WorldWideScience

Sample records for hybrid composite restorations

  1. Fracture resistance of teeth restored with packable and hybrid composites

    Directory of Open Access Journals (Sweden)

    Ghavam M

    2006-06-01

    Full Text Available Background and Aim: With recent introduction of packable composites, it is claimed that they apply less stress on tooth structure because of reduced polymerization shrinkage, and similarity of coefficient of thermal expansion to tooth structure. However, the high viscosity may in turn cause less adaptation, so it is not clearly known whether these materials strengthen tooth structure or not. The aim of this study was to evaluate fracture resistance of maxillary premolars, receiving hybrid or packable composite restorations with different methods of application and curing. Materials and Methods: In this experimental study, seventy five intact premolars were randomly assigned to five groups of 15 teeth each. One group was maintained intact as the control group. Similar MOD cavities were prepared in the other teeth. The teeth in group two were restored with Spectrum in incremental layers and light cured with 500 mw/cm2 intensity. The third group were filled with Surefil and cured with light intensity of 500 mw/cm2. The groups four and five were restored with Surefil in bulk technique with two different modes: 500 mw/cm2 intensity and a ramp mode (100-900 mw/cm2 respectively. After thermocycling, force to fracture was assessed and degree of conversion (DC at the bottom of cavities was evaluated for different modes and methods. The curing and placement methods in groups tested for DC (A to D were the same as fracture resistance groups (2 to 5. Data were analyzed using one way ANOVA and Tukey HSD tests with p<0.05 as the limit of significance. Results: All the restored groups showed significantly less fracture resistance than the control group, but had no significant difference among themselves. DC of Spectrum was higher than Surefil. Bulk method with 500 mw/cm2 light intensity, significantly decreased DC. DC in bulk method with high light intensity was not significantly different from incremental method with 500 mw/cm2 light intensity. Conclusion

  2. Three-year randomised clinical trial to evaluate the clinical performance, quantitative and qualitative wear patterns of hybrid composite restorations.

    Science.gov (United States)

    Palaniappan, Senthamaraiselvi; Elsen, Liesbeth; Lijnen, Inge; Peumans, Marleen; Van Meerbeek, Bart; Lambrechts, Paul

    2010-08-01

    The aim of the study was to compare the clinical performance, quantitative and qualitative wear patterns of conventional hybrid (Tetric Ceram), micro-filled hybrid (Gradia Direct Posterior) and nano-hybrid (Tetric EvoCeram, TEC) posterior composite restorations in a 3-year randomised clinical trial. Sixteen Tetric Ceram, 17 TEC and 16 Gradia Direct Posterior restorations were placed in human molars and evaluated at baseline, 6, 12, 24 and 36 months of clinical service according to US Public Health Service criteria. The gypsum replicas at each recall were used for 3D laser scanning to quantify wear, and the epoxy resin replicas were observed under scanning electron microscope to study the qualitative wear patterns. After 3 years of clinical service, the three hybrid restorative materials performed clinically well in posterior cavities. Within the observation period, the nano-hybrid and micro-hybrid restorations evolved better in polishability with improved surface gloss retention than the conventional hybrid counterpart. The three hybrid composites showed enamel-like vertical wear and cavity-size dependant volume loss magnitude. Qualitatively, while the micro-filled and nano-hybrid composite restorations exhibited signs of fatigue similar to the conventional hybrid composite restorations at heavy occlusal contact area, their light occlusal contact areas showed less surface pitting after 3 years of clinical service.

  3. A Randomized 10-year Prospective Follow-up of Class II Nanohybrid and Conventional Hybrid Resin Composite Restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan Wv; Pallesen, Ulla

    2014-01-01

    Purpose: To evaluate the 10-year durability of a nanohybrid resin composite in Class II restorations in a randomized controlled intraindividual comparison with its conventional hybrid resin composite predecessor. Materials and Methods: Each of 52 participants received at least two Class II...... restorations that were as similar as possible. The cavities were chosen at random to be restored with a nanohybrid resin composite (Excite/Tetric EvoCeram (TEC); n = 61) and a conventional hybrid (Excite/Tetric Ceram (TC); n = 61). The restorations were evaluated with slightly modified USPHS criteria...... investigated resin composites. Conclusion: The nanohybrid and the conventional hybrid resin composite showed good clinical effectiveness in extensive Class II restorations during the 10-year study....

  4. Marginal and internal adaptation of Class II ormocer and hybrid resin composite restorations before and after load cycling.

    Science.gov (United States)

    Kournetas, N; Chakmakchi, M; Kakaboura, A; Rahiotis, C; Geis-Gerstorfer, J

    2004-09-01

    To overcome the shortcomings of the conventional composite restorative materials, ormocer materials have been introduced over the past few years. The purpose of this study was to evaluate the marginal and internal adaptation of two ormocer restorative systems (Admira, Voco and Definite, Degussa) compared to a hybrid composite one (TPH Spectrum, Dentsply/ DeTrey), before and after load cycling in Class II restorations. Standardized Class II restorations with cervical margins on enamel were divided into three groups ( n=16). Teeth of each group were filled with one of the restoratives tested and its respective bonding agent. Each group was divided into two equal subgroups. The marginal and internal adaptation of the first subgroup was evaluated after 7-day water storage at room temperature and of the second after cyclic loading in a mastication simulator (1.2x10(6) cycles, 49 N, 1.6 Hz). The occlusal and cervical marginal evaluation was conducted by videomicroscope and ranked as "excellent" and "not excellent". One thin section (150 microm), in mesial-distal direction, of each restoration, was examined under metallographic microscope to determine the quality of internal adaptation. The occlusal and cervical adaptation of both ormocer restorative systems was similar and clearly worse compared with the hybrid composite restorative one before as well as after load cycling. Concerning internal adaptation, no gap-free ormocer restorations were detected, whereas all Spectrum restorations presented perfect adaptation. The bonding agents of the ormocers formed layers with unacceptable features (pores, fractures) whereas that of the hybrid composite achieved perfect bonding layer even after loading. The rheological characteristics of the bonding agents of the ormocer restorative systems are proposed to be responsible for their inferior marginal and internal quality in Class II restorations compared with the hybrid composite one.

  5. A six-year prospective randomized study of a nano-hybrid and a conventional hybrid resin composite in Class II restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2013-01-01

    The objective of this 6 year prospective randomized equivalence trial was to evaluate the long-term clinical performance of a new nano-hybrid resin composite (RC) in Class II restorations in an intraindividual comparison with its well-established conventional hybrid RC predecessor....

  6. Two-year clinical comparison of a flowable-type nano-hybrid composite and a paste-type composite in posterior restoration.

    Science.gov (United States)

    Hirata-Tsuchiya, Shizu; Yoshii, Shinji; Ichimaru-Suematsu, Miki; Washio, Ayako; Saito, Noriko; Urata, Mariko; Hanada, Kaori; Morotomi, Takahiko; Kitamura, Chiaki

    2017-08-01

    The purpose of the present study was to compare the clinical efficacy between a flowable-type nano-hybrid composite and a paste-type composite for posterior restoration. Of 62 posterior teeth in 33 patients (mean age: 34.1 years), 31 were filled with a paste-type composite (Heliomolar [HM] group), and another 31 with a flowable nano-hybrid composite (MI FIL [MI] group). Clinical efficacy was evaluated at 2 years after the restoration. There were no differences for retention, surface texture deterioration, anatomical form change, deterioration of marginal adaptation, and secondary caries, while a statistical difference was found for marginal discoloration, which was significantly greater in the HM group (P composites showed that the flowable nano-hybrid composite could be an effective esthetic material for posterior restoration. © 2016 John Wiley & Sons Australia, Ltd.

  7. Hardness and degree of conversion of dental restorative composites based on an organic-inorganic hybrid

    OpenAIRE

    Sandro Aurélio de Souza Venter; Silvia Luciana Fávaro; Eduardo Radovanovic; Emerson Marcelo Girotto

    2013-01-01

    This paper presents a factorial design (mixture design) used to analyze the hardness and degree of monomer conversion into composites containing conventional monomers and an organic-inorganic hybrid polymer-based methacryloyloxypropyl trimethoxysilane (MEMO). For this purpose, resins (composites with SiO2) were formulated with the hybrid polymer (polycondensed, pMEMO), and two conventional monomers used in dentistry, bisphenol-A dimethacrylate (Bis-GMA) and triethyleneglycol dimethacrylate (T...

  8. Clinical Evaluation of Silorane and Nano-hybrid Resin Composite Restorations in Class II Cavities up to 3 Years.

    Science.gov (United States)

    Öztürk-Bozkurt, F; Toz, T; Kara-Tuncer, A; Gözükara-Bağ, H; Özcan, M

    In this study, the clinical performance of a silorane-based resin composite (SC) vs a nano-hybrid resin composite (NHC) was evaluated in Class II cavities. From January 2012 to February 2013, a total of 29 patients (eight men, 21 women; mean age, 24 ± 5 years) received 29 pairs of restorations using both SC (Filtek Silorane, 3M ESPE) and NHC (Filtek Z550, 3M ESPE) materials. Patients were followed until February 2015. One operator performed all restorations using the corresponding adhesive resins according to the manufacturers' instructions. Two calibrated independent examiners evaluated the restorations at one week, six months, and then annually using the modified United States Public Health Service (USPHS) criteria for anatomic form, marginal adaptation, color match, surface roughness, marginal discoloration, secondary caries, and postoperative sensitivity. Changes in the USPHS parameters were analyzed with the McNemar test (α=0.05). The mean observation period was 31.2 months. Marginal adaptation was the only parameter that showed a significant difference and was worse for SC than NHC (p=0.012). At the final recall, 17 restorations from the SC group and five from the NHC group received a score of 1 (explorer catches). These scores were significantly different between baseline and final recall for SC (p0.05). Both NHC and SC performed similarly in Class II restorations up to three years except for marginal adaptation, for which the latter demonstrated significant deterioration at the final recall compared with baseline.

  9. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  10. Evaluation of microleakage in hybrid composite restoration with different intermediate layers and curing cycles

    Directory of Open Access Journals (Sweden)

    Mohan R Sakri

    2016-01-01

    Full Text Available Objective: To evaluate the impact of bulk or incremental curing of hybrid composite resin with different intermediate layers on interfacial microleakage. Materials and Methods: The recently extracted, sixty noncarious human mandibular molars were selected for the study. The standardized mesio-occluso-distal cavity with the occlusal cavity of 2 mm depth, 3 mm buccolingual width and proximal box dimension of 4 mm buccolingual width and 2 mm depth was prepared on all experimental teeth. The samples were divided into six groups of ten each. Group I was without an intermediate layer. Group II and III had 1 mm flowable composite liner, with incremental and bulk curing cycle, respectively. The Group IV, V, and VI had a self-cure composite liner with incremental and bulk curing. The teeth subjected to thermocycling and kept in 0.5% basic fuchsine dye for 24 h. The teeth were sectioned and observed under a stereomicroscope to grade them according to the extent of microleakage. The obtained data were statistically analyzed with Kruskal–Wallis and post hoc comparison test to understand the difference between the groups. Results: The Group II with flowable composite along incremental curing showed the least microleakage at both enamel (0.30 and cementum surface (0.50. The groups with self-cure composite liner were less effective than flowable composite. The microleakage at the enamel interface was less compared cementum interface across the groups. The groups with bulk curing were more prone to microleakage than incremental curing cycle. Conclusions: Within the limitation of the study, it was concluded that intermediate flowable composite with incremental curing was better suited to reduce microleakage.

  11. Intraply Hybrid Composite Design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  12. 流动树脂衬垫对树脂充填二类洞临床效果影响%Effects of intermediate layer of flowable resin composite on Class Ⅱ hybrid resin composite restorations

    Institute of Scientific and Technical Information of China (English)

    孙岩

    2013-01-01

    Objective To evaluate the performance of a hybrid resin composite in Class Ⅱ restorations with and without intermediate layer of flowable resin composite.Methods 65 participants received at least two Class Ⅱ restorations of the hybrid resin composite.One resin composite restoration of each pair was chosen at random to be restored without an intermediary layer (group A) (n =65).The other was restored with an intermediary layer with flowable resin composite (group B) (n =65).The restorations were evaluated using slightly modified USPHS criteria during 6 months,1 year and 2 years.Results Three drop outs were registered during the 2-year follow up.Five restorations were not acceptable in clinical,3 in group A and 2 in group B.The failure rate after 2 years was 4.8% (3/62) for group A,3.2% (2/62) for group B.No statistical difference was seen between restorations restored with and without flowable layer.Conclusion The hybrid resin composite shows a good clinical performance in Class Ⅱ restorations.The use of flowable resin composite as an intermediate layer does not result in improved effectiveness of the Class Ⅱ restoration.%目的 探讨流动树脂衬垫在树脂充填后牙二类洞中的作用.方法 选择65例口内同时存在两颗后牙需要二类洞修复的患者,采用自身对照研究,分为A、B两组各65例修复体,A组直接树脂充填,B组流动树脂对邻面龈壁进行洞衬后再树脂充填.6个月、1年、2年进行临床随访.结果 2年随访每组各有3名患者失访;5例修复体失败(A组3例,B组2例),失败率A组为4.8%(3/62),B组为3.2%(2/62),两组的临床效果比较差异无统计学意义(P>0.05).结论 复合树脂修复后牙二类洞可以取得满意的临床效果,流动树脂进行邻面龈壁的洞衬没有明显提高修复效果.

  13. Influence of flowable materials on microleakage of nanofilled and hybrid Class II composite restorations with LED and QTH LCUs

    Directory of Open Access Journals (Sweden)

    Sadeghi Mostafa

    2009-01-01

    Full Text Available Background: Class II composite restorations are more frequently being placed with margins apical to the cementoenamel junction (CEJ and margins within the dentin are prone to microleakage. Aims: This in vitro study was used to evaluate the influence of flowable composite and flowable compomer as gingival liner on microleakage in Class II composite restorations and compare a light-emitting diode (LED unit with a quartz tungsten halogen (QTH unit for light-activating composite resins. Materials and Methods: Mesioocclusal and distoocclusal Class II cavity preparations were made in 72 sound extracted premolars. The buccolingual width was 2.5 mm and the gingival margins of all the cavities were placed 1.0 mm apical to the CEJ. The boxes were prepared 1.5 mm deep axially, making 144 slot cavities. Teeth were randomly divided into the following two groups (n = 72: (I Universal Filtek Supreme XT; Universal Filtek Supreme XT + Flwable Filtek XT and Universal Filtek Supreme XT + Dyract Flow and (II Filtek Z250; Filtek Z250 + Flwable Filtek XT and Filtek Z250 + Dyract Flow. Flowable materials were injected into the gingival floor of the cavity to a thickness of 1.0 mm. Each increment was cured for 20 s. One-half of the subgroups in each group were cured with QTH and the other half with LED light curing units (LCUs. After 1 week of incubation at 37°C, the specimens were thermocycled (5-55°C, x1500, immersed in 0.5% basic fuchsine dye for 24 h and sectioned and microleakage was evaluated at the gingival margin by two examiners using a 0-3 score scale. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U tests. Results: The groups utilizing flowable liners had significantly less microleakage (P < 0.05. No significant difference was identified between Universal Filtek Supreme XT and Filtek Z250 composites with and without flowable materials. There was no significant between utilizing flowable composite or flowable compomer and between each

  14. Four-year clinical evaluation of Class II nano-hybrid resin composite restorations bonded with a one-step self-etch and a two-step etch-and-rinse adhesive

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical trial was to evaluate the 4-year clinical performance of an ormocer-based nano-hybrid resin composite (Ceram X; Dentsply/DeTrey) in Class II restorations placed with a one-step self-etch (Xeno III; Dentsply/DeTrey) and two-step etch-and-rinse adhesive...

  15. Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite.

    Science.gov (United States)

    Fawzy, Amr S; El-Askary, Farid S; Amer, Mohamed A

    2008-12-01

    The purpose of this study was to characterize changes in surface topography associated with different surface treatments and their effect on tensile bond strength (TBS) of repaired water-aged anterior restorative micro-fine hybrid resin composite. The TBS of repaired resin-based composite slabs either non-treated or exposed to different mechanical and/or chemical surface treatment procedures were measured. The cohesive tensile strength of non-repaired intact slabs was used as a control group. The topographical effects of acid etching, grinding, and grinding followed by acid etching were characterized by AFM and SEM. All repaired groups showed significantly lower TBS than the control group. The TBS of repaired groups was ranged from 15% to 59% of the cohesive tensile strength of the control group (18.8+/-4.5MPa). The surface roughness of the non-treated aged specimens was significantly higher than other treated specimens. Specimens treated by acid etching showed significant increase in surface area compared to the non-treated and treated specimens. Aging process resulted in the formation of degradable surface layer which adversely affects the repair bond strength. The use of silane primer prior to the application of the adhesive after mechanical grinding, with or without the use of 37% phosphoric acid etching; improves the repair bond strength.

  16. Clinical applications of preheated hybrid resin composite.

    Science.gov (United States)

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  17. Comparison of Composite Restoration Techniques

    Directory of Open Access Journals (Sweden)

    András Katona

    2016-01-01

    Full Text Available This article briefly presents the classification, and possible ways of application of composites. Our objective was to compare three different restoration technique in class II cavity preparations, with the aim to determine which technique is the most advantageous in practical point of view. Artificial teeth fabricated from self-curing acrylic resin were used as models. Comparison of marginal sealing was performed macroscopically via direct visual inspection and via tactile control. Two parameters were examined on esthetic evaluation, which were the anatomical shape and the optical appearance. The time required to prepare the restorations were also measured. After the evaluation of the results, the bulk-fill technique was demonstrated to require the shortest time to be performed. This was followed by the oblique (Z technique, whereas the horizontal incremental technique appeared to be the most time-consuming method. Based on the esthetic evaluation, a remarkable difference can be observed between the bulk-fill technique and the other two incremental techniques, while the mean scores for the oblique and the horizontal techniques were comparable. Based on the results of the visual inspection and instrumental examination, there were no differences in terms of marginal sealing between the three applied methods. Based on these, the use of the appropriate incremental technique can reduce the development of secondary caries and increasing the longevity of composite restorations.

  18. Guidelines for Direct Adhesive Composite Restoration.

    Science.gov (United States)

    Society Of Cariology And Endodontology, Chinese Stomatological Association Csa

    2015-01-01

    Direct adhesive composite restoration, a technique to restore tooth defects by bonding composite resin materials, has been widely used in the restoration of dental caries or other tooth defects. Retention of composite resin restoration mainly relies on bonding strength between the materials and dental tissue. The clinical outcomes rely greatly on the regulated clinical practice of dentists. In 2011, the Society of Cariology and Endodontology of Chinese Stomatological Association (CSA) published the 'Practices and evaluation criteria of composite resin bonded restoration (Discussion Version)'. Since then, opinions and comments regarding the 'Discussion Version' have been widely circulated within the Society. The final version of the guideline was based on systematic reviews of scientific literature and requirements for the edit of technical guidelines, and through several rounds of discussions, revisions and supplements. The society recommends this guideline for clinicians to use in their practices, when conducting direct composite restorations.

  19. Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent

    Directory of Open Access Journals (Sweden)

    Sarika Kalra

    2012-01-01

    Full Text Available Aims and Objectives : To compare the marginal sealing ability of ormocer with a hybrid composite using an ormocer based bonding agent and a conventional fifth generation bonding agent. Materials and Methods : Fifty four human premolars were randomly distributed into four test groups of 12 teeth each and two control groups of 3 teeth each. Class I occlusal preparation of 1.5 mm depth were made in each tooth. These were restored using the adhesive and restorative material according to the group. The restorations were finished using a standard composite finishing and polishing kit. Thermocycling between 5 o C and 55 o C was carried out. Having blocked the root apex and the entire tooth surface except 1 mm around the restoration margin, the teeth were immersed in 2% methylene blue for 48 hours, after which the dye penetration through the margins of each sample was studied under a stereomicroscope. Results and Discussion : Group IV (Admira with Admira Bond showed the minimum marginal leakage with a mean of 0.200 mm. Four samples in this group showed no microleakage at all and a maximum of 0.400 mm was seen in one sample. Group II (Spectrum TPH with Admira Bond showed the maximum leakage with a mean of 0.433 mm. One sample showed as much as 1.00 mm of microleakage. Admira when used with Admira Bond showed lesser microleakage than Spectrum TPH used with Prime & Bond NT, the difference being statistically insignificant.

  20. Composite veneering of complex amalgam restorations.

    Science.gov (United States)

    Demarco, Flávio Fernando; Zanchi, César Henrique; Bueno, Márcia; Piva, Evandro

    2007-01-01

    In large posterior cavities, indirect restorations could provide improved performance when compared to direct restorations, but with higher cost and removal of sound tooth structure. Improved mechanical properties have resulted in good clinical performance for amalgam in large cavities but without an esthetic appearance. Resin composites have become popular for posterior restorations, mainly because of good esthetic results. A restorative technique is presented that combines the esthetic properties of directly bonded resin composite and the wide range of indications for amalgam in stress-bearing areas.

  1. Restoration of traumatized teeth with resin composites

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan WV

    2017-01-01

    For a long time, the primary choice for initial restoration of a crown-fractured front tooth has been resin composite material. The restoration can in most cases be performed immediately after injury if there is no sign of periodontal injury. The method’s adhesive character is conservative to tooth...

  2. Extended Resin Composite Restorations: Techniques and Procedures

    NARCIS (Netherlands)

    Loomans, B.A.C.; Hilton, T.

    2016-01-01

    This article gives an overview of the state of the art of different restorative treatment procedures and techniques needed for placing extended posterior resin composite restorations. Clinical aspects related to the procedure are discussed and reviewed based on the current literature, such as the

  3. Resin composites : Sandwich restorations and curing techniques

    OpenAIRE

    Lindberg, Anders

    2005-01-01

    Since the mid-1990s resin composite has been used for Class II restorations in stress-bearing areas as an alternative to amalgam. Reasons for this were the patients’ fear of mercury in dental amalgam and a growing demand for aesthetic restorations. During the last decades, the use of new resin composites with more optimized filler loading have resulted in reduced clinical wear. Improved and simplified amphiphilic bonding systems have been introduced. However, one of the main problems with res...

  4. Intercalated hybrid graphite fiber composite

    Science.gov (United States)

    Gaier, James R. (Inventor)

    1993-01-01

    The invention is directed to a highly conductive lightweight hybrid material and methods of producing the same. The hybrid composite is obtained by weaving strands of a high strength carbon or graphite fiber into a fabric-like structure, depositing a layer of carbon onto the structure, heat treating the structure to graphitize the carbon layer, and intercalating the graphitic carbon layer structure. A laminate composite material useful for protection against lightning strikes comprises at least one layer of the hybrid material over at least one layer of high strength carbon or graphite fibers. The composite material of the present invention is compatible with matrix compounds, has a coefficient of thermal expansion which is the same as underlying fiber layers, and is resistant to galvanic corrosion in addition to being highly conductive. These materials are useful in the aerospace industry, in particular as lightning strike protection for airplanes.

  5. Retention of composite resin restorations in class IV preparations.

    Science.gov (United States)

    Eid, Hani

    2002-01-01

    Clinicians often utilized composite resin restorations in combination with different types of preparation to restore class IV fractures on anterior incisors. A new preparation technique called (stair-step chamfer technique) is investigated in this study to detect bond strength to tooth structure. Eighty-eight bovine teeth were divided into 4 groups. Group I had twenty-three samples with a 45 degree bevel that extended 2 millimeters beyond the fracture line. Group II had twenty-three samples with a circumferential chamfer, which extended 2 mm beyond the fracture line and half the enamel thickness in depth. Group III had twenty-three samples with a facial stair-step chamfer, which followed the anatomical contour and extended 2 mm beyond the fracture line with a lingual plain chamfer. Group IV had eighteen samples as controls, which were untreated teeth. The first three groups were prepared and restored with hybrid composite resin in conjunction with a single step bonding agent and as surface penetrating sealer, then tested for shear-bond strength on the Instron machine. The results were that there was no significant difference found between the treated teeth when tested for shear-bond strength. However, according to the site of the fracture, the stair-step chamfer technique gave significantly better results. It can be concluded that, the stir-step chamfer technique provides the clinician better environment to place a composite resin restoration resulting in good shear-bond strength and better esthetics.

  6. DIRECT PERMANENT RESTORATIVES - AMALGAM VS COMPOSITE

    Directory of Open Access Journals (Sweden)

    Bhagyashree

    2013-11-01

    Full Text Available ABSTRACT: Dental restoration is the most commonly administered dental treatment. These restorations are subjected to dynamic conditions in oral cavity, are likely to fail and need replacement. Ideal restorative material should pass two tests - Longitivity and Esthetics. Longitivity of the restorative material depends on three major factors - first is Patient’s factors, second is Operator`s skills and last is the Restorative material itself. Dentists today have a plethora of materials to choose from. Materials like Silver Amalgam being tested over a century, other nubile but promising materials, developed recently and yet to be tested in long run. This puts a dentist in dilemma so as which material to select to ensure durable clinical p erformance after placement. Amalgam has been tested over 165 years and has fulfilled almost all desired qualities of a restorative material except esthetics. On the other hand composites have advantage in cases where esthetics is of prime importance; howev er Recent studies conclude them at par with amalgam 1 . Performance of these two materials is assessed on following criterions - Longevity, wear resistance, cost effectiveness, marginal leakage and predisposal to secondary decay, biocompatibility, pulp irri tation, tooth preparation, technique sensitivity and esthetics

  7. Hybrid composite laminate structures

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F. (Inventor)

    1977-01-01

    An invention which relates to laminate structures and specifically to essentially anisotropic fiber composite laminates is described. Metal foils are selectively disposed within the laminate to produce increased resistance to high velocity impact, fracture, surface erosion, and other stresses within the laminate.

  8. A clinical evaluation on adhesive posts in extensive composite restorations

    Directory of Open Access Journals (Sweden)

    Ghavamnasiri M. Associate Professor

    2003-06-01

    Full Text Available Problem: A few studies have been conducted about bioglass posts."nAim: The aim of this study was to compare bioglass posts with prefabricated metallic posts in clinical performance of extensive composite restorations for anterior endodontically treated teeth. Materials and Methods: Sixty endodontocally maxillary anterior teeth, with horizontally or vertically destruction, were selected. Teeth were divided into two groups based on the kind of post: Metallic prefabricated parapost and bioglass post. Each group was divided into three subgroups based on anterior bite: normal, deep bite and edge to edge. Gutta-percha was removed from 2/3 of canal length for parapost and 1/3 for bioglass post. After etching with phosphoric-acid (37% and applying dentine bonding syntac, Duo cement was used for the adhesion of bioglass post and a self cured composite (Degufil for parapost. Restoration was done with a hybrid composite (Heliomolar. Follow up studies, radio-graphically and clinically, were done every three months for a 1.5-year period. Exact Fisher and Pearson tests were used for data analysis."nResults: Apical lesion was not observed in any of the radiographs. Post seal was increased by resin cement and dentin bonding agent. Post type did not significantly affect on the clinical success rate of the restorations. The retention of restoration, for both posts, was the same. Crown destruction had no significant effect on success rate. The type of anterior bite had a significant effect on success rate, as the total 6.6% failure rate was related to the patients with anterior deep bite."nConclusion: It is suggested to use metallic paraposts and bioglass posts, in extensive composite restorations for patients with deep-bite, more conservatively.

  9. Hybrid Simulation of Composite Structures

    DEFF Research Database (Denmark)

    Høgh, Jacob Herold

    Hybrid simulation is a substructural method combining a numerical simulation with a physical experiment. A structure is thereby simulated under the assumption that a substructure’s response is well known and easily modelled while a given substructure is studied more accurately in a physical...... of freedom. In this dissertation the main focus is to develop hybrid simulation for composite structures e.g. wind turbine blades where the boundary between the numerical model and the physical experiment is continues i.e. in principal infinite amount of degrees of freedom. This highly complicates...

  10. Upper anterior zone restoration with composites

    OpenAIRE

    Lamas Lara, César; CD, Docente del Área de Operatoria Dental y Endodoncia de la Facultad de Odontología de la UNMSM.; Angulo de la Vega, Giselle; CD, Alumna de la Especialidad de Rehabilitación Oral de la Facultad de Odontología de la UNMSM.

    2014-01-01

    The anterior sector problems are very common in our professional practice and became vital importance to make a suitable rehabilitation in these cases; we can not do a good rehabilitation if we do not know the basic characteristics, both aesthetic and functional. Today the composites are a valid alternative for the restoration of the anterior sector, since they offer to us a conservative and aesthetic possibility, but independently of the material to use we have to based on certain rules or p...

  11. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  12. Postoperative sensitivity in class I composite resin restorations in vivo

    OpenAIRE

    Casselli, DSM; Martins, LRM

    2006-01-01

    Purpose: This study evaluated the postoperative sensitivity of posterior Class I composite resin restorations, restored with a self-etching or a total-etch one-bottle adhesive system. Materials and Methods: One hundred four restorations were replaced by one clinician in 52 patients. Each patient received two restorations. After cavity preparations were completed under rubber-dam isolation, they were restored using Clearfil SE Bond or Single Bond and a resin-based restorative material (Filtek ...

  13. Effect of flowable composite on microleakage of condensable composite restorations

    Directory of Open Access Journals (Sweden)

    Pahlavan A.

    2008-10-01

    Full Text Available "nBackground and Aim: Because of polymerization shrinkage and high viscosity of posterior composites, there are some difficulties in using them in posterior restorations. Several methods have been represented to reduce the effect of shrinkage. The aim of this study was to investigate the effect of curing flowable composites under condensable ones in adaptation and microleakage reduction of posterior composite restorations. "nMaterials and Methods: In this experimental in vitro study, forty class II MO cavities were prepared on extracted intact molar and premolar human teeth. Gingival margins were placed 1 mm apical to CEJ. The teeth were divided into two groups. In group 1, flowable composite (Filek Flow, 3M, ESPE, USA with 0.5-1 mm thickness was applied and cured following application of bonding agent (Single Bond, 3M, ESPE, USA. The rest of the cavity was filled by condensable composite (p60, 3M, ESPE, USA. In group 2 the flowable composite was not cured, and the condensable composite was applied in two increments. After light curing of composites, all the specimens were thermocycled and then immersed in 0.3% basic fuschin. Specimens were sectioned and evaluated for degree of dye penetration under a stereomicroscope. Data were analyzed by Mann-Whitney test with p<0.05 as the level of significance. "nResults:. There was no significant difference between the two studied groups regarding microleakage. "nConclusion: Based on the results of this study, neither cured nor uncured flowable composite under condensable composite can omit microleakage in posterior composite restorations.

  14. Effect of composite/amalgam thickness on fracture resistance of maxillary premolar teeth, restored with combined amalgam-composite restorations

    Science.gov (United States)

    Firouzmandi, Maryam; Doozandeh, Maryam; Abbasi, Sanaz

    2016-01-01

    Background Combined amalgam-composite restorations have been used through many years to benefit from the advantages of both dental amalgam and composite resin. Two variations have been mentioned for this technique, this study investigated the fracture resistance of maxillary premolar teeth with extended mesio-occluso-distal (MOD) cavities, restored with the two variations of combined amalgam-composite restorations. Material and Methods Sixty intact extracted premolar teeth were randomly divided into 6 groups (G1-G6) of 10 teeth. G1; consisted of intact teeth and G2; consisted of teeth with MOD preparations were assigned as the positive and negative control groups respectively. Other experimental groups after MOD preparations were as follows: G3, amalgam restoration; G4, composite restoration; G5 combined amalgam-composite restoration with amalgam placement only on 1mm of the gingival floor of the proximal boxes; G6, combined amalgam-composite restoration with amalgam placement to the height of contact area of the proximal surface of the tooth. Fracture strength of the specimens was measured and the data were analyzed using one-way analysis of variance (ANOVA). The level of significance was Pamalgam-composite restoration was similar to that achieved with composite restoration alone and more than that of amalgam restoration alone. It can be concluded that the thickness of amalgam in combined amalgam-composite restorations did not affect fracture resistance of the teeth. Key words:Amalgam, composite, fracture resistance, restoration. PMID:27398176

  15. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  16. Benchmarking matching color in composite restorations

    Science.gov (United States)

    Migliau, Guido; Piccoli, Luca; Besharat, Laith Konstantinos; Romeo, Umberto

    2016-01-01

    Summary The purpose of this study was to investigate the color samples (A2, A3 and B1) of three different brands of resin composites using dentine masses. 135 discs were prepared (5 plates for each thickness, color and brand of composite material). A colorimetric evaluation, using white and black background, was performed just after preparation. The color was measured corresponding to “Vita” scale and ΔL, Δa, Δb and ΔE values were calculated using a spectrophotometer. The results showed that Value, Chroma and Hue often differ even if the same commercial color and same thickness is used. In conclusion, this study showed that the perfect aesthetics restoration is possible combining individual abilities, experience and correct techniques. PMID:27512531

  17. Computer code for intraply hybrid composite design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A computer program has been developed and is described herein for intraply hybrid composite design (INHYD). The program includes several composite micromechanics theories, intraply hybrid composite theories and a hygrothermomechanical theory. These theories provide INHYD with considerable flexibility and capability which the user can exercise through several available options. Key features and capabilities of INHYD are illustrated through selected samples.

  18. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2 mm increments. The restorations were evaluated using slightly......Objective: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. Material and methods: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52.......4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4...

  19. Fracture resistance of endodontically treated teeth restored with indirect composite inlay and onlay restorations – An in vitro study

    Directory of Open Access Journals (Sweden)

    Ibraheem F. Alshiddi

    2016-01-01

    Conclusion: Within the limitations of this study, endodontically treated teeth were successfully restored with indirect composite inlay and onlay restorations. However, the fractures that accompanied the inlay restorations were more severe and were unable to be restored.

  20. Hybrid Composite Cryogenic Tank Structure

    Science.gov (United States)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  1. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite.......The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  2. Flexural performance of woven hybrid composites

    Science.gov (United States)

    Maslinda, A. B.; Majid, M. S. Abdul; Dan-mallam, Y.; Mazawati, M.

    2016-07-01

    This paper describes the experimental investigation of the flexural performance of natural fiber reinforced polymer composites. Hybrid composites consist of interwoven kenaf/jute and kenaf/hemp fibers was prepared by infusion process using epoxy as polymer matrix. Woven kenaf, jute and hemp composites were also prepared for comparison. Both woven and hybrid composites were subjected to three point flexural test. From the result, bending resistance of hybrid kenaf/jute and kenaf/hemp composites was higher compared to their individual fiber. Hybridization with high strength fiber such as kenaf enhanced the capability of jute and hemp fibers to withstand bending load. Interlocking between yarns in woven fabric make pull out fibers nearly impossible and increase the flexural performance of the hybrid composites.

  3. Teaching of direct composite restoration repair in undergraduate dental schools in the United Kingdom and Ireland.

    Science.gov (United States)

    Blum, I R; Lynch, C D; Wilson, N H F

    2012-02-01

    To investigate aspects of the teaching of restoration repair as a minimally invasive alternative to the replacement of defective direct composite restorations in teaching programmes in undergraduate curricula in dental schools in the United Kingdom and Ireland. An online questionnaire which sought information in relation to the current teaching of composite restoration repair was developed and distributed to the 17 established UK and Irish dental schools with undergraduate teaching programmes in Spring 2010. Completed responses were received from all 17 schools (response rate= 100%). Fifteen schools reported that they included teaching of repair techniques for defective direct composite restorations in their programme. Of the two remaining schools, one indicated that it would introduce teaching of repair techniques during the next five years. The most common indication for a composite repair was that of 'tooth substance preservation' (15 schools). The defects in restorations considered appropriate for repair rather than replacement by the largest number of schools included partial loss of restoration (13 schools) and marginal defects (12 schools). The most commonly taught surface treatment when performing a repair was mechanical roughening of the existing composite with removal of the surface layer (14 schools). Thirteen schools taught etching and the application of an adhesive bonding agent to the prepared surfaces, while the most commonly taught material for completing the repair was a hybrid composite resin (12 schools). Popular finishing implements included diamond finishing instruments (13 schools) and finishing discs (11 schools). Not withstanding reluctance amongst general dental practitioners, the teaching of repair of a defective composite restoration, rather than total restoration replacement, is firmly established within UK and Irish dental school programmes. Repair techniques have clear advantages for patients, not least including a minimally invasive

  4. 12-year survival of composite vs. amalgam restorations.

    NARCIS (Netherlands)

    Opdam, N.J.M.; Bronkhorst, E.M.; Loomans, B.A.C.; Huysmans, M.C.D.N.J.M.

    2010-01-01

    Information about the long-term clinical survival of large amalgam and composite restorations is still lacking. This retrospective study compares the longevity of three- and four-/five-surface amalgam and composite restorations relative to patients' caries risk. Patient records from a general practi

  5. Mechanical property characterization of intraply hybrid composites

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.

