WorldWideScience

Sample records for hybrid compound based

  1. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  2. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  3. Toward design of multiple-property inorganic-organic hybrid compounds based on face-sharing octahedral iodoplumbate chains.

    Science.gov (United States)

    Zhao, Shun-Ping; Ren, Xiao-Ming

    2011-09-07

    In this review article, we have illustrated the strategies developed to achieve inorganic-organic hybrid compounds with technologically important physical properties. A series of target inorganic-organic hybrid compounds have been accomplished by incorporating the functional organic components (with a large hyperpolarizability and luminophore Schiff base cation) into the highly polarizable one-dimensional (1-D) iodoplumbate chain network. The effect of substituent features in the phenyl ring of the Schiff base cation on its molecular conformation as well as the crystal packing structure of the hybrid compound will be discussed and the multiple physical properties (ferroelectricity, NLO and multiple band emission) will also be mentioned. This journal is © The Royal Society of Chemistry 2011

  4. Structure-Triggered High Quantum Yield Luminescence and Switchable Dielectric Properties in Manganese(II) Based Hybrid Compounds.

    Science.gov (United States)

    Wang, Zhong-Xia; Li, Peng-Fei; Liao, Wei-Qiang; Tang, Yuanyuan; Ye, Heng-Yun; Zhang, Yi

    2016-04-01

    Two new manganese(II) based organic-inorganic hybrid compounds, C11H21Cl3MnN2 (1) and C11H22Cl4MnN2 (2), with prominent photoluminescence and dielectric properties were synthesized by solvent modulation. Compound 1 with novel trigonal bipyramidal geometry exhibits bright red luminescence with a lifetime of 2.47 ms and high quantum yield of 35.8 %. Compound 2 with tetrahedral geometry displays intense long-lived (1.54 ms) green light emission with higher quantum yield of 92.3 %, accompanied by reversible solid-state phase transition at 170 K and a distinct switchable dielectric property. The better performance of 2 results from the structure, including a discrete organic cation moiety and inorganic metal anion framework, which gives the cations large freedom of motion.

  5. Structure-based design, synthesis and biological testing of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds designed to covalently bind to topoisomerase II and DNA.

    Science.gov (United States)

    Yadav, Arun A; Wu, Xing; Patel, Daywin; Yalowich, Jack C; Hasinoff, Brian B

    2014-11-01

    Drugs that target DNA topoisomerase II isoforms and alkylate DNA represent two mechanistically distinct and clinically important classes of anticancer drugs. Guided by molecular modeling and docking a series of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds were designed, synthesized and biologically characterized. These hybrids were designed to alkylate nucleophilic protein residues on topoisomerase II and thus produce inactive covalent adducts and to also alkylate DNA. The most potent hybrid had a mean GI(50) in the NCI-60 cell screen 17-fold lower than etoposide. Using a variety of in vitro and cell-based assays all of the hybrids tested were shown to target topoisomerase II. A COMPARE analysis indicated that the hybrids had NCI 60-cell growth inhibition profiles matching both etoposide and the N-mustard compounds from which they were derived. These results supported the conclusion that the hybrids displayed characteristics that were consistent with having targeted both topoisomerase II and DNA.

  6. Crystal structure of a new hybrid compound based on an iodido-plumbate(II) anionic motif.

    Science.gov (United States)

    Mokhnache, Oualid; Boughzala, Habib

    2016-01-01

    Crystals of the one-dimensional organic-inorganic lead iodide-based compound catena-poly[bis-(piperazine-1,4-diium) [[tetra-iodido-plumbate(II)]-μ-iodido] iodide monohydrate], (C4N2H12)2[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H12)(2+) cations, water mol-ecules of crystallization and isolated I(-) anions are connected through N-H⋯·I, N-H⋯OW and OW-H⋯I hydrogen-bond inter-actions. Zigzag chains of corner-sharing [PbI6](4-) octa-hedra with composition [PbI4/1I2/2](3-) running parallel to the a axis are present in the structure packing.

  7. Crystal structure of a new hybrid compound based on an iodidoplumbate(II anionic motif

    Directory of Open Access Journals (Sweden)

    Oualid Mokhnache

    2016-01-01

    Full Text Available Crystals of the one-dimensional organic–inorganic lead iodide-based compound catena-poly[bis(piperazine-1,4-diium [[tetraiodidoplumbate(II]-μ-iodido] iodide monohydrate], (C4N2H122[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H122+ cations, water molecules of crystallization and isolated I− anions are connected through N—H...·I, N—H...OW and OW—H...I hydrogen-bond interactions. Zigzag chains of corner-sharing [PbI6]4− octahedra with composition [PbI4/1I2/2]3− running parallel to the a axis are present in the structure packing.

  8. Hybrid Compounding in New Zealand English

    Science.gov (United States)

    Degani, Marta; Onysko, Alexander

    2010-01-01

    This study investigates hybrid compound formation of Maori and English terms in present day New Zealand English (NZE). On the background of Maori and English language contact, the phenomenon of hybrid compounding emerges as a process that, on the one hand, symbolizes the vitality of the Maori element in NZE and, on the other hand, marks the…

  9. Inorganic-organic hybrid compounds based on octamolybdates and multidentate N-donor ligand: syntheses, structures, photoluminescence and photocatalysis.

    Science.gov (United States)

    Kan, Wei-Qiu; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2012-08-28

    Six inorganic-organic hybrid compounds, namely, [Cu(2)(2,4'-tmbpt)(2)(β-Mo(8)O(26))(H(2)O)(2)]·7H(2)O (1), [Cu(2,4'-tmbpt)(γ-Mo(8)O(26))(0.5)(H(2)O)]·H(2)O (2), [Co(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (3), [Zn(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (4), [Ni(2,4'-tmbpt)(α-Mo(8)O(26))(0.5)(H(2)O)]·2.5H(2)O (5) and [Ag(2,4'-Htmbpt)(β-Mo(8)O(26))(0.5)] (6), have been synthesized under hydrothermal conditions (2,4'-tmbpt = 1-((1H-1,2,4-triazol-1-yl)methyl)-3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole). The structures of compounds 1-6 have been determined by single-crystal X-ray diffraction analyses and characterized by infrared spectra (IR), elemental analyses, powder X-ray diffraction (PXRD) analyses and thermogravimetric analyses (TGA). Compound 1 shows a 3D (3,4)-connected framework constructed by the 2D Cu(II)-organic fragments and [β-Mo(8)O(26)](4-) anions. Compound 2 exhibits a 2D layer structure based on Cu(II)-organic chains and [γ-Mo(8)O(26)] chains. The layers are extended into a 3D supramolecular framework by hydrogen-bonding interactions. Compounds 3 and 4 are isostructural, and display 1D chain structures. The chains are further interlinked by hydrogen-bonding interactions to form 3D supramolecular architectures. Compound 5 shows a 3D framework based on the 2D Ni(II)-organic fragments and [α-Mo(8)O(26)](4-) anions. In compound 6, the 1D chains constructed by the Ag(I) ions, 2,4'-Htmbpt ligands and [β-Mo(8)O(26)](4-) anions are extended by hydrogen-bonding interactions into a 2D supramolecular layer. Each layer threads into the adjacent layers, yielding a 2D → 3D interdigitated structure. Moreover, the photoluminescent properties of 4 and 6, the optical band gaps of 1-6, and the photocatalytic properties of 1-6 have also been investigated.

  10. Inorganic-organic hybrid compounds based on face-sharing octahedral [PbI3]∞ chains: self-assemblies, crystal structures, and ferroelectric, photoluminescence properties.

    Science.gov (United States)

    Duan, Hai-Bao; Zhao, Hai-Rong; Ren, Xiao-Ming; Zhou, Hong; Tian, Zheng-Fang; Jin, Wan-Qin

    2011-02-28

    Eight inorganic-organic hybrid compounds with a formula of [R-Bz-1-APy][PbI(3)] (R-Bz-1-APy(+) = mono-substituted benzylidene-1-aminopyridinium Schiff base derivative; R = m-CN (1), m-CH(3) (2), H (3), p-F (4), p-Cl (5), p-Br (6), o-Cl (7), o-Br (8)) have been synthesized and characterized structurally. The common characteristic of the crystal structures of 1-8 is that the inorganic components form straight and face-sharing octahedral [PbI(3)](∞) chains and the Schiff base cations surround the [PbI(3)](∞) chains to form molecular stacks. The substituent (R) on the phenyl ring of the Schiff base cation clearly influences the packing structures of 1-8, and the hybrid compound crystallizes in the space group P6(3) when R = CN (1) in the meta-position of the phenyl ring, and in a central symmetric space group when R is in the ortho- or para-position of the phenyl ring. The conformation of the Schiff base cation is related to the R position, and the dihedral angle between the phenyl and pyridyl rings increases in the order of para- inorganic [PbI(3)](∞) chain in the para-substituted hybrid compounds, and perpendicular to the straight inorganic [PbI(3)](∞) chain in the ortho-substituted hybrid compounds. 1 is second harmonic generation (SHG) active with a comparable response as that of urea and also exhibits ferroelectricity with larger P(s) and P(r) values; 1-8 emit multi-band luminescence in the 300-650 nm regions under the excitation of ultraviolet light.

  11. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support.

    Science.gov (United States)

    Youn, Duck Hyun; Han, Suenghoon; Kim, Jae Young; Kim, Jae Yul; Park, Hunmin; Choi, Sun Hee; Lee, Jae Sung

    2014-05-27

    Highly active and stable electrocatalysts for hydrogen evolution have been developed on the basis of molybdenum compounds (Mo2C, Mo2N, and MoS2) on carbon nanotube (CNT)-graphene hybrid support via a modified urea-glass route. By a simple modification of synthetic variables, the final phases are easily controlled from carbide, nitride to sulfide with homogeneous dispersion of nanocrystals on the CNT-graphene support. Among the prepared catalysts, Mo2C/CNT-graphene shows the highest activity for hydrogen evolution reaction with a small onset overpotential of 62 mV and Tafel slope of 58 mV/dec as well as an excellent stability in acid media. Such enhanced catalytic activity may originate from its low hydrogen binding energy and high conductivity. Moreover, the CNT-graphene hybrid support plays crucial roles to enhance the activity of molybdenum compounds by alleviating aggregation of the nanocrystals, providing a large area to contact with electrolyte, and facilitating the electron transfer.

  12. Crystal structure of an organic-inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion.

    Science.gov (United States)

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-11-01

    A new organic-inorganic hybrid compound, penta-morpholinium hexa-hydrogen hexa-molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[Fe(III)(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central Fe(III) ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter-molecular N-H⋯O and O-H⋯O inter-actions between cations, POMs, sulfate anions and non-coordinating water mol-ecules creates a three-dimensional network structure.

  13. Controllable Assembly of Vanadium-Containing Polyoxoniobate-Based Three-Dimensional Organic-Inorganic Hybrid Compounds and Their Photocatalytic Properties.

    Science.gov (United States)

    Hu, Jufang; Wang, Yin; Zhang, Xinning; Chi, Yingnan; Yang, Song; Li, Jikun; Hu, Changwen

    2016-08-01

    The controllable synthesis of two vanadium-containing polyoxoniobate-based three-dimensional organic-inorganic hybrid compounds, [Co(pn)2]4[HPNb10V(IV)2O40(V(IV)O)4]·17H2O (1) and [Co(pn)2]5[PNb12O40(V(IV)O)6](OH)7·15H2O (2), where pn = 1,2-diaminopropane, is realized by changing the hydrothermal temperature or adding N-(aminoethyl)piperazine as an additive. Both compounds 1 and 2 are structurally characterized by single-crystal/powder X-ray diffraction and IR and X-ray photoelectron spectroscopy. Compound 1 features a new divanadium-substituted Keggin polyoxoniobate capped by four vanadyl groups, and the polyanion in 2 exhibits the highest coordination number (10-connected) in polyoxoniobate chemistry. Moreover, the photocatalytic activities of 1 and 2 for hydrogen evolution are preliminarily assessed.

  14. Preparation and characteristics of high pH-resistant sol-gel alumina-based hybrid organic-inorganic coating for solid-phase microextraction of polar compounds.

    Science.gov (United States)

    Liu, Mingming; Liu, Ying; Zeng, Zhaorui; Peng, Tianyou

    2006-03-10

    A novel alumina-based hybrid organic-inorganic sol-gel coating was first developed for solid-phase microextraction (SPME) from a highly reactive alkoxide precursor, aluminum sec-butoxide, and a sol-gel-active organic polymer hydroxyl-terminated polydimethylsiloxane (OH-TSO). The underlying mechanism was discussed and confirmed by IR spectra. The porous surface structure of the sol-gel coating was revealed by scanning electron microscopy. A detailed investigation was conducted to evaluate the remarked performance of the newly developed sol-gel alumina-OH-TSO hybrid materials. In stark contrast to the sol-gel silica-based coating, the alumina-based coating demonstrated excellent pH stability. In addition, good thermal resistance and coating preparation reproducibility are also its outstanding performance. As compared to silica-based hybrids material, the ligand exchange ability of alumina makes it structurally superior extraction sorbents for polar compounds, such as fatty acids, phenols, alcohols, aldehydes and amines. Practical applicability of the prepared alumina-OH-TSO fiber was demonstrated through the analysis of volatile alcohols and fatty acids in beer. The recoveries obtained ranged from 85.7 to 104% and the relative standard deviation values for all analytes were below 9%.

  15. Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold.

    Science.gov (United States)

    Avilés, Edward; Prudhomme, Jacques; Le Roch, Karine G; Franzblau, Scott G; Chandrasena, Kevin; Mayer, Alejandro M S; Rodríguez, Abimael D

    2015-11-15

    A mixture-based combinatorial library of five Ugi adducts (4-8) incorporating known antitubercular and antimalarial pharmacophores was successfully synthesized, starting from the naturally occurring diisocyanide 3, via parallel Ugi four-center three-component reactions (U-4C-3CR). The novel α-acylamino amides obtained were evaluated for their antiinfective potential against laboratory strains of Mycobacterium tuberculosis H37Rv and chloroquine-susceptible 3D7 Plasmodium falciparum. Interestingly, compounds 4-8 displayed potent in vitro antiparasitic activity with higher cytotoxicity in comparison to their diisocyanide precursor 3, with the best compound exhibiting an IC50 value of 3.6 nM. Additionally, these natural product inspired hybrids potently inhibited in vitro thromboxane B2 (TXB2) and superoxide anion (O2(-)) generation from Escherichia coli lipopolysaccharide (LPS)-activated rat neonatal microglia, with concomitant low short-term toxicity.

  16. pH-dependent assembly of two inorganic-organic hybrid compounds based on octamolybdates: an unusual intercalated layer and a 3D 4-connected framework.

    Science.gov (United States)

    Liu, Hai-Yan; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2012-09-07

    Two novel inorganic-organic hybrid compounds based on octamolybdates, namely, [Cu(H(2)L)(2)(γ-Mo(8)O(26))]·(Mo(6)O(19))·2H(2)O (1) and [Cu(H(2)L)(γ-Mo(8)O(26))(H(2)O)(2)]·5H(2)O (2), where L = 1,1'-(1,5-pentanediyl)bis[2-(4-pyridyl)benzimidazole], have been successfully synthesized at different pH values under hydrothermal conditions. Compound 1, which is hydrothermally prepared at pH ≈ 3.5, exhibits an entirely new type of intercalated layer. The nanosized hexamolybdate anions as guests are introduced into the layers. When the pH value is adjusted to 2, a structurally-different complex 2 was obtained. Compound 2 shows a unique 3D 4-connected framework constructed by inorganic layers and H(2)L(2+) ligands as bridges. The two compounds were characterized by elemental analyses, IR spectra and TGA. In addition, the electrochemical properties of 1-modified carbon paste electrode (CPE) have also been investigated in 1 M H(2)SO(4) aqueous solution.

  17. Polyoxometalate-based organic-inorganic hybrid compounds containing transition metal mixed-organic-ligand complexes of N-containing and pyridinecarboxylate ligands.

    Science.gov (United States)

    Zhao, De-Chuan; Hu, Yang-Yang; Ding, Hong; Guo, Hai-Yang; Cui, Xiao-Bing; Zhang, Xiao; Huo, Qi-Sheng; Xu, Ji-Qing

    2015-05-21

    Five new organic–inorganic hybrid compounds based on the Keggin-type polyoxoanion [SiW12O40]4−, namely [Cu3(2,2′-bpy)3(inic)(μ2-OH)(H2O)][SiW12O40]·2H2O (1), [Cu6(phen)6(μ3-Cl)2(μ2-Cl)2Cl2(inic)2][SiW12O40]·6H2O (2), [Cu2(hnic)(2,2′-bpy)2Cl]2[H2SiW12O40] (3), [Cu2(nic)(phen)2Cl2]2[SiW12O40] (4) and [Cu2(pic)(2,2′-bpy)2Cl]2[SiW12O40] (5) (inic = isonicotinic acid, hnic = 2-hydroxy-nicotinic acid, nic = nicotinic acid, pic = picolinic acid, 2,2′-bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline) have been synthesized and characterized by IR, UV-Vis, XPS, XRD, cyclic voltammetric measurements, photoluminescence analysis and single crystal X-ray diffraction analysis. Crystal analysis reveals that compound 1 exhibits a 2-D double layered framework structure constructed from [SiW12O40]4− and copper-aqua-2,2′-bipy-hydroxyl-isonicotinate complexes. Compound 2 is a 0-D discrete structure formed by [SiW12O40]4− and copper-chloro-isonicotinate-phenanthroline complexes. Compound 3 shows a 1-D single chain structure based on the linkage of copper-2,2-bpy-chloro-2-hydroxy-nicotinate complexes and [SiW12O40]4−. Compounds 4 and 5 both contain polyoxometalate supported transition metal complexes, one is a polyoxometalate supported copper-chloro-nicotinate-phenanthroline complex in 4, and the other is a polyoxometalate supported copper-2,2-bpy-chloro-nicotinate complex in 5. It should be noted that nicotinic, isonicotinic and picolinic acids are structural isomers and 2-hydroxy-nicotinic acid is an in situ hydroxylated product of nicotinic acid. In addition, photocatalytic degradation of Rhodamine B (RhB) by compounds 1–5 has been investigated in aqueous solutions.

  18. Hybrid Compounds as Anti-infective Agents.

    Science.gov (United States)

    Sbaraglini, María Laura; Talevi, Alan

    2017-01-01

    Hybrid drugs are multi-target chimeric chemicals combining two or more drugs or pharmacophores covalently linked in a single molecule. In the field of anti-infective agents, they have been proposed as a possible solution to drug resistance issues, presumably having a broader spectrum of activity and less probability of eliciting high level resistance linked to single gene product. Although less frequently explored, they could also be useful in the treatment of frequently occurring co-infections. Here, we overview recent advances in the field of hybrid antimicrobials. Furthermore, we discuss some cutting-edge approaches to face the development of designed multi-target agents in the era of omics and big data, namely analysis of gene signatures and multitask QSAR models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A new paratungstate-A-based organic-inorganic hybrid compound: Synthesis, structure and photocatalytic property of [Co(en)3]2[H2W7O24]·8H2O

    Science.gov (United States)

    Yan, Gang; Wang, Xin; Ma, Yuanyuan; Cheng, Xin; Wang, Yonghui; Li, Yangguang

    2013-03-01

    A new paratungstate-A-based organic-inorganic hybrid compound with the chemical formula of [Co(en)3]2[H2W7O24]·8H2O (en = ethylenediamine) (1) has been hydrothermally synthesized and structurally characterized by the elemental analysis, IR, TG, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space group P21/c with a = 17.216(3) Å, b = 14.986(3) Å, c = 23.088(8) Å, β = 128.151(2)°, V = 4684.2 Å3, Z = 1, R1 = 0.0484, and wR2 = 0.1087. The structure of 1 consists of the [H2W7O24]4- building blocks and [Co(en)3]2+ metal-organic cationic moieties, which are packed together via the electrostatic forces and extensive hydrogen-bonding interactions to form a three-dimensional supramolecular framework. Interestingly, compound 1 represents the first structurally-defined hybrid compound based on the metastable paratungstate-A polyoxoanions and metal-organic units. The degradation of Rhodamine-B (RhB) under UV irradiation with 1 as the heterogeneous photocatalyst has been investigated, showing a good photocatalytic property of 1 for RhB degradation.

  20. Hybrid Curcumin Compounds: A New Strategy for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Teiten

    2014-12-01

    Full Text Available Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin’s structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments.

  1. Non-targeted acquisition strategy for screening doping compounds based on GC-EI-hybrid quadrupole-Orbitrap mass spectrometry: A focus on exogenous anabolic steroids.

    Science.gov (United States)

    de Albuquerque Cavalcanti, Gustavo; Rodrigues, Lucas Martins; Dos Santos, Leonardo; Zheng, Xin; Gujar, Amit; Cole, Jason; Padilha, Monica Costa; de Aquino Neto, Francisco Radler

    2017-06-10

    This is a first look at a non-targeted screening method based on Orbitrap gas chromatography-mass spectrometry (GC-MS) technology for a large number of banned compounds in sports found in urine, including exogenous anabolic steroids, β-agonists, narcotics, stimulants, hormone modulators, and diuretics. A simple sample preparation was processed in four steps: an enzymatic hydrolysis, liquid-liquid extraction, evaporation, and trimethylsilylation. All compounds were able to meet the World Anti-Doping Agency's sensitivity criteria with mass accuracies less than 1 ppm and with sufficient points across the peak by running the Orbitrap GC-MS in full-scan mode. In addition, we discuss our initial findings of using a full-scan selected ion monitoring-tandem mass spectrometry (SIM-MS/MS) approach as a way to obtain lower detection limits and reach desirable selectivity for some exogenous anabolic steroids. Copyright © 2017 John Wiley & Sons, Ltd.

  2. A hybrid base isolation system

    Energy Technology Data Exchange (ETDEWEB)

    Hart, G.C. [Univ. of California, Los Angeles, CA (United States); Lobo, R.F.; Srinivasan, M. [Hart Consultant Group, Santa Monica, CA (United States); Asher, J.W. [kpff Engineers, Santa Monica, CA (United States)

    1995-12-01

    This paper proposes a new analysis procedure for hybrid base isolation buildings when considering the displacement response of a base isolated building to wind loads. The system is considered hybrid because of the presence of viscous dampers in the building above the isolator level. The proposed analysis approach incorporates a detailed site specific wind study combined with a dynamic nonlinear analysis of the building response.

  3. DNA-based hybrid catalysis.

    Science.gov (United States)

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed.

  4. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds.

    Science.gov (United States)

    Guantai, Eric M; Ncokazi, Kanyile; Egan, Timothy J; Gut, Jiri; Rosenthal, Philip J; Smith, Peter J; Chibale, Kelly

    2010-12-01

    A targeted series of chalcone and dienone hybrid compounds containing aminoquinoline and nucleoside templates was synthesized and evaluated for in vitro antimalarial activity. The Cu(I)-catalyzed cycloaddition of azides and terminal alkynes was applied as the hybridization strategy. Several chalcone-chloroquinoline hybrid compounds were found to be notably active, with compound 8b the most active, exhibiting submicromolar IC(50) values against the D10, Dd2 and W2 strains of Plasmodium falciparum.

  5. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    Science.gov (United States)

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment.

  6. 基于混合建模技术的复合肥养分含量MIMO软测量模型%MIMO Soft-sensor Model of Nutrient Content for Compound Fertilizer Based on Hybrid Modeling Technique

    Institute of Scientific and Technical Information of China (English)

    傅永峰; 苏宏业; 褚健

    2007-01-01

    In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very difficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modeling method are combined in this model. Data-driven modeling method based on limited memory partial least squares (LM-PLS) algorithm is used to build soft-senor models for some secondary variables; then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practical process; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.

  7. Two novel POM-based inorganic-organic hybrid compounds: synthesis, structures, magnetic properties, photodegradation and selective absorption of organic dyes.

    Science.gov (United States)

    Dui, Xue-Jing; Yang, Wen-Bin; Wu, Xiao-Yuan; Kuang, Xiaofei; Liao, Jian-Zhen; Yu, Rongmin; Lu, Can-Zhong

    2015-05-28

    The hydrothermal reactions of a mixture of (NH4)6Mo7O24·4H2O, Cu(Ac)2·H2O and 3-bpo ligands at different temperatures result in the isolation of two novel inorganic-organic hybrid materials containing different but related isopolymolybdate units, [Cu(3-bpo)(H2O)(Mo4O13)]·3H2O () and [Cu2(3-bpo)2(Mo6O20)] (). The {Mo4O13}n chains in and unprecedented [Mo6O20](4-) isopolyhexamolybdate anions in are linked by octahedral Cu(2+) ions into two-dimensional hybrid layers. Interestingly, 3-bpo ligands in both and are located on either side of these hybrid layers and serve as arched footbridges to link Cu(ii) ions in the layer via pyridyl N-donors, and at the same time connect these hybrid layers into 3D supramolecular frameworks via weak MoNoxadiazole bonds. Another important point for is that water clusters are filled in the 1D channels surrounded by isopolytetramolybdate units. In addition, dye adsorption and photocatalytic properties of and magnetic properties of have been investigated. The results indicated that complex is not only a good heterogeneous photocatalyst in the degradation of methyl orange (MO) and methylene blue (MB), but also has high absorption capacity of MB at room temperature and can selectively capture MB molecules from binary mixtures of MB/MO or MB/RhB. All MB molecules absorbed on can be completely released and photodegraded in the presence of adequate peroxide. The temperature dependence of magnetic susceptibility revealed that complex exhibits antiferromagnetic ordering at about 5 K, and a spin-flop transition was observed at about 5.8 T at 2 K, indicating metamagnetic-like behaviour from antiferromagnetic to ferromagnetic phases.

  8. Three new three-dimensional organic-inorganic hybrid compounds based on PMo12O40(n-) (n = 3 or 4) polyanions and Cu(I)-pyrazine/Cu(I)-pyrazine-Cl porous coordination polymers.

    Science.gov (United States)

    Qi, Ming-Li; Yu, Kai; Su, Zhan-Hua; Wang, Chun-Xiao; Wang, Chun-Mei; Zhou, Bai-Bin; Zhu, Chun-Cheng

    2013-06-07

    Three new organic-inorganic hybrid compounds based on PMo12O40(n-) (n = 3 or 4) polyanions and Cu(I)-pz/Cu(I)-pz-Cl porous coordination polymers: [Cu(I)(pz)]3[PMo(VI)12O40] (1), [Cu(I)(pz)1.5]4[PMo(V)Mo(VI)11O40]·pz·2H2O (2), [Cu(I)3(pz)3Cl][Cu(I)2(pz)3(H2O)][PMo(V)Mo(VI)11O40] (3) (pz = pyrazine) have been hydrothermally prepared and characterized by elemental analysis, IR, TG, XRD, XPS and single-crystal X-ray diffraction. Compound 1 presents a three-dimensional Cu(I)-pz framework with cube-like chambers, into which PMo(VI)12O40(3-) Keggin ions are incorporated. Compound 2 shows a three-dimensional sandwich-like framework, and PMo(V)Mo(VI)11O40(4-) polyanions are located in the octagonal voids of every two-dimensional Cu(I)-pz 4(1)8(2) network structure. Compound 3 exhibits a two-dimensional Cl-bridged Cu(I)-pz-Cl double-layer structure, and two kinds of PMo(V)Mo(VI)11O40(4-) polyanions as bridging linkers connect two adjacent double-layers to form a three-dimensional organic-inorganic framework through Cu(I)-O bonds. Additionally, their electrochemical characters, electrocatalytic behaviors and solid state fluorescent properties at room temperature have been investigated in detail.

  9. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    Science.gov (United States)

    Minh, Truong Ngoc; Khang, Do Tan; Tuyen, Phung Thi; Minh, Luong The; Anh, La Hoang; Quan, Nguyen Van; Ha, Pham Thi Thu; Quan, Nguyen Thanh; Toan, Nguyen Phu; Elzaawely, Abdelnaser Abdelghany; Xuan, Tran Dang

    2016-01-01

    Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight). The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes. PMID:27649250

  10. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    Directory of Open Access Journals (Sweden)

    Truong Ngoc Minh

    2016-09-01

    Full Text Available Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight. The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes.

  11. Synthesis, property and crystal structure of a novel two-dimensional network organic-inorganic hybrid compound based on the neodymium III center and Keggin-type heteropolyanion of [α-BW 12O 40] 5-

    Science.gov (United States)

    Niu, Jingyang; Zhao, Junwei; Wang, Jingping; Ma, Pengtao

    2004-08-01

    A novel two-dimensional infinite network organic-inorganic hybrid neodymium(III)-centered compound of formula (dmaH) 2[Nd(dmf) 4(H 2O)][α-BW 12O 40]·H 2O ( 1) [dma=dimethylamine and dmf= N, N-dimethylformamide] is obtained by the conventional self-assembly reaction of neodymium oxide, N, N-dimethylformamide and borotungstic acid (α-H 5BW 12O 40·30H 2O) in the mixed solvent of acetonitrile and water, and characterized by IR, UV-visible spectra and X-ray single crystal diffraction. Structural analysis indicates that every [α-BW 12O 40] 5- polyanion interconnects with three adjacent [Nd(dmf) 4(H 2O)] 3+ subunits by means of W-O-Nd bridges, meanwhile, every [Nd(dmf) 4(H 2O)] 3+ building block is surrounded by three neighboring [α-BW 12O 40] 5- polyanions by making use of which an unprecedented two-dimensional extended network structure can be constructed. Interestingly, this structure pattern may act as useful model for the design and assembly of functional molecule-based compounds, especially in the field of molecular sieve materials.

  12. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation.

    Science.gov (United States)

    Richon, V M; Webb, Y; Merger, R; Sheppard, T; Jursic, B; Ngo, L; Civoli, F; Breslow, R; Rifkind, R A; Marks, P A

    1996-06-11

    Hybrid polar compounds, of which hexamethylenebisacetamide (HMBA) is the prototype, are potent inducers of differentiation of murine erythroleukemia (MEL) cells and a wide variety of other transformed cells. HMBA has been shown to induce differentiation of neoplastic cells in patients, but is not an adequate therapeutic agent because of dose-limiting toxicity. We report on a group of three potent second generation hybrid polar compounds, diethyl bis-(pentamethylene-N,N-dimethylcarboxamide) malonate (EMBA), suberoylanilide hydroxamic acid (SAHA), and m-carboxycinnamic acid bis-hydroxamide (CBHA) with optimal concentrations for inducing MEL cells of 0.4 mM, 2 microM, and 4 microM, respectively, compared to 5 mM for HMBA. All three agents induce accumulation of underphosphorylated pRB; increased levels of p2l protein, a prolongation of the initial G1 phase of the cell cycle; and accumulation of hemoglobin. However, based upon their effective concentrations, the cross-resistance or sensitivity of an HMBA-resistant MEL cell variant, and differences in c-myb expression during induction, these differentiation-inducing hybrid polar compounds can be grouped into two subsets, HMBA/EMBA and SAHA/CBHA. This classification may prove of value in selecting and planning prospective preclinical and clinical studies toward the treatment of cancer by differentiation therapy.

  13. Volatile Compounds in the Flowers of Freesia Parental Species and Hybrids

    Institute of Scientific and Technical Information of China (English)

    Yang Fu; Xiang Gao; Yiqun Xue; Yuejun Hui; Fengqing Chen; Quanping Su; Li Wang

    2007-01-01

    For centuries, freesia has been one of the most Important crops in the floriculture industry.Here, aqua-space samples collected from entire flowers of diploid Freesia refracta, three tetraploid freesia cuItivare, and interspecific hybrids of three tetraploid freesia cultivars were analyzed using gas chromatograph coupled with mass selective detector.In all, 75 different compounds were identified.The compounds were mainly terpenes, hydrocarbons, alcohols, fatty acid esters and aromatic class compounds.Among these, Iinalool was detected from all the sweet-scented flowers except for scentless white tetraploid F.hybrida.Stable inheritance of linalool between F.hybrida and their F1 progeny was observed.Based on the present analyses, the relationship between the aroma of freesia and linalool was discussed.

  14. Compound hybrid geothermal-fossil power plants - Thermodynamic analyses and site-specific applications

    Science.gov (United States)

    Dipippo, R.; Kestin, J.; Avelar, E. M.; Khalifa, H. E.

    1980-02-01

    In this paper, we extend the analysis of hybrid fossil-geothermal power plants to compound systems which combine the features of the two previously analyzed hybrid plants, the geothermal preheat and the fossil superheat systems. Compound systems of the one- and two-stage type are considered. A complete summary of formulae to assess the performance of the plants is included for completeness. From the viewpoint of thermodynamics, compound hybrid plants are superior to individual all-geothermal and all-fossil plants, and have certain advantages over basic geothermal-preheat and fossil-superheat hybrid plants. The flexibility of compound hybrid systems is illustrated by showing how such plants might be used at several geothermal sites in the western United States.

  15. Cluster Tree Based Hybrid Document Similarity Measure

    Directory of Open Access Journals (Sweden)

    M. Varshana Devi

    2015-10-01

    Full Text Available based hybrid similarity measure is established to measure the hybrid similarity. In cluster tree, the hybrid similarity measure can be calculated for the random data even it may not be the co-occurred and generate different views. Different views of tree can be combined and choose the one which is significant in cost. A method is proposed to combine the multiple views. Multiple views are represented by different distance measures into a single cluster. Comparing the cluster tree based hybrid similarity with the traditional statistical methods it gives the better feasibility for intelligent based search. It helps in improving the dimensionality reduction and semantic analysis.

  16. Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers

    OpenAIRE

    Ivan Bassanini; Karl Hult; Sergio Riva

    2015-01-01

    Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters.

  17. Isostructural organic-inorganic hybrid compounds: triethylcholine tribromidocadmate and triethylcholine tribromidomercurate.

    Science.gov (United States)

    Wang, Dong-Yan; Hou, Xue-Li; Li, Xue-Nan

    2015-08-01

    In order to search for new anionic architectures and develop useful organic-inorganic hybrid materials in halometallate systems, two new crystalline organic-inorganic hybrid compounds have been prepared, i.e. catena-poly[triethyl(2-hydroxyethyl)azanium [[bromidocadmate(II)]-di-μ-bromido

  18. Mode transition coordinated control for a compound power-split hybrid car

    Science.gov (United States)

    Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna

    2017-03-01

    With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.

  19. Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds.

    Science.gov (United States)

    Boudhar, Aicha; Ng, Xiao Wei; Loh, Chiew Yee; Chia, Wan Ni; Tan, Zhi Ming; Nosten, Francois; Dymock, Brian W; Tan, Kevin S W

    2016-05-01

    Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria.

  20. Polyoxometalate (POM)-based, multi-functional, inorganic-organic, hybrid compounds: syntheses and molecular structures of silanol- and/or siloxane bond-containing species grafted on mono- and tri-lacunary Keggin POMs.

    Science.gov (United States)

    Aoki, Shotaro; Kurashina, Takayuki; Kasahara, Yuhki; Nishijima, Tadashi; Nomiya, Kenji

    2011-02-14

    Using 3-mercaptopropyltrimethoxysilane (HS(CH₂)₃Si(OMe)₃) as a silane-coupling agent (SCA), mono- and tri-lacunary Keggin polyoxometalate (POM)-based, multi-functional, inorganic-organic, hybrid compounds, (Et₄N)₃[α-PW₁₁O₃₉{(HS(CH₂)₃Si)₂O}] EtN-1 (the 1 : 2 complex of a POM unit and organosilyl groups), (Bu₄N)₃[A-PW₉O₃₄(HS(CH₂)₃SiOH)₃] BuN-2 (the 1 : 3 complex) and (Bu₄N)₃[A-α-PW₉O₃₄(HS(CH₂)₃SiO)₃(Si(CH₂)₃SH)] BuN-3 (the 1 : 4 complex) were synthesized and unequivocally characterized by elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solid-state (²⁹Si and ³¹P) CPMAS NMR, solution (²⁹Si, ³¹P, ¹H and ¹³C) NMR, and X-ray crystallography. [Note: The moieties of their polyoxoanions are abbreviated simply as 1-3, respectively.] The X-ray molecular structures of EtN-1 and BuN-3 were determined. In EtN-1, two organic groups connected through a siloxane bond (-Si-O-Si- bond) were grafted on a mono-lacunary site of a Keggin POM, whereas in BuN-3 four organic groups connected through siloxane bonds were grafted on a tri-lacunary site of a Keggin POM. In BuN-2, three organic groups were grafted in the form of silanol (-SiOH) on a tri-lacunary site, i.e., in BuN-2 there was no siloxane bond. BuN-3 was synthesized as BuN-3a and BuN-3b by two methods, respectively; (1) BuN-3a was obtained by a 1 : 1 molar-ratio reaction of BuN-2 and an SCA in CH₃CN, and (2) BuN-3b was prepared by a direct 1 : 4 molar-ratio reaction of a tri-lacunary Keggin POM and SCA in water-CH₃CN. X-Ray crystallography revealed that BuN-3a is the same as BuN-3b. It is probable that BuN-2 is an intermediate in the formation of BuN-3. Terminal -SH groups in 1-3, as well as -OH groups in 2, can be utilized for immobilization of POMs and, also, as building blocks for the formation of novel hybrid compounds.

  1. Compound hybrid geothermal-fossil power plants: thermodynamic analyses and site-specific applications

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.; Avelar, E.M.

    1979-06-01

    The analysis of hybrid fossil-geothermal power plants is extended to compound hybrid systems which combine the features of previously analyzed systems: the geothermal-preheat and the fossil-superheat systems. Compound systems of the one- and two-stage type are considered. A compilation of working formulae from earlier studies is included for completeness. Results are given for parametric analyses of compound hybrid plants. System performance was determined for wellhead conditions of 150, 200, and 250/sup 0/C, and for steam fractions of 10, 20, 30, and 40%. For two-stage systems an additional cycle variable, the hot water flash fraction, was varied from 0 to 100% in increments of 25%. From the viewpoint of thermodynamics, compound hybrid plants are superior to individual all-geothermal and all-fossil plants, and are shown to have certain advantages over basic geothermal-preheat and fossil-superheat hybrid plants. The flexibility of compound hybrid systems is illustrated by showing how such plants might be used at six geothermal sites in the western United States. The question of the optimum match between the energy resources and the power plant is addressed, and an analysis given for a hypothetical geothermal resource.

  2. Core-shell nanostructured hybrid composites for volatile organic compound detection

    Directory of Open Access Journals (Sweden)

    Tung TT

    2015-08-01

    Full Text Available Tran Thanh Tung,1,2 Dusan Losic,1 Seung Jun Park,3 Jean-Francois Feller,2 TaeYoung Kim3 1School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, Australia; 2Smart Plastics Group, European University of Brittany (UEB, LIMATB-UBS, Lorient, France; 3Department of Bionanotechnology, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do South Korea Abstract: We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC vapors based on core-shell hybridized nanostructures of Fe3O4 magnetic nanoparticles (MNPs and poly(3,4-ethylenedioxythiophene (PEDOT-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs, which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT–PIL-modified Fe3O4 hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT–PIL-modified Fe3O4 sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT–PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers. Keywords: hybrid nanomaterials, nanoparticle, conducting polymer, electronic nose, lung cancer detection

  3. Hybrid lipid-based nanostructures

    Science.gov (United States)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  4. Synthesis and structure of dawson polyoxometalate-based, multifunctional, inorganic-organic hybrid compounds: organogermyl complexes with one terminal functional group and organosilyl analogues with two terminal functional groups.

    Science.gov (United States)

    Nomiya, Kenji; Togashi, Yoshihiro; Kasahara, Yuhki; Aoki, Shotaro; Seki, Hideaki; Noguchi, Marie; Yoshida, Shoko

    2011-10-03

    Four novel multifunctional polyoxometalate (POM)-based inorganic-organic hybrid compounds, [α(2)-P(2)W(17)O(61){(RGe)}](7-) (Ge-1, R(1) = HOOC(CH(2))(2(-)) and Ge-2, R(2) = H(2)C═CHCH(2(-))) and [α(2)-P(2)W(17)O(61){(RSi)(2)O}](6-) (Si-1, R(1) and Si-2, R(2)), were prepared by incorporating organic chains having terminal functional groups (carboxylic acid and allyl groups) into monolacunary site of Dawson polyoxoanion [α(2)-P(2)W(17)O(61)](10-). In these POMs, new modification of the terminal functional groups was attained by introducing organogermyl and organosilyl groups. Dimethylammonium salts of the organogermyl complexes, (Me(2)NH(2))(7)[α(2)-P(2)W(17)O(61)(R(1)Ge)]·H(2)O MeN-Ge-1 and (Me(2)NH(2))(7)[α(2)-P(2)W(17)O(61)(R(2)Ge)]·4H(2)O MeN-Ge-2, were obtained as analytically pure crystals, in 22.8% and 55.3% yields, respectively, by stoichiometric reactions of [α(2)-P(2)W(17)O(61)](10-) with separately prepared Cl(3)GeC(2)H(4)COOH in water, and H(2)C═CHCH(2)GeCl(3) in a solvent mixture of water/acetonitrile. Synthesis and X-ray structure analysis of the Dawson POM-based organogermyl complexes were first successful. Dimethylammonium salts of the corresponding organosilyl complexes, (Me(2)NH(2))(6)[α(2)-P(2)W(17)O(61){(R(1)Si)(2)O}]·4H(2)O MeN-Si-1 and (Me(2)NH(2))(6)[α(2)-P(2)W(17)O(61){(R(2)Si)(2)O}]·6H(2)O MeN-Si-2, were also obtained as analytically pure crystalline crystals, in 17.1% and 63.5% yields, respectively, by stoichiometric reactions of [α(2)-P(2)W(17)O(61)](10-) with NaOOC(CH(2))(2)Si(OH)(2)(ONa) and H(2)C═CHCH(2)Si(OEt)(3). These complexes were characterized by elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solid-state ((31)P) and solution ((31)P, (1)H, and (13)C) NMR, and X-ray crystallography.

  5. Study of Coumarin-Resveratrol Hybrids as Potent Antioxidant Compounds

    Directory of Open Access Journals (Sweden)

    Maria J. Matos

    2015-02-01

    Full Text Available In the present work we synthesized a selected series of hydroxylated 3-phenylcoumarins 5–8, with the aim of evaluating in detail their antioxidant properties. From an in depth study of the antioxidant capacity data (ORAC-FL, ESR, CV and ROS inhibition it was concluded that these derivatives are very good antioxidants, with very interesting profiles in all the performed assays. The study of the effect of the number and position of the hydroxyl groups on the antioxidant activity was the principal aim of this study. In particular, 7-hydroxy-3-(3'-hydroxyphenylcoumarin (8 proved to be the most active and effective antioxidant of the selected series in four of the performed assays (ORAC-FL = 11.8, capacity of scavenging hydroxyl radicals = 54%, Trolox index = 2.33 and AI30 index = 0.18. However, the presence of two hydroxyl groups on this molecule did not increase greatly the activity profile. Theoretical evaluation of ADME properties of all the derivatives was also carried out. All the compounds can act as potential candidates for preventing or minimizing the free radical overproduction in oxidative-stress related diseases. These preliminary findings encourage us to perform a future structural optimization of this family of compounds.

  6. Influence of nanoclay-carbon black hybrid fillers on cure and properties of natural rubber compounds

    NARCIS (Netherlands)

    Sapkota, J.; Poikelispää, M.; Das, A.; Dierkes, W.K.; Vuorinen, J.

    2013-01-01

    The influence of organically modified nanoclay-carbon black (CB) hybrid filler on the curing behavior of natural rubber (NR) was explored in this investigation. Here an effort was paid to understand the curing kinetics of organomodified nanoclay filled rubber compounds. On the basis of two different

  7. Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers

    Science.gov (United States)

    Bassanini, Ivan; Hult, Karl

    2015-01-01

    Summary Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters. PMID:26664578

  8. Nanostructured Silica–Lipid Hybrid Microparticles: A Supersaturating Carrier for Water- and Lipid-resistant Compounds

    National Research Council Canada - National Science Library

    Tan, Angel; Prestidge, Clive

    2012-01-01

    Nanostructured silica–lipid hybrid (SLH) microparticles, which are fabricated based on Pickering emulsion templates, are reported to enhance the encapsulation efficiency of a weak base anthelmintic, albendazole (ABZ...

  9. Searching for the Multi-Target-Directed Ligands against Alzheimer's disease: discovery of quinoxaline-based hybrid compounds with AChE, H₃R and BACE 1 inhibitory activities.

    Science.gov (United States)

    Huang, Wenhai; Tang, Li; Shi, Ying; Huang, Shufang; Xu, Lei; Sheng, Rong; Wu, Peng; Li, Jia; Zhou, Naiming; Hu, Yongzhou

    2011-12-01

    A novel series of quinoxaline derivatives, as Multi-Target-Directed Ligands (MTDLs) for AD treatment, were designed by lending the core structural elements required for H(3)R antagonists and hybridizing BACE 1 inhibitor 1 with AChE inhibitor BYYT-25. A virtual database consisting of quinoxaline derivatives was first screened on a pharmacophore model of BACE 1 inhibitors, and then filtered by a molecular docking model of AChE. Seventeen quinoxaline derivatives with high score values were picked out, synthesized and evaluated for their biological activities. Compound 11a, the most effective MTDL, showed the potent activity to H(3)R/AChE/BACE 1 (H(3)R antagonism, IC(50)=280.0 ± 98.0 nM; H(3)R inverse agonism, IC(50)=189.3 ± 95.7 nM; AChE, IC(50)=483 ± 5 nM; BACE 1, 46.64±2.55% inhibitory rate at 20 μM) and high selectivity over H(1)R/H(2)R/H(4)R. Furthermore, the protein binding patterns between 11a and AChE/BACE 1 showed that it makes several essential interactions with the enzymes.

  10. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  11. Heterogeneous Catalysis of Polyoxometalate Based Organic-Inorganic Hybrids.

    Science.gov (United States)

    Ren, Yuanhang; Wang, Meiyin; Chen, Xueying; Yue, Bin; He, Heyong

    2015-03-31

    Organic-inorganic hybrid polyoxometalate (POM) compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic-inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  12. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters

    OpenAIRE

    Hui, Kerwin; Chai, Jeng-Da

    2015-01-01

    By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction probl...

