking place in the sun and other stellar objects. We developed a program called PCell which is intended for displaying the evolution of the magnetic field in a 2D convective plasma cell with perfect conducting walls for different stationary plasma velocity fields. Applications of this program are presented. This software works interactively with the mouse and the users can create their own movies in MPEG format. The programs were written in Fortran and C. There are two versions of the program (GNUPLOT and OpenGL). GNUPLOT and OpenGL are used to display the simulation.
Computer simulation of multiple dynamic photorefractive gratings
DEFF Research Database (Denmark)
Buchhave, Preben
1998-01-01
The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The....... The simulation sheds light on issues that are not amenable to analytical solutions, such as the spectral content of the wave forms, cross talk in three-beam interaction, and the range of applications of the band-transport model. (C) 1998 Optical Society of America....
Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment
Baurle, Robert A.; Edwards, Jack R.
2010-01-01
Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure
Step Response Enhancement of Hybrid Stepper Motors Using Soft Computing Techniques
Directory of Open Access Journals (Sweden)
Amged S. El-Wakeel
2014-05-01
Full Text Available This paper presents the use of different soft computing techniques for step response enhancement of Hybrid Stepper Motors. The basic differential equations of hybrid stepper motor are used to build up a model using MATLAB software package. The implementation of Fuzzy Logic (FL and Proportional-Integral-Derivative (PID controllers are used to improve the motor performance. The numerical simulations by a PC-based controller show that the PID controller tuned by Genetic Algorithm (GA produces better performance than that tuned by Fuzzy controller. They show that, the Fuzzy PID-like controller produces better performance than the other linear Fuzzy controllers. Finally, the comparison between PID controllers tuned by genetic algorithm and the Fuzzy PID-like controller shows that, the Fuzzy PID-like controller produces better performance.
Computer Simulations of Lipid Bilayers and Proteins
DEFF Research Database (Denmark)
Sonne, Jacob
2006-01-01
, Pressure profile calculations in lipid bilayers: A lipid bilayer is merely $\\sim$5~nm thick, but the lateral pressure (parallel to the bilayer plane) varies several hundred bar on this short distance (normal to the bilayer). These variations in the lateral pressure are commonly referred to as the pressure...... of neglecting pressure contributions from long range electrostatic interactions. The first issue is addressed by comparing two methods for calculating pressure profiles, and judged by the similar results obtained by these two methods the pressure profile appears to be well-defined for fluid phase lipid bilayers......The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...
Understanding membrane fouling mechanisms through computational simulations
Xiang, Yuan
This dissertation focuses on a computational simulation study on the organic fouling mechanisms of reverse osmosis and nanofiltration (RO/NF) membranes, which have been widely used in industry for water purification. The research shows that through establishing a realistic computational model based on available experimental data, we are able to develop a deep understanding of membrane fouling mechanism. This knowledge is critical for providing a strategic plan for membrane experimental community and RO/NF industry for further improvements in membrane technology for water treatment. This dissertation focuses on three major research components (1) Development of the realistic molecular models, which could well represent the membrane surface properties; (2) Investigation of the interactions between the membrane surface and foulants by steered molecular dynamics simulations, in order to determine the major factors that contribute to surface fouling; and (3) Studies of the interactions between the surface-modified membranes (polyethylene glycol) to provide strategies for antifouling.
Time reversibility, computer simulation, algorithms, chaos
Hoover, William Graham
2012-01-01
A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...
Computer simulation of molecular sorption in zeolites
Calmiano, M D
2001-01-01
The work presented in this thesis encompasses the computer simulation of molecular sorption. In Chapter 1 we outline the aims and objectives of this work. Chapter 2 follows in which an introduction to sorption in zeolites is presented, with discussion of structure and properties of the main zeolites studied. Chapter 2 concludes with a description of the principles and theories of adsorption. In Chapter 3 we describe the methodology behind the work carried out in this thesis. In Chapter 4 we present our first computational study, that of the sorption of krypton in silicalite. We describe work carried out to investigate low energy sorption sites of krypton in silicalite where we observe krypton to preferentially sorb into straight and sinusoidal channels over channel intersections. We simulate single step type I adsorption isotherms and use molecular dynamics to study the diffusion of krypton and obtain division coefficients and the activation energy. We compare our results to previous experimental and computat...
Computer Modelling and Simulation for Inventory Control
Directory of Open Access Journals (Sweden)
G.K. Adegoke
2012-07-01
Full Text Available This study concerns the role of computer simulation as a device for conducting scientific experiments on inventory control. The stores function utilizes a bulk of physical assets and engages a bulk of financial resources in a manufacturing outfit therefore there is a need for an efficient inventory control. The reason being that inventory control reduces cost of production and thereby facilitates the effective and efficient accomplishment of production objectives of an organization. Some mathematical and statistical models were used to compute the Economic Order Quantity (EOQ. Test data were gotten from a manufacturing company and same were simulated. The results generated were used to predict a real life situation and have been presented and discussed. The language of implementation for the three models is Turbo Pascal due to its capability, generality and flexibility as a scientific programming language.
Computer Simulation of Convective Plasma Cells
Carboni, Rodrigo; Frutos-Alfaro, Francisco
2015-01-01
Computer simulations of plasmas are relevant nowadays, because it helps us understand physical processes taking place in the sun and other stellar objects. We developed a program called PCell which is intended for displaying the evolution of the magnetic field in a 2D convective plasma cell with perfect conducting walls for different stationary plasma velocity fields. Applications of this program are presented. This software works interactively with the mouse and the users can create their ow...
Computer simulations of the random barrier model
DEFF Research Database (Denmark)
Schrøder, Thomas; Dyre, Jeppe
2002-01-01
A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented......, focusing on universality of the ac response in the extreme disorder limit. Finally, some important unsolved problems relating to hopping models for ac conduction are listed....
Computer simulation of the micropulse imaging lidar
Dai, Yongjiang; Zhao, Hongwei; Zhao, Yu; Wang, Xiaoou
2000-10-01
In this paper a design method of the Micro Pulse Lidar (MPL) is introduced, that is a computer simulation of the MPL. Some of the MPL parameters concerned air scattered and the effects on the performance of the lidar are discussed. The design software for the lidar with diode pumped solid laser is programmed by MATLAB. This software is consisted of six modules, that is transmitter, atmosphere, target, receiver, processor and display system. The method can be extended some kinds of lidar.
Computer simulation of complexity in plasmas
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Takaya; Sato, Tetsuya [National Inst. for Fusion Science, Toki, Gifu (Japan)
1998-08-01
By making a comprehensive comparative study of many self-organizing phenomena occurring in magnetohydrodynamics and kinetic plasmas, we came up with a hypothetical grand view of self-organization. This assertion is confirmed by a recent computer simulation for a broader science field, specifically, the structure formation of short polymer chains, where the nature of the interaction is completely different from that of plasmas. It is found that the formation of the global orientation order proceeds stepwise. (author)
Computer Simulation of Multidimensional Archaeological Artefacts
Directory of Open Access Journals (Sweden)
Vera Moitinho de Almeida
2012-11-01
Our project focuses on the Neolithic lakeside site of La Draga (Banyoles, Catalonia. In this presentation we will begin by providing a clear overview of the major guidelines used to capture and process 3D digital data of several wooden artefacts. Then, we shall present the use of semi-automated relevant feature extractions. Finally, we intend to share preliminary computer simulation issues.
QCWAVE, a Mathematica quantum computer simulation update
Tabakin, Frank
2011-01-01
This Mathematica 7.0/8.0 package upgrades and extends the quantum computer simulation code called QDENSITY. Use of the density matrix was emphasized in QDENSITY, although that code was also applicable to a quantum state description. In the present version, the quantum state version is stressed and made amenable to future extensions to parallel computer simulations. The add-on QCWAVE extends QDENSITY in several ways. The first way is to describe the action of one, two and three- qubit quantum gates as a set of small ($2 \\times 2, 4\\times 4$ or $8\\times 8$) matrices acting on the $2^{n_q}$ amplitudes for a system of $n_q$ qubits. This procedure was described in our parallel computer simulation QCMPI and is reviewed here. The advantage is that smaller storage demands are made, without loss of speed, and that the procedure can take advantage of message passing interface (MPI) techniques, which will hopefully be generally available in future Mathematica versions. Another extension of QDENSITY provided here is a mu...
Computer simulations in the science classroom
Richards, John; Barowy, William; Levin, Dov
1992-03-01
In this paper we describe software for science instruction that is based upon a constructivist epistemology of learning. From a constructivist perspective, the process of learning is viewed as an active construction of knowledge, rather than a passive reception of information. The computer has the potential to provide an environment in which students can explore their understanding and better construct scientific knowledge. The Explorer is an interactive environment that integrates animated computer models with analytic capabilities for learning and teaching science. The system include graphs, a spreadsheet, scripting, and interactive tools. During formative evaluation of Explorer in the classroom, we have focused on learning the function and effectiveness of computer models in teaching science. Models have helped students relate theory to experiment when used in conjunction with hands-on activities and when the simulation addressed students' naive understanding of the phenomena. Two classroom examples illustrate our findings. The first is based on the dynamics of colliding objects. The second describes a class modeling the function of simple electric circuits. The simulations bridge between phenomena and theory by providing an abstract representation on which students may make measurements. Simulations based on scientific theory help to provide a set of interrelated experiences that challenge students' informal understanding of the science.
Seltzer, S. M.
1974-01-01
Some means of combining both computer simulation and anlytical techniques are indicated in order to mutually enhance their efficiency as design tools and to motivate those involved in engineering design to consider using such combinations. While the idea is not new, heavy reliance on computers often seems to overshadow the potential utility of analytical tools. Although the example used is drawn from the area of dynamics and control, the principles espoused are applicable to other fields. In the example the parameter plane stability analysis technique is described briefly and extended beyond that reported in the literature to increase its utility (through a simple set of recursive formulas) and its applicability (through the portrayal of the effect of varying the sampling period of the computer). The numerical values that were rapidly selected by analysis were found to be correct for the hybrid computer simulation for which they were needed. This obviated the need for cut-and-try methods to choose the numerical values, thereby saving both time and computer utilization.
Simulating Boolean circuits on a DNA computer
Energy Technology Data Exchange (ETDEWEB)
Ogihara, Mitsunori; Ray, A. [Univ. of Rochester, NY (United States)
1997-12-01
We demonstrate that DNA computers can simulate Boolean circuits with a small overhead. Boolean circuits embody the notion of massively parallel signal processing and are frequently encountered in many parallel algorithms. Many important problems such as sorting, integer arithmetic, and matrix multiplication are known to be computable by small size Boolean circuits much faster than by ordinary sequential digital computers. This paper shows that DNA chemistry allows one to simulate large semi-unbounded fan-in Boolean circuits with a logarithmic slowdown in computation time. Also, for the class NC{sup 1}, the slowdown can be reduced to a constant. In this algorithm we have encoded the inputs, the Boolean AND gates, and the OR gates to DNA oligonucleotide sequences. We operate on the gates and the inputs by standard molecular techniques of sequence-specific annealing, ligation, separation by size, amplification, sequence-specific cleavage, and detection by size. Additional steps of amplification are not necessary for NC{sup 1} circuits. Preliminary biochemical experiments on a small test circuit have produced encouraging results. Further confirmatory experiments are in progress. 19 refs., 3 figs., 1 tab.
High-order Hybridized Discontinuous Galerkin methods for Large-Eddy Simulation
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2016-11-01
With the increase in computing power, Large-Eddy Simulation emerges as a promising technique to improve both knowledge of complex flow physics and reliability of flow predictions. Most LES works, however, are limited to simple geometries and low Reynolds numbers due to high computational cost. While most existing LES codes are based on 2nd-order finite volume schemes, the efficient and accurate prediction of complex turbulent flows may require a paradigm shift in computational approach. This drives a growing interest in the development of Discontinuous Galerkin (DG) methods for LES. DG methods allow for high-order, conservative implementations on complex geometries, and offer opportunities for improved sub-grid scale modeling. Also, high-order DG methods are better-suited to exploit modern HPC systems. In the spirit of making them more competitive, researchers have recently developed the hybridized DG methods that result in reduced computational cost and memory footprint. In this talk we present an overview of high-order hybridized DG methods for LES. Numerical accuracy, computational efficiency, and SGS modeling issues are discussed. Numerical results up to Re=460k show rapid grid convergence and excellent agreement with experimental data at moderate computational cost.
Computer simulation in nuclear science and engineering
Energy Technology Data Exchange (ETDEWEB)
Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke (Tokyo Univ. (Japan)); Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi
1992-03-01
The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.).
Computer Simulations of the Fatigue Crack Propagation
Directory of Open Access Journals (Sweden)
A. Materna
2000-01-01
Full Text Available The following hypothesis for design of structures based on the damage tolerance philosophy is laid down: the perpendicular fatigue crack growth rate v in a certain point of a curved crack front is given by the local value of stress intensity factor per unit of nominal stress K' and the local triaxiality T which describes the constraint. The relationship v = f (K', T is supposed to be typical for a given loading spectrum and material. Such relationship for a 2024 Al alloy and the flight-simulation spectrum was derived from the fatigue test of the rectangular panel with the central hole and used for three-dimensional simulation of the corner fatigue crack propagation in the model of the wing spar flangeplate. Finite element and boundary element methods were used for these computations. The results of the simulation are in good agreement with the experiment.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance
Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.
2014-12-01
It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.
Maze learning by a hybrid brain-computer system
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-09-01
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.
Wind hybrid electrical supply system: behaviour simulation and sizing optimization
Notton, G.; Cristofari, C.; Poggi, P.; Muselli, M.
2001-04-01
Using a global approach, a wind hybrid system operation is simulated and the evolution of several parameters is analysed, such as the wasted energy, the fuel consumption and the role of the wind turbine subsystem in the global production. This analysis shows that all the energies which take part in the system operation are more dependent on the wind turbine size than on the battery storage capacity. A storage of 2 or 3 days is sufficient, because an increase in storage beyond these values does not have a notable impact on the performance of the wind hybrid system. Finally, a cost study is performed to determine the optimal configuration of the system conducive to the lowest cost of electricity production.
Large-scale nanocomposites simulations using hybrid particle/SCFT simulations
Sides, Scott
2009-03-01
Preliminary results from 2D simulations of block copolymer nanocomposites (Phys. Rev. Lett. Vol 96, 250601 (2006) have been performed using a hybrid self-consistent field theory (SCFT) algorithm. While these simulation results showed that the presence of nanoparticles could induce changes in block copolymer morphologies, quantitative agreement with experiments for the particle densities at this transition are not yet possible. A feature missing in the 2D hybrid simulations is the packing behavior of real, three-dimensional spherical particles embedded in lamellar layers or hexagonally packed cylinders formed by linear diblock chains. In order to carry out these hybrid particle/SCFT 3D simulations a new object-oriented SCFT framework has been developed. The object-oriented design enables the hybrid/SCFT simulations to be performed in a framework that is both numerically efficient and sufficiently flexible to incorporate new SCFT models easily, In particular, this new framework will be used to investigate the distribution of particle positions in diblock lamellar layers as function of nanoparticle density to study the interplay of patterning due to diblock domain structure and the chain depletion interaction between spherical particles.
Universal quantum computation using all-optical hybrid encoding
Institute of Scientific and Technical Information of China (English)
郭奇; 程留永; 王洪福; 张寿
2015-01-01
By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing.
"Hybrids" and the Gendering of Computing Jobs in Australia
Directory of Open Access Journals (Sweden)
Gillian Whitehouse
2005-05-01
Full Text Available This paper presents recent Australian evidence on the extent to which women are entering “hybrid” computing jobs combining technical and communication or “people management” skills, and the way these skill combinations are valued at organisational level. We draw on a survey of detailed occupational roles in large IT firms to examine the representation of women in a range of jobs consistent with the notion of “hybrid”, and analyse the discourse around these sorts of skills in a set of organisational case studies. Our research shows a traditional picture of labour market segmentation, with limited representation of women in high status jobs, and their relatively greater prevalence in more routine areas of the industry. While our case studies highlight perceptions of the need for hybrid roles and assumptions about the suitability of women for such jobs, the ongoing masculinity of core development functions appears untouched by this discourse.
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M
2016-01-01
This article describes an algorithm for hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-ranged forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with AVX and AVX-2 processors as well as Xeon-Phi co-processors.
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M.; Meyer, R.
2017-10-01
This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.
A multi-scale code for flexible hybrid simulations
Leukkunen, L; Lopez-Acevedo, O
2012-01-01
Multi-scale computer simulations combine the computationally efficient classical algorithms with more expensive but also more accurate ab-initio quantum mechanical algorithms. This work describes one implementation of multi-scale computations using the Atomistic Simulation Environment (ASE). This implementation can mix classical codes like LAMMPS and the Density Functional Theory-based GPAW. Any combination of codes linked via the ASE interface however can be mixed. We also introduce a framework to easily add classical force fields calculators for ASE using LAMMPS, which also allows harnessing the full performance of classical-only molecular dynamics. Our work makes it possible to combine different simulation codes, quantum mechanical or classical, with great ease and minimal coding effort.
New Computer Simulations of Macular Neural Functioning
Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.
1994-01-01
We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.
Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing
Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.
2010-12-01
The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.
Utilization of MATLAB in Simulation of Linear Hybrid Circuits
Directory of Open Access Journals (Sweden)
L. Brancik
2003-12-01
Full Text Available In the paper a MATLAB-based method for simulating transientphenomena in linear hybrid circuits containing parts with both lumpedand distributed parameters is presented. Distributed parts of thecircuit are multiconductor transmission lines, which can generally benonuniform, with frequency-dependent parameters, and under nonzeroinitial voltage and/or current distributions. In principle a solutionis formulated using the modified nodal analysis method in the frequencydomain. Subsequently an improved fast method of the numerical inversionof Laplace transforms in the vector or matrix form is applied to obtainsolution in the time domain.
Multidimensional computer simulation of Stirling cycle engines
Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.
1990-01-01
The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.
Computer simulation of spacecraft/environment interaction.
Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V
1999-10-01
This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.
Computer simulation of spacecraft/environment interaction
Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V
1999-01-01
This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.
Investigation of Carbohydrate Recognition via Computer Simulation
Directory of Open Access Journals (Sweden)
Quentin R. Johnson
2015-04-01
Full Text Available Carbohydrate recognition by proteins, such as lectins and other (biomolecules, can be essential for many biological functions. Recently, interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. We focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We review the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.