  6. Smile transformations with the use of direct composite restorations.

    Science.gov (United States)

    Sameni, Abdi

    2013-01-01

    Mutual concerns shared by dentists and patients regarding removal of natural tooth structure affirm the need for non-invasive restorative treatments. Direct composite restorations are among today's conservative treatment modalities. Direct bonding procedures provide patients with an alternative to high biologic risk and expensive indirect porcelain restorations. This article discusses the principles involved in smile design cases, ways to successfully combine different treatment modalities, and materials to achieve outstanding esthetic and functional results. The article also demonstrates the versatility of today's composite materials for direct smile design restorations.

  7. Intraply Hybrid Composites Would Contain Control Strips

    Science.gov (United States)

    Chamis, Christos C.; Shiao, Chi-Yu

    1996-01-01

    "Smart" structural components with sensors and/or actuators distributed throughout their volumes made of intraply hybrid composite materials, according to proposal. Strips of hybrid control material interspersed with strips of ordinary (passive) composite material in some layers, providing distributed control capability. For example, near and far edges of plate bent upward by commanding bottom control strips to expand and simultaneously commanding upper control strips to contract.

  8. Microleakage resistance of minimally invasive Class I flowable composite restorations.

    Science.gov (United States)

    Bonilla, Esteban D; Stevenson, Richard G; Caputo, Angelo A; White, Shane N

    2012-01-01

    Minimally invasive flowable composite Class I restorations are widely used. However, flowable composites are characterized by low filler contents, modified resin formulations, low moduli of elasticity, low viscosity, generally poor mechanical properties, and decreased long-term stability. The purpose of this study was to compare the microleakage resistance of a wide variety of flowable composites used with their manufacturers' recommended bonding systems to that of a long-used and widely studied microhybrid composite when placed as minimally invasive occlusal restorations. Molar teeth were prepared in a standardized manner, restored, artificially aged, stained, sectioned, evaluated, and analyzed. Microleakage varied substantially, by a whole order of magnitude, among the material groups tested. The control group, a conventional microhybrid composite material, leaked significantly less than all the flowable composite groups. Microleakage varied very slightly among measurement site locations. Tiny microscopic bubbles were seen within many of the flowable composite specimens, as were a few voids.

  9. Prediction of properties of intraply hybrid composites

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    Equations based on the mixtures rule are presented for predicting the physical, thermal, hygral, and mechanical properties of unidirectional intraply hybrid composites (UIHC) from the corresponding properties of their constituent composites. Bounds were derived for uniaxial longitudinal strengths, tension, compression, and flexure of UIHC. The equations predict shear and flexural properties which agree with experimental data from UIHC. Use of these equations in a composites mechanics computer code predicted flexural moduli which agree with experimental data from various intraply hybrid angleplied laminates (IHAL). It is indicated, briefly, how these equations can be used in conjunction with composite mechanics and structural analysis during the analysis/design process.

  10. Interface Characteristics of Wood-hybrid Composites

    Institute of Scientific and Technical Information of China (English)

    XUEFenglian; ZHAOGuangjie

    2005-01-01

    In order to understand the current interface characteristics of wood-hybrid composites, this paper starts off from the concept of composite interface and general theory of interface form, then the inner-surface and microstructure of wood and the interface characteristics of composites, such as wood- inorganic, wood-plastic and wood- metal made by electroless plating technique, are concluded and discussed in detail. Meanwhile,on the basis of that, some points of view about how to develop the wood-hybrid composites interface research in the future are also proposed.

  11. Connecting River Systems Restoration Assessment Composite Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Well-established conservation planning principles and techniques framed by geodesign were used to assess the restorability of areas that historically supported...

  12. Western Lake Erie Restoration Assessment Composite Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Well-established conservation planning principles and techniques framed by geodesign were used to assess the restorability of areas that historically supported...

  13. Saginaw Bay Restoration Assessment Composite Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Well-established conservation planning principles and techniques framed by geodesign were used to assess the restorability of areas that historically supported...

  14. Posterior bulk-filled resin composite restorations: A 5-year randomized controlled clinical study.

    Science.gov (United States)

    van Dijken, Jan W V; Pallesen, Ulla

    2016-08-01

    To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52.4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using slightly modified USPHS criteria at baseline and then yearly during 5 years. Caries risk and bruxing habits of the participants were estimated. No post-operative sensitivity was reported. At 5-year 183, 68 Class I and 115 Class II, restorations were evaluated. Ten restorations failed (5.5%), all Class II, 4 SDR-CeramX mono+ and 6 CeramX mono+-only restorations. The main reasons for failure were tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1.3% (p=0.12). For the Class II restorations, the AFR was 1.4% and 2.1%, respectively. The stress decreasing flowable bulk-fill resin composite technique showed good durability during the 5-year follow-up. The use of a 4mm incremental technique with the flowable bulk-fill resin composite showed during the 5-year follow up slightly better, but not statistical significant, durability compared to the conventional 2mm layering technique in posterior resin composite restorations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Recent advances and developments in composite dental restorative materials.

    Science.gov (United States)

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  16. Methods to achieve the effect of «dry shine» of composite restorative materials

    OpenAIRE

    Mekhtieva R.R.; Nelovko T.V.; Eremin O.V.; Zaitseva E.M.; Ivashchenko Y.Y.

    2013-01-01

    The purpose: to determine the most effective method and sequence of polishing systems to achieve the effect of «dry light» of the final restoration ofthevestibular surface of the incisors and molars chewing surface of the hybrid light-cured composite materials. Material and methods. Material for polishing for the restoration divided into three groups: 1. Grinding discs — firm TOR VM with three types of grit: coarse, medium, soft and super soft, firm 3M ESPE «Sof-Lex» ultrafine polishing wheel...

  17. Direct restoration of worn maxillary anterior teeth with a combination of composite resin materials: a case report.

    Science.gov (United States)

    Soares, Carlos José; Pizi, Eliane Cristina Gava; Fonseca, Rodrigo Borges; Martins, Luis Roberto Marcondes; Neto, Alfredo Júlio Fernandes

    2005-01-01

    Tooth loss, alterations on tooth structure, and reduced vertical dimension are known to severely compromise the stomatognathic system. This case report describes the treatment of a patient who presented with an extremely worn maxillary anterior dentition with a loss of posterior support owing to the loss of almost all the posterior teeth, except the mandibular premolars. Provisional removable partial dentures were used to create an optimum maxillomandibular relationship and to provide restorative space prior to the restoration of the remaining teeth. This restoration was accomplished with a combination of layered hybrid and microfilled composite materials, which restored the maxillary anterior teeth to optimum esthetics and function.

  18. Optimizing tooth form with direct posterior composite restorations.

    Science.gov (United States)

    Raghu, Ramya; Srinivasan, Raghu

    2011-10-01

    Advances in material sciences and technology have provided today's clinicians the strategies to transform the mechanistic approach of operative dentistry into a biologic philosophy. In the last three decades, composite resins have gone from being just an esthetically pleasing way of restoring Class III and Class IV cavities to become the universal material for both anterior and posterior situations as they closely mimic the natural esthetics while restoring the form of the human dentition. In order to enhance their success, clinicians have to rethink their protocol instead of applying the same restorative concepts and principles practiced with metallic restorations. Paralleling the evolution of posterior composite resin materials, cavity designs, restorative techniques and armamentarium have also developed rapidly to successfully employ composite resins in Class II situations. Most of the earlier problems with posterior composites such as poor wear resistance, polymerization shrinkage, postoperative sensitivity, predictable bonding to dentin, etc., have been overcome to a major extent. However, the clinically relevant aspect of achieving tight contacts in Class II situations has challenged clinicians the most. This paper reviews the evolution of techniques and recent developments in achieving predictable contacts with posterior composites. A Medline search was performed for articles on "direct posterior composite contacts." The keywords used were "contacts and contours of posterior composites." The reference list of each article was manually checked for additional articles of relevance.

  19. Optimizing tooth form with direct posterior composite restorations

    Directory of Open Access Journals (Sweden)

    Ramya Raghu

    2011-01-01

    Full Text Available Advances in material sciences and technology have provided today′s clinicians the strategies to transform the mechanistic approach of operative dentistry into a biologic philosophy. In the last three decades, composite resins have gone from being just an esthetically pleasing way of restoring Class III and Class IV cavities to become the universal material for both anterior and posterior situations as they closely mimic the natural esthetics while restoring the form of the human dentition. In order to enhance their success, clinicians have to rethink their protocol instead of applying the same restorative concepts and principles practiced with metallic restorations. Paralleling the evolution of posterior composite resin materials, cavity designs, restorative techniques and armamentarium have also developed rapidly to successfully employ composite resins in Class II situations. Most of the earlier problems with posterior composites such as poor wear resistance, polymerization shrinkage, postoperative sensitivity, predictable bonding to dentin, etc., have been overcome to a major extent. However, the clinically relevant aspect of achieving tight contacts in Class II situations has challenged clinicians the most. This paper reviews the evolution of techniques and recent developments in achieving predictable contacts with posterior composites. A Medline search was performed for articles on ′′direct posterior composite contacts.′′ The keywords used were ′′contacts and contours of posterior composites.′′ The reference list of each article was manually checked for additional articles of relevance.

  20. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Energy Technology Data Exchange (ETDEWEB)

    Naslain, R, E-mail: naslain@lcts.u-bordeaux1.fr [University of Bordeaux 3, Allee de La Boetie, 33600 Pessac (France)

    2011-10-29

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  1. Composite resin: a versatile, multi-purpose restorative material.

    Science.gov (United States)

    Margeas, Robert

    2012-01-01

    Introduced more than some 50 years ago, composite resin technology has simplified the manner in which clinicians practice restorative dentistry, offering greater predictability and improved physical properties. Decades of material science and laboratory development along with clinical trials in human subjects have culminated in composite resin being validated as a reliable, multifunctional restorative material. With a wide range of composite resins available today, clinicians can benefit from knowing the infrastructure of a given material in order to determine which type will work best in a particular clinical situation.

  2. [Restoring esthetics and function of posterior teeth using direct composite restoration].

    Science.gov (United States)

    Samet, N

    2001-10-01

    The growing demand for esthetic restorations in the posterior segments and the reports from all over the world concerning the possibility of a toxic effect of amalgam brought to the development of the composite resin materials. These allow excellent esthetic results without compromising the quality and long-term stability of the restorations. Out of the various types of posterior esthetic restorations, the most available are the direct ones. There are several substantial differences between fabricating amalgam or posterior composite restorations. The most significant difference concerns bonding to the tooth structures. The key to success in these restorations is the understanding of the reasons for failure, and the ways to prevent them. The failures are divided into two groups: biological failures--namely secondary caries, and mechanical failures--namely fracture and abrasion. The other key is understanding the materials used and their proper handling. This article illustrates in detail a step-by-step procedure the sequence of fabricating a posterior composite restoration in a posterior mandibular tooth, describing both techniques and materials used.

  3. Probabilistic assessment of uncertain adaptive hybrid composites

    Science.gov (United States)

    Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.

    1994-01-01

    Adaptive composite structures using actuation materials, such as piezoelectric fibers, were assessed probabilistically utilizing intraply hybrid composite mechanics in conjunction with probabilistic composite structural analysis. Uncertainties associated with the actuation material as well as the uncertainties in the regular (traditional) composite material properties were quantified and considered in the assessment. Static and buckling analyses were performed for rectangular panels with various boundary conditions and different control arrangements. The probability density functions of the structural behavior, such as maximum displacement and critical buckling load, were computationally simulated. The results of the assessment indicate that improved design and reliability can be achieved with actuation material.

  4. Evaluation of Resin-Resin Interface in Direct Composite Restoration Repair

    Science.gov (United States)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Iovan, G.

    2017-06-01

    The aim of this study was to evaluate the resin-resin interface when a universal bonding agent was used in two different strategies in direct restoration repair. Two composite resins (a micro-filled hybrid and a nano-filled hybrid) as old restorations that have to be repair, a universal bonding agent and a micro-filled hybrid composite resin (different then that aged) as new material for repair were chosen for the study. Non-aged samples were used as control and aged samples were used as study groups. The universal bonding agent was applied in etch-and-rinse and in self-etch strategies. The interface between old and new composite resins was evaluated by SEM and the microleakage was assessed by scoring the dye penetration. Very good adaptation of the two different composite resins placed in direct contact in non-aged samples was recorded. No gaps or defects were visible and strong resin-resin contact was observed. After aging, enlargement of resin-resin junction were observed in most of the samples and a increased dye penetration was recorded irrespective of the strategy (etch-and-rinse or self-etch) used for bonding agent application.

  5. Characterization of Hybrid CNT Polymer Matrix Composites

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the

  6. Posterior bulk-filled resin composite restorations. A 5-year randomized controlled clinical study

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    .4 years). Each patient received at least two, as similar as possible, extended Class I or Class II restorations. In all cavities, a 1-step self-etch adhesive (Xeno V+) was applied. Randomized, one of the cavities of each pair received the flowable bulk-filled resin composite (SDR), in increments up to 4mm......Objective: To evaluate in a randomized controlled study the 5-year clinical durability of a flowable resin composite bulk-fill technique in Class I and Class II restorations. Material and methods: 38 pairs Class I and 62 pairs Class II restorations were placed in 44 male and 42 female (mean age 52...... as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the ormocer-based nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using slightly...

  7. A restorative approach for class II resin composite restorations: a two-year follow-up.

    Science.gov (United States)

    Santos, M J M C

    2015-01-01

    This clinical report describes a restorative technique used to replace two Class II resin composite restorations on the upper premolars. A sectional matrix band was used in conjunction with an elastic ring (Composi-Tight) to obtain tight proximal contact. A nanofilled resin composite (Filtek Supreme Ultra) was incrementally applied using oblique layers to reduce the C-factor, each layer being no more than 2 mm thick, and then light cured for 20 seconds with a light-emitting diode lamp (EliparFreeLight 2 LED Curing Light) with a power density of 660 mW/cm(2). A centripetal technique was used to restore the lost tooth structure from the periphery toward the center of the cavity in order to achieve a better contour and anatomy with less excess, thereby minimizing the use of rotary instruments during the finishing procedures. Finally, the resin composite restorations were finished and polished, and a surface sealer (Perma Seal) was applied to fill small gaps and defects that may have been present on the surfaces and margins of the restorations after the finishing and polishing procedures.

  8. Base deflection and microleakage of composite restorations.

    Science.gov (United States)

    Paulillo, L A; de Goes, M F; Consani, S

    1994-06-01

    The flexural deflections of human dentin, Herculite XR, Dycal, Vidrion F, zinc phosphate base, and combinations of composite-base were determined. The influence of the flexural deflections in the marginal microleakage was also determined for the composite-base combinations. The flexural deflection test for dentin showed no statistically significant differences between the two floor cavity depths studied. There were significant differences among cements when the thickness of the base was 1 mm whereas no differences occurred at 2 mm. The composite-base combinations did not present statistical differences. There were no statistically significant differences in the microleakage levels among loaded and non-loaded specimens; however, dye penetration was visually greater in loaded samples.

  9. Forenzic significance of composite restorations radiopacity: Assessment by dental students

    Directory of Open Access Journals (Sweden)

    Barac Radomir

    2014-01-01

    Full Text Available In order to forensic use, dental materials should be sufficiently radiopaque to be detected against enamel/dentin, resulting in correct evaluation of restorations contours, detection of secondary caries, marginal defects, etc. Radiopacity of contemporary composites has been improved by inserting of filler-particles containing heavy metals: aluminum, barium, strontium, zirconium, ytterbium. Tetric composite group (Te-econom, Ceram, EvoCeram has the most suitable radiopacity; T-econom has highest radiopacity (4.78mm aluminum when exposure-0.6'. The aim of this study was to comparison of MOD composite restorations (T-Econom, Ivoclar, Vivadent radiographs in molar models and to assess their role in forensic identification, by dental students. Two sets of identical radiographs of molars models (that were previously filled with cement base and composite were made by standardized technique (exposure-time 0.2ms, amperage-10mA, voltage-70kV. One of the sets consists a few radiographs that did not have their pairs in the second set. Equality of composite restorations on the 'ante-mortem' and 'post-mortem' radiographs were assessed by dental students. Statistical analysis was performed using the kappa test. Results showed (k.t.=0.82 that there is a high correlation of correct answers although estimates are made by students who have no experience in forensic identification and forensic evidence, neither enough knowledge in dental radiology. Although the forensic identification should not be based only on the appearance of the one restoration, or the assessment of non-professional forensic scientists, this study indicates that radiopacity of composites may have a major forensic importance, because 'ante-mortem' and 'post-mortem' radiographs were showed exactly match certain morphological characteristics of composite restorations.

  10. Fiber release characteristics of graphite hybrid composites

    Science.gov (United States)

    Henshaw, J.

    1980-01-01

    The paper considers different material concepts that can be fabricated of hybridized composites which demonstrate improved graphite fiber retention capability in a severe fire without significant reduction to the composite properties. More than 30 panels were fabricated for mechanical and fire tests, the details and results of which are presented. Methods of composite hybridization investigated included the addition of oxidation resistant fillers to the resin, mechanically interlocking the graphite fibers by the use of woven fabrics, and the addition of glass fibers and glass additives designed to melt and fuse the graphite fibers together. It is concluded that a woven fabric with a serving of glass around each graphite tow is by far the superior of those evaluated: not only is there a coalescing effect in each graphite layer, but there is also a definite adhesion of each layer to its neighbor.

  11. Seven-year clinical evaluation of painful cracked teeth restored with a direct composite restoration.

    NARCIS (Netherlands)

    Opdam, N.J.M.; Roeters, J.J.; Loomans, B.A.C.; Bronkhorst, E.M.

    2008-01-01

    The purpose of this study was to investigate long-term clinical effectiveness of treating painful cracked teeth with a direct bonded composite resin restoration. The hypothesis tested was that cracked teeth treated with or without cuspal coverage showed the same performance. Forty-one patients atten

  12. Simple direct composite resin restoration on endodontically treated tooth: A case report

    Directory of Open Access Journals (Sweden)

    Wahyuni Suci Dwiandhany

    2016-06-01

    Full Text Available Endodontically treated teeth generally havegreat structure loss so that the resistance to fracture is reduced. Therefore, the post-endodontic restoration design that covers the entire cusp (full cuspal coverage is necessary to increase the resistance of teeth to fracture. The aim of this case report is to present direct onlay restoration technique using composite resin material in non-vital tooth with chronic apical periodontitis. A 74-years-old male patient came to the clinic complaining of discomfort in the lower right posterior tooth related to eating since 1 week ago. Clinical examination revealed a large amalgam restoration on the second lower right molar, the tooth is negative to pulp sensitivity test, and tender to percussion. Radiographically, the tooth showed periapical radiolucency at distal and mesial root. The diagnosis of the tooth was chronic apical periodontitis. The treatment plan is a non-vital root canal treatment with multiple visit. Root canal preparation with rotary files (ProTaper Next, Dentsply, Germany was performed on the first visit and irrigated with NaOCl. On the next visit, during subjective examination, there was no pain complaints and the percussion test was negative so the obturation with a single cone technique can be done. On the final visit, direct onlay restoration using nano-hybrid composite resin material (Polofil NHT, Voco, Germany was performed. In conclusion, after 3 months follow up, the marginal integrity of the restoration remains intact and the tooth were functioned properly.

  13. Resin-based composite as a direct esthetic restorative material.

    Science.gov (United States)

    Malhotra, Neeraj; Mala, Kundabala; Acharya, Shashirashmi

    2011-06-01

    The search for an ideal esthetic material for tooth restoration has resulted in significant improvements in both materials and the techniques for using them. Various resin-based composite (RBC) materials have recently been introduced into the market that offer improved esthetic and physical properties. This article reviews RBCs, including their compositions, advantages, and disadvantages, that are contemporary to today's clinical practice as well as those that are under research consideration and/ or in clinical trial phase.

  14. Influence of composite restorative materials and light-curing units on diametrical tensile strength.

    Science.gov (United States)

    Tolosa, Maria Cecília Caldas Giorgi; Paulillo, Luís Alexandre Maffei Sartini; Giannini, Marcelo; Santos, Alex José Souza dos; Dias, Carlos Tadeu dos Santos

    2005-01-01

    The aim of this study was to evaluate the diametrical tensile strength (DTS) of three light-curing photo-activated composites with two different light curing units (LCU). Three types of dental restorative composites were used in this study: micro filled A110 (3M Espe); P60 (3M Espe) for posterior restorations, and micro-hybrid Charisma (Heraeus-Kulzer). The two LCUs were: halogen light (HAL) (Degulux, Degussa) and blue light emitting diode (LED) (Ultrablue, DMC). Resin composite specimens were inserted incrementally into a Teflon split mold measuring 3 mm in depth and 6 mm in internal diameter, and cured using either LCU (n = 10). Specimens were placed into a dark bottle containing distilled water at 37 degrees C for 7 days. DTS tests were performed in a Universal Testing Machine (0.5 mm/min). Data were submitted to two-way ANOVA and Tukey's test. Results were (MPa): A110/HAL: 276.50 +/- 62.94a; A110/LED: 306.01 +/- 65.16a; P60/HAL: 568.29 +/- 60.77b and P60/LED: 543.01 +/- 83.65b; Charisma/HAL: 430.94 +/- 67.28c; Charisma/LED: 435.52 +/- 105.12c. Results suggested that no significant difference in DTS was obtained with LCUs for the same composite. However, resin composite restorative materials presented different DTS.

  15. A Comparative Evaluation of Microleakage in Class V Composite Restorations

    Directory of Open Access Journals (Sweden)

    Sujatha Gopal Sooraparaju

    2014-01-01

    Full Text Available Aim. To compare and evaluate the microleakage in class V lesions restored with composite resin with and without liner and injectable nanohybrid composite resin. Materials and Methodology. 60 class V cavities were prepared in 30 freshly extracted teeth. After etching and application of bonding agents these cavities were divided into three groups: Group A (n=20—restored with composite resin, Group B (n=20—flowable composite resin liner + composite resin, and Group C (n=20—restored with injectable composite resin. After curing all the specimens were subjected to thermocycling and cyclic loading. Specimens were stained with 0.5% basic fuchsin and evaluated for dye penetration. Results. Results are subjected to Kruskal Wallis and Wilcoxon test. Conclusion. Within the limitations of this study, none of the three materials were free from microleakage. All the three materials showed more microleakage at gingival margins compared to occlusal margins. Among all the groups G-ænial Flo showed the least microleakage at the gingival wall.

  16. Bond Strength of Repaired Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Rodrigo Máximo de ARAÚJO

    2007-05-01

    Full Text Available Purpose: To evaluate the bond strength of direct composite resins and composite repairs, using 3 different commercial brands - GI: Palfique Estelite Ó (Tokuyama, GII: Filtek Z350 (3M/ESPE and GIII: Te Econon (Ivoclar/Vivadent - and the use of AdperTM Single Bond 2 (3M/ESPE adhesive system at the base/repair interface. Method: Thirty conic bases (5 mm x 5 mm x 3 mm of each commercial brand of composite resin were fabricated. All bases of each group were submitted to a thermocycling regimen of 20,000 cycles (5ºC to 55ºC ± 2ºC, for 30 s. The bases of each group were randomly assigned to 3 sub-groups, in which a combination of the commercial brands was performed for the repairs. The specimens were stored in distilled water at 37°C during 7 days and were thereafter tested in tensile strength in a universal testing machine (EMIC - MEM 2000 with 500 kgf load cell running at a crosshead speed of 1.0 mm/min until fracture. Data in MPa were submitted to ANOVA and Tukey’s test (5%.Results: The following results were found: GI: Palfique Estelite Ó (11.22±4.00 MPa, Te Econom (12.03±3.47 MPa and Filtek Z350 (10.66±2.89 MPa; GII: Palfique Estelite Ó (8.88±2.04 MPa, Te Econom (7.77±1.64 MPa and Filtek Z350 (10.50±6.14 MPa; and GIII: Palfique Estelite Ó (8.41±2.50 MPa, Te Econom (12.33±3.18 MPa and Z350 (11.73±3.54 MPa.Conclusion: The bond strengths at the interface of the different composite resins submitted to repair were statistically similar regardless of the commercial brand.

  17. Prediction of popcorn hybrid and composite means

    Directory of Open Access Journals (Sweden)

    Ramon Macedo Rangel

    2007-01-01

    Full Text Available The objectives of this study were to evaluate the combining ability of 10 popcorn populations in a circulantdiallel; to test the viability of superior hybrids; and to identify genetic composites for intrapopulation breeding. In fourcontrasting environments, 30 treatments were evaluated for grain yield (GY, plant height (PLH and popping expansion(PE, in a random block design with four replications. Results indicated that the evaluation of treatments in a larger groupof environments favors the expression of variability in genotypes. The additive effects for PE and the dominance effects forGY and PLH were highest. GY and PE of the combinations UNB2U-C1 x Angela and Braskalb x Angela were outstanding.The predicted mean PE and GY were highest for hybrid UNB2U-C1 x Angela and the composite formed by these parents(26.54 mL g-1 and 1,446.09 kg ha-1 respectively.

  18. Restoration of nonlinear motion-distorted composite frame

    Science.gov (United States)

    Yitzhaky, Yitzhak; Stern, Adrian; Kopeika, Norman S.

    2000-12-01

    A composite frame image is an interlaced composition of two sub-image odd and even fields. Such image type is common in many imaging systems that produce video sequences. When relative motion between the camera and the scene occurs during the imaging process, two types of distortion degrade the image: the edge 'staircase effect' due to the shifted appearances of the objects in successive fields, and blur due to the scene motion during each field exposure. This paper deals with restoration of composite frame images degraded by motion. In contrast to other previous works that dealt with only uniform velocity motion, here we consider a more general case of nonlinear motion. Since conventional motion identification techniques used in other works can not be employed in the case of nonlinear motion, a new method for identification of the motion from each field is used. Results of motion identification and image restoration for various motion types are presented.

  19. Early failure of Class II resin composite versus Class II amalgam restorations placed by dental students.

    Science.gov (United States)

    Overton, J D; Sullivan, Diane J

    2012-03-01

    Using the information from remake request slips in a dental school's predoctoral clinic, we examined the short-term survival of Class II resin composite restorations versus Class II dental amalgam restorations. In the student clinic, resin composite is used in approximately 58 percent of Class II restorations placed, and dental amalgam is used in the remaining 42 percent. In the period examined, Class II resin composite restorations were ten times more likely to be replaced at no cost to the patient than Class II dental amalgam restorations. A total of eighty-four resin composite restorations and six amalgam restorations were replaced due to an identified failure.

  20. Manufacturing of aluminium nano hybrid composites: a state of review

    Science.gov (United States)

    Madhukar, P.; Selvaraj, N.; Rao, CSP

    2016-09-01

    This paper gives the details of hybrid composites, their fabrication methods and evaluation of mechanical, tribological behaviour and machining characteristics. Investigations on the various aspects of Hybrid composites furnish several conclusions regarding the influence of various parameters on the performance of the composites. Mostly micro structures of the hybrid composites fabricated through casting routes have been found to be stable with the distribution of uniformed reinforce particles. therefore, the hybrid composites can be constructed with various combinations of reinforcements to carry out desirable mechanical properties. The density of Hybrid composites increases with increasing reinforcements such as SiC, TiC, B4C....etc, while incorporation of partial reinforcements like fly ash, mica, rice husk, etc. reduces the density of composites. The study also reports that the hybrid composites can be treated as a replacement for regular composite materials in different advanced applications.

  1. Influence of different restorative techniques on marginal seal of class II composite restorations

    Directory of Open Access Journals (Sweden)

    Sinval Adalberto Rodrigues Junior

    2010-02-01

    Full Text Available OBJECTIVE: To evaluate the gingival marginal seal in class II composite restorations using different restorative techniques. MATERIAL AND METHODS: Class II box cavities were prepared in both proximal faces of 32 sound human third molars with gingival margins located in either enamel or dentin/cementum. Restorations were performed as follows: G1 (control: composite, conventional light curing technique; G2: composite, soft-start technique; G3: amalgam/composite association (amalcomp; and G4: resin-modified glass ionomer cement/composite, open sandwich technique. The restored specimens were thermocycled. Epoxy resin replicas were made and coated for scanning electron microscopy examination. For microleakage evaluation, teeth were coated with nail polish and immersed in dye solution. Teeth were cut in 3 slices and dye penetration was recorded (mm, digitized and analyzed with Image Tool software. Microleakage data were analyzed statistically by non-parametric Kruskal-Wallis and Mann-Whitney tests. RESULTS: Leakage in enamel was lower than in dentin (p<0.001. G2 exhibited the lowest leakage values (p<0.05 in enamel margins, with no differences between the other groups. In dentin margins, groups G1 and G2 had similar behavior and both showed less leakage (p<0.05 than groups G3 and G4. SEM micrographs revealed different marginal adaptation patterns for the different techniques and for the different substrates. CONCLUSION: The soft-start technique showed no leakage in enamel margins and produced similar values to those of the conventional (control technique for dentin margins.

  2. Interfacial Chemistry of Moisture-Aged Class II Composite Restorations

    Science.gov (United States)

    Spencer, Paulette; Wang, Yong; Bohaty, Brenda

    2007-01-01

    Under in vivo conditions, the adhesive/dentin bond at the gingival margin of class II composite restorations can be the first defense against substances that may penetrate and ultimately undermine the composite restoration. Deterioration of this bond during aqueous aging is an area of intense investigation, but to date, the majority of our techniques have provided only an indirect assessment of the degrading components. The purpose of this study was to analyze the in situ molecular structure of adhesive/dentin interfaces in class II composite restorations, following aging in aqueous solutions. Class II preparations were cut from 12 unerupted human third molars, with a water-cooled, high-speed, dental handpiece. The prepared teeth were randomly selected for restoration with single bond (SB) and Z100 (3M). Teeth were restored, as per the manufacturer’s directions, under environmental conditions that simulated humidity and temperature characteristics of the oral cavity. Restored teeth were kept in sterile Delbecco’s phosphate saline for 48 h or 90 days. The samples were sectioned occlusogingivally and micro-Raman spectra were acquired at ~1.5 μm spatial resolution across the composite/adhesive/dentin interfaces at the gingival margins. Samples were wet throughout spectral acquisition. The relative intensity of bands associated with the adhesive in the interfacial region decreased dramatically after aqueous storage. This decrease in concert with the similar depth of dentin demineralization provides direct spectroscopic evidence of leaching of adhesive monomer from the interface during the 90 days of storage. SB adhesive infiltrated 4 –5 μm of 12-μm demineralized dentin at the gingival margin. After 90 days of aqueous storage, SB adhesive infiltration was reduced to ~2 μm, leaving ~10 μm of demineralized dentin collagen exposed at the gingival margin. The unprotected collagen at the gingival margin of the aged class II composite restorations was disorganized

  3. Marginal behaviour of self-etch adhesive/composite and combined amalgam-composite restorations.

    Science.gov (United States)

    Kournetas, Nikos; Kakaboura, Afrodite; Giftopoulos, Dimitrios; Chakmachi, Magdad; Rahiotis, Christos; Geis-Gerstorfer, J

    2010-06-01

    The aim of this study was to compare the marginal and internal adaptation in self-etching adhesive (SEA)/composite restorations with combined amalgam-resin-based composite restorations in the proximal box with and without bonding agent beneath amalgam both before and after load-cycling. Class II restorations, were manufactured as following a) Bonding agent (Clearfil Liner Bond 2V, Kuraray) beneath amalgam (Tytin, SDS Kerr) and resin-based composite (Clearfil APX, Kuraray) with SEA, b) Amalgam without bonding agent and resin-based composite with SEA and c) Resin-based composite with SEA. Each group divided into two equal subgroups (n=8). Marginal and internal adaptation of first subgroup evaluated after 7-day water storage and of the second after load-cycling in chewing simulator for 1.2 x 10(6) cycles. Marginal and internal adaptation at cervical and amalgam-composite sites evaluated by videomicroscope and ranked as "excellent"/"non-excellent". Slices of restorations examined under optical microscope to determine the quality of bonding layer. Defects in cervical adaptation observed in the three restorative techniques examined prior loading. Amalgam-composite combination in proximal surface provided comparable marginal and internal adaptation results at cervical wall, to self-etching-composite combination. Portion (25-37.5%) of amalgam-resin-based composite interfaces in proximal box presented no perfect sealing. The application of bonding agent beneath amalgam resulted in relatively inferior cervical adaptation. Loading resulted in fewer excellent restorations in all three restorative techniques but not in a statistically significant level.

  4. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  5. Anterior makeover on fractured teeth by simple composite resin restoration

    Directory of Open Access Journals (Sweden)

    Eric Priyo Prasetyo

    2011-09-01

    Full Text Available Background: In daily practice dentists usually treat tooth fractures with more invasive treatments such as crown, veneer and bridges which preparation require more tooth structure removal. While currently there is trend toward minimal invasive dentistry which conserves more tooth structure. This is enhanced with the vast supply of dental materials and equipment in the market, including restorative materials. Provided with these supporting materials and equipment and greater patient’s demand for esthetic treatment, dentists must aware of the esthetics and basic principle of conserving tooth which should retain tooth longevity. Purpose: This article showed that a simple and less invasive composite resin restoration can successfully restore anterior esthetic and function of fractured teeth which generally treated with more invasive treatment options. Case: A 19 year-old female patient came with fracture on 21 and 22. This patient had a previous history of dental trauma about nine years before and was brought to a local dentist for debridement and was given analgesic, the involved teeth were not given any restorative treatment. Case management: The fractured 21 and 22 were conventionally restored with simple composite resin restoration. Conclusion: Fracture anterior teeth would certainly disturbs patient’s appearance, but these teeth could be managed conservatively and economically by simple composite resin restoration.Latar belakang: Dalam praktek sehari-hari pada umumnya dokter gigi merawat fraktur dengan restorasi invasif seperti mahkota, veneer dan jembatan yang semuanya memerlukan pengambilan jaringan gigi lebih banyak, sedangkan saat ini trend perawatan gigi lebih menuju kearah invasif minimal yang mempertahankan jaringan gigi sebanyak mungkin. Keadaan ini ditunjang oleh tersedianya berbagai macam bahan dan peralatan kedokteran gigi di pasaran, termasuk bahan restorasi. Dengan tersedianya bahan dan peralatan yang mendukung serta tingginya

  6. Properties of hybrid resin composite systems containing prepolymerized filler particles.

    Science.gov (United States)

    Blackham, Jason T; Vandewalle, Kraig S; Lien, Wen

    2009-01-01

    This study compared the properties of newer hybrid resin composites with prepolymerized-filler particles to traditional hybrids and a microfill composite. The following properties were examined per composite: diametral tensile strength, flexural strength/modulus, Knoop microhardness and polymerization shrinkage. Physical properties were determined for each Jason T Blackham, DMD, USAF, General Dentistry, Tyndall composite group (n = 8), showing significant differences between groups per property (p hybrid composites (Z250, Esthet-X) had higher strength, composites containing pre-polymerized fillers (Gradia Direct Posterior, Premise) performed more moderately and the microfill composite (Durafill VS) had lower strength. Premise and Durafill VS had the lowest polymerization shrinkage.

  7. Influence of photoactivation method and mold for restoration on the Knoop hardness of resin composite restorations.

    Science.gov (United States)

    Brandt, William Cunha; Silva-Concilio, Lais Regiane; Neves, Ana Christina Claro; de Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mario Alexandre Coelho

    2013-09-01

    The aim of this study was to evaluate in vitro the Knoop hardness in the top and bottom of composite photo activated by different methods when different mold materials were used. Z250 (3M ESPE) and XL2500 halogen unit (3M ESPE) were used. For hardness test, conical restorations were made in extracted bovine incisors (tooth mold) and also metal mold (approximately 2 mm top diameter × 1.5 mm bottom diameter × 2 mm in height). Different photoactivation methods were tested: high-intensity continuous (HIC), low-intensity continuous (LIC), soft-start, or pulse-delay (PD), with constant radiant exposure. Knoop readings were performed on top and bottom restoration surfaces. Data were submitted to two-way ANOVA and Tukey's test (p = 0.05). On the top, regardless of the mold used, no significant difference in the Knoop hardness (Knoop hardness number, in kilograms-force per square millimeter) was observed between the photoactivation methods. On the bottom surface, the photoactivation method HIC shows higher means of hardness than LIC when tooth and metal were used. Significant differences of hardness on the top and in the bottom were detected between tooth and metal. The photoactivation method LIC and the material mold can interfere in the hardness values of composite restorations.