  13. Macrolide Hybrid Compounds: Drug Discovery Opportunities in Anti- Infective and Anti-inflammatory Area.

    Science.gov (United States)

    Paljetak, Hana Cipcic; Tomaskovic, Linda; Matijasic, Mario; Bukvic, Mirjana; Fajdetic, Andrea; Verbanac, Donatella; Peric, Mihaela

    2017-01-01

    Macrolides, polyketide natural products, and their 15-membered semi-synthetic derivatives are composed of substituted macrocyclic lactone ring and used primarily as potent antibiotics. Recently their usefulness was extended to antimalarial and anti-inflammatory area. Hybrid macrolides presented in this article are the next generation semi-synthetic compounds that combine pharmacophores from antibacterial, antimalarial and anti-inflammatory area with 14- and 15-membered azalide scaffolds. Antibacterial azalide hybrids with sulphonamides showed improved activity against resistant streptococci while quinolone conjugates demonstrated full coverage of respiratory pathogens including macrolide resistant strains and their efficacy was confirmed in mouse pneumonia model. Antimalarial macrolide hybrids, mainly involving (chloro)quinoline pharmacophores, showed outstanding activity against chloroquine resistant strains, favourable pharmacokinetics, promising in vivo efficacy as well as encouraging developmental potential. Anti-inflammatory hybrids were obtained by combining macrolides with corticosteroid and non-steroidal anti-inflammatory drugs. They were found active in in vivo animal models of locally induced inflammation, asthma, inflammatory bowel disease and rheumatoid arthritis and demonstrated improved safety over parent steroid drugs. Overall, macrolide hybrids possess significant potential to be developed as potent novel medicines in therapeutic areas of utmost pharmaceutical interest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Polyester based hybrid organic coatings

    Science.gov (United States)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  15. SCAN-based hybrid and double-hybrid density functionals from parameter-free models

    CERN Document Server

    Hui, Kerwin

    2015-01-01

    By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free of any empirical parameter. The SCAN-based hybrid and double-hybrid functionals consistently outperform their parent SCAN semilocal functional for a wide range of applications. The SCAN-based semilocal, hybrid, and double-hybrid functionals generally perform better than the corresponding PBE-based functionals. In addition, the SCAN0-2 and SCAN-QIDH double-hybrid functionals significantly reduce the qualitative failures of the SCAN semilocal functional, such as the self-interaction error and noncovalent interaction error, extending the applicability of the SCAN-based functionals to a very diverse range of systems.

  16. New organic-inorganic hybrid compounds constructed from polyoxometalates and transition metal mixed-organic-ligand complexes.

    Science.gov (United States)

    Hu, Yang-Yang; Zhang, Ting-Ting; Zhang, Xiao; Zhao, De-Chuan; Cui, Xiao-Bing; Huo, Qi-Sheng; Xu, Ji-Qing

    2016-02-14

    Five new organic-inorganic hybrid compounds based on different polyoxoanions [HxGeW12O40](n-) or [H3As2W18O62](3-) (x = 0, 2; n = 4, 2), namely [Cu3(2,2'-bpy)3(inic)(OH)(H2O)][GeW12O40]·1.5H2O (1), [Cu2(phen)2(μ2-Cl)2(inic)]2[H2GeW12O40]·2H2O (2), [Cu2(phen)2(μ2-Cl)Cl(nic)]2[H2GeW12O40] (3), [Cu2(2,2'-bpy)2(hnic)Cl]2[H2GeW12O40] (4), [Cu(phen)(inic)H2O][Cu2(phen)2(inic)2(H2O)][H3As2W18O62]·3H2O (5) (inic = isonicotinic acid, nic = nicotinic acid, hnic = 2-hydroxy-nicotinic acid, 2,2'-bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline), have been synthesized and characterized by IR, UV-Vis, XRD, cyclic voltammetric measurements and single crystal X-ray diffraction analysis. Single crystal X-ray analysis reveals that compound 1 is isomorphous and isostructural with a compound reported by us recently, the main difference between the two is the heteroatom of the polyoxoanions in the two compounds. Compound 2 is a supramolecular structure constructed from polyoxoanions and transition metal mixed-organic-ligand complexes. Compound 3 is a novel polyoxoanion bi-supported transition metal mixed-organic-ligand complex. Compound 4 is a 1-D chain structure constructed from polyoxoanions and transition metal mixed-organic-ligand complexes. The photodegradation properties of compounds 1-5 have been analyzed.

  17. Hybrid Compounds Strategy in the Synthesis of Oleanolic Acid Skeleton-NSAID Derivatives

    Directory of Open Access Journals (Sweden)

    Anna Pawełczyk

    2016-04-01

    Full Text Available The current study focuses on the synthesis of several hybrid individuals combining a natural oleanolic acid skeleton and synthetic nonsteroidal anti-inflammatory drug moieties (NSAIDs. It studied structural modifications of the oleanolic acid structure by use of the direct reactivity of hydroxyl or hydroxyimino groups at position C-3 of the triterpenoid skeleton with the carboxylic function of anti-inflammatory drugs leading to new perspective compounds with high potential pharmacological activities. Novel ester- and iminoester-type derivatives of oleanolic unit with the different NSAIDs, such as ibuprofen, aspirin, naproxen, and ketoprofen, were obtained and characterized. Moreover, preliminary research of compounds obtaining structure stability under acidic conditions was examined and the PASS method of prediction of activity spectra for substances was used to estimate the potential biological activity of these compounds.

  18. Cerium-iron-based magnetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.

    2017-01-17

    New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo in combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.

  19. Electronic and optical properties of (U,Th)O2 compound from screened hybrid density functional studies

    Science.gov (United States)

    Mo, Chongjie; Yang, Yu; Kang, Wei; Zhang, Ping

    2016-04-01

    The electronic structure and optical properties for the (U,Th)O2 compound are systematically studied by employing the Heyd-Scuseria-Ernzerh method (HSE) of screened hybrid density functional. The electronic band gap of (U,Th)O2 is predicted to be 3.06 eV, in the middle of the values of UO2 and ThO2. Based on wavefunction analysis, we conclude (U,Th)O2 to be a Mott insulator in its ground state. The frequency dependent dielectric functions and optical properties are then calculated and compared with those of ThO2 and UO2. At the visible light frequency range, the adsorption coefficients for ThO2, UO2 and (U,Th)O2 are totally different, which gives an accessible method to predict the proportion of U atoms in an arbitrary unknown (U,Th)O2 compounds from the adsorption spectrum of visible lights.

  20. New, hybrid pectin-based biosorbents

    Science.gov (United States)

    Jakóbik-Kolon, Agata; Milewski, Andrzej K.; Karoń, Krzysztof; Bok-Badura, Joanna

    2016-01-01

    ABSTRACT In this work hybrid pectin-based biosorbents with secondary polysaccharide additives (gellan, carob and xanthan gum, ratio to pectin 1:1, 1:1 and 1:3, respectively) were obtained at two temperatures. The presence of these additives in prepared beads was confirmed by Raman spectra. The SEM micrographs show better homogeneity of blends and grater differences between structures of beads with various additives obtained at higher temperature. The sorption capacity of our hybrid biosorbents as well as sole pectin sorbent is rather the same, and equals 0.85 and 0.70 mmol/g for lead and cadmium, respectively, in pH 4–6. PMID:27812233

  1. Hybrid Communication System Based on OFDM

    Directory of Open Access Journals (Sweden)

    2013-11-01

    Full Text Available A Hybrid architecture between terrestrial and satellite networks based on Orthogonal Frequency Division Multiplexing (OFDM is employed here. In hybrid architecture, the users will be able to avail the services through the terrestrial networks as well as the satellite networks. The users located in urban areas will be served by the existing terrestrial mobile networks and similarly the one located in rural areas will be provided services through the satellite networks. The technique which is used to achieve this objective is called Pre-FFT adaptive beamforming also called time domain beamforming. When the data is received at the satellite end, the Pre-FFT adaptive beamforming extracts the desired user data from the interferer user by applying the complex weights to the received symbol. The weight for the next symbol is then updated by Least Mean Square (LMS algorithm and then is applied to it. This process is carried out till all the desired user data is extracted.

  2. Selective Delivery of PEGylated Compounds to Tumor Cells by Anti-PEG Hybrid Antibodies.

    Science.gov (United States)

    Tung, Hsin-Yi; Su, Yu-Cheng; Chen, Bing-Mae; Burnouf, Pierre-Alain; Huang, Wei-Chiao; Chuang, Kuo-Hsiang; Yan, Yu-Ting; Cheng, Tian-Lu; Roffler, Steve R

    2015-06-01

    Polyethylene glycol (PEG) is attached to many peptides, proteins, liposomes, and nanoparticles to reduce their immunogenicity and improve their pharmacokinetic and therapeutic properties. Here, we describe hybrid antibodies that can selectively deliver PEGylated medicines, imaging agents, or nanomedicines to target cells. Human IgG1 hybrid antibodies αPEG:αHER2 and αPEG:αCD19 were shown by ELISA, FACS, and plasmon resonance to bind to both PEG and HER2 receptors on SK-BR-3 breast adenocarcinoma and BT-474 breast ductal carcinoma cells or CD19 receptors on Ramos and Raji Burkitt's lymphoma cells. In addition, αPEG:αHER2 specifically targeted PEGylated proteins, liposomes, and nanoparticles to SK-BR-3 cells that overexpressed HER2, but not to HER2-negative MCF-7 breast adenocarcinoma cells. Endocytosis of PEGylated nanoparticles into SK-BR-3 cells was induced specifically by the αPEG:αHER2 hybrid antibody, as observed by confocal imaging of the accumulation of Qdots inside SK-BR-3 cells. Treatment of HER2(+) SK-BR-3 and BT-474 cancer cells with αPEG:αHER2 and the clinically used chemotherapeutic agent PEGylated liposomal doxorubicin for 3 hours enhanced the in vitro effectiveness of PEGylated liposomal doxorubicin by over two orders of magnitude. Hybrid anti-PEG antibodies offer a versatile and simple method to deliver PEGylated compounds to cellular locations and can potentially enhance the therapeutic efficacy of PEGylated medicines.

  3. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    Science.gov (United States)

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture.

  4. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  5. New aqueous rechargeable power sources based on intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.; Liu, L.L.; Qu, Q.T.; Wu, Y.P. [Fudan Univ., New Energy and Materials Laboratory, Shanghai (China). Dept. of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials

    2010-07-01

    Lithium ion batteries have gained global attention because of their intercalation mechanism. However, when the capacity is very large for large-scale energy storage of electricity, the safety of lithium ion batteries is a challenge. The safest energy storage for large-scale energy storage is based on aqueous solutions. This paper reported on the latest developments related to the results of aqueous rechargeable power sources based on intercalation compounds, notably aqueous rechargeable lithium batteries (ARLBs) and hybrid supercapacitors. The paper provided background information on ARLBs and discussed the use of polypyrrole as anode materials. It was found that this polymer could be doped and un-doped during cycling, which demonstrated excellent cycling behaviour. The paper also discussed the enhancement of the reversible capacity of lithium manganese oxide (LiMn{sub 2}O{sub 4}) and lithium cobalt dioxide (LiCoO{sub 2}) in ARLBs by adopting novel preparation technologies. It was concluded that ARLBs and the new hybrid supercapacitors show significant potential for practical applications in large-scale energy storage that are needed to make advances in sustainable development. 7 refs.

  6. Synthesis and biological screening by novel hybrid fluorocarbon hydrocarbon compounds for use as artificial blood substitutes

    Science.gov (United States)

    Moacanin, J.; Scherer, K.; Toronto, A.; Lawson, D.; Terranova, T.; Yavrouian, A.; Astle, L.; Harvey, S.; Kaaelble, D. H.

    1979-01-01

    A series of hybrid fluorochemicals of general structure R(1)R(2)R(3)CR(4) was prepared where the R(i)'s (i=1,2,3) is a saturated fluoroalkyl group of formula C sub N F sub 2n+1, and R(4) is an alkyl group C sub n H sub 2n+1 or a related moiety containing amino, ether, or ester functions but no CF bonds. Compounds of this class containing approximately eight to twenty carbons total have physical properties suitable for use as the oxygen carrying phase of fluorochemical emulsion artificial blood. The chemical synthesis, and physical and biological testing of pure single isomers of the proposed artificial blood candidate compounds are included. Significant results are given.

  7. Structural Characterization and Infrared and Electrical Properties of the New Inorganic-Organic Hybrid Compound

    Directory of Open Access Journals (Sweden)

    A. Oueslati

    2013-01-01

    Full Text Available New inorganic-organic hybrid [(C3H74N]2Hg2Cl6 compound was obtained and characterised by single-crystal X-ray diffraction, infrared, and impedance spectroscopy. The latter crystallizes in the monoclinic system (space group C 2/c, with the following unit cell dimensions: (1 Å, (6 Å, (2 Å, and (2. Besides, its structure was solved using 84860 independent reflections leading to . Electrical properties of the material were studied using impedance spectroscopic technique at different temperatures in the frequency range of 209 Hz to 5 MHz. Detailed analysis of the impedance spectrum suggested that the electrical properties of the material are strongly temperature-dependent. The Nyquist plots clearly showed the presence of bulk and grain boundary effect in the compound.

  8. Strain tuning of ferroelectric polarization in hybrid organic inorganic perovskite compounds.

    Science.gov (United States)

    Ghosh, Saurabh; Di Sante, Domenico; Stroppa, Alessandro

    2015-11-19

    Metal-organic frameworks (MOFs) are hybrid crystalline compounds comprised of an extended ordered network made up of organic molecules, organic linkers and metal cations. In particular, MOFs with the same topology as inorganic perovskites have been shown to possess interesting properties, e.g., coexistence of ferroelectric and magnetic ordering. Using first-principles density functional theory, we have investigated the effect of strain on the compounds C(NH2)3Cr(HCOO)3 and (CH3CH2NH3)Mn(HCOO)3. Here, we show that compressive strain can substantially increase the ferroelectric polarization by more than 300%, and we discuss the mechanism involved in the strain enhancement of polarization. Our study highlights the complex interplay between strain and organic cations' dipoles and put forward the possibility of tuning of ferroelectric polarization through appropriate thin film growing.

  9. Synthesis and structural characterization of new inorganic–organic hybrid: arsenomolybdate compound with cytosinium cations

    Indian Academy of Sciences (India)

    Meriem Ayed; Brahim Ayed; Amor Haddad

    2015-02-01

    New organic–inorganic hybrid compound, with formula (C4H6N3O)6 [(HAsO4)2Mo6O19].7H2O, was prepared and characterized by IR and UV–visible spectroscopies and X-ray diffraction techniques. Thermal analysis was performed to study their thermal stability. The crystal structure of the title compound (triclinic, space group $P − 1$, = 2) was determined by X-ray diffraction. The compound contains the polyanion [(HAsO4)2Mo6O19]6−, which consists of the six molybdenum octahedral grouped into two parts consisting of four edge-sharing octahedral and two face-sharing octahedral, respectively, these two parts are connected by two corner-sharing O atoms to form a bent Mo6 ring. The polyanion framework derives from the Strandberg type and it is a new isomer. The cytosinium cations (Cyt+) are embedded in the channels and interact with the inorganic framework by way of N-H $\\cdots$ O and O-H $\\cdots$ O hydrogen bonds. Furthermore, the electrochemical property of this compound has been studied.

  10. Synthesis and fluorescence properties of six fluorescein-nitroxide radical hybrid-compounds.

    Science.gov (United States)

    Sato, Shingo; Endo, Susumu; Kurokawa, Yusuke; Yamaguchi, Masaki; Nagai, Akio; Ito, Tomohiro; Ogata, Tateaki

    2016-12-05

    Six fluorescein-nitroxide radical hybrid-compounds (2ab, 3ab, 4, and 5) were synthesized by the condensation of 5- or 6-carboxy-fluorescein and 4-amino-TEMPO (2ab), 5- or 6-aminofluorescein and 4-carboxy-TEMPO (3ab), and fluorescein and 4-carboxy-TEMPO (4), or by reaction of the 3-hydroxyl group of fluorescein with DPROXYL-3-ylmethyl methanesulfonate (5). Fluorescence intensities (around 520nm) after reduction of the radical increased to 1.43-, 1.38-, and 1.61-folds for 2a, 2b and 3b respectively; 3a alone exhibited a decrease in intensity on reduction. Since 4 was readily solvolyzed in PBS or even methanol to afford fluorescein and 4-carboxy-TEMPO, its fluorescence change could not be measured. Hybrid compound 5 containing an ether-linkage between the fluorescein phenol and 3-hydroxymethyl-DPROXYL hydroxyl centers, was stable and on reduction, showed a maximum increase (3.21-fold) in relative fluorescence intensity in PBS (pH5.0), despite its remarkably low absolute fluorescence intensity.

  11. Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents.

    Science.gov (United States)

    Papadopoulou, Athena A; Katsoura, Maria H; Chatzikonstantinou, Alexandra; Kyriakou, Eleni; Polydera, Angeliki C; Tzakos, Andreas G; Stamatis, Haralambos

    2013-05-01

    The lipase-catalyzed molecular hybridization of α-lipoic acid (LA) with bioactive compounds pyridoxine, tyrosol and tyramine was performed in ionic solvents and deep eutectic solvents. The biocatalytic reactions were catalyzed by Candida antarctica lipase B immobilized onto various functionalized multi-walled carbon nanotubes (f-CNTs-CaLB), as well as by commercial Novozym 435. The use of f-CNTs-CaLB leads, in most cases, to higher conversion yields as compared to Novozym 435. The nature and ion composition of ionic solvents affect the performance of the biocatalytic process. The highest conversion yield was observed in (mtoa)NTf2. The high enzyme stability and the relatively low solubility of substrates in specific media account for the improved biocatalytic synthesis of molecular hybrids of LA. Principal component analysis was used to screen for potential lipoxygenase inhibitors. In vitro studies showed that the synthesized compounds exhibit up to 10-fold increased inhibitory activity on lipoxygenase mediated lipid peroxidation as compared to parent molecules.

  12. Multicast Routing Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAO Yuan-da; CAI Gui

    2005-01-01

    A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.

  13. Tuning the electronic hybridization in the heavy fermion cage compound YbFe2Zn20 with Cd doping

    Science.gov (United States)

    Cabrera-Baez, M.; Ribeiro, R. A.; Avila, M. A.

    2016-09-01

    The tuning of the electronic properties of heavy fermion compounds by chemical substitution provides excellent opportunities for further understanding the physics of hybridized ions in crystal lattices. Here we present an investigation on the effects of Cd doping in flux-grown single crystals of the complex intermetallic cage compound YbFe2Zn20, which has been described as a heavy fermion with a Sommerfeld coefficient of 535 mJ mol-1 · K-2. The substitution of Cd for Zn disturbs the system by expanding the unit cell and, in this case, the size of the Zn cages that surround the Yb and Fe. With an increasing amount of Cd, the hybridization between the Yb 4f electrons and the conduction electrons is weakened, as shown by a decrease in the Sommerfeld coefficient, which should be accompanied by a valence shift of the Yb3+ due to the negative chemical pressure effect. This scenario is also supported by the low temperature DC magnetic susceptibility, which is gradually suppressed and shows an increment of the Kondo temperature, based on a shift to higher temperatures of the characteristic broad susceptibility peak. Furthermore, the DC resistivity decreases with the isoelectronic substitution of Cd for Zn, contrary to expectations in an increasingly disordered system, and implying that the valence shift is not related to charge carrier doping. The combined results demonstrate the excellent complementarity between positive physical pressure and negative chemical pressure, and point to a rich playground for exploring the physics and chemistry of strongly correlated electron systems in the general family of Zn20 compounds, despite their structural complexity.

  14. SYNTHESIS OF NOVEL FLUOROQUINOLONE-TRIAZOLE HYBRID COMPOUNDS AS ANTIMICROBIAL AGENTS

    Directory of Open Access Journals (Sweden)

    Serap Başoğlu Özdemir

    2016-10-01

    Full Text Available Abstract: The hydrazide compound (2 was synthesized starting from 1-(2-fluorophenylpiperazine via two stage. The reaction of compound (2 with different alkyl(arylisothiocyanates afforded the corresponding compounds (3a-c. 1,3-Thiazolidine derivatives (4a-c were synthesized from the treatment of (3a-c with ethyl bromoacetate. Mannich bases (6a-d were yielded the treayment of (5a-c with various suitable amines in the exictence of formaldehyde. Compound (3 derivatives were converted to 1,2,4-triazole as the starting material of fluoroquinolone analogues (11a-c. Finally synthesized compounds were examined their biological properties and some of these showed potent activity.

  15. Leaf volatile compounds of seven citrus somatic tetraploid hybrids sharing willow leaf mandarin (Citrus deliciosa Ten.) as their common parent.

    Science.gov (United States)

    Gancel, Anne-Laure; Ollitrault, Patrick; Froelicher, Yann; Tomi, Felix; Jacquemond, Camille; Luro, Francois; Brillouet, Jean-Marc

    2003-09-24

    Volatile compounds were extracted by a pentane/ether (1:1) mixture from the leaves of seven citrus somatic tetraploid hybrids sharing mandarin as their common parent and having lime, Eurêka lemon, lac lemon, sweet orange, grapefruit, kumquat, or poncirus as the other parent. Extracts were examined by GC-MS and compared with those of their respective parents. All hybrids were like their mandarin parent, and unlike their nonmandarin parents, in being unable to synthesize monoterpene aldehydes and alcohols. The hybrids did retain the ability, although strongly reduced, of their nonmandarin parents to synthesize sesquiterpene hydrocarbons, alcohols, and aldehydes. These results suggest that complex forms of dominance in the mandarin genome determine the biosynthesis pathways of volatile compounds in tetraploid hybrids. A down-regulation of the biosynthesis of methyl N-methylanthranilate, a mandarin-specific compound, originates from the genomes of the nonmandarin parents. Statistical analyses showed that all of the hybrids were similar to their common mandarin parent in the relative composition of their volatile compounds.

  16. Dual-action Hybrid Compounds - A New Dawn in the Discovery of Multi-target Drugs: Lead Generation Approaches.

    Science.gov (United States)

    Abdolmalekia, Azizeh; Ghasemi, Jahan B

    2016-09-27

    Finding high quality beginning compounds is a critical job at the start of the lead generation stage for multi-target drug discovery (MTDD). Designing hybrid compounds as a selective multi-target chemical entity is a challenge, opportunity, and new idea to better act against specific multiple targets. One hybrid molecule is formed by two (or more) pharmacophore group's participation. So, these new compounds often exhibit two or more activities going about as multi-target drugs (mt-drugs) and may have superior safety or efficacy. Application of integrating a range of information and sophisticated new in silico, bioinformatics, structural biology, pharmacogenomics methods may be useful to discover/design, and synthesis of the new hybrid molecules. In this regard, many rational and screening approaches have followed by medicinal chemists for the lead generation in MTDD. Here, we review some popular lead generation approaches that have been used for designing multiple ligands (DMLs). This paper focuses on dual- acting chemical entities that incorporate a part of two drugs or bioactive compounds to compose hybrid molecules. Also, it presents some of key concepts and limitations/strengths of lead generation methods by comparing combination framework method with screening approaches. Besides, a number of examples to represent applications of hybrid molecules in the drug discovery are included.

  17. Solid-state NMR characterization of the structure and thermal stability of hybrid organic-inorganic compounds based on a HLaNb2O7 Dion-Jacobson layered perovskite.

    Science.gov (United States)

    Cattaneo, Alice S; Ferrara, Chiara; Marculescu, Adriana Mossuto; Giannici, Francesco; Martorana, Antonino; Mustarelli, Piercarlo; Tealdi, Cristina

    2016-08-03

    Dion-Jacobson phases, like MLaNb2O7, are an interesting class of ion-exchangeable layered perovskites possessing electronic and photocatalytic properties. Their protonated and organo-modified homologues, in particular, have already been indicated as promising catalysts. However, the structural analysis of these highly tailorable materials is still incomplete, and both the intercalation process and thermal stability of the included organic moieties are far from being completely understood. In this study, we present a thorough solid-state NMR characterization of HLaNb2O7·xH2O intercalated with different amounts of octylamine, or with decylamine. Samples were analyzed as prepared, and after thermal treatment at different temperatures up to 220 °C. The substitution of pristine proton ions was followed via(1)H MAS NMR spectroscopy, whereas the alkyl chains were monitored through (13)C((1)H) CP MAS experiments. The interactions in the interlayer space were explored using (13)C((1)H) 2D heteronuclear correlation experiments. We demonstrate that some of the protons are involved in the functionalization reaction, and some of them are in close proximity to the alkyl ammonium chains. Heating of the hybrid materials leads first to a rearrangement of the alkyl chains and then to their degradation. The spatial arrangement of the chains, their interactions and the thermal behavior of the materials depend on the extent of the functionalization, and on the nature of the intercalated alkyl ammonium ions.

  18. A New Nonlinear Compound Forecasting Method Based on ANN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper the compound-forecasting method is discussed. The compound-forecasting method is one of the hotspots in the current predication. Firstly, the compound-forecasting method is introduced and various existing compound-forecasting methods arediscussed. Secondly, the Artificial Neural Network (ANN) is brought in compound-prediction research and a nonlinear compound-prediction model based on ANN is presented. Finally, inorder to avoid irregular weight, a new method is presented which uses principal component analyses to increase the availability of compound-forecasting information. Higherforecasting precision is achieved in practice.

  19. A natural product inspired hybrid approach towards the synthesis of novel pentamidine based scaffolds as potential anti-parasitic agents.

    Science.gov (United States)

    Tyagi, Vikas; Khan, Shahnawaz; Shivahare, Rahul; Srivastava, Khushboo; Gupta, Suman; Kidwai, Saqib; Srivastava, Kumkum; Puri, S K; Chauhan, Prem M S

    2013-01-01

    A natural product inspired molecular hybridization approach led us to a series of novel pentamidine based pyrimidine and chalcone scaffolds. All the hybrids were evaluated for their anti-leishmanial potential. Most of the screened compounds have showed significant in vitro anti-leishmanial activity with less cytotoxicity in comparison to the standard drugs (pentamidine, sodium stibogluconate, and miltefosine). Additionally, anti-malarial screening of these compounds was also done and four compounds have shown superior activity against chloroquine resistance strain (K1) of Plasmodium falciparum.

  20. Research of IDSS Architecture Based on Hybrid Systems

    Institute of Scientific and Technical Information of China (English)

    MA Biao; YANG Bao-an

    2005-01-01

    This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system's ability of handling and learning knowledge.

  1. Structural characterization and physicochemical features of new hybrid compound containing chlorate anions of cadmate (II)

    Science.gov (United States)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Gadri, Abdellatif; Ammar, Salah; Ben Salah, Abdelhamid; García-Granda, Santiago

    2017-08-01

    The present paper reports the synthesis of a single crystal of a new organic-inorganic hybrid compound, with the formula (C6H14N2) CdCl4·H2O, by slow evaporation method at room temperature. It was characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), Hirshfeld surface, spectroscopy measurement, thermal study and photoluminescence (PL) properties. A preliminary SCXRD structural analysis revealed that it crystallized in the monoclinic system (space group P21/c) with the following unit cell parameters: a = 12.95823(16) Å, b = 14.92449(16) Å, c = 7.13838(9) Å and β = 103.2108(12)° with Z = 4. The refinement converged to R = 0.0164 and ωR = 0.0393. Its atomic arrangement can be described as an alternation of organic and inorganic layers along the a-axis. The crystal packing was governed by the N-H⋯Cl and O-H⋯Cl hydrogen bonding interaction between the 1.2-diammoniumcyclohexane cations, the [CdCl42n-]n anions and water molecule. The Hirshfeld surface analysis was conducted to investigate intermolecular interactions and associated 2D fingerprint plots, revealing the relative contribution of these interactions in the crystal structure quantitatively. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 225, 268 and 315 nm and a strong fluorescence at 443 nm.

  2. Carbon nanotube based hybrid nanocarbon foam

    Science.gov (United States)

    Shahrizan Jamal, M.; Zhang, Mei

    2017-03-01

    Carbon nanotube (CNT) based nanocarbon foams (NFs) and the hybrid nanocarbon foams (HNFs) are fabricated in this work. The NFs are formed by using poly(methyl methacrylate) microspheres as a template to create micro-scaled pores. The cell walls are made of CNT networks with nano-scaled pores. The interconnections among CNTs are secured using graphene and nanographite generated via carbonization of polyacrylonitrile. The resulting NFs are ultra-lightweight, highly elastic, electrically and thermally conductive, and robust in structure. The HNFs are made by infiltrating thermoplastic polymer into the NFs in a controllable procedure. Compared to NFs, the HNFs have much higher strength, same electrical conductivity, and limited increase in density. The compressive strength of the HNF increased more than 50 times while the density was changed less than 10 times due to the polymer infiltration. It is found that the deformed HNFs can recover in both structure and property when they are heated over the glass transition temperature of the infiltrated polymer. Such remarkable healing capability could broaden the applications of the HNFs.

  3. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  4. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  5. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  6. ZnO-based nanocrystalline powders with applications in hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Ferrari, S.; Meyer, M. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Orozco, J. [Dto. de Ingenieria Mecanica y Materiales, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain)

    2010-06-15

    In recent years there has been a growing interest in the development of hybrid photovoltaic cells consisting of new materials, such as devices based on the combination of a wide gap semiconductor and an organic dye (dye-sensitized solar cells, DSSC). In this paper we obtain nano-zinc oxide particles whose optical and electrical properties have been modified by the presence of small amounts of Al or In acting as dopants. The aim of this study is to improve the compatibility of each of the compounds present in the photovoltaic solar cell. The knowledge gained will provide input to guide the processes in the manufacture of hybrid solar cells. (author)

  7. Novel R-roscovitine NO-donor hybrid compounds as potential pro-resolution of inflammation agents.

    Science.gov (United States)

    Montanaro, Gabriele; Bertinaria, Massimo; Rolando, Barbara; Fruttero, Roberta; Lucas, Christopher D; Dorward, David A; Rossi, Adriano G; Megson, Ian L; Gasco, Alberto

    2013-04-01

    Neutrophils play a pivotal role in the pathophysiology of multiple human inflammatory diseases. Novel pharmacological strategies which drive neutrophils to undergo programmed cell death (apoptosis) have been shown to facilitate the resolution of inflammation. Both the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine and nitric oxide (NO) have been shown to enhance apoptosis of neutrophils and possess pro-resolution of inflammation properties. In order to search for new multi-target pro-resolution derivatives, here we describe the design, synthesis and investigation of the biological potential of a small series of hybrid compounds obtained by conjugating R-roscovitine with two different NO-donor moieties (compounds 2, 9a, 9c). The synthesized compounds were tested as potential pro-resolution agents, with their ability to promote human neutrophil apoptosis evaluated. Both compound 9a and 9c showed an increased pro-apoptotic activity when compared with either R-roscovitine or structurally related compounds devoid of the ability to release NO (des-NO analogues). Inhibition of either NO-synthase or soluble guanylate cyclase did not affect the induction of apoptosis by the R-roscovitine derivatives, similar to that reported for other classes of NO-donors. In contrast the NO scavenger PTIO prevented the enhanced apoptosis seen with compound 9a over R-roscovitine. These data show that novel compounds such as CDKi-NO-donor hybrids may have additive pro-resolution of inflammation effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mechanochemical reactions on copper-based compounds

    NARCIS (Netherlands)

    Castricum, H.L.; Bakker, H.; Poels, E.K.

    1999-01-01

    Mechanochemical reactions of copper and copper oxides with oxygen and carbon dioxide are discussed, as well as decomposition and reduction of copper compounds by mechanical milling under high-vacuum conditions.

  9. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  10. Luminescent hybrid materials based on laponite clay.

    Science.gov (United States)

    Li, Huanrong; Li, Man; Wang, Yu; Zhang, Wenjun

    2014-08-11

    The spectroscopic behavior of ionic Eu(3+) or Tb(3+) complexes of an aromatic carboxyl-functionalized organic salt as well as those of the hybrid materials derived from adsorption of the ionic complexes on Laponite clay are reported. X-ray diffraction (XRD) patterns suggest that the complexes are mainly adsorbed on the outer surfaces of the Laponite disks rather than intercalated within the interlayer spaces. Photophysical data showed that the energy-transfer efficiency from the ligand to Eu(3+) ions in the hybrid material is increased remarkably with respect to the corresponding ionic complex. The hybrid material containing the Eu(3+) complex shows bright red emission from the prominent (5) D0 →(7) F2 transition of Eu(3+) ions, and that containing the Tb(3+) complex exhibits bright green emission due to the dominant (5) D4 →(7) F5 transition of Tb(3+) ions.

  11. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  12. Crystal structure, vibrational studies and optical properties of a new organic-inorganic hybrid compound (C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O.

    Science.gov (United States)

    Kessentini, A; Belhouchet, M; Suñol, J J; Abid, Y; Mhiri, T

    2015-01-01

    A new organic-inorganic hybrid material, 1,4-bis(3-ammoniumpropyl) piperazinium pentachloridocuprate(II) chloride tetrahydrate [(C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O], has been synthesized and characterized by X-ray diffraction, UV-visible absorption, Infrared and Raman spectroscopy. The compound crystallizes in the orthorhombic system and Pnma space group with a=8.18 (3)Å, b=10.96 (5)Å, c=21.26 (9)Å, V=2254.3 (15)Å(3). In this structure, the Cu(2+) ion, surrounded by five chlorides, adopts the square pyramidal coordination geometry. The structure of this compound consists of tetraprotonated 1,4-bis(3-ammoniumpropyl) piperazinium cations and the anionic sublattice is built up of isolated, square pyramid [CuCl₅](3)(-) units, chloride ion Cl(-) and water molecules connected with each other by hydrogen bonds. Organic and inorganic entities are interconnected by means of hydrogen bonding contacts [NH⋯O(Cl), O(W)H⋯Cl and O(W)H⋯O]. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed on the basis of literature data. The optical study was also investigated by UV-Vis absorption. In fact, the organic-inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the (C₁₀H₂₈N₄)CuCl₅Cl⋅4H₂O hybrid compound and it showed absorptions characteristics of CuCl based layered compounds centered at 275 and 374 nm.

  13. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves.

    Science.gov (United States)

    Hokkanen, Juho; Mattila, Sampo; Jaakola, Laura; Pirttilä, Anna Maria; Tolonen, Ari

    2009-10-28

    Phenolic compounds from leaves of lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.), and the natural hybrid of bilberry and lingonberry (Vaccinium x intermedium Ruthe L., hybrid bilberry) were identified using LC/TOF-MS and LC/MS/MS after extraction from the plant material in methanol in an ultrasonicator. The phenolic profiles in the plants were compared using the LC/TOF-MS responses. This is the first thorough report of phenolic compounds in hybrid bilberry. In total, 51 different phenolic compounds were identified, including flavan-3-ols, proanthocyanidins, flavonols and their glycosides, and various phenolic acid conjugates. Of the identified compounds, 35 were detected in bilberry, 36 in lingonberry, and 46 in the hybrid. To our knowledge, seven compounds were previously unreported in Vaccinium genus and many of the compounds are reported for the first time from bilberry and lingonberry.

  14. Splitting and Updating Hybrid Knowledge Bases (Extended Version)

    CERN Document Server

    Slota, Martin; Swift, Terrance

    2011-01-01

    Over the years, nonmonotonic rules have proven to be a very expressive and useful knowledge representation paradigm. They have recently been used to complement the expressive power of Description Logics (DLs), leading to the study of integrative formal frameworks, generally referred to as hybrid knowledge bases, where both DL axioms and rules can be used to represent knowledge. The need to use these hybrid knowledge bases in dynamic domains has called for the development of update operators, which, given the substantially different way Description Logics and rules are usually updated, has turned out to be an extremely difficult task. In [SL10], a first step towards addressing this problem was taken, and an update operator for hybrid knowledge bases was proposed. Despite its significance -- not only for being the first update operator for hybrid knowledge bases in the literature, but also because it has some applications - this operator was defined for a restricted class of problems where only the ABox was all...

  15. Titanium dioxide-cellulose hybrid nanocomposite based conductometric glucose biosensor

    Science.gov (United States)

    Maniruzzaman, Mohammad; Mahadeva, Suresha K.; Khondoker, Abu Hasan; Kim, Jaehwan

    2012-04-01

    This paper investigates the feasibility of conductometric glucose biosensor based on glucose oxidase (GOx) immobilized TiO2-cellulose hybrid nanocomposite. TiO2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N, N-dimethylacetamide solvent to fabricate TiO2-cellulose hybrid nanocomposite. The enzyme (GOx) was immobilized into this hybrid material by physical adsorption method. The successful immobilization of GOx into TiO2-cellulose hybrid nanocomposite via covalent bonding between TiO2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of our propose glucose biosensor is obtained in the range of 1-10mM with correlation coefficient of 0.93. Our study demonstrates TiO2-cellulose hybrid material as a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  16. Time Series Prediction based on Hybrid Neural Networks

    Directory of Open Access Journals (Sweden)

    S. A. Yarushev

    2016-01-01

    Full Text Available In this paper, we suggest to use hybrid approach to time series forecasting problem. In first part of paper, we create a literature review of time series forecasting methods based on hybrid neural networks and neuro-fuzzy approaches. Hybrid neural networks especially effective for specific types of applications such as forecasting or classification problem, in contrast to traditional monolithic neural networks. These classes of problems include problems with different characteristics in different modules. The main part of paper create a detailed overview of hybrid networks benefits, its architectures and performance under traditional neural networks. Hybrid neural networks models for time series forecasting are discussed in the paper. Experiments with modular neural networks are given.

  17. Performance analysis of switching based hybrid FSO/RF transmission

    KAUST Repository

    Usman, Muneer

    2014-09-01

    Hybrid free space optical (FSO)/ radio frequency (RF) systems have emerged as a promising solution for high data rate wireless back haul.We present and analyze a switching based transmission scheme for hybrid FSO/RF system. Specifically, either FSO or RF link will be active at a certain time instance, with FSO link enjoying a higher priority. Analytical expressions have been obtained for the outage probability, average bit error rate and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with FSO only scenario.

  18. Evans-Showell-Type Polyoxometalates Constructing High-Dimensional Inorganic-Organic Hybrid Compounds with Copper-Organic Coordination Complexes: Synthesis and Oxidation Catalysis.

    Science.gov (United States)

    An, Haiyan; Hou, Yujiao; Wang, Lin; Zhang, Yumeng; Yang, Wei; Chang, ShenZhen

    2017-10-02

    Four new hybrid architectures containing a [Co2Mo10H4O38](6-) polyoxoanion, (en)[Cu3(ptz)4(H2O)4][Co2Mo10H4O38]·24H2O (1), (Hbim)2[{Cu(bim)2(H2O)2}2{Co2Mo10H4O38}]·5H2O (2), H2[Cu(dpdo)3(H2O)4][{Cu2(dpdo)3(H2O)4(CH3CN)}2{Co2Mo10H4O38}2]·9H2O (3), and (H2bpp)4[{Cu(H2O)2}{NaCo2Mo10H4O38}2]·10H2O (4), where ptz = 5-(4-pyridyl)-1H-tetrazole, en = ethylenediamine, bim = benzimidazole, dpdo = 4,4'-bipyridine-N,N'-dioxide, and bpp = 1,3-bis(4-pyridyl)propane, have been prepared and characterized through elemental analysis, thermogravimetric analysis, IR spectroscopy, and powder and single-crystal X-ray diffraction. Compound 1 shows a 3D host-guest framework composed of 3D Cu-ptz as the host and Evans-Showell-type polyoxoanion [Co2Mo10H4O38](6-) as the guest. Compound 2 is constructed from [Co2Mo10H4O38](6-) polyoxoanions and Cu-bim coordination complexes to form a 2D covalent layer. Compound 3 also exhibits a 2D hybrid network based on [Co2Mo10H4O38](6-) polyoxoanions linked by Cu-dpdo coordination groups. Compound 4 is a 1D double-chain structure composed of [Co2Mo10H4O38](6-) polyoxoanions joined together by Na(+) and Cu(2+) cations. As far as we know, compound 1 is the first host-guest compound with an Evans-Showell-type polyoxometalate as the guest, and compounds 2 and 3 are the first 2D inorganic-organic hybrid architectures constructed from Evans-Showell-type polyoxometalates. Compounds 1-4 are redox catalysts that heterogeneously prompt sulfide and alcohol oxidation with excellent efficiency.

  19. Recent progress in the development of synthetic hybrids of natural or unnatural bioactive compounds for medicinal chemistry.

    Science.gov (United States)

    Tsogoeva, Svetlana B

    2010-08-01

    The present mini-review highlights the recent developments on different classes of synthetic hybrids of natural and/or unnatural bioactive compounds, the utilization of which is very promising, as distinct features of each component can be hybridized and their properties leveraged. Particular stress is put on the respective mode of action and the corresponding rationale behind covalent combinations of various bioactive agents to increase their therapeutic potential, facilitate their administration, to reduce harmful side effects and/or to overcome the problem of multi-drug resistance. This rather recent approach has already found applications in the development of new anti-cancer, anti-Alzheimer, anti-malaria, anti-microbial therapeutics and other novel compounds with unprecedented bioactivity.

  20. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  1. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    Science.gov (United States)

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  2. Sizing of a hybrid locomotive based on accumulators and ultracapacitors

    OpenAIRE

    Jaafar, Amine; Sareni, Bruno; Roboam, Xavier; Thiounn-Guermeur, Marina

    2010-01-01

    In this paper, hybridization of a BB460000 locomotive is proposed integrating a reduced power diesel generator, batteries and ultracapacitors as storage elements. The power mission of the BB460000 locomotive is studied in order to analyze its ability to be hybridized and to identify the most critical mission. An energy management strategy based on a frequency sharing is proposed. It allows strongly decreasing the nominal power of the diesel generator. Then, through a power flow sizing model, ...

  3. Two New Organo-Inorganic Hybrid Compounds: Nitrilophosphonates of Aluminum and Copper

    Science.gov (United States)

    Cabeza, Aurelio; Bruque, Sebastián; Guagliardi, Antonietta; Aranda, Miguel A. G.

    2001-08-01

    Two new organo-inorganic hybrid compounds, aluminum nitrilotris(methylene)trismonohydrogenphosphonate hydrate, Al[(HO3PCH2)3N]H2O, and tricopper(II) bis-nitrilobis(methylene)diphosphonate, Cu3[(O3PCH2)2NH2]2, have been synthesized. The crystal structures have been determined ab initio from powder diffraction data and refined by the Rietveld method. Al[(HO3PCH2)3N]H2O is monoclinic, space group P21/n, with a=12.1945(3) Å, b=9.1129(3) Å, c=8.5495(2) Å, β=94.317(2)°, Z=4, and the X-ray powder diffraction pattern has been refined to RwP=8.7%. Cu3[(O3PCH2)2NH2]2 is orthorhombic, space group Pbca, with a=16.1209(6) Å, b=9.4890(4) Å, c=9.4113(4) Å, Z=4 and its pattern was refined to RwP=13.5%. The crystal structure of aluminum phosphonate contains a close packing of inorganic chains, formed by alternating AlO6 octahedra and O3PC tetrahedra. These chains are covalently interconnected by the organic groups to give the 3D framework. The structure of copper phosphonate has two distinct copper environments, one a tetragonally elongated tetrahedron and the other a distorted square plane. These structural units are linked by the organic phosphonate. Thermal and infrared data are discussed.

  4. Extending a Hybrid Tag-Based Recommender System with Personalization

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2010-01-01

    extension for a hybrid tag-based recommender system, which suggests similar Web pages based on the similarity of their tags. The semantic extension aims at discovering tag relations which are not considered in basic syntax similarity. With the goal of generating more semantically grounded recommendations...

  5. Alkane-Based Urethane Potting Compounds

    Science.gov (United States)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  6. A CORBA server for the Radiation Hybrid DataBase.

    Science.gov (United States)

    Rodriguez-Tomé, P; Helgesen, C; Lijnzaad, P; Jungfer, K

    1997-01-01

    Modern biology depends on a wide range of software interacting with a large number of data sources, varying both in size, complexity and structure. The range of important databases in molecular biology and genetics makes it crucial to overcome the problems which this multiplicity presents. At EMBL-EBI we have started to use CORBA technology to support interoperability between a variety of databases, as well as to facilitate the integration of tools that access these databases. Within the Radiation Hybrid DataBase project we are confronted daily with the interoperation and linking issues. In this paper we present a CORBA infrastructure implemented to access the Radiation Hybrid DataBase.

  7. Nano and hybrid aluminum based metal matrix composites: an overview

    Directory of Open Access Journals (Sweden)

    Muley Aniruddha V.

    2015-01-01

    Full Text Available Aluminium matrix composites (AMCs are potential light weight engineering materials with excellent properties. AMCs find application in many areas including automobile, mining, aerospace and defence, etc. Due to technological advancements, it is possible to use nano sized reinforcement in Al matrix. Nano sized reinforcements enhance the properties of Al matrix compared to micro sized reinforcements. Hybrid reinforcement imbibe superior properties to aluminium matrix composites as compared with Al composites having single reinforcement. This paper is focused on overview of development in the field of Al based metal matrix with nano and hybrid aluminium based composites.

  8. Carbon-Based Compounds and Exobiology

    Science.gov (United States)

    Kerridge, John; DesMarais, David; Khanna, R. K.; Mancinelli, Rocco; McDonald, Gene; diBrozollo, Fillipo Radicati; Wdowiak, Tom

    1996-01-01

    The Committee for Planetary and Lunar Explorations (COMPLEX) posed questions related to exobiological exploration of Mars and the possibility of a population of carbonaceous materials in cometary nuclei to be addressed by future space missions. The scientific objectives for such missions are translated into a series of measurements and/or observations to be performed by Martian landers. These are: (1) A detailed mineralogical, chemical, and textural assessment of rock diversity at a landing site; (2) Chemical characterization of the materials at a local site; (3) Abundance of Hydrogen at any accessible sites; (4) Identification of specific minerals that would be diagnostic of aqueous processes; (5) Textual examination of lithologies thought to be formed by aqueous activity; (6) Search for minerals that might have been produced as a result of biological processes; (7) Mapping the distribution, in three dimensions, of the oxidant(s) identified on the Martian surface by the Viking mission; (8) Definition of the local chemical environment; (9) Determination of stable-isotopic ratios for the biogenic elements in surface mineral deposits; (10) Quantitative analysis of organic (non-carbonate) carbon; (11) Elemental and isotopic composition of bulk organic material; (12) Search for specific organic compounds that would yield information about synthetic mechanisms, in the case of prebiotic evolution, and about possible bio-markers, in the case of extinct or extant life; (13) and Coring, sampling, and detection of entrained gases and cosmic-ray induced reaction products at the polar ice cap. A discussion of measurements and/or observations required for cometary landers is included as well.

  9. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  10. Synthesis and application of virus-based hybrid nanomaterials.