Simulated Quantum Computation of Molecular Energies
Aspuru-Guzik, A; Love, P J; Head-Gordon, M; Aspuru-Guzik, Al\\'an; Dutoi, Anthony D.; Love, Peter J.; Head-Gordon, Martin
2005-01-01
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Hybrid multiscale simulation of a mixing-controlled reaction
Energy Technology Data Exchange (ETDEWEB)
Scheibe, Timothy D.; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Yang, Xiaofan; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Elsethagen, Todd O.; Redden, George D.
2015-09-01
Continuum-scale models have been used to study subsurface flow, transport, and reactions for many years but lack the capability to resolve fine-grained processes. Recently, pore-scale models, which operate at scales of individual soil grains, have been developed to more accurately model and study pore-scale phenomena, such as mineral precipitation and dissolution reactions, microbially-mediated surface reactions, and other complex processes. However, these highly-resolved models are prohibitively expensive for modeling domains of sizes relevant to practical problems. To broaden the utility of pore-scale models for larger domains, we developed a hybrid multiscale model that initially simulates the full domain at the continuum scale and applies a pore-scale model only to areas of high reactivity. Since the location and number of pore-scale model regions in the model varies as the reactions proceed, an adaptive script defines the number and location of pore regions within each continuum iteration and initializes pore-scale simulations from macroscale information. Another script communicates information from the pore-scale simulation results back to the continuum scale. These components provide loose coupling between the pore- and continuum-scale codes into a single hybrid multiscale model implemented within the SWIFT workflow environment. In this paper, we consider an irreversible homogenous bimolecular reaction (two solutes reacting to form a third solute) in a 2D test problem. This paper is focused on the approach used for multiscale coupling between pore- and continuum-scale models, application to a realistic test problem, and implications of the results for predictive simulation of mixing-controlled reactions in porous media. Our results and analysis demonstrate that loose coupling provides a feasible, efficient and scalable approach for multiscale subsurface simulations.
COMPUTER SIMULATION OF POLYMER SOLUTION THERMODYNAMICS
Institute of Scientific and Technical Information of China (English)
无
1998-01-01
The statistical counting method for the computer simulation of the thermodynamic quantities of polymer solution has been reviewed. The calculating results for a single athermal chain confirm the theory of the renormalization group. The results for the athermal solution are consistent with the scaling law of the osmotic pressure with the exponent 2.25. The results for a single chain with the segmental interaction are in a good agreement with the exact results obtained by the direct counting method. The results for the polymer solution show us that the Flory-Huggins parameter is strongly dependent on both the polymer concentration and the interaction energy between segments.
Wang, Haiyan; Lin, Derong; Wang, Di; Hu, Lijiang; Huang, Yudong; Liu, Li; Loy, Douglas A
2014-01-01
Sunscreens that absorb UV light without photodegradation could reduce skin cancer. Polyvinyl silsesquioxanes are known to have greater thermal and photochemical stability than organic compounds, such as those in sunscreens. This paper evaluates the UV transparency of vinyl silsesquioxanes (VS) and its hybrids with SiO2(VSTE) and TiO2(VSTT) experimentally and computationally. Based on films of VS prepared by sol-gel polymerization, using benzoyl peroxide as an initiator, vinyltrimethoxysilane (VMS) formulated oligomer through thermal curing. Similarly, VSTE films were prepared from VMS and 5-25 wt-% tetraethoxysilane (TEOS) and VSTT films were prepared from VMS and 5-25 wt-% titanium tetrabutoxide (TTB). Experimental average transparencies of the modified films were found to be about 9-14% between 280-320 nm, 67-73% between 320-350nm, and 86-89% between 350-400nm. Computation of the band gap was absorption edges for the hybrids in excellent agreement with experimental data. VS, VSTE and VSTT showed good absorption in UV-C and UV-B range, but absorbed virtually no UV-A. Addition of SiO2 or TiO2 does not improve UV-B absorption, but on the opposite increases transparency of thin films to UV. This increase was validated with molecular simulations. Results show computational design can predict better sunscreens and reduce the effort of creating sunscreens that are capable of absorbing more UV-B and UV-A.
The Learning Effects of Computer Simulations in Science Education
Rutten, Nico; van Joolingen, Wouter R.; van der Veen, Jan T.
2012-01-01
This article reviews the (quasi)experimental research of the past decade on the learning effects of computer simulations in science education. The focus is on two questions: how use of computer simulations can enhance traditional education, and how computer simulations are best used in order to improve learning processes and outcomes. We report on…
Sizing and Simulation of PV-Wind Hybrid Power System
Directory of Open Access Journals (Sweden)
Mustafa Engin
2013-01-01
Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.
Multiscale Computer Simulation of Failure in Aerogels
Good, Brian S.
2008-01-01
Aerogels have been of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While such gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. We have previously performed computer simulations of aerogel thermal conductivity and tensile and compressive failure, with results that are in qualitative, and sometimes quantitative, agreement with experiment. However, recent experiments in our laboratory suggest that gels having similar densities may exhibit substantially different properties. In this work, we extend our original diffusion limited cluster aggregation (DLCA) model for gel structure to incorporate additional variation in DLCA simulation parameters, with the aim of producing DLCA clusters of similar densities that nevertheless have different fractal dimension and secondary particle coordination. We perform particle statics simulations of gel strain on these clusters, and consider the effects of differing DLCA simulation conditions, and the resultant differences in fractal dimension and coordination, on gel strain properties.
Computer simulation of solder joint failure
Energy Technology Data Exchange (ETDEWEB)
Burchett, S.N.; Frear, D.R. [Sandia National Lab., Albuquerque, NM (United States); Rashid, M.M. [Univ. of California, Davis, CA (United States)
1997-04-01
The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide the fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.
A Massive Data Parallel Computational Framework for Petascale/Exascale Hybrid Computer Systems
Blazewicz, Marek; Diener, Peter; Koppelman, David M; Kurowski, Krzysztof; Löffler, Frank; Schnetter, Erik; Tao, Jian
2012-01-01
Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first...
A gas kinetic scheme for hybrid simulation of partially rarefied flows
Colonia, S.; Steijl, R.; Barakos, G.
2017-06-01
Approaches to predict flow fields that display rarefaction effects incur a cost in computational time and memory considerably higher than methods commonly employed for continuum flows. For this reason, to simulate flow fields where continuum and rarefied regimes coexist, hybrid techniques have been introduced. In the present work, analytically defined gas-kinetic schemes based on the Shakhov and Rykov models for monoatomic and diatomic gas flows, respectively, are proposed and evaluated with the aim to be used in the context of hybrid simulations. This should reduce the region where more expensive methods are needed by extending the validity of the continuum formulation. Moreover, since for high-speed rare¦ed gas flows it is necessary to take into account the nonequilibrium among the internal degrees of freedom, the extension of the approach to employ diatomic gas models including rotational relaxation process is a mandatory first step towards realistic simulations. Compared to previous works of Xu and coworkers, the presented scheme is de¦ned directly on the basis of kinetic models which involve a Prandtl number correction. Moreover, the methods are defined fully analytically instead of making use of Taylor expansion for the evaluation of the required derivatives. The scheme has been tested for various test cases and Mach numbers proving to produce reliable predictions in agreement with other approaches for near-continuum flows. Finally, the performance of the scheme, in terms of memory and computational time, compared to discrete velocity methods makes it a compelling alternative in place of more complex methods for hybrid simulations of weakly rarefied flows.
N-S/DSMC hybrid simulation of hypersonic flow over blunt body including wakes
Li, Zhonghua; Li, Zhihui; Li, Haiyan; Yang, Yanguang; Jiang, Xinyu
2014-12-01
A hybrid N-S/DSMC method is presented and applied to solve the three-dimensional hypersonic transitional flows by employing the MPC (modular Particle-Continuum) technique based on the N-S and the DSMC method. A sub-relax technique is adopted to deal with information transfer between the N-S and the DSMC. The hypersonic flows over a 70-deg spherically blunted cone under different Kn numbers are simulated using the CFD, DSMC and hybrid N-S/DSMC method. The present computations are found in good agreement with DSMC and experimental results. The present method provides an efficient way to predict the hypersonic aerodynamics in near-continuum transitional flow regime.
Hybrid simulation of metal oxide surge-arrester thermal behaviour
Energy Technology Data Exchange (ETDEWEB)
Huang, L.; Raghuveer, M.R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Electrical and Computer Engineering
1996-01-01
A finite-difference-based technique for simulating the thermal behaviour of a metal oxide surge arrester (MOSA) was described. The improved hybrid thermal modelling technique was claimed to accurately represent heat-transfer modes. Fin theory was used to represent arrester sheds. The proposed model, which relies on simple measurements at the arrester terminals, yields the temporal variation of temperature in a MOSA in both the axial and radial direction. The thermal behaviour of a MOSA under steady-state and transient conditions can be simulated using such a model under different environmental conditions. The accuracy of the modelling technique was demonstrated experimentally by measurements conducted on an arrester. 15 refs., 7 figs.
Computational simulation of concurrent engineering for aerospace propulsion systems
Chamis, C. C.; Singhal, S. N.
1992-01-01
Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.
Computational simulation for concurrent engineering of aerospace propulsion systems
Chamis, C. C.; Singhal, S. N.
1993-01-01
Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.
Software development infrastructure for the HYBRID modeling and simulation project
Energy Technology Data Exchange (ETDEWEB)
Aaron S. Epiney; Robert A. Kinoshita; Jong Suk Kim; Cristian Rabiti; M. Scott Greenwood
2016-09-01
One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers
Computational simulation of liquid fuel rocket injectors
Landrum, D. Brian
1994-01-01
A major component of any liquid propellant rocket is the propellant injection system. Issues of interest include the degree of liquid vaporization and its impact on the combustion process, the pressure and temperature fields in the combustion chamber, and the cooling of the injector face and chamber walls. The Finite Difference Navier-Stokes (FDNS) code is a primary computational tool used in the MSFC Computational Fluid Dynamics Branch. The branch has dedicated a significant amount of resources to development of this code for prediction of both liquid and solid fuel rocket performance. The FDNS code is currently being upgraded to include the capability to model liquid/gas multi-phase flows for fuel injection simulation. An important aspect of this effort is benchmarking the code capabilities to predict existing experimental injection data. The objective of this MSFC/ASEE Summer Faculty Fellowship term was to evaluate the capabilities of the modified FDNS code to predict flow fields with liquid injection. Comparisons were made between code predictions and existing experimental data. A significant portion of the effort included a search for appropriate validation data. Also, code simulation deficiencies were identified.
Computer Simulation of Developmental Processes and ...
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of
Sevink, G J A; Schmid, F; Kawakatsu, T; Milano, G
2017-02-22
We have extended an existing hybrid MD-SCF simulation technique that employs a coarsening step to enhance the computational efficiency of evaluating non-bonded particle interactions. This technique is conceptually equivalent to the single chain in mean-field (SCMF) method in polymer physics, in the sense that non-bonded interactions are derived from the non-ideal chemical potential in self-consistent field (SCF) theory, after a particle-to-field projection. In contrast to SCMF, however, MD-SCF evolves particle coordinates by the usual Newton's equation of motion. Since collisions are seriously affected by the softening of non-bonded interactions that originates from their evaluation at the coarser continuum level, we have devised a way to reinsert the effect of collisions on the structural evolution. Merging MD-SCF with multi-particle collision dynamics (MPCD), we mimic particle collisions at the level of computational cells and at the same time properly account for the momentum transfer that is important for a realistic system evolution. The resulting hybrid MD-SCF/MPCD method was validated for a particular coarse-grained model of phospholipids in aqueous solution, against reference full-particle simulations and the original MD-SCF model. We additionally implemented and tested an alternative and more isotropic finite difference gradient. Our results show that efficiency is improved by merging MD-SCF with MPCD, as properly accounting for hydrodynamic interactions considerably speeds up the phase separation dynamics, with negligible additional computational costs compared to efficient MD-SCF. This new method enables realistic simulations of large-scale systems that are needed to investigate the applications of self-assembled structures of lipids in nanotechnologies.
Investigating European genetic history through computer simulations.
Currat, Mathias; Silva, Nuno M
2013-01-01
The genetic diversity of Europeans has been shaped by various evolutionary forces including their demographic history. Genetic data can thus be used to draw inferences on the population history of Europe using appropriate statistical methods such as computer simulation, which constitutes a powerful tool to study complex models. Here, we focus on spatially explicit simulation, a method which takes population movements over space and time into account. We present its main principles and then describe a series of studies using this approach that we consider as particularly significant in the context of European prehistory. All simulation studies agree that ancient demographic events played a significant role in the establishment of the European gene pool; but while earlier works support a major genetic input from the Near East during the Neolithic transition, the most recent ones revalue positively the contribution of pre-Neolithic hunter-gatherers and suggest a possible impact of very ancient demographic events. This result of a substantial genetic continuity from pre-Neolithic times to the present challenges some recent studies analyzing ancient DNA. We discuss the possible reasons for this discrepancy and identify future lines of investigation in order to get a better understanding of European evolution.
Computer Simulation of the UMER Gridded Gun
Haber, Irving; Friedman, Alex; Grote, D P; Kishek, Rami A; Reiser, Martin; Vay, Jean-Luc; Zou, Yun
2005-01-01
The electron source in the University of Maryland Electron Ring (UMER) injector employs a grid 0.15 mm from the cathode to control the current waveform. Under nominal operating conditions, the grid voltage during the current pulse is sufficiently positive relative to the cathode potential to form a virtual cathode downstream of the grid. Three-dimensional computer simulations have been performed that use the mesh refinement capability of the WARP particle-in-cell code to examine a small region near the beam center in order to illustrate some of the complexity that can result from such a gridded structure. These simulations have been found to reproduce the hollowed velocity space that is observed experimentally. The simulations also predict a complicated time-dependent response to the waveform applied to the grid during the current turn-on. This complex temporal behavior appears to result directly from the dynamics of the virtual cathode formation and may therefore be representative of the expected behavior in...
Modeling And Simulation As The Basis For Hybridity In The Graphic Discipline Learning/Teaching Area
Directory of Open Access Journals (Sweden)
Jana Žiljak Vujić
2009-01-01
Full Text Available Only some fifteen years have passed since the scientific graphics discipline was established. In the transition period from the College of Graphics to «Integrated Graphic Technology Studies» to the contemporary Faculty of Graphics Arts with the University in Zagreb, three main periods of development can be noted: digital printing, computer prepress and automatic procedures in postpress packaging production. Computer technology has enabled a change in the methodology of teaching graphics technology and studying it on the level of secondary and higher education. The task has been set to create tools for simulating printing processes in order to master the program through a hybrid system consisting of methods that are separate in relation to one another: learning with the help of digital models and checking in the actual real system. We are setting a hybrid project for teaching because the overall acquired knowledge is the result of completely different methods. The first method is on the free programs level functioning without consequences. Everything remains as a record in the knowledge database that can be analyzed, statistically processed and repeated with new parameter values of the system being researched. The second method uses the actual real system where the results are in proving the value of new knowledge and this is something that encourages and stimulates new cycles of hybrid behavior in mastering programs. This is the area where individual learning incurs. The hybrid method allows the possibility of studying actual situations on a computer model, proving it on an actual real model and entering the area of learning envisaging future development.
Modeling and Simulation as the Basis for Hybridity in the Graphic Discipline Learning/Teaching Area
Directory of Open Access Journals (Sweden)
Vilko Ziljak
2009-11-01
Full Text Available Only some fifteen years have passed since the scientific graphics discipline was established. In the transition period from the College of Graphics to «Integrated Graphic Technology Studies» to the contemporary Faculty of Graphics Arts with the University in Zagreb, three main periods of development can be noted: digital printing, computer prepress and automatic procedures in postpress packaging production. Computer technology has enabled a change in the methodology of teaching graphics technology and studying it on the level of secondary and higher education. The task has been set to create tools for simulating printing processes in order to master the program through a hybrid system consisting of methods that are separate in relation to one another: learning with the help of digital models and checking in the actual real system. We are setting a hybrid project for teaching because the overall acquired knowledge is the result of completely different methods. The first method is on the free programs level functioning without consequences. Everything remains as a record in the knowledge database that can be analyzed, statistically processed and repeated with new parameter values of the system being researched. The second method uses the actual real system where the results are in proving the value of new knowledge and this is something that encourages and stimulates new cycles of hybrid behavior in mastering programs. This is the area where individual learning incurs. The hybrid method allows the possibility of studying actual situations on a computer model, proving it on an actual real model and entering the area of learning envisaging future development.
A hybrid method for efficient and accurate simulations of diffusion compartment imaging signals
Rensonnet, Gaëtan; Jacobs, Damien; Macq, Benoît; Taquet, Maxime
2015-12-01
Diffusion-weighted imaging is sensitive to the movement of water molecules through the tissue microstructure and can therefore be used to gain insight into the tissue cellular architecture. While the diffusion signal arising from simple geometrical microstructure is known analytically, it remains unclear what diffusion signal arises from complex microstructural configurations. Such knowledge is important to design optimal acquisition sequences, to understand the limitations of diffusion-weighted imaging and to validate novel models of the brain microstructure. We present a novel framework for the efficient simulation of high-quality DW-MRI signals based on the hybrid combination of exact analytic expressions in simple geometric compartments such as cylinders and spheres and Monte Carlo simulations in more complex geometries. We validate our approach on synthetic arrangements of parallel cylinders representing the geometry of white matter fascicles, by comparing it to complete, all-out Monte Carlo simulations commonly used in the literature. For typical configurations, equal levels of accuracy are obtained with our hybrid method in less than one fifth of the computational time required for Monte Carlo simulations.
Evaluation of Marine Corps Manpower Computer Simulation Model
2016-12-01
MARINE CORPS MANPOWER COMPUTER SIMULATION MODEL by Eric S. Anderson December 2016 Thesis Advisor: Arnold Buss Second Reader: Neil Rowe...Master’s thesis 4. TITLE AND SUBTITLE EVALUATION OF MARINE CORPS MANPOWER COMPUTER SIMULATION MODEL 5. FUNDING NUMBERS ACCT: 622716 JON...overall end strength are maintained. To assist their mission, an agent-based computer simulation model was developed in the Java computer language
A Hybrid Segmentation Framework for Computer-Assisted Dental Procedures
Hosntalab, Mohammad; Aghaeizadeh Zoroofi, Reza; Abbaspour Tehrani-Fard, Ali; Shirani, Gholamreza; Reza Asharif, Mohammad
Teeth segmentation in computed tomography (CT) images is a major and challenging task for various computer assisted procedures. In this paper, we introduced a hybrid method for quantification of teeth in CT volumetric dataset inspired by our previous experiences and anatomical knowledge of teeth and jaws. In this regard, we propose a novel segmentation technique using an adaptive thresholding, morphological operations, panoramic re-sampling and variational level set algorithm. The proposed method consists of several steps as follows: first, we determine the operation region in CT slices. Second, the bony tissues are separated from other tissues by utilizing an adaptive thresholding technique based on the 3D pulses coupled neural networks (PCNN). Third, teeth tissue is classified from other bony tissues by employing panorex lines and anatomical knowledge of teeth in the jaws. In this case, the panorex lines are estimated using Otsu thresholding and mathematical morphology operators. Then, the proposed method is followed by calculating the orthogonal lines corresponding to panorex lines and panoramic re-sampling of the dataset. Separation of upper and lower jaws and initial segmentation of teeth are performed by employing the integral projections of the panoramic dataset. Based the above mentioned procedures an initial mask for each tooth is obtained. Finally, we utilize the initial mask of teeth and apply a variational level set to refine initial teeth boundaries to final contour. In the last step a surface rendering algorithm known as marching cubes (MC) is applied to volumetric visualization. The proposed algorithm was evaluated in the presence of 30 cases. Segmented images were compared with manually outlined contours. We compared the performance of segmentation method using ROC analysis of the thresholding, watershed and our previous works. The proposed method performed best. Also, our algorithm has the advantage of high speed compared to our previous works.