  8. A comparative evaluation of microleakage of restorations using silorane-based dental composite and methacrylate-based dental composites in Class II cavities: An in vitro study

    Directory of Open Access Journals (Sweden)

    Jambai Sampath Kumar Sivakumar

    2016-01-01

    Full Text Available Aim: The aim of this in vitro study was to evaluate and compare the microleakage of restorations using low shrinkage silorane-based dental composite and methacrylate-based dental composites in Class II cavity at the occlusal and gingival margins. Materials and Methods: Sixty mandibular molars were collected and divided into three experimental groups and one negative control group. Class II slot cavity was prepared on the mesial surface. Experimental groups were restored with Group I: silorane-based microhybrid composite, Group II: methacrylate-based nanohybrid composite, and Group III: Methacrylate-based microhybrid composite, respectively. Group IV: negative control. The samples were thermocycled, root apices were sealed with sticky wax and coated with nail varnish except 1 mm around the restoration. This was followed by immersion in 2% Rhodamine-B dye solution under vacuum at room temperature for 24 h. Then, the samples were sectioned longitudinally in the mesiodistal direction and evaluated under stereomicroscope ×40 magnification. Scoring was done according to the depth of dye penetration in to the cavity. Statistical analysis of the data was done. Results: The results were that no statistically significant difference in the microleakage at the occlusal margin for all the restorative materials, whereas at the gingival margin, silorane-based microhybrid composite showed less microleakage than the methacrylate-based nano- and micro-hybrid composites. Conclusion: In general, silorane-based microhybrid composite had less microleakage among the other materials used in this in vitro study.

  9. Nanoleakage Evaluation of Posterior Teeth Restored with Low Shrinkable Resin Composite- An invitro Study

    Science.gov (United States)

    Labib, Labib Mohamed; Nabih, Sameh Mahmoud

    2016-01-01

    Introduction The effect of nanoleakage on the integrity of resin–dentin bond has been in interest for long-term adhesion. Aim This study evaluated the nanoleakage in premolar teeth restored with low shrinkable resin composite. Materials and Methods A total of 40 human premolars were used for nanoleakage evaluation in this study. Each group was divided into four equal groups; Group A: using silorane with its adhesive system. Group B: using silorane with G-bond. Group C: using Filtek supreme composite with G-bond. Group D: using Filtek supreme composite with AdheSE adhesive. Nanoleakage analysed using Scaning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectrometery (EDX). Results The amount of silver present in hybrid layer depend on the adhesive used; this indicated different nanoleakage expressions in different adhesive systems. Filtek Z350 composite with G-bond showed clear silver uptake in both the adhesive and hybrid layer. Low shrinkable resin composite (silorane) with its adhesive system showed less silver penetration and slight silver peak on the elemental energy spectroscopy of energy dispersive X-Ray spectrometry (EDS) as compared to other samples. Conclusion Adhesives used between different groups, influence the location and degree of nanoleakage. There is difference in nanoleakage patterns between two-step and one-step adhesives and also among the one-step adhesives themselves. PMID:27630943

  10. Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites

    Science.gov (United States)

    2016-03-09

    AFRL-AFOSR-VA-TR-2016-0154 Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Gregory Odegard MICHIGAN TECHNOLOGICAL UNIVERSITY Final Report...SUBTITLE Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0030 5c. PROGRAM ELEMENT NUMBER...DISTRIBUTION A: Distribution approved for public release. Final Report Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Grant FA9550-13-1-0030 PI

  11. Functional tooth restoration by next-generation bio-hybrid implant as a bio-hybrid artificial organ replacement therapy.

    Science.gov (United States)

    Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi

    2014-01-01

    Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy.

  12. Fabrication and Characterization of SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  13. Vegetative and adaptive traits predict different outcomes for restoration using hybrids

    Directory of Open Access Journals (Sweden)

    Philip Crystal

    2016-11-01

    Full Text Available Abstract – Hybridization has been implicated as a driver of speciation, extinction, and invasiveness, but can also provide resistant breeding stock following epidemics. However, evaluating the appropriateness of hybrids for use in restoration programs is difficult. Past the F1 generation, the proportion of a progenitor’s genome can vary widely, as can the combinations of parental genomes. Detailed genetic analysis can reveal this information, but cannot expose phenotypic alterations due to heterosis, transgressive traits, or changes in metabolism or development. In addition, because evolution is often driven by extreme individuals, decisions based on phenotypic averages of hybrid classes may have unintended results. We demonstrate a strategy to evaluate hybrids for use in restoration by visualizing hybrid phenotypes across selected groups of traits relative to both progenitor species. Specifically, we used discriminant analysis to differentiate among butternut (Juglans cinerea L., black walnut (J. nigra L., and Japanese walnut (J. ailantifolia Carr. var. cordiformis using vegetative characters and then with functional adaptive traits associated with seedling performance. When projected onto the progenitor trait space, naturally occurring hybrids (J. ×bixbyi Rehd. between butternut and Japanese walnut showed introgression towards Japanese walnut at vegetative characters but exhibited a hybrid swarm at functional traits. Both results indicate that hybrids have morphological and ecological phenotypes that distinguish them from butternut, demonstrating a lack of ecological equivalency that should not be carried into restoration breeding efforts. Despite these discrepancies, some hybrids were projected into the space occupied by butternut seedlings’ 95% confidence ellipse, signifying that some hybrids were similar at the measured traits. Determining how to consistently identify these individuals is imperative for future breeding and species

  14. Posterior composite restoration update: focus on factors influencing form and function

    Science.gov (United States)

    Bohaty, Brenda S; Ye, Qiang; Misra, Anil; Sene, Fabio; Spencer, Paulette

    2013-01-01

    Restoring posterior teeth with resin-based composite materials continues to gain popularity among clinicians, and the demand for such aesthetic restorations is increasing. Indeed, the most common aesthetic alternative to dental amalgam is resin composite. Moderate to large posterior composite restorations, however, have higher failure rates, more recurrent caries, and increased frequency of replacement. Investigators across the globe are researching new materials and techniques that will improve the clinical performance, handling characteristics, and mechanical and physical properties of composite resin restorative materials. Despite such attention, large to moderate posterior composite restorations continue to have a clinical lifetime that is approximately one-half that of the dental amalgam. While there are numerous recommendations regarding preparation design, restoration placement, and polymerization technique, current research indicates that restoration longevity depends on several variables that may be difficult for the dentist to control. These variables include the patient’s caries risk, tooth position, patient habits, number of restored surfaces, the quality of the tooth–restoration bond, and the ability of the restorative material to produce a sealed tooth–restoration interface. Although clinicians tend to focus on tooth form when evaluating the success and failure of posterior composite restorations, the emphasis must remain on advancing our understanding of the clinical variables that impact the formation of a durable seal at the restoration–tooth interface. This paper presents an update of existing technology and underscores the mechanisms that negatively impact the durability of posterior composite restorations in permanent teeth. PMID:23750102

  15. Microleakage of Class II Combined Amalgam-Composite Restorations Using Different Composites and Bonding Agents

    Directory of Open Access Journals (Sweden)

    F. Sharafeddin

    2008-09-01

    Full Text Available Objective: The purpose of the present study was to assess the microleakage of composite restorations with and without a cervical amalgam base and to compare the results of dif-ferent composites and bonding agents.Materials and Methods: One hundred and twenty mesio-occlusal (MO and disto-occlusal (DO Class II cavities were prepared on sixty extracted permanent premolar teeth. The teeth were randomly divided into four groups of 30 and restored as follows:In group A, the mesio-occlusal cavity (MO, Scotchbond multi purpose plus + Z250 and in the disto-occlusal (DO cavity, Prompt-L-Pop + Z250 were applied. As for group B, in the MO and DO cavities, Clearfil SE Bond + Clearfil APX, and varnish + amalgam (In box + Clearfil SE Bond + Clearfil APX were used respectivelywhile in group C; the teeth were restored with amalgam and varnish mesio-occlusally and with amalgam only disto-occlusally. As for group D, varnish + amalgam (in box + Scotchbond multi purpose plus + Z250 were applied mesio-occlusally and Varnish + Amalgam (in box + Prompt–L–Pop + Z250 disto-occlusally.Marginal leakage was assessed by the degree of dye penetration into various sections of the restored teeth. Chi-square and Fisher's exact tests were used for data analysis.Results: Microleakage in gingival margin was more than that in occlusal margin (P<0.05 and microleakage of combined amalgam-composite restorations was significantly lower than that of conventional composite and amalgam restorations.Conclusion: Marginal microleakage decreased by using amalgam at the base of the box in Class II composite restorations.

  16. Fracture Toughness Evaluation of Hybrid and Nano-hybrid Resin Composites after Ageing under Acidic Environment

    Directory of Open Access Journals (Sweden)

    Ferooz M

    2015-03-01

    Full Text Available Statement of Problem: Tooth-coloured restorative materials are brittle with the major shortcomings of sensitivity to flaws and defects. Although various mechanical properties of resin composites have been studied, no fracture toughness test data for nano-hybrid composites under acidic condition for a long period of time has been published. Objectives: To compare the fracture toughness (KIc of two types of resin composites under tensile loading and to assess the effect of distilled water and lactic acid on the resistance of the restoratives to fracture after three months of immersion. Materials and Methods: Four resin composites were used: three nanohybrids [EsteliteSigma Quick (Kuraray, Luna (SDI, Paradigm (3M/ESPE] and one hybrid, Rok (SDI. The specimens were prepared using a custom-made polytetrafluorethylene split mould, stored in distilled water (pH 6.8 or 0.01mol/L lactic acid (pH 4 and conditioned at 37°C for 24 hours, 1 or 3 months. They were loaded under tensile stress using a universal testing machine; the maximum load (N to the specimen failure was recorded and the fracture toughness (KIc was calculated. Data were analysed by ANOVA and Tukey’s test using SPSS, version 18. Results: The results of two-way ANOVA did not show a significant combined effect of material, time, and storage medium on fracture toughness (p= 0.056. However, there was a strong interaction between materials and time (p=0.001 when the storage medium were ignored. After 24 h of immersion in distilled water, Paradigm revealed the highest KIc values followed by Rok, Luna and Estelite. Immersion in either distilled water or lactic acid significantly decreased the fracture toughness of almost all materials as time interval increased. Conclusions: Paradigm showed the highest fracture toughness followed by Rok, Luna and Estelite respectively. As time increased, KIc significantly decreased for almost all resin composites except for Luna which showed a slight decrease

  17. In vitro wear of flowable resin composite for posterior restorations.

    Science.gov (United States)

    Shinkai, Koichi; Taira, Yoshihisa; Suzuki, Shiro; Suzuki, Masaya

    2016-01-01

    The purpose of this study was to examine three- and two-body wear values of flowable resin composites for posterior restorations, using a mechanical loading device. The cavities prepared on flattened extracted molars were restored with flowable resin composites (Clearfil Majesty LV: MLV, Estelite Flow Quick: EFQ, Beautifil Flow Plus F00: BFP, and MI Fill: MIF) using accompanying adhesive systems. A universal resin composite (Clearfil Majesty) was used as a control. The specimens were subjected to in vitro three- and two-body wear testing. MLV showed high wear value (three-body: 14.69 µm, two-body: 0.268 mm(3)) compared with other materials tested in both three- and two-body wear tests. BFP showed high three-body wear value (5.78 µm), whereas low two-body wear value (0.008 mm(3)). MIF and EFQ showed equivalent wear values (MIF, three-body: 0.42 µm, two-body: 0.026 mm(3); EFQ, three-body: 1.15 µm, two-body: 0.14 mm(3)) to that of the control in both wear tests.

  18. Marginal adaptation of class V composite restorations submitted to thermal and mechanical cycling

    Directory of Open Access Journals (Sweden)

    Denise Sa Maia CASSELLI

    2013-01-01

    Full Text Available Objective This study evaluated the effect of the margin location and an adhesive system on the marginal adaptation of composite restorations. Material and Methods Class V cavities were prepared in bovine teeth with the gingival margin on the dentin and the incisal margin on the enamel. The cavities were restored with a micro-hybrid composite resin using an etch-and-rinse [Single Bond 2 (SB] or a self-etching adhesive [Clearfil SE Bond (CL]. After finishing and polishing the restorations, epoxy replicas were prepared. The marginal adaptation was analyzed using scanning electronic microscopy (SEM, 500 x magnification. The higher gap width in each margin was recorded (T0. After the first evaluation, the samples were submitted to thermal cycling (2,000 cycles of 5°C±2°C followed by 55°C±2°C – T1 and mechanical cycling (100,000 cycles of 50 kN and 2 Hz – T2. Replicas of samples were rebuilt after each cycling and analyzed under SEM. The data were submitted to Mann-Whitney, Wilcoxon and Friedman testing (α=0.05. Results The SB presented higher gaps in the dentin than the enamel, while there was no difference between the substrate for the CL. In the dentin, the CL showed better marginal sealing than the SB. The opposite occurred in the enamel. There were no significant differences between the baseline, thermal and mechanical cycling for any experimental condition. Conclusions The outcomes of the present study showed that the adhesive system and margin location have an important effect on the marginal adaptation of composite restorations.

  19. Advanced fiber-composite hybrids--A new structural material

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    Introduction of metal foil as part of matrix and fiber composite, or ""sandwich'', improves strength and stiffness for multidirectional loading, improves resistance to cyclic loading, and improves impact and erosion resistance of resultant fiber-composite hybrid structure.

  20. Soft Drink Influence on Margin Integrity in Composite Resin Restorations

    OpenAIRE

    Lafuente DDS, MS, Jose; Abad DDS, Karol

    2015-01-01

    The purpose of this study was to evaluate the effect that certain previously selected soda drinks could have on the integrity of the margins of composite restorations made on 25 human teeth, where the margins were placed both on enamel and dentin. Specimens were divided in different groups (n=5) to be exposed to soft drinks 30 minutes a day for 30 days. Selected drinks were: Coca Cola, Coca Cola Zero, Squirt, Gladiator and water. SEM pictures were taken at the beginning and at the 30 day mark...

  1. Human pulp response to a new composite system. Vytol composite restorative and bonding agent.

    Science.gov (United States)

    Dalleske, R L; Stanley, H R; Heyde, J B

    1978-09-01

    A new two-paste composite system (Vytol and Vytol Bonding Agent) was evaluated to establish its level of pulpal response in human teeth and to determine whether a calcium hydroxide base is required. Class V cavity preparations were cut in seventy-two teeth of ten male patients whose ages averaged 52.5 years. The teeth were restored and extracted at 1 to 7 days, 12 to 14 days, and 47 to 56 days. Histologic evaluation indicated that the unlined Vytol System reacted very similarly to other commercially available composite restorative materials and that a calcium hydroxide base is effective in reducing or eliminating adverse pulp responses.

  2. Evaluation of periodontal status adjacent to interproximal surfaces restored with composite resin, in comparison with non-restored interproximal surfaces

    Directory of Open Access Journals (Sweden)

    Elvia Christina Barros de Almeida

    2008-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the periodontal status of interproximal surfaces restored with composite resin, in comparison with non-restored interproximal surfaces. Methods: In 65 patients, we analyzed 145 restored surfaces and 145 non-restored surfaces. Results: Most of the restored surfaces (54.3% showed radiographic alterations, which was shown to be higher among restorations with clinically detected proximal excess (56.8% x 52.8%; with lack of restorative material (64.5% x 51.4%; in restorations with proximal overhang (67.7% x 44.4%; in teeth with gingival inflammation?/bleeding (55.1% x 40.0% and in teeth with probing depth exceeding 3 mm (64.3% x 52.9%. However, there were no significant associations for these variables. Of the non-restored surfaces, 24.4% showed radiographic alterations, however there were no significant associations. Conclusion: The results showed a statistical significance for radiographic alterations in restored and non-restored surfaces.

  3. Boron/aluminum graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  4. Hybrid composites of xanthan and magnetic nanoparticles for cellular uptake.

    Science.gov (United States)

    Bueno, Vânia Blasques; Silva, Anielle Martins; Barbosa, Leandro Ramos Souza; Catalani, Luiz Henrique; Teixeira-Neto, Erico; Cornejo, Daniel Reinaldo; Petri, Denise Freitas Siqueira

    2013-11-04

    We describe a fast and simple method to prepare composite films of magnetite nanoparticles and xanthan networks. The particles are distributed close to hybrid film surface, generating a coercivity of 27 ± 2 Oe at 300 K. The proliferation of fibroblast cells on the hybrid composites was successful, particularly when an external magnetic field was applied.

  5. Clinical Evaluation of Direct Composite Resin Restorations in Fractured Anterior Teeth

    OpenAIRE

    Ramírez Barrantes DDS, MS, PhD, Juan Carlos; Araujo Jr DDS, MS, PhD, Edson; Narciso Baratieri DDS, MS, PhD, Luiz

    2015-01-01

    he aim of this In Vivo study was to evaluate the influence of the cavosurface angle (with bevel, and no preparation), of direct composite resin restorations in previous fractured teeth after 4 years of clinical performance. The restorations were performed by a single operator, following a restorative standardized protocol. For the study were selected 24 upper central incisors with fracture or with class IV restorations with an indication of replacement. According to the restorative technique,...

  6. A new proposal to optimize the occlusal margin in direct resin composite restorations of posterior teeth.

    Science.gov (United States)

    Schlichting, Luís Henrique; Monteiro, Sylvio; Baratieri, Luiz Narciso

    2008-01-01

    Modern operative dentistry provides practitioners of esthetic dentistry the means for performing direct restorations in a virtually imperceptible way. However, this attribute of resin composite can cause difficulties because the absence of contrast between the tooth structure and the restoration can impede visualization of the cavity limits. The purpose of this article is to highlight some operative steps that, when appropriately performed, will facilitate the building of direct resin composite restorations in posterior teeth, significantly reducing the possibility of restorative overextension.

  7. Amalgam and composite posterior restorations: curriculum versus practice in operative dentistry at a US dental school.

    Science.gov (United States)

    Ottenga, Marc E; Mjör, Ivar

    2007-01-01

    This study recorded the number of preclinical lecture and simulation laboratory sessions spent teaching the preparation and placement of amalgam and resin composite posterior restorations. These data were compared to the use of both materials in the operative clinic as placed by third- and fourth-year students. The number of posterior restorations inserted by the students, expressed as a function of the number of restoration surfaces, was also evaluated. The results show that the teaching of posterior restorations pre-clinically has consistently favored amalgam 2.5 to 1 during the last three years. However, clinically, resin composite is being used for posterior restorations 2.3 times more often than amalgam. The only instance that favored amalgam over composite during the last year was in the placement of four surface posterior restorations. This shift in emphasis from amalgam to composite needs to be addressed within dental educational institutions so that newly graduated dentists are prepared to place composite restorations properly.

  8. Temperature Effects on Hybrid Composite Plates Under Impact Loads

    Directory of Open Access Journals (Sweden)

    Metin SAYER

    2009-03-01

    Full Text Available In this work, impact responses of carbon-glass fiber/epoxy (hybrid composites were investigated under various temperatures and increasing impact energies. The increasing impact energies were applied to the specimens at various temperatures as -20, 0, 20 and 40 oC until perforation took place of specimens. Those specimens are composed by two types of fiber orientation with eight laminates hybrid composites. An Energy profiling diagram, used for showing the relationship between impact and absorbed energy, has been used to obtain penetration and perforation thresholds of hybrid composites. Beside those, temperature effects on impact characteristics such as maximum contact force (Fmax, total deflection (d and maximum contact duration (t were also presented in figures. Finally, glass and carbon fibers exhibited more brittle characteristics at -20 oC according to other temperatures. So, perforation threshold of each hybrid composites at -20 oC was found higher than other temperatures. Keywords : Hybrid composite

  9. Effect of the curing method and composite volume on marginal and internal adaptation of composite restoratives.

    Science.gov (United States)

    Souza-Junior, Eduardo José; de Souza-Régis, Marcos Ribeiro; Alonso, Roberta Caroline Bruschi; de Freitas, Anderson Pinheiro; Sinhoreti, Mario Alexandre Coelho; Cunha, Leonardo Gonçalves

    2011-01-01

    The aim of the present study was to evaluate the influence of curing methods and composite volumes on the marginal and internal adaptation of composite restoratives. Two cavities with different volumes (Lower volume: 12.6 mm(3); Higher volume: 24.5 mm(3)) were prepared on the buccal surface of 60 bovine teeth and restored using Filtek Z250 in bulk filling. For each cavity, specimens were randomly assigned into three groups according to the curing method (n=10): 1) continuous light (CL: 27 seconds at 600 mW/cm(2)); 2) soft-start (SS: 10 seconds at 150 mW/cm(2)+24 seconds at 600 mW/cm(2)); and 3) pulse delay (PD: five seconds at 150 mW/cm(2)+three minutes with no light+25 seconds at 600 mW/cm(2)). The radiant exposure for all groups was 16 J/cm(2). Marginal adaptation was measured with the dye staining gap procedure, using Caries Detector. Outer margins were stained for five seconds and the gap percentage was determined using digital images on a computer measurement program (Image Tool). Then, specimens were sectioned in slices and stained for five seconds, and the internal gaps were measured using the same method. Data were submitted to two-way analysis of variance and Tukey test (pcuring method. For CL groups, restorations with higher volume showed higher marginal gap incidence than did the lower volume restorations. Additionally, the effect of the curing method depended on the volume. Regarding marginal adaptation, SS resulted in a significant reduction of gap formation, when compared to CL, for higher volume restorations. For lower volume restorations, there was no difference among the curing methods. For internal adaptation, the modulated curing methods SS and PD promoted a significant reduction of gap formation, when compared to CL, only for the lower volume restoration. Therefore, in similar conditions of the cavity configuration, the higher the volume of composite, the greater the gap formation. In addition, modulated curing methods (SS and PD) can improve

  10. The controlled placement and delayed polymerization technique for the direct Class 2 posterior composite restoration.

    Science.gov (United States)

    Atlas, Alan M

    2005-11-01

    Adhesion dentistry and its application to the direct posterior composite restoration is the most controversial topic in dentistry today. The concepts behind this procedure are now the backbone of restorative dentistry. Adhesion dentistry influences basic fillings, crown buildups, post-and-core restorations, cementation, orthodontics, and endodontics. Yet, controversy remains about the correct way to place a direct Class 2 posterior composite restoration. This article will examine the scientific evidence to determine which materials and placement techniques will achieve the optimum direct Class 2 posterior composite restoration at or below the cementoenamel junction using the controlled placement and delayed polymerization technique.

  11. [Restoration of composite on etched stainless steel crowns. (1)].

    Science.gov (United States)

    Goto, G; Zang, Y; Hosoya, Y

    1990-01-01

    Object of investigation The retention of composite resin to etched stainless steel crowns was tested as a possible method for restoring primary anterior teeth. Method employed 1) SEM observation Stainless steel crowns (Sankin Manufacture Co.) were etched with an aqua resia to create surface roughness and undercut to retain the composite resin to the crowns. Etching times were 1, 2, 3, 5, 8, 10 and 20 minutes, then washed in a 70% alcohol solution using an ultrasonic washer and dried. A total of 96 etched samples and non etched control samples were observed through the scanning electron microscope (Hitachi 520). 2) Shear bond strength test Stainless steel crowns were etched in an aqua resia from 1 to 20 minutes, then washed and dried. Composite resin (Photo Clearfil A, Kuraray Co.) with the bonding agent was placed on the crowns and the shear bond strength was tested in 56 samples using an Autograph (DCS-500, Shimazu). Results 1) SEM observation showed that the etching surface of stainless steel crowns created surface roughness and undercut. The most desirable surface was obtained in the 3 to 5 minute etching time specimens. 2) The highest bond strength was obtained in a 3 minute etching specimen. It was 42.12 MPa, although 29.26 MPa in mean value. Conclusion Etching with an aqua resia increased the adherence of composite resin to the surface of stainless steel crowns.

  12. Curing units' ability to cure restorative composites and dual-cured composite cements under composite overlay.

    Science.gov (United States)

    Park, Sung-Ho; Kim, Su-Sun; Cho, Yong-Sik; Lee, Chang-Kyu; Noh, Byng-Duk

    2004-01-01

    This study compared the efficacy of using conventional low-power density QTH (LQTH) units, high-power density QTH (HQTH) units, argon (Ar) laser and Plasma arc curing (PAC) units for curing dual-cured resin cements and restorative resin composites under a pre-cured resin composite overlay. The microhardness of the two types of restorative resins (Z100 and Tetric Ceram) and a dual-cured resin cement (Variolink II) were measured after they were light cured for 60 seconds in a 2 mm Teflon mold. The recorded microhardness was determined to be the optimum microhard-ness (OM). Either one of the two types of restorative resins (Z100, Tetric Ceram) or the dual cured resin cement (Variolink II) were placed under a 1.5-mm thick and 8 mm diameter pre-cured Targis (Vivadent/Ivoclar AG, Schaan, Liechtenstein) overlay. The specimens that were prepared for each material were divided into four groups depending upon the curing units used (HQTH, PAC, Laser or LQTH) and were further subdi-vided into subgroups according to light curing time. The curing times used were 30, 60, 90 and 120 seconds for HQTH; 12, 24, 36 and 48 seconds for the PAC unit; 15, 30, 45 and 60 for the Laser and 60, 120 or 180 seconds for the LQTH unit. Fifteen specimens were assigned to each sub- group. The microhardness of the upper and and lower composite surfaces under the Targis overlay were measured using an Optidur Vickers hardness-measuring instrument (Göttfert Feinwerktechnik GmbH, Buchen, Germany). In each material, for each group, a three-way ANOVA with Tukey was used at the 0.05 level of significance to compare the microhardnesses of the upper and lower composite surfaces and the previously measured OM of the material. From the OM of each material, 80% OM was calculated and the time required for the microhardness of the upper and lower surface of the specimen to reach 100% and 80% of OM was determined. In Z100 and Tetric Ceram, when the composites were light cured for 120 seconds using the HQTH lamp

  13. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites

    Energy Technology Data Exchange (ETDEWEB)

    Canché-Escamilla, G., E-mail: gcanche@cicy.mx [Unidad de Materiales, Centro de Investigación Científica de Yucatán A.C. Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida, Yucatán 97200 (Mexico); Duarte-Aranda, S. [Unidad de Materiales, Centro de Investigación Científica de Yucatán A.C. Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida, Yucatán 97200 (Mexico); Toledano, M. [Facultad de Odontología, Universidad de Granada, Campus Universitario de Cartuja s/n, Granada 18071 (Spain)

    2014-09-01

    The effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of composites for dental restoration was evaluated. Hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. Fourier transform infrared spectrum of the hybrid nanoparticles shows an intense peak at 1730 cm{sup −1}, corresponding to carbonyl groups (C=O) of the ester. The thermal stability of the hybrid particles decreases with increasing amounts of PMMA and the residual mass at 700 °C corresponds to the silica content in the hybrid particles. Composites were obtained by dispersing nanoparticles (silica or hybrid), as fillers, in a resin—bis glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (40%/60% (w/w)). The paste was then placed in a mold and polymerized under light irradiation. During the preparation of the composites, with the hybrid nanoparticles, the monomers swell the PMMA shell and after photo-curing, a semi-interpenetrating network (semi-IPN) is obtained around the silica core. The properties of the composites, obtained using the hybrid nanoparticles, depend on the filler content and the amount of PMMA in the semi-IPN matrix. For composites with similar inorganic filler contents, the composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler. - Highlights: • Hybrid nanoparticles silica/PMMA were used as fillers in dental composites. • The properties of the hybrid nanoparticle depend on the silica/PMMA content ratio. • A higher content of inorganic filler was obtained using hybrid nanoparticle. • Composites with higher modulus were obtained using hybrid nanoparticles. • A semi-IPN matrix between the PMMA shell and the resin is obtained.

  14. Marginal and internal adaptation of class II restorations after immediate or delayed composite placement

    OpenAIRE

    Dietschi, Didier; Monasevic, Manuela; Krejci, Ivo; Davidson, Carel

    2002-01-01

    Direct class II composite restorations still represent a challenge, particularly when proximal limits extend below the CEJ. The aim of this in vitro study was to evaluate the influence of the type of adhesive and the delay between adhesive placement and composite insertion on restoration adaptation. Direct class II MOD box-shaped composite restorations (n=8 per group) were placed on intact human third molars, with proximal margins 1mm above or under CEJ. All cavities were filled with a horizo...

  15. Final restoration of implants with a hybrid ceramic superstructure.

    Science.gov (United States)

    Kurbad, Andreas

    The use of materials with elastic properties for the fabrication of dental implant superstructures seems to be a promising way to reduce the functional occlusal forces on implants. Vita Enamic (Vita Zahnfabrik, Bad Säckingen), a hybrid ceramic material for CAD/CAM technology, is available in a special form that can be relatively easily combined with titanium (Ti) base connectors for the fabrication of abutment crowns and mesostructures. Thus, an easily manageable method is available for reducing peak loads on dental implant fixtures. Representative cases are presented to demonstrate the clinical workflows for a single- element solution (Ti base) and two-element solution (Ti base with mesostructure) for implant-supported crowns.

  16. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  17. A novel male sterility-fertility restoration system in plants for hybrid seed production.

    Science.gov (United States)

    Singh, Surendra Pratap; Singh, Sudhir P; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V

    2015-06-15

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility-fertility restoration system by engineering the in most nutritive anther wall layer tapetum of female and male parents. In the female parent, high-level, and stringent expression of Arabidopsis autophagy-related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1(NT131)) with TBPm3 (HFR1(NT131)-TBPm3) to exercise regulatory control over it. In the male parent, tapetum-specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1(L105A)) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1-mediated degradation of TBPm3 pool (HFR1(NT131)-TBPm3). The system can be deployed for hybrid seed production in agricultural crops.

  18. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites.

    Science.gov (United States)

    Canché-Escamilla, G; Duarte-Aranda, S; Toledano, M

    2014-09-01

    The effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of composites for dental restoration was evaluated. Hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. Fourier transform infrared spectrum of the hybrid nanoparticles shows an intense peak at 1,730 cm(-1), corresponding to carbonyl groups (CO) of the ester. The thermal stability of the hybrid particles decreases with increasing amounts of PMMA and the residual mass at 700°C corresponds to the silica content in the hybrid particles. Composites were obtained by dispersing nanoparticles (silica or hybrid), as fillers, in a resin-bis glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (40%/60% (w/w)). The paste was then placed in a mold and polymerized under light irradiation. During the preparation of the composites, with the hybrid nanoparticles, the monomers swell the PMMA shell and after photo-curing, a semi-interpenetrating network (semi-IPN) is obtained around the silica core. The properties of the composites, obtained using the hybrid nanoparticles, depend on the filler content and the amount of PMMA in the semi-IPN matrix. For composites with similar inorganic filler contents, the composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effect of polishing techniques and time on surface roughness, hardness and microleakage of resin composite restorations.

    Science.gov (United States)

    Venturini, Daniela; Cenci, Maximiliano Sérgio; Demarco, Flávio Fernando; Camacho, Guilherme Brião; Powers, John M

    2006-01-01

    This study evaluated the effects of immediate and delayed polishing on the surface roughness, microhardness and microleakage of a microfilled (Filtek A110) and a hybrid (Filtek Z250) resin composite. Standardized preparations were made on the buccal surfaces of 256 bovine teeth; half were restored with each composite (128 teeth per composite). Immediately after curing, gross finishing was carried out with #280 sandpaper. The specimens restored with each composite were divided into two subgroups. The first group (IM) was polished immediately after gross finishing, using three different systems (n=16): Sequence A, Sof-Lex; Sequence B, Flexicups and Sequence C, Flexicups + Jiffy Polishing Brush + Flexibuffs. The specimens were then stored for three weeks in saline 37 degrees C. The second group (DE) was stored for two weeks, then polished with the same systems and stored for one additional week. The controls (n=16) were analyzed without polishing. Five readings per specimen were taken for surface roughness and hardness. After immersion in basic fuchsin, microleakage was evaluated (40x) using standardized scores. The data were analyzed at a significance level of 0.05, with analysis of variance and an SNK test (surface roughness and microhardness) or with Kruskal-Wallis (microleakage). In both composites, only for the sequential technique was there an influence of delay in polishing on roughness (Ra). Flexicups exhibited the highest Ra of the three systems. The IM and Filtek Z-250 groups showed higher hardness than the DE and Filtek A-110 groups, respectively. Dentin margins showed more leakage than enamel margins; the sequential technique produced more leakage than the other techniques in dentin (pcomposite, time and polishing technique--had a significant influence on surface roughness, hardness and microleakage. Generally, immediate polishing produced no detrimental effect compared to delayed polishing.

  20. Control and design of volumetric composition in pultruded hybrid fibre composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Hashemi, Fariborz; Tahir, Paridah

    2016-01-01

    Hybrid composites consist of two of more fibre phases in a common matrix phase. This is a challenge for the control and design of the volumetric composition and microstructural uniformity of such composites. In the present study, a model is presented for the prediction of the complete volumetric...... composition (i.e. volume fractions of fibres, matrix and porosity) in hybrid fibre composites. The model is based on a constant local fibre volume fraction criterion. Good agreement is found between model predictions and experimental data of pultruded hybrid kenaf/glass fibre composites with variable hybrid...... fibre weight mixing ratios. To demonstrate the suitability of the model, simulations are performed for four different cases of volumetric composition in hybrid kenaf/glass composites....

  1. Microshear bond strength between restorative composites and resin cements

    Directory of Open Access Journals (Sweden)

    Rubens Nazareno GARCIA

    2008-08-01

    Full Text Available Introduction and objective: The techniques of adhesive cementationhave been widely used in dental restoration. The purpose of this studywas to evaluate the microshear bond strength between restorativecomposites and resin cements. Material and methods: Twenty composites blocks were prepared in order to obtain a flat surface, using 600-grid sandpaper. The samples were randomly divided in four groups(n=15 according to the experimental groups: [1] Z250 block + Single Bond + cylinder of RelyX ARC; [2] Z250 block + Single Bond + cylinder of Panavia F; [3] Clearfil AP-X block + Clearfil SE Bond adhesive + cylinder of RelyX ARC; [4] Clearfil AP-X block + Clearfil SE Bond adhesive + cylinder of Panavia F. The adhesive systems and the resin cements were applied according to the experimental groups, using a Tygon matrix.The samples were stored in distilled water at 37±2ºC for 24 hours.Microshear bond strengths were determined using an apparatus attached to an Instron universal testing machine at a crosshead speed of 0.5 mm/minute. Results: The results obtained in MPa (SD were statistically analyzed (ANOVA and Tukey test, p<0.05, and showed the following results: [1] 39.76 (5.34; [2] 45.01 (8.53; [3] 46.39 (9.22; [4]45.78 (9.06.There was no statistically significant difference between groups [1] and [2]; and between groups [3] and [4]. However, there was statistically significant difference between groups [1] and [3]. Conclusion:When Clearfil AP-X block was used with Clearfil SE Bond adhesive or RelyX resin cement, the microshear bond strength values were higher.The results suggest that in the union of the resin cements to the restorative composites, hydrophobic adhesives are necessary.

  2. Hybrid nanocellulose/nanoclay composites for food packaging applications

    DEFF Research Database (Denmark)

    Trifol Guzman, Jon

    to larger spherulite sizes, which had a more significant impacton water diffusion and transparency reduction but also showed an increased water sorption. Finally, it was found that cellulose nanofibers reduced water diffusion to an extent similar to C30B (21% vs.27%), while hybrid composites showed 49......% decrease, albeit CNF based composites showed increased water sorption (7% for PLA/CNF 1% composite and 9% for PLA/CNF 1%/C30B 1% when compared with neat PLA).The reduced diffusivity of the hybrid nanocomposites suggested that the material was promising for active packaging, since low diffusivity leads....../gCNF and hybrid PLA/CNF/C30B composites were prepared and evaluated on controlled release applications. It was established that the surface modification of CNF greatly enhanced the dispersion of the gCNF and that carvacrolloaded hybrid composites showed a decreased release rate, high ductility and a reduced WVTR...

  3. A Novel Frequency Restoring Strategy of Hydro-PV Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wei, Feng; Kai, Sun; Guan, Yajuan

    2014-01-01

    The conventional PV systems based on the voltage inverters only inject dispatched power to the utility grid when they work at a grid-connected mode in the hydro-PV hybrid microgrid. Due to the droop method employed for load sharing between generators, as well as the enormous inertia of system....... The existence of frequency steady-state error and the slow active power/frequency dynamic response are inevitable. Therefore, a novel frequency restoring strategy for the hydro-PV hybrid microgrid based on the improved hierarchical control of PV systems is proposed in this paper. The output active power of PV...

  4. Effect of aggressive beverage on the color stability of different nano-hybrid resin based composite

    Directory of Open Access Journals (Sweden)

    Hicham Oday Nuaimi

    2014-01-01

    Full Text Available Background: The purpose of this study was to evaluate the color stability of different types of nano-hybrid resin based composite restorative materials upon exposure to aggressive staining solutions (coffee and tea over time. The color of all specimens before and after storage in the solutions were measured by a spectrophotometer based on CIE Lab system that is recommended by the American Dental Association and the color differences thereby is calculated. Materials and Methods: The color differences of three nano-hybrid composites after immersion for 30 days in tea and coffee as aggressive beverage solutions. Results: Within the limitations of the study, Venus Diamond was found the most color stable in tea, while Ceram X was shown the most color stable in coffee. There were statistically significant differences between Filtek 350 XT in tea and coffee storage (P 0.005. Conclusion: Staining solutions are significant factors that affect color stability of composite resins.