    Science.gov (United States)

    Lee, Sang-Yup; Lim, Jung-Sun; Harris, Michael T

    2012-01-01

    A virus is a nanoscaled biomolecular substance composed of genes, protecting capsid proteins, and envelopes. The nanoscale dimensions and surface functionalities of virions have been exploited to attract and assemble inorganic and organic materials to produce functional nanomaterials with large surface areas. Genetic modifications of virus capsid proteins lead to the selective deposition and controlled growth of inorganic substances producing organized virus-based hybrid materials. Due to these properties, viruses hold promise for development as platforms for the creation of hybrid materials with multiple functionalities. This article reviews the characteristics of commonly used viruses and their fabrication into virus-based hybrid materials that have been applied in engineering applications such as nanowires and catalysts. Copyright © 2011 Wiley Periodicals, Inc.

  11. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  12. Novel hybrid materials based on the vanadium oxide nanobelts

    Science.gov (United States)

    Zabrodina, G. S.; Makarov, S. G.; Kremlev, K. V.; Yunin, P. A.; Gusev, S. A.; Kaverin, B. S.; Kaverina, L. B.; Ketkov, S. Yu.

    2016-04-01

    Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V2O5·nH2O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB - cetyltrimethylammonium bromide, TBAB - tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA)0.33V2O5 flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA)0.33V2O5, (TBA)0.16V2O5 nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  13. Photochromic ordered mesoporous hybrid materials based on covalently grafted polyoxometalates.

    Science.gov (United States)

    Luo, Xiujuan; Yang, Chun

    2011-05-07

    Novel polyoxometalate (POM)-grafting mesoporous hybrid silicas, XW(11)/MHS (X=P, Si) and TBAPW(11)Si(2)/MHS, have been prepared respectively by co-condensation and post-synthesis routes based on the employment of Keggin-type monovacant XW(11) or a Si-substituted compound TBAPW(11)Si(2) as POM precursors. Upon characterization of the samples by FT-IR, XRD, ICP-AES, TEM and N(2) adsorption-desorption measurement, it was found that Keggin units were retained perfectly in ordered hexagonal mesopore channels with SBA-15 architecture and immobilized by covalent linkages on the mesopore wall. These materials, especially the co-condensed samples, exhibited stable and reversible photochromic properties under UV irradiation although no special organic component was supplied additionally as an electron donor. An investigation of the photochromism revealed that the photochromic response depended on the centre atom of the POM species (i.e., the redox potential of the POM), the content of the POM and the synthetic route of the sample, while the bleaching process was correlated not only to the redox potential but also to the pore size of the sample. The photochromic mechanism was also studied in detail by cyclic voltammetry, ESR, FT-IR and XPS techniques. It was found that the remaining P123 template acted as a reducing agent and was oxidized during the photochromic process accompanied by the reduction of the POM to heteropolyblue. Thus, a close contact between the POM and the remaining P123 chain in the sample is necessary. Low close-contact degree results in poor photochromic behavior of the post-synthesized sample and impregnated samples.

  14. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  15. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    Science.gov (United States)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  16. Three-dimensional hybrid networks based on aspartic acid

    Indian Academy of Sciences (India)

    Anupama Ghosh; R A Sanguramath

    2008-01-01

    Three-dimensional achiral coordination polymers of the general formula M2(D, L-NHCH (COO)CH2COO)2.C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO).3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO)CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.

  17. A Hybrid Architecture for Web-based Expert Systems

    OpenAIRE

    Neil Dunstan

    2012-01-01

    A recent technique is to represent the knowledge base of an expert system in XML format. XML parsers are then used to convert XML data into expert system language code. The code is executed or interpreted when providing responses to user queries. Web-based expert system (WBES) architectures may be characterized according to where the application knowledge base resides. Applications of both client and server-sided WBES architectures appear in the literature. A hybrid architecture is proposed w...

  18. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  19. Synthesis, crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; XUE Ming; XU JiaNing; ZHU GuangShan; QIU ShiLun

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H_2O) (1) and Co(QS)(H_2O)2 (2) (H2QS=8-hydroxylquinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  20. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  1. Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol-zirconium compound hybrid nanofibers

    Directory of Open Access Journals (Sweden)

    Nakane K.

    2013-01-01

    Full Text Available Poly(vinyl alcohol-zirconium compound hybrid nanofibers (precursors were formed by electrospinning employing water as a solvent for the spinning solution. The precursors were converted into oxide (ZrO2, carbide (ZrC or nitride (ZrN nanofibers by heating them in air, Ar or N2 atmospheres. Monoclinic ZrO2 nanofibers with high-specific surface area were obtained by heat-treatment of the precursors in air. ZrC and ZrN nanofibers could be obtained below theoretical temperatures calculated from thermodynamics data.

  2. Application of Si-C-O glass-like compounds as negative electrode materials for lithium hybrid capacitors

    OpenAIRE

    Konno, Hidetaka; Kasashima, Takashi; Azumi, Kazuhisa

    2009-01-01

    The Si-C-O glass-like compound (a-SiCO) was applied to a negative electrode of a lithium hybrid capacitor (LHC) with activated carbon positive electrodes. The performance as a negative electrode (by a three-electrode system) and LHC (by a two-electrode system) was evaluated in LiClO4 (EC-DEC) and LiBF4 (PC) electrolytes. With a-SiCO reversible insertion/extraction of lithium ions at high current densities (0.5-2.0 A g^[-1]) was possible. By prior short-circuiting of the negative electrode wit...

  3. Self-assembled gold nanochains hybrid based on insulin fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longgai; Gao Faming, E-mail: fmgao@ysu.edu.cn [Yanshan University, Department of Applied Chemistry (China)

    2012-05-15

    We reported a facile method for preparing self-assembly gold nanochains by using insulin fibrils as biotemplate in aqueous environment. The gold nanochains hybrid nanostructures, which are insulin fibrils coated by gold nanoparticles, can be fabricated by simply reducing the salt precursors using DMAB. By increasing the molar ratio between salt precursors and insulin, denser hybrid nanochains can be obtained, meanwhile the mean diameter of gold nanoparticles is changing from 8 to 10 nm and then to 12 nm. The fabricated gold nanochains hybrid had helix structure, which was confirmed by circular dichroism spectra. The hybrid nanostructures were also investigated by transmission electron microscope, atomic force microscope, Fourier transform infrared spectra, and UV-Visible spectroscopy. As the wire-like structure become denser, the suspensions show color-changing, corresponding to the surface plasmon resonance red shift, which is attributed to the increasing mean size of nanoparticles. Based on the characterizations, a hypothetic mechanism was suggested to describe the formation processing of hybrid gold nanochains.

  4. Graphene based nanocomposite hybrid electrodes for supercapacitors

    Science.gov (United States)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  5. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors

    Science.gov (United States)

    Wei, Yuming; Poon, Daniel C.; Fei, Rong; Lam, Amy S. M.; Au-Yeung, Steve C. F.; To, Kenneth K. W.

    2016-05-01

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  6. A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors.

    Science.gov (United States)

    Wei, Yuming; Poon, Daniel C; Fei, Rong; Lam, Amy S M; Au-Yeung, Steve C F; To, Kenneth K W

    2016-05-06

    Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted.

  7. Preparation and evaluation of a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid.

    Science.gov (United States)

    Shan, Yuanhong; Qiao, Lizhen; Shi, Xianzhe; Xu, Guowang

    2015-01-02

    To develop a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid, a new ionic liquid monomer was synthesized from 1-vinylimidazole and pentafluorobenzyl bromide. By employing a facile one-step copolymerization of polyhedral-oligomeric-silsesquioxane-type (POSS) cross-linking agent and the home-made ionic liquid monomer, the hybrid monolithic columns were in situ fabricated in fused-silica capillary. The morphology of monolithic column was characterized by scanning electron microscope (SEM) and the chemical composition was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and elemental analysis. Excellent mechanical stability and slight swelling propensity were exhibited which was ascribed to the rigid hybrid monolithic skeleton. Reproducibility results of run-to-run, column-to-column, batch-to-batch and day-to-day were investigated and the RSDs were less than 0.46%, 1.84%, 3.96% and 3.17%, respectively. The mixed-mode retention mechanism with hydrophobic interaction, π-π stacking, ion-exchange, electrostatic interaction and dipole-dipole interaction was explored systematically using analytes with different structure types. Satisfied separation capability and column efficiency were achieved for the analysis of small molecular compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides and halogenated compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The volatile compound BinBase mass spectral database

    Directory of Open Access Journals (Sweden)

    Barupal Dinesh K

    2011-08-01

    Full Text Available Abstract Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species. Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  9. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  10. Hybrid Recommender System Based on Personal Behavior Mining

    OpenAIRE

    Fang, Zhiyuan; Zhang, Lingqi; Chen, Kun

    2016-01-01

    Recommender systems are mostly well known for their applications in e-commerce sites and are mostly static models. Classical personalized recommender algorithm includes item-based collaborative filtering method applied in Amazon, matrix factorization based collaborative filtering algorithm from Netflix, etc. In this article, we hope to combine traditional model with behavior pattern extraction method. We use desensitized mobile transaction record provided by T-mall, Alibaba to build a hybrid ...

  11. Zhongdanyaozhi No. 1 and Zhongdanyaozhi No. 2 Are Hybrid Cultivars of Salvia miltiorrhiza with High Yield and Active Compounds Content

    Science.gov (United States)

    Sui, Chun; Jin, Yue; Wei, Jianhe

    2016-01-01

    Salvia miltiorrhiza Bunge is an important medicinal plant used for the treatment of cardiovascular disease. Intraspecific hybridization between a male sterile line and inbred lines was followed by 39 F1 crossings. Cultivars “Zhongdanyaozhi No. 1” (ZD1) and “Zhongdanyaozhi No. 2” (ZD2) were obtained. In 2012 and 2013 tests in Beijing, the two cultivars were compared with three widely accepted types, SDCK, SXCK and HNCK from Shandong, Shanxi and Henan provinces. The yield of ZD1 and ZD2 exceeded the three CKs by more than 48.2% and 39.2%, respectively; the composition of the two hybrid cultivars was similar to the control, although the content of some compounds varied to some extent. The content of salvianolic acid B and tanshinone II A of both ZD1 and ZD2 could measure up the requirement of Chinese Pharmacopoeia. The former showed no obvious advantage than the three CKs, while the later’s tanshinone II A was 29.6% higher than the three CKs. Taken together, ZD1 is a high yielding and thick-root-type cultivar which is suitable for decoction pieces; while ZD2 is suitable for component especially lipophilic component extraction. ZD1 and ZD2 reported here are the first cultivars obtained by the hybridization of S. miltiorrhiza. PMID:27658029

  12. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  13. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  14. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  15. Intelligent Hybrid Cluster Based Classification Algorithm for Social Network Analysis

    Directory of Open Access Journals (Sweden)

    S. Muthurajkumar

    2014-05-01

    Full Text Available In this paper, we propose an hybrid clustering based classification algorithm based on mean approach to effectively classify to mine the ordered sequences (paths from weblog data in order to perform social network analysis. In the system proposed in this work for social pattern analysis, the sequences of human activities are typically analyzed by switching behaviors, which are likely to produce overlapping clusters. In this proposed system, a robust Modified Boosting algorithm is proposed to hybrid clustering based classification for clustering the data. This work is useful to provide connection between the aggregated features from the network data and traditional indices used in social network analysis. Experimental results show that the proposed algorithm improves the decision results from data clustering when combined with the proposed classification algorithm and hence it is proved that of provides better classification accuracy when tested with Weblog dataset. In addition, this algorithm improves the predictive performance especially for multiclass datasets which can increases the accuracy.

  16. Hybrid Recommender System based on Autoencoders

    OpenAIRE

    Strub, Florian; Gaudel, Romaric; Mary, Jérémie

    2016-01-01

    International audience; A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that objective with Neural Networks, but recently an architecture based on Autoencoders proved to be a promising approach. In current paper, we enhanced that architecture (i) by using a loss function adapted to input data with missing...

  17. Tuning the microstructures of decavanadate-based supramolecular hybrids via regularly changing the spacers of bis(triazole) ligands

    Science.gov (United States)

    Wang, Mo; Sun, Wenlong; Pang, Haijun; Ma, Huiyuan; Yu, Jia; Zhang, Zhuanfang; Niu, Ying; Yin, Mingming

    2016-03-01

    With tuning the ligands from bte, btp, btb to bth, four new decavanadate-based metal-organic hybrid compounds, [Zn(bte)(H2O)4][Zn2(bte)(H2O)10](V10O28)·8H2O, [Zn2(btp)4(H2O)6](H2V10O28)·4H2O, [Zn(H2O)6][Zn2(btb)2V10O28(H2O)6]·4H2O, and [Zn2(bth)(H2O)10](H2V10O28)·6H2O (bte=1,2-bis(1,2,4-triazol-1-yl)ethane, btp=1,3-bis(1,2,4-triazol-1-y1)propane, btb=1,4-bis(1,2,4-triazol-1-y1)butane, bth=1,6-bis(1,2,4-triazol-1-y1)hexane), have been synthesized under conventional conditions. The four compounds represent the first examples of decavanadate-based metal-organic hybrids constructed by Zn-bis(triazole) complexes. Their structural analyses show that the four compounds possess different Zn-bis(triazole) structural motifs and various finally structures, which verifies that regular changing the spacers of ligands is an effective strategy to tuning the structures of polyoxometalate-based hybrids. Also, the electrochemical studies show that the compounds have good electrocatalytic activities towards oxidation of nitrite molecules ascribed to V-centers.

  18. A Hybrid Architecture for Vision-Based Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Güzel

    2013-01-01

    Full Text Available This paper proposes a new obstacle avoidance method using a single monocular vision camera as the only sensor which is called as Hybrid Architecture. This architecture integrates a high performance appearance-based obstacle detection method into an optical flow-based navigation system. The hybrid architecture was designed and implemented to run both methods simultaneously and is able to combine the results of each method using a novel arbitration mechanism. The proposed strategy successfully fused two different vision-based obstacle avoidance methods using this arbitration mechanism in order to permit a safer obstacle avoidance system. Accordingly, to establish the adequacy of the design of the obstacle avoidance system, a series of experiments were conducted. The results demonstrate the characteristics of the proposed architecture, and the results prove that its performance is somewhat better than the conventional optical flow-based architecture. Especially, the robot employing Hybrid Architecture avoids lateral obstacles in a more smooth and robust manner than when using the conventional optical flow-based technique.

  19. A novel approach for identification of biologically active phenolic compounds in complex matrices using hybrid quadrupole-orbitrap mass spectrometer: A promising tool for testing antimicrobial activity of hops.

    Science.gov (United States)

    Dušek, Martin; Jandovská, Vladimíra; Čermák, Pavel; Mikyška, Alexandr; Olšovská, Jana

    2016-08-15

    The phenolic compounds, secondary metabolites of hops represent a large family of compounds that could be subsequently divided into smaller groups based on the similarities between their chemical structures. The antibacterial, antifungal and antiviral properties of hops are well known, but there is a lack of information about antimicrobial activities of individual hop compounds. This study was carried out with an objective to identify compounds present in hops that have potential antibacterial activity. In the first stage of experiment, the active compounds with potential anti-microbial activity had to be extracted from hop cones. Therefore, minced hop cones were applied on solid growth medium inoculated with Staphylococcus aureus. The active substances that migrated into the medium created an inhibition zone. In the second stage of experiment, the inhibition zones were cut out from Petri dishes, active compounds were extracted from these zones and consequently analyzed using LC-HRMS. These complex assays were developed and optimized. The data were acquired by using a quadrupole-orbitrap hybrid mass spectrometer by targeted-MS2 experiment in both ionization modes. The MS method has been developed as a screening method with a subsequent fragmentation of compound of interest on the base of inclusion mass list. The unknown compounds extracted from inhibition zones have been identified either by searching against a database or their structure has been elucidated on the basis of their fragmentation spectra. On the basis of this experiment the list of active compounds with potential anti-microbial activities was enhanced.

  20. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    Directory of Open Access Journals (Sweden)

    Paola Giorni

    2015-09-01

    Full Text Available Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open.

  1. Research on Modulation Strategies Based on Multilevel Inverter Universal Hybrid Topology

    Institute of Scientific and Technical Information of China (English)

    Zhou Jinghua; Su Yanmin; Shen Chuanwen; Zhang Lin

    2005-01-01

    Based on multi-module-cascaded inverter topology, this study presented a universal multilevel inverter hybrid topology and unified the researches on multilevel inverter topology. According to the freedom of this universal topology, several new hybrid topologies were constructed. Also, based on conventional modulation strategies- multi-carrier SPWM (Sinusoidal Pulse Width Modulation), hybrid modulation strategies were introduced corresponding to hybrid topologies, and a multilevel SVPWM (Space Vector Pulse Width Modulation) technique based on phase-shifted theory was naturally produced. Simulation and experiment results prove that hybrid topologies and corresponding modulation strategies are valid, which lay a foundation for practical application of hybrid multilevel inverter topologies.

  2. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  3. A Hybrid Brain-Computer Interface-Based Mail Client

    Directory of Open Access Journals (Sweden)

    Tianyou Yu

    2013-01-01

    Full Text Available Brain-computer interface-based communication plays an important role in brain-computer interface (BCI applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG. With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI. An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  4. Synthesis of novel chiral compounds of purine and pyrimidine bases

    Institute of Scientific and Technical Information of China (English)

    汪毓海; 陈庆华

    1999-01-01

    The physiologically active groups such as purine and pyrimidine bases are introduced to the asymmetric ynthesis. The optically pure compounds bearing purine and pyrimidine bases (5a—5e) were prepared via the asymetric Michael addition reaction of purines and pyrimidines as Michael donators with the chiral source 5-(R)-[(1R, 2S, 5R)-menthyloxy]-2(5H)-furanone (3a), which was prepared from the natural chiral auxiliary (-)-menthol. The synthetic method was studied in detail and the new compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]D20, IR, UV, 1H NMR, 13C NMR and MS. The absolute configuration of 5a was established by X-ray crystallography. The results provided an efficient synthetic route to chiral purines and pyrimidine analogues, and offered chiral sources for further research on the physiologically active compounds of chiral nucleotides.

  5. Structure-Based Virtual Screening of Commercially Available Compound Libraries.

    Science.gov (United States)

    Kireev, Dmitri

    2016-01-01

    Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF).

  6. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  7. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    OpenAIRE

    Changyong Cao; Qing-Hua Qin

    2015-01-01

    An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM) and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field) are employed. The formulations for...

  8. Hybrid silicon plasmonic organic directional coupler-based modulator

    Science.gov (United States)

    Abdelatty, M. Y.; Zaki, A. O.; Swillam, M. A.

    2017-01-01

    An optical directional coupler (ODC)-based hybrid plasmonic waveguide is designed and demonstrated with a power splitting mechanism that can be tuned by applying an external electric field. The tuning mechanism takes the advantage of electro-optic properties of the embedded polymer layer. The ODC operates under 1550 nm telecommunication wavelength. A finite element method with a perfect matching layer, absorbing boundary condition, is taken up to simulate and analyze the ODC.

  9. Charge-transfer induced surface conductivity for a copper based inorganic-organic hybrid

    NARCIS (Netherlands)

    Arkenbout, Anne H.; Uemura, Takafumi; Takeya, Jun; Palstra, Thomas T. M.

    2009-01-01

    Inorganic-organic hybrids are receiving increasing attention as they offer the opportunity to combine the robust properties of inorganic materials with the versatility of organic compounds. We have studied the electric properties of an inorganic-organic hybrid with the chemical formula:

  10. Wavelet-Based DFT calculations on Massively Parallel Hybrid Architectures

    Science.gov (United States)

    Genovese, Luigi

    2011-03-01

    In this contribution, we present an implementation of a full DFT code that can run on massively parallel hybrid CPU-GPU clusters. Our implementation is based on modern GPU architectures which support double-precision floating-point numbers. This DFT code, named BigDFT, is delivered within the GNU-GPL license either in a stand-alone version or integrated in the ABINIT software package. Hybrid BigDFT routines were initially ported with NVidia's CUDA language, and recently more functionalities have been added with new routines writeen within Kronos' OpenCL standard. The formalism of this code is based on Daubechies wavelets, which is a systematic real-space based basis set. As we will see in the presentation, the properties of this basis set are well suited for an extension on a GPU-accelerated environment. In addition to focusing on the implementation of the operators of the BigDFT code, this presentation also relies of the usage of the GPU resources in a complex code with different kinds of operations. A discussion on the interest of present and expected performances of Hybrid architectures computation in the framework of electronic structure calculations is also adressed.

  11. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  12. Hybrid Hamiltonian and Green's Function Approach for Studying Native Point Defect Levels in Semiconductor Compounds and Superlattices

    Science.gov (United States)

    Krishnamurthy, Srini; Van Orden, Derek; Yu, Zhi-Gang

    2016-09-01

    We have developed a hybrid method that can be applied to study isolated defects in semiconductor compounds and superlattices. The method is a combination of (1) a long-range tight-binding (TB) Hamiltonian, (2) a first-principles Hamiltonian, and (3) a Green's function (GF) formalism. The calculation of the GF requires accurate energy band structure, wave functions, and defect potentials. The TB Hamiltonian with sp 3 orbitals basis ensures accurate band gaps and band masses while providing the functional form for the wave functions. We calculated the band gaps of InAs/GaSb and InAs/InAsSb strained-layer superlattices and found them to agree well with measurements. The change in potentials caused by native point defects (NPDs) was obtained from a first-principles method using Spanish Initiative for Electronic Simulations with Thousands of Atoms, which also uses sp 3 basis. We describe the method of calculating NPD energy levels in compounds and superlattices, obtain some defect levels in GaAs, InAs, InSb, and GaSb compounds, and provide details of the NPD-level calculations.

  13. Phosphorus-based compounds for EUV multilayer optics materials

    NARCIS (Netherlands)

    Medvedev, V.V.; Yakshin, A.E.; Kruijs, van de R.W.E.; Bijkerk, F.

    2015-01-01

    We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were cons

  14. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity

    Science.gov (United States)

    Tao, Jifang; Wang, Xuerui; Sun, Tao; Cai, Hong; Wang, Yuxiang; Lin, Tong; Fu, Dongliang; Ting, Lennon Lee Yao; Gu, Yuandong; Zhao, Dan

    2017-01-01

    Detection of volatile organic compounds (VOCs) at parts-per-billion (ppb) level is one of the most challenging tasks for miniature gas sensors because of the high requirement on sensitivity and the possible interference from moisture. Herein, for the first time, we present a novel platform based on a hybrid photonic cavity with metal-organic framework (MOF) coatings for VOCs detection. We have fabricated a compact gas sensor with detection limitation ranging from 29 to 99 ppb for various VOCs including styrene, toluene, benzene, propylene and methanol. Compared to the photonic cavity without coating, the MOF-coated solution exhibits a sensitivity enhancement factor up to 1000. The present results have demonstrated great potential of MOF-coated photonic resonators in miniaturized gas sensing applications.

  15. Hybrid composites of monodisperse pi-conjugated rodlike organic compounds and semiconductor quantum particles

    DEFF Research Database (Denmark)

    Hensel, V.; Godt, A.; Popovitz-Biro, R.

    2002-01-01

    Composite materials of quantum particles (Q-particles) arranged in layers within crystalline powders of pi-conjugated, rodlike dicarboxylic acids are reported. The synthesis of the composites, either as three-dimensional crystals or as thin films at the air-water interface, comprises a two...... analysis of the solids and grazing incidence X-ray diffraction analysis of the films on water. 2) Topotactic solid/gas reaction of these salts with H2S to convert the metal ions into Q-particles of CdS or PbS embedded in the organic matrix that consists of the acids 6(H) and 8(H). These hybrid materials...

  16. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Science.gov (United States)

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  17. Novel Hybrid Virtual Screening Protocol Based on Molecular Docking and Structure-Based Pharmacophore for Discovery of Methionyl-tRNA Synthetase Inhibitors as Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2013-07-01

    Full Text Available Methione tRNA synthetase (MetRS is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS, rigid and flexible docking-based virtual screenings (DBVS, is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents.

  18. A Novel Software Simulator Model Based on Active Hybrid Architecture

    Directory of Open Access Journals (Sweden)

    Amr AbdElHamid

    2015-01-01

    Full Text Available The simulated training is an important issue for any type of missions such as aerial, ground, sea, or even space missions. In this paper, a new flexible aerial simulator based on active hybrid architecture is introduced. The simulator infrastructure is applicable to any type of training missions and research activities. This software-based simulator is tested on aerial missions to prove its applicability within time critical systems. The proposed active hybrid architecture is introduced via using the VB.NET and MATLAB in the same simulation loop. It exploits the remarkable computational power of MATLAB as a backbone aircraft model, and such mathematical model provides realistic dynamics to the trainee. Meanwhile, the Human-Machine Interface (HMI, the mission planning, the hardware interfacing, data logging, and MATLAB interfacing are developed using VB.NET. The proposed simulator is flexible enough to perform navigation and obstacle avoidance training missions. The active hybrid architecture is used during the simulated training, and also through postmission activities (like the generation of signals playback reports for evaluation purposes. The results show the ability of the proposed architecture to fulfill the aerial simulator demands and to provide a flexible infrastructure for different simulated mission requirements. Finally, a comparison with some existing simulators is introduced.

  19. Nanodevices based on Membrane-Carbon Nanotube Hybrid Structures

    Science.gov (United States)

    Jin, Hye Jun; Kim, Tae Hyun; Namgung, Seon; Hong, Seunghun; Lee, Sang Hun; Park, Tai Hyun

    2010-03-01

    Proteins in cell membrane have been drawing attention due to their versatile functionalities such as ion transfer for neuronal activity and selective binding for sensory systems. However, it is still very difficult to manipulate and study those proteins because they easily lose their functionalities without lipid membranes. We developed a method to coat lipid membranes containing various functional membrane proteins on single-walled carbon nanotube (swCNT)-based field effect transistors (FETs). In this hybrid structure, the activity of membrane proteins can be monitored by underlying swCNT-FETs, allowing us to easily study the functionalities of membrane proteins. Furthermore, we built advanced devices based on these hybrid structures. For an example, we coated lipid membrane containing `olfactory receptors' on swCNT-FETs, resulting in `bioelectric nose' systems. The bioelectric nose system had high sensitivity and human nose-like selectivity to odorant molecules. This talk will also discuss about the future prospect of these membrane-CNT hybrid structures.

  20. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  1. Whispered speaker identification based on feature and model hybrid compensation

    Institute of Scientific and Technical Information of China (English)

    GU Xiaojiang; ZHAO Heming; Lu Gang

    2012-01-01

    In order to increase short time whispered speaker recognition rate in variable chan- nel conditions, the hybrid compensation in model and feature domains was proposed. This method is based on joint factor analysis in training model stage. It extracts speaker factor and eliminates channel factor by estimating training speech speaker and channel spaces. Then in the test stage, the test speech channel factor is projected into feature space to engage in feature compensation, so it can remove channel information both in model and feature domains in order to improve recognition rate. The experiment result shows that the hybrid compensation can obtain the similar recognition rate in the three different training channel conditions and this method is more effective than joint factor analysis in the test of short whispered speech.

  2. A particle-based hybrid code for planet formation

    CERN Document Server

    Morishima, Ryuji

    2015-01-01

    We introduce a new particle-based hybrid code for planetary accretion. The code uses an $N$-body routine for interactions with planetary embryos while it can handle a large number of planetesimals using a super-particle approximation, in which a large number of small planetesimals are represented by a small number of tracers. Tracer-tracer interactions are handled by a statistical routine which uses the phase-averaged stirring and collision rates. We compare hybrid simulations with analytic predictions and pure $N$-body simulations for various problems in detail and find good agreements for all cases. The computational load on the portion of the statistical routine is comparable to or less than that for the $N$-body routine. The present code includes an option of hit-and-run bouncing but not fragmentation, which remains for future work.

  3. Hybrid Scenario Based Performance Analysis of DSDV and DSSR

    CERN Document Server

    Majumder, Koushik; 10.5121/ijcsit.2010.2305

    2010-01-01

    The area of mobile ad hoc networking has received considerable attention of the research community in recent years. These networks have gained immense popularity primarily due to their infrastructure-less mode of operation which makes them a suitable candidate for deployment in emergency scenarios like relief operation, battlefield etc., where either the pre-existing infrastructure is totally damaged or it is not possible to establish a new infrastructure quickly. However, MANETs are constrained due to the limited transmission range of the mobile nodes which reduces the total coverage area. Sometimes the infrastructure-less ad hoc network may be combined with a fixed network to form a hybrid network which can cover a wider area with the advantage of having less fixed infrastructure. In such a combined network, for transferring data, we need base stations which act as gateways between the wired and wireless domains. Due to the hybrid nature of these networks, routing is considered a challenging task. Several r...

  4. Hybrid Heuristic-Based Artificial Immune System for Task Scheduling

    CERN Document Server

    sanei, Masoomeh

    2011-01-01

    Task scheduling problem in heterogeneous systems is the process of allocating tasks of an application to heterogeneous processors interconnected by high-speed networks, so that minimizing the finishing time of application as much as possible. Tasks are processing units of application and have precedenceconstrained, communication and also, are presented by Directed Acyclic Graphs (DAGs). Evolutionary algorithms are well suited for solving task scheduling problem in heterogeneous environment. In this paper, we propose a hybrid heuristic-based Artificial Immune System (AIS) algorithm for solving the scheduling problem. In this regard, AIS with some heuristics and Single Neighbourhood Search (SNS) technique are hybridized. Clonning and immune-remove operators of AIS provide diversity, while heuristics and SNS provide convergence of algorithm into good solutions, that is balancing between exploration and exploitation. We have compared our method with some state-of-the art algorithms. The results of the experiments...

  5. [The mechanism of rosiglitazone compound based on network pharmacology].

    Science.gov (United States)

    Bai, Yu; Fan, Xue-mei; Sun, Han; Wang, Yi-ming; Liang, Qiong-lin; Luo, Guo-an

    2015-03-01

    Applications of network pharmacology are increasingly widespread and methods abound in the field of drug development and pharmacological research. In this study, we choose rosiglitazone compound as the object to predict the targets and to discuss the mechanism based on three kinds of prediction methods of network pharmacology. Comparison of the prediction result has identified that the three kinds of prediction methods had their own characteristics: targets and pathways predicted were not in accordance with each other. However, the calcium signaling pathway could be predicted in the three kinds of methods, which associated with diabetes and cognitive impairment caused by diabetes by bioinformatics analysis. The above conclusion indicates that the calcium signaling pathway is important in signal pathway regulation of rosiglitazone compound, which provides a clue to further explain the mechanism of the compound and also provides a reference for the selection and application of methods of network pharmacology in the actual research.

  6. High-Tc Superconductors Based on FeAs Compounds

    CERN Document Server

    Izyumov, Yuri

    2010-01-01

    Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also...

  7. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds

    Directory of Open Access Journals (Sweden)

    Sudhakara Rao Gerapati

    2015-09-01

    Full Text Available Convulsions are involuntary, violent, spasmodic and prolonged contractions of skeletal muscles. That means a patient may have epilepsy without convulsions and vice versa. Epilepsy is a common neurological abnormality affecting about 1% of the world population. The primary objectives of these synthesized compounds are to suppress seizures and provide neuroprotection by minimizing the effects from seizure attacks. Here some of the chalcones and chalcone based various pyrazolines were evaluated for anticonvulsant activity. Their structures have been elucidated on the basis of elemental analyses and spectroscopic studies (IR, 1H-NMR & Mass spectroscopy. A preliminary evaluation of the prepared compounds has indicated that some of them exhibit moderate to significant anticonvulsant activity compared to a diazepam standard1-3.  All compounds were tested for their anticonvulsant activity using maximal electroshock induced convulsions (MES in mice at a dose level of 4 mg/kg.b.w. The compounds  Ph1, Ph2 , Py2 ,Py3 and Py4 have shown  to  good anticonvulsant activity when doses are administered as 25mg/ kg.b.w  , reduced the phases of seizures severity and  found to be active and also  increased survival rate. Remaining compounds are less efficacious.

  8. Chemical compound navigator: a web-based chem-BLAST, chemical taxonomy-based search engine for browsing compounds.

    Science.gov (United States)

    Prasanna, M D; Vondrasek, Jiri; Wlodawer, Alexander; Rodriguez, H; Bhat, T N

    2006-06-01

    A novel technique to annotate, query, and analyze chemical compounds has been developed and is illustrated by using the inhibitor data on HIV protease-inhibitor complexes. In this method, all chemical compounds are annotated in terms of standard chemical structural fragments. These standard fragments are defined by using criteria, such as chemical classification; structural, chemical, or functional groups; and commercial, scientific or common names or synonyms. These fragments are then organized into a data tree based on their chemical substructures. Search engines have been developed to use this data tree to enable query on inhibitors of HIV protease (http://xpdb.nist.gov/hivsdb/hivsdb.html). These search engines use a new novel technique, Chemical Block Layered Alignment of Substructure Technique (Chem-BLAST) to search on the fragments of an inhibitor to look for its chemical structural neighbors. This novel technique to annotate and query compounds lays the foundation for the use of the Semantic Web concept on chemical compounds to allow end users to group, sort, and search structural neighbors accurately and efficiently. During annotation, it enables the attachment of "meaning" (i.e., semantics) to data in a manner that far exceeds the current practice of associating "metadata" with data by creating a knowledge base (or ontology) associated with compounds. Intended users of the technique are the research community and pharmaceutical industry, for which it will provide a new tool to better identify novel chemical structural neighbors to aid drug discovery.

  9. Enantiomer separation of acidic chiral compounds on a quinine-silica/zirconia hybrid monolith by capillary electrochromatography.

    Science.gov (United States)

    Tran, Le Ngoc; Park, Jung Hag

    2015-05-29

    A weak anion-exchanger chiral selector, quinine-incorporated silica/zirconia hybrid monolithic (QUI-S/ZHM) capillary column was prepared by sol-gel technology. The performance of the QUI-S/ZHM column was investigated for enantioresolution of a set of acidic chiral drugs and dinitrobenzoyl (DNB)-amino acids by capillary electrochromatography in aqueous organic mobile phases composed of acetonitrile (ACN) and triethylammonium acetate (TEAA) buffer. Effects of several parameters including the ACN content, concentration and pH of the mobile phase on the chiral separation were examined. Baseline resolutions of all the compounds were obtained in the mobile phase consisting of 70:30 ACN/TEAA (10mM, pH 6) under applied voltage of -10kV at 25°C within 20min.

  10. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  11. Performance Evaluation of AOP/Biological Hybrid System for Treatment of Recalcitrant Organic Compounds

    Directory of Open Access Journals (Sweden)

    Stanford S. Makgato

    2010-01-01

    Full Text Available Process water from nuclear fuel recovery unit operations contains a variety of toxic organic compounds. The use of decontamination reagents such as CCl4 together with phenolic tar results in wastewater with a high content of chlorophenols. In this study, the extent of dehalogenation of toxic aromatic compounds was evaluated using a photolytic advanced oxidation process (AOP followed by biodegradation in the second stage. A hard-to-degrade toxic pollutant, 4-chlorophenol (4-CP, was used to represent a variety of recalcitrant aromatic pollutants in effluent from the nuclear industry. A UV-assisted AOP/bioreactor system demonstrated a great potential in treatment of nuclear process wastewater and this was indicated by high removal efficiency (>98% under various 4-CP concentrations. Adding hydrogen peroxide (H2O2 as a liquid catalyst further improved biodegradation rate but the effect was limited by the scavenging of OH• radicals under high concentrations of H2O2.

  12. Shyntesis and cytotoxicity evaluation in vitro of new compounds with hybrid structures of 8-flavoneacetic acid and quinolones; Sintesis y evaluacion citotoxica in vitro de nuevos compuestos con estructuras hibridas del acido 8-flavonacetico quinolonas

    Energy Technology Data Exchange (ETDEWEB)

    Biaa, M.F.; Castellano, J.M.; Emling, F.; Schlick, E. [Knoll, S.a., Madrid (Spain)

    1994-12-31

    Using the structural similarity between 8-flavoneacetic acid the antitumor quinolones, we have prepared some hybrid compounds on both systems and studied their cytotoxicity. None of the sinthesized compounds have shown sufficient interest for further development. 33 refs.

  13. pH-resistant titania hybrid organic-inorganic sol-gel coating for solid-phase microextraction of polar compounds.

    Science.gov (United States)

    Li, Xiujuan; Gao, Jie; Zeng, Zhaorui

    2007-05-02

    A novel titania-hydroxy-terminated silicone oil (titania-OH-TSO) sol-gel coating was developed for solid-phase microextraction of polar compounds. In general, titania-based sol-gel reaction is very fast and need to be decelerated by the use of suitable chelating agents. But in the present work, a judiciously designed sol solution ingredients was used to create the titania-OH-TSO coating without the addition of any chelating agent, which simplified the sol-gel procedure. Thanks to the variety of titania's adsorption sites and their acid-base characteristics, aromatic amines, phenols and polycyclic aromatic hydrocarbons were efficiently extracted and preconcentrated from aqueous samples followed by thermal desorption and GC analysis. The newly developed sol-gel hybrid titania coating demonstrated excellent pH stability, and retained its extraction characteristics intact even after continuous rinsing with a 3 M HCl or NaOH solution for 12 h. Furthermore, it could withstand temperatures as high as 320 degrees C. Practical application was demonstrated through the analysis of six aromatic amines in dye process wastewater. A linearity of four orders of magnitude was obtained with correlation coefficient better than 0.9982. The detection limits ranged from 0.22 to 0.84 microg L(-1) and the repeatability of the measurements was <7.0%. The recoveries of these compounds studied in the wastewater were in the ranges 83.6-101.4%, indicating the method accuracy.

  14. Polarized light source based on graphene-nanoribbon hybrid structure

    Science.gov (United States)

    Xu, Pengfei; Zhang, Han; Qian, Haoliang; Chen, Bigeng; Jiang, Xiaoshun; Wu, Yuanpeng; Liu, Xiaowei; Liu, Xu; Yang, Qing

    2017-07-01

    Nanoscale light source is the key element for on-chip integrated optical communication system. As an important property of light source, polarization can be exploited to improve the information capacity of optical communication and the sensitivity of optical sensing. We demonstrate a novel TE-polarized light source based on graphene-nanoribbon (G-NR) hybrid structure. Thanks to the polarizing dependent absorption along graphene layer, the random polarized emission of nanoribbon (NR) can be transferred into the same TE polarization. In addition, lasing action in G-NR hybrid structure is also investigated. We attribute the polarization control to the differential attenuation of electromagnetic modes in graphene. Our simulation revealed electromagnetic field distribution and far field polar images of TE and TM modes in nanoribbon, which is consistent with experimental results. The compact G-NR hybrid structure light source offers a new way to realize the polarization controllable nanoscale light source and facilitate the practical applications of nanowire or nanoribbon light source.

  15. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon.

    Science.gov (United States)

    Sun, Baoquan; Findikoglu, Alp T; Sykora, Milan; Werder, Donald J; Klimov, Victor I

    2009-03-01

    Semiconductor nanocrystals (NCs) are promising materials for applications in photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and, perhaps, increased conversion efficiency in the ultraviolet region through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC energy states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which is exclusively due to the NCs. On the other hand, in devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared region. The hybrid silicon/PbS NC solar cells show external quantum efficiencies of approximately 7% at infrared energies and 50% in the visible and a power conversion efficiency of up to 0.9%. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs.

  16. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    Science.gov (United States)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  17. Polymer waveguide based hybrid opto-electric integration technology

    Science.gov (United States)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  18. Fatigue reliability based on residual strength model with hybrid uncertain parameters

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Zhi-Ping Qiu

    2012-01-01

    The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model.By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness,the fatigue reliability with hybrid parameters can be obtained.The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters.A comparison among the presented hybrid model,non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples.The results show that the presented hybrid model,which can ensure structural security,is effective and practical.

  19. Personalized Service System Based on Hybrid Filtering for Digital Library

    Institute of Scientific and Technical Information of China (English)

    GAO Fengrong; XING Chunxiao; DU Xiaoyong; WANG Shan

    2007-01-01

    Personalized service systems are an effective way to help users obtain recommendations for unseen items, within the enormous volume of information available based on their preferences. The most commonly used personalized service system methods are collaborative filtering, content-based filtering, and hybrid filtering. Unfortunately,each method has its drawbacks. This paper proposes a new method which unified partition-based collaborative filtering and meta-information filtering.In partition-based collaborative filtering the user-item rating matrix can be partitioned into low-dimensional dense materces using a matrixclustering algorithm. Recommendations are generated based on these low-dimensional matrices.Additionally,the very low ratings problem can be solved using meta-information filtering. The unified method is applied to a digital resource management system. The experimental results show the high efficiency and good performance of the new approach.

  20. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  1. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline-thiazolidine-based hybrids.

    Science.gov (United States)

    Havrylyuk, Dmytro; Roman, Olexandra; Lesyk, Roman

    2016-05-04

    The features of the chemistry of 4-thiazolidinone and pyrazole/pyrazolines as pharmacologically attractive scaffolds were described in a number of reviews in which the main approaches to the synthesis of mentioned heterocycles and their biological activity were analyzed. However, the pyrazole/pyrazoline-thiazolidine-based hybrids as biologically active compounds is poorly discussed in the context of pharmacophore hybrid approach. Therefore, the purpose of this review is to summarize the data about the synthesis and modification of heterocyclic systems with thiazolidine and pyrazoline or pyrazole fragments in molecules as promising objects of modern bioorganic and medicinal chemistry. The description of biological activity was focused on SAR analysis and mechanistic insights of mentioned hybrids.

  2. Robot Positioning and Navigation Based on Hybrid Wireless Sensor Network

    Institute of Scientific and Technical Information of China (English)

    Shun-cai YAO; Jin-dong TAN; Hong-xia PAN

    2010-01-01

    Traditional sensor network and robot navigation are based an the map of detecting the fields available in advance.The optimal algorithms are developed to solve the energy saving,the shortest path problems,etc.However,in the practical encironment,there are many fields,whose map is difficult to get,and needs to be detected.In this paper a kind of ad-hoc navigation algorithm is explored,which is based on the hybrid sensor network without the prior map in advance.The navigation system is composed of static nodes and dynamic nodes.The static nodes monitor the occurrances of the events and broadcast them.In the system,a kind of algorithm is to locate the robot,which is based on cluster broadcasting.The dynamic nodes detect the adversary or dangerous fields and broadcast warning messages.The robot gets the message and follows ad-hoc routine to arrive where the events occur.In the whole process,energy saving has been taken into account.The algorithms,which are based on the hybrid sensor network,are given in this paper.The simulation and practical results are also available.

  3. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-01-01

    Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.

  4. Research Progress on Ni-Based Antiperovskite Compounds

    Directory of Open Access Journals (Sweden)

    P. Tong

    2012-01-01

    Full Text Available The superconductivity in antiperovskite compound MgCNi3 was discovered in 2001 following the discovery of the superconducting MgB2. In spite of its lower superconducting transition temperature (8 K than MgB2 (39 K, MgCNi3 has attracted considerable attention due to its high content of magnetic element Ni and the cubic structure analogous to the perovskite cuprates. After years of extensive investigations both theoretically and experimentally, however, it is still not clear whether the mechanism for superconductivity is conventional or not. The central issue is if and how the ferromagnetic spin fluctuations contribute to the cooper paring. Recently, the experimental results on the single crystals firstly reported in 2007 trend to indicate a conventional s-wave mechanism. Meanwhile many compounds neighboring to MgCNi3 were synthesized and the physical properties were investigated, which enriches the physics of the Ni-based antiperovskite compounds and help understand the superconductivity in MgCNi3. In this paper, we summarize the research progress in these two aspects. Moreover, a universal phase diagram of these compounds is presented, which suggests a phonon-mediated mechanism for the superconductivity, as well as a clue for searching new superconductors with the antiperovskite structure. Finally, a few possible scopes for future research are proposed.

  5. Synthesis, structural and fungicidal studies of hydrazone based coordination compounds.

    Science.gov (United States)

    Sharma, Amit Kumar; Chandra, Sulekh

    2013-02-15

    The coordination compounds of the Co(II), Ni(II) and Cu(II) metal ions derived from imine based ligand, benzil bis(carbohydarzone) were structurally and pharmaceutically studied. The compounds have the general stoichiometry [M(L)]X(2) and [Co(L)X(2)], where M=Ni(II) and Cu(II), and X=NO(3)(-) and Cl(-) ions. The analytical techniques like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV/Visible, NMR, ESI mass and EPR were used to study the compounds. The key IR bands, i.e., amide I, amide II and amide III stretching vibrations accounts for the tetradentate metal binding nature of the ligand. The electronic and EPR spectral results suggest the square planar Ni(II) and Cu(II) complexes (g(iso)=2.11-2.22) and tetragonal geometry Co(II) complexes (g(iso)=2.10-2.17). To explore the compounds in the biological field, they were examined against the opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The partial covalent character of metal-ligand bond is supported by the orbital reduction factor k (0.62-0.92) and nephalauxetic parameter β (0.55-0.57).

  6. Quadratic MOKE on Co-based Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Georg; Leven, Britta; Hillebrands, Burkard [FB Physik, Landesforschungszentrum OPTIMAS, TU Kaiserslautern, 67663 Kaiserslautern (Germany); Hamrle, Jaroslav [Institute of Physics, VSB, Technical University, Ostrava (Czech Republic); Ebke, Daniel; Thomas, Andy; Reiss, Guenter [Thin Films and Physics of Nanostructures, Physics Department, Bielefeld University (Germany)

    2011-07-01

    The intensive research on Co-based Heusler compounds revealed that some of these materials show a large quadratic magneto-optical Kerr effect (QMOKE). The presence of QMOKE strongly depends on the electronic band structure. In the case of Heusler compounds the electronic bands can be modified by changing the composition or improving the crystalline structure. This work presents a systematic study on several Heusler compounds (Co{sub 2}FeSi, Co{sub 2}Fe{sub 0.5}Mn{sub 0.5}Si, Co{sub 2}MnSi and Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}). The amplitude of the QMOKE is investigated as a function of the post deposition annealing temperature, which is known to improve the crystal ordering. We find that the QMOKE is increasing with the annealing temperature. From this we conclude that there is a strong correlation between the presence of QMOKE and the high crystalline ordering in Heusler compounds.