Computational model for simulation small testing launcher, technical solution
Energy Technology Data Exchange (ETDEWEB)
Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Ghe Polizu, nr. 1, Bucharest, Sector 1 (Romania); Cristian, Barbu, E-mail: barbucr@mta.ro [Military Technical Academy, Romania, B-dul. George Coşbuc, nr. 81-83, Bucharest, Sector 5 (Romania); Chelaru, Adrian, E-mail: achelaru@incas.ro [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Bucharest, Sector 6 (Romania)
2014-12-10
The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project 'Suborbital Launcher for Testing' (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital
Computer Simulation of Electron Positron Annihilation Processes
Energy Technology Data Exchange (ETDEWEB)
Chen, y
2003-10-02
With the launching of the Next Linear Collider coming closer and closer, there is a pressing need for physicists to develop a fully-integrated computer simulation of e{sup +}e{sup -} annihilation process at center-of-mass energy of 1TeV. A simulation program acts as the template for future experiments. Either new physics will be discovered, or current theoretical uncertainties will shrink due to more accurate higher-order radiative correction calculations. The existence of an efficient and accurate simulation will help us understand the new data and validate (or veto) some of the theoretical models developed to explain new physics. It should handle well interfaces between different sectors of physics, e.g., interactions happening at parton levels well above the QCD scale which are described by perturbative QCD, and interactions happening at much lower energy scale, which combine partons into hadrons. Also it should achieve competitive speed in real time when the complexity of the simulation increases. This thesis contributes some tools that will be useful for the development of such simulation programs. We begin our study by the development of a new Monte Carlo algorithm intended to perform efficiently in selecting weight-1 events when multiple parameter dimensions are strongly correlated. The algorithm first seeks to model the peaks of the distribution by features, adapting these features to the function using the EM algorithm. The representation of the distribution provided by these features is then improved using the VEGAS algorithm for the Monte Carlo integration. The two strategies mesh neatly into an effective multi-channel adaptive representation. We then present a new algorithm for the simulation of parton shower processes in high energy QCD. We want to find an algorithm which is free of negative weights, produces its output as a set of exclusive events, and whose total rate exactly matches the full Feynman amplitude calculation. Our strategy is to create
Computer simulation of a magnetohydrodynamic dynamo. II
Kageyama, Akira; Sato, Tetsuya; Complexity Simulation Group
1995-05-01
A computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell is performed. Extensive parameter runs are carried out changing electrical resistivity. When resistivity is sufficiently small, total magnetic energy can grow more than ten times larger than total kinetic energy of convection motion which is driven by an unlimited external energy source. When resistivity is relatively large and magnetic energy is comparable or smaller than kinetic energy, the convection motion maintains its well-organized structure. However, when resistivity is small and magnetic energy becomes larger than kinetic energy, the well-organized convection motion is highly irregular. The magnetic field is organized in two ways. One is the concentration of component parallel to the rotation axis and the other is the concentration of perpendicular component. The parallel component tends to be confined inside anticyclonic columnar convection cells, while the perpendicular component is confined outside convection cells.
A hybrid method for the computation of quasi-3D seismograms.
Masson, Yder; Romanowicz, Barbara
2013-04-01
The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these
Associative Memory computing power and its simulation
Ancu, L S; The ATLAS collaboration; Britzger, D; Giannetti, P; Howarth, J W; Luongo, C; Pandini, C; Schmitt, S; Volpi, G
2014-01-01
The associative memory (AM) system is a computing device made of hundreds of AM ASICs chips designed to perform “pattern matching” at very high speed. Since each AM chip stores a data base of 130000 pre-calculated patterns and large numbers of chips can be easily assembled together, it is possible to produce huge AM banks. Speed and size of the system are crucial for real-time High Energy Physics applications, such as the ATLAS Fast TracKer (FTK) Processor. Using 80 million channels of the ATLAS tracker, FTK finds tracks within 100 micro seconds. The simulation of such a parallelized system is an extremely complex task if executed in commercial computers based on normal CPUs. The algorithm performance is limited, due to the lack of parallelism, and in addition the memory requirement is very large. In fact the AM chip uses a content addressable memory (CAM) architecture. Any data inquiry is broadcast to all memory elements simultaneously, thus data retrieval time is independent of the database size. The gr...
Associative Memory Computing Power and Its Simulation
Volpi, G; The ATLAS collaboration
2014-01-01
The associative memory (AM) system is a computing device made of hundreds of AM ASICs chips designed to perform “pattern matching” at very high speed. Since each AM chip stores a data base of 130000 pre-calculated patterns and large numbers of chips can be easily assembled together, it is possible to produce huge AM banks. Speed and size of the system are crucial for real-time High Energy Physics applications, such as the ATLAS Fast TracKer (FTK) Processor. Using 80 million channels of the ATLAS tracker, FTK finds tracks within 100 micro seconds. The simulation of such a parallelized system is an extremely complex task if executed in commercial computers based on normal CPUs. The algorithm performance is limited, due to the lack of parallelism, and in addition the memory requirement is very large. In fact the AM chip uses a content addressable memory (CAM) architecture. Any data inquiry is broadcast to all memory elements simultaneously, thus data retrieval time is independent of the database size. The gr...
Computer simulations of the mouse spermatogenic cycle
Directory of Open Access Journals (Sweden)
Debjit Ray
2014-12-01
Full Text Available The spermatogenic cycle describes the periodic development of germ cells in the testicular tissue. The temporal–spatial dynamics of the cycle highlight the unique, complex, and interdependent interaction between germ and somatic cells, and are the key to continual sperm production. Although understanding the spermatogenic cycle has important clinical relevance for male fertility and contraception, there are a number of experimental obstacles. For example, the lengthy process cannot be visualized through dynamic imaging, and the precise action of germ cells that leads to the emergence of testicular morphology remains uncharacterized. Here, we report an agent-based model that simulates the mouse spermatogenic cycle on a cross-section of the seminiferous tubule over a time scale of hours to years, while considering feedback regulation, mitotic and meiotic division, differentiation, apoptosis, and movement. The computer model is able to elaborate the germ cell dynamics in a time-lapse movie format, allowing us to trace individual cells as they change state and location. More importantly, the model provides mechanistic understanding of the fundamentals of male fertility, namely how testicular morphology and sperm production are achieved. By manipulating cellular behaviors either individually or collectively in silico, the model predicts causal events for the altered arrangement of germ cells upon genetic or environmental perturbations. This in silico platform can serve as an interactive tool to perform long-term simulation and to identify optimal approaches for infertility treatment and contraceptive development.
A hybrid simulation model for a stable auroral arc
Directory of Open Access Journals (Sweden)
P. Janhunen
Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.
Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies
Engineering Fracking Fluids with Computer Simulation
Shaqfeh, Eric
2015-11-01
There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.
Application of computer simulated persons in indoor environmental modeling
DEFF Research Database (Denmark)
Topp, C.; Nielsen, P. V.; Sørensen, Dan Nørtoft
2002-01-01
Computer simulated persons are often applied when the indoor environment is modeled by computational fluid dynamics. The computer simulated persons differ in size, shape, and level of geometrical complexity, ranging from simple box or cylinder shaped heat sources to more humanlike models. Little...
Hybrid method of solution applied to simulation of pulse chromatography
Directory of Open Access Journals (Sweden)
M. A. Cremasco
2009-06-01
Full Text Available In this communication, the method proposed by Cremasco et al. (2003 is applied to predict single and low concentration pulse chromatography. In previous work, a general rate model was presented to describe the breakthrough curve, where a hybrid solution was proposed for the linear adsorption. The liquid phase concentration inside the particle was found analytically and related with the bed liquid phase through Duhamel's Theorem, while the bulk-phase equation was solved by a numerical method. In this paper, this method is applied to describe pulse chromatography of solutes that present linear adsorption isotherms. The simulated results of pulse chromatography are compared with experimental ones for aromatic amino acid experiments from literature.
Hybrid simulations of mini-magnetospheres in the laboratory
Gargaté, L; Fonseca, R A; Bamford, R; Thornton, A; Gibson, K; Bradford, J; Silva, L O
2008-01-01
Solar energetic ions are a known hazard to both spacecraft electronics and to manned space flights in interplanetary space missions that extend over a long period of time. A dipole-like magnetic field and a plasma source, forming a mini magnetosphere, are being tested in the laboratory as means of protection against such hazards. We investigate, via particle-in-cell hybrid simulations, using kinetic ions and fluid electrons, the characteristics of the mini magnetospheres. Our results, for parameters identical to the experimental conditions, reveal the formation of a mini-magnetosphere, whose features are scanned with respect to the plasma density, the plasma flow velocity, and the intensity of the dipole field. Comparisons with a simplified theoretical model reveal a good qualitative agreement and excellent quantitative agreement for higher plasma dynamic pressures and lower B-fields.
Perspective: Theory and simulation of hybrid halide perovskites
Whalley, Lucy D.; Frost, Jarvist M.; Jung, Young-Kwang; Walsh, Aron
2017-06-01
Organic-inorganic halide perovskites present a number of challenges for first-principles atomistic materials modeling. Such "plastic crystals" feature dynamic processes across multiple length and time scales. These include the following: (i) transport of slow ions and fast electrons; (ii) highly anharmonic lattice dynamics with short phonon lifetimes; (iii) local symmetry breaking of the average crystallographic space group; (iv) strong relativistic (spin-orbit coupling) effects on the electronic band structure; and (v) thermodynamic metastability and rapid chemical breakdown. These issues, which affect the operation of solar cells, are outlined in this perspective. We also discuss general guidelines for performing quantitative and predictive simulations of these materials, which are relevant to metal-organic frameworks and other hybrid semiconducting, dielectric and ferroelectric compounds.
A simplified computational fluid-dynamic approach to the oxidizer injector design in hybrid rockets
Di Martino, Giuseppe D.; Malgieri, Paolo; Carmicino, Carmine; Savino, Raffaele
2016-12-01
Fuel regression rate in hybrid rockets is non-negligibly affected by the oxidizer injection pattern. In this paper a simplified computational approach developed in an attempt to optimize the oxidizer injector design is discussed. Numerical simulations of the thermo-fluid-dynamic field in a hybrid rocket are carried out, with a commercial solver, to investigate into several injection configurations with the aim of increasing the fuel regression rate and minimizing the consumption unevenness, but still favoring the establishment of flow recirculation at the motor head end, which is generated with an axial nozzle injector and has been demonstrated to promote combustion stability, and both larger efficiency and regression rate. All the computations have been performed on the configuration of a lab-scale hybrid rocket motor available at the propulsion laboratory of the University of Naples with typical operating conditions. After a preliminary comparison between the two baseline limiting cases of an axial subsonic nozzle injector and a uniform injection through the prechamber, a parametric analysis has been carried out by varying the oxidizer jet flow divergence angle, as well as the grain port diameter and the oxidizer mass flux to study the effect of the flow divergence on heat transfer distribution over the fuel surface. Some experimental firing test data are presented, and, under the hypothesis that fuel regression rate and surface heat flux are proportional, the measured fuel consumption axial profiles are compared with the predicted surface heat flux showing fairly good agreement, which allowed validating the employed design approach. Finally an optimized injector design is proposed.
A Hybrid Flight Control for a Simulated Raptor-30 V2 Helicopter
Directory of Open Access Journals (Sweden)
Arbab Nighat Khizer
2015-04-01
Full Text Available This paper presents a hybrid flight control system for a single rotor simulated Raptor-30 V2 helicopter. Hybrid intelligent control system, combination of the conventional and intelligent control methodologies, is applied to small model helicopter. The proposed hybrid control used PID as a traditional control and fuzzy as an intelligent control so as to take the maximum advantage of advanced control theory. The helicopter?s model used; comes from X-Plane flight simulator and their hybrid flight control system was simulated using MATLAB/SIMULINK in a simulation platform. X-Plane is also used to visualize the performance of this proposed autopilot design. Through a series of numerous experiments, the operation of hybrid control system was investigated. Results verified that the proposed hybrid control has an excellent performance at hovering flight mode.
Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation
Qian, Yili; Ou, Ge; Maghareh, Amin; Dyke, Shirley J.
2014-10-01
In a typical Real-time Hybrid Simulation (RTHS) setup, servo-hydraulic actuators serve as interfaces between the computational and physical substructures. Time delay introduced by actuator dynamics and complex interaction between the actuators and the specimen has detrimental effects on the stability and accuracy of RTHS. Therefore, a good understanding of servo-hydraulic actuator dynamics is a prerequisite for controller design and computational simulation of RTHS. This paper presents an easy-to-use parametric identification procedure for RTHS users to obtain re-useable actuator parameters for a range of payloads. The critical parameters in a linearized servo-hydraulic actuator model are optimally obtained from genetic algorithms (GA) based on experimental data collected from various specimen mass/stiffness combinations loaded to the target actuator. The actuator parameters demonstrate convincing convergence trend in GA. A key feature of this parametric modeling procedure is its re-usability under different testing scenarios, including different specimen mechanical properties and actuator inner-loop control gains. The models match well with experimental results. The benefit of the proposed parametric identification procedure has been demonstrated by (1) designing an H∞ controller with the identified system parameters that significantly improves RTHS performance; and (2) establishing an analysis and computational simulation of a servo-hydraulic system that help researchers interpret system instability and improve design of experiments.
Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves
Directory of Open Access Journals (Sweden)
Shukui Liu
2011-03-01
Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.
Fast surrogate-assisted simulation-driven optimization of compact microwave hybrid couplers
Kurgan, Piotr; Koziel, Slawomir
2016-07-01
This work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bottom-up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface approximations of coupler elementary elements. The cross-coupling effects within the structure are neglected in the first stage of the design process; however, they are accounted for in the tuning phase by means of space-mapping correction of the surrogate. The proposed approach is demonstrated through the design of a compact rat-race and two branch-line couplers. In all cases, the computational cost of the optimization process is very low and corresponds to just a few high-fidelity electromagnetic simulations of respective structures. Experimental validation is also provided.
Control-relevant modeling and simulation of a SOFC-GT hybrid system
Directory of Open Access Journals (Sweden)
Rambabu Kandepu
2006-07-01
Full Text Available In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.
Zhu, Min; Guo, Wei; Xiao, Shilin; Dong, Yi; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng
2009-01-19
This paper investigates the design and implementation of distributed computing applications in local area network. We propose a novel Dynamical Wavelength Scheduled Hybrid WDM/TDM Passive Optical Network, which is termed as DWS-HPON. The system is implemented by using spectrum slicing techniques of broadband light source and overlay broadcast-signaling scheme. The Time-Wavelength Co-Allocation (TWCA) Problem is defined and an effective greedy approach to this problem is presented for aggregating large files in distributed computing applications. The simulations demonstrate that the performance is improved significantly compared with the conventional TDM-over-WDM PON.
ANIBAL - a Hybrid Computer Language for EAI 680-PDP 8/I, FPP 12
DEFF Research Database (Denmark)
Højberg, Kristian Søe
1974-01-01
A hybrid programming language ANIBAL has been developed for use in an open-shop computing centre with an EAI-680 analog computer, a PDP8/I digital computer, and a FFP-12 floating point processor. An 8K core memory and 812k disk memory is included. The new language consists of standard FORTRAN IV...
The UF family of reference hybrid phantoms for computational radiation dosimetry
Energy Technology Data Exchange (ETDEWEB)
Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, MD 20852 (United States); Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Williams, Jonathan L [Department of Radiology, University of Florida, Gainesville, FL 32611 (United States); Bolch, Wesley E [Departments of Nuclear and Radiological and Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)], E-mail: wbolch@ufl.edu
2010-01-21
Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR(TM). NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros(TM). The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference
Directory of Open Access Journals (Sweden)
Do Nguyet Quang
2014-02-01
Full Text Available In smart grid communication implementation, network traffic pattern is one of the main factors that affect the system’s performance. Examining different traffic patterns in smart grid is therefore crucial when analyzing the network performance. Due to the heterogeneous and hybrid nature of smart grid, the type of traffic distribution in the network is still unknown. The traffic that popularly used for simulation and analysis no longer reflects the real traffic in a multi-technology and bi-directional communication system. Hence, in this study, a single-board computer is implemented as a traffic generator which can generate network traffic similar to those generated by various applications in the fully operational smart grid. By placing in a strategic and appropriate position, a collection of traffic generators allow network administrators to investigate and test the effect of heavy traffic on performance of smart grid communication system.
Plasma environment of Titan: a 3-D hybrid simulation study
Directory of Open Access Journals (Sweden)
S. Simon
2006-05-01
Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.
A wind turbine hybrid simulation framework considering aeroelastic effects
Song, Wei; Su, Weihua
2015-04-01
In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.
Computer Simulation of IT-diagrams of Steel
Institute of Scientific and Technical Information of China (English)
B. Smoljan
2004-01-01
Computer simulation of austenite decomposition has been investigated. The inversion method of prediction of phase portion in steel based on hardenability curve of Jominy-specimen has been established. The designed method of prediction austenite decomposition has been used in computer simulation of isothermal transformation (IT) diagram of low alloyed steel. IT-diagrams of low alloyed steel can be successfully predicted by proposed method of computer simulation.
Partial enthalpies and related quantities in mixtures from computer simulation
Sindzingre, P.; Ciccotti, G.; Massobrio, C.; Frenkel, D.
1987-01-01
We report a method of calculating partial molar quantities in mixtures by computer simulation. The method is based on an extension of Widom's potential distribution theorem and provides an alternative way of computing partial enthalpies and volumes.