  5. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  6. Super-hybrid composites - An emerging structural material

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Specimens of super-hybrids and advanced fiber composites were subjected to extensive tests to determine their mechanical properties, including impact and thermal fatigue. The super-hybrids were fabricated by a procedure similar to that reported by Chamis et al., (1975). Super-hybrids subjected to 1000 cycles of thermal fatigue from -100 to 300 F retained over 90% of their longitudinal flexural strength and over 75% of their transverse flexural strength; their transverse flexural strength may be as high as 8 times that of a commercially supplied boron/1100-Al composite. The thin specimen Izod longitudinal impact resistance of the super-hybrids was twice that of the boron/110-Al material. Super-hybrids subjected to transverse tensile loads exhibited nonlinear stress-strain relationships. The experimentally determined initial membrane (in-plane) and bending elastic properties of super-hybrids were predicted adequately by linear laminate analysis.

  7. Design and Ballistic Performance of Hybrid Composite Laminates

    Science.gov (United States)

    Ćwik, Tomasz K.; Iannucci, Lorenzo; Curtis, Paul; Pope, Dan

    2016-10-01

    This paper presents an initial design assessment of a series of novel, cost-effective, and hybrid composite materials for applications involving high velocity impacts. The proposed hybrid panels were designed in order to investigate various physical phenomenon occurring during high velocity impact on compliant laminates from a previous study on Dyneema® and Spectra®. In the first, screening phase of the study twenty different hybrid composite laminates were impacted with 20 mm Fragment Simulating Projectiles at 1 km/s striking velocity. The best performing concepts were put forward to phase II with other hybrid concepts involving shear thickening fluids, commonly used in low velocity impacts. The results indicated that it is possible to design hybrid laminates of similar ballistic performance as the reference Dyneema® laminate, but with lower material costs. The optimal hybrid concept involves a fibre reinforced Polypropylene front and a Dyneema® backing.

  8. Restoring the incisal edge.

    Science.gov (United States)

    Terry, Douglas A

    2005-01-01

    Restorative dentistry evolves with each development of new material and innovative technique. Selection of improved restorative materials that simulate the physical properties and other characteristics of natural teeth, in combination with restorative techniques such as the proximal adaptation and incremental layering, provide the framework that ensures the optimal development of an esthetic restoration. These advanced placement techniques offer benefits such as enhanced chromatic integration, polychromatism, ideal anatomical form and function, optimal proximal contact, improved marginal integrity and longer lasting directly placed composite restorations. The purpose of this article is to give the reader a better understanding of the complex restorative challenge in achieving true harmonization of the primary parameters in esthetics (that is, color, shape and texture) represented by the replacement of a single anterior tooth. The case presented demonstrates the restoration of a Class IV fracture integrating basic adhesive principles with these placement techniques and a recently developed nanoparticle hybrid composite resin system (Premise, Kerr/Sybron, Orange, CA). The clinical presentation describes preoperative considerations, tooth preparation, development of the body layer, internal characterization with tints, development of the artificial enamel layer, shaping and contouring, and polishing of a Class IV composite restoration. The clinical significance is that anterior tooth fractures can be predictably restored using contemporary small particle hybrid composite resin systems with the aforementioned restorative techniques. These placement techniques when used with proper attention to preparation design, adhesive protocol and finishing and polishing procedures, allow the clinician to successfully restore form, function and esthetics to the single anterior tooth replacement.

  9. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  10. Semidirect posterior composite restorations with a flexible die technique: A case series.

    Science.gov (United States)

    Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler

    2017-09-01

    Besides indirect use in the laboratory and direct use for restorations, composites can be used in semidirect procedures. The authors describe the semidirect composite restoration technique by using a flexible die for large lesions in posterior teeth. The authors present illustrations of the clinical steps and the outcomes immediately after the procedures. The authors placed chairside inlay, onlay, and overlay composite restorations. The final esthetic outcome, along with function and anatomic form recovery, demonstrated that this might be a viable cost-effective alternative technique to laboratory-fabricated indirect restorations. Clinicians can restore large preparations in posterior teeth successfully with semidirect composite restorations in a single appointment by using the flexible die technique, resulting in satisfactory function and esthetic outcome. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  11. Physical Properties of a New Sonically Placed Composite Resin Restorative Material

    Science.gov (United States)

    2013-06-06

    resins . Packable composite resins were first introduced as an alternative to amalgam .10 They are characterized by a high filler load and a filler...clearance: -"_Paper _Article _ Book _ Poster _ Presentation _Other 6. Title: Physical Properties of a New Sonically Placed Composite Resin Restorative...Properties of a New Sonically Placed Composite Resin Restorative Material ABSTRACT A new nanohybrid composite activated by sonic energy (SonicFill

  12. Fabrication of Inorganic–Organic Composites for Dental Restorative Materials—A Review

    Institute of Scientific and Technical Information of China (English)

    CUI; Bencang; YANG; Qing; LI; Jing; WANG; Huining; LIN; Yuanhua; SHEN; Yang; LI; Ming; DENG; Xuliang; NAN; Cewen

    2015-01-01

    The paper is to review recent developments on composite dental restorative materials in terms of filler dimensions. The mechanical properties, biocompatibility and aesthetic performance are determined by fillers morphology, contents and chemical composition. We mainly summarized the 0-, 1-, and 2-dimensional fillers of composites used in dental restoration and their effects on the performance, especially the mechanical properties, which imply desirable applications for dental composites designed with these fillers.

  13. Effect of Light Direction on the Microleakage of Micro Filled and Hybrid Resin Composites

    Directory of Open Access Journals (Sweden)

    A Davari

    2010-11-01

    Full Text Available Introduction: One of the most important factors affecting the marginal seal of composite restorations is polymerization shrinkage. The aim of this study was to evaluate the micro leakage of two resin composites cured with two light directions. Methods: In this experimental study, forty similar class III preparations were prepared in 40 human anterior teeth. The teeth were randomly divided in two groups according to the resin composite used for filling the cavities (Microfilled composite: Heliomolar or hybrid composite: Spectrum. Etch group was further divided in two subgroups according to the light direction buccal and lingual. All the cavities were filled with the composites and cured for 40 seconds. The teeth were then thermocycled for 500 cycles between 5-55°c and covered with nail polish except for 1mm around cavity margins and immersed in 1% methylene blue for 12 hours. The teeth were sectioned and the dye penetration scores were recorded using stereo microscope. Data was analyzed using non parametric Mann Whitney test. Results: No significant difference was observed between the composite resins (p>0.05 or the light directions used for curing the composite resins (p>0.05. Conclusion: Directions of the light does not have any effect on the micro leakage of hybrid or micro filled composites in class III cavities.

  14. Hybrid yarn for thermoplastic fibre composites. Summary of technical results

    Energy Technology Data Exchange (ETDEWEB)

    Lystrup, Aa.

    1998-01-01

    This report is a summary of the technical results obtained within the framework program: `Hybrid Yarn for Thermoplastic Fibre Composites`. The program which started at the 15th of June 1994 and expired at the 31st of December 1997, was a framework program under the Danish Materials Technology Program, MUP2. A new type of hybrid yarn for production of fibre composites with thermoplastic matrix material is developed and tested. A hybrid yarn is a commingled textured yarn consisting of structural fibres and thermoplastic fibres. In a subsequent heating and consolidation process the plastic fibres melt and become the matrix material in the formed fibre composite material. Two types of processing technology are developed and studied: Vacuum consolidation and press consolidation. Vacuum consolidation of hybrid yarn fabrics is suitable for fabrication of larger parts such as wind turbine blades, and press consolidation is a fast process suitable for smaller parts such as automobile body parts. To demonstrate the potential for industrial use of the developed hybrid yarn and process technologies a section of a wind turbine blade, an inspection cover and a car door-post have been produced. An environmental evaluation of the manufacture of hybrid yarn and composites shows that the use of the hybrid yarn is a gain for both the working environment and the external environment, compared to the use of thermosetting polymer composites. (au)

  15. The effectiveness of different polymerization protocols for class II composite resin restorations.

    NARCIS (Netherlands)

    Jong, L.C.G. de; Opdam, N.J.M.; Bronkhorst, E.M.; Roeters, F.J.M.; Wolke, J.G.C.; Geitenbeek, B.

    2007-01-01

    OBJECTIVES: To investigate the effect of reduced light exposure times on Vickers hardness (VH) of class II composite resin restorations. METHODS: Class II restorations were made in vitro in three 2mm thick increments in a human molar. Two composite resins (Clearfil AP-X; Esthet-X) were polymerized w

  16. Five-year clinical performance of posterior resin composite restorations placed by dental students.

    NARCIS (Netherlands)

    Opdam, N.J.M.; Loomans, B.A.C.; Roeters, F.J.M.; Bronkhorst, E.M.

    2004-01-01

    OBJECTIVES: To investigate the survival over a five-year period of posterior resin composite restorations placed by students. METHODS: Class I and II resin composite restorations placed by second-fourth year dental students were evaluated. Patients attended the dental school every 6 months for a reg

  17. Anterior composite restorations: A systematic review on long-term survival and reasons for failure

    NARCIS (Netherlands)

    Demarco, F.F.; Collares, K.; Coelho-de-Souza, F.H.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J.M.

    2015-01-01

    OBJECTIVE: In this study the literature was systematically reviewed to investigate the clinical longevity of anterior composite restorations. DATA: Clinical studies investigating the survival of anterior light-cured composite restorations with at least three years of follow-up were screened and main

  18. Comparison of wear and clinical performance between amalgam, composite and open sandwich restorations: 2-year results.

    Science.gov (United States)

    Sachdeo, A; Gray, Gordon B; Sulieman, M A; Jagger, Daryll C

    2004-03-01

    There has been some disquiet over the use of mercury containing restorative materials. The most commonly used alternative is composite resin but this has the potential disadvantage associated with wear and marginal leakage, which in turn, has proven to result in secondary caries and sensitivity. To overcome the shortcomings of a directly placed composite restoration, the glass-ionomer/composite open sandwich technique was introduced followed by the subsequent introduction of compomer systems. The aims of this study were to evaluate the wear and clinical performance of a control group of amalgam restorations compared with that of a group of posterior composite resin restorations fillings and a group of compomer/composite open sandwich restorations placed by a single general dental practitioner. The duration of the study was 2 years. One hundred and thirty three (71.4%) patients were successfully recalled and the wear and clinical performance of each restoration after 6, 12 and 24 months was measured, indirectly. There was no statistically significant difference recorded between the groups at 6 months or 1 year (p > 0.05). However, at the end of the 2-year study, there was a significantly lower rate of wear recorded for the control amalgam restorations compared with other two groups (p = 0.033). There was no statistically significant difference in wear recorded between the two groups of tooth-coloured restorations (p > 0.05). With regards to clinical performance of the restorations, occlusal and proximal contacts in each group of restoration remained satisfactory throughout the study.

  19. Impact resistance of hybrid composite fan blade materials

    Science.gov (United States)

    Friedrich, L. A.

    1974-01-01

    Improved resistance to foreign object damage was demonstrated for hybrid composite simulated blade specimens. Transply metallic reinforcement offered additional improvement in resistance to gelatin projectile impacts. Metallic leading edge protection permitted equivalent-to-titanium performance of the hybrid composite simulated blade specimen for impacts with 1.27 cm and 2.54 cm (0.50 and 1.00 inch) diameter gelatin spheres.

  20. Comparative in vivo evaluation of restoring severely mutilated primary anterior teeth with biological post and crown preparation and reinforced composite restoration

    Directory of Open Access Journals (Sweden)

    Grewal N

    2008-01-01

    Full Text Available Background: This study was designed to compare the success rate of biological and composite restorations when used to replace structural loss of primary anterior teeth using intracanal post for radicular support of the restoration. Materials and Methods: Forty-two patients aged between 3-5 years presenting with early childhood caries (ECC received at least one or more composite and biological restorations for comparative evaluation. A total of 150 restorations were done (75 biological restorations and 75 composite restorations. The restorations were evaluated single-blind according to a modified USPHS system. Assessment of the patient′s response in accepting a biological restoration, psychological impact of the restorations, view of the parents, and peer group reviews, etc. were recorded in a response sheet in presence of the child and the parents. Observations and Results: In vivo clinical performance of biological post and crown restorations and intracanal reinforced composite restorations was comparable with respect to shade match, marginal discoloration, marginal integrity, surface finish, gingival health, retention, and recurrent carious lesions. The cost effectiveness of biological restorations was certainly a positive attribute. Conclusion: The biological restoration presented as a cost effective, clinician friendly, less-technique sensitive, and esthetic alternative to commercially available restorative materials used for restoring deciduous teeth affected by ECC.

  1. Comparative in vivo evaluation of restoring severely mutilated primary anterior teeth with biological post and crown preparation and reinforced composite restoration.

    Science.gov (United States)

    Grewal, N; Seth, R

    2008-12-01

    This study was designed to compare the success rate of biological and composite restorations when used to replace structural loss of primary anterior teeth using intracanal post for radicular support of the restoration. Forty-two patients aged between 3-5 years presenting with early childhood caries (ECC) received at least one or more composite and biological restorations for comparative evaluation. A total of 150 restorations were done (75 biological restorations and 75 composite restorations). The restorations were evaluated single-blind according to a modified USPHS system. Assessment of the patient's response in accepting a biological restoration, psychological impact of the restorations, view of the parents, and peer group reviews, etc. were recorded in a response sheet in presence of the child and the parents. In vivo clinical performance of biological post and crown restorations and intracanal reinforced composite restorations was comparable with respect to shade match, marginal discoloration, marginal integrity, surface finish, gingival health, retention, and recurrent carious lesions. The cost effectiveness of biological restorations was certainly a positive attribute. The biological restoration presented as a cost effective, clinician friendly, less-technique sensitive, and esthetic alternative to commercially available restorative materials used for restoring deciduous teeth affected by ECC.

  2. Nano and hybrid aluminum based metal matrix composites: an overview

    Directory of Open Access Journals (Sweden)

    Muley Aniruddha V.

    2015-01-01

    Full Text Available Aluminium matrix composites (AMCs are potential light weight engineering materials with excellent properties. AMCs find application in many areas including automobile, mining, aerospace and defence, etc. Due to technological advancements, it is possible to use nano sized reinforcement in Al matrix. Nano sized reinforcements enhance the properties of Al matrix compared to micro sized reinforcements. Hybrid reinforcement imbibe superior properties to aluminium matrix composites as compared with Al composites having single reinforcement. This paper is focused on overview of development in the field of Al based metal matrix with nano and hybrid aluminium based composites.

  3. Variations in survival time for amalgam and resin composite restorations: a population based cohort analysis.

    Science.gov (United States)

    Birch, S; Price, R; Andreou, P; Jones, G; Portolesi, A

    2016-09-01

    To estimate the association between the restorative material used and time to further treatment across population cohorts with universal coverage for dental treatment. Cohort study of variation in survival time for tooth restorations over time and by restoration material used based on an Accelerated Failure Time model. Primary dental care clinics. Members of Canada's First Nations and Inuit population covered by the Non-Insured Health Benefits program of Health Canada for the period April 1, 1999 to March 31, 2012. Tooth restorations using resin composite or amalgam material. Survival time of restoration to further treatment. Median survival time for resin composite was 51 days longer than amalgam, for restorations placed in 1999-2000. This difference was not statistically significant (p⟩0.05). Median survival times were lower for females, older subjects. Those visiting the dentist annually, and decreased monotonically over time from 11.2 and 11.3 years for resin composite and amalgam restorations respectively placed in 1999-2000 to 6.9 and 7.0 years for those placed in 2009-10. Resin composite restorations performed no better than amalgams over the study period, but cost considerably more. With the combination of the overall decrease in survival times for both resin composite and amalgam restorations and the increase in use of resin composite, the costs of serving Health Canada's Non-Insured Health Benefits population will rise considerably, even without any increase in the incidence of caries.

  4. Dry sliding wear studies of aluminum matrix hybrid composites

    Directory of Open Access Journals (Sweden)

    V.V. Monikandan

    2016-12-01

    Full Text Available In the present work, hybrid composites are fabricated with self-lubricating characteristics to make them as resource-efficient materials. AA6061-10 wt. % B4C–MoS2 hybrid composites reinforced with 2.5, 5 and 7.5 wt. % concentration of MoS2 particles are produced using stir casting technique, and mechanical and tribological properties are evaluated. Microstructural characterization of the hybrid composites revealed the uniform distribution of reinforcement (B4C and MoS2 particles in the matrix material. Hardness and fracture toughness of the hybrid composites are decreased monotonously with an increase in the addition of MoS2 particles. Dry sliding tribological studies conducted using a pin-on-disk tribotester under atmospheric conditions revealed the formation of MoS2-lubricated tribolayer on the worn pin surface which significantly influenced the tribological properties. The addition of MoS2 particles decreased the friction coefficient and wear rate of the hybrid composites. Delamination and abrasion are observed to be the controlling wear mechanisms and material in the form of platelet-shaped debris, and flow-type chip debris is formed, and a long and shallow crater on the worn pin surface of the hybrid composite is also observed.

  5. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  6. The effects of restorative composite resins on the cytotoxicity of dentine bonding agents.

    Science.gov (United States)

    Kim, Kyunghwan; Son, Kyung Mi; Kwon, Ji Hyun; Lim, Bum-Soon; Yang, Hyeong-Cheol

    2013-01-01

    During restoration of damaged teeth in dental clinics, dentin bonding agents are usually overlaid with restorative resin composites. The purpose of this study was to investigate the effects of restorative resin composites on cytotoxicity of dentin bonding agents. Dentin bonding agents were placed on glass discs, pre-cured and uncured resin composite discs. Bonding agents on the glass discs and composite resins discs were light cured and used for agar overlay cytotoxicity testing. Dentin bonding agents on composite resin discs exhibited far less cytotoxicity than that on glass discs. The polymerization of resin composite increased the surface hardness and decreased the cytotoxicity of bonding agents. In conclusion, composite resins in dental restorations are expected to enhance the polymerization of dentin bonding agents and reduce the elution of resin monomers, resulting in the decrease of cytotoxicity.

  7. Buckling analysis of a ring stiffened hybrid composite cylinder

    Science.gov (United States)

    Potluri, Rakesh; Eswara Kumar, A.; Navuri, Karteek; Nagaraju, M.; Mojeswara Rao, Duduku

    2016-09-01

    This study aims to understand the response of the ring stiffened cylinders made up of hybrid composites subjected to buckling loads by using the concepts of Design of Experiments (DOE) and optimization by using Finite Element Method (FEM) simulation software Ansys workbench V15. Carbon epoxy and E-glass epoxy composites were used in the hybrid composite. This hybrid composite was analyzed by using different layup angles. Central composite design (CCD) was used to perform design of experiments (D.O.E) and kriging method was used to generate a response surface. The response surface optimization (RSO) was performed by using the method of the multi-objective genetic algorithm (MOGA). After optimization, the best candidate was chosen and applied to the ring stiffened cylinder and eigenvalue buckling analysis was performed to understand the buckling behavior. Best laminate candidates with high buckling strength have been identified. A generalized procedure of the laminate optimization and analysis have been shown.

  8. Fracture resistance of endodontically treated teeth restored with indirect composite inlay and onlay restorations – An in vitro study

    Science.gov (United States)

    Alshiddi, Ibraheem F.; Aljinbaz, Amjad

    2015-01-01

    Objective The purpose of this in vitro study was to evaluate and compare the fracture resistance and fracture mode of extensive indirect inlay and onlay composite resin restorations performed for endodontically treated premolars. Materials and methods A total of 55 extracted maxillary premolars were randomly divided into four groups. The first group (n = 15) remained untreated to serve as a positive control; the second group (n = 15) was endodontically treated with inlay cavities prepared and restored with indirect composite inlay restorations; the third group (n = 15) was also endodontically treated with onlay cavities prepared and restored with indirect composite onlay restorations; and the fourth group (n = 10) was endodontically treated with mesio-occlusodistal (MOD) cavities prepared and left unrestored to serve as negative controls. Dual cure indirect composite resin was used to fabricate the inlay and onlay restorations performed for the second and third groups, respectively. All teeth were subjected to compressive axial loading test using a metal ball (6 mm in diameter) in a universal testing machine (Instron 1195) with a cross-head speed of 0.5 mm/min until a fracture occurred. Statistical analysis of fracture resistance and fracture mode were performed with analysis of variance (ANOVA) (α = 0.05) and Kruskal–Wallis (α = 0.05) tests, respectively. Results For the four treatment groups, the mean fracture resistance values were 1326.9 N, 1500.1 N, 1006.1 N, and 702.7 N, respectively. Statistical analyses showed no significant differences between the mean fracture resistance of the intact tooth group and the inlay restoration group (p > 0.05), while significant differences were observed between the mean fracture resistance of all the other groups (p onlay restorations. However, the fractures that accompanied the inlay restorations were more severe and were unable to be restored. PMID:26792970

  9. Stabilization of composition fluctuations in mixed membranes by hybrid lipids

    Science.gov (United States)

    Safran, Samuel; Palmieri, Benoit

    2013-03-01

    A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.

  10. Comparative in vivo evaluation of restoring severely mutilated primary anterior teeth with biological post and crown preparation and reinforced composite restoration

    OpenAIRE

    Grewal N; Seth R

    2008-01-01

    Background: This study was designed to compare the success rate of biological and composite restorations when used to replace structural loss of primary anterior teeth using intracanal post for radicular support of the restoration. Materials and Methods: Forty-two patients aged between 3-5 years presenting with early childhood caries (ECC) received at least one or more composite and biological restorations for comparative evaluation. A total of 150 restorations were done (75 biological re...

  11. Fracture Toughness of Nanohybrid and Hybrid Composites Stored Wet and Dry up to 60 Days

    Directory of Open Access Journals (Sweden)

    Sookhakiyan M

    2017-03-01

    Full Text Available Statement of Problem: Patients’ demand for tooth-colored restoratives in the posterior region is increasing. Clinicians use universal nanohybrid resin composites for both anterior and posterior regions. There are few published reports comparing fracture toughness of nonohybrids and that of hybrid composite stored wet and dry. Objectives: To investigate the fracture toughness of three nanohybrids compared to that of a hybrid resin composite stored dry or wet up to 60 days, using four- point bending test. Materials and Methods: Four resin composites were used: three nanohybrids; Filtek Supreme (3M, Ice (SDI, TPH3 (Dentsply and one hybrid Filtek P60 (3M. For each material, 40 rectangular notched beam specimens were prepared with dimensions of 30 mm × 5mm × 2mm. The specimens were randomly divided into 4 groups (n = 10 and stored at 37ºC either in distilled water or dry for 1 and 60 days. The specimens were placed on the four-point test jig and subjected to force (N using universal testing machine loaded at a crosshead speed of 0.5mm/min and maximum load at specimen failure was recorded and KIc was calculated. Results: Three-way ANOVA showed a significant interaction between all the factors (all p < .0001. Except for TPH3, all tested materials showed significantly higher KIc when stored dry than stored wet (p < 0.05. After 1 day of dry storage, Ice showed the highest KIc (2.04 ± 0.32 followed by Filtek P60 and the lowest was for Filtek Supreme (1.39 ± 0.13. The effect of time on fracture toughness was material dependent. Conclusions: Wet storage adversely affected the fracture toughness of almost all materials. Keeping the restoration dry in the mouth may increase their fracture toughness. Therefore, using a coating agent on the surface of restoration may protect them from early water uptake and increase their strength during a time period.

  12. Preparing and Restoring Composite Resin Restorations. The Advantage of High Magnification Loupes or the Dental Surgical Operating Microscope.

    Science.gov (United States)

    Mamoun, John

    2015-01-01

    Use of magnification, such as 6x to 8x binocular surgical loupes or the surgical operating microscope, combined with co-axial illumination, may facilitate the creation of stable composite resin restorations that are less likely to develop caries, cracks or margin stains over years of service. Microscopes facilitate observation of clinically relevant microscopic visual details, such as microscopic amounts of demineralization or caries at preparation margins; microscopic areas of soft, decayed tooth structure; microscopic amounts of moisture contamination of the preparation during bonding; or microscopic marginal gaps in the composite. Preventing microscope-level errors in composite fabrication can result in a composite restoration that, at initial placement, appears perfect when viewed under 6x to 8x magnification and which also is free of secondary caries, marginal staining or cracks at multi-year follow-up visits.

  13. A novel male sterility-fertility restoration system in plants for hybrid seed production

    Science.gov (United States)

    Singh, Surendra Pratap; Singh, Sudhir P.; Pandey, Tripti; Singh, Ram Rakshpal; Sawant, Samir V.

    2015-01-01

    Hybrid seeds are used for stimulated crop production, as they harness heterosis. The achievement of complete male-sterility in the female-parent and the restored-fertility in F1-hybrids are the major bottlenecks in the commercial hybrid seed production. Here, we report a male sterility–fertility restoration system by engineering the inmost nutritive anther wall layer tapetum of female and male parents. In the female parent, high–level, and stringent expression of Arabidopsis autophagy–related gene BECLIN1 was achieved in the tapetum, which altered the tapetal degeneration program, leading to male sterility. This works on our previously demonstrated expression cassette based on functional complementation of TATA-box mutant (TGTA) promoter and TATA-binding protein mutant3 (TBPm3), with modification by conjugating Long Hypocotyle in Far-Red1 fragment (HFR1NT131) with TBPm3 (HFR1NT131-TBPm3) to exercise regulatory control over it. In the male parent, tapetum–specific Constitutive photo-morphogenesis1 (COP1) was expressed. The F1 obtained by crossing these engineered parents showed decreased BECLIN1 expression, which was further completely abolished when COP1-mutant (COP1L105A) was used as a male parent, leading to normal tapetal development and restored fertility. The system works on COP1-HFR1 interaction and COP1–mediated degradation of TBPm3 pool (HFR1NT131-TBPm3). The system can be deployed for hybrid seed production in agricultural crops. PMID:26073981

  14. Macroinvertebrate Taxonomic and Functional Trait Compositions within Lotic Habitats Affected By River Restoration Practices

    Science.gov (United States)

    White, J. C.; Hill, M. J.; Bickerton, M. A.; Wood, P. J.

    2017-09-01

    The widespread degradation of lotic ecosystems has prompted extensive river restoration efforts globally, but many studies have reported modest ecological responses to rehabilitation practices. The functional properties of biotic communities are rarely examined within post-project appraisals, which would provide more ecological information underpinning ecosystem responses to restoration practices and potentially pinpoint project limitations. This study examines macroinvertebrate community responses to three projects which aimed to physically restore channel morphologies. Taxonomic and functional trait compositions supported by widely occurring lotic habitats (biotopes) were examined across paired restored and non-restored (control) reaches. The multivariate location (average community composition) of taxonomic and functional trait compositions differed marginally between control and restored reaches. However, changes in the amount of multivariate dispersion were more robust and indicated greater ecological heterogeneity within restored reaches, particularly when considering functional trait compositions. Organic biotopes (macrophyte stands and macroalgae) occurred widely across all study sites and supported a high alpha (within-habitat) taxonomic diversity compared to mineralogical biotopes (sand and gravel patches), which were characteristic of restored reaches. However, mineralogical biotopes possessed a higher beta (between-habitat) functional diversity, although this was less pronounced for taxonomic compositions. This study demonstrates that examining the functional and structural properties of taxa across distinct biotopes can provide a greater understanding of biotic responses to river restoration works. Such information could be used to better understand the ecological implications of rehabilitation practices and guide more effective management strategies.

  15. Boron/aluminum-graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    An investigation was conducted to determine the fabrication feasibility and to assess the potential of adhesively-bonded metal and resin matrix fiber composite hybrids as an advanced material, for aerospace and other structural applications. The results of fabrication studies and of evaluation of physical and mechanical properties show that using this hybrid concept it is possible to design a composite which, when compared to nonhybrid composites, has improved transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for perdicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  16. Clinical approach to anterior adhesive restorations using resin composite veneers.

    Science.gov (United States)

    Mangani, Francesco; Cerutti, Antonio; Putignano, Angelo; Bollero, Raffaele; Madini, Lorenzo

    2007-01-01

    Scientific progress in adhesive dentistry has led to more conservative techniques, both direct and indirect, to solve esthetic problems in anterior teeth. This article will discuss only indirect techniques, which are clearly superior in complex cases in which it will be difficult to recreate harmonious tooth shape and color. After reviewing the literature and highlighting the properties of this technique, the indications and benefits compared to the direct technique will be assessed. This is followed by a step-by-step description of operative procedures, from treatment planning to relining and polishing of the cemented adhesive restoration. The long-term success of veneers depends mainly on the tooth preparation, which should be confined to enamel, involve proximal contact areas, maintain the cervical enamel margin, and incorporate the incisal edge to increase veneer resistance and enable correct placement. Although no clinical follow-up similar to that of ceramic materials is available, the latest-generation resin composites offer interesting features. They can withstand mechanical stress, have excellent esthetic properties, and, most importantly, can be repaired intraorally without impairing their physicochemical and mechanical properties.

  17. Study on the Levitation and Restoring Force Characteristics of the Improved HTS-permanent Magnet Hybrid Magnetic Bearing

    Science.gov (United States)

    Sugiyama, R.; Oguni, K.; Ohashi, S.

    We have developed the hybrid magnetic bearing using permanent magnets and high temperature bulk super conductor (HTS). In this system, the permanent magnet has ring type structure so that the permanent magnet and the HTS can be set to the stator. The pinning force of the HTS is used for the levitation and the guidance. Repulsive force of the permanent magnets was used in the conventional hybrid system. However the restoring force in the guidance direction of the conventional hybrid system decreases by the side slip force of the permanent magnets. In this research, attractive force of permanent magnets is used for increasing the load weight in the guidance direction. In this paper, influence of the hybrid system on the static characteristics of the rotor is studied. Three-dimensional numerical analysis of the linkage flux (in the levitation and the guidance direction) in the HTS is undertaken. The stator side permanent magnet increases the linkage flux of the levitation direction. Therefore in the hybrid system the linkage flux of the levitation direction increases. The levitation and restoring force of the rotor is measured. The levitation force of the hybrid system becomes smaller than that of the non-hybrid one by attractive force. The rotor in the hybrid system is supported by the pinning force and attractive force. The restoring force of the hybrid system becomes larger than that of the non-hybrid one because of increasing the linkage flux of the levitation direction.

  18. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    Science.gov (United States)

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (Presin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  19. Analysis of composition and microstructural uniformity of hybrid glass/carbon fibre composites

    DEFF Research Database (Denmark)

    Beauson, Justine; Markussen, Christen Malte; Madsen, Bo

    2013-01-01

    In hybrid fibre composites, the intermixing of the two types of fibres imposes challenges to obtain materials with a well-defined and uniform microstructure. In the present paper, the composition and the microstructural uniformity of hybrid glass/carbon fibre composites mixed at the fibre bundle...... fibre volume fractions are determined using volumetric calculations. A model is presented to predict the interrelation of volume fractions in hybrid fibre composites. The microstructural uniformity of the composites is analysed by the determined variation in composite volume fractions. Two analytical...... level are investigated. The different levels of compositions in the composites are defined and experimentally determined. The composite volume fractions are determined using an image analysis based procedure. The global fibre volume fractions are determined using a gravimetrical based method. The local...

  20. Indirect posterior restorations using a new chairside microhybrid resin composite system.

    Science.gov (United States)

    Tay, F R; Wei, S H

    2001-01-01

    A plethora of choices is available as potential tooth-colored restoratives for the posterior dentition. Advances in adhesive technology and esthetic chairside microhybrid composite resins have permitted clinicians to perform inlay/onlay restorations. The use of adhesive indirect procedures offers advantages such as better control of polymerization shrinkage and anatomical form, when compared to conventional, direct restorative techniques. This article describes the use of a new chairside microhybrid composite system as an indirect restorative material, using semidirect and indirect techniques that can be accomplished within the realm of a dental operatory.

  1. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  2. Effects of Fiber-reinforced Composite Bases on Microleakage of Composite Restorations in Proximal Locations

    Science.gov (United States)

    A, Tezvergil-Mutluay; P.K, Vallittu

    2014-01-01

    Objectives: The aim of this study was to evaluate the microleakage of direct restorative composite resin upon the addition of an intermediate glass fiber-reinforced composite (GFRC) layer of various fiber orientations between tooth and particulate filler composite resin (PFRC). Materials and Methods: Cavities were prepared both on the mesial and distal surfaces of sixty extracted human molars with one margin placed below and the other above the cementoenamel junction (CEJ). Teeth were assigned to five different groups. Four of the groups received a layer of semi-interpenetrating polymer network (semi-IPN) resin system impregnated E-glass GFRC at the bottom of the cavity: Group 1; unidirectional continuous GFRC (EVS) in buccolingual direction (EVS-BL), Group 2; EVS in mesiodistal direction (EVS-MD), Group 3; bidirectional woven GFRC (EVN), Group 4; multidirectional short GFRC (EXP-MLT), Group 5; PRFC only (control). After acid etching and priming of the cavities and insertion of GFRC layer with the adhesive resin (Scotchbond Multipurpose 3M-ESPE), the cavities were filled incrementally with PRFC (Filtek Z250, 3M-ESPE) and each layer was light cured for 20 s. After finishing and polishing, the restored teeth were water-stored for 24 h at 37 °C and then thermocycled for 6000 cycles between 5-55 °C, before immersion in 0.5 % basic fuchsin dye for 24 h. After sectioning by 3-5 sagittal cuts, each sequential section was imaged and digitally analyzed to determine the stain depth. Results: All GFRC groups in dentin revealed significantly lower microleakage compared to control (p0.05). The microleakeage in enamel was not different between the groups (p>0.05). Conclusion: Use of intermediate GFRC layer between tooth and PFRC could provide alternative method to minimize microleakage. Clinical Relevance: Use of GFRC intermediate layer underneath the particulate filler composite can be used to minimize the leakeage of the restorations. PMID:25512764

  3. Effect of configuration factor on gap formation in hybrid composite resin, low-shrinkage composite resin and resin-modified glass ionomer.

    Science.gov (United States)

    Boroujeni, Parvin M; Mousavinasab, Sayyed M; Hasanli, Elham

    2015-05-01

    Polymerization shrinkage is one of the important factors in creation of gap between dental structure and composite resin restorations. The aim of this study was to evaluate the effect of configuration factor (C-factor) on gap formation in a hybrid composite resin, a low shrinkage composite resin and a resin modified glass ionomer restorative material. Cylindrical dentin cavities with 5.0 mm diameter and three different depths (1.0, 2.0 and 3.0 mm) were prepared on the occlusal surface of 99 human molars and the cavities assigned into three groups (each of 33). Each group contained three subgroups depend on the different depths and then cavities restored using resin modified glass ionomer (Fuji II LC Improved) and two type composite resins (Filtek P90 and Filtek Z250). Then the restorations were cut into two sections in a mesiodistal direction in the middle of restorations. Gaps were measured on mesial, distal and pulpal floor of the cavities, using a stereomicroscope. Data analyses using Kruskal-Wallist and Mann-Whitney tests. Increasing C-factor from 1.8 to 3.4 had no effect on the gap formation in two type composite resins, but Fuji II LC Improved showed significant effect of increasing C-factor on gap formation. Taken together, when C-factor increased from 1.8 up to 3.4 had no significant effect on gap formation in two tested resin composites. Although, Filtek P90 restorations showed smaller gap formation in cavities walls compared to Filtek Z250 restorations. High C-factor values generated the largest gap formation. Silorane-based composite was more efficient for cavity sealing than methacrylate-based composites and resin modified glass ionomer. © 2014 Wiley Publishing Asia Pty Ltd.

  4. SEM evaluation of marginal sealing on composite restorations using different photoactivation and composite insertion methods

    Directory of Open Access Journals (Sweden)

    Lopes Murilo

    2009-01-01

    Full Text Available Aim: This in vitro study evaluates the influence of marginal sealing methods in composite restorations with different adhesive systems submitted to mechanical load. Materials and Methods: Eighty bovine incisor crowns were embedded in Polyvinyl chloride (PVC molds with the buccal surface exposed, where cavities (4mm x 4mm x 3mm were made. Samples had the adhesive systems, Single Bond or Clearfil SE Bond, applied according to the manufacturer′s recommendations. The cavities were filled with a Z-250 composite according to the restoration technique (bulk filling or three increments and photoactivation (conventional, soft start, pulsatile light or light-emitting diode [LED]. The samples were duplicated with epoxy resin for scanning electron microscopy observations. Samples were also submitted to mechanical load (200,000 cycles; 2 Hz and new replicas were made. Results: The results, in percentages, were submitted to ANOVA followed by Tukey′s test (P < 0.05. There was statistical difference between the cycle group (23.84% and the non cycle group (18.63%. Comparing the restoration technique, there was no statistical difference between bulk filling (19.62% and three increments (22.84%. There was no statistical difference among the groups: Pulsatile light (24.38%, soft start (22.75%, LED (21.47% or conventional (16.34%. Furthermore, there were no statistical differences between the adhesive systems: Clearfil SE Bond (21.32% and Single Bond (20.83%. Conclusions: The photoactivation methods, the restorative techniques and the adhesive systems did not influence gap formation.