  7. Hybrid microwave synthesis and characterization of the compounds in the Li-Ti-O system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li Hong; Dong, Cheng; Guo, Juan [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Science, P.O. Box 603, Beijing 100080 (China)

    2008-01-03

    Hybrid microwave synthesis has been applied for preparation of Li{sub 4}Ti{sub 5}O{sub 12}, Li{sub 2}Ti{sub 3}O{sub 7}, Li{sub 2}TiO{sub 3} and LiTiO{sub 2} for the first time. Stepwise heating was used for avoiding the instantaneous release of gas by-product and obtaining well-shaped samples. The samples were characterized by powder X-ray diffraction, energy-dispersive X-ray analysis and scanning electron microscopy. The obtained samples have relatively uniform particle sizes. The electrochemical performance of Li{sub 4}Ti{sub 5}O{sub 12} and Li{sub 2}Ti{sub 3}O{sub 7} were investigated. The first discharge capacity of Li{sub 4}Ti{sub 5}O{sub 12} was 150 mAh g{sup -1} and 141 mAh g{sup -1} after 27 cycles and a very flat discharge and charge curve of Li{sub 4}Ti{sub 5}O{sub 12} was shown at about 1.56 V. Similarly, Li{sub 2}Ti{sub 3}O{sub 7} exhibits good cycle performance. The initial discharge capacity is 118 mAh g{sup -1} and 30th cycle is still 112 mAh g{sup -1}. (author)

  8. Hybrid microwave synthesis and characterization of the compounds in the Li-Ti-O system

    Science.gov (United States)

    Yang, Li Hong; Dong, Cheng; Guo, Juan

    Hybrid microwave synthesis has been applied for preparation of Li 4Ti 5O 12, Li 2Ti 3O 7, Li 2TiO 3 and LiTiO 2 for the first time. Stepwise heating was used for avoiding the instantaneous release of gas by-product and obtaining well-shaped samples. The samples were characterized by powder X-ray diffraction, energy-dispersive X-ray analysis and scanning electron microscopy. The obtained samples have relatively uniform particle sizes. The electrochemical performance of Li 4Ti 5O 12 and Li 2Ti 3O 7 were investigated. The first discharge capacity of Li 4Ti 5O 12 was 150 mAh g -1 and 141 mAh g -1 after 27 cycles and a very flat discharge and charge curve of Li 4Ti 5O 12 was shown at about 1.56 V. Similarly, Li 2Ti 3O 7 exhibits good cycle performance. The initial discharge capacity is 118 mAh g -1 and 30th cycle is still 112 mAh g -1.

  9. A Matlab—Based Simulation for Hybrid Electric Motorcycle

    Institute of Scientific and Technical Information of China (English)

    邵定国; 李永斌; 汪信尧; 江建中

    2003-01-01

    This paper presents a simulation and modeling package based on Matlab for a parallel hybrid electric motorcycle (HEM).The package consists of several main detailed models: internal combustion engine (ICE), motor, continuously variable transmission(CVT), battery, energy management system (EMS) etc. Each component is built as a library, and can be connected together accord-ing to the parallel HEM's topology. Simulation results, such as ICE power demand, motor power demand, battery instantaneous state-of-charge (SOC), pollution emissions etc. Are given and discussed. Lastly experimental data verify our simulation results.

  10. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  11. An online hybrid BCI system based on SSVEP and EMG

    Science.gov (United States)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was

  12. Six new inorganic–organic hybrids based on rigid triangular ligands: Syntheses, structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2016-01-15

    Six new inorganic–organic hybrids based on rigid triangular N-containing ligands, NaCu{sup I}{sub 2}(tib){sub 4}(H{sub 2}O){sub 4}[H{sub 2}PW{sup V}W{sup VI}{sub 11}O{sub 40}][H{sub 2}PW{sup VI}{sub 12}O{sub 40}]·6H{sub 2}O (1), Cu{sup II}{sub 3}(tib){sub 4}Cl{sub 4}[H{sub 2}PW{sup VI}{sub 12}O{sub 40}]{sub 2}·4H{sub 2}O (2), Co(tib){sub 2}[PW{sup V}{sub 3}W{sup VI}{sub 9}O{sub 38}]·5H{sub 2}O (3), Cu{sup II}{sub 3}(tib){sub 2}[P{sub 2}Mo{sup VI}{sub 5}O{sub 22}(O{sub 2})]·4H{sub 2}O (4), Mn(pytpy){sub 2}Mo{sup VI}{sub 4}O{sub 13} (5) and Co(pytpy){sub 2}Mo{sup VI}{sub 4}O{sub 13} (6) (tib=1,3,5-tris(1-imidazolyl)benzene, pytpy=4’-(4”-pyridyl)2,4’:6’,4”-terpyridine), have been hydrothermally synthesized. Single crystal X-ray diffraction studies revealed that compounds 1–4 display two-dimensional (2D) layered structures, and in compounds 1–3, the adjacent Keggin anions link with each other by W–O–W covalent interactions to form 1D inorganic chains. Compounds 5–6 are 3D “pillar-layer” frameworks based on bimetal–oxide layers pillared by the pytpy ligands. The compounds have been characterized by elemental analysis, powder X−ray diffraction, X-ray photoelectron spectroscopy and thermo gravimetric analyses. Moreover, the electrochemical and catalytic properties of compound 1 have been investigated as well. - Graphical abstract: Six new inorganic–organic hybrids based on rigid triangular N-containing ligands have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–4 display two-dimensional (2D) layers structure, and in compounds 1–3, the adjacent Keggin anions link with each other by W–O–W covalent interactions to form 1D inorganic Keggin anions chains. Compounds 5–6 are 3D “pillar-layer” frameworks based on bimetal–oxide layers pillared by the pytpy ligands. - Highlights: • MOFs

  13. Design of time interval generator based on hybrid counting method

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yuan [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Zhaoqi [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lu, Houbing [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei Electronic Engineering Institute, Hefei 230037 (China); Chen, Lian [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jin, Ge, E-mail: goldjin@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  14. A Probability-Based Hybrid User Model for Recommendation System

    Directory of Open Access Journals (Sweden)

    Jia Hao

    2016-01-01

    Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.

  15. Piezoelectric-based hybrid reserve power sources for munitions

    Science.gov (United States)

    Rastegar, J.; Kwok, P.

    2017-04-01

    Reserve power sources are used extensively in munitions and other devices, such as emergency devices or remote sensors that need to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries sometimes require more than 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources are needed to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper, the development of a hybrid reserve power source that is constructed by integration of a piezoelectric-based energy harvesting device with a reserve battery to provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  16. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    Science.gov (United States)

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications.

  17. Piezoelectric-based hybrid reserve power sources for munitions

    Science.gov (United States)

    Rastegar, Jahangir; Pereira, Carlos M.; Feng, Dake

    2016-05-01

    Reserve power sources are used extensively in munitions and other devices such as emergency devices or remote sensors that have to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries require sometimes in excess of 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources have to be provided to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper the development of a hybrid reserve power source obtained by the integration of a piezoelectric-based energy harvesting device with a reserve battery that can provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is also provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  18. Design of time interval generator based on hybrid counting method

    Science.gov (United States)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  19. Two new helical compounds based on Keggin clusters and N-donor multidentate ligand: Syntheses, structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shi [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China); Liu, Bo [College of Chemistry, Jilin Normal University, Siping 136000 (China); Li, Xiao-Min; Shi, Tian [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Chen, Ya-Guang, E-mail: chenyg146@nenu.edu.cn [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2014-11-15

    Two isostructural polyoxometalate-based inorganic–organic hybrids with 1D helical chain, [CuH{sub 3}L{sub 2}(GeMo{sub 12}O{sub 40})]·2H{sub 2}O (1) and [CuH{sub 3}L{sub 2}(SiMo{sub 12}O{sub 40})]·2H{sub 2}O (2), where L=2,4,5-tri(4-pyridyl)-imidazole have been synthesized under hydrothermal conditions. It is the first time to use the L ligand to synthesis the Keggin-type polyoxometalate-based inorganic–organic hybrids. The two compounds possess the left- and right-handed helical chains and the POMs as pendants attach in the helical chains through Cu–O bonds. The two compounds have been characterized by elemental analyses, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA) and photoluminescent spectroscopy. Moreover, nitrogen adsorption−desorption measurement, electrochemical and photocatalysis properties for degradation of methylene blue (MB) upon a UV irradiation of compound 1 have been examined. - Graphical abstract: Two new compounds, [CuH{sub 3}L{sub 2}(GeMo{sub 12}O{sub 40})]·2H{sub 2}O (1) and [CuH{sub 3}L{sub 2}(SiMo{sub 12}O{sub 40})]·2H{sub 2}O (2) have been synthesized under hydrothermal conditions. The two compounds possess the left- and right-handed helical chains. - Highlights: • The tridentate L ligand is first used to synthesis Keggin-type polyoxometalates. • The two compounds possess the left- and right-handed Cu–L helical chains. • Relationship between surface properties and photocatalytic activity was studied. • Two compounds exhibit photoluminescence of ligand-to-metal charge transfer.

  20. Tuning the microstructures of decavanadate-based supramolecular hybrids via regularly changing the spacers of bis(triazole) ligands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mo; Sun, Wenlong [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Pang, Haijun, E-mail: panghj116@163.com [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Ma, Huiyuan, E-mail: mahy017@163.com [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Yu, Jia [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Zhuanfang; Niu, Ying [Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Yin, Mingming [Jiamusi Electric Machine Co., Ltd., 766 Guangfu Road, Jiamusi City 154002 (China)

    2016-03-15

    With tuning the ligands from bte, btp, btb to bth, four new decavanadate-based metal–organic hybrid compounds, [Zn(bte)(H{sub 2}O){sub 4}][Zn{sub 2}(bte)(H{sub 2}O){sub 10}](V{sub 10}O{sub 28})·8H{sub 2}O, [Zn{sub 2}(btp){sub 4}(H{sub 2}O){sub 6}](H{sub 2}V{sub 10}O{sub 28})·4H{sub 2}O, [Zn(H{sub 2}O){sub 6}][Zn{sub 2}(btb){sub 2}V{sub 10}O{sub 28}(H{sub 2}O){sub 6}]·4H{sub 2}O, and [Zn{sub 2}(bth)(H{sub 2}O){sub 10}](H{sub 2}V{sub 10}O{sub 28})·6H{sub 2}O (bte=1,2-bis(1,2,4-triazol-1-yl)ethane, btp=1,3-bis(1,2,4-triazol-1-y1)propane, btb=1,4-bis(1,2,4-triazol-1-y1)butane, bth=1,6-bis(1,2,4-triazol-1-y1)hexane), have been synthesized under conventional conditions. The four compounds represent the first examples of decavanadate-based metal–organic hybrids constructed by Zn–bis(triazole) complexes. Their structural analyses show that the four compounds possess different Zn–bis(triazole) structural motifs and various finally structures, which verifies that regular changing the spacers of ligands is an effective strategy to tuning the structures of polyoxometalate-based hybrids. Also, the electrochemical studies show that the compounds have good electrocatalytic activities towards oxidation of nitrite molecules ascribed to V-centers. - Graphical abstract: Four compounds representing the first examples of V{sub 10}O{sub 28}-based hybrids constructed by Zn–bis(triazole) complexes have been synthesized by changing the spacers of the ligands and their electrocatalytic properties have been investigated. - Highlights: • The first examples of V{sub 10}O{sub 28}-based hybrids constructed by Zn-bis(triazole) complexes. • Verifying that changing the spacers of ligands is a strategy to tuning structures. • Showing good electrocatalytic activities toward oxidation of nitrite molecules.

  1. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification.

    Science.gov (United States)

    Daga, Pankaj R; Polgar, Willma E; Zaveri, Nurulain T

    2014-10-27

    of top-scoring hits resulted in identification of several compounds with measurable binding affinity at the NOP receptor, one of which had a new chemotype for NOP receptor binding. The hybrid ligand-based and structure-based methodology demonstrates an effective approach for virtual screening that leverages existing SAR and receptor structure information for identifying novel hits for NOP receptor binding. The refined active-state NOP homology models obtained from the enrichment studies can be further used for structure-based optimization of these new chemotypes to obtain potent and selective NOP receptor ligands for therapeutic development.

  2. The electronic structure of organic-inorganic hybrid compounds : (NH4)(2)CuCl4, (CH3NH3)(2)CuCl4 and (C2H5NH3)(2)CuCl4

    NARCIS (Netherlands)

    Zolfaghari, P.; de Wijs, G. A.; de Groot, R. A.

    2013-01-01

    Hybrid organic-inorganic compounds are an intriguing class of materials that have been experimentally studied over the past few years because of a potential broad range of applications. The electronic and magnetic properties of three organic-inorganic hybrid compounds with compositions (NH4)(2)CuCl4

  3. The electronic structure of organic-inorganic hybrid compounds : (NH4)(2)CuCl4, (CH3NH3)(2)CuCl4 and (C2H5NH3)(2)CuCl4

    NARCIS (Netherlands)

    Zolfaghari, P.; de Wijs, G. A.; de Groot, R. A.

    2013-01-01

    Hybrid organic-inorganic compounds are an intriguing class of materials that have been experimentally studied over the past few years because of a potential broad range of applications. The electronic and magnetic properties of three organic-inorganic hybrid compounds with compositions

  4. DNA nanostructures based biosensor for the determination of aromatic compounds.

    Science.gov (United States)

    Gayathri, S Baby; Kamaraj, P; Arthanareeswari, M; Devikala, S

    2015-10-15

    Graphite electrode was modified using multi-walled carbon nanotubes (MWCNT), chitosan (CS), glutaraldehyde (GTA) and DNA nanostructures (nsDNA). DNA nanostructures of 50 nm in size were produced from single DNA template sequence using a simple two step procedure and were confirmed using TEM and AFM analysis. The modified electrode was applied to the electrochemical detection of aromatic compounds using EIS. The modified electrode was characterized using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For comparison, electrochemical results derived from single stranded (50 bp length) and double stranded (50 bp length) DNA based biosensors were used. The results indicate that the modified electrode prior to nsDNA immobilization provides a viable platform that effectively promotes electron transfer between nsDNA and the electrode. The mode of binding between the nsDNA and aromatic compounds was investigated using EIS, indicating that the dominant interaction is non-covalent. nsDNA based biosensor was observed to act as an efficient biosensor in selective and sensitive identification of aromatic compounds.

  5. Synthesis, Characterization and Utility of Carbon Nanotube Based Hybrid Sensors in Bioanalytical Applications

    Science.gov (United States)

    Badhulika, Sushmee

    The detection of gaseous analytes and biological molecules is of prime importance in the fields of environmental pollution control, food and water - safety and analysis; and medical diagnostics. This necessitates the development of advanced and improved technology that is reliable, inexpensive and suitable for high volume production. The conventional sensors are often thin film based which lack sensitivity due to the phenomena of current shunting across the charge depleted region when an analyte binds with them. One dimensional (1-D) nanostructures provide a better alternative for sensing applications by eliminating the issue of current shunting due to their 1-D geometries and facilitating device miniaturization and low power operations. Carbon nanotubes (CNTs) are 1-D nanostructures that possess small size, high mechanical strength, high electrical and thermal conductivity and high specific area that have resulted in their wide spread applications in sensor technology. To overcome the issue of low sensitivity of pristine CNTs and to widen their scope, hybrid devices have been fabricated that combine the synergistic properties of CNTs along with materials like metals and conducting polymers (CPs). CPs exhibit electronic, magnetic and optical properties of metals and semiconductors while retaining the processing advantages of polymers. Their high chemical sensitivity, room temperature operation and tunable charge transport properties has made them ideal for use as transducing elements in chemical sensors. In this dissertation, various CNT based hybrid devices such as CNT-conducting polymer and graphene-CNT-metal nanoparticles based sensors have been developed and demonstrated towards bioanalytical applications such as detection of volatile organic compounds (VOCs) and saccharides. Electrochemical polymerization enabled the synthesis of CPs and metal nanoparticles in a simple, cost effective and controlled way on the surface of CNT based platforms thus resulting in

  6. Improved Offline Connected Script Recognition Based on Hybrid Strategy

    Directory of Open Access Journals (Sweden)

    Tanzila Saba

    2010-06-01

    Full Text Available In domain of analytic cursive word recognition, there are two main approaches: explicit segmentation based and implicit segmentation based. However, both approaches have their own shortcomings. To overcome individual weaknesses, this paper presents a hybrid strategy for recognition of strings of characters (words or numerals. In a two stage dynamic programming based, lexicon driven approach, first an explicit segmentation is applied to segment either cursive andwritten words or numeric strings. However, at this stage, segmentation points are not finalized. In the second verification stage, statistical features are extracted from each segmented area to recognize characters using a trained neural network. To enhance segmentation and recognition accuracy, lexicon is consulted using existing dynamic programming matching techniques. Accordingly, segmentation points are altered to decide true character boundaries byusing lexicon feedback. A rigorous experimental protocol shows high performance of the proposed method for cursive handwritten words and numeral strings.

  7. [Design of artificial foetor flatus based on bacterial volatile compounds].

    Science.gov (United States)

    Justesen, Ulrik Stenz

    2016-12-12

    Excessive flatulence can be a huge social problem. The purpose of this study was to design artificial flatus from bacterial volatile compounds to stimulate research into neutralizing measures. Anaerobic bacteria, representing a broad spectrum, from a recognized international culture collection were included. The strains were incubated in an anaerobic jar. After 24 hours the lid was removed, and the odour was evaluated by a specialist in clinical microbiology. Four different anaerobic strains were chosen for further studies based on their individual odours. In total, seven different combinations of two or three strains were tested. The combination of Bacteroides fragilis ATCC 25285, Clostridium difficile ATCC 700057 and Fusobacterium necrophorum ATCC 25286 was chosen as it had a suitably foul odour. It is possible to design artificial flatus from bacterial volatile compounds. The method is easy and inexpensive and can stimulate further research into neutralizing measures. none. none.

  8. Hybrid perturbation methods based on statistical time series models

    Science.gov (United States)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  9. Hybrid Support Vector Machines-Based Multi-fault Classification

    Institute of Scientific and Technical Information of China (English)

    GAO Guo-hua; ZHANG Yong-zhong; ZHU Yu; DUAN Guang-huang

    2007-01-01

    Support Vector Machines (SVM) is a new general machine-learning tool based on structural risk minimization principle. This characteristic is very signific ant for the fault diagnostics when the number of fault samples is limited. Considering that SVM theory is originally designed for a two-class classification, a hybrid SVM scheme is proposed for multi-fault classification of rotating machinery in our paper. Two SVM strategies, 1-v-1 (one versus one) and 1-v-r (one versus rest), are respectively adopted at different classification levels. At the parallel classification level, using 1-v-1 strategy, the fault features extracted by various signal analysis methods are transferred into the multiple parallel SVM and the local classification results are obtained. At the serial classification level, these local results values are fused by one serial SVM based on 1-v-r strategy. The hybrid SVM scheme introduced in our paper not only generalizes the performance of signal binary SVMs but improves the precision and reliability of the fault classification results. The actually testing results show the availability suitability of this new method.

  10. Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy

    Directory of Open Access Journals (Sweden)

    Zhu Dongyong

    2016-12-01

    Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.

  11. Hybrid Weighted-based Clustering Routing Protocol for Railway Communications

    Directory of Open Access Journals (Sweden)

    Jianli Xie

    2013-12-01

    Full Text Available In the paper, a hybrid clustering routing strategy is proposed for railway emergency ad hoc network, when GSM-R base stations are destroyed or some terminals (or nodes are far from the signal coverage. In this case, the cluster-head (CH election procedure is invoked on-demand, which takes into consideration the degree difference from the ideal degree, relative clustering stability, the sum of distance between the node and it’s one-hop neighbors, consumed power, node type and node mobility. For the clustering forming, the weights for the CH election parameters are allocated rationally by rough set theory. The hybrid weighted-based clustering routing (HWBCR strategy is designed for railway emergency communication scene, which aims to get a good trade-off between the computation costs and performances. The simulation platform is constructed to evaluate the performance of our strategy in terms of the average end-to-end delay, packet loss ratio, routing overhead and average throughput. The results, by comparing with the railway communication QoS index, reveal that our strategy is suitable for transmitting dispatching voice and data between train and ground, when the train speed is less than 220km/h

  12. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    Energy Technology Data Exchange (ETDEWEB)

    Whitham, T.G.; Martinsen, G.D.; Keim, P. [Northern Arizona Univ., Flagstaff, AZ (United States); Floate, K.D. [Agriculture and Agri-Food Canada, Lethbridge, Alberta (Canada); Dungey, H.S. [Univ. of Tasmania, Hobart, Tasmania (Australia)]|[Queensland Forest Research Inst., Gympie, Queensland (Australia); Potts, B.M. [Univ. of Tasmania, Hobart, Tasmania (Australia)

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  13. Electrospun Polyurethane/Loess Powder Hybrids and Their Absorption of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-01-01

    Full Text Available We investigated the effects of composite electrospun polyurethane (PU/loess powder (LP fibers for absorption of volatile organic compounds (VOCs from air. PU films containing different amounts of LP (0, 10, 30, and 50 wt% LP with respect to PU nanoparticles (NPs were analyzed using FE-SEM, FTIR, and XRD experimental analyzers. Electron microscopy and spectroscopy indicated that the proper content of LP NPs is homogeneous dispersion in a polymer matrix. In addition, 50 wt% of LP results in a higher concentration spinning nanosuspension that leads to some agglomeration on the film surface. The chloroform, benzene, and toluene (VOCs absorption capacity of PU/LP composite films showed a trend of toluene > benzene > chloroform. The highest VOC absorption capacity was found with PU composite mats containing 30 wt% LP NPs. The high VOC absorption capacity of PU/LP composite films can be used to remove VOCs from a new house or car.

  14. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  15. A hybrid material as a sorbent phase for the disposable pipette extraction technique enhances efficiency in the determination of phenolic endocrine-disrupting compounds.

    Science.gov (United States)

    Corazza, Gabriela; Merib, Josias; Magosso, Hérica A; Bittencourt, Otávio R; Carasek, Eduardo

    2017-09-01

    In this study, the hybrid material 3-n-propyl(3-methylpyridinium) silsesquioxane chloride (Si3Py(+)Cl(-)) was synthesized and investigated as a novel sorbent phase for the disposable pipette extraction (DPX) technique coupled to high-performance liquid chromatography-florescence detection. This sorbent phase was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Aqueous samples containing the phenolic endocrine-disrupting compounds bisphenol A (BPA), 17α-ethynylestradiol (EE2), 4-tert-octylphenol (4-t-OP), 4-octylphenol (4-OP) and 4-nonylphenol (4-NP) were subjected to DPX procedures and a series of optimizations was performed to determine the ideal extraction conditions using this approach. The proposed sorbent phase exhibited higher extraction efficiency than DPX-RP (reversed phase tips containing styrene-divinylbenzene), commonly used for the determination of the phenolic endocrine- disrupting-compounds under study. Satisfactory analytical performance was achieved with linear ranges from 2 to 100μgL(-1) for 4-t-OP and 1-100μgL(-1) for the other analytes. Limits of detection of 0.60μgL(-1) for 4-t-OP and 0.30μgL(-1) for other analytes, RSDs ranging from 1 to 20% and relative recoveries of 83-116% were obtained. Based on these satisfactory results, this sorbent phase represents a valuable alternative for the extraction of compounds with polar moieties in their structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hybrid Perturbation methods based on Statistical Time Series models

    CERN Document Server

    San-Juan, Juan Félix; Pérez, Iván; López, Rosario

    2016-01-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of a...

  17. Genetic Algorithm Based Hybrid Fuzzy System for Assessing Morningness

    Directory of Open Access Journals (Sweden)

    Animesh Biswas

    2014-01-01

    Full Text Available This paper describes a real life case example on the assessment process of morningness of individuals using genetic algorithm based hybrid fuzzy system. It is observed that physical and mental performance of human beings in different time slots of a day are majorly influenced by morningness orientation of those individuals. To measure the morningness of people various self-reported questionnaires were developed by different researchers in the past. Among them reduced version of Morningness-Eveningness Questionnaire is mostly accepted. Almost all of the linguistic terms used in questionnaires are fuzzily defined. So, assessing them in crisp environments with their responses does not seem to be justifiable. Fuzzy approach based research works for assessing morningness of people are very few in the literature. In this paper, genetic algorithm is used to tune the parameters of a Mamdani fuzzy inference model to minimize error with their predicted outputs for assessing morningness of people.

  18. Hybrid and adaptive meta-model-based global optimization

    Science.gov (United States)

    Gu, J.; Li, G. Y.; Dong, Z.

    2012-01-01

    As an efficient and robust technique for global optimization, meta-model-based search methods have been increasingly used in solving complex and computation intensive design optimization problems. In this work, a hybrid and adaptive meta-model-based global optimization method that can automatically select appropriate meta-modelling techniques during the search process to improve search efficiency is introduced. The search initially applies three representative meta-models concurrently. Progress towards a better performing model is then introduced by selecting sample data points adaptively according to the calculated values of the three meta-models to improve modelling accuracy and search efficiency. To demonstrate the superior performance of the new algorithm over existing search methods, the new method is tested using various benchmark global optimization problems and applied to a real industrial design optimization example involving vehicle crash simulation. The method is particularly suitable for design problems involving computation intensive, black-box analyses and simulations.

  19. Flow cytometry-based DNA hybridization and polymorphism analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Kommander, K.; White, P.S.; Nolan, J.P.

    1998-07-01

    Functional analysis of the humane genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well-suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. The authors are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. The approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advances of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  20. Atlas-Based Prostate Segmentation Using an Hybrid Registration

    CERN Document Server

    Martin, Sébastien; Troccaz, Jocelyne

    2008-01-01

    Purpose: This paper presents the preliminary results of a semi-automatic method for prostate segmentation of Magnetic Resonance Images (MRI) which aims to be incorporated in a navigation system for prostate brachytherapy. Methods: The method is based on the registration of an anatomical atlas computed from a population of 18 MRI exams onto a patient image. An hybrid registration framework which couples an intensity-based registration with a robust point-matching algorithm is used for both atlas building and atlas registration. Results: The method has been validated on the same dataset that the one used to construct the atlas using the "leave-one-out method". Results gives a mean error of 3.39 mm and a standard deviation of 1.95 mm with respect to expert segmentations. Conclusions: We think that this segmentation tool may be a very valuable help to the clinician for routine quantitative image exploitation.

  1. Design of Multi-attribute Knowledge Base Based on Hybrid Knowledge Representation

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-jie; YANG Bao-an; ZHANG Ke-jing

    2006-01-01

    Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multiattribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented programming language and relational database. Compared with general knowledge base, multi-attribute knowledge base can enhance the ability of knowledge processing and application;integrate the heterogeneous knowledge, such as model,symbol, case-based sample knowledge; and support the whole decision process by integrated reasoning.

  2. Kinetics of hybridization on surface oligonucleotide microchips: theory, experiment, and comparison with hybridization on gel-based microchips.

    Science.gov (United States)

    Sorokin, N V; Chechetkin, V R; Pan'kov, S V; Somova, O G; Livshits, M A; Donnikov, M Y; Turygin, A Y; Barsky, V E; Zasedatelev, A S

    2006-08-01

    The optimal design of oligonucleotide microchips and efficient discrimination between perfect and mismatch duplexes strongly depend on the external transport of target DNA to the cells with immobilized probes as well as on respective association and dissociation rates at the duplex formation. In this paper we present the relevant theory for hybridization of DNA fragments with oligonucleotide probes immobilized in the cells on flat substrate. With minor modifications, our theory also is applicable to reaction-diffusion hybridization kinetics for the probes immobilized on the surface of microbeads immersed in hybridization solution. The main theoretical predictions are verified with control experiments. Besides that, we compared the characteristics of the surface and gel-based oligonucleotide microchips. The comparison was performed for the chips printed with the same pin robot, for the signals measured with the same devices and processed by the same technique, and for the same hybridization conditions. The sets of probe oligonucleotides and the concentrations of probes in respective solutions used for immobilization on each platform were identical as well. We found that, despite the slower hybridization kinetics, the fluorescence signals and mutation discrimination efficiency appeared to be higher for the gel-based microchips with respect to their surface counterparts even for the relatively short hybridization time about 0.5-1 hour. Both the divergence between signals for perfects and the difference in mutation discrimination efficiency for the counterpart platforms rapidly grow with incubation time. In particular, for hybridization during 3 h the signals for gel-based microchips surpassed their surface counterparts in 5-20 times, while the ratios of signals for perfect-mismatch pairs for gel microchips exceeded the corresponding ratios for surface microchips in 2-4 times. These effects may be attributed to the better immobilization efficiency and to the higher

  3. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    Science.gov (United States)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  4. A Hybrid Steganography System based on LSB Matching and Replacement

    Directory of Open Access Journals (Sweden)

    Hazem Hiary

    2016-09-01

    Full Text Available This paper proposes a hybrid steganographic ap-proach using the least significant bit (LSB technique for grayscale images. The proposed approach uses both LSB match-ing (LSB-M and LSB replacement to hide the secret data in images. Using hybrid LSB techniques increase the level of security. Thus, attackers cannot easily, if not impossible, extract the secret data. The proposed approach stores two bits in a pixel. The embedding rate can reach up to 1.6 bit per pixel. The proposed approach is evaluated and subjected to various kinds of image processing attacks. The performance of the proposed algorithm is compared with two other relevant techniques; pixel-value differencing (PVD and Complexity Based LSB-M (CBL. Experimental results indicate that the proposed algorithm out-performs PVD in terms of imperceptibility. Also, it significantly outperforms CBL in two main features; higher embedding rate (ER, and more robust to most common image processing attacks such as median filtering, histogram equalization, and rotation.

  5. Hybrid fundamental-solution-based FEM for piezoelectric materials

    Science.gov (United States)

    Cao, Changyong; Qin, Qing-Hua; Yu, Aibing

    2012-10-01

    In this paper, a new type of hybrid finite element method (FEM), hybrid fundamental-solution-based FEM (HFS-FEM), is developed for analyzing plane piezoelectric problems by employing fundamental solutions (Green's functions) as internal interpolation functions. A modified variational functional used in the proposed model is first constructed, and then the assumed intra-element displacement fields satisfying a priori the governing equations of the problem are constructed by using a linear combination of fundamental solutions at a number of source points located outside the element domain. To ensure continuity of fields over inter-element boundaries, conventional shape functions are employed to construct the independent element frame displacement fields defined over the element boundary. The proposed methodology is assessed by several examples with different boundary conditions and is also used to investigate the phenomenon of stress concentration in infinite piezoelectric medium containing a hole under remote loading. The numerical results show that the proposed algorithm has good performance in numerical accuracy and mesh distortion insensitivity compared with analytical solutions and those from ABAQUS. In addition, some new insights on the stress concentration have been clarified and presented in the paper.

  6. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors.

    Science.gov (United States)

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-03-10

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  7. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  8. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Science.gov (United States)

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-01-01

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols. PMID:28287435

  9. MAPLE-based method to obtain biodegradable hybrid polymeric thin films with embedded antitumoral agents.

    Science.gov (United States)

    Dinca, Valentina; Florian, Paula E; Sima, Livia E; Rusen, Laurentiu; Constantinescu, Catalin; Evans, Robert W; Dinescu, Maria; Roseanu, Anca

    2014-02-01

    In this work, antitumor compounds, lactoferrin [recombinant iron-free (Apo-rLf)], cisplatin (Cis) or their combination were embedded within a biodegradable polycaprolactone (PCL) polymer thin film, by a modified approach of a laser-based technique, matrix-assisted pulsed laser evaporation (MAPLE). The structural and morphological properties of the deposited hybrid films were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The in vitro effect on the cells' morphology and proliferation of murine melanoma B16-F10 cells was investigated and correlated with the films' surface chemistry and topography. Biological assays revealed decreased viability and proliferation, lower adherence, and morphological modifications in the case of melanoma cells cultured on both Apo-rLf and Cis thin films. The antitumor effect was enhanced by deposition of Apo-rLf with Cis within the same film. The unique capability of the new approach, based on MAPLE, to embed antitumor active factors within a biodegradable matrix for obtaining novel biodegradable hybrid platform with increased antitumor efficiency has been demonstrated.

  10. Modeling and Control of a Flux-Modulated Compound-Structure Permanent-Magnet Synchronous Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-01-01

    Full Text Available The compound-structure permanent-magnet synchronous machine (CS-PMSM, comprising a double rotor machine (DRM and a permanent-magnet (PM motor, is a promising electronic-continuously variable transmission (e-CVT concept for hybrid electric vehicles (HEVs. By CS-PMSM, independent speed and torque control of the vehicle engine is realized without a planetary gear unit. However, the slip rings and brushes of the conventional CS-PMSM are considered a major drawback for vehicle application. In this paper, a brushless flux-modulated CS-PMSM is investigated. The operating principle and basic working modes of the CS-PMSM are discussed. Mathematical models of the CS-PMSM system are given, and joint control of the two integrated machines is proposed. As one rotor of the DRM is mechanically connected with the rotor of the PM motor, special rotor position detection and torque allocation methods are required. Simulation is carried out by Matlab/Simulink, and the feasibility of the control system is proven. Considering the complexity of the controller, a single digital signal processor (DSP is used to perform the interconnected control of dual machines instead of two separate ones, and a typical hardware implementation is proposed.

  11. A two-dimensional organic–inorganic hybrid compound, poly[(ethylenediaminetri-μ-oxido-oxidocopper(IImolybdenum(VI

    Directory of Open Access Journals (Sweden)

    Mehtap Emirdag-Eanes

    2008-10-01

    Full Text Available A new organic–inorganic two-dimensional hybrid compound, [CuMoO4(C2H8N2], has been hydrothermally synthesized at 443 K. The unit cell contains layers composed of CuN2O4 octahedra and MoO4 tetrahedra. Corner-sharing MoO4 and CuN2O4 polyhedra form CuMoO4 bimetallic sites that are joined together through O atoms, forming an edge-sharing Cu2Mo2O4 chain along the c axis. The one-dimensional chains are further linked through bridging O atoms that join the Cu and Mo atoms into respective chains along the b axis, thus establishing layers in the bc plane. The ethylenediamine ligand is coordinated to the Cu atom through its two N atoms and is oriented perpendicularly to the two-dimensional –Cu—O—Mo– layers. The average distance between adjacent layers, as calculated by consideration of the closest and furthest distances between two layers, is 8.7 Å. The oxidation states of the Mo and Cu atoms of VI and II, respectively, were confirmed by bond-valence sum calculations.

  12. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Daniela A., E-mail: daniela.geraldo@unab.cl [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile); Arancibia-Miranda, Nicolas [CEDENNA, Center for the Development of Nanoscience and Nanotechnology (Chile); Villagra, Nicolas A. [Universidad Andres Bello, Laboratorio de Microbiologia, Facultad de Ciencias Biologicas (Chile); Mora, Guido C. [Universidad Andres Bello, Unidad de Microbiologia, Facultad de Medicina (Chile); Arratia-Perez, Ramiro [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile)

    2012-12-15

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  13. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid.

    Science.gov (United States)

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool

    2016-07-01

    Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening.

  14. Synthesis and Characterization of Poly(St-co-BA) Latex with an Organic-Inorganic Hybrid Compound as Emulsifier

    Institute of Scientific and Technical Information of China (English)

    袁俊杰; 周树学; 廖建和; 武利民

    2003-01-01

    A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were a~:tually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.

  15. New Inorganic-organic Hybrid Compound Containing One Dimensional Keggin Polyoxometalate[SiW11O39Co]6- Chains:Preparation,Characterization and Application in Chemically Bulk-modified Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-li; LIN Hong-yan; LIU Guo-cheng; CHEN Bao-kuan; BI Yan-feng

    2008-01-01

    A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiW11O39Co]~2H2O(1)[bpp=1,3-bis(4-pyridyl)propane]was hydrothermally synthesized and structurally characterized by elemental analysis,single-crystal X-ray diffraction,IR,TG,and cyclic voltammetry.Single-crystal X-ray diffraction analysis reveals that compound 1 consists of interesting cobalt-monosubstituted POMs one dimensional chain together with protonated bpp ligands.Additionally,the polyoxoanions combined with the discrete organic substrates by hydrogen bond interactions to afford a supramolecular 3D network structure.The hybrid compound 1 was used as a bulk modifier to fabricate a three-dimensional chemically modified carbon paste electrode(1-CPE)by direct mixing.The electrochemical behavior and electrocatalysis of 1-CPE were studied in detail.The results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite or bromate in 1mol/L H2SO4 aqueous solution.1-CPE shows remarkable stability that can be ascribed to the insolubility of compound 1 and the supramolecular interactions existed between 1D POM anion chains and organic ligand bpp,which is very important for practical applications in electrode modification.

  16. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  17. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    Science.gov (United States)

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  18. Locating and classifying defects using an hybrid data base

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Aviles, A; Diaz Pineda, A [Tecnologico de Estudios Superiores de Coacalco. Av. 16 de Septiembre 54, Col. Cabecera Municipal. C.P. 55700 (Mexico); Hernandez-Gomez, L H; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G [Instituto Politecnico Nacional. ESIME-SEPI. Unidad Profesional ' Adolfo Lopez Mateos' Edificio 5, 30 Piso, Colonia Lindavista. Gustavo A. Madero. 07738 Mexico D.F. (Mexico); Durodola, J F [School of Technology, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford OX3 0BP (United Kingdom); Beltran Fernandez, J A, E-mail: alelunaav@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: jdurodola@brookes.ac.uk

    2011-07-19

    A computational inverse technique was used in the localization and classification of defects. Postulated voids of two different sizes (2 mm and 4 mm diameter) were introduced in PMMA bars with and without a notch. The bar dimensions are 200x20x5 mm. One half of them were plain and the other half has a notch (3 mm x 4 mm) which is close to the defect area (19 mm x 16 mm).This analysis was done with an Artificial Neural Network (ANN) and its optimization was done with an Adaptive Neuro Fuzzy Procedure (ANFIS). A hybrid data base was developed with numerical and experimental results. Synthetic data was generated with the finite element method using SOLID95 element of ANSYS code. A parametric analysis was carried out. Only one defect in such bars was taken into account and the first five natural frequencies were calculated. 460 cases were evaluated. Half of them were plain and the other half has a notch. All the input data was classified in two groups. Each one has 230 cases and corresponds to one of the two sort of voids mentioned above. On the other hand, experimental analysis was carried on with PMMA specimens of the same size. The first two natural frequencies of 40 cases were obtained with one void. The other three frequencies were obtained numerically. 20 of these bars were plain and the others have a notch. These experimental results were introduced in the synthetic data base. 400 cases were taken randomly and, with this information, the ANN was trained with the backpropagation algorithm. The accuracy of the results was tested with the 100 cases that were left. In the next stage of this work, the ANN output was optimized with ANFIS. Previous papers showed that localization and classification of defects was reduced as notches were introduced in such bars. In the case of this paper, improved results were obtained when a hybrid data base was used.

  19. Ampholine-functionalized hybrid organic-inorganic silica material as sorbent for solid-phase extraction of acidic and basic compounds.

    Science.gov (United States)

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Chen, Mingliang; Nie, Chenggang; Hu, Minjie; Li, Ying; Jia, Zhijian; Fang, Jianghua; Gao, Haoqi

    2013-09-20

    A novel sorbent for solid-phase extraction (SPE) was synthesized by chemical immobilization of ampholine on hybrid organic-inorganic silica material. The ampholine-functionalized hybrid organic-inorganic silica sorbent is consisted of aliphatic amine groups, carboxyl groups and long carbon chains, allowing for extraction of both acidic and basic compounds. The retention properties of the developed sorbent were evaluated for 1-hydroxy-2-naphthoic acid (HNA), 1-naphthoic acid (NA), 3-hydroxybenzoic acid (HBA), benzoic acid (BA), sorbic acid (SA), vanillic aldehyde (VA), butyl 4-hydroxybenzoate (BHB), propyl 4-hydroxybenzoate (PHB), ethyl 4-hydroxybenzoate (EHB), and methyl 4-hydroxybenzoate (MHB). The results show that such a sorbent has three types of interaction, i.e., electrostatic interaction, hydrophobic interaction, and hydrogen bonding, exhibiting high extraction efficiency towards the compounds tested. The adsorption capacities of the analytes ranged from 0.61 to 6.54μgmg(-1). The reproducibility of the sorbent preparation was evaluated at three spiking concentration levels, with relative standard deviations (RSDs) of 1.0-10.5%. The recoveries of ten acidic and basic compounds spiked in beverage Coca-Cola(®) sample ranged from 82.5% to 98.2% with RSDs less than 5.8%. Under optimum conditions, the ampholine-functionalized hybrid organic-inorganic silica sorbent rendered higher extraction efficiency for acidic compounds than that of the commercially available ampholine-functionalized silica particles, and was comparable to that of the commercial Oasis WAX and Oasis WCX.

  20. Synthesis and photoelectric properties of new Dawson-type polyoxometalate-based dimeric and oligomeric Pt(II)-acetylide inorganic-organic hybrids.

    Science.gov (United States)

    Liu, Li; Hu, Lei; Liu, Qian; Du, Zu-Liang; Li, Fa-Bao; Li, Guang-Hua; Zhu, Xun-Jin; Wong, Wai-Yeung; Wang, Lei; Li, Hua

    2015-01-07

    A new synthesis route for preparing Dawson-type polyoxometalate (POM) based inorganic-organic hybrid materials is presented. Two new heteropolytungstate-based dimeric and oligomeric Pt(II) acetylide inorganic-organic hybrid compounds (2PtOD and PPtOD) were prepared by Hagihara's dehydrohalogenating coupling of a terminal diacetylene POM hybrid containing diphosphoryl functionality and an appropriate platinum(II) halide precursor. This method provides a rigid covalent linkage between the POM and the organometallic Pt(II) acetylide moiety. The redox potential of the polyanion can be tuned by grafting the organic and organometallic groups on it. The photoelectric properties of hybrid LB films derived from these inorganic-organic composites were studied.

  1. Organic-inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage.

    Science.gov (United States)

    Son, Seunghwan; Won, Jongok; Kim, Jeong-Jin; Jang, Yun Deuk; Kang, Yong Soo; Kim, Sa Dug

    2009-02-01

    Alkoxysilane solutions based on tetraethoxysilane (TEOS) have been widely used for the consolidation of decaying heritage stone surfaces. TEOS-based products polymerize within the porous structure of the decaying stone, significantly increasing the cohesion of the grains of stone components. However, they suffer from practical drawbacks, such as crack formation of the gel during the drying phase due to the developing capillary force and dense gel fractures left inside of the stone. In this study, a TEOS-based stone consolidant containing functional (3-glycidoxypropyl)trimethoxysilane (GPTMS) and polyhedral oligomeric silsesquioxane (POSS) has been prepared in order to reduce gel crack formation during the drying phase. The addition of nanometer-sized POSS and/or GPTMS having a flexible segment reduces the capillary force developed during solvent evaporation. The properties of the TEOS/GPTMS/POSS composite solutions were compared with those of commercial products (Wacker OH and Unil sandsteinfestiger OH 1:1). The gelation time was similar to that of commercial consolidants, and the TEOS/GPTMS/POSS solution was stable over a period of up to 6 months. The addition of POSS and GPTMS provided a crack-free gel, while the gel from the commercial consolidants exhibited cracks after drying. The surface hydrophobicity of the treated decayed granite increased with the addition of POSS and GPTMS, and it was higher than that of the commercial product, implying the possibility of POSS and GPTMS as barriers to the penetration of water. This result implies that the TEOS/GPTMS/POSS solution showed a high suitability for the consolidation of granite heritage.

  2. SYNTHESIS AND IN VITRO ANTIMICROBIAL EVALUATION OF PIPERAZINE SUBSTITUTED QUINAZOLINE-BASED THIOUREA/THIAZOLIDINONE/CHALCONE HYBRIDS.

    Science.gov (United States)

    Shah, D R; Lakum, H P; Chikhalia, K H

    2015-01-01

    In frames of the search for new biological entities to fight against recent drug-resistant microbial strains, we report a library of quinazoline-based thiourea/4-thiazolidinone/chalcone hybrids. The newly synthesized compounds were studied for efficacy against several bacteria (Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Klebsiella pneumoniae) and fungi (Candida albicans and Aspergillus clavatus) using the broth dilution technique. From the biological evaluation, (E)-3-(3,4-dimethoxyphenyl)-1-(4-((4-(4-ethylpiperazin-1-yl)quinazolin-2-yl)amino)phenyl)prop-2-en-1-one was found to be the most active analogue (microbial inhibition concentration 3.12 μg/mL) to inhibit the bacterial growth. The rest of the compounds showed equipotent efficacy (3.12-12.5 μg/mL) as compared to the standard. Final compounds were characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy, and elemental analysis.

  3. Lumiproxy: A Hybrid Representation of Image-Based Models

    Institute of Scientific and Technical Information of China (English)

    Bin Sheng; Jian Zhu; En-Hua; Yan-Ci Zhang

    2009-01-01

    In this paper, we present a hybrid representation of image-based models combining the textured planes and the hierarchical points. Taking a set of depth images as input, our method starts from classifying input pixels into two categories, indicating the planar and non-planar surfaces respectively. For the planar surfaces, the geometric coefficients are reconstructed to form the uniformly sampled textures. For nearly planar surfaces, some textured planes, called lumiproxies,are constructed to represent the equivalent visual appearance. The Hough transform is used to find the positions of these textured planes, and optic flow measures are used to determine their textures. For remaining pixels corresponding to the non-planar geometries, the point primitive is applied, reorganized as the OBB-tree structure. Then, texture mapping and point splatting are employed together to render the novel views, with the hardware acceleration.

  4. A symmetric terahertz graphene-based hybrid plasmonic waveguide

    Science.gov (United States)

    Chen, Ming; Sheng, Pengchi; Sun, Wei; Cai, Jianjin

    2016-10-01

    A graphene-based hybrid plasmonic waveguide (GHPW) structure, which works on the terahertz frequency and includes two identical cylinder robs symmetrically put on each side of graphene sheet with gaps g, has been proposed and investigated. The present waveguide not only significantly improves the propagation length but also maintains a compact mode area, which is due to the coupling between the dielectric waveguide mode and plasmonic mode. The graphene plasmons particularly differ from plasmons in noble metals of which propagation loss can be tuned by adjusting the Fermi energy level or carrier mobility. With a very good Fermi energy level and carrier mobility, a typical propagation length of 26.7 mm, and mode area of optical field of approximately 4 μm2 at 10 THz are achieved. This waveguide structure shows great promise for designing kinds of functional elements in actively tunable integrated optical devices.

  5. Automatic Facial Expression Recognition Based on Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Ali K. K. Bermani

    2012-12-01

    Full Text Available The topic of automatic recognition of facial expressions deduce a lot of researchers in the late last century and has increased a great interest in the past few years. Several techniques have emerged in order to improve the efficiency of the recognition by addressing problems in face detection and extraction features in recognizing expressions. This paper has proposed automatic system for facial expression recognition which consists of hybrid approach in feature extraction phase which represent a combination between holistic and analytic approaches by extract 307 facial expression features (19 features by geometric, 288 feature by appearance. Expressions recognition is performed by using radial basis function (RBF based on artificial neural network to recognize the six basic emotions (anger, fear, disgust, happiness, surprise, sadness in addition to the natural.The system achieved recognition rate 97.08% when applying on person-dependent database and 93.98% when applying on person-independent.