COMPUTER LEARNING SIMULATOR WITH VIRTUAL REALITY FOR OPHTHALMOLOGY
Directory of Open Access Journals (Sweden)
Valeria V. Gribova
2013-01-01
Full Text Available A toolset of a medical computer learning simulator for ophthalmology with virtual reality and its implementation are considered in the paper. The simulator is oriented for professional skills training for students of medical universities.
QDENSITY—A Mathematica quantum computer simulation
Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank
2009-03-01
This Mathematica 6.0 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. New version program summaryProgram title: QDENSITY 2.0 Catalogue identifier: ADXH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 055 No. of bytes in distributed program, including test data, etc.: 227 540 Distribution format: tar.gz Programming language: Mathematica 6.0 Operating system: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Catalogue identifier of previous version: ADXH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 914 Classification: 4.15 Does the new version supersede the previous version?: Offers an alternative, more up to date, implementation Nature of problem: Analysis and design of quantum circuits, quantum algorithms and quantum clusters. Solution method: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. Reasons for new version: The package has been updated to make it fully compatible with Mathematica 6.0 Summary of revisions: The package has been updated to make it fully compatible with Mathematica 6.0 Running time: Most examples
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Directory of Open Access Journals (Sweden)
Justin S Hogg
2014-04-01
Full Text Available Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that
Computational simulation of liquid rocket injector anomalies
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.; Davidian, K.
1986-01-01
A computer model has been developed to analyze the three-dimensional two-phase reactive flows in liquid fueled rocket combustors. The model is designed to study the influence of liquid propellant injection nonuniformities on the flow pattern, combustion and heat transfer within the combustor. The Eulerian-Lagrangian approach for simulating polidisperse spray flow, evaporation and combustion has been used. Full coupling between the phases is accounted for. A nonorthogonal, body fitted coordinate system along with a conservative control volume formulation is employed. The physical models built into the model include a kappa-epsilon turbulence model, a two-step chemical reaction, and the six-flux radiation model. Semiempirical models are used to describe all interphase coupling terms as well as chemical reaction rates. The purpose of this study was to demonstrate an analytical capability to predict the effects of reactant injection nonuniformities (injection anomalies) on combustion and heat transfer within the rocket combustion chamber. The results show promising application of the model to comprehensive modeling of liquid propellant rocket engines.
Factors promoting engaged exploration with computer simulations
Directory of Open Access Journals (Sweden)
Noah S. Podolefsky
2010-10-01
Full Text Available This paper extends prior research on student use of computer simulations (sims to engage with and explore science topics, in this case wave interference. We describe engaged exploration; a process that involves students actively interacting with educational materials, sense making, and exploring primarily via their own questioning. We analyze interviews with college students using PhET sims in order to demonstrate engaged exploration, and to identify factors that can promote this type of inquiry. With minimal explicit guidance, students explore the topic of wave interference in ways that bear similarity to how scientists explore phenomena. PhET sims are flexible tools which allow students to choose their own learning path, but also provide constraints such that students’ choices are generally productive. This type of inquiry is supported by sim features such as concrete connections to the real world, representations that are not available in the real world, analogies to help students make meaning of and connect across multiple representations and phenomena, and a high level of interactivity with real-time, dynamic feedback from the sim. These features of PhET sims enable students to pose questions and answer them in ways that may not be supported by more traditional educational materials.
Computer simulation of combustion of mine fires
Institute of Scientific and Technical Information of China (English)
余明高; 张和平; 范维澄; 王清安
2002-01-01
According to control theories, mine fires can be considered as an unsteady process after the normal ventilation system is disturbed. Applied the principal of physical chemistry and thermal fluid mechanics, the parameters models of the unsteady state system have been given, such as fuel combustion rate, heat of combustion, concentration, temperature, heat losses, heat resistance, work of expansion and heat pressure difference. The results of the calculation agree approximately with the results of the test. By the computer simulation, it is shown that the main factor of producing the throttling effect is the fire rate, second is the heat resistance and the heat pressure difference. The rate of heat flow that passes through the airway wall is the maximum on the surface, and decrease with time. The heat transfer progresses only within the range of 0.5 m away from theairway wall during combustion for 2 hours. Its variable for the mass flux rate and the percentage concentration of the gas along the airway of the downstream. When the delayed time is very small, the variation can be neglected. Viscosity resistance is the main part of the heat resistance, second is the expansion resistance that is less than tens Pascal when Mach number is very small. Work of expansion is principally turned into heat losses, only a very small part is consumed by the work of the heat resistance and the inertia acceleration.
Directory of Open Access Journals (Sweden)
Hasitha Muthumala Waidyasooriya
2014-01-01
Full Text Available Acceleration of FDTD (finite-difference time-domain is very important for the fields such as computational electromagnetic simulation. We consider the FDTD simulation model of cylindrical resonator design that requires double precision floating-point and cannot be done using single precision. Conventional FDTD acceleration methods have a common problem of memory-bandwidth limitation due to the large amount of parallel data access. To overcome this problem, we propose a hybrid of single and double precision floating-point computation method that reduces the data-transfer amount. We analyze the characteristics of the FDTD simulation to find out when we can use single precision instead of double precision. According to the experimental results, we achieved over 15 times of speed-up compared to the CPU single-core implementation and over 1.52 times of speed-up compared to the conventional GPU-based implementation.
New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications
Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris
2016-05-01
Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.
New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications.
Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris
2016-05-01
Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Directory of Open Access Journals (Sweden)
Mohammed Abdullahi
Full Text Available Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS has been shown to perform competitively with Particle Swarm Optimization (PSO. The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA based SOS (SASOS in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
Study on Forward-Facing Model and Real-Time Simulation for a Series Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Xudong Liu
2011-10-01
Full Text Available To shorten design period and reduce development costs, computer modeling and simulation is important for HEV design and development. In this paper, real-time simulation for a Series Hybrid Electric Vehicle (SHEV is made to verify its fuzzy logic control strategy based on dSPACE-DS1103 development kits. The whole real-time simulation schematic is designed and the vehicle forward-facing simulation model is set up. Modeling methods for the driver, controller and vehicle (includes engine, generator, motor, battery, etc. under MATLAB/Simulink environment are discussed in detail. Driver behavior is simulated by two potentiometers and introduced into the real-time system to realize close-loop control. A real-time monitoring interface is also developed to observe the experiment results. Experiment results show that the real-time simulation platform works well and the SHEV fuzzy logic control strategy is effective.
Gallbladder Removal Simulation for Laparoscopic Surgery Training:A Hybrid Modeling Method
Institute of Scientific and Technical Information of China (English)
Youngjun Kim; Dongjune Chang; Jungsik Kim; Sehyung Park
2013-01-01
Laparoscopic surgery has many advantages,but it is difficult for a surgeon to achieve the necessary surgical skills.Recently,virtual training simulations have been gaining interest because they can provide a safe and efficient learning environment for medical students and novice surgeons.In this paper,we present a hybrid modeling method for simulating gallbladder removal that uses both the boundary element method (BEM) and the finite element method (FEM).Each modeling method is applied according to the deformable properties of human organs:BEM for the liver and FEM for the gallbladder.Connective tissues between the liver and the gallbladder are also included in the surgical simulation.Deformations in the liver and the gallbladder models are transferred via connective tissue springs using a mass-spring method.Special effects and techniques are developed to achieve realistic simulations,and the software is integrated into a custom-designed haptic interface device.Various computer graphical techniques are also applied in the virtual gallbladder removal laparoscopic surgery training.The detailed techniques and the results of the simulations are described in this paper.
Bonoli, P. T.; Shiraiwa, S.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Chen, Jin; Poli, F.; Kessel, C. E.; Jardin, S. C.
2012-10-01
Recent upgrades to the ion cyclotron RF (ICRF) and lower hybrid RF (LHRF) components of the Integrated Plasma Simulator [1] have made it possible to simulate LH current drive in the presence of ICRF minority heating and mode conversion electron heating. The background plasma is evolved in these simulations using the TSC transport code [2]. The driven LH current density profiles are computed using advanced ray tracing (GENRAY) and Fokker Planck (CQL3D) [3] components and predictions from GENRAY/CQL3D are compared with a ``reduced'' model for LHCD (the LSC [4] code). The ICRF TORIC solver is used for minority heating with a simplified (bi-Maxwellian) model for the non-thermal ion tail. Simulation results will be presented for LHCD in the presence of ICRF heating in Alcator C-Mod. [4pt] [1] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008).[0pt] [2] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).[0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992).[0pt] [4] D. Ignat et al, Nucl. Fus. 34, 837 (1994).[0pt] [5] M. Brambilla, Plasma Phys. and Cont. Fusion 41,1 (1999).
SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling.
Karachevtsev, M V; Lytvyn, O S; Stepanian, S G; Leontiev, V S; Adamowicz, L; Karachevtsev, V A
2008-03-01
Hybrids of carbon single-walled nanotubes (SWNT) with fragmented single or double-stranded DNA (fss- or fds-DNA) or polyC were studied by Atom Force Microscopy (AFM) and computer modeling. It was found that fragments of the polymer wrap in several layers around the nanotube, forming a strand-like spindle. In contrast to the fss-DNA, the fds-DNA also forms compact structures near the tube surface due to the formation of self-assembly structures consisting of a few DNA fragments. The hybrids of SWNT with wrapped single-, double- or triple strands of the biopolymer were simulated, and it was shown that such structures are stable. To explain the reason of multi-layer polymeric coating of the nanotube surface, the energy of the intermolecular interactions between different components of polyC was calculated at the MP2/6-31++G** level as well as the interaction energy in the SWNT-cytosine complex.
Hybrid NN/SVM Computational System for Optimizing Designs
Rai, Man Mohan
2009-01-01
A computational method and system based on a hybrid of an artificial neural network (NN) and a support vector machine (SVM) (see figure) has been conceived as a means of maximizing or minimizing an objective function, optionally subject to one or more constraints. Such maximization or minimization could be performed, for example, to optimize solve a data-regression or data-classification problem or to optimize a design associated with a response function. A response function can be considered as a subset of a response surface, which is a surface in a vector space of design and performance parameters. A typical example of a design problem that the method and system can be used to solve is that of an airfoil, for which a response function could be the spatial distribution of pressure over the airfoil. In this example, the response surface would describe the pressure distribution as a function of the operating conditions and the geometric parameters of the airfoil. The use of NNs to analyze physical objects in order to optimize their responses under specified physical conditions is well known. NN analysis is suitable for multidimensional interpolation of data that lack structure and enables the representation and optimization of a succession of numerical solutions of increasing complexity or increasing fidelity to the real world. NN analysis is especially useful in helping to satisfy multiple design objectives. Feedforward NNs can be used to make estimates based on nonlinear mathematical models. One difficulty associated with use of a feedforward NN arises from the need for nonlinear optimization to determine connection weights among input, intermediate, and output variables. It can be very expensive to train an NN in cases in which it is necessary to model large amounts of information. Less widely known (in comparison with NNs) are support vector machines (SVMs), which were originally applied in statistical learning theory. In terms that are necessarily
Spin-free quantum computational simulations and symmetry adapted states
Whitfield, James Daniel
2013-01-01
The ideas of digital simulation of quantum systems using a quantum computer parallel the original ideas of numerical simulation using a classical computer. In order for quantum computational simulations to advance to a competitive point, many techniques from classical simulations must be imported into the quantum domain. In this article, we consider the applications of symmetry in the context of quantum simulation. Building upon well established machinery, we propose a form of first quantized simulation that only requires the spatial part of the wave function, thereby allowing spin-free quantum computational simulations. We go further and discuss the preparation of N-body states with specified symmetries based on projection techniques. We consider two simple examples, molecular hydrogen and cyclopropenyl cation, to illustrate the ideas. While the methods here represent adaptations of known quantum algorithms, they are the first to explicitly deal with preparing N-body symmetry-adapted states.
Computer Simulation Studies in Condensed-Matter Physics XVII
Landau, D. P.; Lewis, S. P.; Schüttler, H.-B.
This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.
1995-05-01
A HYBRID ANALYTICAL/ SIMULATION MODELING APPROACH FOR PLANNING AND OPTIMIZING MASS TACTICAL AIRBORNE OPERATIONS by DAVID DOUGLAS BRIGGS M.S.B.A...COVERED MAY 1995 TECHNICAL REPORT THESIS 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS A HYBRID ANALYTICAL SIMULATION MODELING APPROACH FOR PLANNING AND...are present. Thus, simulation modeling presents itself as an excellent alternate tool for planning because it allows for the modeling of highly complex
Teaching Computer Organization and Architecture Using Simulation and FPGA Applications
2007-01-01
This paper presents the design concepts and realization of incorporating micro-operation simulation and FPGA implementation into a teaching tool for computer organization and architecture. This teaching tool helps computer engineering and computer science students to be familiarized practically with computer organization and architecture through the development of their own instruction set, computer programming and interfacing experiments. A two-pass assembler has been designed and implemente...
Computational simulations of vorticity enhanced diffusion
Vold, Erik L.
1999-11-01
Computer simulations are used to investigate a phenomenon of vorticity enhanced diffusion (VED), a net transport and mixing of a passive scalar across a prescribed vortex flow field driven by a background gradient in the scalar quantity. The central issue under study here is the increase in scalar flux down the gradient and across the vortex field. The numerical scheme uses cylindrical coordinates centered with the vortex flow which allows an exact advective solution and 1D or 2D diffusion using simple numerical methods. In the results, the ratio of transport across a localized vortex region in the presence of the vortex flow over that expected for diffusion alone is evaluated as a measure of VED. This ratio is seen to increase dramatically while the absolute flux across the vortex decreases slowly as the diffusion coefficient is decreased. Similar results are found and compared for varying diffusion coefficient, D, or vortex rotation time, τv, for a constant background gradient in the transported scalar vs an interface in the transported quantity, and for vortex flow fields constant in time vs flow which evolves in time from an initial state and with a Schmidt number of order unity. A simple analysis shows that for a small diffusion coefficient, the flux ratio measure of VED scales as the vortex radius over the thickness for mass diffusion in a viscous shear layer within the vortex characterized by (Dτv)1/2. The phenomenon is linear as investigated here and suggests that a significant enhancement of mixing in fluids may be a relatively simple linear process. Discussion touches on how this vorticity enhanced diffusion may be related to mixing in nonlinear turbulent flows.
Computer simulation of the mechanical properties of metamaterials
Gerasimov, R. A.; Eremeyev, V. A.; Petrova, T. O.; Egorov, V. I.; Maksimova, O. G.; Maksimov, A. V.
2016-08-01
For a hybrid discrete-continual model describing a system which consists of a substrate and polymer coating, we provide computer simulation of its mechanical properties for various levels of deformations. For the substrate, we apply the elastic model with the Hooke law while for the polymeric coating, we use a discrete model. Here we use the Stockmayer potential which is a Lennard-Jones potential with additional term which describes the dipole interactions between neighbour segments of polymer chains, that is Keesom energy. Using Monte-Carlo method with Metropolis algorithm for a given temperature the equilibrium state is determined. We obtain dependencies of the energy, force, bending moment and Young's modulus for various levels of deformations and for different values of temperature. We show that for the increase of the deformations level the influence of surface coating on the considered material parameters is less pronounced. We provide comparison of obtained results with experimental data on deformations of crystalline polymers (gutta-percha, etc.)
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
Computer simulation of hard-core models for liquid crystals
Frenkel, D.
1987-01-01
A review is presented of computer simulations of liquid crystal systems. It will be shown that the shape of hard-core particles is of crucial importance for the stability of the phases. Both static and dynamic properties of the systems are obtained by means of computer simulation.
Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.
Jolly, Laura D.; Sisler, Grovalynn
1988-01-01
The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…
Overview of Computer Simulation Modeling Approaches and Methods
Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett
2005-01-01
The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...
A simulation model of a star computer network
Gomaa, H
1979-01-01
A simulation model of the CERN (European Organization for Nuclear Research) SPS star computer network is described. The model concentrates on simulating the message handling computer, through which all messages in the network pass. The implementation of the model and its calibration are also described. (6 refs).
Flow Through a Laboratory Sediment Sample by Computer Simulation Modeling
2006-09-07
Flow through a laboratory sediment sample by computer simulation modeling R.B. Pandeya’b*, Allen H. Reeda, Edward Braithwaitea, Ray Seyfarth0, J.F...through a laboratory sediment sample by computer simulation modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.
Jolly, Laura D.; Sisler, Grovalynn
1988-01-01
The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…
SIMULATION OF WIRELESS SENSOR NETWORK WITH HYBRID TOPOLOGY
Directory of Open Access Journals (Sweden)
J. Jaslin Deva Gifty
2016-03-01
Full Text Available The design of low rate Wireless Personal Area Network (WPAN by IEEE 802.15.4 standard has been developed to support lower data rates and low power consuming application. Zigbee Wireless Sensor Network (WSN works on the network and application layer in IEEE 802.15.4. Zigbee network can be configured in star, tree or mesh topology. The performance varies from topology to topology. The performance parameters such as network lifetime, energy consumption, throughput, delay in data delivery and sensor field coverage area varies depending on the network topology. In this paper, designing of hybrid topology by using two possible combinations such as star-tree and star-mesh is simulated to verify the communication reliability. This approach is to combine all the benefits of two network model. The parameters such as jitter, delay and throughput are measured for these scenarios. Further, MAC parameters impact such as beacon order (BO and super frame order (SO for low power consumption and high channel utilization, has been analysed for star, tree and mesh topology in beacon disable mode and beacon enable mode by varying CBR traffic loads.
Modeling and simulation of a hybrid ship power system
Doktorcik, Christopher J.
2011-12-01
Optimizing the performance of naval ship power systems requires integrated design and coordination of the respective subsystems (sources, converters, and loads). A significant challenge in the system-level integration is solving the Power Management Control Problem (PMCP). The PMCP entails deciding on subsystem power usages for achieving a trade-off between the error in tracking a desired position/velocity profile, minimizing fuel consumption, and ensuring stable system operation, while at the same time meeting performance limitations of each subsystem. As such, the PMCP naturally arises at a supervisory level of a ship's operation. In this research, several critical steps toward the solution of the PMCP for surface ships have been undertaken. First, new behavioral models have been developed for gas turbine engines, wound rotor synchronous machines, DC super-capacitors, induction machines, and ship propulsion systems. Conventional models describe system inputs and outputs in terms of physical variables such as voltage, current, torque, and force. In contrast, the behavioral models developed herein express system inputs and outputs in terms of power whenever possible. Additionally, the models have been configured to form a hybrid system-level power model (HSPM) of a proposed ship electrical architecture. Lastly, several simulation studies have been completed to expose the capabilities and limitations of the HSPM.
Broadband ground-motion simulation using a hybrid approach
Graves, R.W.; Pitarka, A.