  5. Analysis/design of strip reinforced random composites (strip hybrids)

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  6. Analysis/design of strip reinforced random composites /strip hybrids/

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  7. Computational simulation of intermingled-fiber hybrid composite behavior

    Science.gov (United States)

    Mital, Subodh K.; Chamis, Christos C.

    1992-01-01

    Three-dimensional finite-element analysis and a micromechanics based computer code ICAN (Integrated Composite Analyzer) are used to predict the composite properties and microstresses of a unidirectional graphite/epoxy primary composite with varying percentages of S-glass fibers used as hydridizing fibers at a total fiber volume of 0.54. The three-dimensional finite-element model used in the analyses consists of a group of nine fibers, all unidirectional, in a three-by-three unit cell array. There is generally good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite-element methods and the micromechanics equations embedded in the ICAN computer code can be used to obtain the properties of intermingled fiber hybrid composites needed for the analysis/design of hybrid composite structures. However, the finite-element model should be big enough to be able to simulate the conditions assumed in the micromechanics equations.

  8. Posterior composite restoration update: focus on factors influencing form and function

    Directory of Open Access Journals (Sweden)

    Bohaty BS

    2013-05-01

    Full Text Available Brenda S Bohaty,1,2 Qiang Ye,3 Anil Misra,3,4 Fabio Sene,6 Paulette Spencer3,51Department of Pediatric Dentistry, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA; 2Department of Pediatric Dentistry, Children's Mercy Hospital, Kansas City, MO, USA; 3Bioengineering Research Center, 4Department of Civil, Environmental, and Architectural Engineering, 5Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA; 6Department of Restorative Dentistry, State University of Londrina, School of Dentistry, Londrina, BrazilAbstract: Restoring posterior teeth with resin-based composite materials continues to gain popularity among clinicians, and the demand for such aesthetic restorations is increasing. Indeed, the most common aesthetic alternative to dental amalgam is resin composite. Moderate to large posterior composite restorations, however, have higher failure rates, more recurrent caries, and increased frequency of replacement. Investigators across the globe are researching new materials and techniques that will improve the clinical performance, handling characteristics, and mechanical and physical properties of composite resin restorative materials. Despite such attention, large to moderate posterior composite restorations continue to have a clinical lifetime that is approximately one-half that of the dental amalgam. While there are numerous recommendations regarding preparation design, restoration placement, and polymerization technique, current research indicates that restoration longevity depends on several variables that may be difficult for the dentist to control. These variables include the patient's caries risk, tooth position, patient habits, number of restored surfaces, the quality of the tooth–restoration bond, and the ability of the restorative material to produce a sealed tooth–restoration interface. Although clinicians tend to focus on tooth form when evaluating the success and failure of

  9. Effect of enamel margin configuration on color change of resin composite restoration.

    Science.gov (United States)

    Aida, Asami; Nakajima, Masatoshi; Seki, Naoko; Kano, Yukinori; Foxton, Richard M; Tagami, Junji

    2016-01-01

    This study aimed to investigate the effect of enamel margin configuration on color change of resin composite restoration. Enamel disks of 1.0 mm-thick were sliced from sixty bovine anterior teeth and divided into three groups by margin configuration (non-bevel, 45-degree bevel and 45-degree reverse-bevel). The color measurements (L*C*h* values) at the restored bovine enamel disk with resin composite (Estelite Asteria, Estelite Pro, Kalore, Clearfil Majesty) were performed using a digital camera with CIE XYZ color gamut (RC500). All the resin composite restorations with non-beveled and beveled cavities significantly increased L* values compared with the control composite disks (presin composite restoration and color adjustment of the border.

  10. The direct posterior esthetic restoration using state-of-the-art composite resin technology.

    Science.gov (United States)

    Pescatore, C

    2000-01-01

    As a result of the evolution of both materials and techniques, the direct posterior composite restoration has become a common procedure in today's dental practice. Advances in the adhesive protocol have allowed for the conservative preparation of the dentition by using the micromechanical potential of the sound tooth structure. Improvements of composite resin materials have further enabled the practitioner to re-create the natural esthetic beauty of the dentition while at the same time restoring the functional morphology. This article describes the technical protocol and materials necessary to perform the direct posterior composite restoration in the posterior dentition.

  11. A 3-year randomized clinical trial evaluating two different bonded posterior restorations: Amalgam versus resin composite.

    Science.gov (United States)

    Kemaloglu, Hande; Pamir, Tijen; Tezel, Huseyin

    2016-01-01

    To compare the performance and postoperative sensitivity of a posterior resin composite with that of bonded amalgam in 40 (n = 20) large sized cavities and to evaluate whether resin composite could be an alternative for bonded amalgam. This was a randomized clinical trial. Twenty patients in need of at least two posterior restorations were recruited. Authors randomly assigned one half of the restorations to receive bonded amalgam and the other half to composite restorations. Forty bonded amalgams (n = 20) and composites (n = 20) were evaluated for their performance on modified-US Public Health Service criteria and postoperative sensitivity using visual analogue scale (VAS) for 36-months. Success rate of this study was 100%. First clinical alterations were rated as Bravo after 1 year in marginal discoloration, marginal adaptation, anatomical form, and surface roughness for both amalgam and composite. At the 3(rd) year, overall "Bravo" rated restorations were 12 for bonded amalgam and 13 for resin composites. There were no significant differences among the VAS scores of composites and bonded amalgams for all periods (P > 0.05) except for the comparisons at the 3(rd) year evaluation (P resin composite and bonded amalgam were clinically acceptable. Postoperative sensitivity results tend to decrease more in composite restorations rather than amalgams. Therefore, it was concluded that posterior resin composite can be used even in large sized cavities.

  12. Evaluation of the surface structure of composite restorations in light of own pilot research

    OpenAIRE

    Chalas Renata; Orlowski Miroslaw; Tarczydlo Bozena; Zubrzycka-Wrobel Joanna; Maj Karol; Wojcik-Checinska Ilona

    2016-01-01

    Research on the dental restorative materials employed in remedying dental cavities has been conducted on many levels and areas, both with application of clinical and laboratory methods. One of the elements that determines whether the restoration may be degraded is the condition of its surface. The aim of the study was to assess the texture surface of composite restorations using a non-contact method of teeth models scanning. In this work, ten medium size cavities on the occlusal surfaces of m...

  13. Probing Compositional Variation within Hybrid Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  14. Evaluation of the surface structure of composite restorations in light of own pilot research

    Directory of Open Access Journals (Sweden)

    Chalas Renata

    2016-09-01

    Full Text Available Research on the dental restorative materials employed in remedying dental cavities has been conducted on many levels and areas, both with application of clinical and laboratory methods. One of the elements that determines whether the restoration may be degraded is the condition of its surface. The aim of the study was to assess the texture surface of composite restorations using a non-contact method of teeth models scanning. In this work, ten medium size cavities on the occlusal surfaces of molars in adult patients were prepared and restored with resin composite. Before undertaking the procedure and after the finishing and polishing of the restorations, impressions were taken and sent into the laboratory so as to prepare plaster casts. Every cast was then scanned utilizing the non-contact 3D surface measurement instrument so as to assess the texture surface of the restoration. The resulting three dimensional analyses of post-restoration models showed the correct marginal adaptation of resin composite dental material to the hard tooth structures and its smooth filling occlusal surface. Additional comparison of scans done before and after restoring the cavities allowed the calculating of differences in volume, mean and maximum heights. The applied method of analysis is thought to be helpful in the detailed evaluation of restoration dental material texture. Moreover, the enabled possibility of continuous observation is expedient for assessing the usefulness of the method in standard dental practice.

  15. Hybridization Induced Transparency in composites of metamaterials and atomic media

    CERN Document Server

    Weis, Peter; Beigang, René; Rahm, Marco

    2011-01-01

    We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to \\alpha-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT).

  16. Blending incremental and stratified layering techniques to produce an esthetic posterior composite resin restoration with a predictable prognosis.

    Science.gov (United States)

    Klaff, D

    2001-01-01

    Composite resin restorations play an ever-increasing role as routine restorations in everyday clinical practice. However, the long-term prognosis of these restorations is still widely debated and open to question. The restorative protocols are still evolving, whether for direct or indirect placement, and little evidence is available in the scientific literature as to the ideal choice of site, technique, and category for placement. This article discusses the problems encountered and suggests a clinical restorative protocol to optimize composite resin placement.

  17. Topologically ordered magnesium-biopolymer hybrid composite structures.

    Science.gov (United States)

    Oosterbeek, Reece N; Seal, Christopher K; Staiger, Mark P; Hyland, Margaret M

    2015-01-01

    Magnesium and its alloys are intriguing as possible biodegradable biomaterials due to their unique combination of biodegradability and high specific mechanical properties. However, uncontrolled biodegradation of magnesium during implantation remains a major challenge in spite of the use of alloying and protective coatings. In this study, a hybrid composite structure of magnesium metal and a biopolymer was fabricated as an alternative approach to control the corrosion rate of magnesium. A multistep process that combines metal foam production and injection molding was developed to create a hybrid composite structure that is topologically ordered in all three dimensions. Preliminary investigations of the mechanical properties and corrosion behavior exhibited by the hybrid Mg-polymer composite structures suggest a new potential approach to the development of Mg-based biomedical devices.

  18. 18-year survival of posterior composite resin restorations with and without glass ionomer cement as base.

    NARCIS (Netherlands)

    Sande, F.H. van de; Rosa Rodolpho, P.A. Da; Basso, G.R.; Patias, R.; Rosa, Q.F. da; Demarco, F.F.; Opdam, N.J.M.; Cenci, M.S.

    2015-01-01

    OBJECTIVE: Advantages and disadvantages of using intermediate layers underneath resin-composite restorations have been presented under different perspectives. Yet, few long-term clinical studies evaluated the effect of glass-ionomer bases on restoration survival. The present study investigated the i

  19. Diagnostic value of DIAGNOdent in detecting caries under composite restorations of primary molars

    Directory of Open Access Journals (Sweden)

    Ava Vali Sichani

    2016-01-01

    Conclusion: DIAGNOdent showed a greater accuracy in detecting secondary caries under primary molar restorations, compared to radiographs. Although DIAGNOdent is an effective method for detecting caries under composite restorations, it is better to be used as an adjunctive method alongside other detecting procedures.

  20. Longevity of posterior composite restorations: A systematic review and meta-analysis

    DEFF Research Database (Denmark)

    Opdam, Niek; van de Sande, Francoise; Bronkhorst, Ewald

    2014-01-01

    including all restorations was constructed and a Multivariate Cox’s regression method was used to analyze variables of interest [patient (age; gender; caries-risk-status), jaw (upper; lower), number of restored surfaces, resin composite and adhesive materials and use of glass-ionomer cement as base...

  1. A 24-month evaluation of amalgam and resin-based composite restorations

    DEFF Research Database (Denmark)

    McCracken, Michael S; Gordan, Valeria V; Litaker, Mark S

    2013-01-01

    Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations....

  2. Longevity of posterior composite restorations: not only a matter of materials

    NARCIS (Netherlands)

    Demarco, F.F.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J.

    2012-01-01

    Resin composites have become the first choice for direct posterior restorations and are increasingly popular among clinicians and patients. Meanwhile, a number of clinical reports in the literature have discussed the durability of these restorations over long periods. In this review, we have searche

  3. The management of defective resin composite restorations: current trends in dental school teaching in Japan.

    Science.gov (United States)

    Lynch, C D; Hayashi, M; Seow, L L; Blum, I R; Wilson, N H F

    2013-01-01

    The aim of this article is to investigate the contemporary teaching of the management of defective direct resin composite restorations in dental schools in Japan. A questionnaire relating to the teaching of the management of defective resin composite restorations was developed and e-mailed to 29 dental schools in Japan in 2010. Completed responses were received from 19 of the 29 invited schools (response rate = 66%). Eighteen schools (95%) report that they included the teaching of repair of direct defective resin composite restorations in their dental school programs. Thirteen schools reported that they included both clinical and didactic instruction on the repair of direct resin composite restorations. Fourteen schools did not teach any mechanical roughening of the exposed resin composite restoration surface before undertaking a repair. The most commonly reported treatment was acid etching with phosphoric acid (12 schools). The most commonly taught material for completing repairs was a flowable resin composite (16 schools). The teaching of repair of defective resin composite restorations is well established within many Japanese dental schools, to a greater extent than in some other regions of the world. The impact of this teaching on subsequent clinical practices in Japan should be investigated. Furthermore, it is concluded that there is a need for much stronger leadership in operative and conservative dentistry, ideally at the global level, to resolve differences in key aspects of operative procedures such as repairs.

  4. Dry sliding wear of heat treated hybrid metal matrix composites

    Science.gov (United States)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  5. Hybrid Composite Structures: Multifunctionality through Metal Fibres

    NARCIS (Netherlands)

    Ahmed, T.

    2009-01-01

    The introduction of fibre reinforced polymer composites into the wings and fuselages of the newest aircraft are changing the design and manufacturing approach. Composites provide greater freedom to designers who want to improve aircraft performance in an affordable way. In this quest, researchers ar

  6. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  7. 18-year survival of posterior composite resin restorations with and without glass ionomer cement as base.

    Science.gov (United States)

    van de Sande, Françoise H; Rodolpho, Paulo A Da Rosa; Basso, Gabriela R; Patias, Rômulo; da Rosa, Quéren F; Demarco, Flávio F; Opdam, Niek J; Cenci, Maximiliano S

    2015-06-01

    Advantages and disadvantages of using intermediate layers underneath resin-composite restorations have been presented under different perspectives. Yet, few long-term clinical studies evaluated the effect of glass-ionomer bases on restoration survival. The present study investigated the influence of glass-ionomer-cement base in survival of posterior composite restorations, compared to restorations without base. Original datasets of one dental practice were used to retrieve data retrospectively. The presence or absence of an intermediate layer of glass-ionomer-cement was the main factor under analysis, considering survival, annual failure rate and types of failure as outcomes. Other investigated factors were: patient gender, jaw, tooth, number of restored surfaces and composite. Statistical analysis was performed using Fisher's exact test, Kaplan-Meier method and multivariate Cox-regression. In total 632 restorations in 97 patients were investigated. Annual failure rates percentages up to 18-years were 1.9% and 2.1% for restorations with and without base, respectively. In restorations with glass-ionomer-cement base, fracture was the predominant reason for failure, corresponding to 57.8% of total failures. Failure type distribution was different (p=0.007) comparing restorations with and without base, but no effect in the overall survival of restorations was found (p=0.313). The presence of a glass-ionomer-cement base did not affect the survival of resin-composite restorations in the investigated sample. Acceptable annual failure rates after 18-years can be achieved with both techniques, leading to the perspective that an intermediate layer, placed during an interim treatment, may be maintained without clinical detriment, but no improvement in survival should be expected based on such measure. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Hybrid filler composition optimization for tensile strength of jute fibre-reinforced polymer composite

    Indian Academy of Sciences (India)

    ANURAG GUPTA; HARI SINGH; R SWALIA

    2016-09-01

    In present research work, pultrusion process is used to develop jute fibre-reinforced polyester (GFRP) composite and experiments have been performed on an indigenously developed pultrusion experimental setup. The developed composite consists of natural jute fibre as reinforcement and unsaturated polyester resin as matrix with hybrid filler containing bagasse fibre, carbon black and calcium carbonate (CaCO$_3$). The effect of weight content of bagasse fibre, carbon black and calcium carbonate on tensile strength of pultruded GFRP composite is evaluated and the optimum hybrid filler composition for maximizing the tensile strength is determined. Different compositions of hybrid filler are prepared by mixing three fillers using Taguchi L$_9$ orthogonal array. Fifteen percent of hybrid filler of different composition by weight was mixed in the unsaturated polyester resin matrix. Taguchi L$_9$ orthogonal array (OA) has been used to plan the experiments and ANOVA is used for analysing tensile strength. A regression model has also been proposed to evaluate the tensile strength of the composite within 7% error by varying the abovefillers weight. A confirmation experiment was performed which gives 73.14 MPa tensile strength of pultruded jute fibre polymer composite at the optimum composition of hybrid filler.

  9. Investigations on mechanical properties of aluminum hybrid composites

    Directory of Open Access Journals (Sweden)

    Dora Siva Prasad

    2014-01-01

    Full Text Available A double stir casting process was used to fabricate aluminum composites reinforced with various volume fractions of 2, 4, 6, and 8 wt% RHA and SiC particulates in equal proportions. Properties such as hardness, density, porosity and mechanical behavior of the unreinforced and Al/x%RHA/x%SiC (x = 2, 4, 6, and 8 wt% reinforced hybrid composites were examined. Scanning electron microscope (model JSM-6610LV was used to study the microstructural characterization of the composites. It was observed that the hardness and porosity of the hybrid composite increased with increasing reinforcement volume fraction and density decreased with increasing particle content. It was also observed that the UTS and yield strength increase with an increase in the percent weight fraction of the reinforcement particles, whereas elongation decreases with the increase in reinforcement. The increase in strength of the hybrid composites is probably due to the increase in dislocation density. A systematic study of the base alloy and composites was done using the Brinell hardness measurement and the corresponding age hardening curves were obtained. It was observed that in comparison to that of the base aluminum alloy, the precipitation kinetics of the composites were accelerated by adding the reinforcement. This effectively reduced the time for obtaining the maximum hardness by the aging heat treatment.

  10. Class II direct composite resin restorations with beta-quartz glass-ceramic inserts.

    Science.gov (United States)

    Rada, R E

    1993-11-01

    With the increasing demand for esthetic posterior restorations, numerous techniques have been developed. The direct resin restoration has probably been used most extensively in Class II situations. Problems with Class II direct resin restorations include difficulty in developing proximal contact, occlusal wear, and polymerization shrinkage. Beta-quartz glass-ceramic inserts have been developed in an attempt to reduce the incidence of these potential problems. They can be placed in a one-appointment technique, are relatively inexpensive, and can readily be utilized by the clinician adept in placing Class II composite resin restorations.

  11. NEW TECHNOLOGIES FOR RESTORATION AND PROTECTION OF POWER EQUIPMENT WITH THE AID OF COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    A. O. Ischenko

    2017-01-01

    Full Text Available The analysis of possible variants of reconstruction of the power equipment is fulfilled and the conclusion concerning the prospects of such work with the use of composite materials is reached. The data on the technical characteristics of composite repair materials for various purposes are presented, the results of repairs of power equipment, in particular the technology for the recovery of the boarding surfaces of the diffuser rings and protection of the pumps D1250 casings are provided. The technology of the recovery pneumatic cylinder, hydraulic cylinder rod, as well as the unique technology of restoration of working surfaces of the impeller vanes of transfer pump, that had been destroyed by corrosion in conjunction with the cavitation processes and were considered as not restorable is described. The restored impeller was in operation during a year and only thereafter it was removed for restoration. Another composite material discussed in the article – diagum – makes it possible to perform a series of repairs associated with restoration of the rubber-covered surfaces of pump casings as well as with restoration of various surfaces of the conveyor belts. Taking the excellent adhesive properties of this composite into account, restoration of worn stainless steel sieve screens to remove abrasive material was fulfilled with the aid of it. The restoration was accomplished via the use of the conveyor belt which application time had expired, that was glued to a metal sieve with diagum. The use of the composites is economically justified, because the application of them in repairs reduces, firstly, terms of restoration work and, secondly, the price of repairs. Third, equipment that was damaged beyond repair is being commissioned by the use of the mentioned composites

  12. Trends in material choice for posterior restorations in an Israeli dental school: composite resin versus amalgam.

    Science.gov (United States)

    Ben-Gal, Gilad; Weiss, Ervin I

    2011-12-01

    According to a recent American Dental Association survey, posterior composite resin restorations now outnumber amalgam restorations in the United States. Dental schools around the world vary considerably in the extent to which they teach the use of composite resins. We aimed to determine if there has been an increase in the placement of posterior composite restorations in an Israeli dental school and if faculty experience affects the type of posterior restoration placed. In this retrospective study, we recorded and analyzed all the restorations performed by undergraduate students in the last five academic years at the Hebrew University Hadassah School of Dental Medicine in Jerusalem. All clinical records of student treatments between 2004 and 2009 were screened, and direct restorations were registered. Out of 6,094 posterior restorations performed during the study period, 42.3 percent were made of composite resin, increasing from 36.8 percent in 2004-05 to 48.5 percent in 2008-09, an increase of 11.7 percent. When clinical instructors were asked to state their preference if they themselves were to undergo posterior restoration, similar results were obtained. Instructors with less than ten years' experience preferred posterior composite resin restorations in 54.8 percent of the hypothetical situations, compared with 37.2 percent preferred by instructors with ten years of experience or more. It appears that the use of composite resin was influenced mainly by the prevailing trend and was not based on scientific evidence. Dental faculties should define criteria, based on up-to-date clinical studies, for using new materials, taking into consideration differences among instructors regarding treatment concept.

  13. Contemporary teaching of direct posterior composite restorations in Saudi dental schools

    Directory of Open Access Journals (Sweden)

    Mohamed Moustafa Awad

    2017-01-01

    Full Text Available The teaching of posterior composites has undergone considerable assessment and refinement in well-developed countries in recent years. However, little information exists on this teaching in Arab countries. Aim of this study: The aim of this study was to investigate the teaching of direct posterior composite restorations to undergraduate dental students in Kingdom of Saudi Arabia (KSA. Method: An online survey was developed and distributed to 17 Saudi dental schools. The topic of the survey sought information related to current teaching of direct posterior composite restorations in undergraduate teaching programs. Results: Responses were received from 13 schools (response rate = approximately 76%. All respondent dental schools taught the same types of restorations, however there were some variations regarding contraindications of such restorations. In certain dental schools, outdated knowledge was taught related to cavity specifications such as beveling of occlusal margins, the use of clear plastic matrix band and light reflecting wedges. There was shortening of knowledge related to light curing technologies as well as different adhesive systems. Nano-filled dental composite was not taught in approximately half of the respondent schools. Also, the rush into teaching of bulk-fill placement technique was noted. Conclusions: Among Saudi dental schools, there may be some degree of variation in the teaching of posterior composite restorations. Although, some teaching shortcomings were noted, the overall extent and content taught to dental students in KSA may provide enough knowledge that may be essential for preclinical and clinical practice of the direct posterior composite restorations.

  14. Effect of fibers on Hybrid Matrix Composites

    Directory of Open Access Journals (Sweden)

    A.Manikandan

    2016-10-01

    Full Text Available Frictional co-efficient, impact quality; dielectric quality and compound resistance examination of bamboo/glass strands strengthened epoxy half breed composites were considered. Two distinctive crossover composites, for example, treated and untreated bamboo filaments were manufactured and impact of soluble base treatment of the bamboo strands on these properties were additionally concentrated on. It was watched that, effect quality and frictional co-proficient properties of the half and half composites increment with expansion in glass fiber content. These properties observed to be higher when salt treated bamboo filaments were utilized as a part of the half breed composites. It is watched that, concoction resistance was fundamentally increments for all chemicals with the exception of carbon tetrachloride. The disposal of nebulous hemi-cellulose with salt treatment prompting higher crystallinity of the bamboo filaments with antacid treatment may in charge of these perceptions. The impact of salt treatment on the holding between glass/bamboo composites was additionally concentrated on. Checking electron magnifying lens (SEM were additionally directed on the cross segments of broke surfaces with a specific end goal to rate the execution crossover composites were likewise conferred bear natural products.

  15. 56-month clinical performance of Class I and II resin composite restorations

    Directory of Open Access Journals (Sweden)

    Flavia Bittencourt Pazinatto

    2012-06-01

    Full Text Available OBJECTIVE: This study evaluated the 56-month clinical performance of Class I and II resin composite restorations. Filtek P60 was compared with Filtek Z250, which are both indicated for posterior restorations but differ in terms of handling characteristics. The null hypothesis tested was that there is no difference in the clinical performance of the two resin composites in posterior teeth. MATERIAL AND METHODS: Thirty-three patients were treated by the same operator, who prepared 48 Class I and 42 Class II cavities, which were restored with Single Bond/Filtek Z250 or Single Bond/Filtek P60 restorative systems. Restorations were evaluated by two independent examiners at baseline and after 56 months, using the modified USPHS criteria. Data were analyzed statistically using Chi-square and Fisher's Exact tests (a=0.05. RESULTS: After 56 months, 25 patients (31 Class I and 36 Class II were analyzed. A 3% failure rate occurred due to secondary caries and excessive loss of anatomic form for P60. For both restorative systems, there were no significant differences in secondary caries and postoperative sensitivity. However, significant changes were observed with respect to anatomic form, marginal discoloration, and marginal adaptation. Significant decreases in surface texture were observed exclusively for the Z250 restorations. CONCLUSIONS: Both restorative systems can be used for posterior restorations and can be expected to perform well in the oral environment.

  16. Experimental investigation of cyclic hygrothermal aging of hybrid composite

    KAUST Repository

    El Yagoubi, Jalal

    2013-04-05

    This work provides an experimental investigation of the cyclic hygrothermal aging of a hybrid composites. We aimed to propose a general framework in the view to further optimize polymer-based composites. It reports experimental data and relevant observations collected during an aging campaign (up to 2000 cycles) where anhydride-cured epoxy samples as well as composites samples are exposed to environmental conditions. The data gathered during the whole campaign reveals that (1) the polymer displays a non-classical sorption behavior (2) the volume change is correlated to the mass uptake (3) the elastic modulus is correlated to the glass transition temperature. Matrix and interface degradation of the hybrid composite is monitored by means of microstructural observations. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

  17. Hybrid composites that retain graphite fibers on burning

    Science.gov (United States)

    House, E. E.

    1980-01-01

    A laboratory scale program was conducted to determine fiber release tendencies of graphite reinforced/resinous matrix composites currently used or projected for use in civil aircraft. In the event of an aircraft crash and burn situation, there is concern that graphite fibers will be released from the composites once the resin matrix is thermally decomposed. Hybridizing concepts aimed at preventing fiber release on burning were postulated and their effectiveness evaluated under fire, impact, and air flow during an aircraft crash.

  18. ASSESMENT OF SELF HEALING PROPERTY IN HYBRID FIBER POLYMERIC COMPOSITE

    OpenAIRE

    2011-01-01

    In recent years, Natural fiber reinforced composites is an emerging area in polymer technology. Fibers resulting from plants are considered a budding substitute for non-renewable synthetic fibers like glass and carbon fibers. The objective of this study is to merge the benefits of natural and synthetic fibers by developing ahybrid composite of jute and glass fibers along with self healing property to eliminate delamination without compromising the benefits of hybridization. This concept offer...

  19. Fracture behavior of hybrid composite laminates

    Science.gov (United States)

    Kennedy, J. M.

    1983-01-01

    The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.

  20. Hybrid QoS-aware semantic web service composition strategies

    Institute of Scientific and Technical Information of China (English)

    YANG FangChun; SU Sen; LI Zhen

    2008-01-01

    Hybrid QoS model which consists of certain and uncertain expressions has strong power of semantic QoS description. For solving the hybrid QoS-aware semantic web service composition problem, this paper presents an Uncertain Multi-attribute decision making based Composition algorithm (UMC). The UMC includes two parts. First, UMC-Core can be used to synthetically evaluate the hybrid service quality information. Second, UMC-DH (Distributed and Heuristic framework for UMC) aims at enhancing the run-time performance of UMC when the problem space increases. The simulation results show that the UMC has lower execution cost, higher ap proximation ratio and success ratio than other similar approaches.

  1. A randomized controlled 27 years follow up of three resin composites in Class II restorations

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan WV

    2015-01-01

    Objective: To evaluate the durability of three conventional resin composites in Class II restorations during 27 years. Methods: Thirty participants, 25 female and 5 male (mean age 38.2 years, range 25–63), received at least three (one set) as similar as possible Class II restorations of moderate...... size. The three cavities were chosen at random to be restored with a chemical-cured (Clearfil Posterior) and two visible light-cured resin composites (Adaptic II, Occlusin). A chemical-cured enamel bonding agent (Clearfil New Bond) was applied after Ca(OH)2 covering of dentin and enamel etch. Marginal......: Class II restorations of the three conventional resin composites showed an acceptable success rate during the 27 year evaluation....

  2. Bonding performance and interfacial characteristics of short fiber-reinforced resin composite in comparison with other composite restoratives.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-06-01

    The purpose of this study was to investigate the shear bond strength (SBS) and surface free-energy (SFE) of short fiber-reinforced resin composite (SFRC), using different adhesive systems, in comparison with other composite restoratives. The resin composites used were everX Posterior (EP), Clearfil AP-X (CA), and Filtek Supreme Ultra Universal Restorative (FS). The adhesive systems used were Scotchbond Multi-Purpose (SM), Clearfil SE Bond (CS), and G-Premio Bond (GB). Resin composite was bonded to dentin, and SBS was determined after 24 h of storage in distilled water and after 10,000 thermal cycles (TCs). The SFEs of the resin composites and the adhesives were determined by measuring the contact angles of three test liquids. The SFE values and SFE characteristics were not influenced by the type of resin composite, but were influenced by the type of adhesive system. The results of this study suggest that the bonding performance and interfacial characteristics of SFRC are the same as for other composite restoratives, but that these parameters are affected by the type of adhesive system. The bonding performance of SFRC was enhanced by thermal cycling in a manner similar to that for other composite restoratives.

  3. Use of lining materials under posterior resin composite restorations in the UK.

    Science.gov (United States)

    Blum, Igor R; Younis, Nadeem; Wilson, Nairn H F

    2017-02-01

    To investigate opinions on, and current use of lining materials prior to the placement of posterior resin composite restorations by general dental practitioners (GDPs) in the UK. A further objective was to investigate aspects of posterior resin composite restoration placement techniques employed by UK GDPs. A questionnaire was devised to gain the information sought. It was sent to 500 UK dentists, chosen at random from the register of the General Dental Council. Three hundred and fifty four replies were received, which gave a response rate of 71%. Eighty two percent of respondents reported placing lining materials in deep cavities to be restored with resin composite. Regarding moderately deep cavities, half of the respondents indicated a preference to place a lining material, whilst 44% were not sure if a lining was required. The remaining 6% did not respond to the question. Of the respondents, 39% reported that they did not place lining materials in shallow cavities. Regarding techniques for posterior resin composite placement, two-step etch and rinse systems were the most common adhesive bonding systems used (60%). The majority of respondents (80%) reported not using rubber dam when restoring posterior teeth with resin composite. There was considerable confusion about the need to place a lining prior to resin composite restorations placement in moderate depth and shallow cavities, whilst most favoured the placement of a lining in deep posterior cavities. The majority of GDPs may not routinely use rubber dam for the placement of posterior resin composite restorations. Decision making and operative techniques for cavity linings under posterior composite restorations in moderately deep and deep cavities is contentious among dentists, resulting in a need to generate more convincing, practice-relevant data on the use of lining materials to inform the dental profession. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of different saliva pH on hybrid composite resin surface roughness

    Directory of Open Access Journals (Sweden)

    Nirawati Pribadi

    2011-06-01

    Full Text Available Background: Currently, hybrid composite resin is the mostly used filling material to restore esthetic and function. During function, this material is in contact with various pH from food consumption, which is acidic and alkali which may effect the physical properties of composite resin, including surface roughness. Purpose: The research was conducted to determine the effect of pH in saliva on surface roughness of hybrid composite resin. Methods: This research used artificial saliva and composite resin samples divided into 3 groups based on different pH of immersion (pH 4, pH 7 and pH 10 for 30 days. Results: There were significant differences (p > 0.05 among those three treatment groups of hybrid composites soaked in artificial saliva with different pH for 30 days. And, with LSD test it is also known that there were significant differences between the artificial saliva with pH 4 and pH 7, whereas there was no significant difference between pH 4 and pH 10 and between pH 7 and pH 10. Conclusion: It can concluded that the changes of salivary pH affect the surface roughness of the hybrid composite resin. Acidic pH has increase the surface roughness of hybrid composite resin, whereas alkaline pH has no effects on the surface roughness of hybrid composite resin.Latar belakang: Saat ini tumpatan komposit merupakan bahan tumpatan yang paling sering digunakan untuk memperbaiki estetik dan fungsi. Dalam rongga mulut, bahan ini kontak dengan berbagai macam pH dari konsumsi makanan, baik asam maupun basa yang dapat mempengaruhi perubahan sifat fisik resin komposit, diantaranya yaitu kekasaran permukaan. Tujuan: Penelitian ini dilakukan untuk mengetahui tentang efek pH saliva terhadap kekasaran permukaan tumpatan resin komposit hybrid. Metode: Penelitian ini menggunakan saliva buatan yang dibagi dalam 3 kelompok sampel yaitu masing-masing dengan perendaman pH yang berbeda (pH 4, pH 7 dan pH 10selama 30 hari. Hasil: Terdapat perbedaan yang bermakna (p > 0

  5. Development of Elite BPH-Resistant Wide-Spectrum Restorer Lines for Three and Two Line Hybrid Rice

    Directory of Open Access Journals (Sweden)

    Fengfeng Fan

    2017-06-01

    Full Text Available Hybrid rice has contributed significantly to the world food security. Breeding of elite high-yield, strong-resistant broad-spectrum restorer line is an important strategy for hybrid rice in commercial breeding programs. Here, we developed three elite brown planthopper (BPH-resistant wide-spectrum restorer lines by pyramiding big-panicle gene Gn8.1, BPH-resistant genes Bph6 and Bph9, fertility restorer genes Rf3, Rf4, Rf5, and Rf6 through molecular marker assisted selection. Resistance analysis revealed that the newly developed restorer lines showed stronger BPH-resistance than any of the single-gene donor parent Luoyang-6 and Luoyang-9. Moreover, the three new restorer lines had broad spectrum recovery capabilities for Honglian CMS, Wild abortive CMS and two-line GMS sterile lines, and higher grain yields than that of the recurrent parent 9,311 under nature field conditions. Importantly, the hybrid crosses also showed good performance for grain yield and BPH-resistance. Thus, the development of elite BPH-resistant wide-spectrum restorer lines has a promising future for breeding of broad spectrum BPH-resistant high-yield varieties.

  6. Development of Elite BPH-Resistant Wide-Spectrum Restorer Lines for Three and Two Line Hybrid Rice.

    Science.gov (United States)

    Fan, Fengfeng; Li, Nengwu; Chen, Yunping; Liu, Xingdan; Sun, Heng; Wang, Jie; He, Guangcun; Zhu, Yingguo; Li, Shaoqing

    2017-01-01

    Hybrid rice has contributed significantly to the world food security. Breeding of elite high-yield, strong-resistant broad-spectrum restorer line is an important strategy for hybrid rice in commercial breeding programs. Here, we developed three elite brown planthopper (BPH)-resistant wide-spectrum restorer lines by pyramiding big-panicle gene Gn8.1, BPH-resistant genes Bph6 and Bph9, fertility restorer genes Rf3, Rf4, Rf5, and Rf6 through molecular marker assisted selection. Resistance analysis revealed that the newly developed restorer lines showed stronger BPH-resistance than any of the single-gene donor parent Luoyang-6 and Luoyang-9. Moreover, the three new restorer lines had broad spectrum recovery capabilities for Honglian CMS, Wild abortive CMS and two-line GMS sterile lines, and higher grain yields than that of the recurrent parent 9,311 under nature field conditions. Importantly, the hybrid crosses also showed good performance for grain yield and BPH-resistance. Thus, the development of elite BPH-resistant wide-spectrum restorer lines has a promising future for breeding of broad spectrum BPH-resistant high-yield varieties.

  7. Twelve-year survival of 2-surface composite resin and amalgam premolar restorations placed by dental students.

    Science.gov (United States)

    Naghipur, Safa; Pesun, Igor; Nowakowski, Anthony; Kim, Aaron

    2016-09-01

    Composite resin and amalgam restorations are indicated for the restoration of posterior teeth. With increased esthetic demands, long-term clinical studies are required to evaluate the restorative success and reasons for failure of these materials. The purpose of this retrospective study was to determine the survival and reasons for failure of directly placed 2-surface composite resin restorations and directly placed 2-surface amalgam restorations on premolars placed by Canadian dental students. Using The University of Manitoba's dental management software and paper charts, all 2-surface composite resin and 2-surface amalgam restorations placed on premolars between January 1, 2002, and May 30, 2014, were included. Short-term failure (within 2 years), long-term failure, and reasons for failure were collected. A Kaplan-Meier survival estimate with an associated P value comparing composite resin to amalgam restoration curves was performed using SPSS statistical software. Over 12 years, 1695 composite resin and 1125 amalgam 2-surface premolar restorations were placed. Of these restorations, 134 composite resins (7.9%) and 66 amalgams (5.9%) failed. Short-term failures (2 years or less) consisted of 57 composite resin (4%) and 23 amalgam (2.3%) restorations. Long-term failures (greater than 2 years) consisted of 77 composite resin (4.5%) and 43 amalgam (3.8%) restorations. After 12 years of service, the survival probability of composite resin restorations was 86% and that of amalgam restorations 91.5%. The differences in composite resin and amalgam survival curves were also found to be statistically significant (P=.009 for Log-rank test). The main reasons for failure were recurrent caries and fracture of the tooth being restored. Within the limitations of this study, both composite resin and amalgam restorations had acceptable success rates and similar failure modes. Recurrent caries was still the most common reason for failure. Copyright © 2016 Editorial Council for

  8. Light induced polymerization of resin composite restorative materials

    Directory of Open Access Journals (Sweden)

    Blažić Larisa

    2004-01-01

    Full Text Available Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerization shrinkage of resin-based restorative dental materials Polymerization of the organic phase (monomer molecules of resin-based dental materials causes shrinkage. The space occupied by filler particles is not associated with polymerization shrinkage. However, high filler loading within certain limits, can contribute to a lesser curing contraction. Polymerization shrinkage stress and stress reduction possibilities Polymerization shrinkage stress of polymer-based dental resins can be controlled in various ways. The adhesive bond in tooth-restoration interface guides the contraction forces to cavity walls. If leakage occurs, complications like secondary caries and pulpal irritation may jeopardize the longevity of a restoration. Stress relieve can be obtained by modifications of the monomer and photoinitiator, or by specially designed tooth preparation and application of bases and liners of low modulus of elasticity. The polymerization contraction can be compensated by water absorption due to oral cavity surrounding. The newest approach to stress relief is based on modulation of polymerization initiation. Conclusion This work deals with polymerization contraction and how to achieve leak-proof restoration. Restorative techniques that may reduce the negative effect of polymerization shrinkage stress need further research in order to confirm up-to-date findings.