  6. A hybrid joint based controller for an upper extremity exoskeleton

    Science.gov (United States)

    Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.

  7. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor

    Science.gov (United States)

    Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.

  8. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  9. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor.

    Science.gov (United States)

    Brown, P; Whiteside, B J; Beek, T J; Fox, P; Horbury, T S; Oddy, T M; Archer, M O; Eastwood, J P; Sanz-Hernández, D; Sample, J G; Cupido, E; O'Brien, H; Carr, C M

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45,000 nT ambient field.

  10. An Asymmetric Image Encryption Based on Phase Truncated Hybrid Transform

    Science.gov (United States)

    Khurana, Mehak; Singh, Hukum

    2017-09-01

    To enhance the security of the system and to protect it from the attacker, this paper proposes a new asymmetric cryptosystem based on hybrid approach of Phase Truncated Fourier and Discrete Cosine Transform (PTFDCT) which adds non linearity by including cube and cube root operation in the encryption and decryption path respectively. In this cryptosystem random phase masks are used as encryption keys and phase masks generated after the cube operation in encryption process are reserved as decryption keys and cube root operation is required to decrypt image in decryption process. The cube and cube root operation introduced in the encryption and decryption path makes system resistant against standard attacks. The robustness of the proposed cryptosystem has been analysed and verified on the basis of various parameters by simulating on MATLAB 7.9.0 (R2008a). The experimental results are provided to highlight the effectiveness and suitability of the proposed cryptosystem and prove the system is secure.

  11. A New Hybrid Bathroom System Based on Energy Saving Concept

    Directory of Open Access Journals (Sweden)

    Cui Bo-wen

    2016-01-01

    Full Text Available Based on the characteristics of hot water supply in bathroom, this article proposes a new hybrid energy hot water supply system. The programmable logic controller(PLC as the master controller was adopted in this system, which could automatically detect and storage main thermal physical of the system, such as temperature, water level, solar radiation intensity, power consumption and so on. The active thermal utilization technology of solar energy, air-source heat pump technology, solar energy intensive natural ventilation technology and low temperature hot water floor radiant heating technology were organically integrated in this system, which has the advantages of energy conservation and environment protection, high automation, safe and reliable operation, etc. At the same time, it can make good use of electric power cost between on-peak and off-peak, and promote the optimal allocation of power resources and reduce the cost, which can achieve the goal of intelligent control and energy saving.

  12. Healing Temperature of Hybrid Structures Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    赵中伟; 陈志华; 刘红波

    2016-01-01

    The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.

  13. Hybrid Collision Detection Algorithm based on Image Space

    Directory of Open Access Journals (Sweden)

    XueLi Shen

    2013-07-01

    Full Text Available Collision detection is an important application in the field of virtual reality, and efficiently completing collision detection has become the research focus. For the poorly real-time defect of collision detection, this paper has presented an algorithm based on the hybrid collision detection, detecting the potential collision object sets quickly with the mixed bounding volume hierarchy tree, and then using the streaming pattern collision detection algorithm to make an accurate detection. With the above methods, it can achieve the purpose of balancing load of the CPU and GPU and speeding up the detection rate. The experimental results show that compared with the classic Rapid algorithm, this algorithm can effectively improve the efficiency of collision detection.

  14. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    Directory of Open Access Journals (Sweden)

    Zhiwen Yu

    Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  15. Two new helical compounds based on Keggin clusters and N-donor multidentate ligand: Syntheses, structures and properties

    Science.gov (United States)

    Zhou, Shi; Liu, Bo; Li, Xiao-Min; Shi, Tian; Chen, Ya-Guang

    2014-11-01

    Two isostructural polyoxometalate-based inorganic-organic hybrids with 1D helical chain, [CuH3L2(GeMo12O40)]·2H2O (1) and [CuH3L2(SiMo12O40)]·2H2O (2), where L=2,4,5-tri(4-pyridyl)-imidazole have been synthesized under hydrothermal conditions. It is the first time to use the L ligand to synthesis the Keggin-type polyoxometalate-based inorganic-organic hybrids. The two compounds possess the left- and right-handed helical chains and the POMs as pendants attach in the helical chains through Cu-O bonds. The two compounds have been characterized by elemental analyses, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA) and photoluminescent spectroscopy. Moreover, nitrogen adsorption-desorption measurement, electrochemical and photocatalysis properties for degradation of methylene blue (MB) upon a UV irradiation of compound 1 have been examined.

  16. Structure-based Drug Screening and Ligand-Based Drug Screening Toward Protein-Compound Network

    Science.gov (United States)

    Fukunishi, Yoshifumi

    2007-12-01

    We developed two new methods to improve the accuracy of molecular interaction data using a protein-compound affinity matrix calculated by a protein-compound docking software. One method is a structure-based in silico drug screening method and another method is a ligand-based in silico drug screening method. These methods were applied to enhance the database enrichment of in silico drug screening and in silico target protein screening.

  17. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels.

    Science.gov (United States)

    Annabi, Nasim; Shin, Su Ryon; Tamayol, Ali; Miscuglio, Mario; Bakooshli, Mohsen Afshar; Assmann, Alexander; Mostafalu, Pooria; Sun, Jeong-Yun; Mithieux, Suzanne; Cheung, Louis; Tang, Xiaowu Shirley; Weiss, Anthony S; Khademhosseini, Ali

    2016-01-01

    A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests.

  18. Anomalies of magnetoresistance in Ce-based heavy fermion compounds

    Science.gov (United States)

    Sluchanko, N. E.; Bogach, A. V.; Anisimov, M. A.; Glushkov, V. V.; Demishev, S. V.; Samarin, N. A.; Chistyakov, O. D.; Burkhanov, G. S.; Gabani, S.; Flachbart, K.

    2015-12-01

    Magnetoresistance Δρ(H,T) of several heavy-fermion compounds, CeAl2, CeAl3 and CeCu6, substitutional solid solutions with quantum critical behavior CeCu6-xAux (x = 0.1, 0.2) and alloys with magnetic ground state Ce(Al1-xMx)2 (M = Co, Ni, x ≤ 0.8) was studied in a wide range of temperatures (1.8-40 K) in magnetic fields up to 80 kOe. It was shown that a consistent interpretation of the field dependences of the resistance for both non-magnetic and magnetically ordered cerium-based intermetallic compounds with strong electron correlations can be achieved within the framework of an approach that accounts for scattering of charge carriers by localized magnetic moments in a metal matrix. Within this approach, three different components of the magnetoresistance of cerium intermetallic compounds were identified: the negative Brillouin contribution proportional to the local magnetization ( -Δρ/ρ˜Mloc2 ), the alternating linear contribution ( Δρ/ρ˜H ) and the magnetic component, saturating in magnetic fields below 15 kOe. In the framework of the Yosida model for the cerium alloys under study, estimates of the local magnetic susceptibility χloc(H, T0) were obtained from the magnetoresistance data. Numerical differentiation of the magnetoresistance with respect to the magnetic field and analysis of the obtained d (Δρ/ρ)/d H =f (H ,T ) dependences allowed us to reconstruct the H-T magnetic phase diagrams of the strongly correlated electron systems under study as well as to examine the effects of spin polarization and renormalization of the electronic states on charge transport both in the regime of quantum critical behavior and in the magnetically ordered state.

  19. Beam Pattern Synthesis Based on Hybrid Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    YU Yan-li; WANG Ying-min; LI Lei

    2010-01-01

    As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays, a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper. First, based on the adaptive theory, a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region. An initial beam pattern was obtained after several iterations and adjustments of the interference intensity, and based on its parameters, a desired pattern was created. Then, an objective function based on the difference between the designed and desired patterns can be constructed. The pattern can be optimized by using the genetic algorithm to minimize the objective function. A design example for a double-circular array demonstrates the effectiveness of this method. Compared with the approaches existing before, the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.

  20. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower...... switching control, distributed dynamic regulation and coordinated switching con-trol are designed fully dependent on the hybrid behaviors of all distributed energy resources and the logical relationships be-tween them, and interact with each other by means of the mul-ti-agent system to form hierarchical......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  1. Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications

    Science.gov (United States)

    Shen, Mingwu; Shi, Xiangyang

    2010-09-01

    This review reports some recent advances on the synthesis, self-assembly, and biofunctionalization of various dendrimer-based organic/inorganic hybrid nanoparticles (NPs) for various biomedical applications, including but not limited to protein immobilization, gene delivery, and molecular diagnosis. In particular, targeted molecular imaging of cancer using dendrimer-based organic/inorganic hybrid NPs will be introduced in detail.

  2. Optimal traffic light control method for a single intersection based on hybrid systems

    Institute of Scientific and Technical Information of China (English)

    赵晓华; 陈阳舟; 崔平远

    2003-01-01

    A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.

  3. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    Directory of Open Access Journals (Sweden)

    André Darveau

    2007-09-01

    Full Text Available The desideratum to develop a fully integrated Lab-on-a-chip device capable ofrapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologiessuch as the microfluidics, microphotonics, immunoproteomics and Micro ElectroMechanical Systems (MEMS. In the present work, a silicon based microfluidic device hasbeen developed for carrying out fluorescence based immunoassay. By hybrid attachment ofthe microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing anintegrated Lab-on-a-chip type device for fluorescence based biosensing has beendemonstrated. Biodetection using the microfluidic device has been carried out usingantigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimentalresults prove that silicon is a compatible material for the present application given thevarious advantages it offers such as cost-effectiveness, ease of bulk microfabrication,superior surface affinity to biomolecules, ease of disposability of the device etc., and is thussuitable for fabricating Lab-on-a-chip type devices.

  4. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Seiko [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Okinaga, Toshinori; Ariyoshi, Wataru [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan); Takahashi, Osamu; Iwanaga, Kenjiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishino, Norikazu [Oral Biology Research Center, Kyushu Dental University (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan)

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  5. Shape based assignment tests suggest transgressive phenotypes in natural sculpin hybrids (Teleostei, Scorpaeniformes, Cottidae

    Directory of Open Access Journals (Sweden)

    Sheets H David

    2005-06-01

    Full Text Available Abstract Background Hybridization receives attention because of the potential role that it may play in generating evolutionary novelty. An explanation for the emergence of novel phenotypes is given by transgressive segregation, which, if frequent, would imply an important evolutionary role for hybridization. This process is still rarely studied in natural populations as samples of recent hybrids and their parental populations are needed. Further, the detection of transgressive segregation requires phenotypes that can be easily quantified and analysed. We analyse variability in body shape of divergent populations of European sculpins (Cottus gobio complex as well as natural hybrids among them. Results A distance-based method is developed to assign unknown specimens to known groups based on morphometric data. Apparently, body shape represents a highly informative set of characters that parallels the discriminatory power of microsatellite markers in our study system. Populations of sculpins are distinct and "unknown" specimens can be correctly assigned to their source population based on body shape. Recent hybrids are intermediate along the axes separating their parental groups but display additional differentiation that is unique and coupled with the hybrid genetic background. Conclusion There is a specific hybrid shape component in natural sculpin hybrids that can be best explained by transgressive segregation. This inference of how hybrids differ from their ancestors provides basic information for future evolutionary studies. Furthermore, our approach may serve to assign candidate specimens to their source populations based on morphometric data and help in the interpretation of population differentiation.

  6. Novel triazole hybrids of myrrhanone C, a natural polypodane triterpene: Synthesis, cytotoxic activity and cell based studies.

    Science.gov (United States)

    Chandrashekhar, Madasu; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata

    2016-05-23

    The 3-keto functionality in ring A of myrrhanone C, a natural bicyclic triterpene has been chemically modified and synthesized 27 novel triazole hybrids belonging to two different series in very good to excellent yields (66-83%). The synthesized compounds were thoroughly characterized by their spectroscopic data (IR, (1)H&(13)C NMR, HRMS). All the synthesized compounds were evaluated for their cytotoxic potential against a panel of five human cancer cell lines by employing MTT assay using doxorubicin as the standard. In general the synthesized compounds showed anticancer activity against almost all the cell lines screened. Interestingly, the oxime based triazoles (4a-4n) showed higher activity than the benzylidene triazoles (6a-6m). Most significantly compound 4a showed potent activity against all the tested cell lines, especially against lung cancer (A-549) with an IC 50 of 6.16 μm. In view of their significant activity against lung cancer cell lines, compounds 4a and 4l were subjected to detailed biological studies, which revealed that they arrested cell cycle in G2/M phase and induced cell death by apoptosis that was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin V-FITC assay. These compounds will serve as lead molecules in the development of potent anticancer drug candidates especially for lung cancer.

  7. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  8. Thermal, Mechanical and UV-Shielding Properties of Poly(Methyl Methacrylate/Cerium Dioxide Hybrid Systems Obtained by Melt Compounding

    Directory of Open Access Journals (Sweden)

    María A. Reyes-Acosta

    2015-09-01

    Full Text Available Thick and homogeneous hybrid film systems based on poly(methyl methacrylate (PMMA and CeO2 nanoparticles were synthesized using the melt compounding method to improve thermal stability, mechanical and UV-shielding properties, as well as to propose them for use in the multifunctional materials industry. The effect of the inorganic phase on these properties was assessed by using two different weight percentages of synthesized CeO2 nanoparticles (0.5 and 1.0 wt % with the sol–gel method and thermal treatment at different temperatures (120, 235, 400, 600 and 800 °C. Thereafter, the nanoceria powders were added to the polymer matrix by single screw extrusion. The absorption in the UV region was increased with the crystallite size of the CeO2 nanoparticles and the PMMA/CeO2 weight ratio. Due to the crystallinity of CeO2 nanoparticles, the thermal, mechanical and UV-shielding properties of the PMMA matrix were improved. The presence of CeO2 nanostructures exerts an influence on the mobility of PMMA chain segments, leading to a different glass transition temperature.

  9. Biosynthesis-Based Quantitative Analysis of 151 Secondary Metabolites of Licorice To Differentiate Medicinal Glycyrrhiza Species and Their Hybrids.

    Science.gov (United States)

    Song, Wei; Qiao, Xue; Chen, Kuan; Wang, Ying; Ji, Shuai; Feng, Jin; Li, Kai; Lin, Yan; Ye, Min

    2017-03-07

    Secondary metabolites are usually the bioactive components of medicinal plants. The difference in the secondary metabolisms of closely related plant species and their hybrids has rarely been addressed. In this study, we conducted a holistic secondary metabolomics analysis of three medicinal Glycyrrhiza species (G. uralensis, G. glabra, and G. inflata), which are used as the popular herbal medicine licorice. The Glycyrrhiza species (genotype) for 95 batches of samples were identified by DNA barcodes of the internal transcribed spacer and trnV-ndhC regions, and the chemotypes were revealed by LC/UV- or LC/MS/MS-based quantitative analysis of 151 bioactive secondary metabolites, including 17 flavonoid glycosides, 24 saponins, and 110 free phenolic compounds. These compounds represented key products in the biosynthetic pathways of licorice. For the 76 homozygous samples, the three Glycyrrhiza species showed significant biosynthetic preferences, especially in coumarins, chalcones, isoflavanes, and flavonols. In total, 27 species-specific chemical markers were discovered. The 19 hybrid samples indicated that hybridization could remarkably alter the chemical composition and that the male parent contributed more to the offspring than the female parent did. This is hitherto the largest-scale targeted secondary metabolomics study of medicinal plants and the first report on uniparental inheritance in plant secondary metabolism. The results are valuable for biosynthesis, inheritance, and quality control studies of licorice and other medicinal plants.

  10. Development of hybrid electric vehicle powertrain test system based on virtue instrument

    Science.gov (United States)

    Xu, Yanmin; Guo, Konghui; Chen, Liming

    2017-05-01

    Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.

  11. Discovery of novel Bruton's tyrosine kinase inhibitors using a hybrid protocol of virtual screening approaches based on SVM model, pharmacophore and molecular docking.

    Science.gov (United States)

    Wan, Hua-Lin; Wang, Ze-Rong; Li, Lin-Li; Cheng, Chuan; Ji, Pan; Liu, Jing-Jing; Zhang, Hui; Zou, Jun; Yang, Sheng-Yong

    2012-09-01

    Bruton's tyrosine kinase has emerged as a potential target for the treatment for B-cell malignancies and autoimmune diseases. Discovery of Bruton's tyrosine kinase inhibitors has thus attracted much attention recently. In this investigation, we introduced a hybrid protocol of virtual screening methods including support vector machine model-based virtual screening, pharmacophore model-based virtual screening and docking-based virtual screening for retrieving new Bruton's tyrosine kinase inhibitors from commercially available chemical databases. Performances of the hybrid virtual screening approach were evaluated against a test set, which results showed that the hybrid virtual screening approach significantly shortened the overall screening time, and considerably increased the hit rate and enrichment factor compared with the individual method (SB-VS, PB-VS and DB-VS) or their combinations by twos. This hybrid virtual screening approach was then applied to screen several chemical databases including Specs (202,408 compounds) and Enamine (980,000 compounds) databases. Thirty-nine compounds were selected from the final hits and have been shifted to experimental studies. © 2012 John Wiley & Sons A/S.

  12. HYBRID OPTIMIZING GRIFFON-VULTURE ALGORITHM BASED ON SWARM INTELLIGENCE MECHANISMS

    Directory of Open Access Journals (Sweden)

    Chastikova V. A.

    2014-06-01

    Full Text Available Griffon-vultures with input parameters minimal value for compound functions optimization that change during the time searching hybrid algorithm offered in this article. Researches of its efficiency and comparing analysis with some other systems have been performed

  13. Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy

    Science.gov (United States)

    Lim, Wei Qi; Phua, Soo Zeng Fiona; Xu, Hesheng Victor; Sreejith, Sivaramapanicker; Zhao, Yanli

    2016-06-01

    In recent years, there has been a considerable research focus on integrating cancer cell imaging and therapeutic functions into single nanoscale platforms for better treatment of cancer. This task could often be achieved by incorporating multiple components into a hybrid nanosystem. In this minireview, we highlight different types of silica-based hybrid nanosystems and their recent applications as integrated multifunctional platforms for cancer imaging and treatment. The discussions are divided into several sections focusing on various types of materials employed to integrate with silica, which include silica-metallic nanoparticle based hybrid nanocarriers, silica-gold nanoparticle based hybrid nanocarriers, silica-quantum dot based hybrid nanocarriers, silica-upconversion nanoparticle based hybrid nanocarriers, silica-carbon based hybrid nanocarriers, and organosilica nanocarriers. Therapeutic agents loaded in such hybrids include chemodrugs, proteins, DNA/RNA and photosensitizers. For targeted delivery into tumor sites, targeting ligands such as antibodies, peptides, aptamers, and other small molecules are grafted on the surface of the nanocarriers. At the end of the review, a brief summary and research outlook are presented. This minireview aims to provide a quick update of recent research achievements in the field.

  14. MoSi2-Base Hybrid Composites from Aeroengine Applications

    Science.gov (United States)

    Hebsur, Mohan G.

    2000-01-01

    Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved low temperature accelerated oxidation resistance by forming a Si2ON2 protective scale and thereby eliminated catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness, and significantly lowered the CTE of the MoSi2 which eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited this excellent strength and toughness improvement up to 1673 K. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites due to improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. These hybrid composites remain competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  15. A Dynamic Feature-Based Method for Hybrid Blurred/Multiple Object Detection in Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Tsun-Kuo Lin

    2016-01-01

    Full Text Available Vision-based inspection has been applied for quality control and product sorting in manufacturing processes. Blurred or multiple objects are common causes of poor performance in conventional vision-based inspection systems. Detecting hybrid blurred/multiple objects has long been a challenge in manufacturing. For example, single-feature-based algorithms might fail to exactly extract features when concurrently detecting hybrid blurred/multiple objects. Therefore, to resolve this problem, this study proposes a novel vision-based inspection algorithm that entails selecting a dynamic feature-based method on the basis of a multiclassifier of support vector machines (SVMs for inspecting hybrid blurred/multiple object images. The proposed algorithm dynamically selects suitable inspection schemes for classifying the hybrid images. The inspection schemes include discrete wavelet transform, spherical wavelet transform, moment invariants, and edge-feature-descriptor-based classification methods. The classification methods for single and multiple objects are adaptive region growing- (ARG- based and local adaptive region growing- (LARG- based learning approaches, respectively. The experimental results demonstrate that the proposed algorithm can dynamically select suitable inspection schemes by applying a selection algorithm, which uses SVMs for classifying hybrid blurred/multiple object samples. Moreover, the method applies suitable feature-based schemes on the basis of the classification results for employing the ARG/LARG-based method to inspect the hybrid objects. The method improves conventional methods for inspecting hybrid blurred/multiple objects and achieves high recognition rates for that in manufacturing processes.

  16. Mg-based compounds for hydrogen and energy storage

    Science.gov (United States)

    Crivello, J.-C.; Denys, R. V.; Dornheim, M.; Felderhoff, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Walker, G. S.; Webb, C. J.; Yartys, V. A.

    2016-02-01

    Magnesium-based alloys attract significant interest as cost-efficient hydrogen storage materials allowing the combination of high gravimetric storage capacity of hydrogen with fast rates of hydrogen uptake and release and pronounced destabilization of the metal-hydrogen bonding in comparison with binary Mg-H systems. In this review, various groups of magnesium compounds are considered, including (1) RE-Mg-Ni hydrides (RE = La, Pr, Nd); (2) Mg alloys with p-elements (X = Si, Ge, Sn, and Al); and (3) magnesium alloys with d-elements (Ti, Fe, Co, Ni, Cu, Zn, Pd). The hydrogenation-disproportionation-desorption-recombination process in the Mg-based alloys (LaMg12, LaMg11Ni) and unusually high-pressure hydrides synthesized at pressures exceeding 100 MPa (MgNi2H3) and stabilized by Ni-H bonding are also discussed. The paper reviews interrelations between the properties of the Mg-based hydrides and p- T conditions of the metal-hydrogen interactions, chemical composition of the initial alloys, their crystal structures, and microstructural state.

  17. MoSi2-Base Hybrid Composite Passed Engine Test

    Science.gov (United States)

    Keith, Theo G., Jr.; Hebsur, Mohan

    1998-01-01

    The intermetallics compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity, and it is easily machined. Past research'at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) Particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 Composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus. The first tasks of the materials development effort were to develop improved processing methods to reduce costs and to use fine-diameter fibers that enable the manufacturing of complex shapes. Tape-casting methods were developed to fully infiltrate the fine SiC fibers with matrix powders. The resulting composites were hot pressed to 100-percent density. Composites with cross-plied fiber architectures with 30 vol. % hi-nicalon SiC fibers and 30 vol. % nitride particles are now made routinely and demonstrate a good balance of properties. The next task entailed the measurement of a wide variety of mechanical properties to confirm the suitability of this composite in engines. In particular, participants in this effort demonstrated that composites made with Hi-Nicalon fibers had strength and toughness properties equal to or better than those of the composites made with the large-diameter fibers that had been used previously. Another critically

  18. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI

    Directory of Open Access Journals (Sweden)

    Piotr Stawicki

    2017-04-01

    Full Text Available Steady state visual evoked potentials (SSVEPs-based Brain-Computer interfaces (BCIs, as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system with 32 participants. Although the highest information transfer rates (ITRs were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively. In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control, and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques.

  19. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI.

    Science.gov (United States)

    Stawicki, Piotr; Gembler, Felix; Rezeika, Aya; Volosyak, Ivan

    2017-04-05

    Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques.

  20. A Viola-Jones based hybrid face detection framework

    Science.gov (United States)

    Murphy, Thomas M.; Broussard, Randy; Schultz, Robert; Rakvic, Ryan; Ngo, Hau

    2013-12-01

    Improvements in face detection performance would benefit many applications. The OpenCV library implements a standard solution, the Viola-Jones detector, with a statistically boosted rejection cascade of binary classifiers. Empirical evidence has shown that Viola-Jones underdetects in some instances. This research shows that a truncated cascade augmented by a neural network could recover these undetected faces. A hybrid framework is constructed, with a truncated Viola-Jones cascade followed by an artificial neural network, used to refine the face decision. Optimally, a truncation stage that captured all faces and allowed the neural network to remove the false alarms is selected. A feedforward backpropagation network with one hidden layer is trained to discriminate faces based upon the thresholding (detection) values of intermediate stages of the full rejection cascade. A clustering algorithm is used as a precursor to the neural network, to group significant overlappings. Evaluated on the CMU/VASC Image Database, comparison with an unmodified OpenCV approach shows: (1) a 37% increase in detection rates if constrained by the requirement of no increase in false alarms, (2) a 48% increase in detection rates if some additional false alarms are tolerated, and (3) an 82% reduction in false alarms with no reduction in detection rates. These results demonstrate improved face detection and could address the need for such improvement in various applications.

  1. Hybrid Network Defense Model Based on Fuzzy Evaluation

    Directory of Open Access Journals (Sweden)

    Ying-Chiang Cho

    2014-01-01

    Full Text Available With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network’s existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter’s inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  2. Hydrothermal Synthesis and Structural Characterization of a Novel Organic-Inorganic Hybrid Compound {[Cu(2,2'-bpy)2]2-Mo8O26}

    Institute of Scientific and Technical Information of China (English)

    WANG,Yong-Hui(王永慧); CHEN,Li-Dong(陈立东); HU,Chang-Wen(胡长文); WANG,En-Bo(王恩波); JIA,Heng-Qing(贾恒庆); HU,Ning-Hai(胡宁海)

    2002-01-01

    A novel organic-inorganic hybrid compound { [ Cu (2, 2'-bpy)2 ]2Mo8O26} has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction.The compound crystallizes in the orthorhombic space group,Pna21, with a= 2.4164(5), b = 1.8281(4), c = 1.1877(2)nm, V=5.247(2)nm3, Z=4, andfinal R1=0.0331, wR2 =0.0727. The structure consists of discrete {[Cu(2,2'-bpy)2]2Mo8O26} clusters, constructed from a β-octamolybdate subunit [ Mo8O26]4- covalently bonded to two [ Cu ( 2, 2'-bpy )2]2+ coordination complex rations via bridging oxo groups. In addition, the spectroscopic properties and thermal behavior of this compound have been investigated by spectroscopic techniques (UV-vis, IR, Raman and EPR spectra) and TG analysis.

  3. Exact Verification of Hybrid Systems Based on Bilinear SOS Representation

    CERN Document Server

    Yang, Zhengfeng; Lin, Wang

    2012-01-01

    In this paper, we address the problem of safety verification of nonlinear hybrid systems and stability analysis of nonlinear autonomous systems. A hybrid symbolic-numeric method is presented to compute exact inequality invariants of hybrid systems and exact estimates of regions of attraction of autonomous systems efficiently. Some numerical invariants of a hybrid system or an estimate of region of attraction can be obtained by solving a bilinear SOS program via PENBMI solver or iterative method, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact polynomial invariants and estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.

  4. A novel hybrid aspirin-NO-releasing compound inhibits TNFalpha release from LPS-activated human monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Fox Sarah

    2008-07-01

    Full Text Available Abstract Background The cytoprotective nature of nitric oxide (NO led to development of NO-aspirins in the hope of overcoming the gastric side-effects of aspirin. However, the NO moiety gives these hybrids potential for actions further to their aspirin-mediated anti-platelet and anti-inflammatory effects. Having previously shown that novel NO-aspirin hybrids containing a furoxan NO-releasing group have potent anti-platelet effects, here we investigate their anti-inflammatory properties. Here we examine their effects upon TNFα release from lipopolysaccharide (LPS-stimulated human monocytes and monocyte-derived macrophages and investigate a potential mechanism of action through effects on LPS-stimulated nuclear factor-kappa B (NF-κB activation. Methods Peripheral venous blood was drawn from the antecubital fossa of human volunteers. Mononuclear cells were isolated and cultured. The resultant differentiated macrophages were treated with pharmacologically relevant concentrations of either a furoxan-aspirin (B8, B7; 10 μM, their respective furazan NO-free counterparts (B16, B15; 10 μM, aspirin (10 μM, existing nitroaspirin (NCX4016; 10 μM, an NO donor (DEA/NO; 10 μM or dexamethasone (1 μM, in the presence and absence of LPS (10 ng/ml; 4 h. Parallel experiments were conducted on undifferentiated fresh monocytes. Supernatants were assessed by specific ELISA for TNFα release and by lactate dehydrogenase (LDH assay for cell necrosis. To assess NF-κB activation, the effects of the compounds on the loss of cytoplasmic inhibitor of NF-κB, IκBα (assessed by western blotting and nuclear localisation (assessed by immunofluorescence of the p65 subunit of NF-κB were determined. Results B8 significantly reduced TNFα release from LPS-treated macrophages to 36 ± 10% of the LPS control. B8 and B16 significantly inhibited monocyte TNFα release to 28 ± 5, and 49 ± 9% of control, respectively. The B8 effect was equivalent in magnitude to that of

  5. Passivity-based adaptive hybrid synchronization of a new hyperchaotic system with uncertain parameters.

    Science.gov (United States)

    Zhou, Xiaobing; Fan, Zhangbiao; Zhou, Dongming; Cai, Xiaomei

    2012-01-01

    We investigate the adaptive hybrid synchronization problem for a new hyperchaotic system with uncertain parameters. Based on the passivity theory and the adaptive control theory, corresponding controllers and parameter estimation update laws are proposed to achieve hybrid synchronization between two identical uncertain hyperchaotic systems with different initial values, respectively. Numerical simulation indicates that the presented methods work effectively.

  6. Passivity-Based Adaptive Hybrid Synchronization of a New Hyperchaotic System with Uncertain Parameters

    OpenAIRE

    Xiaobing Zhou; Zhangbiao Fan; Dongming Zhou; Xiaomei Cai

    2012-01-01

    We investigate the adaptive hybrid synchronization problem for a new hyperchaotic system with uncertain parameters. Based on the passivity theory and the adaptive control theory, corresponding controllers and parameter estimation update laws are proposed to achieve hybrid synchronization between two identical uncertain hyperchaotic systems with different initial values, respectively. Numerical simulation indicates that the presented methods work effectively.

  7. Acaricidal activity of eugenol based compounds against scabies mites.

    Directory of Open Access Journals (Sweden)

    Cielo Pasay

    Full Text Available BACKGROUND: Human scabies is a debilitating skin disease caused by the "itch mite" Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. METHODOLOGY/PRINCIPAL FINDINGS: Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues--acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. CONCLUSIONS: The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies.

  8. Fuzzy Energy Management for a Catenary-Battery-Ultracapacitor based Hybrid Tramway

    Science.gov (United States)

    Jibin, Yang; Jiye, Zhang; Pengyun, Song

    2017-05-01

    In this paper, an energy management strategy (EMS) based on fuzzy logic control for a catenary-battery-ultracapacitor powered hybrid modern tramway was presented. The fuzzy logic controller for the catenary zone and catenary-less zone was respectively designed by analyzing the structure and working mode of the hybrid system, then an energy management strategy based on double fuzzy logic control was proposed to enhance the fuel economy. The hybrid modern tramway simulation model was developed based on MATLAB/Simulink environment. The simulation results show that the proposed EMS can satisfy the demand of dynamic performance of the tramway and achieve the power distribution reasonably between the each power source.

  9. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  10. Stimulation of Ideas through Compound-Based Bibliometrics: Counting and Mapping Chemical Compounds for Analyzing Research Topics in Chemistry, Physics, and Materials Science.

    Science.gov (United States)

    Barth, Andreas; Marx, Werner

    2012-12-01

    Counting compounds (rather than papers or citations) offers a new perspective for quantitative analyses of research activities. First of all, we can precisely define (compound-related) research topics and access the corresponding publications (scientific papers as well as patents) as a measure of research activity. We can also establish the time evolution of the publications dealing with specific compounds or compound classes. Moreover, the mapping of compounds by establishing compound-based landscapes has some potential to visualize the compound basis of research topics for further research activities. We have analyzed the rare earth compounds to give an example of a broad compound class. We present the number of the currently existing compounds and of the corresponding publications as well as the time evolution of the papers and patents. Furthermore, we have analyzed the rare earth cuprates (copper oxides) as an example of a narrower compound class to demonstrate the potential of mapping compounds by compound-based landscapes. We have quantified the various element combinations of the existing compounds and revealed all element combinations not yet realized in the synthesis within this compound class. Finally, we have analyzed the quasicrystal compound category as an example of a compound class that is not defined by a specific element combination or a molecular structure.

  11. Crystal growth iron based pnictide compounds; Kristallzuechtung eisenbasierter Pniktidverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Nacke, Claudia

    2012-11-15

    The present work is concerned with selected crystal growth method for producing iron-based superconductors. The first part of this work introduces significant results of the crystal growth of BaFe{sub 2}As{sub 2} and the cobalt-substituted compound Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x{sub Nom} = 0.025, 0.05, 0.07, 0.10 and 0.20. For this purpose a test procedure for the vertical Bridgman method was developed. The second part of this work contains substantial results for growing a crystal of LiFeAs and the nickel-substituted compound Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As with x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 and 0.10. For this purpose a test procedure for the melt flow process has been developed successfully. [German] Die vorliegende Arbeit befasst sich mit ausgewaehlten Kristallzuechtungsverfahren zur Herstellung eisenbasierter Supraleiter. Der erste Teil dieser Arbeit fuehrt wesentliche Ergebnisse der Kristallzuechtung von BaFe{sub 2}As{sub 2} sowie der Cobalt-substituierten Verbindung Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} mit x{sub Nom} =0.025, 0.05, 0.07, 0.10 und 0.20 auf. Hierzu wurde eine Versuchsdurchfuehrung fuer das vertikale Bridgman-Verfahren konzipiert, mit welcher erfolgreich Kristalle dieser Zusammensetzungen gezuechtet wurden. Der zweite Teil dieser Arbeit enthaelt wesentliche Ergebnisse zur Kristallzuechtung von LiFeAs sowie der Nickel-substituierten Verbindung Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As mit x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 und 0.10. Hierfuer wurde erfolgreich eine Versuchsdurchfuehrung fuer das Schmelzfluss-Verfahren entwickelt.

  12. Superconductivity in BiS2-based compounds

    Science.gov (United States)

    Yazici, Duygu

    2014-03-01

    Polycrystalline samples of Ln O0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd, Yb) were synthesized by solid-state reaction. These compounds form in a tetragonal structure with space group P 4 / nmm conforming to the CeOBiS2 crystal structure. Electrical resistivity, magnetic susceptibility and specific heat measurements were performed on all of the samples. All of the compounds exhibit superconductivity in the range 1.9 K - 5.4 K, and the YbO0.5F0.5BiS2 sample was also found to exhibit magnetic order (probably antiferromagnetic order) at ~2.7 K that appears to coexist with superconductivity below 5.4 K. Electron-doping appears to induce superconductivity in the BiS2-based superconductors as partial substitution of F for O is necessary to observe superconductivity. This was further demonstrated in a study where trivalent La+3 was partially substituted with tetravalent Th+4, Hf+4, Zr+4, and Ti+4, all of which induced superconductivity. We also observed that substitution of divalent Sr+2 for La+3 (hole doping) does not induce superconductivity. Electrical resistivity measurements were also performed under applied pressure on Ln O0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd) up to ~3 GPa and down to 1 K. These studies revealed a universal behavior where the systems are tuned away from semi-conducting behavior towards metallic behavior. The superconducting states were stabilized by applied pressure, so that Tc increased in all of the rare earth members listed. At a critical pressure Pc, Tc increases rapidly from a low Tc phase to a distinct high Tc phase, after which additional pressure no longer suppressed the semiconducting behavior in the normal state [3,4]. In addition, the metallization of NdO0.5F0.5BiS2 also occurs at Pc. Research was supported by the US AFOSR MURI FA9550-09-1-0603, US DOE DE-FG02-04-ER46105 and NNSA DE-NA0001841.

  13. The electronic structure of organic-inorganic hybrid compounds: (NH₄)₂CuCl₄, (CH₃NH₃)₂CuCl₄ and (C₂H₅NH₃)₂CuCl₄.

    Science.gov (United States)

    Zolfaghari, P; de Wijs, G A; de Groot, R A

    2013-07-24

    Hybrid organic-inorganic compounds are an intriguing class of materials that have been experimentally studied over the past few years because of a potential broad range of applications. The electronic and magnetic properties of three organic-inorganic hybrid compounds with compositions (NH4)2CuCl4, (CH3NH3)2CuCl4 and (C2H5NH3)2CuCl4 are investigated for the first time with density functional theory plus on-site Coulomb interaction. A strong Coulomb interaction on the copper causes a relatively weak exchange coupling within the layers of the octahedral network, in good agreement with experiment. The character of the exchange interaction (responsible for magnetic behavior) is analyzed. The calculations reveal that (C2H5NH3)2CuCl4 has the strongest Jahn-Teller (JT) distortion in comparison with the two other compounds. The easy axis of magnetization is investigated, showing a weak anisotropic interaction between inter-layer Cu(2+) ions in the (C2H5NH3)2CuCl4 structure. Orbital ordering is concluded from our partial density of states calculations: a cooperation of the JT distortion with an antiferro-distortive pattern.

  14. Polyoxometalate-based Catalysts for Toxic Compound Decontamination and Solar Energy Conversion

    Science.gov (United States)

    Guo, Weiwei

    Polyoxometalates (POMs) have been attracting interest from researchers in the fields of Inorganic Chemistry, Physical Chemistry, Biomolecular Chemistry, etc. Their unique structures and properties render them versatile and facilitate applications in medicine, magnetism, electrochemistry, photochemistry and catalysis. In particular, toxic compound (chemical warfare agents (CWAs) and toxic industrial compounds (TICs)) decontamination and solar energy conversion by POM-based materials have becoming promising and important research areas that deserve much attention. The focus of this thesis is to explore the structural features of POMs, to develop POM-based materials and to investigate their applications in toxic compound decontamination and solar energy conversion. The first part of this thesis gives a general introduction on the history, structures, properties and applications of POMs. The second part reports the synthesis, structures, and reactivity of different types of POMs in the destruction of TICs and CWAs. Three tetra-n-butylammonium (TBA) salts of polyvanadotungstates, [n-Bu4N]6[ PW9V3], [n-Bu4N] 5H2PW8V4O40 (PW 8V4), [n-Bu4N]4H 5PW6V6O40· 20H2O (PW6V6) are discussed in detail. These vanadium-substituted Keggin type POMs show effective activity for the aerobic oxidation of formaldehyde (a major TIC and human-environment carcingen) to formic acid under ambient conditions. Moreover, two types of POMs have also been developed for the removal of CWAs and/or their simulants. Specifically, a layered manganese(IV)-containing heteropolyvanadate with a 1:14 Stoichiometry, K4Li2[MnV14O40]˙21H2 O has been prepared. Its catalytic activity for oxidative removal of 2-chloroethyl ethyl sulfide (a mustard simulant) is discussed. The second type of POM developed for decontamination of CWAs and their simulants is the new one-dimensional polymeric polyniobate (P-PONb), K12[Ti 2O2][GeNb12O40]˙19H2O (KGeNb). The complex has been applied to the decontamination of a wide range

  15. DIAGNOSIS WINDOWS PROBLEMS BASED ON HYBRID INTELLIGENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    SAFWAN O. HASOON

    2013-10-01

    Full Text Available This paper describes the artificial intelligence technologies by integrating Radial Basis Function networks with expert systems to construct a robust hybrid system. The purpose of building the hybrid system is to give recommendations to repair the operating system (Windows problems and troubleshoot the problems that can be repaired. The neural network has unique characteristics which it can complete the uncompleted data, the expert system can't deal with data that is incomplete, but using the neural network individually has some disadvantages which it can't give explanations and recommendations to the problems. The expert system has the ability to explain and give recommendations by using the rules and the human expert in some conditions. Therefore, we have combined the two technologies. The paper will explain the integration methods between the two technologies and which method is suitable to be used in the proposed hybrid system.

  16. Chitosan bio-based organic-inorganic hybrid aerogel microspheres.

    Science.gov (United States)

    El Kadib, Abdelkrim; Bousmina, Mosto

    2012-07-02

    Recently, organic-inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface-reactive organic-inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self-standing microspheres. Nanocasting of sol-gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO(2) supercritical drying provide high-surface-area organic-inorganic hybrid materials. Examples including chitosan-SiO(2), chitosan-TiO(2), chitosan-redox-clusters and chitosan-clay-aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption.

  17. Coupling physical chemical techniques with hydrotalcite-like compounds to exploit their structural features and new multifunctional hybrids with luminescent properties.

    Science.gov (United States)

    Costantino, Umberto; Costantino, Ferdinando; Elisei, Fausto; Latterini, Loredana; Nocchetti, Morena

    2013-08-28

    Hydrotalcite-like compounds (HTlc), belonging to the large class of Layered Double Hydroxides (LDH), have excited wide interest owing to the incredible number of their potential and achieved applications in physical, chemical and bio-chemical fields. This perspective review deals with recent advances in the application of physical-chemical techniques for the study of HTlc structure and for the design and synthesis, using intercalation chemistry routes, of new hybrid materials. Firstly, a rapid survey on the most common synthetic strategies for the attainment of HTlc with different crystallinity degree and crystal size and for their modification to obtain hybrids has been made, and the use of coupled techniques (XRPD, luminescence, Solid State MAS NMR and Molecular Dynamics) to gain structural information is reported. Then, the design, synthesis and photophysical characterization of azoic dyes-intercalated and co-intercalated HTlc hybrid materials are described. Hybrids constituted of ZnAl-HTlc, co-intercalated with stearate anions and methyl orange or methyl yellow dyes, have been used as nanofillers of hydrophobic polymers. The polymeric nano-composites obtained have been characterized by means of XRPD patterns, Thermo-Gravimetric Analysis and Confocal Fluorescence Microscopy. This latter technique has been found to be an excellent, complementary and non-invasive tool to probe the dispersion degree of the fluorescent fillers into the polymeric matrices and their stability in the compounding process. Finally, the synthesis and spectroscopic characterization of nanoparticle (NP) decorated HTlc for advanced antimicrobial and photo-catalytic applications are also reported. The review terminates with a concluding short note and future trends.

  18. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Science.gov (United States)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  19. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  20. Multi-agent system-based event-triggered hybrid control scheme for energy internet

    DEFF Research Database (Denmark)

    Dou, Chunxia; Yue, Dong; Han, Qing Long

    2017-01-01

    This paper is concerned with an event-triggered hybrid control for the energy Internet based on a multi-agent system approach with which renewable energy resources can be fully utilized to meet load demand with high security and well dynamical quality. In the design of control, a multi-agent system...... framework is first constructed. Then, to describe fully the hybrid behaviors of all distributed energy resources and logical relationships between them, a differential hybrid Petri-net model is established, which is an original work. The most important contributions based on this model propose four types...

  1. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    OpenAIRE

    Pragya Nema, R.K. Nema, Saroj Rangnekar

    2010-01-01

    This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal) . For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77o.23'and Latitude 23o.21' ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid en...

  2. PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base

    OpenAIRE

    Station Md. Ibrahim; Mohammad Tayyab

    2015-01-01

    This paper presents the design of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in south India (Chennai). For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Chennai (Longitude 80ο .16’and Latitude 13ο .5’ ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid ...

  3. Sol-gel encapsulation of binary Zn(II) compounds in silica nanoparticles. Structure-activity correlations in hybrid materials targeting Zn(II) antibacterial use.

    Science.gov (United States)

    Halevas, E; Nday, C M; Kaprara, E; Psycharis, V; Raptopoulou, C P; Jackson, G E; Litsardakis, G; Salifoglou, A

    2015-10-01

    In the emerging issue of enhanced multi-resistant properties in infectious pathogens, new nanomaterials with optimally efficient antibacterial activity and lower toxicity than other species attract considerable research interest. In an effort to develop such efficient antibacterials, we a) synthesized acid-catalyzed silica-gel matrices, b) evaluated the suitability of these matrices as potential carrier materials for controlled release of ZnSO4 and a new Zn(II) binary complex with a suitably designed well-defined Schiff base, and c) investigated structural and textural properties of the nanomaterials. Physicochemical characterization of the (empty-loaded) silica-nanoparticles led to an optimized material configuration linked to the delivery of the encapsulated antibacterial zinc load. Entrapment and drug release studies showed the competence of hybrid nanoparticles with respect to the a) zinc loading capacity, b) congruence with zinc physicochemical attributes, and c) release profile of their zinc load. The material antimicrobial properties were demonstrated against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and negative (Escherichia coli, Pseudomonas aeruginosa, Xanthomonas campestris) bacteria using modified agar diffusion methods. ZnSO4 showed less extensive antimicrobial behavior compared to Zn(II)-Schiff, implying that the Zn(II)-bound ligand enhances zinc antimicrobial properties. All zinc-loaded nanoparticles were less antimicrobially active than zinc compounds alone, as encapsulation controls their release, thereby attenuating their antimicrobial activity. To this end, as the amount of loaded zinc increases, the antimicrobial behavior of the nano-agent improves. Collectively, for the first time, sol-gel zinc-loaded silica-nanoparticles were shown to exhibit well-defined antimicrobial activity, justifying due attention to further development of antibacterial nanotechnology.

  4. Structural investigation of the zirconium-titanium based amino trimethylene phosphonate hybrid coating on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Changsheng LIU; Fengjun SHAN

    2009-01-01

    A zirconium-titanium based amino trimethylene phosphonate hybrid coating on AA6061 aluminum alloys was formed by dipping in a fluorotitanate/zirconate acid and amino trimethylene phosphonic acid (ATMP) solution for improving the lacquer adhesion and corrosion resistance as a substitute of chromate coatings. The morphol-ogy and structure of the hybrid coating were studied by means of scanning electror microscopy (SEM) and atomic force microscopy (AFM). The surface compositior and structure characteristics were also investigated by means of X-ray photoelectron spectroscopy (XPS) and Fourier transformation infra-red spectroscopy (FTIR). The results of SEM and AFM show that the hybrid coating present piece particle distrib-ution which is much denser than that of the zirconium-titanium coating. The results of XPS and FTIR indicate that the hybrid coating is a hybrid composite structure composed of both the zirconium-titanium and amino trimethylene phosphonate coat-ings.

  5. Three hybridization models based on local search scheme for job shop scheduling problem

    Science.gov (United States)

    Balbi Fraga, Tatiana

    2015-05-01

    This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.

  6. Mechanical and tribological studies on nano particles reinforced hybrid aluminum based composite

    Directory of Open Access Journals (Sweden)

    Muley Aniruddha V.