2010-01-01
This paper describes refinements to the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2004), which combines a deterministic approach at low frequencies (f 1 Hz). In our approach, fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time. The prescribed slip distribution is constrained to follow an inverse wavenumber-squared fall-off and the average rupture speed is set at 80% of the local shear-wave velocity, which is then adjusted such that the rupture propagates faster in regions of high slip and slower in regions of low slip. We use a Kostrov-like slip-rate function having a rise time proportional to the square root of slip, with the average rise time across the entire fault constrained empirically. Recent observations from large surface rupturing earthquakes indicate a reduction of rupture propagation speed and lengthening of rise time in the near surface, which we model by applying a 70% reduction of the rupture speed and increasing the rise time by a factor of 2 in a zone extending from the surface to a depth of 5 km. We demonstrate the fidelity of the technique by modeling the strong-motion recordings from the Imperial Valley, Loma Prieta, Landers, and Northridge earthquakes.
Institute of Scientific and Technical Information of China (English)
CHEN; Yan-xin; HE; Hui; ZHANG; Chun-long; CHANG; Li; LI; Rui-xue; TANG; Hong-bin; YU; Ting
2012-01-01
<正>A computer program was developed to simulate technetium scrubbing section (TcS) in Purex based on the theory of cascade extraction. The program can simulate the steady-state behavior of HNO3, U, Pu and Tc in TcS. The reliability of the program was verified by cascade extraction experiment, the relative error between calculation value and experiment value is 10% more or less except few spots. The comparison between experiment and calculation results is illustrated in Fig. 1. The technical parameters of TcS were analyzed by this program, it is found that the Decontamination factor (DFTc/U) in TcS is remarkably affected by the overall consumption (multiply molarity by volume flux) of HNO3, DFTc/U is
Ultra-fast hybrid CPU-GPU multiple scatter simulation for 3-D PET.
Kim, Kyung Sang; Son, Young Don; Cho, Zang Hee; Ra, Jong Beom; Ye, Jong Chul
2014-01-01
Scatter correction is very important in 3-D PET reconstruction due to a large scatter contribution in measurements. Currently, one of the most popular methods is the so-called single scatter simulation (SSS), which considers single Compton scattering contributions from many randomly distributed scatter points. The SSS enables a fast calculation of scattering with a relatively high accuracy; however, the accuracy of SSS is dependent on the accuracy of tail fitting to find a correct scaling factor, which is often difficult in low photon count measurements. To overcome this drawback as well as to improve accuracy of scatter estimation by incorporating multiple scattering contribution, we propose a multiple scatter simulation (MSS) based on a simplified Monte Carlo (MC) simulation that considers photon migration and interactions due to photoelectric absorption and Compton scattering. Unlike the SSS, the MSS calculates a scaling factor by comparing simulated prompt data with the measured data in the whole volume, which enables a more robust estimation of a scaling factor. Even though the proposed MSS is based on MC, a significant acceleration of the computational time is possible by using a virtual detector array with a larger pitch by exploiting that the scatter distribution varies slowly in spatial domain. Furthermore, our MSS implementation is nicely fit to a parallel implementation using graphic processor unit (GPU). In particular, we exploit a hybrid CPU-GPU technique using the open multiprocessing and the compute unified device architecture, which results in 128.3 times faster than using a single CPU. Overall, the computational time of MSS is 9.4 s for a high-resolution research tomograph (HRRT) system. The performance of the proposed MSS is validated through actual experiments using an HRRT.
Model-Invariant Hybrid Computations of Separated Flows for RCA Standard Test Cases
Woodruff, Stephen
2016-01-01
NASA's Revolutionary Computational Aerosciences (RCA) subproject has identified several smooth-body separated flows as standard test cases to emphasize the challenge these flows present for computational methods and their importance to the aerospace community. Results of computations of two of these test cases, the NASA hump and the FAITH experiment, are presented. The computations were performed with the model-invariant hybrid LES-RANS formulation, implemented in the NASA code VULCAN-CFD. The model- invariant formulation employs gradual LES-RANS transitions and compensation for model variation to provide more accurate and efficient hybrid computations. Comparisons revealed that the LES-RANS transitions employed in these computations were sufficiently gradual that the compensating terms were unnecessary. Agreement with experiment was achieved only after reducing the turbulent viscosity to mitigate the effect of numerical dissipation. The stream-wise evolution of peak Reynolds shear stress was employed as a measure of turbulence dynamics in separated flows useful for evaluating computations.
Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction.
Agulleiro, J I; Vázquez, F; Garzón, E M; Fernández, J J
2012-04-01
Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. Copyright © 2012 Elsevier B.V. All rights reserved.
Automatic artefact removal in a self-paced hybrid brain- computer interface system
Directory of Open Access Journals (Sweden)
Yong Xinyi
2012-07-01
Full Text Available Abstract Background A novel artefact removal algorithm is proposed for a self-paced hybrid brain-computer interface (BCI system. This hybrid system combines a self-paced BCI with an eye-tracker to operate a virtual keyboard. To select a letter, the user must gaze at the target for at least a specific period of time (dwell time and then activate the BCI by performing a mental task. Unfortunately, electroencephalogram (EEG signals are often contaminated with artefacts. Artefacts change the quality of EEG signals and subsequently degrade the BCI’s performance. Methods To remove artefacts in EEG signals, the proposed algorithm uses the stationary wavelet transform combined with a new adaptive thresholding mechanism. To evaluate the performance of the proposed algorithm and other artefact handling/removal methods, semi-simulated EEG signals (i.e., real EEG signals mixed with simulated artefacts and real EEG signals obtained from seven participants are used. For real EEG signals, the hybrid BCI system’s performance is evaluated in an online-like manner, i.e., using the continuous data from the last session as in a real-time environment. Results With semi-simulated EEG signals, we show that the proposed algorithm achieves lower signal distortion in both time and frequency domains. With real EEG signals, we demonstrate that for dwell time of 0.0s, the number of false-positives/minute is 2 and the true positive rate (TPR achieved by the proposed algorithm is 44.7%, which is more than 15.0% higher compared to other state-of-the-art artefact handling methods. As dwell time increases to 1.0s, the TPR increases to 73.1%. Conclusions The proposed artefact removal algorithm greatly improves the BCI’s performance. It also has the following advantages: a it does not require additional electrooculogram/electromyogram channels, long data segments or a large number of EEG channels, b it allows real-time processing, and c it reduces signal distortion.
Geroyannis, Vassilis S
2014-01-01
We develop a "hybrid approximative scheme" in the framework of the post-Newtonian approximation for computing general-relativistic polytropic models simulating neutron stars in critical rigid rotation. We treat the differential equations governing such a model as a "complex initial value problem", and we solve it by using the so-called "complex-plane strategy". We incorporate into the computations the complete solution for the relativistic effects, this issue representing a significant improvement with regard to the classical post-Newtonian approximation, as verified by extended comparisons of the numerical results.
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
Integrated Plasma Simulation of Lower Hybrid Current Drive in Tokamaks
Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Kessel, C. E.; Jardin, S. C.
2012-03-01
It has been shown in Alcator C-Mod that the onset time for sawteeth can be delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through the injection of off-axis LH current drive power [1]. We are simulating these experiments using the Integrated Plasma Simulator (IPS) [2], where the driven LH current density profiles are computed using a ray tracing component (GENRAY) and Fokker Planck code (CQL3D) [3] that are run in a tightly coupled time advance. The background plasma is evolved using the TSC transport code with the Porcelli sawtooth model [4]. Predictions of the driven LH current profiles will be compared with simpler ``reduced'' models for LHCD such as the LSC code which is implemented in TSC and which is also invoked within the IPS. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).
Parallel Computing Characteristics of CUPID code under MPI and Hybrid environment
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Ryong; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeon, Byoung Jin; Choi, Hyoung Gwon [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of)
2014-05-15
simulation with diagonal preconditioning shows the better speedup. The MPI library was used for node-to-node communication among partitioned subdomains, and the OpenMP threads were activated in every single node using multi-core computing environment. The results of hybrid computing show good performance comparing the pure MPI parallel computing.
Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator
Institute of Scientific and Technical Information of China (English)
Xiao LIN; Shuang-xia PAN; Dong-yun WANG
2008-01-01
The primary focus of this study is to investigate the control strategies of a hybrid system used in hydraulic excavators. First, the structure and evaluation target of hybrid hydraulic excavators are analyzed. Then the dynamic system model including batteries, motor and engine is built as the simulation environment to obtain control results. A so-called multi-work-point dynamic control strategy, which has both closed-loop speed PI (proportion integral) control and direct torque control, is proposed and studied in the simulation model. Simulation results indicate that the hybrid system with this strategy can meet the power demand and achieve better system stability and higher fuel efficiency.
Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N
2006-07-01
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.
Alternative energy technologies an introduction with computer simulations
Buxton, Gavin
2014-01-01
Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe
GPU-accelerated micromagnetic simulations using cloud computing
Jermain, C. L.; Rowlands, G. E.; Buhrman, R. A.; Ralph, D. C.
2016-03-01
Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics.
GPU-accelerated micromagnetic simulations using cloud computing
Jermain, C L; Buhrman, R A; Ralph, D C
2015-01-01
Highly-parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics.
Directory of Open Access Journals (Sweden)
Katrašnik T.
2013-05-01
Full Text Available The paper presents a mechanistic system level simulation model for mode/big hybrid and conventional vehicle topologies. The paper addresses the Dynamic interaction between different domains: internal combustion engine. exhaust after treatment devices, electric components. mechanical drive train. cooling circuit system and corresponding control units. To achieve a good ratio between accuracy. predictability and computational speed of the model an innovative time domain decoupling is presented, which is based on applying domain specific integration steps to ditferent domains and subsequent consistent cross-domain coupling ol’thefluxes. In addition, a computationally efficient frunieveork for transporting active and passive gaseous species is introduced to combine computational efficiency with the need for modeling pollutant transport in the gas path. The applicability and versatility of the mechanistic system level simulations model is presented through analyses of transient phenomena caused by the high interdependency of the sub-systems, i.e. domains. Results of a hyt’hrid vehicle are compared to results of a conventional vehicle to highlight differences in operating regimes of partiular components that are inherent to particular poster train topology. L’article présente un modèle de simulation au niveau mécanique destiné à la modélisation de topologies de véhicules hydrides et conventionnels. L’article décrit l’interaction dynamique entre différents domaines : moteur à combustion interne, dispositifs de post-traitement d’échappement, composants électriques, chaîne cinématique mécanique, circuit de refroidissement et les unités de contrôle correspondantes. Afin d’obtenir un rapport correct entre précision, prévisibilité et vitesse de calculs du modèle, un découplage innovant du domaine temporel est présenté, lequel est basé sur l’application à différents domaines, d’étapes d’intégration sp
CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.
Skrein, Dale
1994-01-01
CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)
DEFF Research Database (Denmark)
Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan
2001-01-01
The paper suggests the combined use of different computational intelligence (CI) techniques in a hybrid scheme, as an effective approach to medical diagnosis. Getting to know the advantages and disadvantages of each computational intelligence technique in the recent years, the time has come for p...
Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application
Directory of Open Access Journals (Sweden)
Jingming Liang
2015-01-01
Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.
Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications
Directory of Open Access Journals (Sweden)
Hong-Wen He
2010-11-01
Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.
A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events
DEFF Research Database (Denmark)
Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei
2017-01-01
The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid...... numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS....../E enabling hybrid simulation of icing event and power system disturbance is developed, based on which a hybrid simulation platform is established. Numerical studies show that the functionality of power system simulation is greatly extended by taking into account the icing weather events....
Further validation of the hybrid particle-mesh method for vortex shedding flow simulations
Directory of Open Access Journals (Sweden)
Lee Seung-Jae
2015-11-01
Full Text Available This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015, numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of 2 × 106. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.
An Exploratory Investigation of Computer Simulations, Student Preferences, and Performance.
Vaidyanathan, Rajiv; Rochford, Linda
1998-01-01
Marketing students (n=99) used computer simulation, 34 did not. Students who performed well on traditional exams also did well on the simulation. Students who preferred working with others seemed to perform more poorly on both the exam and the simulation. (SK)
Applications of Computer Simulations and Statistical Mechanics in Surface Electrochemistry
Rikvold, P A; Juwono, T; Robb, D T; Novotny, M A; 10.1007/978-0-387-49586-6_4
2009-01-01
We present a brief survey of methods that utilize computer simulations and quantum and statistical mechanics in the analysis of electrochemical systems. The methods, Molecular Dynamics and Monte Carlo simulations and quantum-mechanical density-functional theory, are illustrated with examples from simulations of lithium-battery charging and electrochemical adsorption of bromine on single-crystal silver electrodes.
Creating Science Simulations through Computational Thinking Patterns
Basawapatna, Ashok Ram
2012-01-01
Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Numerical Simulations of Flow and Fuel Regression Rate Coupling in Hybrid Rocket Motors
Directory of Open Access Journals (Sweden)
Marius STOIA-DJESKA
2017-03-01
Full Text Available The hybrid propulsion offers some remarkable advantages like high safety and high specific impulse and thus it is considered a promising technology for the next generation launchers and space systems. The purpose of this work is to validate a design tool for hybrid rocket motors (HRM through numerical simulations.
Monte Carlo Simulation of Dosimetric Parameters for HYBRID PdI Source in Brachytherapy
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
A novel brachytherapy source model, ADVANTAGE HYBRID PdI, has been designed by CIAE For treatment of cancer. In this project, the purpose of this study is to obtain the dosimetric parameters of HYBRID PdI source. The Monte Carlo simulation
Reducing the Digital Divide among Children Who Received Desktop or Hybrid Computers for the Home
Directory of Open Access Journals (Sweden)
Gila Cohen Zilka
2016-06-01
Full Text Available Researchers and policy makers have been exploring ways to reduce the digital divide. Parameters commonly used to examine the digital divide worldwide, as well as in this study, are: (a the digital divide in the accessibility and mobility of the ICT infrastructure and of the content infrastructure (e.g., sites used in school; and (b the digital divide in literacy skills. In the present study we examined the degree of effectiveness of receiving a desktop or hybrid computer for the home in reducing the digital divide among children of low socio-economic status aged 8-12 from various localities across Israel. The sample consisted of 1,248 respondents assessed in two measurements. As part of the mixed-method study, 128 children were also interviewed. Findings indicate that after the children received desktop or hybrid computers, changes occurred in their frequency of access, mobility, and computer literacy. Differences were found between the groups: hybrid computers reduce disparities and promote work with the computer and surfing the Internet more than do desktop computers. Narrowing the digital divide for this age group has many implications for the acquisition of skills and study habits, and consequently, for the realization of individual potential. The children spoke about self improvement as a result of exposure to the digital environment, about a sense of empowerment and of improvement in their advantage in the social fabric. Many children expressed a desire to continue their education and expand their knowledge of computer applications, the use of software, of games, and more. Therefore, if there is no computer in the home and it is necessary to decide between a desktop and a hybrid computer, a hybrid computer is preferable.
Genetic crossing vs cloning by computer simulation
Energy Technology Data Exchange (ETDEWEB)
Dasgupta, S. [Cologne Univ., Koeln (Germany)
1997-06-01
We perform Monte Carlo simulation using Penna`s bit string model, and compare the process of asexual reproduction by cloning with that by genetic crossover. We find them to be comparable as regards survival of a species, and also if a natural disaster is simulated.
Genetic Crossing vs Cloning by Computer Simulation
Dasgupta, Subinay
We perform Monte Carlo simulation using Penna's bit string model, and compare the process of asexual reproduction by cloning with that by genetic crossover. We find them to be comparable as regards survival of a species, and also if a natural disaster is simulated.
Co-Simulation of Hybrid Systems with SpaceEx and Uppaal
DEFF Research Database (Denmark)
Bogomolov, Sergiy; Greitschus, Marius; Jensen, Peter Gjøl
2015-01-01
The Functional Mock-up Interface (FMI) is an industry standard which enables co-simulation of complex heterogeneous systems using multiple simulation engines. In this paper, we show how to use FMI in order to co-simulate hybrid systems modeled in the model checkers SPACEEX and UPPAAL. We show how...
Humans, computers and wizards human (simulated) computer interaction
Fraser, Norman; McGlashan, Scott; Wooffitt, Robin
2013-01-01
Using data taken from a major European Union funded project on speech understanding, the SunDial project, this book considers current perspectives on human computer interaction and argues for the value of an approach taken from sociology which is based on conversation analysis.
Performance Comparison of Hybrid Signed Digit Arithmetic in Efficient Computing
Directory of Open Access Journals (Sweden)
VISHAL AWASTHI
2011-10-01
Full Text Available In redundant representations, addition can be carried out in a constant time independent of the word length of the operands. Adder forms a fundamental building block in almost majority of VLSI designs. A hybrid adder can add an unsigned number to a signed-digit number and hence their efficient performance greatly determinesthe quality of the final output of the concerned circuit. In this paper we designed and compared the speed of adders by reducing the carry propagation time with the help of combined effect of improved architectures of adders and signed digit representation of number systems. The key idea is to draw out a compromise between execution time of fast adding process and area available which is often very limited. In this paper we also tried to verify the various algorithms of signed digit and hybrid signed digit adders.
A Hybrid Computational Model to Explore the Topological Characteristics of Epithelial Tissues.
González-Valverde, Ismael; García Aznar, José Manuel
2017-03-01
Epithelial tissues show a particular topology where cells resemble a polygon-like shape, but some biological processes can alter this tissue topology. During cell proliferation, mitotic cell dilation deforms the tissue and modifies the tissue topology. Additionally, cells are reorganized in the epithelial layer and these rearrangements also alter the polygon distribution. We present here a computer-based hybrid framework focused on the simulation of epithelial layer dynamics that combines discrete and continuum numerical models. In this framework, we consider topological and mechanical aspects of the epithelial tissue. Individual cells in the tissue are simulated by an off-lattice agent-based model, which keeps the information of each cell. In addition, we model the cell-cell interaction forces and the cell cycle. Otherwise, we simulate the passive mechanical behaviour of the cell monolayer using a material that approximates the mechanical properties of the cell. This continuum approach is solved by the finite element method, which uses a dynamic mesh generated by the triangulation of cell polygons. Forces generated by cell-cell interaction in the agent-based model are also applied on the finite element mesh. Cell movement in the agent-based model is driven by the displacements obtained from the deformed finite element mesh of the continuum mechanical approach. We successfully compare the results of our simulations with some experiments about the topology of proliferating epithelial tissues in Drosophila. Our framework is able to model the emergent behaviour of the cell monolayer that is due to local cell-cell interactions, which have a direct influence on the dynamics of the epithelial tissue.
Full scale computer simulators in anesthesia training and evaluation.