  9. Evaluation of Microleakage in Composite-Composite and Amalgam-Composite Interfaces in Tooth with Preventive Resin Restoration (Ex-viva

    Directory of Open Access Journals (Sweden)

    H. Afshar

    2012-01-01

    Full Text Available Objective: This study addresses the question of whether conservative methods of restoration may be applied efficaciously in permanent posterior teeth with proximal lesions and intact occlusal preventive resin restoration (PRR. The purpose of the present study was to assess the microleakage at amalgam-composite interface and composite-composite interface in permanent tooth with PRR.Materials and Methods: Thirty-five premolar teeth extracted for orthodontic reasons were selected. The occlusal surfaces were sealed as preventive resin restoration. Then the teeth were stored in incubator for 6 months. After this period, two single boxes were prepared in mesial and distal surfaces in each tooth and filled with amalgam. Another class I composite restoration was prepared in occlusal surface in contact with the first PRR. Then samples were thermocycled and marginal leakage was assessed by the degree of dye penetration on sections of the restored teeth.Friedman and Wilcoxon signed-rank tests served for statistical analyses.Results: In 51.4% of amalgam-composite interfaces the dye reached the pulpal wall. The corresponded figures for amalgam-tooth and composite-composite interfaces were 31.4% and 14.3%, respectively. The differences in microleakage among the three interfaces were statistically significant (P<0.05.Conclusion: In the teeth restored with PRR technique, restoring proximal lesions with a conservative technique may lead to favorable results concerning microleakage.

  10. Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2016-06-01

    Full Text Available Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised...

  11. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-30

    Highlights: • Magnetite-grafted chitosan composite nanoparticles were synthesized. • The particles are able to assemble under the influence of a silane derivative. • Thin films containing composites, chitosan and hydrolyzed silane were optimized. • The novel hybrid coatings show hierarchical roughness and high wetting angle. - Abstract: The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe{sub 3}O{sub 4}) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  12. Analysis of high velocity impact on hybrid composite fan blades

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    This paper describes recent developments in the analysis of high velocity impact of composite blades using a computerized capability which consists of coupling a composites mechanics code with the direct-time integration features of NASTRAN. The application of the capability to determine the linear dynamic response of an intraply hybrid composite aircraft engine fan blade is described in detail. The predicted results agree with measured data. The results also show that the impact stresses reach sufficiently high magnitudes to cause failures in the impact region at early times of the impact event.

  13. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Directory of Open Access Journals (Sweden)

    Mariusz Oleksy

    2014-08-01

    Full Text Available A study was carried out involving the filling of epoxy resin (EP with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS. The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS curves, and an exfoliated structure observed by TEM.

  14. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Science.gov (United States)

    Hritcu, Doina; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-01

    The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe3O4) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  15. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Science.gov (United States)

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-01-01

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177

  16. Influence of composite resin consistency and placement technique on proximal contact tightness of Class II restorations.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Opdam, N.J.M.; Roeters, F.J.M.; Bronkhorst, E.M.; Plasschaert, A.J.M.

    2006-01-01

    PURPOSE: To investigate the influence of composite resin consistency and placement technique on proximal contact tightness of Class II composite resin restorations. MATERIALS AND METHODS: A manikin model (KaVo Dental) was used with an artificial first molar in which a standardized MO preparation was

  17. Marginal adaptation of large adhesive class IV composite restorations before and after artificial aging

    NARCIS (Netherlands)

    Ardu, S.; Stavridakis, M.; Feilzer, A.J.; Krejci, I.; Lefever, D.; Dietschi, D.

    2011-01-01

    Purpose: To test the marginal adaptation of Class IV restorations made of different composite materials designed for anterior use. Materials and Methods: Forty-two extracted caries-free human maxillary central incisors were randomly divided into 7 experimental groups - one per composite tested - for

  18. Comparative in vitro evaluation of internal adaptation of resin-modified glass ionomer, flowable composite and bonding agent applied as a liner under composite restoration: A scanning electron microscope study.

    Science.gov (United States)

    Soubhagya, M; Goud, K Mallikarjun; Deepak, B S; Thakur, Sophia; Nandini, T N; Arun, J

    2015-04-01

    The use of resin-modified glass Ionomer cement in sandwich technique is widely practiced with the advent of various newer generation of composites the bond between resin-modified glass Ionomer and these resins should be validated. This study is done to evaluate the interfacial microgaps between different types of liners and dentin, liners and composite (Filtek p60 [FLp60]) using scanning electron microscope (SEM). Standardized Class V preparations were performed in buccal/lingual surfaces of 30 caries, crack and defect-free extracted human third molars. The prepared teeth were divided into three groups. Group I: Single bond (SB), Group II: SB + synergy flow, Group III: SB + vitrebond. They were restored with composite resin FLp60, according to the manufacturer instructions. The SB + vitrebond, cross-sectioned through the canter of the restoration. The specimens were fixed, dehydrated, polished, and processed for SEM. The internal adaptation of the materials to the axial wall was analyzed under SEM with ×1000 magnification. The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, P composite or resin-modified glass ionomer applied in conjunction with adhesive resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. Hybridization of dentin only provides superior sealing of the dentin-restoration interface than does flowable resin or resin-modified glass ionomer.

  19. Simplified techniques for the placement of stratified polychromatic anterior and posterior direct composite restorations.

    Science.gov (United States)

    Blank, Jeff T

    2003-02-01

    Although many tooth-colored indirect restorative materials are available, dentists frequently employ direct composite resins as a primary tooth-colored restorative material. Direct resin systems that are suited for stratification, or layering of various opacities and colors of dental composite, offer dentists the opportunity to accurately reproduce natural teeth in ways that rival the esthetics of most indirect systems. This article presents a simplified version of the classical three-layered technique originally described by Dietschi, and demonstrates the application of a recently introduced composite resin system.

  20. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-11-15

    Research highlights: {yields} Hybrid composites constituents of natural fibres show good mechanical performances. {yields} Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. {yields} Outer or core material affect mechanical performance of hybrid composites. {yields} Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  1. Endodontic complications in teeth with vital pulps restored with composite resins: a systematic review.

    Science.gov (United States)

    Dawson, V S; Amjad, S; Fransson, H

    2015-07-01

    Composite resin is used extensively for restoration of teeth with vital pulps. Although cell culture studies have disclosed harmful effects on pulpal cells, any untoward clinical effects, manifest as adverse pulpal responses, have yet to be determined. This study comprises a systematic review, designed to address the question of whether the risk of endodontic complications is greater with composite resin restorations than with other restorative materials, such as amalgam. The study methodology involved (i) formulation of the research question, (ii) construction and conduct of an extensive literature search with (iii) interpretation and assessment of the retrieved literature. A search of the medical database PubMed was complemented with a search of the Controlled Trials Register (CENTRAL). The initial search yielded 1043 publications, the abstracts of which were read independently by the authors. After additional searches, 10 studies were included in the review. In all the included studies, the level of evidence was assessed as low. No conclusions could therefore be drawn. The included studies reported few, if any, endodontic complications. Little or no differences emerged between teeth restored with composite resins and those restored with amalgam. To determine whether composite resin restorations of teeth with vital pulps are associated with an increased risk for development of endodontic complications such as apical periodontitis, further evidence is needed, from well-constructed studies with a large number of participants.

  2. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

    Science.gov (United States)

    Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence

    2010-01-01

    Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761

  3. Reducing marginal leakage of posterior composite resin restorations: a review of clinical techniques.

    Science.gov (United States)

    Cheung, G S

    1990-03-01

    It has been well established that composite resin restorations have leakage at the margins. The polymerization shrinkage of the material and its inadequate adhesion to the cavity walls are the primary causes. Unlike silver amalgam restorations, which are self-sealing with age, the gap at the composite-to-tooth interface tends to persist and invite postoperative sensitivity, adverse pulp reactions, and the development of recurrent caries. Many techniques or materials have been advocated to improve the clinical adaptation of this material and to reduce marginal leakage. They limit the effect of polymerization shrinkage and/or enhance the bonding of the composite material to the tooth structure. This article reviews the clinical techniques and materials that have been suggested and are presently available to improve the marginal quality of composite resins, with special reference to posterior restorations.

  4. Anterior makeover on fractured teeth by simple composite resin restoration

    OpenAIRE

    2011-01-01

    Background: In daily practice dentists usually treat tooth fractures with more invasive treatments such as crown, veneer and bridges which preparation require more tooth structure removal. While currently there is trend toward minimal invasive dentistry which conserves more tooth structure. This is enhanced with the vast supply of dental materials and equipment in the market, including restorative materials. Provided with these supporting materials and equipment and greater patient’s demand f...

  5. Parallel ProXimal Algorithm for Image Restoration Using Hybrid Regularization

    CERN Document Server

    Pustelnik, Nelly; Pesquet, Jean-Christophe

    2009-01-01

    Regularization approaches have demonstrated their effectiveness for solving ill-posed problems. However, in the context of variational restoration methods, a challenging question remains, which is how to find a good regularizer. While total variation introduces staircase effects, wavelet domain regularization brings other artefacts, e.g. ringing. However, a compromise can be found by introducing a hybrid regularization including several terms non necessarily acting in the same domain (e.g. spatial and wavelet transform domains). We adopt a convex optimization framework where the criterion to be minimized is split in the sum of more than two terms. For spatial domain regularization, isotropic or anisotropic total variation definitions using various gradient filters are considered. An accelerated version of the Parallel ProXimal Algorithm is proposed to perform the minimization. Some difficulties in the computation of the proximity operators involved in this algorithm are also addressed in this paper. Numerical...

  6. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2017-09-28

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  7. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    Science.gov (United States)

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation.

  8. Spectrophotometric Evaluation of Colour Stability of Nano Hybrid Composite Resin in Commonly Used Food Colourants in Asian Countries

    Science.gov (United States)

    Sajjan, Girija S; Varma Kanumuri, Madhu

    2017-01-01

    Introduction There is growing interest in colour stability of aesthetic restorations. So far few studies have been reported. Aim This study was designed to investigate the effects of different common food colourants i.e., Turmeric and Carmoisine (orange red dye) consumed by patients in Asian countries on a recent nano hybrid composite resin. Materials and Methods A total of sixty disk shaped specimens measuring 10 mm in diameter and 2 mm in thickness were prepared. The samples were divided into two groups {Z 100 (Dental restorative composite) Filtek Z 250 XT (Nano hybrid universal restorative)}. Baseline colour measurement of all specimens were made using reflectance spectrophotometer with CIE L*a*b* system. Specimens were immersed in artificial saliva and different experimental solutions containing food colourants (carmoisine solution and turmeric solution) for three hours per day at 37°C. Colour measurements were made after 15 days. Colour difference (ΔE*) was calculated. Mean values were compared by one-way analysis of variance (ANOVA). Multiple range test by Tukey Post-hoc test procedure was employed to identify the significant groups at 5% level. Results Z 100 showed minimum staining capacity when compared to Z 250 XT in both the colourant solutions. Conclusion The nanohybrid composite resin containing TEGDMA showed significant colour change when compared to that of microhybrid composite resin as a result of staining in turmeric and carmoisine solution. PMID:28274047

  9. Teaching of direct posterior resin composite restorations in UK dental therapy training programmes.

    Science.gov (United States)

    Lynch, C D; Wilson, N H F

    2010-05-08

    With the numbers of dental therapists involved in the delivery of dental care within the UK on the increase, and the trend towards the use of direct resin composites (composites) for the restoration of posterior teeth, this study was undertaken to describe the teaching of posterior composites in dental therapy training programmes in the UK. A secondary aim was to identify differences in techniques for posterior composites taught within these dental therapy training programmes. In 2008/9, a questionnaire seeking information on the teaching of posterior composites was distributed by email to 13 centres with dental therapy training programmes in the UK. This questionnaire sought information relating to the teaching of direct posterior composites to dental therapy students, including the amounts of preclinical and clinical teaching in respect of deciduous and permanent teeth, numbers of restorations placed, contraindications to placement, and details in respect of operative techniques. Ten completed responses were received (response rate = 77%). In ten programmes, student dental therapists received clinical training in the placement of composite restorations in the occlusal surfaces of premolar and permanent molar teeth, and nine programmes included such training for two and three surface occlusoproximal restorations. The mean proportions of posterior restorations placed clinically by the trainee dental therapists in permanent teeth using dental amalgam and composite were 52% and 46% respectively (range: amalgam = 20-95%; composite = 5-70%). With the exception of one programme, the teaching of posterior composites is a well established element of dental therapy training. Some variations were noted in the teaching of clinical techniques between respondent training centres. It is suggested that to ensure harmony in approaches to treatments provided by graduated therapists that training centres look to relevant consensus documents, such as those of the British Association

  10. A study of composite restorations as a tool in forensic identification

    Directory of Open Access Journals (Sweden)

    Bahavathi Ananthan Hemasathya

    2013-01-01

    Full Text Available Introduction: Comparing ante-mortem and post-mortem dental data is a principal method of identification in forensic odontology. Radiographic images of amalgam have been used in dental forensics for identification due to their unique appearance. Aim: The aim of this study was to investigate whether radio-opaque composite restorations have a potential for identification in forensic odontology. Materials and Methods: Thirty typodont mandibular first molar teeth were prepared with Class-II (proximo-occlusal cavities and restored with a radio-opaque composite (Tetric N-Ceram. Two sets of standardized radiographs were taken from the 30 teeth, keeping the radiological parameters constant. One set of these 30 radiographs was named as SET 1. Ten randomly chosen radiographs from the other set and two other radiographs of Class-II composite restorations in typodont teeth constituted SET 2. Thirty dentally trained examiners were asked to match the 12 radiographic images of SET 2 with those of SET 1. Results: The results show that 15 examiners were able to correctly match all the 12 images. Statistical analysis was done using kappa statistical test. Conclusion: This study shows that, if the post-mortem radiographs are accurate duplicates of ante-mortem radiographs of composite restorations, then the shape of the composite restoration is unique and can be used for identification.

  11. Resistance of Bonded Composite Restorations on Fractures of Endodontically Treated Teeth

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2005-01-01

    Full Text Available Introduction: This study was performed to evaluate the effect of dentine bonding agents and Glass Ionomer cement beneath composite restorations and its resistance on fractures of endodontically treated teeth. Material and Methods: Forty sound maxillary teeth were selected; ten of them for positive control, and on the rest, RCT and MOD cavity preparations were done with standard methods. Then, the teeth were divided to four groups: 1-Sound teeth for positive control. 2-Prepared without any restoration for negative control. 3-Prepared and restored with Vitrabond(3M, USA, Single bond(3M, USA and Z100(3M, USA resin composite. 4-Prepared and restored by Single bond and Z100 resin composite. Specimens were subjected to compressive load by Instron 8502 until fracture occurred. Results: Group 1 showed the highest resistance to compressive forces followed by group 4,3&2 respectively. ANOVA, t test and Chi-square tests indicated significant difference between all the groups. Conclusion: Use of dentine bonding agents and resin composite increases resistance of endodontically treated teeth to fractures more than teeth restored with sandwich of glass ionomer cements, dentine bonding agents and resin composite.

  12. Fracture strength of root filled premolar teeth restored with silorane and methacrylate-based resin composite.

    Science.gov (United States)

    Taha, N A; Maghaireh, G A; Bagheri, R; Abu Holy, A

    2015-06-01

    To compare fracture characteristics of root-filled teeth with variable cavity design restored with a low shrinkage silorane and methacrylate-based resin composite. 77 extracted maxillary premolars were divided randomly into seven groups: (Group 1) intact teeth; (Groups 2-4) MOD plus endodontic access with the buccopalatal width of the occlusal isthmus equals one third of the intercuspal width; (Groups 5-7) MOD plus endodontic access with the buccopalatal width of the occlusal isthmus equals one half of the intercuspal width. Groups 2 and 5 were left unrestored, Groups 3 and 6 were restored with a silorane-based resin composite (Filtek P90) and Groups 4 and 7 with a methacrylate-based resin composite (Z250). Teeth were loaded in a universal testing machine; load and fracture patterns were recorded and compared statistically using 2-way ANOVA and t-test for pairwise comparisons and 1-way ANOVA with Dunnett test for multiple comparisons. Unrestored teeth became progressively weaker with more extensive preparations, Group 5 (unfilled ½) showed the lowest fracture load among the groups (71±22N, Presin composite have no superior strengthening effect over the conventional methacrylate-based resin composite in restoration of root filled teeth. Both materials showed similar fracture patterns. Root filled teeth are considerably weakened via restorative and endodontic procedures. A direct adhesive restoration will aid in preserving tooth structure as far as it provides enough strength. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Esthetic integration between ceramic veneers and composite restorations: a case report.

    Science.gov (United States)

    Farronato, Davide; Mangano, Francesco; Pieroni, Stefano; Lo Giudice, Giuseppe; Briguglio, Roberto; Briguglio, Francesco

    2012-07-01

    The tooth structure preservation is the best way to postpone more invasive therapies. Especially in young patients more conservative techniques should be applied. Bonded porcelain veneers and even more the direct composite restorations, are the two therapeutic procedures that require the fewer sacrifice of dental tissue, finalized to the optimal recovery of aesthetic and functional outcome.Although the two techniques require different methods and materials, is possible to achieve a correct integration of both the methods by some technical and procedural measures. In the presented case is planned a rehabilitation of the four upper incisors by ceramic veneers and direct composite restorations.Care is taken for the surface treatment of ceramic restorations, with the objective of achieving integration, not only between natural teeth and restorations, but also between the different materials in use.The purpose of this article is to show how a proper design of the treatment plan leads to obtain predictable results with both direct and indirect techniques.

  14. Microsatellite-Aided Screening for Fertility Restoration Genes (Rf Facilitates Hybrid Improvement

    Directory of Open Access Journals (Sweden)

    Raafat El-Namaky

    2016-05-01

    Full Text Available DNA markers enabled to determine the chromosomal locations of the two Rf genes (Rf3 and Rf4 in the wild-abortive cytoplasmic male sterility (WA-CMS system. Four simple sequence repeats (SSRs RM171, RM258, RM315 and RM443 were used to detect the allelic status with respect to the fertility restoration genes (Rf3 and Rf4 in 300 rice cultivars or breeding lines. The results revealed that out of 300 lines, 90 lines screened had Rf3, 65 lines had Rf4, and 45 lines had Rf3 and Rf4 alleles. Furthermore, 45 lines selected using SSR markers were mated with a CMS line (IR58025A to analyze their restoring ability. Offspring of all the test lines except HHZ8-SAL9DT1-Y1, HHZ5-SAL9-Y3-1 and IDSA77 exhibited higher pollen and spikelet fertility (> 80%, thus confirming they bear the Rf alleles. The hybrid offspring of ARH12-6-1-1-B-3-1, IR32307-10-3-2-1 and Sahel 329 had the highest pollen fertility (97.39%, 98.30% and 97.10%, respectively and spikelet fertility (95.10%, 97.07% and 96.10%, respectively.

  15. Microsatellite-Aided Screening for Fertility Restoration Genes (Rf) Facilitates Hybrid Improvement

    Institute of Scientific and Technical Information of China (English)

    RAAFAT El-Namaky; SABER Sedeek; YONNELLE Dea Moukoumbi; RODOMIRO Ortiz; BABOUCARR Manneh

    2016-01-01

    DNA markers enabled to determine the chromosomal locations of the twoRf genes (Rf3 andRf4) in the wild-abortive cytoplasmic male sterility (WA-CMS) system. Four simple sequence repeats (SSRs) RM171, RM258, RM315 and RM443 were used to detect the alelic status with respect to the fertility restoration genes (Rf3and Rf4) in 300 rice cultivars or breeding lines. The results revealed that out of 300 lines, 90 lines screened hadRf3, 65 lines hadRf4, and 45 lines hadRf3 andRf4 aleles. Furthermore, 45 lines selected using SSR markers were mated with a CMS line (IR58025A) to analyze their restoring ability. Offspring of al the test lines except HHZ8-SAL9DT1-Y1, HHZ5-SAL9-Y3-1 and IDSA77 exhibited higher polen and spikelet fertility (> 80%), thus confirming they bear theRfaleles. The hybrid offspring of ARH12-6-1-1-B-3-1, IR32307-10-3-2-1 and Sahel 329 had the highest polen fertility (97.39%, 98.30% and 97.10%, respectively) and spikelet fertility (95.10%, 97.07% and 96.10%, respectively).

  16. In vitro evaluation of veneering composites and fibers on the color of fiber-reinforced composite restorations.

    Directory of Open Access Journals (Sweden)

    Masoomeh Hasani Tabatabaei

    2014-08-01

    Full Text Available Color match between fiber-reinforced composite (FRC restorations and teeth is an imperative factor in esthetic dentistry. The purpose of this study is to evaluate the influence of veneering composites and fibers on the color change of FRC restorations.Glass and polyethylene fibers were used to reinforce a direct microhybrid composite (Z250, 3M ESPE and a microfilled composite (Gradia Indirect, GC. There were eight experimental groups (n=5 disks per group. Four groups were used as the controls (non-FRC control and the others were used as experimental groups. CIELAB parameters (L*, a* and b* of specimens were evaluated against a white background using a spectrophotometer to assess the color change. The color difference (ΔE* and color coordinates were (L*, a* and b* analyzed by two-way ANOVA and Tukey's test.Both types of composite and fiber influenced the color parameters (ΔL*, Δa*. The incorporation of fibers into the composite in the experimental groups made them darker than the control groups, except in the Gradia Indirect+ glass fibers group. Δb* is affected by types of fibers only in direct fiber reinforced composite. No statistically significant differences were recognized in ΔE* among the groups (p>0.05.The findings of the present study suggest that the tested FRC restorations exhibited no difference in color in comparison with non-FRC restoration. Hence, the types of veneering composites and fibers did not influence the color change (ΔE* of FRC restorations.

  17. Microleakage of Posterior Composite Restorations with Fiber Inserts Using two Adhesives after Aging

    Directory of Open Access Journals (Sweden)

    Sharafeddin F.

    2013-09-01

    Full Text Available Statement of Problem: Microleakage is one of the most frequent problems associated with resin composites, especially at the gingival margin of posterior restorations. Inser-tion of fibers in composite restorations can reduce the total amount of composite and help to decrease the shrinkage.Purpose: The aim of this study was to evaluate the effect of polyethylene fiber inserts on gingival microleakage of class II composite restorations using two different adhe-sive systems.Materials and Method: In this experimental study, class II cavities were prepared on 60 premolars. The gingival floor was located 1.0 mm below the CEJ. Dimension of each cavity were 3 mm buccolingually and 1.5 mm in axial depth. The specimens were divided into 4 groups according to the adhesive type and fiber insert (n=4. Single bond and Clearfill SE bond and Filtek p60 were used to restore the cavities. In groups without fiber inserts composite was adapted onto cavities using layering technique. For cavities with fiber inserts, 3 mm piece of fiber insert was placed onto the composite increment and cured. The specimens were stored in distilled water at 37oC for 6 months. All specimens were subjected to 3000 thermo-cycling. The tooth surfaces except for 1 mm around the restoration margins covered with two layers of nail varnish .The teeth were immersed in 2% Basic Fuchsin for 24 hours, then rinsed and sectioned mesiodistally. The microleakage was determined under a stereomicroscope (40X. Data were statistically analyzed by Kruskal-wallis and Mann-Whitney U tests (p< 0.05.Results: The Kruskal-Wallis test revealed no significant differences in mean microlea-kage scores among all groups (p= 0.281.Conclusion: Use of polyethylene fiber inserts and etch-and-rinse and self-etch adhesives had no effect on microleakage in class II resin composite restorations with gingival margins below the CEJ after 6- month water storage.

  18. Resistance to maxillary premolar fractures after restoration of class II preparations with resin composite or ceromer.

    Science.gov (United States)

    de Freitas, Cláudia Regina Buainain; Miranda, Maria Isabel Serra; de Andrade, Marcelo Ferrarezi; Flores, Victor Humberto Orbegoso; Vaz, Luís Geraldo; Guimarães, Catanzaro

    2002-09-01

    The aim of this study was to evaluate the resistance to fracture of intact and restored human maxillary premolars. Thirty noncarious human maxillary premolars, divided into three groups of 10, were submitted to mechanical tests to evaluate their resistance to fracture. Group 1 consisted of intact teeth. Teeth in group 2 received mesio-occlusodistal cavity preparations and were restored with direct resin composite restorations. Teeth in group 3 received mesio-occlusodistal cavity preparations and were restored with ceromer inlays placed with the indirect technique. After restoration, teeth were stored at 37 degrees C for 24 hours and then thermocycled for 500 cycles at temperatures of 5 degrees C and 55 degrees C. Statistical analysis revealed that group 3 (178.765 kgf) had a significantly greater maximum rupture load than did group 1 (120.040 kgf). There was no statistically significant difference between groups 1 and 2 or between groups 2 and 3. Class II cavity preparations restored with indirect ceromer inlays offered greater resistance to fracture than did intact teeth. The fracture resistance of teeth restored with resin composite was not significantly different from that of either the ceromer or intact teeth.

  19. Improved communication during treatment planning using light-curing hybrid wax for esthetic try-in restorations.

    Science.gov (United States)

    Witkowski, Siegbert; Kunz, Andreas; Wagenknecht, Günther

    2006-01-01

    The chance for a successful restorative outcome is improved when the clinician, the laboratory technician, and the patient agree on the design and appearance of the planned dental prosthesis as early as possible. A try-in of a planned dental restoration in the patient's mouth provides the parties involved in treatment planning with the ability to determine treatment goals together. The following article describes the use of a novel light-curing hybrid wax, a resin-like material that allows natural-looking, fracture-proof esthetic try-in restorations. Corrections can be made chairside by adding or removing material. The material is suitable for all indications involving fixed or removable dentures. Moreover, as the material can be burned without producing residues, it can be used directly in other applications such as pressable ceramics, ceramics pressed to metal, and casting techniques. A clinical case demonstrating the use of the hybrid wax is also presented.

  20. Evaluation of cuspal deflection in premolar teeth restored with low shrinkable resin composite (in vitro study).

    Science.gov (United States)

    Labib, Labib Mohamed; Nabih, Sameh Mahmoud; Baroudi, Kusai

    2015-01-01

    This study evaluated cuspal deflection in premolar teeth restored with low shrinkable resin composite. A total of 40 human premolars were used for cuspal deflection evaluation in this study. Each group was divided into four equal groups according to the type of resin composite and the adhesive used as follows: group A: Using low shrinkable resin composite (silorane) with its adhesive system; group B: Using low shrinkable composite (silorane) with G-bond; group C: Using Filtek Z350 composite with G-bond; and group D: Using Filtek Z350 composite with AdheSE. Cusp deflection was detected using Universal measuring microscope and laser horizontal metroscope. This study was done to investigate the effect of polymerization shrinkage stresses of two resin composite materials (Filtek Z350 and Filtek P90) on cuspal deflection of mesio-occluso-distal restoration. For this study, the extracted non-carious maxillary second premolars were selected. Forty teeth that showed no more than 5% variation in their dimensions were used. A significant increase in cuspal deflection of cavities restored with the methacrylate-based (Filtek Z350) compared with the silorane (P90) resin-based composites was obtained. The change in the organic matrix or materials formulation of the resin composite using silorane has a positive effect on controlling the cusp deflection.

  1. Intraoral environment conditions and their influence on marginal leakage in composite resin restorations.

    Science.gov (United States)

    Mathias, Paula; Rocha, Viviane; Saraiva, Letícia; Cavalcanti, Andrea N; Azevedo, Juliana F; Paulillo, Luís Alexandre M S

    2010-01-01

    Color matching in the anterior superior incisor region (ASIR) is very difficult when using a rubber dam during restorative procedures. This study measured temperature/relative humidity parameters in the ASIR and evaluated the influence of the inhalation/downtime/exhalation mouth-breathing cycle on microleakage in composite resin restorations performed in the region, using three different adhesive systems. Sixty bovine incisors were randomly assigned to six groups (n=10) according to environmental conditions (laboratory environment or intraoral conditions) and the three adhesive systems being tested (Prime & Bond NT (PB), Single Bond (SB) and Clearfil SE Bond (CL)). The composite resin restored specimens were thermocycled (800 cycles, 5-55 degrees C), immersed in a 2% methylene blue-buffered solution and sectioned longitudinally The dye penetration on the margin of the restoration was evaluated and non-parametric statistical analyses were performed. The temperature and humidity parameters in the ASIR showed significant differences when compared to the laboratory environment. Restorations performed in the ASIR environment showed no increases in microleakage. As it was shown that temperature/humidity in ASIR do not affect marginal sealing in direct composite resin restorations negatively, better color matching can be safely achieved without the use of a rubber dam.

  2. Clinical strategies for esthetic excellence in anterior tooth restorations: understanding color and composite resin selection.

    Science.gov (United States)

    Nahsan, Flavia Pardo Salata; Mondelli, Rafael Francisco Lia; Franco, Eduardo Batista; Naufel, Fabiana Scarparo; Ueda, Julio Katuhide; Schmitt, Vera Lucia; Baseggio, Wagner

    2012-01-01

    Direct composite resin restorations have become a viable alternative for patients that require anterior restorative procedures to be integrated to the other teeth that compose the smile, especially for presenting satisfactory esthetic results and minimum wear of the dental structure. Technological evolution along with a better understanding of the behavior of dental tissues to light incidence has allowed the development of new composite resins with better mechanical and optical properties, making possible a more artistic approach for anterior restorations. The combination of the increasing demand of patients for esthetics and the capacity to preserve the dental structure resulted in the development of different incremental techniques for restoring fractured anterior teeth in a natural way. In order to achieve esthetic excellence, dentists should understand and apply artistic and scientific principles when choosing color of restorative materials, as well as during the insertion of the composite resin. The discussion of these strategies will be divided into two papers. In this paper, the criteria for color and material selection to obtain a natural reproduction of the lost dental structures and an imperceptible restoration will be addressed.

  3. Clinical strategies for esthetic excellence in anterior tooth restorations: understanding color and composite resin selection

    Directory of Open Access Journals (Sweden)

    Flavia Pardo Salata Nahsan

    2012-04-01

    Full Text Available Direct composite resin restorations have become a viable alternative for patients that require anterior restorative procedures to be integrated to the other teeth that compose the smile, especially for presenting satisfactory esthetic results and minimum wear of the dental structure. Technological evolution along with a better understanding of the behavior of dental tissues to light incidence has allowed the development of new composite resins with better mechanical and optical properties, making possible a more artistic approach for anterior restorations. The combination of the increasing demand of patients for esthetics and the capacity to preserve the dental structure resulted in the development of different incremental techniques for restoring fractured anterior teeth in a natural way. In order to achieve esthetic excellence, dentists should understand and apply artistic and scientific principles when choosing color of restorative materials, as well as during the insertion of the composite resin. The discussion of these strategies will be divided into two papers. In this paper, the criteria for color and material selection to obtain a natural reproduction of the lost dental structures and an imperceptible restoration will be addressed.

  4. THE SYNERGISTIC EFFECT OF HYBRID FLAME RETARDANTS ON PYROLYSIS BEHAVIOUR OF HYBRID COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    M. T. ALBDIRY

    2012-06-01

    Full Text Available The aim of this investigation is to comprehensively understand the polymeric composite behavior under direct fire sources. The synergistic effects of hybrid flame retardant material on inhabiting the pyrolysis of hybrid reinforced fibers, woven roving (0°- 45° carbon and kevlar (50/50 wt/wt, and an araldite resin composites were studied. The composites were synthesised and coated primarily by zinc borate (2ZnO.3B2O3.3.5H2O and modified by antimony trioxide (Sb2O3 with different amounts (10-30 wt% of flame retardant materials. In the experiments, the composite samples were exposed to a direct flame source generated by oxyacetylene flame (~3000ºC at variable exposure distances of 10-20 mm. The synergic flame retardants role of antimony trioxide and zinc borate on the composite surface noticeably improves the flame resistance of the composite which is attributed to forming a protective mass and heat barrier on the composite surface and increasing the melt viscosity.

  5. The Post-Amalgam Era: Norwegian Dentists' Experiences with Composite Resins and Repair of Defective Amalgam Restorations.

    Science.gov (United States)

    Kopperud, Simen E; Staxrud, Frode; Espelid, Ivar; Tveit, Anne Bjørg

    2016-04-22

    Amalgam was banned as a dental restorative material in Norway in 2008 due to environmental considerations. An electronic questionnaire was sent to all dentists in the member register of the Norwegian Dental Association (NTF) one year later, to evaluate dentists' satisfaction with alternative restorative materials and to explore dentists' treatment choices of fractured amalgam restorations. Replies were obtained from 61.3%. Composite was the preferred restorative material among 99.1% of the dentists. Secondary caries was the most commonly reported cause of failure (72.7%), followed by restoration fractures (25.1%). Longevity of Class II restorations was estimated to be ≥10 years by 45.8% of the dentists, but 71.2% expected even better longevity if the restoration was made with amalgam. Repair using composite was suggested by 24.9% of the dentists in an amalgam restoration with a fractured cusp. Repair was more often proposed among young dentists (p amalgam restorations.

  6. Improvement of Resistance to Bacterial Blight by Marker-Assisted Selection in a Wide Compatibility Restorer Line of Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiu-hua; LUO Yan-chang; LIU Qiao-quan; WANG Shou-hai; WU Hsin-kan; LI Cheng-quan; WANG Zong-yang; WU Shuang; GU Ming-hong; WANG De-zheng; DU Shi-yun

    2004-01-01

    4183 is a promising wide compatibility restorer line with good grain quality. Its hybrid rice Shuangyou 4183 (Shuangjiu A/4183) was registered in Anhui Province in 2003. However, the line and its hybrid rice are susceptible to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). R4183 carrying Xa21 was developed to improve bacterial blight resistance of 4183 through introducing the broad-spectrum resistance gene Xa21 by marker-aided selection. R4183 had similar level of bacterial blight resistance to IRBB21, the resistant donor, while maintained the wide compatibility, restoring ability and other good economic traits of the recurrent parent 4183. Critical issues on improvement of bacterial blight resistance of hybrid rice and breeding strategies were also discussed.

  7. Marginal sealing of curing contraction gaps in Class V composite resin restorations.

    Science.gov (United States)

    Kemp-Scholte, C M; Davidson, C L

    1988-05-01

    When one uses composite resins, the curing contraction, the stiffness of the material, and the strength of the vulnerable dentinal bond are important factors in determining the marginal adaptation of the restoration. Calculations based on these intrinsic material properties have indicated that both bulk placement and incremental placement of the restorative material in the cervical cavity inevitably lead to marginal gap formation. Sealing of this gap with an unfilled low-viscosity resin, directly after the composite resin is cured, may lead to perfectly closed restoration margins, provided that composites with low linear curing contraction and low Young's modulus are used. These conditions were experimentally shown to be valid for laboratory and clinical situations.

  8. Secondary caries formation in vitro around glass ionomer-lined amalgam and composite restorations.

    Science.gov (United States)

    Dionysopoulos, P; Kotsanos, N; Papadogianis, Y

    1996-08-01

    The aim of this in vitro secondary caries study was to examine the glass-ionomer liner's effect on wall-lesion inhibition when a conventional and a light-cured glass ionomer liner was placed under amalgam and composite resin restorations. Class V preparations in extracted upper premolars were used and ten restorations were used for each of the following groups: (i) two layers of copal varnish and amalgam; (ii) conventional glass-ionomer and amalgam; (iii) light-cured glass-ionomer and amalgam; (iv) bonding agent and light-cured composite resin; (v) conventional glass-ionomer, bonding agent and light-cured composite resin; (vi) light-cured glass-ionomer, extended 0.3 mm short of the enamel margin bonding agent and light-cured composite resin; and (vii) light-cured glass-ionomer, extended 1 mm short of the enamel margin, bonding agent and light-cured composite resin. The teeth were thermocycled and artificial caries were created using an acid-gel. The results of this study showed that artificial recurrent caries can be reduced significantly (P amalgam restorations. The results also showed that when the light-cured glass-ionomer liner was placed 0.3 mm from the cavosurface margin under composite resin restoration, the artificial recurrent caries reduced significantly (P < 0.05).