    2015-01-01

    Full Text Available Hybrid metal matrix composites are new class of materials due to their better mechanical properties which can be achieved through proper selection and combination of materials. The work reported in this paper is based on fabrication of hybrid composites by using nano particles as reinforcements. The hybrid composites were fabricated by reinforcing them with nano sized SiC and Al2O3 particles in order to study mechanical and tribological properties of these enhanced materials. A stir casting method was used to obtain hybrid composites. LM 6 aluminum alloy was used as a matrix material. The results shown increase in hardness as well as in ultimate tensile strength of the composites with small wt.% of nano-sized hybrid reinforcements. The composites produced also exhibit better tribological properties.

  7. Methods for mapping QTLs underlying endosperm traits based on random hybridization design

    Institute of Scientific and Technical Information of China (English)

    WEN Yongxian; WU Weiren

    2006-01-01

    Several methods of interval mapping of QTLs underlying endosperm traits based on random hybridization designs and the triploid genetic model are proposed. The basic idea is: plants (or lines) from a population with known marker genotype information are randomly hybridized to generate a population of hybrid lines for endosperm QTL mapping; a mixture of seeds of each hybrid line is measured for the endosperm trait to get the mean of the line; then endosperm QTL mapping and effect estimation is performed using the endosperm trait means of hybrid lines and the marker genotype information of parental plants (or lines). The feasibility and efficiency of the methods are examined by computer simulations. Results show that the methods can precisely map endosperm QTLs and unbiasedly and efficiently estimate the three effects (additive effect, first dominant effect, second dominant effect) of endosperm QTLs.

  8. Polylactide-based bionanocomposites: a promising class of hybrid materials.

    Science.gov (United States)

    Sinha Ray, Suprakas

    2012-10-16

    Polylactide (PLA) is the oldest and potentially one of the most interesting and useful biodegradable man-made polymers because of its renewable origin, controlled synthesis, good mechanical properties, and inherent biocompatibility. The blending of PLA with functional nanoparticles can yield a new class of hybrid materials, commonly known as bionanocomposites, where 1-5% nanoparticles by volume are molecularly dispersed within the PLA matrix. The dispersed nanoparticles with their large surface areas and low percolation thresholds both can improve the properties significantly in comparison with neat PLA and can introduce new value-added properties. Recently, researchers have made extraordinary progress in the practical processing and development of products from PLA bionanocomposites. The variation of the nanofillers with different functionalities can lead to many bionanocomposite applications including environmentally friendly packaging, materials for construction, automobiles, and tissue regeneration, and load-bearing scaffolds for bone reconstruction. This Account focuses on these recent research efforts, processing techniques, and key research challenges in the development of PLA-based bionanocomposites for use in applications from green plastics to biomedical applications. Growing concerns over environmental issues and high demand for advanced polymeric materials with balanced properties have led to the development of bionanocomposites of PLA and natural origin fillers, such as nanoclays. The combination of nanoclays with the PLA matrix allows us to develop green nanocomposites that possess several superior properties. For example, adding ∼5 vol % clay to PLA improved the storage modulus, tensile strength, break elongation, crystallization rate, and other mechanical properties. More importantly, the addition of clay decreases the gas and water vapor permeation, increases the heat distortion temperature and scratch resistance, and controls the biodegradation

  9. Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach

    OpenAIRE

    Garcia Pinto, Vinicius; Stanisic, Luka; Legrand, Arnaud; Mello Schnorr, Lucas; Thibault, Samuel; Danjean, Vincent

    2016-01-01

    In this paper, we present visual analysis techniques to evaluate the performance of HPC task-based applications on hybrid architectures. Our approach is based on composing modern data analysis tools (pjdump, R, ggplot2, plotly), enabling an agile and flexible scripting framework with minor development cost. We validate our proposal by analyzing traces from the full-fledged implementation of the Cholesky decomposition available in the MORSE library running on a hybrid (CPU/GPU) platform. The a...

  10. Microwave-induced inactivation of DNA-based hybrid catalyst in asymmetric catalysis.

    Science.gov (United States)

    Zhao, Hua; Shen, Kai

    2016-03-01

    DNA-based hybrid catalysts have gained strong interests in asymmetric reactions. However, to maintain the high enantioselectivity, these reactions are usually conducted at relatively low temperatures (e.g. DNA-based hybrid catalyst even at low temperatures (such as 5 °C). Circular dichroism (CD) spectra and gel electrophoresis of DNA suggest that microwave exposure degrades DNA molecules and disrupts DNA double-stranded structures, causing changes of DNA-metal ligand binding properties and thus poor DNA catalytic performance.

  11. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis.

    Science.gov (United States)

    Xing, Fangqian; Mao, Jian-Feng; Meng, Jingxiang; Dai, Jianfeng; Zhao, Wei; Liu, Hao; Xing, Zhen; Zhang, Hua; Wang, Xiao-Ru; Li, Yue

    2014-05-01

    Genetic analyses indicate that Pinus densata is a natural homoploid hybrid originating from Pinus tabuliformis and Pinus yunnanensis. Needle morphological and anatomical features show relative species stability and can be used to identify coniferous species. Comparative analyses of these needle characteristics and phenotypic differences between the artificial hybrids, P. densata, and parental species can be used to determine the genetic and phenotypic evolutionary consequences of natural hybridization. Twelve artificial hybrid families, the two parental species, and P. densata were seeded in a high-altitude habitat in Linzhi, Tibet. The needles of artificial hybrids and the three pine species were collected, and 24 needle morphological and anatomical traits were analyzed. Based on these results, variations in 10 needle traits among artificial hybrid families and 22 traits among species and artificial hybrids were predicted and found to be under moderate genetic control. Nineteen needle traits in artificial hybrids were similar to those in P. densata and between the two parental species, P. tabuliformis and P. yunnanensis. The ratio of plants with three needle clusters in artificial hybrids was 22.92%, which was very similar to P. densata. The eight needle traits (needle length, the mean number of stomata in sections 2 mm in length of the convex and flat sides of the needle, mean stomatal density, mesophyll/vascular bundle area ratio, mesophyll/resin canal area ratio, mesophyll/(resin canals and vascular bundles) area ratio, vascular bundle/resin canal area ratio) relative to physiological adaptability were similar to the artificial hybrids and P. densata. The similar needle features between the artificial hybrids and P. densata could be used to verify the homoploid hybrid origin of P. densata and helps to better understand of the hybridization roles in adaptation and speciation in plants.

  12. A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator.

    Science.gov (United States)

    Quan, Ting; Wang, Zhong Lin; Yang, Ya

    2016-08-03

    Integration of electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) can increase the total energy conversion efficiency from one mechanical motion by connecting the two devices in parallel after using power management circuits. A critical issue is how to realize the integration of the EMG and TENG in the same current circuits. Here, a hybridized nanogenerator, including an EMG and a TENG with the same set of electrodes, has been utilized to simultaneously scavenge mechanical energy. The hybridized nanogenerator can deliver a high output current of about 3.8 mA and a high output voltage of about 245 V when the switch in the device circuit was turned on and off, respectively. A acceleration sensor can be achieved by using the hybridized nanogenerator, where the detection sensitivities are about 143.2 V/(m/s(2)) for TENG and 291.7 μA/(m/s(2)) for EMG. The fabricated hybridized nanogenerator may have practical use for scavenging mechanical energy and self-powered acceleration sensor systems.

  13. Hybrid multiple attribute decision making model based on entropy

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Cui Mingming

    2007-01-01

    From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.

  14. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  15. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  16. Development of novel melt-compounded starch-grafted polypropylene/polypropylene-grafted maleic anhydride/organoclay ternary hybrids

    Directory of Open Access Journals (Sweden)

    E. Lafranche

    2012-11-01

    Full Text Available Starch-grafted polypropylene (PP-g-starch/organoclay nanocomposites were melt-compounded using a corotating twin-screw extruder. Homopolymer or copolymer-based polypropylene-grafted maleic anhydrides (PP-g-MA with different molecular weights and different maleic anhydride (MA grafting levels were added at different weight contents as compatibilizer. Two organo-modified montmorillonites were used, the first one containing polar functional groups (Cloisite®30B having affinity to the starch phase, and the other one containing non polar-groups (Cloisite®20A having affinity to the polypropylene phase of the polymer matrix. Whatever the MA grafting level and the molecular weight and content of PP-g-MA, no significant immiscibility of PP-g-starch/PP-g-MA blends is evidenced. Regarding clay dispersion, adding a low content of ethylene-propylene copolymer-based PP-g-MA compatibilizer having a high MA-grafting level, and a polar organoclay (Cloisite®30B is the most desirable formulation to optimize clay intercalation and exfoliation in PP-g-starch. Nevertheless, regarding the reinforcement effect, whatever the PP-g-MA compatibilizer, the addition of non polar organoclay (Cloisite®20A is preferably recommended to reach higher tensile properties (modulus, yield stress, strength without significant loss of ductility.

  17. Agent-based power sharing scheme for active hybrid power sources

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenhua [Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33146 (United States)

    2008-02-15

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles. (author)

  18. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  19. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    Science.gov (United States)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  20. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    Science.gov (United States)

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  1. Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates

    Directory of Open Access Journals (Sweden)

    Cepko Connie L

    2007-06-01

    Full Text Available Abstract Background High-throughput systems for gene expression profiling have been developed and have matured rapidly through the past decade. Broadly, these can be divided into two categories: hybridization-based and sequencing-based approaches. With data from different technologies being accumulated, concerns and challenges are raised about the level of agreement across technologies. As part of an ongoing large-scale cross-platform data comparison framework, we report here a comparison based on identical samples between one-dye DNA microarray platforms and MPSS (Massively Parallel Signature Sequencing. Results The DNA microarray platforms generally provided highly correlated data, while moderate correlations between microarrays and MPSS were obtained. Disagreements between the two types of technologies can be attributed to limitations inherent to both technologies. The variation found between pooled biological replicates underlines the importance of exercising caution in identification of differential expression, especially for the purposes of biomarker discovery. Conclusion Based on different principles, hybridization-based and sequencing-based technologies should be considered complementary to each other, rather than competitive alternatives for measuring gene expression, and currently, both are important tools for transcriptome profiling.

  2. Microcantilver-based DNA hybridization sensors for Salmonella identification

    Directory of Open Access Journals (Sweden)

    Carlo Ricciardi

    2012-02-01

    Full Text Available The detection of pathogenic microorganisms in foods remains a challenging since the safety of foodstuffs has to be ensured by the food producing companies. Conventional methods for the detection and identification of bacteria mainly rely on specific microbiological and biochemical identification. Biomolecular methods, are commonly used as a support for traditional techniques, thanks to their high sensitivity, specificity and not excessive costs. However, new methods like biosensors for example, can be an exciting alternative to the more traditional tecniques for the detection of pathogens in food. In this study we report Salmonella enterica serotype Enteritidis DNA detection through a novel class of label-free biosensors: microcantilevers (MCs. In general, MCs can operate as a microbalance and is used to detect the mass of the entities anchored to the cantilever surface using the decrease in the resonant frequency. We use DNA hybridization as model reaction system and for this reason, specific single stranded probe DNA of the pathogen and three different DNA targets (single-stranded complementary DNA, PCR product and serial dilutions of DNA extracted from S. Enteritidis strains were applied. Two protocols were reported in order to allow the probe immobilization on cantilever surface: i MC surface was functionalized with 3-aminopropyltriethoxysilane and glutaraldehyde and an amino-modified DNA probe was used; ii gold-coated sensors and thiolated DNA probes were used in order to generate a covalent bonding (Th-Au. For the first one, measures after hybridization with the PCR product showed related frequency shift 10 times higher than hybridization with complementary probe and detectable signals were obtained at the concentrations of 103 and 106 cfu/mL after hybridization with bacterial DNA. There are currently optimizations of the second protocol, where preliminary results have shown to be more uniform and therefore more precise within each of the

  3. Design and Synthesis of Functional Silsesquioxane-Based Hybrids by Hydrolytic Condensation of Bulky Triethoxysilanes

    Directory of Open Access Journals (Sweden)

    Hideharu Mori

    2012-01-01

    Full Text Available This paper presents a short overview of recent advances in the design and synthesis of organic-inorganic hybrids using silsesquioxane-based nanoparticles having nanometer size, relatively narrow size distribution, high functionalities, and various characteristic features, mainly focusing on our recent researches related to the subject. A highlight of this paper is the water-soluble silsesquioxane-based nanoparticles, including hydroxyl-functionalized and cationic silsesquioxanes, which were synthesized via the one-step condensation of the bulky triethoxysilane precursors. The design and synthesis of R-SiO1.5/SiO2 and R-SiO1.5/TiO2 hybrids by hydrolytic cocondensation of a triethoxysilane precursor and metal alkoxides are briefly introduced. This paper also deals with recent results in stimuli-responsive hybrids based on the water-soluble silsesquioxane nanoparticles and fluorinated and amphiphilic silsesquioxane hybrids.

  4. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  5. Partitioning and interpolation based hybrid ARIMA–ANN model for time series forecasting

    Indian Academy of Sciences (India)

    C NARENDRA BABU; PALLAVIRAM SURE

    2016-07-01

    Time series data (TSD) originating from different applications have dissimilar characteristics. Hence for prediction of TSD, diversified varieties of prediction models exist. In many applications, hybrid models provide more accurate predictions than individual models. One such hybrid model, namely auto regressive integrated moving average – artificial neural network (ARIMA–ANN) is devised in many different ways in the literature. However, the prediction accuracy of hybrid ARIMA–ANN model can be further improved by devising suitable processing techniques. In this paper, a hybrid ARIMA–ANN model is proposed, which combines the concepts of the recently developed moving average (MA) filter based hybrid ARIMA–ANN model, with a processing technique involving a partitioning–interpolation (PI) step. The improved prediction accuracy of the proposed PI based hybrid ARIMA–ANN model is justified using a simulation experiment.Further, on different experimental TSD like sunspots TSD and electricity price TSD, the proposed hybrid model is applied along with four existing state-of-the-art models and it is found that the proposed model outperforms all the others, and hence is a promising model for TSD prediction

  6. Extracted Venom and Cuticular Compounds of Imported Fire Ants, Solenopsis spp., and Chemotaxonomic Applications Across a Persistent Hybrid Zone

    Science.gov (United States)

    Characterization of cuticular biomolecular assemblages for imported fire ants permit basic distinctions among colonies of S. invicta, S. richteri, and their hybrids; thus, providing opportunities to investigate details of landscape ecology for this species complex as well as to assess levels of inva...

  7. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  9. Preparation and property of a novel soluble electron transport POSS-based hybrid material

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Juan Shen; Jin Cui Wu; Min Fang; Hong Yao Xu

    2008-01-01

    A novel POSS-based organic/inorganic hybrid covalently attached at molecular level, 2-(4-(allyloxy)phenyl)-5-(4-(octyloxy)phenyl)-1,3,4-oxadiazole-POSS (6) (abbreviated as oxadiazole-POSS) was synthesized by Pt (dcp) catalyst. The hybrid was soluble in common organic solvents such as CHCl3, toluene, C2H4Cl2, and THF. Its structures and properties were characterized and evaluated with FTIR, 1H NMR, 13C NMR, 29Si NMR, EA, TGA, DSC, GPC, and CV, respectively. The results show that the novel hybrid possesses high thermal stability and good electron injection ability.

  10. Nanoparticles-based phenol-formaldehyde hybrid resins.

    Science.gov (United States)

    Hernández-Padrón, Genoveva; García-Garduño, Margarita; Canseco, Miguel A; Castaño, Victor M

    2008-06-01

    The synthesis, characterization and corrosion properties of a novel material, produced by the reaction of silica nanoparticles with a functionalized Phenol-Formaldehyde Resin (PFR), are presented. Carboxylic groups were attached in situ to the PFR skeleton to produce a functionalized resin (PFR-SA), which is then reacted with sol-gel-prepared silica nanoparticles, yielding a novel hybrid (organic/inorganic) material (PFR-SA-nanoSiO2). This hybrid material was characterized by FT-IR, FT-Raman, TGA, DSC, SEM and corrosion tests, whose results showed significant improvement of the thermal properties in comparison with the PFR coating. In addition, the new material was efficient and durable against corrosion of metals, with the anticorrosive performance of PFR-SA and PFR-SA/nanoSiO2 coating films being superior to those of the original PFR coating.

  11. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Directory of Open Access Journals (Sweden)

    Mariusz Oleksy

    2014-08-01

    Full Text Available A study was carried out involving the filling of epoxy resin (EP with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS. The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS curves, and an exfoliated structure observed by TEM.

  12. Density-based mixing parameter for hybrid functionals

    Science.gov (United States)

    Marques, Miguel A. L.; Vidal, Julien; Oliveira, Micael J. T.; Reining, Lucia; Botti, Silvana

    2011-01-01

    A very popular ab initio scheme to calculate electronic properties in solids is the use of hybrid functionals in density functional theory (DFT) that mixes a portion of the Fock exchange with DFT functionals. In spite of its success, a major problem still remains, related to the use of one single mixing parameter for all materials. Guided by physical arguments that connect the mixing parameter to the dielectric properties of the solid, and ultimately to its band gap, we propose a method to calculate this parameter from the electronic density alone. This approach is able to cut significantly the error of traditional hybrid functionals for large and small gap materials, while retaining a good description of the structural properties. Moreover, its implementation is simple and leads to a negligible increase of the computational time.

  13. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Science.gov (United States)

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-01-01

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177

  14. Design of Transport Layer Based Hybrid Covert Channel Detection Engine

    CERN Document Server

    K, Anjan; Jadhav, Mamatha; 10.5121/ijasuc.2010.1409

    2011-01-01

    Computer network is unpredictable due to information warfare and is prone to various attacks. Such attacks on network compromise the most important attribute, the privacy. Most of such attacks are devised using special communication channel called "Covert Channel". The word "Covert" stands for hidden or non-transparent. Network Covert Channel is a concealed communication path within legitimate network communication that clearly violates security policies laid down. The non-transparency in covert channel is also referred to as trapdoor. A trapdoor is unintended design within legitimate communication whose motto is to leak information. Subliminal channel, a variant of covert channel works similarly except that the trapdoor is set in a cryptographic algorithm. A composition of covert channel with subliminal channel is the "Hybrid Covert Channel". Hybrid covert channel is homogenous or heterogeneous mixture of two or more variants of covert channels either active at same instance or at different instances of time...

  15. Crystal structure, thermochromic and magnetic properties of organic-inorganic hybrid compound: (C7H7N2S)2CuCl4

    Science.gov (United States)

    Vishwakarma, Ashok K.; Kumari, Reema; Ghalsasi, Prasanna S.; Arulsamy, Navamoney

    2017-08-01

    The synthesis, thermal analysis, crystal structure and magnetic properties of (2-aminobenzothiazolium)2CuCl4, organic-inorganic hybrid compound, have been described. The compound crystallizes in the monoclinic space group P21/c with two formula units in a unit cell of dimensions a = 6.9522(4) Å, b = 9.6979(4) Å, c = 13.9633(6) Å, β = 97.849(3)° and volume 930.83(8) Å3 at 150(2) K. The structure consists of isolated nearly square planer [CuC14]2- units, with somewhat longer than normal Cusbnd Cl bond lengths [Cusbnd Cl (average) = 2.2711 Å]. The magnetic measurements of (2-aminobenzothiazolium)2CuCl4 using SQUID magnetometer show paramagnetic nature of the compound. Thermal measurements (TG-DTA and DSC) on this compound showed reversible phase transition at 83 °C. This transition is accompanied by the reversible change in colour of the prismatic crystal from green to dark brown, thermochromic behaviour. Temperature dependent EPR measurements on powdered sample ascertain change in coordination sphere around Cu(II) with shift in g|| = 2.150 and g⊥ = 2.071 at room temperature, typical of square planar, to g|| = 2.201 and g⊥ = 2.182 at 170 °C, typical of distorted tetrahedral geometry.

  16. Solvent-based dissolution method to sample gas-phase volatile organic compounds for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Hunkeler, Daniel

    2014-01-17

    An investigation was carried out to develop a simple and efficient method to collect vapour samples for compound specific isotope analysis (CSIA) by bubbling vapours through an organic solvent (methanol or ethanol). The compounds tested were benzene and trichloroethylene (TCE). The dissolution efficiency was tested for different air volume injections, using flow rates ranging from 25ml/min to 150ml/min and injection periods varying between 10 and 40min. Based on the results, complete mass recovery for benzene and TCE in both solvents was observed for the flow rates of 25 and 50ml/min. However, small mass loss was observed at increased flow rate. At 150ml/min, recovery was on average 80±17% for benzene and 84±10% for TCE, respectively in methanol and ethanol. The δ(13)C data measured for benzene and TCE dissolved in both solvents were reproducible and were stable independently of the volume of air injected (up to 6L) or the flow rate used. The stability of δ(13)C values hence underlines no isotopic fractionation due to compound-solvent interaction or mass loss. The development of a novel and simple field sampling technique undertaken in this study will facilitate the application of CSIA to diverse gas-phase volatile organic compound studies, such as atmospheric emissions, soil gas or vapour intrusion.

  17. A hybrid-stress element based on Hamilton principle

    Science.gov (United States)

    Cen, Song; Zhang, Tao; Li, Chen-Feng; Fu, Xiang-Rong; Long, Yu-Qiu

    2010-08-01

    A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3 β here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3 β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.

  18. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid.

    Science.gov (United States)

    Xie, Yibing; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. © 2013 Elsevier B.V. All rights reserved.

  19. Bio-hybrid cell-based actuators for microsystems.

    Science.gov (United States)

    Carlsen, Rika Wright; Sitti, Metin

    2014-10-15

    As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

  20. Supercapacitor electrode based on three-dimensional graphene-polyaniline hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xiaochen; Wang Jingxia [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications NUPT, 9 Wenyuan Road, Nanjing 210046 (China); Wang Jing; Chan-Park, Mary B. [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Li Xingao; Wang Lianhui; Huang Wei [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications NUPT, 9 Wenyuan Road, Nanjing 210046 (China); Chen Peng, E-mail: chenpeng@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore)

    2012-06-15

    Three-dimensional (3D) graphene was synthesized by chemical vapour deposition with nickel foam as a substrate. Based on the 3D graphene foams, free-standing graphene-polyaniline (PANI) hybrids were produced by in-situ polymerization of aniline monomer under acid condition, and characterized by scanning electron microscopy (SEM), Fourier transformation infrared (FTIR), and Raman spectroscopy. Furthermore, we show that supercapacitor electrodes based on the 3D graphene-PANI hybrid exhibit high specific capacitances (346 Fg{sup -1} at a discharge current density of 4 Ag{sup -1}), suggesting that the light and inexpensive 3D graphene foams are a promising candidate for energy storage. - Highlights: Black-Right-Pointing-Pointer Three-dimensional (3D) graphene was synthesized by chemical vapour deposition. Black-Right-Pointing-Pointer Graphene-polyaniline (PANI) hybrids were produced by in-situ polymerization. Black-Right-Pointing-Pointer Graphene-PANI hybrid exhibits high specific capacitances.

  1. Hybrid Asymmetric Space Vector Modulation for inverter based direct torque control induction motor drive

    Directory of Open Access Journals (Sweden)

    Nandakumar Sundararaju

    2014-05-01

    Full Text Available This paper proposes novel hybrid asymmetric space vector modulation technique for inverter operated direct torque control induction motor drive. The hybridization process is performed by the combination of continuous asymmetric space vector modulation pulse width technique (ASVPWM and fuzzy operated discontinuous ASVPWM technique. Combination process is based on pulse mismatching technique. Pulse mismatching technique helps to reduce the active region of the switch. Finally, optimal pulses are applied to control the inverter. The optimal hybrid pulse condense switching losses of the inverter and also improves the operating performance of the direct torque control (DTC based drive system like smooth dynamic response in speed reversal, minimum torque error, settling time of speed. Simulation results of proposed hybrid asymmetric space vector pulse width modulation technique to direct torque control (HASVPWM-DTC approach has been carried out by using Matlab-Simulink environment.

  2. A Chiral Helical Compound Based on Achiral Components

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-Wei; WANG Gui-Xian

    2007-01-01

    The title compound, [Cu(dpa)(2,2'-bipy)(H2O)2]n 1 (H2dpa = diphenic acid and 2,2'- bipy = 2,2'-bipyridine), has been synthesized and its structure was determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group P212121 with a = 10.597(4), b = 11.317(4), c = 17.630(7) (A), V = 2114.3(14)(A)3, C24H20CuN2O6, Mr = 495.97, Z = 4, Dc = 1.558 g/cm3, μ = 1.079 mm-1, F(000) = 1020, Flack value = 0.052(18), R = 0.0430 and wR = 0.1016 for 3381 observed reflections (Ⅰ > 2σ(Ⅰ)). In compound 1, the dpa ligands link metal ions into helical structures in the same direction.

  3. A Rough Set GA-based Hybrid Method for Robot Path Planning

    Institute of Scientific and Technical Information of China (English)

    Cheng-Dong Wu; Ying Zhang; Meng-Xin Li; Yong Yue

    2006-01-01

    In this paper, a hybrid method based on rough sets and genetic algorithms, is proposed to improve the speed of robot path planning. Decision rules are obtained using rough set theory. A series of available paths are produced by training obtained minimal decision rules. Path populations are optimised by using genetic algorithms until the best path is obtained. Experiment results show that this hybrid method is capable of improving robot path planning speed.

  4. Hardness and degree of conversion of dental restorative composites based on an organic-inorganic hybrid

    OpenAIRE

    Sandro Aurélio de Souza Venter; Silvia Luciana Fávaro; Eduardo Radovanovic; Emerson Marcelo Girotto

    2013-01-01

    This paper presents a factorial design (mixture design) used to analyze the hardness and degree of monomer conversion into composites containing conventional monomers and an organic-inorganic hybrid polymer-based methacryloyloxypropyl trimethoxysilane (MEMO). For this purpose, resins (composites with SiO2) were formulated with the hybrid polymer (polycondensed, pMEMO), and two conventional monomers used in dentistry, bisphenol-A dimethacrylate (Bis-GMA) and triethyleneglycol dimethacrylate (T...

  5. Sizing and Energy Management of a Hybrid Locomotive Based on Flywheel and Accumulators

    OpenAIRE

    Jaafar, Amine; Akli, Cossi Rockys; Sareni, Bruno; Roboam, Xavier; Jeunesse, Alain

    2009-01-01

    The French National Railways Company (SNCF) is interested in the design of a hybrid locomotive based on various storage devices (accumulator, flywheel, and ultracapacitor) and fed by a diesel generator. This paper particularly deals with the integration of a flywheel device as a storage element with a reduced-power diesel generator and accumulators on the hybrid locomotive. First, a power flow model of energy-storage elements (flywheel and accumulator) is developed to achieve the design of...

  6. Hybrid Luminescent Films Obtained by Covalent Anchoring Terbium Complex to Silica-based Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Tb3+ ion and a sol-gel precursor has been synthesized and characterized by 1H NMR, and MS. Hybrid luminescent thin films consisting of organoterbium covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. Strong line emission of Tb3+ ion was observed from the hybrid luminescent films under UV excitation.

  7. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.

    Science.gov (United States)

    Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua

    2014-04-09

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications.

  8. Control and fault diagnosis based sliding mode observer of a multicellular converter: Hybrid approach

    KAUST Repository

    Benzineb, Omar

    2013-01-01

    In this article, the diagnosis of a three cell converter is developed. The hybrid nature of the system represented by the presence of continuous and discrete dynamics is taken into account in the control design. The idea is based on using a hybrid control and an observer-type sliding mode to generate residuals from the observation errors of the system. The simulation results are presented at the end to illustrate the performance of the proposed approach. © 2013 FEI STU.

  9. Carbohydrate-based bioactive compounds for medicinal chemistry applications.

    Science.gov (United States)

    Cipolla, L; Peri, F

    2011-01-01

    In this article we review our work over the years on carbohydrates and carbohydrate mimetics and their applications in medicinal chemistry. In the first part of the review innovative synthetic methods, such as the chemoselective glycosylation method originally developed by our group and its applications to the synthesis of neoglycoconjugates (neoglycopeptides, oligosaccharide mimetics, neoglycolipids, etc…) will be presented. The high density of functional groups (hydroxyls) on the monosaccharides and the structural role of sugars forming the core of complex glycans in scaffolding and orienting the external sugar units for the interaction with receptors, inspired us and others to use sugars as scaffolds for the construction of pharmacologically active compounds. In the second part of this review, we will present some examples of bioactive and pharmacologically active compounds obtained by decorating monosaccharide scaffolds with pharmacophore groups. Sugar-derived protein ligands were also used as chemical probes to study the interaction of their target with other proteins in the cell. In this context, sugar mimetics and sugar-derived compounds have been employed as tools for exploring biology according to the "chemical genetic" approach.

  10. Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, Keshav P. [School of Informatics, University of Bradford, Bradford (United Kingdom); Chakpitak, Nopasit [College of Arts, Media and Technology, Chiang Mai University, Chiang Mai (Thailand)

    2007-05-15

    The effective maintenance scheduling of power system generators is very important for the economical and reliable operation of a power system. This represents a tough scheduling problem which continues to present a challenge for efficient optimization solution techniques. This paper presents the application of metaheuristic approaches, such as a genetic algorithm (GA), simulated annealing (SA) and their hybrid for generator maintenance scheduling (GMS) in power systems using an integer representation. This paper mainly focuses on the application of GA/SA and GA/SA/heuristic hybrid approaches. GA/SA hybrid uses the probabilistic acceptance criterion of SA within the GA framework. GA/SA/heuristic hybrid combines heuristic approaches within the GA/SA hybrid to seed the initial population. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the metaheuristic approaches and their hybrid for the test case study are discussed. The results obtained are promising and show that the hybrid approaches are less sensitive to the variations of technique parameters and offer an effective alternative for solving the generator maintenance scheduling problem. (author)

  11. Cost based reactive power participation for voltage control in multi units based isolated hybrid power system

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Saxena

    2016-12-01

    Full Text Available Multi units of wind and diesel based generators in isolated hybrid power system have technical and operational advantages over single units system. They require dynamic reactive power compensation for fast recovery of voltage under load and input changes. In developing countries like India, investors’ prime concern is to provide continuous electricity at low rate while quality degradation can be permitted within pre defined acceptable range. The use of static compensator along with dynamic compensator may give cost effective reactive power participation for system. This paper presented pricing of reactive power compensation under steady state and transient conditions of system with fixed capacitor and STATCOM. The main contributions of the paper are; (i evaluating reactive power balance equation for generalized multi units of wind and diesel based isolated hybrid power system, (ii reactive power compensation using fixed capacitor and STATCOM in presence of composite load model, (ii fast recovery of voltage response using genetic algorithm based tuning of STATCOM controller, (iii evaluation of reactive power compensation cost for steady and dynamic conditions due to probabilistic change in load and/or input demand and (iv comparison of results with existing reference compensation method.

  12. B-C-N Compounds with Mixed Hybridization of sp2-Like and sp3-Like Bonds

    Institute of Scientific and Technical Information of China (English)

    LUO Xiao-Guang; HE Ju-Long

    2012-01-01

    We perform first-principles calculations of the structural and electronic properties of hypothetical bc6-BC4N and N-substituted bc6-BC4N,which are derived from a body-center-cubic carbon structure.Our calculations show that the former is a semiconductor with an indirect band gap of 0.91 eV and the latter is metallic.The calculated bond length,bond population,and charge density of N-substituted bc6-BC4N indicate that one C-N bond has been broken after N-substitution,which means that the structure contains a mixed hybridization of sp2-like and sp3-1ike bonds.At the pressure above 100 GPa,the structure changes to a pure sp3-like hybridization.

  13. Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution.

    Science.gov (United States)

    He, Gen; Li, Jie; Ci, Haina; Qi, Chuanmin; Guo, Xuefeng

    2016-07-25

    Herein, we report label-free detection of single-molecule DNA hybridization dynamics with single-base resolution. By using an electronic circuit based on point-decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal-to-noise ratio and bandwidth. These measurements reveal two-level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base-by-base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base-pair level. This measurement capability promises a label-free single-molecule approach to probe biomolecular interactions with fast dynamics.

  14. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms.

    Science.gov (United States)

    Dou, Maowei; Sanjay, Sharma Timilsina; Benhabib, Merwan; Xu, Feng; Li, XiuJun

    2015-12-01

    Low-cost assays have broad applications ranging from human health diagnostics and food safety inspection to environmental analysis. Hence, low-cost assays are especially attractive for rural areas and developing countries, where financial resources are limited. Recently, paper-based microfluidic devices have emerged as a low-cost platform which greatly accelerates the point of care (POC) analysis in low-resource settings. This paper reviews recent advances of low-cost bioanalysis on paper-based microfluidic platforms, including fully paper-based and paper hybrid microfluidic platforms. In this review paper, we first summarized the fabrication techniques of fully paper-based microfluidic platforms, followed with their applications in human health diagnostics and food safety analysis. Then we highlighted paper hybrid microfluidic platforms and their applications, because hybrid platforms could draw benefits from multiple device substrates. Finally, we discussed the current limitations and perspective trends of paper-based microfluidic platforms for low-cost assays.

  15. A new group contribution-based model for estimation of lower flammability limit of pure compounds.

    Science.gov (United States)

    Gharagheizi, Farhad

    2009-10-30

    In the present study, a new method is presented for estimation of lower flammability limit (LFL) of pure compounds. This method is based on a combination of a group contribution method and neural networks. The parameters of the model are the occurrences of a new collection of 105 functional groups. Basing on these 105 functional groups, a feed forward neural network is presented to estimate the LFL of pure compounds. The average absolute deviation error obtained over 1057 pure compounds is 4.62%. Therefore, the model is an accurate model and can be used to predict the LFL of a wide range of pure compounds.

  16. Multi-Target Directed Indole Based Hybrid Molecules in Cancer Therapy : An Up-To-Date Evidence-Based Review.

    Science.gov (United States)

    Sunil, Dhanya; Kamath, Pooja R

    2017-01-01

    Cancer is a multifactorial disease and most of its types still remain incurable, in spite of enormous efforts to explicate various tumor pathophysiology. The anti-cancer drug discovery paradigm "one-compound-one-target" has failed and subsequently shifted to two-drug cocktail and recently the "multi-target approach" in order to design and develop agents able to act simultaneously on multiple intracellular constituents and signaling pathways. Novel hybrid compounds are now designed by incorporating two covalently linked independently acting pharmacores, each efficient at combating cancer. They can deliver synergistic effects from the dual action of both independently acting moieties by interacting with multiple targets. These composite molecules are also less prone to drug resistance, leading to an improved pharmacological potency than each individual moiety. As indole nucleus is a central component of many natural and synthetic molecules with extensive biological activity, this review incorporates a variety of such hybrid compounds with indole moiety as one of the active units, where better therapeutic effect has been successfully achieved, by either simultaneous or sequential action of individual functional pharmacore. The current limitations and challenges encountered in the development of these hybrid agents are also discussed.

  17. Multiphase Return Trajectory Optimization Based on Hybrid Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2016-01-01

    Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.

  18. Spin-dependent terahertz oscillator based on hybrid graphene superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, E.; Miralles, K.; Domínguez-Adame, F. [GISC, Departamento Física de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Gaul, C., E-mail: cgaul@pks.mpg.de [Max Planck Institute for the Physics of Complex Systems, 01187 Dresden (Germany)

    2014-09-08

    We theoretically study the occurrence of Bloch oscillations in biased hybrid graphene systems with spin-dependent superlattices. The spin-dependent potential is realized by a set of ferromagnetic insulator strips deposited on top of a gapped graphene nanoribbon, which induce a proximity exchange splitting of the electronic states in the graphene monolayer. We numerically solve the Dirac equation and study Bloch oscillations in the lowest conduction band of the spin-dependent superlattice. While the Bloch frequency is the same for both spins, we find the Bloch amplitude to be spin dependent. This difference results in a spin-polarized ac electric current in the THz range.

  19. Hybrid Parallel Bidirectional Sieve based on SMP Cluster

    CERN Document Server

    Liao, Gang; Liu, Lei

    2012-01-01

    In this article, hybrid parallel bidirectional sieve method is implemented by SMP Cluster, the individual computational units joined together by the communication network, are usually shared-memory systems with one or more multicore processor. To high-efficiency optimization, we propose average divide data into nodes, generating double-ended queues (deque) for sieve method that are able to exploit dual-cores simultaneously start sifting out primes from the head and tail.And each node create a FIFO queue as dynamic data buffer to ache temporary data from another nodes send to. The approach obtains huge speedup and efficiency on SMP Cluster.

  20. A Study of MPLS Hybrid Switch Based on ATM Switch

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    MPLS is the most successful integrating model of IP over ATM. The paper discusses some problems and their possible solutions when MPLS is supported by ATM switch. How to design the hardware, software and network management systems of such a switch device that has only one switching platform and one NMS but two sets of control planes at the same time, ATM and MPLS, is studied in details. The application of such a hybrid switch is presented in the last part of the paper.

  1. Chemical detection with nano/bio hybrid devices based on carbon nanotubes and graphene

    Science.gov (United States)

    Lerner, Mitchell Bryant

    Carbon nanotube field-effect transistors (NT-FETs) and graphene field effect transistors (GFETs) provide a unique transduction platform for chemical and biomolecular detection. The work presented in this thesis describes the fabrication, characterization, and investigation of operational mechanisms of carbon-based biosensors. In the first set of experiments, we used carbon nanotubes as fast, all-electronic readout elements in novel vapor sensors, suitable for applications in environmental monitoring and medicine. Molecules bound to the hybrid alter the electrical properties of the NT-FET via several mechanisms, allowing direct detection as a change in the transistor conduction properties. Vapor sensors suitable for more complex system architectures characteristic of mammalian olfaction were demonstrated using NT-FETs functionalized with mouse olfactory receptor (mOR) proteins or single stranded DNA (ssDNA). Substitution of graphene as the channel material enabled production of hundreds of electronically similar devices with high yield. Etching large scale chemical vapor deposition (CVD)-grown graphene into small channels is itself a challenging problem, and we have developed novel fabrication methods to this end without sacrificing the inherent electrical quality that makes graphene such an attractive material. Large arrays of such devices have potential utility for understanding the physics of ligand-receptor interactions and contributing to the development of a new generation of devices for electronic olfaction. Tailored and specific detection was accomplished by chemically functionalizing the NT-FET or GFET with biomolecules, such as proteins or small molecules, to create a hybrid nanostructures. Targets for detection were widely varied, indicating the utility of these techniques, such as 1) live Salmonella cells in nutrient broth, 2) a biomarker protein indicative of prostate cancer, 3) antigen protein from the bacterium that causes Lyme disease, and 4) glucose

  2. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-07-23

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  3. Conductive Fabric-Based Stretchable Hybridized Nanogenerator for Scavenging Biomechanical Energy.

    Science.gov (United States)

    Zhang, Kewei; Wang, Zhong Lin; Yang, Ya

    2016-04-26

    We demonstrate a stretchable hybridized nanogenerator based on a highly conductive fabric of glass fibers/silver nanowires/polydimethylsiloxane. Including a triboelectric nanogenerator and an electromagnetic generator, the hybridized nanogenerator can deliver output voltage/current signals from stretchable movements by both triboelectrification and electromagnetic induction, maximizing the efficiency of energy scavenging from one motion. Compared to the individual energy-harvesting units, the hybridized nanogenerator has a better charging performance, where a 47 μF capacitor can be charged to 2.8 V in only 16 s. The hybridized nanogenerator can be integrated with a bus grip for scavenging wasted biomechanical energy from human body movements to solve the power source issue of some electric devices in the pure electric bus.

  4. Protein self-assembly onto nanodots leads to formation of conductive bio-based hybrids

    Science.gov (United States)

    Hu, Xiao; Dong, Chenbo; Su, Rigu; Xu, Quan; Dinu, Cerasela Zoica

    2016-12-01

    The next generation of nanowires that could advance the integration of functional nanosystems into synthetic applications from photocatalysis to optical devices need to demonstrate increased ability to promote electron transfer at their interfaces while ensuring optimum quantum confinement. Herein we used the biological recognition and the self-assembly properties of tubulin, a protein involved in building the filaments of cellular microtubules, to create stable, free standing and conductive sulfur-doped carbon nanodots-based conductive bio-hybrids. The physical and chemical properties (e.g., composition, morphology, diameter etc.) of such user-synthesized hybrids were investigated using atomic and spectroscopic techniques, while the electron transfer rate was estimated using peak currents formed during voltammetry scanning. Our results demonstrate the ability to create individually hybrid nanowires capable to reduce energy losses; such hybrids could possibly be used in the future for the advancement and implementation into nanometer-scale functional devices.

  5. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    Science.gov (United States)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  6. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    Science.gov (United States)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  7. Polyacrylamide-based inorganic hybrid flocculants with self-degradable property

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinfang [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Tao, Junshi; Li, Mingzhi; Zhu, Bishan; Li, Xuan; Ma, Zhiyu; Zhao, Tingjie; Wang, Bingzhu; Suo, Biao [Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Wang, Haiwang, E-mail: whwdbdx@126.com [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Yang, Jun, E-mail: jyang@ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Ye, Li, E-mail: yeli@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190 (China); Qi, Xiwei, E-mail: qxw@mail.neuq.edu.cn [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2017-05-01

    Polyacrylamide (PAM)-based inorganic hybrid materials are of great potential as flocculants in soil-liquid separation. Herein, we reported the design of inorganic soil-TiO{sub 2}-PAM hybrid materials using a unique process, which involved coating of titanium dioxide (TiO{sub 2}) nanoparticles on the surface of inorganic soils and subsequent polymerization of acrylamide (AM) on these nanoparticles under visible light. Inorganic soils including kaolin, bentonite, montmorillonite and diatomaceous earth were used to control the volume and to reduce the cost, and the TiO{sub 2} nanoparticles accelerated PAM degradation. The nanoparticles initiated AM polymerization directly under visible light, thus providing a facile strategy for the synthesis of new organic-inorganic hybrid flocculants. The obtained hybrid materials were characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. The degradation of PAM initiated by UV irradiation exceeded 24% in 2 h, depending on its initial concentration. - Highlights: • A new polyacrylamide (PAM)-based inorganic hybrid flocculants with self-degradable property was developed. • TiO{sub 2} nanoparticles show a unique surface-initiated property under the condition of visible light. • We designed a facile strategy for the synthesis of inorganic soil@TiO{sub 2}@PAM hybrid materials.

  8. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    Science.gov (United States)

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants.

  9. Building Asphalt Pavement with SBS-based Compound Added Using a Dry Process in Greenland

    DEFF Research Database (Denmark)

    Lee, Hosin; Kim, Yongjoo; Geisler, Nivi

    2009-01-01

    heavy traffic and severe weather conditions in Greenland. Based on the initial set of strain data collected under the slow-moving loader right after construction, the highest strain value was observed from the test section with the highest amount of SBS-based compound. The increased amount of SBS......-based compound seemed to affect the asphalt mix to become more flexible under the heavy loads. By adding SBS-based compound to asphalt mixtures using a “dry” process, it is expected that the pavement would become more resistant to rutting than a typical asphalt mixture used in Greenland while enduring its arctic...... weather....

  10. GA and Lyapunov theory-based hybrid adaptive fuzzy controller for non-linear systems

    Science.gov (United States)

    Roy, Ananya; Das Sharma, Kaushik

    2015-02-01

    In this present article, a new hybrid methodology for designing stable adaptive fuzzy logic controllers (AFLCs) for a class of non-linear system is proposed. The proposed design strategy exploits the features of genetic algorithm (GA)-based stochastic evolutionary global search technique and Lyapunov theory-based local adaptation scheme. The objective is to develop a methodology for designing AFLCs with optimised free parameters and guaranteed closed-loop stability. Simultaneously, the proposed method introduces automation in the design process. The stand-alone Lyapunov theory-based design, GA-based design and proposed hybrid GA-Lyapunov design methodologies are implemented for two benchmark non-linear plants in simulation case studies with different reference signals and one experimental case study. The results demonstrate that the hybrid design methodology outperforms the other control strategies on the whole.

  11. Influence of silica-based hybrid material on the gas permeability of hardened cement paste

    Science.gov (United States)

    Li, R.; Hou, P.; Xie, N.; Zhou, Z.; Cheng, X.

    2017-03-01

    Surface treatment is one of the most effective ways to elongate the service life of concrete. The surface treatment agents, including organic and inorganic types, have been intensively studied. In this paper, the silica-based hybrid nanocomposite, which take advantages of both organic and inorganic treatment agents, was synthesized and used for surface treatment of hardened cement-based material. The effectiveness of organic and inorganic hybrid nanocomposite was evaluated through investigations on the gas permeability of cement-based materials. The results showed that SiO2/PMHS hybrid nanocomposite can greatly decrease the gas transport properties of hardened cement-based materials and has a great potential for surface treatment of cementitious materials.

  12. Resizing Technique-Based Hybrid Genetic Algorithm for Optimal Drift Design of Multistory Steel Frame Buildings

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2014-01-01

    Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

  13. Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method

    DEFF Research Database (Denmark)

    Goo, Seongyeol; Wang, Semyung; Kook, Junghwan

    2017-01-01

    This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...... is limited to low frequency applications due to considerable computational efforts. To this end, we propose a gradient-based topology optimization method that uses the hybrid FE-WBM whereby the entire domain of a problem is partitioned into design and non-design domains. In this respect, the FEM is used...... as a design domain of topology optimization, and the WBM is used as a non-design domain to increase computational efficiency. The adjoint variable method based on the hybrid FE-WBM is also proposed as a means of computing design sensitivities. Numerical examples are presented to demonstrate the effectiveness...

  14. Hybrid spherical particle field measurement based on interference technology

    Science.gov (United States)

    Sun, Jinlu; Zhang, Hongxia; Li, Jiao; Zhou, Ye; Jia, Dagong; Liu, Tiegen

    2017-03-01

    Interferometric particle imaging is widely used in particle size measurement. Conventional algorithms, which focus on single size particle fields, have difficulties in extracting each interference fringe in a hybrid spherical particle field due to the noise. To solve this problem, an iterative mean filter (IMF) algorithm is proposed. Instead of the specific mean filter template coefficient, the noise is reduced by iterating the calculation results under different template coefficients. The average value of the calculation results excluding the gross error is output as the final result. The effect of different template coefficients are simulated, furthermore, the value range of template coefficients has been analyzed. The interferogram of the hybrid spherical particle field from 21.3 µm to 57.9 µm is processed by the conventional algorithms with specific template coefficients of 2, 8, 12 and the IMF algorithm. The corresponding measurement errors are 17.22%, 10.69%, 9.04% and 5.11%. The experimental results show that the IMF algorithm would reduce measurement error, and could be potentially applied in particle field measurement.