Wong, Anne K
2004-05-01
With the advent of competency-based curriculum, technology such as full scale computer simulators have acquired an increasingly important role in anesthesia both in training and evaluation. This article reviews the current role of full scale computer simulators in teaching and evaluation in anesthesia. This review draws from existing anesthesia and medical education literature in order to examine and assess the current role of full scale computer simulators in anesthesia education today. The last decade has witnessed a major increase in the use of full scale computer simulators in anesthesia. Many applications have been found for these simulators including teaching and training, evaluation and research. Despite the increasing use and application of full scale computers in anesthesia in the area of teaching and training, definitive studies evaluating its cost effectiveness, its efficacy compared to traditional training methods or its impact on patient outcome are still pending. Although there is some preliminary evidence of reliability and validity in using the simulator to evaluate clinical competence, development in this area has not progressed enough to justify its use in formal, summative evaluation of competence in anesthesia at this time. As technology acquires an increasingly important role in medical education, full scale computer simulators represent an exciting potential in anesthesia. However, the full potential and role of simulators in anesthesia is still in development and will require a dovetailing of clinical theory and practice with current research in medical education.
Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment
Baurle, R. A.; Edwards, J. R.
2009-01-01
Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.
Computational and experimental study of air hybrid engine concepts
Lee, Cho-Yu
2011-01-01
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The air hybrid engine absorbs the vehicle kinetic energy during braking, stores it in an air tank in the form of compressed air, and reuses it to start the engine and to propel a vehicle during cruising and acceleration. Capturing, storing and reusing this braking energy to achieve stop-start operation and to give additional power can therefore improve fuel economy, particularly in cities and ...
Eem, S. H.; Jung, H. J.; Koo, J. H.
2013-05-01
Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study.
Hybrid computer techniques for solving partial differential equations
Hammond, J. L., Jr.; Odowd, W. M.
1971-01-01
Techniques overcome equipment limitations that restrict other computer techniques in solving trivial cases. The use of curve fitting by quadratic interpolation greatly reduces required digital storage space.
Understanding Emergency Care Delivery through Computer Simulation Modeling.
Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L
2017-08-10
In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This manuscript, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This manuscript discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo Simulation, System Dynamics modeling, Discrete-Event Simulation, and Agent Based Simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this manuscript, our goal is to enhance adoption of computer simulation, a set of methods which hold great promise in addressing emergency care organization and design challenges. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Computer Simulation of Angle-measuring System of Photoelectric Theodolite
Energy Technology Data Exchange (ETDEWEB)
Zeng, L [School of Electric Engineering and Automation, HIT, Harbin, 150080 (China); Zhao, Z W [Institute of Command and Technology of Equipment, Beijing, 101416 (China); Song, S L [Institute of Command and Technology of Equipment, Beijing, 101416 (China); Wang, L T [Unit 92941, PLA Huludao, Liaoning, 125000 (China)
2006-10-15
In this paper, a virtual test platform based on malfunction phenomena is designed, using the methods of computer simulation and numerical mask. It is used in the simulation training of angle-measuring system of photoelectric theodolite. Actual application proves that this platform supplies good condition for technicians making deep simulation training and presents a useful approach for the establishment of other large equipment simulation platforms.
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
The present paper describes the development of a new hybrid computational approach for applicability for nonlinear/linear thermal structural analysis. The proposed transfinite element approach is a hybrid scheme as it combines the modeling versatility of contemporary finite elements in conjunction with transform methods and the classical Bubnov-Galerkin schemes. Applicability of the proposed formulations for nonlinear analysis is also developed. Several test cases are presented to include nonlinear/linear unified thermal-stress and thermal-stress wave propagations. Comparative results validate the fundamental capablities of the proposed hybrid transfinite element methodology.
Large-scale computing techniques for complex system simulations
Dubitzky, Werner; Schott, Bernard
2012-01-01
Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and
Computed radiography simulation using the Monte Carlo code MCNPX
Energy Technology Data Exchange (ETDEWEB)
Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)
2010-09-15
Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.
Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction
Energy Technology Data Exchange (ETDEWEB)
Agulleiro, J.I.; Vazquez, F.; Garzon, E.M. [Supercomputing and Algorithms Group, Associated Unit CSIC-UAL, University of Almeria, 04120 Almeria (Spain); Fernandez, J.J., E-mail: JJ.Fernandez@csic.es [National Centre for Biotechnology, National Research Council (CNB-CSIC), Campus UAM, C/Darwin 3, Cantoblanco, 28049 Madrid (Spain)
2012-04-15
Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. -- Highlights: Black-Right-Pointing-Pointer Hybrid computing allows full exploitation of the power (CPU+GPU) in a computer. Black-Right-Pointing-Pointer Proper orchestration of workload is managed by an on-demand strategy. Black-Right-Pointing-Pointer Total number of threads running in the system should be limited to the number of CPUs.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Ku, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hager, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chang, C. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kwon, J. M. [National Fusion Research Institute, Republic of Korea; Parker, S. E. [University of Colorado Boulder, USA
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Ku, S., E-mail: sku@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Hager, R.; Chang, C.S. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kwon, J.M. [National Fusion Research Institute (Korea, Republic of); Parker, S.E. [University of Colorado Boulder (United States)
2016-06-15
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Ku, S.; Hager, R.; Chang, C. S.; Kwon, J. M.; Parker, S. E.
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation - e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others - can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function - driven by ionization, charge exchange and wall loss - is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
Computer Simulations of Lipid Bilayers and Proteins
DEFF Research Database (Denmark)
Sonne, Jacob
2006-01-01
, the improved force field makes it possible to simulate the biologically relevant fluid ($L_{\\alpha}$) phase in an NPT ensemble, which is an important prerequisite for taking full advantage of the predictive power of MD simulations since the area per lipid need not be known prior to simulation. Chapter 4...... in the pressure profile since the pressure profile cannot be measured in traditional experiments. Even so, pressure profile calculations from MD simulations are not trivial due to both fundamental and technical issues. We addressed two such issues namely the uniqueness of the pressure profile and the effect......CD belongs to the adonesine triphosphate (ATP) binding cassette (ABC) transporter family that use ATP to drive active transport of a wide variety of compounds across cell membranes. BtuCD accounts for vitamin B12 import into Escherichia coli and is one of the only ABC transporters for which a reliable...
A Hybrid Circular Queue Method for Iterative Stencil Computations on GPUs
Institute of Scientific and Technical Information of China (English)
Yang Yang; Hui-Min Cui; Xiao-Bing Feng; Jing-Ling Xue
2012-01-01
In this paper,we present a hybrid circular queue method that can significantly boost the performance of stencil computations on GPU by carefully balancing usage of registers and shared-memory.Unlike earlier methods that rely on circular queues predominantly implemented using indirectly addressable shared memory,our hybrid method exploits a new reuse pattern spanning across the multiple time steps in stencil computations so that circular queues can be implemented by both shared memory and registers effectively in a balanced manner.We describe a framework that automatically finds the best placement of data in registers and shared memory in order to maximize the performance of stencil computations.Validation using four different types of stencils on three different GPU platforms shows that our hybrid method achieves speedups up to 2.93X over methods that use circular queues implemented with shared-memory only.
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
3-D hybrid LES-RANS model for simulation of open-channel T-diversion flows
Institute of Scientific and Technical Information of China (English)
Jie ZHOU; Cheng ZENG
2009-01-01
The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage.To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows,a hybrid LES-RANS model,which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model,is proposed in the present study.The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel,as well as the downstream region of a branch channel.The LES model was used to simulate the channel diversion region,where turbulent flow characteristics ate complicated.Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence.A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations.This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions.Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)
Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan
This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.
A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)
Energy Technology Data Exchange (ETDEWEB)
Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan [Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616 (United States)
2010-10-01
This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and ''through-the-ground'' parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains. (author)
Computer simulation of rod-sphere mixtures
Antypov, D
2003-01-01
Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both...
Computer simulation of confined liquid crystal dynamics
Webster, R E
2001-01-01
are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results...
COMPUTER SIMULATION SYSTEM OF STRETCH REDUCING MILL
Institute of Scientific and Technical Information of China (English)
B.Y. Sun; S.J. Yuan
2007-01-01
The principle of the stretch reducing process is analyzed and three models of pass design areestablished. The simulations are done about variables, such as, stress, strain, the stretches betweenthe stands, the size parameters of the steel tube, and the roll force parameters. According to itsproduct catalogs the system can automatically divide the pass series, formulate the rolling table,and simulate the basic technological parameters in the stretch reducing process. All modules areintegrated based on the developing environment of VB6. The system can draw simulation curvesand pass pictures. Three kinds of database including the material database, pass design database,and product database are devised using Microsoft Access, which can be directly edited, corrected,and searched.
MINEXP, A Computer-Simulated Mineral Exploration Program
Smith, Michael J.; And Others
1978-01-01
This computer simulation is designed to put students into a realistic decision making situation in mineral exploration. This program can be used with different exploration situations such as ore deposits, petroleum, ground water, etc. (MR)
Modelling of dusty plasma properties by computer simulation methods
Energy Technology Data Exchange (ETDEWEB)
Baimbetov, F B [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Ramazanov, T S [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Kadyrsizov, E R [Institute for High Energy Densities of RAS, Izhorskaya 13/19, Moscow 125412 (Russian Federation); Petrov, O F [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Gavrikov, A V [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan)
2006-04-28
Computer simulation of dusty plasma properties is performed. The radial distribution functions, the diffusion coefficient are calculated on the basis of the Langevin dynamics. A comparison with the experimental data is made.
Energy Technology Data Exchange (ETDEWEB)
Smith, T.P. (Georgia Inst. of Technology); Tucker, D.A.; Haynes, C.L. (Georgia Inst. of Technology); Liese, E.A.; Wepfer, W.J. (Georgia Inst. of Technology)
2006-11-01
Electrical load transients imposed on the cell stack of a solid oxide fuel cell/gas turbine hybrid power system are studied using the Hybrid Performance (HyPer) project. The hardware simulation facility is located at the U.S. Department of Energy, National Energy Technology Laboratory (NETL). A computational fuel cell model capable of operating in real time is integrated with operating gas turbine hardware. The thermal output of a modeled 350 kW solid oxide fuel cell stack is replicated in the facility by a natural gas fired burner in a direct fired hybrid configuration. Pressure vessels are used to represent a fuel cell stack's cathode flow and post combustion volume and flow impedance. This hardware is used to simulate the fuel cell stack and is incorporated with a modified turbine, compressor, and 120 kW generator on a single shaft. For this study, a simulation was started with a simulated current demand of 307 A on the fuel cell at approximately 0.75 V and an actual 45 kW electrical load on the gas turbine. An open loop response, allowing the turbine rotational speed to respond to thermal transients, was successfully evaluated for a 5% current reduction on the fuel cell followed by a 5% current increase. The impact of the fuel cell load change on system process variables is presented. The test results demonstrate the capabilities of the hardware-in-the-loop simulation approach in evaluating hybrid fuel cell turbine dynamics and performance.
High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation
Yang, W L; Hu, Y; Feng, M; Du, J F
2011-01-01
We study a hybrid quantum computing system using nitrogen-vacancy center ensemble (NVE) as quantum memory, current-biased Josephson junction (CBJJ) superconducting qubit fabricated in a transmission line resonator (TLR) as quantum computing processor and the microwave photons in TLR as quantum data bus. The storage process is seriously treated by considering all kinds of decoherence mechanisms. Such a hybrid quantum device can also be used to create multi-qubit W states of NVEs through a common CBJJ. The experimental feasibility and challenge are justified using currently available technology.
Directory of Open Access Journals (Sweden)
Bravo S.
2004-01-01
Full Text Available A hybrid neural network model for simulating the process of enzymatic reduction of fructose to sorbitol process catalyzed by glucose-fructose oxidoreductase in Zymomonas mobilis CP4 is presented. Data used to derive and validate the model was obtained from experiments carried out under different conditions of pH, temperature and concentrations of both substrates (glucose and fructose involved in the reaction. Sonicated and lyophilized cells were used as source of the enzyme. The optimal pH for sorbitol synthesis at 30º C is 6.5. For a value of pH of 6, the optimal temperature is 35º C. The neural network in the model computes the value of the kinetic relationship. The hybrid neural network model is able to simulate changes in the substrates and product concentrations during sorbitol synthesis under pH and temperature conditions ranging between 5 and 7.5 and 25 and 40º C, respectively. Under these conditions the rate of sorbitol synthesis shows important differences. Values computed using the hybrid neural network model have an average error of 1.7·10-3 mole.
Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project
National Aeronautics and Space Administration — The proposed effort addresses a need for accurate computational models to support aeroassist and entry vehicle system design over a broad range of flight conditions...
A simulator for quantum computer hardware
Michielsen, K.F L; de Raedt, H.A.; De Raedt, K.
2002-01-01
We present new examples of the use of the quantum computer (QC) emulator. For educational purposes we describe the implementation of the CNOT and Toffoli gate, two basic building blocks of a QC, on a three qubit NMR-like QC.
How Real Is a Computer Simulation?
Higgins, John J.
Two keywords "input" and "get," in the BASIC programming language provide a metaphor of the processes of response and intervention in a dialogue situation. Computer teaching activities can be programmed using one or both of these commands. There are at least five main types: the quiz or overt teaching program, the text processsing program, the…
Hybrid PSO-MOBA for Profit Maximization in Cloud Computing
Directory of Open Access Journals (Sweden)
Dr. Salu George
2015-02-01
Full Text Available Cloud service provider, infrastructure vendor and clients/Cloud user’s are main actors in any cloud enterprise like Amazon web service’s cloud or Google’s cloud. Now these enterprises take care in infrastructure deployment and cloud services management (IaaS/PaaS/SaaS. Cloud user ‘s need to provide correct amount of services needed and characteristic of workload in order to avoid over – provisioning of resources and it’s the important pricing factor. Cloud service provider need to manage the resources and as well as optimize the resources to maximize the profit. To manage the profit we consider the M/M/m queuing model which manages the queue of job and provide average execution time. Resource Scheduling is one of the main concerns in profit maximization for which we take HYBRID PSO-MOBA as it resolves the global convergence problem, faster convergence, less parameter to tune, easier searching in very large problem spaces and locating the right resource. In HYBRID PSO-MOBA we are combining the features of PSO and MOBA to achieve the benefits of both PSO and MOBA and have greater compatibility.
Comprehensive Memory-Bound Simulations on Single Board Computers
Himpe, Christian; Leibner, Tobias; Rave, Stephan
2017-01-01
Numerical simulations of increasingly complex models, demand growing amounts of (main) memory. Typically, large quantities of memory are provided by workstation- and server-type computers, but in turn consume massive amounts of power. Model order reduction can reduce the memory requirements of simulations by constructing reduced order models, yet the assembly of these surrogate models itself often requires memory-rich compute environments. We resolve this deadlock by careful algorithmic desig...
Artificial Neural Network Metamodels of Stochastic Computer Simulations
1994-08-10
SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC
GATE Monte Carlo simulation in a cloud computing environment
Rowedder, Blake Austin
The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.
Hybrid statistics-simulations based method for atom-counting from ADF STEM images.
De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra
2017-01-25
A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.
Understanding Islamist political violence through computational social simulation
Energy Technology Data Exchange (ETDEWEB)
Watkins, Jennifer H [Los Alamos National Laboratory; Mackerrow, Edward P [Los Alamos National Laboratory; Patelli, Paolo G [Los Alamos National Laboratory; Eberhardt, Ariane [Los Alamos National Laboratory; Stradling, Seth G [Los Alamos National Laboratory
2008-01-01
Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.
A novel computer simulation for modeling grain growth
Energy Technology Data Exchange (ETDEWEB)
Chen, L.Q. (Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering)
1995-01-01
In this paper, the author proposes a new computer simulation model for investigating grain growth kinetics, born from the recent work on the domain growth kinetics of a quenched system with many non-conserved order parameters. A key new feature of this model for studying grain growth is that the grain boundaries are diffuse, as opposed to previous meanfield and statistical theories and Monte-Carlo simulations which assumed that grain boundaries were sharp. Unlike the Monte-Carlo simulations in which grain boundaries are made up of kinks, grain boundaries in the continuum model are smooth. Below, he describes this model in detail, give prescriptions for computer simulation, and then present computer simulation results on a two-dimensional model system.
Studying Scientific Discovery by Computer Simulation.
1983-03-30
scientific laws that were induced from data before any theory was available to discover the regularities. To the previous examples, we could add Gregor ...discoveries (excluding those of Mendel and Mendeleev, which we have not simulated) could have been made. The Role of Theory in Law Induction BACON’s
Advanced Simulation and Computing Business Plan
Energy Technology Data Exchange (ETDEWEB)
Rummel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-07-09
To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.
Role of computational efficiency in process simulation
Directory of Open Access Journals (Sweden)
Kurt Strand
1989-07-01
Full Text Available It is demonstrated how efficient numerical algorithms may be combined to yield a powerful environment for analysing and simulating dynamic systems. The importance of using efficient numerical algorithms is emphasized and demonstrated through examples from the petrochemical industry.
Simulation Concept - How to Exploit Tools for Computing Hybrids
2010-06-01
and Technology - QuIST ). The results of these programs will play a role in demonstrating how biotechnology and quantum sciences can provide new...partial differential equation q heat flux QuIST Quantum Information Science and Technology RF radio frequency R&D research and development
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.
Computer Simulation of the Beating Human Heart
Peskin, Charles S.; McQueen, David M.
2001-06-01
The mechanical function of the human heart couples together the fluid mechanics of blood and the soft tissue mechanics of the muscular heart walls and flexible heart valve leaflets. We discuss a unified mathematical formulation of this problem in which the soft tissue looks like a specialized part of the fluid in which additional forces are applied. This leads to a computational scheme known as the Immersed Boundary (IB) method for solving the coupled equations of motion of the whole system. The IB method is used to construct a three-dimensional Virtual Heart, including representations of all four chambers of the heart and all four valves, in addition to the large arteries and veins that connect the heart to the rest of the circulation. The chambers, valves, and vessels are all modeled as collections of elastic (and where appropriate, actively contractile) fibers immersed in viscous incompressible fluid. Results are shown as a computer-generated video animation of the beating heart.
Monte Carlo simulations on SIMD computer architectures
Energy Technology Data Exchange (ETDEWEB)
Burmester, C.P.; Gronsky, R. [Lawrence Berkeley Lab., CA (United States); Wille, L.T. [Florida Atlantic Univ., Boca Raton, FL (United States). Dept. of Physics
1992-03-01
Algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SMM) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures.
Cardiovascular Physiology Teaching: Computer Simulations vs. Animal Demonstrations.