  9. Radiopacity of restorative composites by conventional radiography and digital images with different resolutions

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Raquel Venancio; Samento, Hugo Ramalho [Graduate Program in Dentistry, Federal University of Pelotas, Pelotas (Brazil); Duarte, Rosangela Marques; Raso, Sonia Saeger Meireles Monte; De Andrade Ana Karina Maciel; Anjos-Pontual Maria Luiza Dos [Dept. of Operative Dentistry, Federal University of Paraiba, Pelotas (Brazil)

    2013-09-15

    This study was performed to evaluate and compare the radiopacity of dentin, enamel, and 8 restorative composites on conventional radiograph and digital images with different resolutions. Specimens were fabricated from 8 materials and human molars were longitudinally sectioned 1.0 mm thick to include both enamel and dentin. The specimens and tooth sections were imaged by conventional radiograph using 4 sized intraoral film and digital images were taken in high speed and high resolution modes using a phosphor storage plate. Densitometric evaluation of the enamel, dentin, restorative materials, a lead sheet, and an aluminum step wedge was performed on the radiographic images. For the evaluation, the Al equivalent (mm) for each material was calculated. The data were analyzed using one-way ANOVA and Tukey's test (p<0.05), considering the material factor and then the radiographic method factor, individually. The high speed mode allowed the highest radiopacity, while the high resolution mode generated the lowest values. Furthermore, the high resolution mode was the most efficient method for radiographic differentiation between restorative composites and dentin. The conventional radiograph was the most effective in enabling differentiation between enamel and composites. The high speed mode was the least effective in enabling radiographic differentiation between the dental tissues and restorative composites. The high speed mode of digital imaging was not effective for differentiation between enamel and composites. This made it less effective than the high resolution mode and conventional radiographs. All of the composites evaluated showed radiopacity values that fit the ISO 4049 recommendations.

  10. Effect of Precuring Warming on Mechanical Properties of Restorative Composites

    Directory of Open Access Journals (Sweden)

    Kareem Nada

    2011-01-01

    Full Text Available To investigate the effect of prepolymerization warming on composites' mechanical properties, three composites were evaluated: Clearfil Majesty (CM (Kuraray, Z-100 (3M/ESPE, and Light-Core (LC (Bisco. Specimens were prepared from each composite at room temperature as control and 2 higher temperatures (37∘C and 54∘C to test surface hardness (SH, compressive strength (CS, and diametral tensile strength (DTS. Data were statistically analyzed using ANOVA and Fisher's LSD tests. Results revealed that prewarming CM and Z100 specimens significantly improved their SH mean values (P<0.05. Prewarming also improved mean CS values of Z100 specimens (P<0.05. Furthermore, DTS mean value of CM prepared at 52∘ was significantly higher than that of room temperature specimens (P<0.05. KHN, CS, and DTS mean values varied significantly among the three composites. In conclusion, Prewarming significantly enhanced surface hardness of 2 composites. Prewarming also improved bulk properties of the composites; however, this improvement was significant in only some of the tested materials.

  11. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  12. Tensile Fracture Mechanism of Claviform Hybrid Composite Rebar

    Institute of Scientific and Technical Information of China (English)

    CAI Lurong; ZENG Qingdun; WANG Ronghui

    2012-01-01

    Based on the shear-lag theory,a hexagonal model of fiber bundles was established to study the tensile fracture mechanism of a claviform hybrid composite rebar.Firstly,the stress redistributions are investigated on two conditions:one condition is that interfacial damage is taken into accotmt and the other is not.Then,a micro-statistical analysis of the multiple tensile failures of the rebar was performed by using the random critical-core theory.The results indicate that the predictions of the tensile failure strains of the rebar,in which the interracial damage is taken into account,are in better agreement with the existing experimental results than those when only elastic case is considered.Through the comparison between the theoretical and experimental results,the shear-lag theory and the model are verified feasibly in studying the claviform hybrid composite rebar.

  13. Synthesis and Characterization of Novel Epoxy Geopolymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Oreste Tarallo

    2013-09-01

    Full Text Available The preparation and the characterization of novel geopolymer-based hybrid composites are reported. These materials have been prepared through an innovative synthetic approach, based on a co-reticulation in mild conditions of commercial epoxy based organic resins and a metakaolin-based geopolymer inorganic matrix. This synthetic strategy allows the obtainment of a homogeneous dispersion of the organic particles in the inorganic matrix, up to 25% in weight of the resin. The materials obtained present significantly enhanced compressive strengths and toughness with respect to the neat geopolymer, suggesting their wide utilization for structural applications. A preliminary characterization of the porous materials obtained by removing the organic phase from the hybrid composites by means of heat treatments is also reported. Possible applications of these materials in the field of water purification, filtration, or as lightweight insulating materials are envisaged.

  14. Marginal microleakage of class V composite restorations before and after AFP gel application

    Directory of Open Access Journals (Sweden)

    Davari Abdolrahim

    2015-01-01

    Full Text Available   Background and Aims: The most effective preventing tooth decay method is fluoride compounds applications. Some studies suggested that APF gels caused changes on the superficial physical properties of composite. Therefore, the purpose of this study was to evaluate the marginal microleakage of class V composite restorations before and after AFP gel application.   Materials and Methods: The class V cavities in buccal surfaces of 45 molar teeth were made in such a way that occlusal margin was placed in enamel and cervical margin in cement. In group 1, at first fluoride-therapy and then cavity preparation and restoration by composite resin was done. In group 2, at first the class V cavities were prepared and restored, then fluoride-therapy was carried out. In group 3, cavities were prepared and restored with no fluoride-therapy. The dye penetration rate in occlusal and cervical margins was examined by stereomicroscope. Data were statistically analyzed using Kruskal-Wallis and Mann-Whitney test.   Results: There was no statistically significant difference between groups ( P=0.975.   Conclusion: Fluoride-therapy using AFP gel before and after class V composite restorations, had no significant effect on the microleakage of dentin and enamel margins.

  15. Effect of cyclic loading on the bond strength of class II restorations with different composite materials.

    Science.gov (United States)

    Cavalcanti, Andrea Nóbrega; Mitsui, Fabio Hiroyuki Ogata; Silva, Flávia; Peris, Alessandra Rezende; Bedran-Russo, Ana; Marchi, Giselle Maria

    2008-01-01

    This study evaluated the effect of cyclic loading on the bond strength of Class II restorations using different composite materials. Class II preparations with gingival margins located in dentin were performed on the mesial surface of 80 bovine incisors. The teeth were randomly allocated to eight groups (n=10) according to resin composite (Filtek Z250, Filtek Supreme, Tetric Ceram HB and Esthet-X) and use of cyclic loading. The restorations were bonded with the Single Bond adhesive system. Simulated aging groups were cyclic loaded for 200,000 cycles with 80N load (2Hz). The specimens were vertically sectioned (two slabs per restoration) and further trimmed into an hour-glass shape at the adhesive interface to obtain a final bonded area 1 mm2. Samples were placed in an apparatus and tested under tension using a universal testing machine. The data were analyzed using two-way ANOVA and Tukey test with a 95% confidence level. Aged groups presented significantly lower means when compared to the groups that were not aged (p=0.03). However, significant differences among composite materials were not observed (p=0.17). Regardless of the restorative composite material used, it could be concluded that the bond strength of Class II restorations at the gingival wall was affected by simulated cyclic loading.

  16. Factors affecting marginal integrity of class II bulk-fill composite resin restorations.

    Science.gov (United States)

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda

    2017-01-01

    Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (Pcomposite resin type and margin location (Pcomposite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins.

  17. STUDY ON STRESS CONCENTRATIONS IN AN INTRAPLY HYBRID COMPOSITE SHEET

    Institute of Scientific and Technical Information of China (English)

    曾庆敦; 黄小清; 林雪慧

    2001-01-01

    A reasonably, simply and accurately modified shear-lag model was proposed.Based on the model, the stress redistributions due to the failure of some fibers in an intraply hybrid composite under tension were analyzed. The results show that the present calculating stress concentration factors very coincide with Fukuda and Chou' s results, thus verifying the reasonableness and correctness of the present model and methods.

  18. Experiments on a Hybrid Composite Beam for Bridge Applications

    OpenAIRE

    Van Nosdall, Stephen Paul

    2013-01-01

    This thesis details a study of the structural behavior of Hybrid-Composite Beams (HCB) consisting of a fiber reinforced polymer (FRP) shell with a concrete arch tied with steel prestressing strands.  The HCB offers advantages in life cycle costs through reduced transportation weight and increased corrosion resistance. By better understanding the system behavior, the proportion of load in each component can be determined, and each component can be designed for the appropriate forces. A long te...

  19. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  20. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    B.Bakri

    2015-10-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope.

  1. Indirect composite restorations luted with two different procedures: A ten years follow up clinical trial

    Science.gov (United States)

    Preti, Alessandro; Vano, Michele; Derchi, Giacomo; Mangani, Francesco; Cerutti, Antonio

    2015-01-01

    Objectives: The aim of this clinical trial was to evaluate posterior indirect composite resin restoration ten years after placement luted with two different procedures. Study Design: In 23 patients 22 inlays/onlays (Group A) were luted using a dual-cured resin composite cement and 26 inlays/onlays (Group B) were luted using a light cured resin composite for a total of 48 Class I and Class II indirect composite resin inlays and onlays. The restorations were evaluated at 2 time points: 1) one week after placement (baseline evaluation) and 2) ten years after placement using the modified USPHS criteria. The Mann-Whitney and the Wilcoxon tests were used to examine the difference between the results of the baseline and 10 years evaluation for each criteria. Results: Numerical but not statistically significant differences were noted on any of the recorded clinical parameters (p>0.05) between the inlay/onlays of Group A and Group B. 91% and 94 % of Group A and B respectively were rated as clinically acceptable in all the evaluated criteria ten years after clinical function. Conclusions: Within the limits of the study the results showed after ten years of function a comparable clinical performance of indirect composite resin inlays/onlays placed with a light cure or dual cure luting procedures. Key words:Light curing composite, dual curing composite, indirect composite restoration, inlays/onlays, clinical trial. PMID:25810842

  2. SEM Evaluation of Surrounding Enamel after Finishing of Composite Restorations- Preliminary Results

    Science.gov (United States)

    Iovan, G.; Stoleriu, S.; Solomon, S.; Ghiorghe, A.; Sandu, A. V.; Andrian, S.

    2017-06-01

    The purpose of this study was to analyze the surface characteristics of the enamel adjacent to composite resin after finishing the restoration with different diamond and tungsten carbide burs. The topography of enamel was observed by using a scanning electron microscope. Finishing with extra-/ultra-fine carbide burs, and extra-fine diamond burs resulted in smooth surfaces. In few areas some superficial scratches with no clinical relevance were observed. Deep grooves were observed on the surface of enamel when fine diamond burs were used. Finishing of composite restorations with coarse burs should be avoided when there is a high risk of touching and scratching adjacent enamel during the procedure.

  3. Flowable composites for restoration of non-carious cervical lesions: Three-year results.

    Science.gov (United States)

    May, Sabine; Cieplik, Fabian; Hiller, Karl-Anton; Buchalla, Wolfgang; Federlin, Marianne; Schmalz, Gottfried

    2017-03-01

    To evaluate the clinical performance of two flowable composites for restoring Class-V non-carious cervical lesions (NCCLs), one with novel (ND; N'Durance(®) Dimer Flow, Septodont) and one with modified conventional matrix composition (FS; Filtek™ Supreme XTE Flow, 3M-ESPE). The null hypothesis was that both flowable composites perform equally regarding clinical quality and survival. 50 patients received one ND and one FS restoration of NCCLs in premolars using Clearfil Protect Bond (Kuraray) as an adhesive. Restorations were evaluated by two examiners at baseline (BL), 18 and 36 months employing FDI criteria. Non-parametric statistical analyses and χ(2) tests were applied (α=0.05). 48 patients with both restorations under risk participated in the 36-mo recall. One patient terminated participation after the 18-mo recall. One ND restoration failed at the 18-mo recall (fracture). One FS restoration failed during clinical examination at the 36-mo recall (debonding). 95.8% of restorations each were rated clinically acceptable at 36-mo. No significant differences for all selected FDI criteria were recorded between ND and FS at each examination time point except for the criteria surface staining at 36-mo and marginal staining at 18-mo and 36-mo, where FS showed significantly better results. For each material, no significant differences over time were detected, except for loss of surface lustre for FS (BL to 18 months). Within the limitations of the study, the null hypothesis that materials perform equally could not be rejected. Both flowable composites performed equally regarding survival and similarly regarding clinical performance. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. The effect of tooth age on colour adjustment potential of resin composite restorations.

    Science.gov (United States)

    Tanaka, A; Nakajima, M; Seki, N; Foxton, R M; Tagami, J

    2015-02-01

    The purpose of this study was to investigate the effect of tooth age on colour adjustment potential of resin composite restorations in human teeth. Twenty extracted human premolars with an A2 shade, extracted for orthodontic reasons from younger patients (20-28yrs) (younger teeth) and periodontal reasons from older patients (45-69yrs) (older teeth), were used in this study. Cylindrical shaped cavities (3.0mm depth; 2.0mm diameter) were prepared in the centre of the crowns on the buccal surface. One of four resin composites of A2 shade (Kalore, KA; Solare, SO; Clearfil Majesty, MJ; Beautifil II, BF) was placed in the cavity, and the colour was measured at four areas (0.4mm×0.4mm) on the restored teeth (area 1; tooth area 1.0mm away from the border of resin composite restoration: area 2; tooth border area 0.3mm away from margin of resin composite restoration: area 3; resin composite border area 0.3mm away from margin of resin composite restoration: area 4; resin composite area at the centre of resin composite restoration) using a spectrophotometer (Crystaleye). The colour of each area was determined according to the CIELAB colour scale. Colour differences (ΔE*) between the areas of 1 and 2, 2 and 3, 3 and 4 and 1 and 4 were calculated, and also the ratio of ΔE*area2-3 to ΔE*area1-4 (ΔE*area2-3/1-4), ΔE*area3-4 to ΔE*area1-4 (ΔE*area3-4/1-4) and ΔE*area1-2 to ΔE*area1-4 (ΔE*area1-2/1-4) as a parameter of the colour shift in resin composite restoration, were determined. Moreover, the light transmission characteristics of the resin materials and dentine discs from the younger and older teeth were measured using a goniophotometer. The data were statistically analyzed using two-way ANOVA, and Dunnett's T3 and t-test for the post hoc test. ΔE*area2-3 (colour difference between resin composite and tooth at the border) and ΔE*area1-4 (colour difference between resin composite and tooth) of the older teeth groups were significantly larger than those of younger

  5. Implications of resin-based composite (RBC) restoration on cuspal deflection and microleakage score in molar teeth: Placement protocol and restorative material.

    Science.gov (United States)

    McHugh, Lauren E J; Politi, Ioanna; Al-Fodeh, Rami S; Fleming, Garry J P

    2017-09-01

    To assess the cuspal deflection of standardised large mesio-occluso-distal (MOD) cavities in third molar teeth restored using conventional resin-based composite (RBC) or their bulk fill restorative counterparts compared with the unbound condition using a twin channel deflection measuring gauge. Following thermocycling, the cervical microleakage of the restored teeth was assessed to determine marginal integrity. Standardised MOD cavities were prepared in forty-eight sound third molar teeth and randomly allocated to six groups. Restorations were placed in conjunction with (and without) a universal bonding system and resin restorative materials were irradiated with a light-emitting-diode light-curing-unit. The dependent variable was the restoration protocol, eight oblique increments for conventional RBCs or two horizontal increments for the bulk fill resin restoratives. The cumulative buccal and palatal cuspal deflections from a twin channel deflection measuring gauge were summed, the restored teeth thermally fatigued, immersed in 0.2% basic fuchsin dye for 24h, sectioned and examined for cervical microleakage score. The one-way analysis of variance (ANOVA) identified third molar teeth restored using conventional RBC materials had significantly higher mean total cuspal deflection values compared with bulk fill resin restorative restoration (all presin restored teeth had significantly the lowest microleakage scores compared with Tetric EvoCeram Bulk Fill (bonded and non-bonded) teeth (all presin restoratives behave in a similar manner when used to restore standardised MOD cavities in third molar teeth. It would appear that light irradiation of individual conventional RBCs or bulk fill resin restoratives may be problematic such that material selection is vital in the absence of clinical data. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Microleakage of silorane- and methacrylate-based class V composite restorations.

    Science.gov (United States)

    Krifka, Stephanie; Federlin, Marianne; Hiller, Karl-Anton; Schmalz, Gottfried

    2012-08-01

    The marginal integrity of class V restorations in a silorane- and a group of methacrylate-based composite resins with varying viscosities was tested in the present study. Different adhesives (OptiBond FL, KerrHawe; AdheSE One, Vivadent; or Silorane System Adhesive, 3M ESPE) were applied to 168 standardized class V cavities. The cavities (n = 12) were filled with a wide range of different viscous composite resins: Filtek Silorane, 3M ESPE; els and els flow, Saremco; Tetric EvoCeram and Tetric EvoFlow, Vivadent; Grandio, Voco; and Ultraseal XT Plus, Ultradent. Microleakage of the restoration was assessed by dye penetration (silver staining) on multiple sections with and without thermocycling and mechanical loading (TCML: 5,000 × 5-55°C; 30 s/cycle; 500,000 × 72.5 N, 1.6 Hz). Data were statistically analyzed with the Mann-Whitney U test and the Error Rates Method (ERM). The silorane-based composite resin yielded the lowest dye penetration after TCML. Microleakage of methacrylate-based composite restorations, in general (ERM), was statistically significantly influenced by the adhesive system, Moreover, dye penetration at enamel margins was significantly lower than dye penetration at dentin margins. The chemical basis of composite resins and adjacent tooth substance seems to strongly influence marginal sealing of class V restorations for methacrylate-based materials. Moreover, the steps of dental adhesives used affected marginal integrity. The silorane-based composite resin evaluated in the present study exhibits the best marginal seal. The three-step adhesive yielded better marginal sealing than the one-step adhesive for methacrylate-based class V composite restorations.

  7. Behaviour of general dental practitioners in Germany regarding posterior restorations with flowable composites.

    Science.gov (United States)

    Seemann, Rainer; Pfefferkorn, Frank; Hickel, Reinhard

    2011-10-01

    Because the recommendation to use flowables for posterior restorations is still a matter of debate, the objective of this study was to determine in a nationwide survey in Germany how frequently, for what indications, and for what reasons, German dentists use flowable composites in posterior teeth. In addition, the acceptance of a simplified filling technique for posterior restorations using a low stress flowable composite was evaluated. Completed questionnaires from all over Germany were returned by 1,449 dentists resulting in a response rate of 48.5%; 78.6% of whom regularly used flowable composites for posterior restorations. The most frequent indications were cavity lining (80.1%) and small Class I fillings (74.2%). Flowables were less frequently used for small Class II fillings (22.7%) or other indications (13.6%). Most frequent reasons given for the use of flowables in posterior teeth were the prevention of voids (71.7%) and superior adaptation to cavity walls (72.9%), whereas saving time was considered less important (13.8%). Based on the subjective opinion of the dentists the simplified filling technique seemed to deliver advantages compared to the methods used to date particularly with regard to good cavity adaptation and ease of use. In conclusion, resin composites are the standard material type used for posterior restorations by general dental practitioners in Germany and most dentists use flowable composites as liners.

  8. Bonding of flowable resin composite restorations to class 1 occlusal cavities with and without cyclic load stress.

    Science.gov (United States)

    Kawai, Takatoshi; Maseki, Toshio; Nara, Yoichiro

    2016-01-01

    To examine the bonding of flowable resin composite restorations (F-restoration) to class 1 occlusal cavities with and without cyclic load stress, compared with that of a universal resin composite restoration (U-restoration). Two flowable composites and one universal composite (control) were applied with an adhesive system to 42 standardized class 1 occlusal cavities. The restored specimens were subjected to cyclic load stress and no stress modes. The microtensile bond strength (μ-TBS) of the dentin floor was measured. The U-restoration did not show pretesting failure. The F-restorations exhibited pretesting failure, regardless of the stress mode. The μ-TBS was not significantly different among the three restorations, regardless of the stress mode. The cyclic load stress did not influence the μ-TBS of the F-restorations; however, it significantly reduced μ-TBS in the U-restoration. The bonding reliability of the F-restorations was inferior to that of the U-restoration, for both stress modes.

  9. Comparison of fracture resistance of teeth restored with ceramic inlay and resin composite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Priti D Desai

    2011-01-01

    Conclusion: The fracture resistant strength of teeth restored with ceramic inlay was comparable to that of the normal intact teeth or slightly higher, while teeth restored with direct composite resin restoration showed less fracture resistant strength than that of the normal teeth.

  10. A randomized clinical trial of cusp-replacing resin composite restorations: efficiency and short-term effectiveness.

    NARCIS (Netherlands)

    Kuijs, R.H.; Fennis, W.M.M.; Kreulen, C.M.; Roeters, F.J.M.; Creugers, N.H.J.; Burgersdijk, R.C.W.

    2006-01-01

    PURPOSE: This study aimed to assess the efficacy and short-term effectiveness of the morphology and function of direct and indirect cusp-replacing resin composite restorations. MATERIALS AND METHODS: In 94 patients, 106 cusp-replacing restorations for maxillary premolars were fabricated to restore

  11. Alternative methods for determining shrinkage in restorative resin composites.

    Science.gov (United States)

    de Melo Monteiro, Gabriela Queiroz; Montes, Marcos Antonio Japiassú Resende; Rolim, Tiago Vieira; de Oliveira Mota, Cláudia Cristina Brainer; de Barros Correia Kyotoku, Bernardo; Gomes, Anderson Stevens Leônidas; de Freitas, Anderson Zanardi

    2011-08-01

    The purpose of this study was to evaluate polymerization shrinkage of resin composites using a coordinate measuring machine, optical coherence tomography and a more widely known method, such as Archimedes Principle. Two null hypothesis were tested: (1) there are no differences between the materials tested; (2) there are no differences between the methods used for polymerization shrinkage measurements. Polymerization shrinkage of seven resin-based dental composites (Filtek Z250™, Filtek Z350™, Filtek P90™/3M ESPE, Esthet-X™, TPH Spectrum™/Dentsply 4 Seasons™, Tetric Ceram™/Ivoclar-Vivadent) was measured. For coordinate measuring machine measurements, composites were applied to a cylindrical Teflon mold (7 mm × 2 mm), polymerized and removed from the mold. The difference between the volume of the mold and the volume of the specimen was calculated as a percentage. Optical coherence tomography was also used for linear shrinkage evaluations. The thickness of the specimens was measured before and after photoactivation. Polymerization shrinkage was also measured using Archimedes Principle of buoyancy (n=5). Statistical analysis of the data was performed with ANOVA and the Games-Howell test. The results show that polymerization shrinkage values vary with the method used. Despite numerical differences the ranking of the resins was very similar with Filtek P90 presenting the lowest shrinkage values. Because of the variations in the results, reported values could only be used to compare materials within the same method. However, it is possible rank composites for polymerization shrinkage and to relate these data from different test methods. Independently of the method used, reduced polymerization shrinkage was found for silorane resin-based composite. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Selective removal of esthetic composite restorations with spectral guided laser ablation

    Science.gov (United States)

    Yi, Ivana; Chan, Kenneth H.; Tsuji, Grant H.; Staninec, Michal; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Dental composites are used for a wide range of applications such as fillings for cavities, adhesives for orthodontic brackets, and closure of gaps (diastemas) between teeth by esthetic bonding. Anterior restorations are used to replace missing, diseased and unsightly tooth structure for both appearance and function. When these restorations must be replaced, they are difficult to remove mechanically without causing excessive removal or damage to enamel because dental composites are color matched to teeth. Previous studies have shown that CO2 lasers have high ablation selectivity and are well suited for removal of composite on occlusal surfaces while minimizing healthy tissue loss. A spectral feedback guidance system may be used to discriminate between dental composite and dental hard tissue for selective ablation of composite material. The removal of composite restorations filling diastemas is more challenging due to the esthetic concern for anterior teeth. The objective of this study is to determine if composite spanning a diastema between anterior teeth can be removed by spectral guided laser ablation at clinically relevant rates with minimal damage to peripheral healthy tissue and with higher selectivity than a high speed dental handpiece.

  13. Selective removal of esthetic composite restorations with spectral guided laser ablation.

    Science.gov (United States)

    Yi, Ivana; Chan, Kenneth H; Tsuji, Grant H; Staninec, Michal; Darling, Cynthia L; Fried, Daniel

    2016-02-13

    Dental composites are used for a wide range of applications such as fillings for cavities, adhesives for orthodontic brackets, and closure of gaps (diastemas) between teeth by esthetic bonding. Anterior restorations are used to replace missing, diseased and unsightly tooth structure for both appearance and function. When these restorations must be replaced, they are difficult to remove mechanically without causing excessive removal or damage to enamel because dental composites are color matched to teeth. Previous studies have shown that CO2 lasers have high ablation selectivity and are well suited for removal of composite on occlusal surfaces while minimizing healthy tissue loss. A spectral feedback guidance system may be used to discriminate between dental composite and dental hard tissue for selective ablation of composite material. The removal of composite restorations filling diastemas is more challenging due to the esthetic concern for anterior teeth. The objective of this study is to determine if composite spanning a diastema between anterior teeth can be removed by spectral guided laser ablation at clinically relevant rates with minimal damage to peripheral healthy tissue and with higher selectivity than a high speed dental hand-piece.

  14. Fracture resistance of endodontically treated teeth restored with short fiber composite used as a core material-An in vitro study.

    Science.gov (United States)

    Garlapati, Tejesh Gupta; Krithikadatta, Jogikalmat; Natanasabapathy, Velmurugan

    2017-03-06

    This in-vitro study tested the fracture resistance of endodontically treated molars with Mesial-Occluso-Distal (MOD) cavities restored with fibre reinforced composite material everX posterior in comparision with hybrid composite and ribbond fiber composite. Fifty intact freshly extracted human mandibular first molars were collected and were randomly divided into five groups (n=10). Group 1: positive control (PC) intact teeth without any endodontic preparation. In groups 2 through 6 after endodontic procedure standard MOD cavities were prepared and restored with their respective core materials as follows: group 2, negative control (NC) left unrestored or temporary flling was applied. Group 3, Hybrid composite (HC) as a core material (Te-Econom Plus Ivoclar Vivadent Asia) group 4, Ribbond (Ribbond; Seattle, WA, USA)+conventional composite resin (RCR) group 5, everX posterior (everX Posterior GC EUROPE)+conventional composite resin (EXP) after thermocycling fracture resistance for the samples were tested using universal testing machine. The results were analysed using ANOVA and Tukey's HSD post hoc tests. Mean fracture resistance (in Newton, N) was group 1: 1568.4±221.71N, group 2: 891.0±50.107N, group 3: 1418.3±168.71N, group 4:1716.7±199.51N and group 5: 1994.8±254.195N. Among the materials tested, endodontically treated teeth restored with everX posterior fiber reinforced composite showed superior fracture resistance. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2011-06-15

    Highlights: {yields} Woven hybrid composites show good tensile and flexural properties. {yields} Hybridization with 20% woven jute gives rise to sufficient modulus to composites. {yields} Layering pattern affect mechanical properties of hybrid composites. {yields} Statistical analysis shows that there is significant difference between composites. - Abstract: In this research, tensile and flexural performance of tri layer oil palm empty fruit bunches (EFB)/woven jute (Jw) fibre reinforced epoxy hybrid composites subjected to layering pattern has been experimentally investigated. Sandwich composites were fabricated by hand lay-up technique in a mould and cured with 105 deg. C temperatures for 1 h by using hot press. Pure EFB and woven jute composites were also fabricate for comparison purpose. Results showed that tensile and flexural properties of pure EFB composite can be improved by hybridization with woven jute fibre as extreme woven jute fibre mat. It was found that tensile and flexural properties of hybrid composite is higher than that of EFB composite but less than woven jute composite. Statistical analysis of composites done by ANOVA-one way, it showed significant differences between the results obtained. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy.

  16. Genome composition of 'Elatior'-begonias hybrids analyzed by genomic in situ hybridisation

    NARCIS (Netherlands)

    Marasek Ciolakowska, A.R.; Ramanna, M.S.; Laak, W.A.; Tuyl, van J.M.

    2010-01-01

    Interspecific hybridization of various tuberous Begonia species hybrids with Begonia socotrana results in so-called 'Elatior'-begonias hybrids (B. x hiemalis Fotsch). In our study, genomic in situ hybridization (GISH) has been employed to assess the genome composition in eleven 'Elatior'-begonias

  17. The effects of glass ionomer and flowable composite liners on the fracture resistance of open-sandwich class II restorations.

    Science.gov (United States)

    Güray Efes, Begüm; Yaman, Batu Can; Gümüştaş, Burak; Tıryakı, Murat

    2013-01-01

    This in vitro study aimed to investigate the effects of glass-ionomer and flowable composite liners on the fracture resistance of Class II amalgam and composite restorations. Group 1 cavities were restored with amalgam and Group 4 cavities with nanofill composite after the application of a dentin-bonding agent. For the remaining groups, light-cured-glass-ionomer liner was used in a gingival floor proximal box (Groups 2, 5) or flowable composite was used as a liner (Groups 3, 6), the remainder of the cavity was restored with amalgam (Groups 2, 3) or composite (Groups 5, 6). The restorations were loaded in compression to failure. The data was analyzed using Tukey's multiple comparison test. The fracture resistance was significantly higher (p0.05). Flowable composite, glass-ionomer liners increased the fracture resistance of open-sandwich Class II amalgam restorations.

  18. A Comparative Analysis of Different Finishing and Polishing Devices on Nanofilled, Microfilled, and Hybrid Composite: A Scanning Electron Microscopy and Profilometric Study.

    Science.gov (United States)

    Yadav, Rishi D; Raisingani, Deepak; Jindal, Divya; Mathur, Rachit

    2016-01-01

    The continuous development of esthetically acceptable adhesive restorative material has made a variety of tooth-colored materials available for clinical use. The advent of visible light polymerizing resin and the use of finer filler particles permit resin composites to be polished to higher degree. The effect of polishing systems on surface finish has been reported to be material-dependent, and the effectiveness of these systems was mostly product-dependent. Hence, the purpose of this study was to evaluate the efficiency of finishing and polishing systems on the surface roughness of nanofilled, microfilled, and hybrid composite restorative materials available in the market.

  19. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness.

    Science.gov (United States)

    Awad, Daniel; Stawarczyk, Bogna; Liebermann, Anja; Ilie, Nicoleta

    2015-06-01

    Little information is available about the translucency of monolithic CAD/CAM materials. The purpose of this study was to evaluate the translucency of restorative CAD/CAM materials and direct composite resins with respect to thickness and surface roughness. In total, 240 disk-shaped specimens (12×14×1 mm and 12×14×2 mm) of 3 different CAD/CAM glass ceramics (CELTRA Duo, IPS e.max CAD, IPS Empress CAD), a fine-structure feldspathic ceramic (VITA Mark II), a hybrid ceramic (VITA Enamic), a resin nanoceramic composite resin (LAVA Ultimate), an experimental (CAD/CAM nanohybrid composite resin), 2 interim materials (Telio CAD; VITA CAD-Temp), and 3 direct composite resins (Tetric EvoCeram; Filtek Supreme XTE; Tetric EvoCeram Bulk Fill) were fabricated (n=10). After 3 different surface pretreatments (polished, rough SiC P1200, or SiC P500), absolute translucency and surface roughness were measured using spectrophotometry and tactile profilometry. The influence of material type, thickness, and roughness on absolute translucency was analyzed using a multivariate analysis, 1-way ANOVA, and the Tukey HSD post hoc test (P<.05). Pearson correlations and statistical hypothesis tests were used to assess the results (P<.05). The effect of all tested parameters was significant among the materials (P<.05). The greatest influence on the measured translucency was thickness (partial eta squared ηP²=.988), closely followed by material (.982), and the pretreatment method (.835). The surface roughness was strongly influenced by the pretreatment method (.975) and type of material (.941). Thickness and surface roughness are major factors affecting the absolute translucency of adhesively luted restorations. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Influence of post-cure treatments on hardness and marginal adaptation of composite resin inlay restorations: an in vitro study

    Directory of Open Access Journals (Sweden)

    Laiza Tatiana Poskus

    2009-12-01

    Full Text Available OBJECTIVES: The purpose of this study was to evaluate the Vickers hardness number (VHN and the in vitro marginal adaptation of inlay restorations of three hybrid composite resins (Filtek Z250, Opallis and Esthet-X subjected to two post-cure treatments. MATERIAL AND METHODS: For the microhardness test, three different groups were prepared in accordance with the post-cure treatments: control group (only light cure for 40 s, autoclave group (light cure for 40 s + autoclave for 15 min at 130ºC; and microwave group (light cure for 40 s + microwave for 3 min at 450 W. To assess the marginal adaptation, the composite resin was inserted incrementally into a mesial-occlusal-distal cavity brass mold and each increment light-cured for 40 s. A previous reading in micrometers was taken at the cervical wall, using a stereomicroscope magnifying glass equipped with a digital video camera and image-analysis software. Subsequently, the specimens were subjected to the post-cure treatments (autoclave and microwave and a reading was taken again at the cervical wall. Data were compared using ANOVA for the hardness test, split-plot ANOVA for the adaptation assessment and Tukey's test for multiple comparisons. A significance level of 5% was adopted for all analyses. RESULTS: The post-cure treatments increased the hardness of conventional composites (p<0.001 and the gap values of inlay restorations (p<0.01. Filtek Z250 showed higher hardness (p<0.001 and lower gap values than Opallis and Esthet-X (p<0.05. Gap values did not exceed 90 µm for any of the experimental conditions. CONCLUSION: The post-cure treatments increased the VHN and the gap values on the cervical floor of composite resin inlays. Moreover, Filtek Z250 showed the best results, with higher hardness and lower gap values.

  1. Fatigue resistance and failure mode of adhesively restored custom metal-composite resin premolar implant abutments.

    Science.gov (United States)

    Boff, Luís Leonildo; Oderich, Elisa; Cardoso, Antônio Carlos; Magne, Pascal

    2014-01-01

    To evaluate the fatigue resistance and failure mode of composite resin and porcelain onlays and crowns bonded to premolar custom metal-composite resin premolar implant abutments. Sixty composite resin mesostructures were fabricated with computer assistance with two preparation designs (crown vs onlay) and bonded to a metal implant abutment. Following insertion into an implant with a tapered abutment interface (Titamax CM), each metal-composite resin abutment was restored with either composite resin (Paradigm MZ100) or ceramic (Paradigm C) (n = 15) and attached with adhesive resin (Optibond FL) and a preheated light-curing composite resin (Filtek Z100). Cyclic isometric chewing (5 Hz) was then simulated, starting with 5,000 cycles at a load of 50 N, followed by stages of 200, 400, 600, 800, 1,000, 1,200, and 1,400 N (25,000 cycles each). Samples were loaded until fracture or to a maximum of 180,000 cycles. The four groups were compared using life table survival analysis (log-rank test). Previously published data using zirconia abutments of the same design were included for comparison. Paradigm C and MZ100 specimens fractured at average loads of 1,133 N and 1,266 N, respectively. Survival rates ranged from 20% to 33.3% (ceramic crowns and onlays) to 60% (composite resin crowns and onlays) and were significantly different (pooled data for restorative material). There were no restoration failures, but there were adhesive failures at the connection between the abutment and the mesostructure. The survival of the metal-composite resin premolar abutments was inferior to that of identical zirconia abutments from a previous study (pooled data for abutment material). Composite resin onlays/crowns bonded to metal-composite resin premolar implant abutments presented higher survival rates than comparable ceramic onlays/crowns. Zirconia abutments outperformed the metal-composite resin premolar abutments.

  2. Effects of different curing methods and microleakage and degree of conversion of composite resin restorations

    OpenAIRE

    2003-01-01

    Statement of Problem: Recently, investigators have presented new methods to reduce polymerization shrinkage of composite resin restorations. It is claimed that more powerful light cure systems associated with a change in radiation patterns, lead to improved mechanical properties and reduced microleakage. Purpose: The aim of the present study was to evaluate the effects of two curing systems, known as Soft-Start, Pulse-Delay, on microleakage and degree of conversion of composite resin restorat...

  3. On the development of an intrinsic hybrid composite

    Science.gov (United States)

    Kießling, R.; Ihlemann, J.; Riemer, M.; Drossel, W.-G.; Scharf, I.; Lampke, T.; Sharafiev, S.; Pouya, M.; F-X Wagner, M.