  15. Improved hybrid information filtering based on limited time window

    Science.gov (United States)

    Song, Wen-Jun; Guo, Qiang; Liu, Jian-Guo

    2014-12-01

    Adopting the entire collecting information of users, the hybrid information filtering of heat conduction and mass diffusion (HHM) (Zhou et al., 2010) was successfully proposed to solve the apparent diversity-accuracy dilemma. Since the recent behaviors are more effective to capture the users' potential interests, we present an improved hybrid information filtering of adopting the partial recent information. We expand the time window to generate a series of training sets, each of which is treated as known information to predict the future links proven by the testing set. The experimental results on one benchmark dataset Netflix indicate that by only using approximately 31% recent rating records, the accuracy could be improved by an average of 4.22% and the diversity could be improved by 13.74%. In addition, the performance on the dataset MovieLens could be preserved by considering approximately 60% recent records. Furthermore, we find that the improved algorithm is effective to solve the cold-start problem. This work could improve the information filtering performance and shorten the computational time.

  16. 单模复合功率分流混合动力系统结构优化%Structure Optimization of SingleMode Compound Split Hybrid Power Train

    Institute of Scientific and Technical Information of China (English)

    杜爱民; 刘开圣; 朱忠攀; 王晨

    2015-01-01

    针对混合动力汽车中的动力耦合系统,提出一种双行星排结构的单模复合功率分流装置。通过对几种方案机械点的特性进行分析,筛选得出最优结构。对行星排特征参数进行优化,并推导得出满足结构限制的参数条件范围,在此基础上分析系统的工作模式和控制策略,最终利用离线仿真对该方案进行验证。%Based on a power coupling system in hybrid vehicles,a novel singlemode compound split power train with the structure of double- row planetary gear sets was proposed.An optimized structure was obtained by analyzing the mechanical points.Then the range of characteristic parameter of the planetary gear set was calculated and optimized.Operating modes and control strategy were anaG lyzed based on this optimized structure.The effectiveness of this hybrid system was finally validated by the simulation.

  17. Flow-injection amperometric glucose biosensors based on graphene/Nafion hybrid electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bong Gill, E-mail: k1811@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Im, Jinkyu, E-mail: JINQ@paran.com [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegidong, Dongdamoongu, Seoul (Korea, Republic of); Kim, Hoon Sik, E-mail: khs2004@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegidong, Dongdamoongu, Seoul (Korea, Republic of); Park, HoSeok, E-mail: phs0727@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2011-11-30

    Graphical abstract: Amperometric biosensors based on graphene hybrids showed the fast, sensitive, and stable amperometric responses in the flow injection system for automatically monitoring glucose. Display Omitted Highlights: > Flow-injection amperometric glucose biosensors were fabricated using reduced graphene oxide/Nafion hybrids. > The electrochemical kinetics of biosensors were comprehensively investigated by analysing electron transfer rate, charge transfer resistance, and ion diffusion coefficient, respectively. > The biosensors exhibited the fast, sensitive, and stable amperometric responses in the flow injection system for detecting glucose. - Abstract: In this research, we demonstrated the fabrication of flow-injection amperometric glucose biosensors based on RGO/Nafion hybrids. The nanohybridization of the reduced graphene oxide (RGO) by Nafion provided the fast electron transfer (ET) for the sensitive amperometric biosensor platforms. The ET rate (k{sub s}) and the charge transfer resistance (R{sub CT}) of GOx-RGO/Nafion hybrids were evaluated to verify the accelerated ET. Moreover, hybrid biosensors revealed a quasi-reversible and surface controlled process, as confirmed by the low peak-to-peak ({Delta}E{sub p}) and linear relations between I{sub p} and scan rate ({nu}). Hybrid biosensors showed the fast response time of {approx}3 s, the sensitivity of 3.8 {mu}A mM{sup -1} cm{sup -2}, the limit of detection of 170 {mu}M, and the linear detection range of 2-20 mM for the flow-injection amperometric detection of glucose. Furthermore, interference effect of oxidizable species such as ascorbic acid (AA) and uric acid (UA) on the performance of hybrid biosensors was prevented at the operating potential of -0.20 V even under the flow injection mode. Therefore, the fast, sensitive, and stable amperometric responses of hybrid biosensors in the flow injection system make it highly suitable for automatically monitoring glucose.

  18. Characterization of organic-inorganic hybrid layered perovskite and intercalated compound (n-C12H25NH3)2ZnCl4

    Science.gov (United States)

    Abdel-Kader, M. M.; Aboud, A. I.; Gamal, W. M.

    2016-05-01

    We report on some electrical properties and solid-solid phase transitions of organic-inorganic hybrid layered halide perovskite and intercalated compound (n-C12H25NH3)2ZnCl4 which is one member of the long-chain compounds of the series (n-CnH2n+1NH3)2,(n = 8-18). The complex dielectric permittivity ɛ*(ω,T) and the ac conductivity σ (ω,T) were measured as functions of temperature 100 K phase transition at T ≈ (362 ± 2) K, where the compound changes its state from intercalation to non-intercalation with a drastic increase in the c-axis by about 16.4%. The behavior of the frequency-dependent conductivity follows the Jonscher universal power law: σ (ω, T) αῳs(ῳ,T). The mechanism of electrical conduction in the low-temperature phase (phase II) can be described as quantum mechanical tunneling model.

  19. Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy

    Directory of Open Access Journals (Sweden)

    Maytham S. Ahmed

    2016-09-01

    Full Text Available Demand response (DR program can shift peak time load to off-peak time, thereby reducing greenhouse gas emissions and allowing energy conservation. In this study, the home energy management scheduling controller of the residential DR strategy is proposed using the hybrid lightning search algorithm (LSA-based artificial neural network (ANN to predict the optimal ON/OFF status for home appliances. Consequently, the scheduled operation of several appliances is improved in terms of cost savings. In the proposed approach, a set of the most common residential appliances are modeled, and their activation is controlled by the hybrid LSA-ANN based home energy management scheduling controller. Four appliances, namely, air conditioner, water heater, refrigerator, and washing machine (WM, are developed by Matlab/Simulink according to customer preferences and priority of appliances. The ANN controller has to be tuned properly using suitable learning rate value and number of nodes in the hidden layers to schedule the appliances optimally. Given that finding proper ANN tuning parameters is difficult, the LSA optimization is hybridized with ANN to improve the ANN performances by selecting the optimum values of neurons in each hidden layer and learning rate. Therefore, the ON/OFF estimation accuracy by ANN can be improved. Results of the hybrid LSA-ANN are compared with those of hybrid particle swarm optimization (PSO based ANN to validate the developed algorithm. Results show that the hybrid LSA-ANN outperforms the hybrid PSO based ANN. The proposed scheduling algorithm can significantly reduce the peak-hour energy consumption during the DR event by up to 9.7138% considering four appliances per 7-h period.

  20. FPGA-Based Synthesis of High-Speed Hybrid Carry Select Adders

    Directory of Open Access Journals (Sweden)

    V. Kokilavani

    2015-01-01

    Full Text Available Carry select adder is a square-root time high-speed adder. In this paper, FPGA-based synthesis of conventional and hybrid carry select adders are described with a focus on high speed. Conventionally, carry select adders are realized using the following: (i full adders and 2 : 1 multiplexers, (ii full adders, binary to excess 1 code converters, and 2 : 1 multiplexers, and (iii sharing of common Boolean logic. On the other hand, hybrid carry select adders involve a combination of carry select and carry lookahead adders with/without the use of binary to excess 1 code converters. In this work, two new hybrid carry select adders are proposed involving the carry select and section-carry based carry lookahead subadders with/without binary to excess 1 converters. Seven different carry select adders were implemented in Verilog HDL and their performances were analyzed under two scenarios, dual-operand addition and multioperand addition, where individual operands are of sizes 32 and 64-bits. In the case of dual-operand additions, the hybrid carry select adder comprising the proposed carry select and section-carry based carry lookahead configurations is the fastest. With respect to multioperand additions, the hybrid carry select adder containing the carry select and conventional carry lookahead or section-carry based carry lookahead structures produce similar optimized performance.

  1. Cyclodextrin-based microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  2. Synthesis, crystal structure and electrical properties of the new organic-inorganic hybrid compound bis(1-chlorido-4-aminopyridinium) octachlorodiantimoinate

    Science.gov (United States)

    Fersi, Mohamed Amine; Hajji, Rachid; Chaabane, Iskandar; Gargouri, Mohamed

    2017-10-01

    Bis(1-chlorido-4-aminopyridinium) octachlorodiantimoinate has been synthesized and characterized by a single-crystal X-ray diffraction at 296 K and impedance spectroscopy. At room temperature, the title compound is crystallized in the triclinic system (P 1 ̅ space group) with Z = 2 and the following unit cell dimensions: a = 7.919 (1) Å, b = 9.624 (1) Å, c = 17.692 (3) Å, α = 101.81 (1)°, β = 95.12 (1)°and γ = 112.48 (1)°. The crystal structure of the [C10H12Cl2N4]Sb2Cl8 compound is built of two un-equivalent monoprotonated cations [C5H6N2Cl] + and two un-equivalent tetrachloroantimonate (III) anions noted which are [Sb(1)Cl4]- and [Sb(2)Cl4]-. The arrangement of this compound can be described by an alternation of organic and inorganic layers stacked along [010] direction. The cohesion of compound entities is ensured by hydrogen bonding (N-H…. Cl) and Van Der Waals interaction (C-H…. Cl). The temperature dependence of the σdc conductivity exhibits an Arrhenius type behavior described by the following expression σdc T = Aexp(-Ea/kβT). The Ac conductivity and the dielectric loss suggest that the correlated barrier hopping is the appropriate model for the conduction mechanism.

  3. Polybenzimidazole compounds

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  4. Synthesis of Tetra-Schiff Base Macrocyclic Compound Containing Benzo-12-crown-4

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Tetra-Schiff base macrocyclic compound containing benzo-12-crown-4 was synthesized via condensation of 2, 6-diformyl-4-methyl-phenol with 4(, 5(- diaminobenzo-12-C- 4 promoted by proton. The compound was characterized by MS, IR 1HNMR spectroscopy and elemental analysis.

  5. A specific gas chromatographic detector for carbonyl compounds, based on polarography.

    Science.gov (United States)

    Fleet, B; Risby, T H

    1969-07-01

    The evaluation of a specific gas Chromatographie detector for carbonyl compounds is described. This is based on the polarographic reduction of the Girard T hydrazone derivative which is formed when the carbonyl compound is absorbed in a buffered supporting electrolyte containing the carbonyl reagent. The detector was used to monitor the separation of a homologous series of alkanals.

  6. A Hybrid Artificial Neural Network-based Scheduling Knowledge Acquisition Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Weida; WANG Wei; LIU Wenjian

    2006-01-01

    It is a key issue that constructing successful knowledge base to satisfy an efficient adaptive scheduling for the complex manufacturing system. Therefore, a hybrid artificial neural network (ANN)-based scheduling knowledge acquisition algorithm is presented in this paper. We combined genetic algorithm (GA) with simulated annealing (SA) to develop a hybrid optimization method, in which GA was introduced to present parallel search architecture and SA was introduced to increase escaping probability from local optima and ability to neighbor search. The hybrid method was utilized to resolve the optimal attributes subset of manufacturing system and determine the optimal topology and parameters of ANN under different scheduling objectives; ANN was used to evaluate the fitness of chromosome in the method and generate the scheduling knowledge after obtaining the optimal attributes subset, optimal ANN's topology and parameters. The experimental results demonstrate that the proposed algorithm produces significant performance improvements over other machine learning-based algorithms.

  7. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    Science.gov (United States)

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-01-25

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.

  8. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW....

  9. A study of speech emotion recognition based on hybrid algorithm

    Science.gov (United States)

    Zhu, Ju-xia; Zhang, Chao; Lv, Zhao; Rao, Yao-quan; Wu, Xiao-pei

    2011-10-01

    To effectively improve the recognition accuracy of the speech emotion recognition system, a hybrid algorithm which combines Continuous Hidden Markov Model (CHMM), All-Class-in-One Neural Network (ACON) and Support Vector Machine (SVM) is proposed. In SVM and ACON methods, some global statistics are used as emotional features, while in CHMM method, instantaneous features are employed. The recognition rate by the proposed method is 92.25%, with the rejection rate to be 0.78%. Furthermore, it obtains the relative increasing of 8.53%, 4.69% and 0.78% compared with ACON, CHMM and SVM methods respectively. The experiment result confirms the efficiency of distinguishing anger, happiness, neutral and sadness emotional states.

  10. Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle.

    Science.gov (United States)

    Fujino, Akinori; Ueda, Naonori; Saito, Kazumi

    2008-03-01

    This paper presents a method for designing semi-supervised classifiers trained on labeled and unlabeled samples. We focus on probabilistic semi-supervised classifier design for multi-class and single-labeled classification problems, and propose a hybrid approach that takes advantage of generative and discriminative approaches. In our approach, we first consider a generative model trained by using labeled samples and introduce a bias correction model, where these models belong to the same model family, but have different parameters. Then, we construct a hybrid classifier by combining these models based on the maximum entropy principle. To enable us to apply our hybrid approach to text classification problems, we employed naive Bayes models as the generative and bias correction models. Our experimental results for four text data sets confirmed that the generalization ability of our hybrid classifier was much improved by using a large number of unlabeled samples for training when there were too few labeled samples to obtain good performance. We also confirmed that our hybrid approach significantly outperformed generative and discriminative approaches when the performance of the generative and discriminative approaches was comparable. Moreover, we examined the performance of our hybrid classifier when the labeled and unlabeled data distributions were different.

  11. Added value of lignin as lignin-based hybrid polyurethane for a compatibilizing agent

    Science.gov (United States)

    Ilmiati, S.; Haris Mustafa, J.; Yaumal, A.; Hanum, F.; Chalid, M.

    2017-07-01

    As biomass-based material, lignin contains abundant hydroxyl groups promising to be used as chain extender in building hybrid polyurethanes. Consisting of polyehtylene glycol (PEG) content as hydrophobic part and lignin as hydrophilic part, the hybrid PU is expected to be as a novel compatibilizing agent in new materials production such as polyblends and composites. The hybrid PU was synthesized via two reaction stages, viz. pre-polyurethanization through reacting 4,4'-Methylenebis (Cyclohexyl Isocyanate) (HMDI) and PEG as polyol, and chain extention through adding lignin in the pre-polyurethanization system. The composition effect of lignin in hybrid PU syntehsis, to chemical structure corelated to hydrophobic to hydrophilic ratio, thermal and morphological properties, was evaluated by measuring NMR, FTIR, DSC, TGA and FE-SEM. The experiments showed that addition of lignin was able to extend the pre-polyurethane into hybrid polyurethane and to increase the lignin/polyol ratio in the hybrid polyurethanes, which were indicated by NMR and FTIR Analysis. And change of the ratio lead to increase the glass transition from 60.9 until 62.1°C and degradation temperature from 413.9 until 416.0°C. Observation of the morphology implied that addition of lignin gave more agglomerations. A Further investigation for this characterization study should be focused on a feasibility for this modified lignin as a novel compatibilizing agent.

  12. Translation of Japanese Noun Compounds at Super-Function Based MT System

    Science.gov (United States)

    Zhao, Xin; Ren, Fuji; Kuroiwa, Shingo

    Noun compounds are frequently encountered construction in nature language processing (NLP), consisting of a sequence of two or more nouns which functions syntactically as one noun. The translation of noun compounds has become a major issue in Machine Translation (MT) due to their frequency of occurrence and high productivity. In our previous studies on Super-Function Based Machine Translation (SFBMT), we have found that noun compounds are very frequently used and difficult to be translated correctly, the overgeneration of noun compounds can be dangerous as it may introduce ambiguity in the translation. In this paper, we discuss the challenges in handling Japanese noun compounds in an SFBMT system, we present a shallow method for translating noun compounds by using a word level translation dictionary and target language monolingual corpus.

  13. Selection of hybrids and edible citrus species with a high content in the diosmin functional compound. Modulating effect of plant growth regulators on contents.

    Science.gov (United States)

    Marín, F R; Del Río, J A

    2001-07-01

    The purpose of this study is to identify species, hybrids, and cultivars of edible Citrus species with high contents of diosmin as a functional compound and also to identify the developmental progress of the fruit in which it reaches maximum levels; these findings would be useful for extraction purposes and for the modulating effect of plant growth regulators on diosmin content to increase the level of this flavone. The results obtained reveal that the highest contents of diosmin are present in immature fruits of certain varieties of citron (Buda's finger) and lemon (Meyer), whereas the contents in the edible parts of the fruits are irrelevant from a pharmacological point of view. Similarly, it is shown that it is possible to increase the content of this flavone using hormonal treatments (6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid) during the early stages of fruit growth.

  14. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Directory of Open Access Journals (Sweden)

    Kunio Shimada

    2017-02-01

    Full Text Available Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  15. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid.

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-02-10

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  16. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-01-01

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625

  17. Crystal Structure and Band Gap Engineering in Polyoxometalate-Based Inorganic-Organic Hybrids.

    Science.gov (United States)

    Roy, Soumyabrata; Sarkar, Sumanta; Pan, Jaysree; Waghmare, Umesh V; Dhanya, R; Narayana, Chandrabhas; Peter, Sebastian C

    2016-04-04

    We have demonstrated engineering of the electronic band gap of the hybrid materials based on POMs (polyoxometalates), by controlling its structural complexity through variation in the conditions of synthesis. The pH- and temperature-dependent studies give a clear insight into how these experimental factors affect the overall hybrid structure and its properties. Our structural manipulations have been successful in effectively tuning the optical band gap and electronic band structure of this kind of hybrids, which can find many applications in the field of photovoltaic and semiconducting devices. We have also addressed a common crystallographic disorder observed in Keggin-ion (one type of heteropolyoxometalate [POMs])-based hybrid materials. Through a combination of crystallographic, spectroscopic, and theoretical analysis of four new POM-based hybrids synthesized with tactically varied reaction conditions, we trace the origin and nature of the disorder associated with it and the subtle local structural coordination involved in its core picture. While the crystallography yields a centrosymmetric structure with planar coordination of Si, our analysis with XPS, IR, and Raman spectroscopy reveals a tetrahedral coordination with broken inversion symmetry, corroborated by first-principles calculations.

  18. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Herbert-Acero, José F.; Martínez-Lauranchet, Jaime; Probst, Oliver

    2014-01-01

    This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axiswind turbines (WT). The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate...

  19. A lipophilic nitric oxide donor and a lipophilic antioxidant compound protect rat heart against ischemia-reperfusion injury if given as hybrid molecule but not as a mixture.

    Science.gov (United States)

    Rastaldo, Raffaella; Raffaella, Rastaldo; Cappello, Sandra; Sandra, Cappello; Di Stilo, Antonella; Antonella, Di Stilo; Folino, Anna; Anna, Folino; Losano, Gianni; Gianni, Losano; Pagliaro, Pasquale; Pasquale, Pagliaro

    2012-03-01

    Low concentrations of a hydrophilic nitric oxide donor (NOD) are reported to reduce myocardial reperfusion injury only when combined with a lipophilic antioxidant (AOX) to form a hybrid molecule (HYB). Here we tested whether liposoluble NOD requires to be combined with AOX to be protective. Isolated rat hearts underwent 30 minutes of ischemia and 120 minutes of reperfusion. To induce postconditioning, 1 μM solutions of the following liposoluble compounds were given during the first 20 minutes of reperfusion: NOD with weak (w-NOD) or strong NO-releasing potency (s-NOD); weak HYB built up with w-NOD and a per se ineffective AOX lead; strong HYB built up with s-NOD and the same AOX; mixtures of w-NOD plus AOX or s-NOD plus AOX. A significant reduction of infarct size with improved recovery of cardiac function was obtained only with weak HYB. We suggest that w-NOD requires the synergy with a per se ineffective AOX to protect. The synergy is possible only if the 2 moieties enter the cell simultaneously as a hybrid, but not as a mixture. It seems that strong HYB was ineffective because an excessive intracellular NO release produces a large amount of reactive species, as shown from the increased nitrotyrosine production.

  20. Hybrid Semiloof elements for plates and shells based upon a modified Hu-Washizu principle

    Science.gov (United States)

    Pian, T. H. H.; Sumihara, K.

    1984-01-01

    Hybrid SemiLoof elements for plates and shells are developed based upon modified Hu-Washizu principle. In the new version of the assumed stress hybrid formulation the equilibrium equations are satisfied through the introduction of internal displacement parameters as Lagrange multipliers. The inversion of the resulting H-matrices is simplified particularly when the stresses are expressed in terms of natural coordinates. A 24-DOF triangular element and a 32-DOF quadrilateral element based on shallow shell theory are derived and evaluated.

  1. Field-Effect Phototransistors Based on Graphene-Quantum Dot Hybrids

    Directory of Open Access Journals (Sweden)

    Zhang Heng

    2016-01-01

    Full Text Available Field effect photo-transistors (FEpTs based on graphene-PbSe quantum dot (QD hybrids have been designed and fabricated. By electrical and photoelectrical measurements, the carrier mobilities reached to 1621 cm2V-1s-1 for electrons and 1228 cm2V-1s-1 for holes, the photoresponsivity (R achieved to 1 AW-1, and the photoresponse time (τ1 was 0.7 s when the photocurrent came to about 80%. Therefore, the FEpTs based on graphene-QD hybrids have shown broad application prospects.

  2. A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; WU Xiao-yue

    2008-01-01

    A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.

  3. Hybrid PID and PSO-based control for electric power assist steering system for electric vehicle

    Science.gov (United States)

    Hanifah, R. A.; Toha, S. F.; Ahmad, S.

    2013-12-01

    Electric power assist steering (EPAS) system provides an important significance in enhancing the driving performance of a vehicle with its energy-conserving features. This paper presents a hybrid PID (Proportional-Integral-Derivative) and particle swarm optimization (PSO) based control scheme to minimize energy consumption for EPAS. This single objective optimization scheme is realized using the PSO technique in searching for best gain parameters of the PID controller. The fast tuning feature of this optimum PID controller produced high-quality solutions. Simulation results show the performance and effectiveness of the hybrid PSO-PID based controller as opposed to the conventional PID controller.

  4. LQR-Based Power Train Control Method Design for Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Yun Haitao

    2013-01-01

    Full Text Available Based on the mathematical model of fuel cell hybrid vehicle (FCHV proposed in our previous study, a multistate feedback control strategy of the hybrid power train is designed based on the linear quadratic regulator (LQR algorithm. A Kalman Filter (KF observer is introduced to estimate state of charge (SOC of the battery firstly, and then a linear quadratic regulator is constructed to compute the state feedback gain matrix of the closed-loop control system. At last, simulation and actual test are utilized to demonstrate this new approach.

  5. The structures and properties of the new two-dimensional inorganic–organic hybrid materials based on the molybdate chains

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Mu, Bao; Cao, Xinyu; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2014-09-15

    A series of inorganic organic hybrid materials based on polyoxometalates(POMs), namely, [M{sup II}(HL){sub 2}(H{sub 2}O){sub 2}][Mo{sup VI}{sub 6}O{sub 20}] [M=Co (1), Ni (2), Cu (3), Zn (4)], [Mn{sup IV}L{sub 2}(H{sub 2}O){sub 2}][Mo{sup VI}{sub 6}O{sub 20}] (5), and (HL){sub 3}PMO{sub 12}O{sub 40} (6) [L=3-(4-pyridyl)pyrazole], have been synthesized. The compounds have been characterized by elemental analysis, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. The results from single-crystal X-ray diffraction indicate that 1–5 are isostructural. It is worth noting that the polyanions are bridged by Mo–O–Mo to form 1D inorganic chains, which are further connected via M ions to form 2D nets. In compound 6, the ligands are used as the positive ions to balance the charge of the compound. Moreover, the magnetic properties of compound 5 have also been investigated in detail. - Graphical abstract: In complex 1, The Co ion is six coordinated by four oxygen atoms from two Mo{sub 6}O{sub 20} and two water molecules, and two N atoms from two different ligand. It is noticeable that there is an one-dimensional chain molybdate, which is combined by O–Mo–O, then the chain parallel with each other, the Mo{sub 6} anion acts as a bidentate ligand providing O7 atoms to bridge CoII ions to form a 2D inorganic layer. Finally every nets become 3D structure by hydrogen bond. - Highlights: • Novel inorganic–organic hybrid materials have been prepared. • Compounds 1–5 contain the 1D molybdate chains composed of (MoO{sub 6}) octahedra. • The 1D chains parallel with each other to form a 2D inorganic layer.

  6. Radiation effects on II-VI compound-based detectors

    CERN Document Server

    Cavallini, A; Dusi, W; Auricchio, N; Chirco, P; Zanarini, M; Siffert, P; Fougeres, P

    2002-01-01

    The performance of room temperature CdTe and CdZnTe detectors exposed to a radiation source can be strongly altered by the interaction of the ionizing particles and the material. Up to now, few experimental data are available on the response of II-VI compound detectors to different types of radiation sources. We have carried out a thorough investigation on the effects of gamma-rays, neutrons and electron irradiation both on CdTe : Cl and Cd sub 0 sub . sub 9 Zn sub 0 sub . sub 1 Te detectors. We have studied the detector response after radiation exposure by means of dark current measurements and of quantitative spectroscopic analyses at low and medium energies. The deep traps present in the material have been characterized by means of PICTS (photo-induced current transient spectroscopy) analyses, which allow to determine the trap apparent activation energy and capture cross-section. The evolution of the trap parameters with increasing irradiation doses has been monitored for all the different types of radiati...

  7. Design of an activity landscape view taking compound-based feature probabilities into account.

    Science.gov (United States)

    Zhang, Bijun; Vogt, Martin; Bajorath, Jürgen

    2014-09-01

    Activity landscapes (ALs) of compound data sets are rationalized as graphical representations that integrate similarity and potency relationships between active compounds. ALs enable the visualization of structure-activity relationship (SAR) information and are thus computational tools of interest for medicinal chemistry. For AL generation, similarity and potency relationships are typically evaluated in a pairwise manner and major AL features are assessed at the level of compound pairs. In this study, we add a conditional probability formalism to AL design that makes it possible to quantify the probability of individual compounds to contribute to characteristic AL features. Making this information graphically accessible in a molecular network-based AL representation is shown to further increase AL information content and helps to quickly focus on SAR-informative compound subsets. This feature probability-based AL variant extends the current spectrum of AL representations for medicinal chemistry applications.

  8. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores.

  9. Direct Electrical Detection of DNA Hybridization Based on Electrolyte-Gated Graphene Field-Effect Transistor

    Science.gov (United States)

    Ohno, Yasuhide; Okamoto, Shogo; Maehashi, Kenzo; Matsumoto, Kazuhiko

    2013-11-01

    DNA hybridization was electrically detected by graphene field-effect transistors. Probe DNA was modified on the graphene channel by a pyrene-based linker material. The transfer characteristic was shifted by the negative charges on the probe DNA, and the drain current was changed by the full-complementary DNA while no current change was observed after adding noncomplementary DNA, indicating that the graphene field-effect transistor detected the DNA hybridization. In addition, the number of DNAs was estimated by the simple plate capacitor model. As a result, one probe DNA was attached on the graphene channel per 10×10 nm2, indicating their high density functionalization. We estimated that 30% of probe DNA on the graphene channel was hybridized with 200 nM full-complementary DNA while only 5% of probe DNA was bound to the noncomplementary DNA. These results will help to pave the way for future biosensing applications based on graphene FETs.

  10. Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles.

    Science.gov (United States)

    Chen, Song; Wei, Yong; Wei, Siman; Lin, Yong; Liu, Lan

    2016-09-28

    Strain sensors with ultrahigh sensitivity under microstrain have numerous potential applications in heartbeat monitoring, pulsebeat detection, sound signal acquisition, and recognition. In this work, a two-part strain sensor (i.e., polyurethane part and brittle conductive hybrid particles layer on top) based on silver nanowires/graphene hybrid particles is developed via a simple coprecipitation, reduction, vacuum filtration, and casting process. Because of the nonuniform interface, weak interfacial bonding, and the hybrid particles' point-to-point conductive networks, the crack and overlap morphologies are successfully formed on the strain sensor after a prestretching; the crack-based stain sensor exhibits gauge factors as high as 20 (Δε sensor. Combined with its good response to bending, high strain resolution, and high working stability, the developed strain sensor is promising in the applications of electronic skins, motion sensors, and health monitoring sensors.

  11. A Transport Model of Mobile Agent Based on Secure Hybrid Encryption

    Institute of Scientific and Technical Information of China (English)

    SUNZhixin; CHENZhixian; WANGRuchuan

    2005-01-01

    The solution of security problems of mobile agents is a key issue, which will decide whether mobile agents can be widely used. The paper analyzes main security problems, which currently are confronted with mobile agent systems and existing protection solutions. And then the paper presents a Security Transport model of mobile agents based on a hybrid encryption algorithm (TMSHE).Meanwhile, it expatiates on implementation of the algorithm. The algorithm of TMSHE model mainly consists of two parts, i.e., employing a hybrid encryption algorithm to encrypt mobile agents and using Transport layer security (TLS) to encrypt communication channel. Mobile agents by hybrid encryption move through communication channels, which are encrypted by TLS. The simulation results indicate that the model can protect mobile agents' security effectively, and consequently the security and steadiness of the whole mobile agent system are also improved. The model has succeeded in getting application in a prototypesystem- Intrusion detection system based on mobile agents.

  12. Hybrid 2D-nanomaterials-based electrochemical immunosensing strategies for clinical biomarkers determination.

    Science.gov (United States)

    Campuzano, S; Pedrero, M; Nikoleli, G-P; Pingarrón, J M; Nikolelis, D P

    2017-03-15

    Owing to the outstanding conductivity and biocompatibility as well as numerous other fascinating properties of two-dimensional (2D)-nanomaterials, 2D-based nanohybrids have shown unparalleled superiorities in the field of electrochemical biosensors. This review highlights latest advances in electrochemical immunosensors for clinical biomarkers based on different hybrid 2D-nanomaterials. Particular attention will be given to hybrid nanostructures involving graphene and other graphene-like 2D-layered nanomaterials (GLNs). Several recent strategies for using such 2D-nanomaterial heterostructures in the development of modern immunosensors, both for tagging or modifying electrode transducers, are summarized and discussed. These hybrid nanocomposites, quite superior than their rival materials, will undoubtedly have an important impact within the near future and not only in clinical areas. Current challenges and future perspectives in this rapidly growing field are also outlined.

  13. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Alegret, Nuria; Criado, Alejandro; Prato, Maurizio

    2017-01-01

    The utilization of graphene-based nanomaterials combined with magnetic nanoparticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We initially analyze the several methodologies employed for the preparation of graphene-based composites with magnetic nanoparticles, more specifically the kind of linkage between the two components. In the last section, we focus on the biomedical applications where these magnetic-graphene hybrids are essential and pay special attention on how the addition of graphene improves the resulting devices in magnetic resonance imaging, controlled drug delivery, magnetic photothermal therapy and cellular separation and isolation. Finally, we highlight the use of these magnetic hybrids as multifunctional material that will lead to a next generation of theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    Directory of Open Access Journals (Sweden)

    Krivtcova Nadezhda

    2016-01-01

    Full Text Available Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  15. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    Directory of Open Access Journals (Sweden)

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  16. Nuclear magnetic resonance on selected lithium based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rudisch, Christian

    2013-11-26

    This thesis presents the NMR measurements on the single crystals LiMnPO{sub 4} and Li{sub 0.9}FeAs. Therefore, the thesis is divided into two separated sections. The first part reports on the competitive next generation cathode material LiMnPO{sub 4} with a stable reversible capacity up to 145 mAh/g and a rather flat discharge voltage curve at 4.1 V. For the basic understanding of the material the magnetic properties have been investigated by a Li and P NMR study in the paramagnetic and antiferromagnetic phase. LiMnPO{sub 4} shows a strong anisotropy of the dipolar hyperfine coupling due to the strong local magnetic moments at the Mn site. The corresponding dipole tensor of the Li- and P-nuclei is fully determined by orientation and temperature dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimentally determined values from the theoretical ones are discussed in terms of Mn disorder which could have an impact on the mobility of the Li ions. The disorder is corroborated by diffuse X-ray diffraction experiments which indicate a shift of the heavy elements in the lattice, namely the Mn atoms. Furthermore, the spin arrangement in the relative strong field of 7.0494 T in the antiferromagnetic state is understood by the NMR measurements. In order to obtain parameters of the Li ion diffusion in LiMnPO{sub 4} measurements of the spin lattice relaxation rate were performed. Due to the strong dipolar coupling between the Li-nuclei and the magnetic moments at the Mn site it is difficult to extract parameters which can characterize the diffusive behavior of the Li ions. The second section reports on the AC/DC susceptibility and NMR/NQR studies on Li deficit samples labeled as Li{sub 0.9}FeAs. LiFeAs belongs to the family of the superconducting Pnictides which are discovered in 2008 by H. Hosono et al. In recent studies the stoichiometric compound reveals triplet superconductivity below T{sub c}-18 K which

  17. Hybrid scaffolds based on PLGA and silk for bone tissue engineering.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum

    2016-03-01

    Porous silk scaffolds, which are considered to be natural polymers, cannot be used alone because they have a long degradation rate, which makes it difficult for them to be replaced by the surrounding tissue. Scaffolds composed of synthetic polymers, such as PLGA, have a short degradation rate, lack hydrophilicity and their release of toxic by-products makes them difficult to use. The present investigations aimed to study hybrid scaffolds fabricated from PLGA, silk and hydroxyapatite nanoparticles (Hap NPs) for optimized bone tissue engineering. The results from variable-pressure field emission scanning electron microscopy (VP-FE-SEM), equipped with EDS, confirmed that the fabricated scaffolds had a porous architecture, and the location of each component present in the scaffolds was examined. Contact angle measurements confirmed that the introduction of silk and HAp NPs helped to change the hydrophobic nature of PLGA to hydrophilic, which is the main constraint for PLGA used as a biomaterial. Thermo-gravimetric analysis (TGA) and FT-IR spectroscopy confirmed thermal decomposition and different vibrations caused in functional groups of compounds used to fabricate the scaffolds, which reflected improvement in their mechanical properties. After culturing osteoblasts for 1, 7 and 14 days in the presence of scaffolds, their viability was checked by MTT assay. The fluorescent microscopy results revealed that the introduction of silk and HAp NPs had a favourable impact on the infiltration of osteoblasts. In vivo experiments were conducted by implanting scaffolds in rat calvariae for 4 weeks. Histological examinations and micro-CT scans from these experiments revealed beneficial attributes offered by silk fibroin and HAp NPs to PLGA-based scaffolds for bone induction.

  18. AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.

    2017-05-01

    We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.

  19. Antimonide-Based Compound Semiconductors for Electronic Devices: A Review

    Science.gov (United States)

    2005-04-01

    currents, apparently due to exten- sive interface recombination [137]. Dodd et al. fabricated npn InAs bipolar transistors on InP in an attempt to achieve...Demonstration of npn InAs bipolar transistors with inverted base doping. IEEE Electron Dev Lett 1996;17(4):166–8. [139] Moran PD, Chow D, Hunter A, Kuech TF...based electronic devices: high electron mobility transistors (HEMTs), resonant tunneling diodes (RTDs), and heterojunction bipolar transistors (HBTs

  20. Hybrid Voltage-Multipliers Based Switching Power Converters

    Science.gov (United States)

    Rosas-Caro, Julio C.; Mayo-Maldonado, Jonathan C.; Vazquez-Bautista, Rene Fabian; Valderrabano-Gonzalez, Antonio; Salas-Cabrera, Ruben; Valdez-Resendiz, Jesus Elias

    2011-08-01

    This work presents a derivation of PWM DC-DC hybrid converters by combining traditional converters with the Cockcroft-Walton voltage multiplier, the voltage multiplier of each converter is driven with the same transistor of the basic topology; this fact makes the structure of the new converters very simple and provides high-voltage gain. The traditional topologies discussed are the boost, buck-boost, Cuk and SEPIC. They main features of the discussed family are: (i) high-voltage gain without using extreme duty cycles or transformers, which allow high switching frequency and (ii) low voltage stress in switching devices, along with modular structures, and more output levels can be added without modifying the main circuit, which is highly desirable in some applications such as renewable energy generation systems. It is shown how a multiplier converter can become a generalized topology and how some of the traditional converters and several state-of-the-art converters can be derived from the generalized topologies and vice-versa. All the discussed converters were simulated, additionally experimental results are provided with an interleaved multiplier converter.

  1. Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites

    Directory of Open Access Journals (Sweden)

    Sotomayor Torres Clivia

    2011-01-01

    Full Text Available Abstract A series of hybrid cadmium salt/cationic surfactant layered nanocomposites containing different concentrations of cadmium sulphide was prepared by exchanging chloride by sulphide ions in the layered precursor CdX x (OH y (CnTA z in a solid phase/gas reaction, resulting in a series of layered species exhibiting stoichiometries corresponding to CdS v X x (OH y (CnTA z , constituted by two-dimensional CdCl2/CdS ultra-thin sheets sandwiched between two self-assembled surfactant layers. The electronic structure of CdS in the nanocomposite is similar to that of bulk, but showing the expected features of two-dimensional confinement of the semiconductor. The nanocomposite band gap is found to depend in a non-linear manner on both the length of the hydrocarbon chain of the surfactant and the concentration of the sulphide in the inorganic sheet. The products show photocatalytic activity at least similar and usually better than that of "bulk" CdS in a factor of two.

  2. An Hybrid Multi Level Inverter Based on DSTATCOM Control

    Directory of Open Access Journals (Sweden)

    K. Ramash Kumar

    2011-06-01

    Full Text Available This paper presents an investigation on the Hybrid Seven-Level (HSL H–bridge inverter, which is used in a Distribution Static Compensator (DSTATCOM in Power Systems (PS. Making use of HSLI has the benefits of low harmonics distortion, reduced number of switches required to achieve the seven- level inverter output over the conventional cascaded seven-level inverter, and also reduced switching losses. In order to compensate the reactive power and suppress the total harmonics distortion (THD drawn from a Non-Liner Diode Rectifier Load (NLDRL of DSTATCOM, we propose a Sub-Harmonics Pulse Width Modulation (SHPWM technique to control the switches of HSL H – bridge inverter. The D-Q reference frame theory is used to generate the reference compensating currents for DSTATCOM and proportional and integral (PI control is used for capacitors dc voltage regulation for DSTATCOM. An HSL H–bridge inverter is considered for the shunt compensation of a 4.5 kV distribution system. The results are validated by MatLab/Simulink simulation software.

  3. A hybrid design-based and model-based sampling approach to estimate the temporal trend of spatial means

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.

    2012-01-01

    This paper launches a hybrid sampling approach, entailing a design-based approach in space followed by a model-based approach in time, for estimating temporal trends of spatial means or totals. The underlying space–time process that generated the soil data is only partly described, viz. by a linear

  4. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    Science.gov (United States)

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  5. Paraffin-based hybrid rocket engines applications: A review and a market perspective

    Science.gov (United States)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano

    2016-09-01

    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development

  6. Exploration of aziridine- and β-lactam-based hybrids as both bioactive substances and synthetic intermediates in medicinal chemistry.

    Science.gov (United States)

    Vandekerckhove, Stéphanie; D'hooghe, Matthias

    2013-07-01

    The concept of pharmacophore hybridization is attracting an increasing interest from medicinal chemists. Whereas the main motivation for the application of this methodology relates to the pharmacological advantages associated with hybrid molecules, molecular hybridization can also deliver a synthetic advantage through selective chemical modification of the more reactive entity within hybrid systems. Moreover, if both features are combined, new hybrid structures result displaying both a biological and a synthetic benefit, and elaboration of this methodology might culminate in structural diversity and chemical novelty. In this perspective, a new approach based on hybrid structures combining a biologically interesting yet rather chemically reactive nucleus with a privileged heterocyclic scaffold is discussed by means of β-lactam-purine chimeras useful in antiviral research and aziridine-(iso)quinoline hybrids for antimalarial purposes.

  7. Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bin [Department of Chemical Engineering and Technology, Royal Institute of Technology (KTH), S-100 44, Stockholm (Sweden); Liu, Xiangrong [Goeta Technology Developer International, S-17160, Solna (Sweden); Schober, T. [IFF, Forschungszentrum Julich, Julich (Germany)

    2004-04-01

    Ceria-based composites have been previously developed as functional electrolytes for high performance ITSOFC applications. These composites display hybrid proton and oxygen ion conduction. To meet demands for more functional hybrid proton and oxygen ion conductors we developed further composite electrolyte materials containing a proton conductor, BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} (BCY20), and an oxygen ion conductor, samarium doped ceria (SDC). The BCY20 and SDC composites were prepared based on composite technology using their starting powders produced via sol-gel and co-precipitation processes, respectively. Using the SDC-BCY20 composites as the electrolytes ITSOFCs were constructed using NiO-based composite anodes, silver-based cathodes. Applying hydrogen as the fuel, compressed air as the oxidant, the fuel cells were tested in the temperature region between 300 and 700C. The SDC-BCY20 electrolyte ITSOFCs reached a performance of 0.25 W/cm{sup 2} at 550C. Under a constant discharge water was observed both, on the anode and the cathode side, indicative of hybrid conduction based on proton and oxygen ion transport. Initial experimental results showed that combining a proton with an oxygen ion conductor forming a novel hybrid ion conductor with promising applications for ITSOFCs was successful.

  8. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    Directory of Open Access Journals (Sweden)

    Chun-Yuan Lin

    2015-01-01

    Full Text Available Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2, where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC. The intrinsic time complexity of MCC problem is O(k2n2 with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  9. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.

    Science.gov (United States)

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  10. [Determination of purine compounds and purine bases in food].

    Science.gov (United States)

    Colling, M; Wolfram, G

    1987-10-01

    The total purine content and the content of RNA, DNA, nucleotides, nucleosides and free purine bases has been determined in commercial raw food. After hydrolysing food samples with acid, the total purine content is enzymatically determined as uric acid. For the determination of the nucleic acid content, a method is chosen that allows for the analysis of the composition of nucleic acids. The amount of purine bound in nucleic acids and of purine bound in nucleotides, nucleosides and free bases is very different. The content of nucleic acids is especially high in the innards of veal, pork and beef. In these samples the quantity of purine bound in nucleotides, nucleosides and bases is very small. In trout and herring, however, more purine is bound in RNA and DNA. The same is true of roe, pork and beef muscle. Peas and beans have the lowest total purine content of all the samples examined.

  11. Structural and spectroscopic investigation of new luminescent hybrid materials based on calix[4]arene-tetracarboxylate and Ln3+ ions (Ln = Gd, Tb or Eu)

    Science.gov (United States)

    Viana, R. S.; Oliveira, C. A. F.; Chojnacki, J.; Barros, B. S.; Alves-Jr, S.; Kulesza, J.

    2017-07-01

    Lanthanide-calixarene hybrid materials are of particular interest due to the combination of the interesting properties of the ligand cavity-like structure and the luminescent features of lanthanides. The aim of this study was to synthesize and investigate the photophysical properties of Eu3+, Tb3+ and Gd3+ hybrids based on calix[4]arene-tetracarboxylate. The preparation of two structurally different Tb3+ compounds (calix-TA-SC-Tb and calix-TA-Tb) was dictated by the ligand to metal molar ratio and the synthesis time. Analysis of calix-TA-SC-Tb monocrystals revealed the formation of a mononuclear complex of C2 symmetry containing Tb3+ coordinated by four calixarene ionized groups and formate anion encapsulated within the upper cavity. Syntheses of other hybrids failed in producing high-quality crystals and the structures could not be solved. The solid-state luminescent properties of hybrids were evaluated, and the structure/property relationship was investigated. Based on the emission and excitation spectra, the energy diagrams for calix-TA-Eu, calix-TA-Tb and calix-TA-Gd were proposed.

  12. Fabrication of Bi-Te based thermoelectric semiconductors by using hybrid powders

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C.H.; Cho, D.C.; Lee, Y.S.; Lee, C.H. [School of Materials Science and Engineering, Inha Univ., Inchon (Korea, Republic of); Kim, K.T.; Kim, Y.H. [Korea Inst. of Industrial Technology, Chonan (Korea, Republic of)

    2005-07-01

    P-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50 MPa and the figure-of-merit 2.9 x 10{sup -3}/K were obtained by controlling the mixing ratio of large powders (P{sub L}) and small powders (P{sub S}). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties. (orig.)

  13. MBE Growth and Characterization of Hg Based Compounds and Heterostructures

    Science.gov (United States)

    2002-06-03

    The molecular beam epitaxy ( MBE ) growth of Mercury Cadmium Telluride (Hg(1-x)Cd(x)Te) alloys and type III HgTe/Hg(1-x)Cd(x)Te heterostructures has...been discussed, including similarities and differences between the (0 0 1) and (1 1 2)Beta orientations. Furthermore, the MBE growth of HgTe-based

  14. Mg-based compounds for hydrogen and energy storage

    NARCIS (Netherlands)

    Crivello, J. -C.; Denys, R. V.; Dornheim, M.; Felderhoff, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.|info:eu-repo/dai/nl/186125372; Latroche, M.; Walker, G. S.; Webb, C. J.; Yartys, V. A.

    Magnesium-based alloys attract significant interest as cost-efficient hydrogen storage materials allowing the combination of high gravimetric storage capacity of hydrogen with fast rates of hydrogen uptake and release and pronounced destabilization of the metal–hydrogen bonding in comparison with

  15. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  16. The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds.

    Science.gov (United States)

    Chen, Jun; Nittala, Krishna; Forrester, Jennifer S; Jones, Jacob L; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2011-07-27

    PbTiO(3)-based compounds are well-known ferroelectrics that exhibit a negative thermal expansion more or less in the tetragonal phase. The mechanism of negative thermal expansion has been studied by high-temperature neutron powder diffraction performed on two representative compounds, 0.7PbTiO(3)-0.3BiFeO(3) and 0.7PbTiO(3)-0.3Bi(Zn(1/2)Ti(1/2))O(3), whose negative thermal expansion is contrarily enhanced and weakened, respectively. With increasing temperature up to the Curie temperature, the spontaneous polarization displacement of Pb/Bi (δz(Pb/Bi)) is weakened in 0.7PbTiO(3)-0.3BiFeO(3) but well-maintained in 0.7PbTiO(3)-0.3Bi(Zn(1/2)Ti(1/2))O(3). There is an apparent correlation between tetragonality (c/a) and spontaneous polarization. Direct experimental evidence indicates that the spontaneous polarization originating from Pb/Bi-O hybridization is strongly associated with the negative thermal expansion. This mechanism can be used as a guide for the future design of negative thermal expansion of phase-transforming oxides.