Samsel, Richard W.; And Others
1994-01-01
At the introductory level, the computer provides an effective alternative to using animals for laboratory teaching. Computer software can simulate the operation of multiple organ systems. Advantages of software include alteration of variables that are not easily changed in vivo, repeated interventions, and cost-effective hands-on student access.…
Use of Computer Simulations in Microbial and Molecular Genetics.
Wood, Peter
1984-01-01
Describes five computer programs: four simulations of genetic and physical mapping experiments and one interactive learning program on the genetic coding mechanism. The programs were originally written in BASIC for the VAX-11/750 V.3. mainframe computer and have been translated into Applesoft BASIC for Apple IIe microcomputers. (JN)
Computer Simulation of Breast Cancer Screening
2001-07-01
revisions, we became frustrated with this journal’s lack of timeliness and the reviewer’s lack of understanding of the role that physics plays in the...parameter ý may be considered as the radiologist’s gestalt . There are many applications where digital mammograms are analyzed by a computer, and in these...mammography: sensitivity and specificity in relation to hormone replacement therapy [see comments]. Radiology 1997; 203:339-341. (4) Duijm LE, Guit GL
Advanced Computer Simulations of Military Incinerators
2004-12-01
models contain 3D furnace and canister geometries and all of the relevant physics and chemistry. The destruction of chemical agent is predicted using...computational chemistry methods, chemical kinetics have been developed that describe the incineration of organo -phosphorus nerve agent (GB, VX) and...States. The chemical warfare agents (CWA) consist of mustard gas and other blister agents as well as organo -phosphorus nerve agents. Incineration was
Computer simulation of electronic excitations in beryllium
Popov, A V
2016-01-01
An effective method for the quantitative description of the electronic excited states of polyatomic systems is developed by using computer technology. The proposed method allows calculating various properties of matter at the atomic level within the uniform scheme. A special attention is paid to the description of beryllium atoms interactions with the external fields, comparable by power to the fields in atoms, molecules and clusters.
Hybrid simulation models for data-intensive systems
Barisits, Martin
Data-intensive systems are used to access and store massive amounts of data by combining the storage resources of multiple data-centers, usually deployed all over the world, in one system. This enables users to utilize these massive storage capabilities in a simple and efficient way. However, with the growth of these systems it becomes a hard problem to estimate the effects of modifications to the system, such as data placement algorithms or hardware upgrades, and to validate these changes for potential side effects. This thesis addresses the modeling of operational data-intensive systems and presents a novel simulation model which estimates the performance of system operations. The running example used throughout this thesis is the data-intensive system Rucio, which is used as the data man- agement system of the ATLAS experiment at CERN’s Large Hadron Collider. Existing system models in literature are not applicable to data-intensive workflows, as they only consider computational workflows or make assumpti...
Simulation of quantum computation : A deterministic event-based approach
Michielsen, K; De Raedt, K; De Raedt, H
2005-01-01
We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and
Plant Closings and Capital Flight: A Computer-Assisted Simulation.
Warner, Stanley; Breitbart, Myrna M.
1989-01-01
A course at Hampshire College was designed to simulate the decision-making environment in which constituencies in a medium-sized city would respond to the closing and relocation of a major corporate plant. The project, constructed as a role simulation with a computer component, is described. (MLW)
Computer simulation program is adaptable to industrial processes
Schultz, F. E.
1966-01-01
The Reaction kinetics ablation program /REKAP/, developed to simulate ablation of various materials, provides mathematical formulations for computer programs which can simulate certain industrial processes. The programs are based on the use of nonsymmetrical difference equations that are employed to solve complex partial differential equation systems.
Investigating the Effectiveness of Computer Simulations for Chemistry Learning
Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan
2012-01-01
Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…
Assessment of Clinical Competence: Written and Computer-Based Simulations.
Swanson, David B.; And Others
1987-01-01
Literature concerning the validity and reliability of both written and computer-based simulations in assessing clinical competence in the health professions is reviewed, and suggestions are given for the improvement of the psychometric qualities of simulation-based tests. (MSE)
Computational fluid dynamics simulations and validations of results
CSIR Research Space (South Africa)
Sitek, MA
2013-09-01
Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...
Effectiveness of an Endodontic Diagnosis Computer Simulation Program.
Fouad, Ashraf F.; Burleson, Joseph A.
1997-01-01
Effectiveness of a computer simulation to teach endodontic diagnosis was assessed using three groups (n=34,32,24) of dental students. All were lectured on diagnosis, pathology, and radiographic interpretation. One group then used the simulation, another had a seminar on the same material, and the third group had no further instruction. Results…
A Computer Aided System for Simulating Weld Metal Solidification Crack
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A computer-aided system for simulating weld solidification crack has been developed by which a welding engineer can carry out the welding solidification crack simulation on the basis of a commercial finite element analysis software package. Its main functions include calculating the heat generations of the moving arc, mesh generation, calculating stress-strain distributions with element rebirth technique.
Investigating the Effectiveness of Computer Simulations for Chemistry Learning
Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan
2012-01-01
Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…
Learner Perceptions of Realism and Magic in Computer Simulations.
Hennessy, Sara; O'Shea, Tim
1993-01-01
Discusses the possible lack of credibility in educational interactive computer simulations. Topics addressed include "Shopping on Mars," a collaborative adventure game for arithmetic calculation that uses direct manipulation in the microworld; the Alternative Reality Kit, a graphical animated environment for creating interactive simulations; and…
Computer simulation of the NASA water vapor electrolysis reactor
Bloom, A. M.
1974-01-01
The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.
Enhancing Computer Science Education with a Wireless Intelligent Simulation Environment
Cook, Diane J.; Huber, Manfred; Yerraballi, Ramesh; Holder, Lawrence B.
2004-01-01
The goal of this project is to develop a unique simulation environment that can be used to increase students' interest and expertise in Computer Science curriculum. Hands-on experience with physical or simulated equipment is an essential ingredient for learning, but many approaches to training develop a separate piece of equipment or software for…
Flow simulations using particles - Bridging Computer Graphics and CFD
Koumoutsakos, Petros; Cottet, Georges-Henri; Rossinelli, Diego
2008-01-01
International audience; The simulation of fluid flows using particles is becoming increasingly popular in Computer Graphics (CG). The grid-free character of particles, the flexibility in handling complex flow configurations and the possibility to obtain visually realistic results with a small number of computational elements are some of the main reasons for the success of these methods. In the Computational Fluid Dynamics (CFD) community, the realization that by periodically regularizing the ...
COMPUTER SIMULATION OF A STIRLING REFRIGERATING MACHINE
Directory of Open Access Journals (Sweden)
V.V. Trandafilov
2015-10-01
Full Text Available In present numerical research, the mathematical model for precise performance simulation and detailed behavior of Stirling refrigerating machine is considered. The mathematical model for alpha Stirling refrigerating machine with helium as the working fluid will be useful in optimization of these machines mechanical design. Complete non-linear mathematical model of the machine, including thermodynamics of helium, and heat transfer from the walls, as well as heat transfer and gas resistance in the regenerator is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. Important design parameters are varied and their effect on Stirling refrigerating machine performance determined. The simulation results of Stirling refrigerating machine which include heat transfer and coefficient of performance are presented.
Computer simulation of proton channelling in silicon
Indian Academy of Sciences (India)
N K Deepak; K Rajasekharan; K Neelakandan
2000-06-01
The channelling of 3 MeV protons in the $\\langle 110\\rangle$ direction of silicon has been simulated using Vineyard model taking into account thermally vibrating nuclei and energy loss due to ionelectron interactions. A beam made up of constant energy particles but with spatial divergence has been simulated for the purpose. The values of the minimum scattering yield and half width of the channelling dip are shown to be depth sensitive and agree well with the measured values. The dependence of yield on the angle of incidence has been found to give information of all three types of channelling. The critical angles for the three types of channelling and wavelength of planar oscillations are consistent with the previous calculations.
On architectural acoustic design using computer simulation
DEFF Research Database (Denmark)
Schmidt, Anne Marie Due; Kirkegaard, Poul Henning
2004-01-01
acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper......Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...
On Architectural Acoustics Design using Computer Simulation
DEFF Research Database (Denmark)
Schmidt, Anne Marie Due; Kirkegaard, Poul Henning
2004-01-01
is to investigate the field of application an acoustic simulation program can have during an architectural acoustics design process. A case study is carried out in order to represent the iterative working process of an architect. The working process is divided into five phases and represented by typical results......The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...
Longwall coal mining operations computer simulation
Energy Technology Data Exchange (ETDEWEB)
Roxborough, F.F.
1982-01-01
This research thesis provides the mining analyst with an effective means of experimentation with any mining layout. SIMCAL is a generalised simulation program suitable for investigating different models. The models are constructed by arranging elements called activities, equipment items, memories and branches. The branches allow any number of activities to occur simultaneously and therefore allow the construction of a model even for the most complex real world system. Reports of the analysis are produced in tabular form and can be generated on a shift to shift basis together with graphical displays. After describing the ideas and procedures inherent in SIMCAL, a bord and pillar model was constructed and tested. The same problem was also tested in simulation program COALSIM. The two programs were compared and the existing differences explained. An initial model for a longwall method of mining is discussed and several interesting variations of modelling possibilities listed. The complete listing of the main program SIMCAL and the plotting program SIMPLOT are supplied.
On architectural acoustic design using computer simulation
DEFF Research Database (Denmark)
Schmidt, Anne Marie Due; Kirkegaard, Poul Henning
2004-01-01
Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper...
Computer simulation of rod-sphere mixtures
Energy Technology Data Exchange (ETDEWEB)
Antypov, Dmytro
2003-07-01
Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both the mixing-demixing behaviour and the transitions between the isotropic and any LC phases have been studied for four systems which differ in the interaction potential between unlike particles. A range of contrasting microphase separated structures including bicontinuous, cubic, and micelle-like arrangement have been observed in bulk. Thirdly, the four types of mixtures previously studied in bulk are subjected to a static magnetic field. A variety of novel phases are observed for the cases of positive and negative anisotropy in the magnetic susceptibility. These include a lamellar structure, in which layers of rods are separated by layers of spheres, and a configuration with a self-assembling hexagonal array of spheres. Finally, two new models are presented to study liquid crystal mixtures in the presence of curved substrates. These are implemented for the cases of convex and concave spherical surfaces. The simulation results obtained in these geometries
Computer Simulation of Turbulent Reactive Gas Dynamics
Directory of Open Access Journals (Sweden)
Bjørn H. Hjertager
1984-10-01
Full Text Available A simulation procedure capable of handling transient compressible flows involving combustion is presented. The method uses the velocity components and pressure as primary flow variables. The differential equations governing the flow are discretized by integration over control volumes. The integration is performed by application of up-wind differencing in a staggered grid system. The solution procedure is an extension of the SIMPLE-algorithm accounting for compressibility effects.
Soft computing applications: the advent of hybrid systems
Bonissone, Piero P.
1998-10-01
Soft computing is a new field of computer sciences that deals with the integration of problem- solving technologies such as fuzzy logic, probabilistic reasoning, neural networks, and genetic algorithms. Each of these technologies provide us with complementary reasoning and searching methods to solve complex, real-world problems. We will analyze some of the most synergistic combinations of self computing technologies, with an emphasis on the development of smart algorithm-controllers, such as the use of FL to control GAs and NNs parameters. We will also discuss the application of GAs to evolve NNs or tune FL controllers; and the implementation of FL controllers as NNs tuned by backpropagation-type algorithms. We will conclude with a detailed description of a GA-tuned fuzzy controller to implement a train handling control.
Hybrid programming model for implicit PDE simulations on multicore architectures
Kaushik, Dinesh K.
2011-01-01
The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.
Computer simulation for centrifugal mold filling of precision titanium castings
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Computer simulation codes were developed based on a proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings (CASM-3D for Windows). Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings under a centrifugal force field than that only under the gravity. A "return back" mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section precision castings.
Simulation of scanning transmission electron microscope images on desktop computers
Energy Technology Data Exchange (ETDEWEB)
Dwyer, C., E-mail: christian.dwyer@mcem.monash.edu.au [Monash Centre for Electron Microscopy, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)
2010-02-15
Two independent strategies are presented for reducing the computation time of multislice simulations of scanning transmission electron microscope (STEM) images: (1) optimal probe sampling, and (2) the use of desktop graphics processing units. The first strategy is applicable to STEM images generated by elastic and/or inelastic scattering, and requires minimal effort for its implementation. Used together, these two strategies can reduce typical computation times from days to hours, allowing practical simulation of STEM images of general atomic structures on a desktop computer.
Hambli, Ridha
2011-01-01
The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate bone remodelling process. Because whole bone simulation considering the 3D trabecular level is time consuming, the finite element calculation is performed at macroscopic level and a trained neural network are employed as numerical devices for substituting the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at macroscopic scale depending on the morphological organization at the mesoscopic computed by the trained neural network. The digital image-based modeling technique using m-CT and voxel finite element mesh is used to capture 2 mm3 Representative Volume Elements at mesoscale level in a femur head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied str...
Advanced computer graphic techniques for laser range finder (LRF) simulation
Bedkowski, Janusz; Jankowski, Stanislaw
2008-11-01
This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.
DEFF Research Database (Denmark)
Dai, Gaoming; Mishnaevsky, Leon
2015-01-01
The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....... automatically using the Python based code. 3D computational studies of environment and fatigue analyses of multiscale composites with secondary nano-scale reinforcement in different material phases and different CNTs arrangements are carried out systematically in this paper. It was demonstrated that composites...
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Dai, Gaoming
2014-01-01
Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored...... by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....
Use of computer graphics simulation for teaching of flexible sigmoidoscopy.
Baillie, J; Jowell, P; Evangelou, H; Bickel, W; Cotton, P
1991-05-01
The concept of simulation training in endoscopy is now well-established. The systems currently under development employ either computer graphics simulation or interactive video technology; each has its strengths and weaknesses. A flexible sigmoidoscopy training device has been designed which uses graphic routines--such as object oriented programming and double buffering--in entirely new ways. These programming techniques compensate for the limitations of currently available desk-top microcomputers. By boosting existing computer 'horsepower' with next generation coprocessors and sophisticated graphics tools such as intensity interpolation (Gouraud shading), the realism of computer simulation of flexible sigmoidoscopy is being greatly enhanced. The computer program has teaching and scoring capabilities, making it a truly interactive system. Use has been made of this ability to record, grade and store each trainee encounter in computer memory as part of a multi-center, prospective trial of simulation training being conducted currently in the USA. A new input device, a dummy endoscope, has been designed that allows application of variable resistance to the insertion tube. This greatly enhances tactile feedback, such as resistance during looping. If carefully designed trials show that computer simulation is an attractive and effective training tool, it is expected that this technology will evolve rapidly and be made widely available to trainee endoscopists.
2015-01-01
In recent past, it has been seen in many applications that synergism of computational intelligence techniques outperforms over an individual technique. This paper proposes a new hybrid computation model which is a novel synergism of modified evolutionary fuzzy clustering with associated neural networks. It consists of two modules: fuzzy distribution and neural classifier. In first module, mean patterns are distributed into the number of clusters based on the modified evolutionary fuzzy cluste...
Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Siavash Sadeghi
2010-04-01
Full Text Available Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicle performance,dynamic modeling of the motor and other components is necessary. Whereas the switchedreluctance machine is well suited for electric and hybrid electric vehicles, due to the simpleand rugged construction, low cost, and ability to operate over a wide speed range atconstant power, in this paper dynamic performance of the switched reluctance motor for eseries hybrid electric vehicles is investigated. For this purpose a switched reluctance motorwith its electrical drive is modeld and simulated first, and then the other components of aseries hybrid electric vehicle, such as battery, generator, internal combusion engine, andgearbox, are designed and linked with the electric motor. Finally a typical series hybridelectric vehicle is simulated for different drive cycles. The extensive simulation results showthe dynamic performance of SRM, battery, fuel consumption, and emissions.
Computer Models Simulate Fine Particle Dispersion
2010-01-01
Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.
Computer Simulations of Coupled Piano Strings
Albert, Destiny L.
1997-03-01
The behavior of coupled piano strings is studied by using a finite difference scheme. The coupling of the strings produce motion in two transverse directions, parallel and perpendicular to the soundboard. The sound induced shows two decay rates, a rapid decay followed by a slow decay. These effects are in agreement with experimental results. (Weinreich, Gabriel. "The Coupled Motion of Piano Strings." Scientific American. January 1979) . Our simulations suggest that the motion of the end supports contributes to the elliptical motion of the strings. Furthermore, multiple strings contribute to the quality of the sound produced by a piano.
E324 Simulation of Turbulent Channel Flow Using a RANS/LES Hybrid Model
半場, 藤弘; Fujihiro, Hamba; 東大生研; Institute of Industrial Science, University of Tokyo
2004-01-01
A RANS/LES hybrid simulation of a channel flow at Reτ=5000 was carried out using the Smagorinsky model. It is known that some hybrid simulations including the detached eddy simulation have a common defect: the mean velocity profile has a mismatch between the RANS and LES regions due to a steep gradient near the interface. New filtering for the velocity was introduced to improve the mean velocity profile. It was shown that this method increases the intensity of the normal velocity component in...
Computational challenges in modeling and simulating living matter
Sena, Alexandre C.; Silva, Dilson; Marzulo, Leandro A. J.; de Castro, Maria Clicia Stelling
2016-12-01
Computational modeling has been successfully used to help scientists understand physical and biological phenomena. Recent technological advances allowthe simulation of larger systems, with greater accuracy. However, devising those systems requires new approaches and novel architectures, such as the use of parallel programming, so that the application can run in the new high performance environments, which are often computer clusters composed of different computation devices, as traditional CPUs, GPGPUs, Xeon Phis and even FPGAs. It is expected that scientists take advantage of the increasing computational power to model and simulate more complex structures and even merge different models into larger and more extensive ones. This paper aims at discussing the challenges of using those devices to simulate such complex systems.
Computational Dehydration of Crystalline Hydrates Using Molecular Dynamics Simulations
DEFF Research Database (Denmark)
Larsen, Anders Støttrup; Rantanen, Jukka; Johansson, Kristoffer E
2016-01-01
. The structural changes could be followed in real time, and in addition, an intermediate amorphous phase was identified. The computationally identified dehydrated structure (anhydrate) was slightly different from the experimentally known anhydrate structure suggesting that the simulated computational structure...... to the dehydration of ampicillin trihydrate. The crystallographic unit cell of the trihydrate is used to construct the simulation cell containing 216 ampicillin and 648 water molecules. This system is dehydrated by removing water molecules during a 2200 ps simulation, and depending on the computational dehydration...... rate, different dehydrated structures were observed. Removing all water molecules immediately and removing water relatively fast (10 water molecules/10 ps) resulted in an amorphous system, whereas relatively slow computational dehydration (3 water molecules/10 ps) resulted in a crystalline anhydrate...