  17. SAR Image Segmentation Based On Hybrid PSOGSA Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Amandeep Kaur

    2014-09-01

    Full Text Available Image segmentation is useful in many applications. It can identify the regions of interest in a scene or annotate the data. It categorizes the existing segmentation algorithm into region-based segmentation, data clustering, and edge-base segmentation. Region-based segmentation includes the seeded and unseeded region growing algorithms, the JSEG, and the fast scanning algorithm. Due to the presence of speckle noise, segmentation of Synthetic Aperture Radar (SAR images is still a challenging problem. We proposed a fast SAR image segmentation method based on Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA. In this method, threshold estimation is regarded as a search procedure that examinations for an appropriate value in a continuous grayscale interval. Hence, PSO-GSA algorithm is familiarized to search for the optimal threshold. Experimental results indicate that our method is superior to GA based, AFS based and ABC based methods in terms of segmentation accuracy, segmentation time, and Thresholding.

  18. Outdoor W-Band Hybrid Photonic Wireless Link Based on an Optical SFP+ Module

    DEFF Research Database (Denmark)

    Rommel, Simon; Rodríguez Páez, Juan Sebastián; Chorchos, Łukasz

    2016-01-01

    This letter proposes aW-band hybrid photonic wireless link based on a commercial SFP+ module and experimentally demonstrates its performance. Using a free running laser as local oscillator and heterodyne photonic upconversion, good frequency stability is achieved. Outdoor wireless transmission ov...

  19. Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms

    Directory of Open Access Journals (Sweden)

    Віталій Геннадійович Михалько

    2016-07-01

    Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem

  20. Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers

    Science.gov (United States)

    Naito, Kimiyoshi

    2016-05-01

    Recent interest has emerged in techniques that modify the surfaces of carbon fibers, such as carbon nanotube (CNT) grafting or polymer coating. Hybridization of these surface modifications has the potential to generate highly tunable, high-performance materials. In this study, the mechanical properties of surface-modified polyacrylonitrile (PAN)-based and pitch-based carbon fibers were investigated. Single-filament tensile tests were performed for fibers modified by CNT grafting, dipped polyimide coating, high-temperature vapor deposition polymerized polyimide coating, grafting-dipping hybridization, and grafting-vapor deposition hybridization. The Weibull statistical distributions of the tensile strengths of the surface-modified PAN- and pitch-based carbon fibers were examined. All surface modifications, especially hybrid modifications, improved the tensile strengths and Weibull moduli of the carbon fibers. The results exhibited a linear relationship between the Weibull modulus and average tensile strength on a log-log scale for all surface-modified PAN- and pitch-based carbon fibers.

  1. Design and Implementation of a Hybrid SET-CMOS Based Sequential Circuits

    Directory of Open Access Journals (Sweden)

    Anindya Jana

    2012-05-01

    Full Text Available Single Electron Transistor is a hot cake in the present research area of VLSI design and Microelectron-ics technology. It operates through one-by-one tunneling of electrons through the channel, utilizing the Coulomb blockade Phenomenon. Due to nanoscale feature size, ultralow power dissipation, and unique Coulomb blockade oscillation characteristics it may replace Field Effect Transistor FET. SET is very much advantageous than CMOS in few points. And in few points CMOS is advantageous than SET. So it has been seen that Combination of SET and CMOS is very much effective in the nanoscale, low power VLSI circuits. This paper has given a idea to make different sequential circuits using the Hybrid SET-CMOS. The MIB model for SET and BSIM4 model for CMOS are used. The operations of the proposed circuits are verified in Tanner environment. The performances of CMOS and Hybrid SET-CMOS based circuits are compared. The hybrid SET-CMOS circuit is found to consume lesser power than the CMOS based circuit. Further it is established that hybrid SET-CMOS based circuit is much faster compared to CMOS based circuit.

  2. Annealing effect of hybrid solar cells based on poly (3-hexylthiophene) and zinc-oxide nanostructures

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-06-01

    Full Text Available Solid Films June 2013/Vol. 537 Annealing effect of hybrid solar cells based on poly (3- hexylthiophene) and zinc-oxide nanostructures David E. Motaung a, *, Gerald F. Malgas a, **, Suprakas S. Ray a, Christopher J. Arendse b a DST...

  3. Cholesterol Biosensor Based on Entrapment of Monoenzyme and Multienzymes in Clay/Chitosan Hybrid Matrix

    Institute of Scientific and Technical Information of China (English)

    Dan Shan; YanNa Wang; HuaiGuo Xue; En Han

    2009-01-01

    @@ This work aimed at showing the interest of the composite material based on layered double hydroxides(LDHs) and chitosan (CHT) as suitable host matrix likely to immobilize enzyme onto electrode surface for amperometric biosensing application.This hybrid material combined the advantages of inorganic LDHs and organic biopolymer,CHT.

  4. The business case for condition-based maintenance: a hybrid (non-) financial approach

    NARCIS (Netherlands)

    Tiddens, W.W.; Tinga, T.; Braaksma, A.J.J.; Brouwer, O.; Cepin, Marko; Bris, Radim

    2017-01-01

    Although developing business cases is key for evaluating project success, the costs and benefits of condition-based maintenance (CBM) implementations are often not explicitly defined and evaluated. Using the design science methodology, we developed a hybrid business case approach to help managers

  5. Hybrid Impedance Network-Based Converter With High Voltage Gain and No Commutation Problem

    DEFF Research Database (Denmark)

    Mostaan, Ali; N. Soltani, Mohsen; A. Gorji, Saman

    2016-01-01

    In this paper, a new hybrid converter based on Z-source DC/DC converter with common ground is introduced. The proposed converter can supply ac and dc loads simultaneously or individually (stand- alone ac or dc loads). Also, the commutation problem of its counterpart has been solved in this topolo...

  6. A Hybrid Approach to Combine Physically Based and Data-Driven Models in Simulating Sediment Transportation

    NARCIS (Netherlands)

    Sewagudde, S.

    2008-01-01

    The objective of this study is to develop a methodology for hybrid modelling of sedimentation in a coastal basin or large shallow lake where physically based and data driven approaches are combined. This research was broken down into three blocks. The first block explores the possibility of approxim

  7. Lyapunov based control of hybrid energy storage system in electric vehicles

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2012-01-01

    This paper deals with a Lyapunov based control principle in a hybrid energy storage system for electric vehicle. The storage system consists on fuel cell (FC) as a main power source and a supercapacitor (SC) as an auxiliary power source. The power stage of energy conversion consists on a boost...

  8. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation

    Science.gov (United States)

    Eem, S. H.; Jung, H. J.; Koo, J. H.

    2013-05-01

    Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study.

  9. Highly efficient, long life, reusable and robust photosynthetic hybrid core-shell beads for the sustainable production of high value compounds.

    Science.gov (United States)

    Desmet, Jonathan; Meunier, Christophe; Danloy, Emeric; Duprez, Marie-Eve; Lox, Frédéric; Thomas, Diane; Hantson, Anne-Lise; Crine, Michel; Toye, Dominique; Rooke, Joanna; Su, Bao-Lian

    2015-06-15

    An efficient one-step process to synthesize highly porous (Ca-alginate-SiO2-polycation) shell: (Na-alginate-SiO2) core hybrid beads for cell encapsulation, yielding a reusable long-life photosynthetically active material for a sustainable manufacture of high-value metabolites is presented. Bead formation is based on crosslinking of an alginate biopolymer and mineralisation of silicic acid in combination with a coacervation process between a polycation and the silica sol, forming a semi-permeable external membrane. The excellent mechanical strength and durability of the monodispersed beads and the control of their porosity and textural properties is achieved by tailoring the silica and alginate loading, polycation concentration and incubation time during coacervation. This process has led to the formation of a remarkably robust hybrid material that confers exceptional protection to live cells against sheer stresses and contamination in a diverse range of applications. Dunaliella tertiolecta encapsulated within this hybrid core-shell system display high photosynthetic activity over a long duration (>1 year). This sustainable biotechnology could find use in high value chemical harvests and biofuel cells to photosynthetic solar cells (energy transformation, electricity production, water splitting technologies). Furthermore the material can be engineered into various forms from spheres to variable thickness films, broadening its potential applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    Science.gov (United States)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current⿿voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  11. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Zirconia-based luminescent organic-inorganic hybrid materials with ternary europium (III) complexes bonded

    Science.gov (United States)

    Yang, Jing; Li, Zhiqiang; Xu, Yang; Wang, Yige

    2016-05-01

    In this work, a novel red-emitting organic-inorganic hybrid material with europium (III) lanthanide β-diketonate complexes linked to a zirconia was reported, which was realized by adduct formation with zirconia-tethered terpyridine moieties. Luminescence enhancement of the hybrid material has been observed compared with pure Eu(tta)3·2H2O. Transparent and strongly luminescent thin films based on PMMA were also prepared at room temperature, which are highly luminescent under UV-light irradiation and possess a promising prospect in the area of optics.

  13. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers

    DEFF Research Database (Denmark)

    Markos, Christos

    2016-01-01

    The possibility to combine silica photonic crystal fiber (PCF) as low-loss platform with advanced functional materials, offers an enormous range of choices for the development of fiber-based tunable devices. Here, we report a tunable hybrid silica PCF with integrated As2S3 glass nanolayers inside...... antiresonances by taking advantage the high thermo-optic coefficient of the solution-processed nanolayers. Two different hybrid fiber structures, with core diameter 10 and 5 mu m, were developed and characterized using a supercontinuum source. The maximum sensitivity was measured to be as high as 3.6 nm...

  14. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.

    Science.gov (United States)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M

    2016-01-28

    A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.

  15. Hybrid-integrated coherent receiver using silica-based planar lightwave circuit technology

    Science.gov (United States)

    Kim, Jong-Hoi; Choe, Joong-Seon; Choi, Kwang-Seong; Youn, Chun-Ju; Kim, Duk-Jun; Jang, Sun-Hyok; Kwon, Yong-Hwan; Nam, Eun-Soo

    2011-12-01

    A hybrid-integrated coherent receiver module has been achieved using flip-chip bonding technology, consisting of a silica-based 90°-hybrid planar lightwave circuit (PLC) platform, a spot-size converter integrated waveguide photodiode (SSC-WG-PD), and a dual-channel transimpedance amplifier (TIA). The receiver module shows error-free operation up to 40Gb/s and OSNR sensitivity of 11.5 dB for BER = 10-3 at 25 Gb/s.

  16. A Fast Enhanced Secure Image Chaotic Cryptosystem Based on Hybrid Chaotic Magic Transform

    Directory of Open Access Journals (Sweden)

    Srinivas Koppu

    2017-01-01

    Full Text Available An enhanced secure image chaotic cryptosystem has been proposed based on hybrid CMT-Lanczos algorithm. We have achieved fast encryption and decryption along with privacy of images. The pseudorandom generator has been used along with Lanczos algorithm to generate root characteristics and eigenvectors. Using hybrid CMT image, pixels are shuffled to accomplish excellent randomness. Compared with existing methods, the proposed method had more robustness to various attacks: brute-force attack, known cipher plaintext, chosen-plaintext, security key space, key sensitivity, correlation analysis and information entropy, and differential attacks. Simulation results show that the proposed methods give better result in protecting images with low-time complexity.

  17. Multi-wavelength hybrid gain fiber ring laser based on Raman and erbium-doped fiber

    Institute of Scientific and Technical Information of China (English)

    Shan Qin; Yongbo Tang; Daru Chen

    2006-01-01

    A stable and uniform multi-wavelength fiber laser based on the hybrid gain of a dispersion compensating fiber as the Raman gain medium and an erbium-doped fiber (EDF) is introduced. The gain competition effects in the fiber Raman amplification (FRA) and EDF amplification are analyzed and compared experimentaUy. The FRA gain mechanism can suppress the gain competition effectively and make the present multi-wavelength laser stable at room temperature. The hybrid gain medium can also increase the lasing bandwidth compared with a pure EDF laser, and improve the power conversion efficiency compared with a pure fiber Raman laser.

  18. Hessian matrix estimation in hybrid systems based on an embedded FFNN.

    Science.gov (United States)

    Baek, Seung-Mook; Park, Jung-Wook

    2010-10-01

    This paper describes the Hessian matrix estimation of nonsmooth nonlinear parameters by the identifier based on a feedforward neural network (FFNN) embedded in a hybrid system, which is modeled by the differential-algebraic-impulsive-switched (DAIS) structure. After identifying full dynamics of the hybrid system, the FFNN is used to estimate second-order derivatives of an objective function J with respect to the nonlinear parameters from the gradient information, which are trajectory sensitivities. Then, the estimated Hessian matrix is applied to the optimal tuning of a saturation limiter used in a practical engineering system.

  19. Cluster Based Hybrid Niche Mimetic and Genetic Algorithm for Text Document Categorization

    Directory of Open Access Journals (Sweden)

    A. K. Santra

    2011-09-01

    Full Text Available An efficient cluster based hybrid niche mimetic and genetic algorithm for text document categorization to improve the retrieval rate of relevant document fetching is addressed. The proposal minimizes the processing of structuring the document with better feature selection using hybrid algorithm. In addition restructuring of feature words to associated documents gets reduced, in turn increases document clustering rate. The performance of the proposed work is measured in terms of cluster objects accuracy, term weight, term frequency and inverse document frequency. Experimental results demonstrate that it achieves very good performance on both feature selection and text document categorization, compared to other classifier methods.

  20. Research on the Sparse Representation for Gearbox Compound Fault Features Using Wavelet Bases

    Directory of Open Access Journals (Sweden)

    Chunyan Luo

    2015-01-01

    Full Text Available The research on gearbox fault diagnosis has been gaining increasing attention in recent years, especially on single fault diagnosis. In engineering practices, there is always more than one fault in the gearbox, which is demonstrated as compound fault. Hence, it is equally important for gearbox compound fault diagnosis. Both bearing and gear faults in the gearbox tend to result in different kinds of transient impulse responses in the captured signal and thus it is necessary to propose a potential approach for compound fault diagnosis. Sparse representation is one of the effective methods for feature extraction from strong background noise. Therefore, sparse representation under wavelet bases for compound fault features extraction is developed in this paper. With the proposed method, the different transient features of both bearing and gear can be separated and extracted. Both the simulated study and the practical application in the gearbox with compound fault verify the effectiveness of the proposed method.

  1. Chemical reactivity of hypervalent silicon compounds: The local hard and soft acids and bases principle viewpoint

    Indian Academy of Sciences (India)

    Francisco Méndez; María De L Romero; José L Gazquez

    2005-09-01

    The silicon atom may increase its coordination number to values greater than four, to form pentacoordinated compounds. It has been observed experimentally that, in general, pentacoordinated compounds show greater reactivity than tetracoordinated compounds. In this work, density functional theory is used to calculate the global softness and the condensed softness of the silicon atom for SiHF4- and SiHF$^{1-}_{5-n}$. The values obtained show that the global and condensed softness are greater in the pentacoordinated compounds than in the tetracoordinated compounds, a result that explains the enhanced reactivity. If the results are analysed through a local version of the hard and soft acids and bases principle, it is possible to suggest that in nucleophilic substitution reactions, soft nucleophiles preferably react with SiHF$^{1-}_{5-n}$, and hard nucleophiles with SiHF4-.

  2. Elaboration, structural, spectroscopy, DSC investigations and Hirshfeld surface analysis of a one-dimensional self-assembled organic-inorganic hybrid compound

    Science.gov (United States)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha

    2017-01-01

    The new organic-inorganic hybrid of the formula [H2mela]Cu2Cl6, where mela = 1,3,5-triazine-2,4,6-triamine, has been synthesized by the reaction of 1,3,5-triazine-2,4,6-triamine and copper(II) chloride dihydrate in the presence of hydrochloric acid. This compound has been determined by X-ray diffraction analysis and characterized by FT-IR, Raman, NMR characterization, differential scanning calorimetric (DSC) analysis, dielectric measurements and Hirshfeld surface. 1,3,5-triazinidium-2,4,6-triamine hexachlorodicuprate(II) crystallizes in the monoclinic system with space group P21/c. The final refinement of the structure of the program led to the reliability factors unweighted R1 = 3.53% and weighted WR2 = 8.87%. The observed internal C3sbnd N31sbnd C1 and C3sbnd N23sbnd C2 angle (121.5 and 121.4°) at protanated N-atom are significantly greater the other ring angle C1sbnd N12sbnd C2 (117.1°). The titled compound crystallizes as an organic-inorganic one-dimensional (1D) structure. The crystal structure was stabilized by two types of hydrogen bonding Nsbnd H⋯Cl and Nsbnd H⋯N. The infrared spectra was recorded in the 4000-400 cm-1 frequency region and the Raman spectra was recorded in the external region of the anionic sublattice vibration 4000-50 cm-1 at room temperature. Solid-state 13C and 63Cu MAS-NMR spectroscopies are in agreement with the X-ray structure. The differential scanning calorimetric (DSC) show the presence of a structural phase transition of the title compound at 338 K. Hirshfeld surface analyses for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D fingerprint plots have been used to examine molecular shapes.

  3. Quantum dot-based organic-inorganic hybrid materials for optoelectronic applications (Conference Presentation)

    Science.gov (United States)

    Lee, Kwang-Sup

    2016-10-01

    Our recent research involves the design, characterization and testing of devices constituting low bandgap conjugated polymers, surface-engineered quantum dots (QDs), carbon nanotube (CNT)-QDs, QDs decorated nanowires, and QD coupled conjugated polymers. The resulting hybrid materials can be used for facilitating the charge/energy transfer and enhancing the charge carrier mobility in highly efficient optoelectronic and photonic devices. Exploiting the full potential of quantum dots (QDs) in optoelectronic devices require efficient mechanisms for transfer of energy or electrons produced in the optically excited QDs. We propose semiconducting π-conjugated molecules as ligands to achieve energy or charge transfer. The hybridization of p-type π-conjugated molecules to the surface of n-type QDs can induce distinct luminescence and charge transport characteristics due to energy and/or charge transfer effects. QDs and π-conjugated molecule hybrids with controlled luminescent properties can be used for new active materials for light-emitting diodes and flexible displays. In addition, such hybrid systems with enhanced charge transfer efficiency can be used for nanoscale photovoltaic devices. We have also explored single nanoparticle based electronics using QDs and π-conjugated molecule hybrids with molecular-scale n-p or n-insulating (ins)-p-heterojunction structures.

  4. Regulation of progesterone receptor messenger ribonucleic acid in the rat medial preoptic nucleus by estrogenic and antiestrogenic compounds: an in situ hybridization study.

    Science.gov (United States)

    Shughrue, P J; Lane, M V; Merchenthaler, I

    1997-12-01

    Progesterone receptor (PR) messenger RNA (mRNA) is concentrated in neurons of the preoptic area and other regions of the rat hypothalamus where it is colocalized with the estrogen receptor and regulated by changes in the steroid hormonal milieu. To date, little is known about the regulation of PR mRNA by estrogens and whether antiestrogenic compounds are capable of modulating its expression. The present studies used in situ hybridization to ascertain the time course of PR mRNA regulation in the medial preoptic nucleus by 17beta-estradiol, determine the effective dose required to elicit a response, and compare the efficacy of 17beta-estradiol with a variety of estrogenic or antiestrogenic compounds. The first series of studies revealed that the treatment of ovariectomized rats with 17beta-estradiol resulted in an increase in PR expression within 2 h, after which it remained elevated until 10 h postinjection and then returned to baseline levels. When ovariectomized rats were injected with 25-1000 ng/kg of 17beta-estradiol and euthanized 6 h later, a dose-dependent increase in the level of PR mRNA was observed, with a maximal response at 1000 ng/kg and an EC50 of 93.5 ng/kg. Subsequent studies evaluated the efficacy of a variety of estrogenic and antiestrogenic compounds in the rat preoptic nucleus. 17Beta-estradiol, diethylstilbestrol, and 17alpha-estradiol all significantly increased the level of PR mRNA, although the degree of induction varied with each compound. The injection of tamoxifen, raloxifene, toremifene, droloxifene, clomiphene, GW 5638, or ICI 182,780 had no significant estrogenic effect on PR gene expression at the dose evaluated. In contrast, when tamoxifen or raloxifene, but not ICI 182,780, was administered in the antagonist mode, a significant dose-related decrease in the estradiol-induced level of PR mRNA was seen in the preoptic area. The results of these studies clearly demonstrate that PR mRNA expression in the rat preoptic area is rapidly

  5. Rule-based Approach on Extraction of Malay Compound Nouns in Standard Malay Document

    Science.gov (United States)

    Abu Bakar, Zamri; Kamal Ismail, Normaly; Rawi, Mohd Izani Mohamed

    2017-08-01

    Malay compound noun is defined as a form of words that exists when two or more words are combined into a single syntax and it gives a specific meaning. Compound noun acts as one unit and it is spelled separately unless an established compound noun is written closely from two words. The basic characteristics of compound noun can be seen in the Malay sentences which are the frequency of that word in the text itself. Thus, this extraction of compound nouns is significant for the following research which is text summarization, grammar checker, sentiments analysis, machine translation and word categorization. There are many research efforts that have been proposed in extracting Malay compound noun using linguistic approaches. Most of the existing methods were done on the extraction of bi-gram noun+noun compound. However, the result still produces some problems as to give a better result. This paper explores a linguistic method for extracting compound Noun from stand Malay corpus. A standard dataset are used to provide a common platform for evaluating research on the recognition of compound Nouns in Malay sentences. Therefore, an improvement for the effectiveness of the compound noun extraction is needed because the result can be compromised. Thus, this study proposed a modification of linguistic approach in order to enhance the extraction of compound nouns processing. Several pre-processing steps are involved including normalization, tokenization and tagging. The first step that uses the linguistic approach in this study is Part-of-Speech (POS) tagging. Finally, we describe several rules-based and modify the rules to get the most relevant relation between the first word and the second word in order to assist us in solving of the problems. The effectiveness of the relations used in our study can be measured using recall, precision and F1-score techniques. The comparison of the baseline values is very essential because it can provide whether there has been an improvement

  6. Ultracompact resonator with high quality-factor based on a hybrid grating structure

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2015-01-01

    We numerically investigate the properties of a hybrid grating structure acting as a resonator with ultrahigh quality factor. This reveals that the physical mechanism responsible for the resonance is quite different from the conventional guided mode resonance (GMR). The hybrid grating consists...... of a subwavelength grating layer and an un-patterned high-refractive-index cap layer, being surrounded by low index materials. Since the cap layer may include a gain region, an ultracompact laser can be realized based on the hybrid grating resonator, featuring many advantages over high-contrast-grating resonator...... lasers. The effect of fabrication errors and finite size of the structure is investigated to understand the feasibility of fabricating the proposed resonator....

  7. Low latency on chip communication based on hybrid NOC Architecture using X-Y router

    Directory of Open Access Journals (Sweden)

    Tejas wini Deotare

    2014-05-01

    Full Text Available On-chip co mmunication has two different type of architecture which can be classified as Bus and mesh based Networks- on-Chip (No C. Each of them has diffe rent features and applications. In this paper, we construct the hybrid architecture with using bus and mesh NOC architecture. In the hybrid architecture, heavy communication affinity IPcores are placed in the same subsystem. and this large mesh No C get partitioned into several subsystems and one on one individual IPs, so that there is the reduction in the transmission latency of NoC.Efficient partition and mapping algorith m is proposed for reduction of the latency on the hybrid NOC arch itecture.It shows that an average latency improvement of 17.6% and more can be obtained when compared with the conventional mesh No C arch itecture.

  8. Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures

    Science.gov (United States)

    Lim, Yi Rang; Lee, Young Bum; Kim, Seong Ku; Kim, Seong Jun; Kim, Yooseok; Jeon, Cheolho; Song, Wooseok; Myung, Sung; Lee, Sun Sook; An, Ki-Seok; Lim, Jongsun

    2017-01-01

    We rationally designed a new type of hybrid materials, molybdenum disulfide (MoS2) synthesized by Mo pre-deposition followed by subsequent sulfurization process directly on thermal chemical vapor deposition (TCVD)-grown graphene, for applications in a multifunctional device. The synthesis of stoichiometric and uniform multilayer MoS2 and high-crystalline monolayer graphene was evaluated by X-ray photoelectron spectroscopy and Raman spectroscopy. To examine the electrical transport and photoelectrical properties of MoS2-graphene hybrid films, field effect transistors (FETs) and visible-light photodetectors based on MoS2-graphene were both fabricated. As a result, the extracted mobility for MoS2-graphene hybrid FETs was two times higher than that of MoS2 FETs. In addition, the MoS2-graphene photodetectors revealed a significant photocurrent with abrupt switching behavior under periodic illumination.

  9. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  10. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    Science.gov (United States)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  11. Nanocrystal-based hybrid white light generation with tunable colour parameters

    Science.gov (United States)

    Nizamoglu, S.; Demir, H. V.

    2007-09-01

    We present the hybridization of CdSe/ZnS core shell nanocrystals (NCs) on InGaN/GaN based blue/near-UV LEDs to generate light widely tunable across the visible spectral range and especially within the white region of the CIE (1931) chromaticity diagram. We report on the design, growth, fabrication and characterization of these hybrid NC-LEDs. In 26 NC-LED samples, we experimentally show the effect of the NC concentration and NC film thickness on tuning the colour properties of the generated light (tristimulus coordinates, colour rendering index and correlated temperature) and further compare layer by layer assembly and blending of NCs for integration in LEDs. With greatly tunable colour properties, these hybrid white light sources hold promise for future lighting and display applications.

  12. Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Y. D. Song

    2013-01-01

    Full Text Available This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

  13. Practical Switching-Based Hybrid FSO/RF Transmission and Its Performance Analysis

    KAUST Repository

    Usman, Muneer

    2014-10-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless backhaul. We present and analyze a switching-based transmission scheme for the hybrid FSO/RF system. Specifically, either the FSO or RF link will be active at a certain time instance, with the FSO link enjoying a higher priority. We considered both a single-threshold case and a dual-threshold case for FSO link operation. Analytical expressions have been obtained for the outage probability, average bit error rate, and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with the FSO-only scenario.

  14. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  15. Hybrid Energy System Design of Micro Hydro-PV-biogas Based Micro-grid

    Science.gov (United States)

    Nishrina; Abdullah, A. G.; Risdiyanto, A.; Nandiyanto, ABD

    2017-03-01

    Hybrid renewable energy system is an arrangement of one or more sources of renewable energy and also conventional energy. This paper describes a simulation results of hybrid renewable power system based on the available potential in an educational institution in Indonesia. HOMER software was used to simulate and analyse both in terms of optimization and economic terms. This software was developed through 3 main principles; simulation, optimization, and sensitivity analysis. Generally, the presented results show that the software can demonstrate a feasible hybrid power system as well to be realized. The entire demand in case study area can be supplied by the system configuration and can be met by ¾ of electricity production. So, there are ¼ of generated energy became an excess electricity.

  16. Link reliability based hybrid routing for tactical mobile ad hoc network

    Institute of Scientific and Technical Information of China (English)

    Xie Xiaochuan; Wei Gang; Wu Keping; Wang Gang; Jia Shilou

    2008-01-01

    Tactical mobile ad hoc network (MANET) is a collection of mobile nodes forming a temporary network,without the aid of pre-established network infrastructure. The routing protocol has a crucial impact on the networkperformance in battlefields. Link reliability based hybrid routing (LRHR) is proposed, which is a novel hybrid routing protocol, for tactical MANET. Contrary to the traditional single path routing strategy, multiple paths are established between a pair of source-destination nodes. In the hybrid routing strategy, the rate of topological change provides a natural mechanism for switching dynamically between table-driven and on-demand routing. The simulation results indicate that the performances of the protocol in packet delivery ratio, routing overhead, and average end-to-end delay are better than the conventional routing protocol.

  17. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  18. A high-quality factor hybrid plasmonic nanocavity based on distributed Bragg reflectors

    Science.gov (United States)

    Tu, Linlin; Zhang, Chi; Huang, Zhong; Yau, Jason; Zhan, Peng; Wang, Zhenlin

    2016-09-01

    Herein, we propose a high-quality (Q) factor hybrid plasmonic nanocavity based on distributed Bragg reflectors (DBRs) with low propagation loss and extremely strong mode confinement. This hybrid plasmonic nanocavity is composed of a high-index cylindrical nanowire separated from a metal surface possessing shallow DBRs gratings by a sufficiently thin low-index dielectric layer. The hybrid plasmonic nanocavity possesses advantages such as a high Purcell factor (Fp) of up to nearly 20000 and a gain threshold approaching 266 cm-1 at 1550 nm, promising a greater potential in deep sub-wavelength lasing applications. Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2012CB921501 and 2013CB632703) and the National Natural Science Foundation of China (Grant Nos. 11274160, 91221206, and 51271092).

  19. A global hybrid coupled model based on Atmosphere-SST feedbacks

    CERN Document Server

    Cimatoribus, Andrea A; Dijkstra, Henk A

    2011-01-01

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than ten times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulati...

  20. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  1. First-principles Study on the Magnetic, Half-metal and Thermoelectric Transport Properties of Inorganic-Organic Hybrid Compounds [C4N2H12] [Fe4Ⅱ(HPO3)2(C2O4)3

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Li; ZHANG Dian-Na

    2013-01-01

    The electronic structure,magnetic and half-metal properties of inorganic-organic hybrid compound [C4N2H12] [F4Ⅱ(HPO3)2(C2O4)3] are investigated by using the full-potential linearized augmented plane wave (FPLAPW)method within density-functional theory (DFT) calculations.The density of states (DOS),the total energy of the cell and the spontaneous magnetic moment of [C4N2H12] [Fe4Ⅱ(HPO3)2(C2O4)3] are calculated.The calculation results reveal that the low-temperature phase of [C4N2H12][Fe4Ⅱ (HPO3)2 (C2O4)3] exhibits a stable ferromagnetic (FM) ground state,and we find that this organic compound is a half-metal in FM state.In addition,we have calculated antiferromagnetically coupled interactions,revealing the existence of antiferromagnetic (AFM),which is in agreement with the experiment.We have also found that [C4N2H12][Fe4Ⅱ (HPO3)2(C2O4)3] is a semiconductor in the AFM state with a band gap of about 0.40 eV.Subsequently,the transport properties for potential thermoelectric applications have been studied in detail based on the Boltzmann transport theory.

  2. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    Science.gov (United States)

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  3. Fluorescence Hybridization Assay Based On Chitosan-Linked Softarrays

    Science.gov (United States)

    2003-07-01

    was incubated in the wells to reduce the Schiff base resulting from the reaction of aldehyde and amine groups. After this reaction, the yellowish...color representative of a Schiff base disappeared and the background fluorescence signal dropped to the initial ~8 to 12 fluorescence intensity (FI

  4. Synthesis, crystal structure, vibrational spectroscopy and photoluminescence of new hybrid compound containing chlorate anions of stanate (II)

    Science.gov (United States)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Meroño, Rafael Mendoza; Gadri, Abdellatif; Ammar, Salah; Ben Salah, Abdelhamid; García-Granda, Santiago

    2017-08-01

    The present work aimed at studying a new organic-inorganic bis (4-amino quinolinium) hexachloro stanate (II) dihydrate compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. It was found to crystallize in the monoclinic system (P21/c space group) with the following lattice parameters: a = 7.2558(6) Å, b = 13.4876(5) Å, c = 17.2107(13) Å, β = 102.028 (12)°. Its crystal structure was determined and refined down to an R value of 0.06 and a wR value of 0.087. The structure consisted of two different alternating organic-inorganic layers. The crystal packing was stabilized by Nsbnd H⋯Cl and Osbnd H⋯Cl hydrogen bonds and π-π interactions. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electronic microscopy (SEM) was carried out. Furthermore, the room temperature Infra Red (IR) spectrum of the title compound was analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows ten signals, confirming the solid state structure determined by X-ray diffraction. Thermal analysis shows two anomalies at 380 and 610 °C. The optical properties of the crystal were studied using optical absorption UV-visible and photoluminescence (PL) spectroscopy, which were investigated at room temperature.

  5. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications.

    Science.gov (United States)

    Kim, Jung Eun; Choi, Ji Hye; Colas, Marion; Kim, Dong Ha; Lee, Hyukjin

    2016-06-15

    The properties of gold nanomaterials are particularly of interest to many researchers, since they show unique physiochemical properties such as optical adsorption of specific wavelength of light, high electrical conductance with rich surface electrons, and facile surface modification with sulfhydryl groups. These properties have facilitated the use of gold nanomaterials in the development of various hybrid systems for biosensors and molecular diagnostics. Combined with various synthetic materials such as fluorescence dyes, polymers, oligonucleotides, graphene oxides (GO), and quantum dots (QDs), the gold-based hybrid nanomaterials offer multi-functionalities in molecular detection with high specificity and sensitivity. These two aspects result in the increase of detection speed as well as the lower detection limits, having shown that this diagnosis method is more effective than other conventional ones. In this review, we have highlighted various examples of nanomaterials for biosensing and molecular diagnostics. The gold-based hybrid systems are categorized by three distinct detection approaches, in which include (1) optical, such as surface plasmon resonance (SPR), RAMAN, and surface-enhanced Raman scattering (SERS), (2) fluorescence, such as förster resonance energy transfer (FRET) and nanomaterial surface energy transfer (NSET), and (3) electrochemical, such as potentiometic, amperometric, and conductometric. Each example provides the detailed mechanism of molecular detection as well as the supporting experimental result with the limit of detection (LOD). Lastly, future perspective on novel development of gold-based hybrid nanomaterials is discussed as well as their challenges.

  6. Relationship Between Hybrid Performance and Genetic Diversity Based on SSRs and ISSRs in Brassica napus L.

    Institute of Scientific and Technical Information of China (English)

    SHEN Jin-xiong; FU Ting-dong; YANG Guang-sheng

    2003-01-01

    To investigate the relationship between genetic distance (GD) and hybrid performance, twotypes of molecular markers, microsatellites (simple sequence repeats, SSRs) and intro-simple sequence repeats(ISSRs), were employed to detect the genetic diversity of 3 double low self-incompatible lines and 22 male pa-rental varieties of Brassica napus from different geographical origins. Hybrids were produced in a NC Ⅱ mat-ing design by hand-pollination. The result indicated that 25 parental varieties (lines) could be divided into sixgroups by Un-weighted Pair Group Mathematics Average (UPGMA) clustering based on GDs. SI-1300 and SI-1320 could be singly clustered into one group, respectively. Varieties from China could be separated into an-other group, SI-1310 and varieties from foreign countries could be separated into other three groups. Thegrouping was generally consistent with parental pedigrees and geographical origins. Significant differences inyield, quality and phenological period traits were observed among these parent groups. Although hybrid yield/plant showed significantly positive correlation with genetic distance based on SSR and ISSR markers, but thedetermination coefficient was iow. It appeared to be unsuitable for using the genetic distance based on SSR andISSR markers to predict heterosis and hybrid performance in Brassica napus.

  7. Towards safer sodium-ion batteries via organic solvent/ionic liquid based hybrid electrolytes

    Science.gov (United States)

    Monti, Damien; Ponrouch, Alexandre; Palacín, M. Rosa; Johansson, Patrik

    2016-08-01

    Hybrid electrolytes aimed at application in sodium-ion batteries (SIB) consisting of an organic solvent mixture (EC:PC) and different ionic liquids (ILs); EMImTFSI, BMImTFSI, and Pyr13TFSI, and with the NaTFSI salt providing the Na+ charge carriers have here been extensively studied. The physico-chemical and electrochemical characterisation includes ionic conductivity, viscosity, density, cation coordination and solvation, various safety measures, and electrochemical stability window (ESW). Hybrid electrolytes with 10-50% of IL content were found to have ionic conductivities on par with comparable organic solvent based electrolytes, but with highly enhanced safety properties. A systematic Raman spectroscopy study of the cation coordination and solvation before and after electrolyte safety tests by ignition suggest that IL cations and TFSI remain stable when ignited while organic solvents are consumed. Finally, the solid electrolyte interphase (SEI) formed when using hybrid electrolytes has both better mechanical and electrochemical stability than the SEI derived from pure IL based electrolytes. For a half-cell with a hard carbon (HC) electrode and a hybrid electrolyte with a composition of 0.8 m NaTFSI in EC0.45:PC0.45:Pyr13TFSI0.10 encouraging results were obtained for IL based electrolytes - ca. 182 mAhg-1 at C/10 over 40 cycles.

  8. Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding.

    Science.gov (United States)

    Tulchinsky, Alexander Y; Johnson, Norman A; Watt, Ward B; Porter, Adam H

    2014-11-01

    Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype-phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype-phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2's showed higher

  9. Biodegradability of ethylenediamine-based complexing agents and related compounds.

    Science.gov (United States)

    Pitter, P; Sýkora, V

    2001-08-01

    The biological degradability (Zahn-Wellens test) of ethylenediamine derivatives with carboxymethyl and 2-hydroxyethyl groups was investigated. Mixed bacterial culture (activated sludge) was used as inoculum (non-adapted sludge and sludge adapted at different mean biomass retention time, the so-called sludge age). Biodegradability of ethylene(propylene)di(tri)amine-based complexing agents depends on the character and number of substituents and nitrogen atoms in the molecule. Tetra(penta)substituted derivatives with two or more tertiary nitrogen atoms and carboxymethyl or 2-hydroxyethyl groups in the molecule (EDTA, DTPA, PDTA, HEDTA) are very stable from an environmental point of view. On the contrary, disubstituted derivatives with two secondary nitrogen atoms in the molecule (e.g., EDDA) are potentially degradable.

  10. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Jie; Tang Xin-Feng; Zhang Qing-Jie

    2007-01-01

    TiCoSb-based half-Heusler compounds with the substitution of Zr for Ti have been prepared quickly by combining high-energy ball milling method with spark plasma sintering technique, and their thermal transport properties have been investigated. With the increase of the concentration of Zr, the thermal conductivity of Ti1-xZrxCoSb compounds decreases significantly. Compared with the thermal conductivity of TiCoSb compound, that of Ti0.5Zr0.5CoSb decreases by 200% at 1000 K.

  11. Influence of lead Inorganic Compounds on Combustion Rate of Double Base Rocket Propellants

    Directory of Open Access Journals (Sweden)

    V. B. Pillai

    1982-04-01

    Full Text Available The influence of lead nitrate, red lead, lead chromate, lead floride and lead carbonate on the combustion behaviour of double base propellants in the pressure range-35-140kg/cm /sup 2/ was studied. While all these compounds increased burning rates in lower pressure range (35-60 kg/cm/sup 2/ and higher pressure range (120-140 kg/cm/sup 2/, only lead chromate and lead fluoride were effective in the intermediate pressure range of 60-105 kg/cm/sup 2/. None of these compounds were effective as platonizer, except lead fluoride, which lowered n value to 0.34 in the lower pressure range. Addition of carbon black along with lead compounds raised burning rates further and reduced n values significantly in the higher pressure regins. A probable mechanism on the role of lead compounds studied has been suggested based on burning rate and DTA results.

  12. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO{sub 2}-In and a biofiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Hinojosa-Reyes, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica A.C., Division de Ciencias Ambientales, Camino a la Presa San Jose 2055, Lomas 4a seccion, CP. 78216, San Luis Potosi, S.L.P. (Mexico); Rodriguez-Gonzalez, V. [Instituto Potosino de Investigacion Cientifica y Tecnologica A.C., Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Lomas 4a seccion, CP. 78216, San Luis Potosi, S.L.P. (Mexico); Arriaga, S., E-mail: sonia@ipicyt.edu.mx [Instituto Potosino de Investigacion Cientifica y Tecnologica A.C., Division de Ciencias Ambientales, Camino a la Presa San Jose 2055, Lomas 4a seccion, CP. 78216, San Luis Potosi, S.L.P. (Mexico)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The best photocatalytic system for EB degradation was based on TiO{sub 2}-In 1%/365 nm. Black-Right-Pointing-Pointer A maximum EC of 290 g m{sup -3} h{sup -1} for the hybrid system was obtained. Black-Right-Pointing-Pointer The hybrid process enhanced 40% the overall EC of ethylbenzene. Black-Right-Pointing-Pointer An overall mineralization of 67% for EB degradation was reached in the hybrid system. - Abstract: The use of hybrid processes for the continuous degradation of ethylbenzene (EB) vapors has been evaluated. The hybrid system consists of an UV/TiO{sub 2}-In photooxidation coupled with a biofiltration process. Both the photocatalytic system using P25-Degussa or indium-doped TiO{sub 2} catalysts and the photolytic process were performed at UV-wavelengths of 254 nm and 365 nm. The experiments were carried out in an annular plug flow photoreactor packed with granular perlite previously impregnated with the catalysts, and in a glass biofilter packed with perlite and inoculated with a microbial consortium. Both reactors were operated at an inlet loading rate of 127 g m{sup -3} h{sup -1}. The greatest degradation rate of EB (0.414 ng m{sup -2} min{sup -1}) was obtained with the TiO{sub 2}-In 1%/365 nm photocatalytic system. The elimination capacity (EC) obtained in the control biofilter had values {approx}60 g m{sup -3} h{sup -1}. Consequently, the coupled system was operated for 15 days, and a maximal EC of 275 g m{sup -3} h{sup -1}. Thus, the results indicate that the use of hybrid processes enhanced the EB vapor degradation and that this could be a promising technology for the abatement of recalcitrant volatile organic compounds.

  13. Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space.

    Science.gov (United States)

    Nguyen, Ha P; Koutsoukas, Alexios; Mohd Fauzi, Fazlin; Drakakis, Georgios; Maciejewski, Mateusz; Glen, Robert C; Bender, Andreas

    2013-09-01

    Diversity selection is a frequently applied strategy for assembling high-throughput screening libraries, making the assumption that a diverse compound set increases chances of finding bioactive molecules. Based on previous work on experimental 'affinity fingerprints', in this study, a novel diversity selection method is benchmarked that utilizes predicted bioactivity profiles as descriptors. Compounds were selected based on their predicted activity against half of the targets (training set), and diversity was assessed based on coverage of the remaining (test set) targets. Simultaneously, fingerprint-based diversity selection was performed. An original version of the method exhibited on average 5% and an improved version on average 10% increase in target space coverage compared with the fingerprint-based methods. As a typical case, bioactivity-based selection of 231 compounds (2%) from a particular data set ('Cutoff-40') resulted in 47.0% and 50.1% coverage, while fingerprint-based selection only achieved 38.4% target coverage for the same subset size. In conclusion, the novel bioactivity-based selection method outperformed the fingerprint-based method in sampling bioactive chemical space on the data sets considered. The structures retrieved were structurally more acceptable to medicinal chemists while at the same time being more lipophilic, hence bioactivity-based diversity selection of compounds would best be combined with physicochemical property filters in practice.

  14. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    Science.gov (United States)

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    Many dentin bonding systems of different compositions, and in particular containing different solvents, have been introduced to the market. Their effect on the quality of the interface requires clarification by means of comparative trials. This study investigated micromorphological differences in hybrid layer formation with a variety of commercially available water- or solvent-based dentin bonding products and their recommended compomers. Five bonding systems were used on groups of 10 teeth each as follows: group I, acetone-based system used with 36% phosphoric acid; group II, a different acetone-based system containing nano-sized particles for filler loading and used with a non-rinsing conditioner containing maleic acid; group III, the acetone-based system of group II used with 36% phosphoric acid (the only difference in the treatment for groups II and III was the acid etching system); group IV, a mixed-solvent-based system (water/ethanol) used with 37% phosphoric acid; and group V, a water-based system used with 37% phosphoric acid. Each bonding system was covered with the recommended compomer. Class I occlusal preparations were made in extracted teeth and restored with one of the above systems. Five specimens of each group were studied with optical microscopy after staining. Scanning electron microscopy was used to examine the interface of the bonding system/dentin of the other 5 teeth in each group. The optical microscopy measurements were made with a 10 x 10 reticle. A micron mark with scale was used for the scanning electron microscope. All measurements were made in microm. The following criteria were used to define a good interface: absence of voids between the different parts of the interface, uniformity of the hybrid layer, good opening of the tubuli orifices, and tag adherence to the tubuli walls. Morphological differences were found at the interface depending on dentin treatment and adhesive composition. The acetone-containing systems were associated

  15. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  16. Crystal structure prediction and electronic properties of Li-based ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vergniory, Maia G.; Sanna, Antonio; Ernst, Arthur; Romero, Aldo H.; Gross, Eberhard K.U. [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Marques, Miguel A.L.; Botti, Silvana; Valencia, Irais [Universite de Lyon, F-69000 Lyon, France and LPMCN, CNRS, UMR 5586, Universite Lyon 1, F-69622 Villeurbanne (France); Amsler, Max; Goedecker, Stefan [Department of Physics, Universitaet Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Chulkov, Evgueni V. [Donostia International Physics Center, 20018 Donostia-San Sebastian (Spain)

    2013-07-01

    On the basis of ab initio first principles and using the Minimal Hopping Algorithm we predict the crystal structure of non synthesized LiYZ (Y=Au,Ag, Z=Te,Se) based ternary compounds. We find that, as distinct from expectation, the crystal structure depends strongly on the composition, thus every compound belongs to a different symmetry group and has complexly different electronic properties. We analyze the fundamental physics below these features considering the calculated ground state structure.

  17. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2014-01-01

    Full Text Available Various novel Schiff base compounds have been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with substituted benzothiophene-2-carboxylic acid hydrazide and different substituted aromatic or heterocyclic amines in the presence of acetic acid in ethanol. The structures of all these compounds were confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR, and mass spectral data and have been screened for antibacterial and antifungal activity.

  18. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks.

    Science.gov (United States)

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-02-01

    Hybrid mobile applications (apps) combine the features of Web applications and "native" mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources-file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies "bridges" that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources-the ability to read and write contacts list, local files, etc.-to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content

  19. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks

    Science.gov (United States)

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-01-01

    Hybrid mobile applications (apps) combine the features of Web applications and “native” mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources—file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies “bridges” that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources—the ability to read and write contacts list, local files, etc.—to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign

  20. A Hybrid Time Synchronization Algorithm Based on Broadcast Sequencing for Wireless Sensor Networks

    Science.gov (United States)

    2014-09-01

    sequence per the flow charts detailed in Figures 43–45 located in Appendix A. The input 1 in Figure 12 is a recursive step from some of the...SYNCHRONIZATION ALGORITHM BASED ON BROADCAST SEQUENCING FOR WIRELESS SENSOR NETWORKS by Sung C. Park September 2014 Thesis Co-Advisors...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE A HYBRID TIME SYNCHRONIZATION ALGORITHM BASED ON BROADCAST SEQUENCING FOR