Micromechanics-Based Computational Simulation of Ceramic Matrix Composites
Murthy, Pappu L. N.; Mutal, Subodh K.; Duff, Dennis L. (Technical Monitor)
2003-01-01
Advanced high-temperature Ceramic Matrix Composites (CMC) hold an enormous potential for use in aerospace propulsion system components and certain land-based applications. However, being relatively new materials, a reliable design properties database of sufficient fidelity does not yet exist. To characterize these materials solely by testing is cost and time prohibitive. Computational simulation then becomes very useful to limit the experimental effort and reduce the design cycle time, Authors have been involved for over a decade in developing micromechanics- based computational simulation techniques (computer codes) to simulate all aspects of CMC behavior including quantification of scatter that these materials exhibit. A brief summary/capability of these computer codes with typical examples along with their use in design/analysis of certain structural components is the subject matter of this presentation.
Associative Memory computing power and its simulation.
Ancu, L S; Britzger, D; Giannetti, P; Howarth, J W; Luongo, C; Pandini, C; Schmitt, S; Volpi, G
2015-01-01
An important step in the ATLAS upgrade program is the installation of a tracking processor, the Fast Tracker (FTK), with the goal to identify the tracks generated from charged tracks originated by the LHC 14 TeV proton-proton. The collisions will generate thousands of hits in each layer of the silicon tracker detector and track identification is a very challenging computational problem. At the core of the FTK there is associative memory (AM) system, made with hundreds of AM ASICs chips, specifically designed to allow pattern identification in high density environments at very high speed. This component is able to organize the following steps of the track identification providing a huge computing power for a specific application. The AM system will in fact being able to reconstruct tracks in 10s of microseconds. Within the FTK team there has also been a constant effort to maintain a detailed emulation of the system, to predict the impact of single component features in the final performance and in the ATLAS da...
Stochastic Computer Simulation of Cermet Coatings Formation
Directory of Open Access Journals (Sweden)
Oleg P. Solonenko
2015-01-01
Full Text Available An approach to the modeling of the process of the formation of thermal coatings lamellar structure, including plasma coatings, at the spraying of cermet powders is proposed. The approach based on the theoretical fundamentals developed which could be used for rapid and sufficiently accurate prediction of thickness and diameter of cermet splats as well as temperature at interface “flattening quasi-liquid cermet particle-substrate” depending on the key physical parameters (KPPs: temperature, velocity and size of particle, substrate temperature, and concentration of finely dispersed solid inclusions uniformly distributed in liquid metal binder. The results are presented, which concern the development of the computational algorithm and the program complex for modeling the process of laying the splats in the coating with regard to the topology of its surface, which varies dynamically at the spraying, as well as the formation of lamellar structure and porosity of the coating. The results of numerical experiments are presented through the example of thermal spraying the cermet TiC-30 vol.% NiCr powder, illustrating the performance of the developed computational technology.
Energy Technology Data Exchange (ETDEWEB)
Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel; Fisher, Ryan; Tien, Chris; Simon, Steven L.; Bouville, Andre; Bolch, Wesley E. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Department of Nuclear Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2011-03-15
Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult male and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different
Energy Technology Data Exchange (ETDEWEB)
HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK
2000-04-01
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.
Computer simulation of vasectomy for wolf control
Haight, R.G.; Mech, L.D.
1997-01-01
Recovering gray wolf (Canis lupus) populations in the Lake Superior region of the United States are prompting state management agencies to consider strategies to control population growth. In addition to wolf removal, vasectomy has been proposed. To predict the population effects of different sterilization and removal strategies, we developed a simulation model of wolf dynamics using simple rules for demography and dispersal. Simulations suggested that the effects of vasectomy and removal in a disjunct population depend largely on the degree of annual immigration. With low immigration, periodic sterilization reduced pup production and resulted in lower rates of territory recolonization. Consequently, average pack size, number of packs, and population size were significantly less than those for an untreated population. Periodically removing a proportion of the population produced roughly the same trends as did sterilization; however, more than twice as many wolves had to be removed than sterilized. With high immigration, periodic sterilization reduced pup production but not territory recolonization and produced only moderate reductions in population size relative to an untreated population. Similar reductions in population size were obtained by periodically removing large numbers of wolves. Our analysis does not address the possible effects of vasectomy on larger wolf populations, but it suggests that the subject should be considered through modeling or field testing.
Computer-aided diagnosis system: a Bayesian hybrid classification method.
Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J
2013-10-01
A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified.
Teaching Computer Organization and Architecture Using Simulation and FPGA Applications
Directory of Open Access Journals (Sweden)
D. K.M. Al-Aubidy
2007-01-01
Full Text Available This paper presents the design concepts and realization of incorporating micro-operation simulation and FPGA implementation into a teaching tool for computer organization and architecture. This teaching tool helps computer engineering and computer science students to be familiarized practically with computer organization and architecture through the development of their own instruction set, computer programming and interfacing experiments. A two-pass assembler has been designed and implemented to write assembly programs in this teaching tool. In addition to the micro-operation simulation, the complete configuration can be run on Xilinx Spartan-3 FPGA board. Such implementation offers good code density, easy customization, easily developed software, small area, and high performance at low cost.
Computation simulation of the nonlinear response of suspension bridges
Energy Technology Data Exchange (ETDEWEB)
McCallen, D.B.; Astaneh-Asl, A.
1997-10-01
Accurate computational simulation of the dynamic response of long- span bridges presents one of the greatest challenges facing the earthquake engineering community The size of these structures, in terms of physical dimensions and number of main load bearing members, makes computational simulation of transient response an arduous task. Discretization of a large bridge with general purpose finite element software often results in a computational model of such size that excessive computational effort is required for three dimensional nonlinear analyses. The aim of the current study was the development of efficient, computationally based methodologies for the nonlinear analysis of cable supported bridge systems which would allow accurate characterization of a bridge with a relatively small number of degrees of freedom. This work has lead to the development of a special purpose software program for the nonlinear analysis of cable supported bridges and the methodologies and software are described and illustrated in this paper.
High performance computing network for cloud environment using simulators
Singh, N Ajith
2012-01-01
Cloud computing is the next generation computing. Adopting the cloud computing is like signing up new form of a website. The GUI which controls the cloud computing make is directly control the hardware resource and your application. The difficulty part in cloud computing is to deploy in real environment. Its' difficult to know the exact cost and it's requirement until and unless we buy the service not only that whether it will support the existing application which is available on traditional data center or had to design a new application for the cloud computing environment. The security issue, latency, fault tolerance are some parameter which we need to keen care before deploying, all this we only know after deploying but by using simulation we can do the experiment before deploying it to real environment. By simulation we can understand the real environment of cloud computing and then after it successful result we can start deploying your application in cloud computing environment. By using the simulator it...
Hybrid computing using a neural network with dynamic external memory.
Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis
2016-10-27
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.
A computer code to simulate X-ray imaging techniques
Energy Technology Data Exchange (ETDEWEB)
Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel
2000-09-01
A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.
Osmosis : a molecular dynamics computer simulation study
Lion, Thomas
Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..
An introduction to computer simulation methods applications to physical systems
Gould, Harvey; Christian, Wolfgang
2007-01-01
Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...
Macro—Dataflow Computational Model and Its Simulation
Institute of Scientific and Technical Information of China (English)
孙昱东; 谢志良
1990-01-01
This paper discusses the relationship between parallelism granularity and system overhead of dataflow computer systems,and indicates that a trade-off between them should be determined to obtain optimal efficiency of the overall system.On the basis of this discussion,a macro-dataflow computational model is established to exploit the task-level parallelism.Working as a macro-dataflow computer,an Experimental Distributed Dataflow Simulation System(EDDSS)is developed to examine the effectiveness of the macro-dataflow computational model.
Computer simulation of normal and pathological copper metabolism in man.
Blincoe, C
1993-01-01
A digital computer simulation of copper metabolism was used to simulate human copper metabolism. The simulation agrees well with the normal data extant. Wilson's disease (hepatolenticular degeneration) and Menkes' disease (steely-hair syndrome) were simulated. Simulation of the unavailability of accumulated liver copper simulated Wilson's disease if it was assumed that the increased urinary excretion was due to induction of an enzymic mechanism for enhanced excretion. This would be consistent with the genetic defect causing only the sequestering of unavailable copper in the liver. Other genetic defects need not be present. Menkes' disease is also a genetic disease affecting the newborn. It was simulated successfully as a defect in absorption of copper from the gastrointestinal tract.
Test and numerical simulation of a new type of hybrid control technique
Institute of Scientific and Technical Information of China (English)
Meng Qingli; Zhang Minzheng; Cheng Dong
2005-01-01
In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed control system, model tests on a mini-electromagnetic shaking table and a numerical simulation were performed. The test and numerical calculation results indicate that this new hybrid control mode with additional damping and smaller additional stiffness can achieve a better control efficiency.
Selection of a Planning Horizon for a Hybrid Microgrid Using Simulated Wind Forecasts
2014-12-01
Craparo Dashi I. Singham Naval Postgraduate School 1411 Cunningham Road Monterey, CA, 93943 USA ABSTRACT Hybrid microgrids containing renewable energy ...produced is at least as great as the total load. Energy is produced by generators, wind turbines, purchases from the commercial grid, and discharge of the...A PLANNING HORIZON FOR A HYBRID MICROGRID USING SIMULATED WIND FORECASTS Mumtaz Karatas Turkish Naval Academy Tuzla, Istanbul, 34942, TURKEY Emily M
Dynamic Particle Weight Remapping in Hybrid PIC Hall-effect Thruster Simulation
2015-05-01
International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, Japan July 410, 2015 Robert Martin∗ ERC Incorporated, Huntsville...Algorithms, . 8Koo, J. and Martin, R., Pseudospectral model for hybrid PIC Hall -eect thruster simulation, 34th Int. Electric Propul- sion Conf...Paper 3. DATES COVERED (From - To) May 2015-July 2015 4. TITLE AND SUBTITLE Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster
Lower-Hybrid Drift Instability Saturation Mechanisms in One-Dimensional Simulations,
1980-09-19
The linear properties and saturation mechanisms of the lower-hybrid drift instability have been investigated using a one-dimensional particle-hybrid simulation. For low drift velocities (V sub d much less than V sub ti), ion trapping and current relaxation (V sub d approaches limit of 0) are competing processes for stabilization. If the relative electron-ion drift velocity is kept constant in time , ion trapping causes
Computational algorithms to simulate the steel continuous casting
Ramírez-López, A.; Soto-Cortés, G.; Palomar-Pardavé, M.; Romero-Romo, M. A.; Aguilar-López, R.
2010-10-01
Computational simulation is a very powerful tool to analyze industrial processes to reduce operating risks and improve profits from equipment. The present work describes the development of some computational algorithms based on the numerical method to create a simulator for the continuous casting process, which is the most popular method to produce steel products for metallurgical industries. The kinematics of industrial processing was computationally reproduced using subroutines logically programmed. The cast steel by each strand was calculated using an iterative method nested in the main loop. The process was repeated at each time step (Δ t) to calculate the casting time, simultaneously, the steel billets produced were counted and stored. The subroutines were used for creating a computational representation of a continuous casting plant (CCP) and displaying the simulation of the steel displacement through the CCP. These algorithms have been developed to create a simulator using the programming language C++. Algorithms for computer animation of the continuous casting process were created using a graphical user interface (GUI). Finally, the simulator functionality was shown and validated by comparing with the industrial information of the steel production of three casters.
The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method
Directory of Open Access Journals (Sweden)
Dipakkumar Gohil
2012-06-01
Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.
Advances in Computational Social Science and Social Simulation
2014-01-01
Aquesta conferència és la celebració conjunta de la "10th Artificial Economics Conference AE", la "10th Conference of the European Social Simulation Association ESSA" i la "1st Simulating the Past to Understand Human History SPUHH". Conferència organitzada pel Laboratory for Socio-Historical Dynamics Simulation (LSDS-UAB) de la Universitat Autònoma de Barcelona. Readers will find results of recent research on computational social science and social simulation economics, management, so...
Computer simulation tests of optimized neutron powder diffractometer configurations
Energy Technology Data Exchange (ETDEWEB)
Cussen, L.D., E-mail: Leo@CussenConsulting.com [Cussen Consulting, 23 Burgundy Drive, Doncaster 3108 (Australia); Lieutenant, K., E-mail: Klaus.Lieutenant@helmholtz-berlin.de [Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany)
2016-06-21
Recent work has developed a new mathematical approach to optimally choose beam elements for constant wavelength neutron powder diffractometers. This article compares Monte Carlo computer simulations of existing instruments with simulations of instruments using configurations chosen using the new approach. The simulations show that large performance improvements over current best practice are possible. The tests here are limited to instruments optimized for samples with a cubic structure which differs from the optimization for triclinic structure samples. A novel primary spectrometer design is discussed and simulation tests show that it performs as expected and allows a single instrument to operate flexibly over a wide range of measurement resolution.
Computer simulation studies of pulsed Doppler signals from vortices
Institute of Scientific and Technical Information of China (English)
CHEN Sizhong; WANG Yuanyuan; WANG Weiqi
2001-01-01
A computer simulation method for pulsed Doppler signals from vortices was proposed to generate simulated vortex Doppler signals under various given circumstances. The relative waveforms, such as the maximum frequency waveform, the mean frequency waveform and the bandwidth waveform, were obtained using the short time Fourier analysis of those simulated signals. The relations were studied between several spectrum parameters obtained from these waveforms and given simulation conditions, such as the position and the size of the sample volume, the distance between two vortices, the free stream velocity and the maximum tangent velocity of the vortex. The sensitive parameters were found to detect vortices using the pulsed Doppler techniques.
A computer-based simulator of the atmospheric turbulence
Konyaev, Petr A.
2015-11-01
Computer software for modeling the atmospheric turbulence is developed on the basis of a time-varying random medium simulation algorithm and a split-step Fourier transform method for solving a wave propagation equation. A judicious choice of the simulator parameters, like the velocity of the evolution and motion of the medium, turbulence spectrum and scales, enables different effects of a random medium on the optical wavefront to be simulated. The implementation of the simulation software is shown to be simple and efficient due to parallel programming functions from the MKL Intel ® Parallel Studio libraries.
Hybrid slime mould-based system for unconventional computing
Berzina, T.; Dimonte, A.; Cifarelli, A.; Erokhin, V.
2015-04-01
Physarum polycephalum is considered to be promising for the realization of unconventional computational systems. In this work, we present results of three slime mould-based systems. We have demonstrated the possibility of transporting biocompatible microparticles using attractors, repellents and a DEFLECTOR. The latter is an external tool that enables to conduct Physarum motion. We also present interactions between slime mould and conducting polymers, resulting in a variation of their colour and conductivity. Finally, incorporation of the Physarum into the organic memristive device resulted in a variation of its electrical characteristics due to the slime mould internal activity.
Using EDUCache Simulator for the Computer Architecture and Organization Course
Directory of Open Access Journals (Sweden)
Sasko Ristov
2013-07-01
Full Text Available The computer architecture and organization course is essential in all computer science and engineering programs, and the most selected and liked elective course for related engineering disciplines. However, the attractiveness brings a new challenge, it requires a lot of effort by the instructor, to explain rather complicated concepts to beginners or to those who study related disciplines. The usage of visual simulators can improve both the teaching and learning processes. The overall goal is twofold: 1~to enable a visual environment to explain the basic concepts and 2~to increase the student's willingness and ability to learn the material.A lot of visual simulators have been used for the computer architecture and organization course. However, due to the lack of visual simulators for simulation of the cache memory concepts, we have developed a new visual simulator EDUCache simulator. In this paper we present that it can be effectively and efficiently used as a supporting tool in the learning process of modern multi-layer, multi-cache and multi-core multi-processors.EDUCache's features enable an environment for performance evaluation and engineering of software systems, i.e. the students will also understand the importance of computer architecture building parts and hopefully, will increase their curiosity for hardware courses in general.
Associative Memory computing power and its simulation.
Volpi, G; The ATLAS collaboration
2014-01-01
The associative memory (AM) chip is ASIC device specifically designed to perform ``pattern matching'' at very high speed and with parallel access to memory locations. The most extensive use for such device will be the ATLAS Fast Tracker (FTK) processor, where more than 8000 chips will be installed in 128 VME boards, specifically designed for high throughput in order to exploit the chip's features. Each AM chip will store a database of about 130000 pre-calculated patterns, allowing FTK to use about 1 billion patterns for the whole system, with any data inquiry broadcast to all memory elements simultaneously within the same clock cycle (10 ns), thus data retrieval time is independent of the database size. Speed and size of the system are crucial for real-time High Energy Physics applications, such as the ATLAS FTK processor. Using 80 million channels of the ATLAS tracker, FTK finds tracks within 100 $\\mathrm{\\mu s}$. The simulation of such a parallelized system is an extremely complex task when executed in comm...
Computer simulation of polypeptides in a confinement.
Sikorski, Andrzej; Romiszowski, Piotr
2007-02-01
A coarse-grained model of polypeptide chains confined in a slit formed by two parallel impenetrable surfaces was studied. The chains were flexible heteropolymers (polypeptides) built of two kinds of united atoms-hydrophobic and hydrophilic. The positions of the united atoms were restricted to the vertices of a [310] lattice. The force field consisted of a rigorous excluded volume, a long-distance potential between a pair of amino-acid residues and a local preference for forming secondary structure (helices). The properties of the chains were studied at a wide range of temperatures from good to bad solvent conditions. Monte-Carlo simulations were carried out using the algorithm based on the chain's local changes of conformation and employing the Replica Exchange technique. The influence of the chain length, the distances between the confining surfaces, the temperature and the force field on the dimension and the structure of chains were studied. It was shown that the presence of the confinement chain complicates the process of the chain collapse to low-temperature structures. For some conditions, one can find a rapid decrease of chain size and a second transition indicated by the rapid decrease of the total energy of the system.
Hybrid simulation of whistler excitation by electron beams in two-dimensional non-periodic domains
Energy Technology Data Exchange (ETDEWEB)
Woodroffe, J.R., E-mail: woodrofj@erau.edu; Streltsov, A.V., E-mail: streltsa@erau.edu
2014-11-01
We present a two-dimensional hybrid fluid-PIC scheme for the simulation of whistler wave excitation by relativistic electron beams. This scheme includes a number of features which are novel to simulations of this type, including non-periodic boundary conditions and fresh particle injection. Results from our model suggest that non-periodicity of the simulation domain results in the development of fundamentally different wave characteristics than are observed in periodic domains.
SiMon: Simulation Monitor for Computational Astrophysics
Qian, Penny Xuran; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming
2017-09-01
Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with