    2016-03-01

    Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces.

  4. Photoresponsive Self-Healing Polymer Composite with Photoabsorbing Hybrid Microcapsules.

    Science.gov (United States)

    Gao, Lei; He, Jinliang; Hu, Jun; Wang, Chao

    2015-11-18

    Microcapsule-based self-healing polymer materials are highly desirable because they can heal large-volume cracks without changing the original chemical structures of polymers. However, they are limited by processing difficulties and inhomogeneous distributions of two components. Herein, we report a one-component photoresponsive self-healing polymer composite with photoabsorbing hybrid microcapsules (PAHM), which gives the microcapsules photoabsorbing properties by introducing nano-TiO2 particles as photoabsorbing and emulsified agents in the poly(urea-formaldehyde)/TiO2 hybrid shells. Upon mechanical damage and then exposure to light, the photoresponsive healing agents in the cracks will be solidified to allow for self-healing, while the healing agents in the unbroken PAHM will be protected and remain unreacted, which endows this photoresponsive microcapsule-based self-healing composite with self-healing properties like those found in the conventional two-component microcapsule-based systems. Given the universality of this hybrid polymerization method, incorporation of the photoabsorbing particles to conventional polymer shells may further broaden the scope of applications of these widely used materials.

  5. Volumetric composition and shear strength evaluation of pultruded hybrid kenaf/glass fiber composites

    DEFF Research Database (Denmark)

    Hashemi, Fariborz; Tahir, Paridah Md; Madsen, Bo

    2015-01-01

    In the present study, six different combinations of pultruded hybrid kenaf/glass composites were fabricated. The number of kenaf and glass rovings was specifically selected to ensure constant local fiber volume fractions in the composites. The volumetric composition of the composites was determined...... by using a gravimetrically based method. Optical microscopy was used to determine the location of voids. The short-beam test method was used to determine the interlaminar shear strength of the composites, and the failure mode was observed. It was found that the void volume fraction of the composites...... was increased as a function of the kenaf fiber volume fraction. A linear relationship with high correlation (R2=0.95) was established between the two volume fractions. Three types of voids were observed in the core region of the composites (lumen voids, interface voids and impregnation voids). The failure...

  6. Ablation Performance of a Novel Super-hybrid Composite

    Institute of Scientific and Technical Information of China (English)

    Jun QIU; Xiaoming CAO; Chong TIAN; Jinsong ZHANG

    2005-01-01

    A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results show that the linear ablation rate of NSHC was lower than that of pure BPR and the high silica/BPR composite. Its linear ablation rate is 1/17 of the high silica/BPR. Mass ablation rate of the NSHC is very close to that of the pure BPR and the high silica/BPR composite. Scanning electron microscope (SEM) analysis indicates that 3DRC has scarcely changed its shape at the ablation temperature. Its special reticulated structure can restrict the materials deformation and prevent high velocity heat flow from eroding the surface of the materials largely and thus increase ablation resistance of the NSHC.

  7. Hybrid Titanium Composite Laminates: A New Aerospace Material

    Science.gov (United States)

    Johnson, W. S.; Cobb, Ted Q.; Lowther, Sharon; St.Clair, T. L.

    1998-01-01

    In the realm of aerospace design and performance, there are few boundaries in the never-ending drive for increased performance. This thirst for ever-increased performance of aerospace equipment has driven the aerospace and defense industries into developing exotic, extremely high-performance composites that are pushing the envelope in terms of strength-to-weight ratios, durability, and several other key measurements. To meet this challenge of ever-increasing improvement, engineers and scientists at NASA-Langley Research Center (NASA-LaRC) have developed a high-temperature metal laminate based upon titanium, carbon fibers, and a thermoplastic resin. This composite, known as the Hybrid Titanium Composite Laminate, or HTCL, is the latest chapter in a significant, but relatively short, history of metal laminates.

  8. Low and high velocity impact response of thick hybrid composites

    Science.gov (United States)

    Hiel, Clement; Ishai, Ori

    1993-01-01

    The effects of low and high velocity impact on thick hybrid composites (THC's) were experimentally compared. Test Beams consisted of CFRP skins which were bonded onto an interleaved syntactic foam core and cured at 177 C (350 F). The impactor tip for both cases was a 16 mm (0.625 inch) steel hemisphere. In spite of the order of magnitude difference in velocity ranges and impactor weights, similar relationships between impact energy, damage size, and residual strength were found. The dependence of the skin compressive strength on damage size agree well with analytical open hole models for composite laminates and may enable the prediction of ultimate performance for the damaged composite, based on visual inspection.

  9. The Post-Amalgam Era: Norwegian Dentists’ Experiences with Composite Resins and Repair of Defective Amalgam Restorations

    OpenAIRE

    Simen E. Kopperud; Frode Staxrud; Ivar Espelid; Anne Bjørg Tveit

    2016-01-01

    Amalgam was banned as a dental restorative material in Norway in 2008 due to environmental considerations. An electronic questionnaire was sent to all dentists in the member register of the Norwegian Dental Association (NTF) one year later, to evaluate dentists’ satisfaction with alternative restorative materials and to explore dentists’ treatment choices of fractured amalgam restorations. Replies were obtained from 61.3%. Composite was the preferred restorative material among 99.1% of the de...

  10. In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Tezvergil, A.; Kuijs, R.H.; Lassila, L.V.; Kreulen, C.M.; Creugers, N.H.J.; Vallittu, P.K.

    2005-01-01

    OBJECTIVES: To assess the fracture resistance and failure mode of fiber reinforced composite (FRC) cusp-replacing restorations in premolars. METHODS: Forty-five extracted sound upper premolars were randomly divided into three groups. Identical MOD cavities with simulated buccal cusp fracture and hei

  11. In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Tezvergil, A.; Kuijs, R.H.; Lassila, L.V.; Kreulen, C.M.; Creugers, N.H.J.; Vallittu, P.K.

    2005-01-01

    OBJECTIVES: To assess the fracture resistance and failure mode of fiber reinforced composite (FRC) cusp-replacing restorations in premolars. METHODS: Forty-five extracted sound upper premolars were randomly divided into three groups. Identical MOD cavities with simulated buccal cusp fracture and hei

  12. A retrospective clinical study on longevity of posterior composite and amalgam restorations.

    NARCIS (Netherlands)

    Opdam, N.J.M.; Bronkhorst, E.M.; Roeters, F.J.M.; Loomans, B.A.C.

    2007-01-01

    OBJECTIVES: The purpose of this study was to evaluate retrospectively the longevity of class I and II amalgam and composite resin restorations placed in a general practice. METHODS: Patient records of a general practice were used for collecting the data for this study. From the files longevity and r

  13. Clinical cross-polarization optical coherence tomography assessment of subsurface enamel below dental resin composite restorations.

    Science.gov (United States)

    Lenton, Patricia; Rudney, Joel; Fok, Alex; Jones, Robert S

    2014-04-01

    A newly designed intraoral swept source cross-polarization optical coherence tomography (CP-OCT) imaging system was used to examine the integrity of the subsurface enamel below resin composite restorations placed in primary teeth. CP-OCT analysis was performed using images obtained from resin composite restoration in 62 ([Formula: see text]) pediatric subjects. Clinical examination was performed by a single examiner prior to CP-OCT imaging and analysis. CP-OCT images are presented using a unique combined intensity image, where a false color scale is overlaid on the grayscale intensity image. There was a clear difference in the distribution of the mean-backscattered intensity (mR) between restorations recently placed and those possessing frank cavitation (Student's t-test, [Formula: see text]). For mR above 15.49 dB, the sensitivity was 80% and specificity 86%. The Youden index J was 0.8 above 12.3 dB where sensitivity was 100% and specificity was 80%. CP-OCT imaging may be used to confirm the subsurface marginal integrity below resin composite restorations but with careful consideration of limitations of the imaging modality. CP-OCT imaging may be a useful adjunct to clinical visual investigation to confirm that a composite margin has a sound and well-adapted interface.

  14. Esthetic integration between ceramic veneers and composite restorations: a case report

    OpenAIRE

    Farronato, Davide; Mangano, Francesco; Pieroni, Stefano; Giudice, Giuseppe Lo; Briguglio, Roberto; Briguglio, Francesco

    2012-01-01

    The tooth structure preservation is the best way to postpone more invasive therapies. Especially in young patients more conservative techniques should be applied. Bonded porcelain veneers and even more the direct composite restorations, are the two therapeutic procedures that require the fewer sacrifice of dental tissue, finalized to the optimal recovery of aesthetic and functional outcome.

  15. Cytogenetic genotoxic investigation in peripheral blood lymphocytes of subjects with dental composite restorative filling materials.

    Science.gov (United States)

    Pettini, F; Savino, M; Corsalini, M; Cantore, S; Ballini, A

    2015-01-01

    Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. The objective of this study was to evaluate the genotoxicity of a common dental composite material (Enamel Plus-HFO), in subjects with average 13 filled teeth with the same material, compared to a control group (subjects having neither amalgam nor composite resin fillings). Genotoxicity assessment of composite materials was carried out in vitro in human peripheral blood leukocytes using sister-chromatid exchange (SCE) and chromosomal aberrations (CA) cytogenetic tests. The results of correlation and multiple regression analyses confirmed the absence of a relationship between SCE/cell, high frequency of SCE(HFC) or CA frequencies and exposure to dental composite materials. These results indicate that composite resins used for dental restorations differ extensively in vivo in their cytotoxic and genotoxic potential and in their ability to affect chromosomal integrity, cell-cycle progression, DNA replication and repair.

  16. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA

    Science.gov (United States)

    2014-04-01

    16 4.2.4.3 Fabrication and Modeling of Rubber Muscle Actuators ..........17 4.2.4.4 Modeling of Power Response of SMP/SMA...Processing of BMI/Preceramic Polymer Blends .................................28 4.9 Task 9.0 Hybrid Material Processing and Fabrication...electrical stimulus, similar in action to the natural response of the conformation of a bird wing during flight vs. takeoff or landing, a muscle pair

  17. Evaluation of hybrid composite materials in cylindrical specimen geometries

    Science.gov (United States)

    Liber, T.; Daniel, I. M.

    1976-01-01

    Static and fatigue properties of three composite materials and hybrids were examined. The materials investigated were graphite/epoxy, S-glass/epoxy, PRD-49 (Kevlar 49)/epoxy, and hybrids in angle-ply configurations. A new type of edgeless cylindrical specimen was developed. It is a flattened tube with two flat sides connected by curved sections and it is handled much like the standard flat coupon. Special specimen fabrication, tabbing, and tab region reinforcing techniques were developed. Axial modulus, Poisson's ratio, strength, and ultimate strain were obtained under static loading from flattened tube specimens of nine laminate configurations. In the case of graphite/epoxy the tubular specimens appeared to yield somewhat higher strength and ultimate strain values than flat specimens. Tensile fatigue tests were conducted with all nine types of specimens and S-N curves obtained. Specimens surviving 10 million cycles of tensile loading were subsequently tested statically to failure to determine residual properties.

  18. Hybrid Composites for LH2 Fuel Tank Structure

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  19. Fabrication and adsorption properties of hybrid fly ash composites

    Science.gov (United States)

    Gao, Mengfan; Ma, Qingliang; Lin, Qingwen; Chang, Jiali; Ma, Hongzhu

    2017-02-01

    In order to realize the utilization of fly ash (FA) as industrial solid waste better, high-efficient inorganic/organic hybrid composite adsorbents derived from (Ca(OH)2/Na2FeO4) modified FA (MF) was fabricated. The hydrophilic cationic polymer (P(DMDAAC-co-AAM) or hydrophobic modifier (KH-570) were used. The prepared composites were characterized by X-ray fluorescence spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, thermogravimetry, and contact angle test. The adsorption of cationic composites MF/P(DMDAAC-co-AAM) towards Orange II in wastewater was investigated. The results show that: adsorption amount of 24.8 mg/g with 2000 mg/L of composites, 50 mg/L Orange II, original pH (6-8), at 40 min and room temperature, was obtained. Meanwhile, oil adsorption ratio Q(g/g) of hydrophobic composites MF/KH-570 was also evaluated. The maximum Q of 17.2 g/g to kerosene was obtained at 40 min. The isotherm and kinetics of these two adsorption processes were also studied. The results showed that the fabricated MF composites modified with hydrophilic or hydrophobic group can be used to adsorb dye in wastewater or oil effectively.

  20. Effect of Static and Cyclic Loading on Ceramic Laminate Veneers Adhered to Teeth with and Without Aged Composite Restorations

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Ozcan, Mutlu; Kalk, Warner; Galhano, Graziela

    2011-01-01

    Purpose: Existing composite restorations on teeth are often remade prior to the cementation of fixed dental prostheses. The aim of this study was to evaluate the effect of static and cyclic loading on ceramic laminate veneers adhered to aged resin composite restorations. Materials and Methods: Eight

  1. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  2. Influence of matrix systems on proximal contact tightness of 2- and 3-surface posterior composite restorations in vivo

    NARCIS (Netherlands)

    Wirsching, E.; Loomans, B.A.C.; Klaiber, B.; Dorfer, C.E.

    2011-01-01

    OBJECTIVES: To investigate the influence of cavity preparation (MO/DO/MOD) and type of matrix system on proximal contact tightness of direct posterior composite restorations. MATERIALS AND METHODS: 85 patients in need of a two- or three surface Class II direct composite restoration were randomly div

  3. Effect of Static and Cyclic Loading on Ceramic Laminate Veneers Adhered to Teeth with and Without Aged Composite Restorations

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Ozcan, Mutlu; Kalk, Warner; Galhano, Graziela

    2011-01-01

    Purpose: Existing composite restorations on teeth are often remade prior to the cementation of fixed dental prostheses. The aim of this study was to evaluate the effect of static and cyclic loading on ceramic laminate veneers adhered to aged resin composite restorations. Materials and Methods:

  4. k-CONNECTED HYBRID RELAY NODE PLACEMENT IN WIRELESS SENSOR NETWORK FOR RESTORING CONNECTIVITY

    Directory of Open Access Journals (Sweden)

    Vijayvignesh Selvaraj

    2014-06-01

    Full Text Available Wireless Sensor Network (WSN consists of a number of sensor nodes for monitoring the environment. Scenario like floods, volcanic eruptions, earthquakes, tsunamis, avalanches, hailstorms and blizzards causes the sensor nodes to be damaged. In such worst case scenario, the deployed nodes in the monitoring area may split up into several segments. As a result sensor nodes in the network cannot communicate with each other due to partitions. Our algorithm investigates a strategy for restoring such kind of damage through either placement of Relay Nodes (RN’s or repositioning the existing nodes in the network. Unlike traditional schemes like minimum spanning tree, our proposed approach generates a different topology called as spider web. In this approach, both stationary and mobile relay nodes are used. Thus we are making our topology as a hybrid one. Though the numbers of relay nodes are increased, the robust connectivity and the balanced traffic load can be ensured. The validation of the proposed approach has been simulated and verified by QualNet Developer 5.0.2.

  5. EFFECT OF PLACEMENT TECHNIQUES, FLOWABLE COMPOSITE , LINER AND FIBRE INSERTS ON MARGINAL MICROLEAKAGE OF CLASS II COMPOSITE RESTORATIONS

    Directory of Open Access Journals (Sweden)

    Anupriya

    2015-08-01

    Full Text Available AIM : T he aim of this study was to evaluate effect of placement techniques, flow able composite, and fiber inserts in marginal adaptation of class II composite restorations. MATERIALS AND METHODS : 120 class II box cavities were prepared on both mesial and distal surfaces of extracted human molars. The prepared teeth were randomly assigned to 6 groups : 1 bulk insertion . ( S ingle increment, 2 O blique incremental placement technique, 3 Centripetal incremental placement technique . 4 S plit horizontal incremental placement technique . 5 flow able composite as gingival increment 6 ribbond fiber insert in gingival increment . The preparations were restored with a total etch adhesive (Adper Single Bond, 3M ESPE and nano composite (Z350, 3M ESPE. Specimens were isola ted with nail varnish except for a 2 - mm - wide rim around the restoration and thermocycled (1,000 thermal cycles, 5°C/55°C; 30 - second dwell time. The specimens were immersed in a solution of 2% methylene blue dye for 24 hours. The teeth were sectioned longi tudinally, observed under stereomicroscope and evaluated for microleakage using an ordinal scale of 0 to 4. The microleakage scores obtained from gingival walls were analyzed with Kruskal - Wallis and Mann Whitney nonparametric tests. RESULTS: Among all plac ement techniques split incremental technique showed least microleakage scores . The group that used flowable composite liner did not show significant reduction in microleakage and group with fiber inserts showed significant decrease in microleakage scores. CONCLUSION : None of the techniques eliminated marginal microleakage in class II composite restorations . However, the split incremental technique and group with fiber inserts showed significantly lower microleakage at gingival margin when compared to other groups

  6. In Vitro Fatigue Resistance of Teeth Restored With Bulk Fill versus Conventional Composite Resin.

    Science.gov (United States)

    Rauber, Gabrielle Branco; Bernardon, Jussara Karina; Vieira, Luiz Clovis Cardoso; Maia, Hamilton Pires; Horn, Françoá; Roesler, Carlos Rodrigo de Mello

    2016-01-01

    The aim of this study was to compare the fatigue resistance of restored teeth with bulk fill composite resin, conventional composite resin with incremental insertion and unprepared sound teeth. Twenty-eight extracted maxillary premolars were selected and divided into 4 groups based on composite resin and insertion technique: control (C), conventional composite resin with incremental insertion (I) and bulk fill composite resin with three (BF3) or single increment (BF1). The restored specimens were submitted to fatigue resistance test with a 5 Hz frequency. An initial application of 5,000 sinusoidal load cycles with a minimum force of 50 N and a maximum force of 200 N was used. Next, were applied stages of 30,000 load cycles with the maximum force increasing gradually: 400, 600, 800, 1000, 1200 and 1400 N. The test was concluded when 185,000 load cycles were achieved or the specimen failed. The fatigue resistance data were recorded for comparison, using the Kaplan-Meier survival curve and analyzed by log-rank test at 0.05 significance. Fractures were classified based on the position of the failure - above or below the cementoenamel junction (CEJ). Statistical analysis of the Kaplan-Meier survival curve and log-rank test showed a significant difference between groups (p=0.001). The fracture analysis demonstrated that only 28.58% of failures were below the CEJ in group C, while for groups I, BF1 and BF3 they were 42.85%, 85.71% and 85.71%, respectively. Teeth restored with composite bulk fill in both techniques present similar fatigue resistance values compared with those restored with a conventional incremental insertion of composite, while the fatigue strength values of unprepared sound teeth were higher. Furthermore, unprepared sound teeth showed a lower percentage of fractures below the CEJ.

  7. Effect of static and cyclic loading on ceramic laminate veneers adhered to teeth with and without aged composite restorations.

    Science.gov (United States)

    Gresnigt, Marco M; Ozcan, Mutlu; Kalk, Warner; Galhano, Graziela

    2011-12-01

    Existing composite restorations on teeth are often remade prior to the cementation of fixed dental prostheses. The aim of this study was to evaluate the effect of static and cyclic loading on ceramic laminate veneers adhered to aged resin composite restorations. Eighty sound maxillary incisors were collected and randomly divided into four groups: group 1: control group, no restorations; group 2: two Class III restorations; group 3: two Class IV restorations; group 4: complete composite substrate. Standard composite restorations were made using a microhybrid resin composite (Anterior Shine). Restored teeth were subjected to thermocycling (6000 cycles). Window preparations were made on the labial surface of the teeth for ceramic laminate fabrication (Empress II). Teeth were conditioned using an etch-and-rinse system. Existing composite restorations representing the aged composites were silica coated (CoJet) and silanized (ESPE-Sil). Ceramic laminates were cemented using a bis-GMA-based cement (Variolink Veneer). The specimens were randomly divided into two groups and were subjected to either static (groups 1a, 2a, 3a, 4a) or cyclic loading (groups 1b, 2b, 3b, 4b). Failure type and location after loading were classified. Data were analyzed using one-way ANOVA and Tukey's test. Significantly higher fracture strength was obtained in group 4 (330 ± 81 N) compared to the controls in group 1 (179 ± 120 N) (one-way ANOVA, p ceramic were seen. Ceramic laminate veneers bonded to conditioned aged composite restorations provided favorable results. Surface conditioning of existing restorations may eliminate the necessity of removing aged composite restorations.

  8. Adhesion and Long-Term Barrier Restoration of Intrinsic Self-Healing Hybrid Sol-Gel Coatings.

    Science.gov (United States)

    Abdolah Zadeh, Mina; van der Zwaag, Sybrand; Garcia, Santiago J

    2016-02-17

    Self-healing polymeric coatings aiming at smart and on-demand protection of metallic substrates have lately attracted considerable attention. In the present paper, the potential application of a dual network hybrid sol-gel polymer containing reversible tetrasulfide groups as a protective coating for the AA2024-T3 substrate is presented. Depending on the constituent ratio, the developed polymer exhibited a hydrophobic surface, high adhesion strength, and an effective long-term corrosion protection in 0.5 M NaCl solution. Upon thermal treatment, the healable hybrid sol-gel coating demonstrated full restoration of the barrier properties as well as recovery of the coating adhesion and surface properties (e.g., hydrophobicity and surface topology) necessary for lifetime extension of corrosion protective coatings. Excellent long-term barrier restoration of the coating was only obtained if the scratch width was less than the coating thickness.

  9. The Evaluation of Various Restoration Techniques on Internal Adaptation of Composites in Class V Cavities

    Directory of Open Access Journals (Sweden)

    D. Dionysopoulos

    2014-01-01

    Full Text Available Aim. The aim of this study was to evaluate the effect of different restoration techniques on the formation of internal microgaps between materials and dentin in class V restorations. Materials and Methods. Twenty-five extracted human premolars were prepared with standardized class V cavity outlines (3 mm × 2 mm × 2 mm. The cavities were randomly divided into 5 groups of 10 cavities each and restored according to manufacturer’s instructions: Group 1: preheating (55°C conventional composite (Filtek Z250, Group 2: flowable composite (Filtek Flow, Group 3: Filtek Flow + Filtek Z250 light-cured separately, Group 4: Filtek Flow + Filtek Z250 light-cured simultaneously, and Group 5 (control: Filtek Z250 at room temperature (23°C. The specimens were then thermocycled and cross-sectioned through the center of the restoration. Subsequently, impressions were taken, and epoxy resin replicas were made. The internal adaptation of the materials to the axial wall was analyzed under SEM. Results. The preheated Filtek Z250 (Group 1 showed better internal adaptation than the room temperature groups (P<0.05. The combination of Filtek Flow with Filtek Z250 which was light-cured separately (Group 3 exhibited better internal adaptation than control group (P<0.05. Conclusion. Different restoration techniques exhibit different behavior regarding internal adaptation to dentin after photopolymerization.

  10. A Comparative Analysis of Different Finishing and Polishing Devices on Nanofilled, Microfilled, and Hybrid Composite: A Scanning Electron Microscopy and Profilometric Study

    Science.gov (United States)

    Yadav, Rishi D; Raisingani, Deepak; Mathur, Rachit

    2016-01-01

    The continuous development of esthetically acceptable adhesive restorative material has made a variety of tooth-colored materials available for clinical use. The advent of visible light polymerizing resin and the use of finer filler particles permit resin composites to be polished to higher degree. The effect of polishing systems on surface finish has been reported to be material-dependent, and the effectiveness of these systems was mostly product-dependent. Hence, the purpose of this study was to evaluate the efficiency of finishing and polishing systems on the surface roughness of nanofilled, microfilled, and hybrid composite restorative materials available in the market. How to cite this article Yadav RD, Raisingani D, Jindal D, Mathur R. A Comparative Analysis of Different Finishing and Polishing Devices on Nanofilled, Microfilled, and Hybrid Composite: A Scanning Electron Microscopy and Profilometric Study. Int J Clin Pediatr Dent 2016;9(3):201-208. PMID:27843250

  11. Clinical evaluation of the fiber post and direct composite resin restoration for fixed single crowns on endodontically treated teeth

    Science.gov (United States)

    Murali Mohan, S.; Mahesh Gowda, E.; Shashidhar, M.P.

    2015-01-01

    Background The restoration of an endodontically treated fractured tooth has been a challenge for restorative dentists for decades. The performance of fiber posts when used in conjunction with direct composite resin restorations have been largely unreported. This study was conducted with the aim of evaluating the survival rate of endodontically treated teeth restored with adhesive bonded fiber reinforced resin posts and direct composite core with additional crown coverage. Methods Sixty patients who required endodontic treatment with post core crown were selected from outpatient department of Air Force Institute of Dental Sciences, Bangalore. Sixty-four teeth were endodontically treated and restored with fiber post and direct resin composite core restoration. Patients were evaluated immediately after restoration and reevaluated at the end of first, second and third months. After 3 months of clinical evaluation, if teeth were asymptomatic they were restored with complete coverage porcelain fused to metal restorations and evaluated immediately, and again reevaluated at the end of first, third, and sixth months. Results After 3 months of clinical evaluation, only two teeth exhibited periapical lesion with clinical symptoms and three teeth without any clinical symptoms. Five teeth exhibited slight marginal staining, three teeth showed partial loss of restoration, and two teeth exhibited complete loss of restoration with the fracture of the post. At the end of sixth month after restoration with full coverage crown, two teeth had dislodged restoration due to fracture of post and two teeth exhibited displacement of the post. Conclusion Fiber posts are the best alternative for restoration of fractured endodontically treated teeth. Fiber posts and direct composite resin core materials are strongly recommended for restoration of endodontically treated mutilated teeth among the dental establishments of Armed Forces. PMID:26288494

  12. Impact of non-hookean behaviour on mechanical performance of hybrid composites

    DEFF Research Database (Denmark)

    Markussen, Christen Malte; Madsen, Bo; Lilholt, Hans

    2015-01-01

    Hybrid composites, based on unidirectional fibres of carbon and glass, in an epoxy matrix have been used to investigate the possibility of a hybrid effect. The hybrid effect is observed experimentally by values for both composite strength and composite failure strain, which are increased compared...... data. For the present hybrid composites a value of 푯 = ퟏ.ퟐퟐ is required, meaning a positive hybrid effect on “fibre” strain of 22%. It is thus concluded that the simple concept of a hybrid factor H for the fibre failure strain can describe the observed hybrid effect satisfactorily....... to a simple model. The introduction of an increase of the failure strain of the carbon fibre part (the “fibre”) of the composite, described by a factor H for the increase of the failure strain, results in theoretical curves for strength and failure strain, which are in general agreement with the experimental...

  13. Bee communities along a prairie restoration chronosequence: similar abundance and diversity, distinct composition.

    Science.gov (United States)

    Tonietto, Rebecca K; Ascher, John S; Larkin, Daniel J

    2017-04-01

    Recognition of the importance of bee conservation has grown in response to declines of managed honey bees and some wild bee species. Habitat loss has been implicated as a leading cause of declines, suggesting that ecological restoration is likely to play an increasing role in bee conservation efforts. In the midwestern United States, restoration of tallgrass prairie has traditionally targeted plant community objectives without explicit consideration for bees. However, restoration of prairie vegetation is likely to provide ancillary benefits to bees through increased foraging and nesting resources. We investigated community assembly of bees across a chronosequence of restored eastern tallgrass prairies and compared patterns to those in control and reference habitats (old fields and prairie remnants, respectively). We collected bees for 3 yr and measured diversity and abundance of in-bloom flowering plants, vegetation structure, ground cover, and surrounding land use as predictors of bee abundance and bee taxonomic and functional diversity. We found that site-level variables, but not site type or restoration age, were significant predictors of bee abundance (bloom diversity, P = 0.004; bare ground cover, P = 0.02) and bee diversity (bloom diversity, P = 0.01). There were significant correlations between overall composition of bee and blooming plant communities (Mantel test, P = 0.002), and both plant and bee assemblages in restorations were intermediate between those of old fields and remnant prairies. Restorations exhibited high bee beta diversity, i.e., restored sites' bee assemblages were taxonomically and functionally differentiated from each other. This pattern was strong in younger restorations (20 yr), suggesting restored prairie bee communities become more similar to one another and more similar to remnant prairie bee communities over time with the arrival of more species and functional groups of bees. Our results indicate that old fields

  14. Comparison of the marginal adaptation of direct and indirect composite inlay restorations with optical coherence tomography

    Science.gov (United States)

    TÜRK, Ayşe Gözde; SABUNCU, Metin; ÜNAL, Sena; ÖNAL, Banu; ULUSOY, Mübin

    2016-01-01

    ABSTRACT Objective The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. Material and Methods Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (prestorations after cementation (p=0.00008839, p=0.000000952 for direct and indirect inlays, respectively). The mean marginal discrepancy value of the direct group increased from 56.88±20.04 µm to 91.88±31.7 µm, whereas the indirect group increased from 107.54±35.63 µm to 170.29±54.83 µm. Different techniques are available to detect marginal adaptation of restorations, but the OCT system can give quantitative information about resin cement thickness and its interaction between tooth and restoration in a nondestructive manner. Conclusions Direct inlays presented smaller marginal discrepancy than indirect inlays. The marginal discrepancy values were increased for all restorations that refer to cement thickness after cementation. PMID:27556210

  15. Restoration of posterior teeth in clinical practice: evidence base for choosing amalgam versus composite.

    Science.gov (United States)

    Kovarik, Robert E

    2009-01-01

    This article reviews the current use of amalgam versus resin composite in posterior restorations and the evidence-base for choosing between these two treatment options. While much research has been published on the issue of the clinical use of amalgam versus resin composite, there are several issues that limit the true evidence-base on the subject. Furthermore, while the majority of published studies on posterior composites would seem to indicate equivalent clinical performance of resin composite to amalgam restorations, the studies that should be weighted much more heavily (randomized controlled trials) do not support the slant of the rest of the literature. As part of an evidence-based approach to private practice, clinicians need to be aware of the levels of evidence in the literature and need to properly inform patients of the true clinical outcomes that are associated with the use of amalgam versus resin composite for posterior restorations, so that patients are themselves making informed decisions about their dental care.

  16. An update on glass fiber dental restorative composites: a systematic review.

    Science.gov (United States)

    Khan, Abdul Samad; Azam, Maria Tahir; Khan, Maria; Mian, Salman Aziz; Ur Rehman, Ihtesham

    2015-02-01

    Dentistry is a much developed field in the last few decades. New techniques have changed the conventional treatment methods as applications of new dental materials give better outcomes. The current century has suddenly forced on dentistry, a new paradigm regarding expected standards for state-of-the-art patient care. Within the field of restorative dentistry, the incredible advances in dental materials research have led to the current availability of esthetic adhesive restorations. The chemistry and structure of the resins and the nature of the glass fiber reinforced systems in dental composites are reviewed in relation to their influence and properties including mechanical, physical, thermal, biocompatibility, technique sensitivity, mode and rate of failure of restorations on clinical application. It is clear that a deeper understanding of the structure of the polymeric matrix and resin-based dental composite is required. As a result of ongoing research in the area of glass fiber reinforced composites and with the development and advancement of these composites, the future prospects of resin-based composite are encouraging. Copyright © 2014. Published by Elsevier B.V.

  17. NDE of the internal hole defect of dental composite restoration using infrared lock in thermography

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Ja Uk; Choi, Nak Sam [Hanyang Univ., Ansan (Korea, Republic of)

    2013-02-15

    The purpose of this study was to detect the pin hole defect of dental composite restoration using lock in thermography method. Amplitude and phase images of the composite resin specimens were analyzed according to the lock in frequency and the diameter of defect area. Through the amplitude image analysis, at lock in frequency of 0.05 Hz, defect diameters 2-5 mm exhibited the highest amplitude contrast value between defective area and sound area. The lock in frequency range of 0.3-0.5 Hz provided good phase angle contrast for contrast value. It is concluded that the infrared lock in thermography method verified the effectiveness for detecting the pin hole defect of dental composite restoration.

  18. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations

    Science.gov (United States)

    Garoushi, Sufyan K.; Hatem, Marwa; Lassila, Lippo V. J.; Vallittu, Pekka K.

    2015-01-01

    Abstract Objectives: To determine the marginal microleakage of Class II restorations made with different composite base materials and the static load-bearing capacity of direct composite onlay restorations. Methods: Class II cavities were prepared in 40 extracted molars. They were divided into five groups (n = 8/group) depending on composite base material used (everX Posterior, SDR, Tetric EvoFlow). After Class II restorations were completed, specimens were sectioned mid-sagitally. For each group, sectioned restorations were immersed in dye. Specimens were viewed under a stereo-microscope and the percentage of cavity leakage was calculated. Ten groups of onlay restorations were fabricated (n = 8/group); groups were made with composite base materials (everX Posterior, SDR, Tetric EvoFlow, Gradia Direct LoFlo) and covered by 1 mm layer of conventional (Tetric N-Ceram) or bulk fill (Tetric EvoCeram Bulk Fill) composites. Groups made only from conventional, bulk fill and short fiber composites were used as control. Specimens were statically loaded until fracture. Data were analyzed using ANOVA (p = 0.05). Results: Microleakage of restorations made of plain conventional composite or short fiber composite base material showed statistically (p onlay restorations made from short fiber-reinforced composite (FRC) as base or plain restoration had statistically significant higher load-bearing capacity (1593 N) (p < 0.05) than other restorations. Conclusion: Restorations combining base of short FRC and surface layer of conventional composite displayed promising performance related to microleakage and load-bearing capacity. PMID:28642894

  19. Surface Morphology and Tooth Adhesion of a Novel Nanostructured Dental Restorative Composite

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2016-03-01

    Full Text Available Recently, a novel dental restorative composite based on nanostructured micro-fillers of anodic porous alumina has been proposed. While its bulk properties are promising thanks to decreased aging and drug delivery capabilities, its surface properties are still unknown. Here we investigated the surface morphology and the adhesion to tooth dentin of this composite as prepared. For comparison, we used two commercial composites: Tetric EVO Flow (Ivoclar and Enamel HRi Plus (Micerium. The surface morphology was characterized by atomic force microscopy and the adhesion strength by tensile tests. The experimental composite is rougher than the commercial composites, with root mean square roughness of ~549 nm against 170–511 nm, and presents an adhesion strength of ~15 MPa against 19–21 MPa. These results show at the same time some proximity to the commercial composites, but also the need for optimization of the experimental material formulation.

  20. Clinical Evaluation of Indirect Composite Resin Restorations Cemented with Different Resin Cements.

    Science.gov (United States)

    Marcondes, Maurem; Souza, Niélli; Manfroi, Fernanda Borguetti; Burnett, Luiz Henrique; Spohr, Ana Maria

    2016-01-01

    To clinically evaluate the performance of indirect composite resin restorations cemented with conventional and self-adhesive resin cements over a 12-month period. Ten patients fulfilled all the inclusion criteria. Twenty-four composite resin restorations were performed using an indirect technique and cemented with a resin cement (RelyX ARC) or a self-adhesive resin cement (RelyX U100). Two independent evaluators analyzed the restorations using modified USPHS criteria after periods of two weeks and 6 and 12 months. Statistical significance between the cements at each timepoint was evaluated with the Wilcoxon test and between timepoints with the Mann-Whitney test, both at a significance level of 5%. Fisher's exact test was used to assess the occurrence of absolute failures. No statistically significant differences were found between the groups at the same timepoint nor between groups at different timepoints. The only significant difference was found for color match for both groups after 12 months. After 12 months, indirect composite resin restorations cemented with self-adhesive resin cement performed similarly to those cemented with conventional resin cement.

  1. MoSi2-Base Hybrid Composites from Aeroengine Applications

    Science.gov (United States)

    Hebsur, Mohan G.

    2000-01-01

    Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved low temperature accelerated oxidation resistance by forming a Si2ON2 protective scale and thereby eliminated catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness, and significantly lowered the CTE of the MoSi2 which eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited this excellent strength and toughness improvement up to 1673 K. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites due to improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. These hybrid composites remain competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  2. Mechanical and electrical performance of Roystonea regia/glass fibre reinforced epoxy hybrid composites

    Indian Academy of Sciences (India)

    Govardhan Goud; R N Rao

    2012-08-01

    The present paper investigates mechanical and electrical properties of Roystonea regia/glass fibre reinforced epoxy hybrid composites. Five varieties of hybrid composites have been prepared by varying the glass fibre loading. Roystonea regia (royal palm), a natural fibre was collected from the foliage of locally available royal palm tree through the process of water retting and mechanical extraction. Roystonea regia, -glass short fibres were used together as reinforcement in epoxy matrix to form hybrid composites. It has been observed that tensile, flexural, impact and hardness properties of hybrid composites considerably increased with increase in glass fibre loading. But electrical conductivity and dielectric constant values decreased with increase in glass fibre content in the hybrid composites at all frequencies. Scanning electron microscopy of fractured hybrid composites has been carried out to study the fibre matrix adhesion.

  3. Dental cavity liners for Class I and Class II resin-based composite restorations.

    Science.gov (United States)

    Schenkel, Andrew B; Peltz, Ivy; Veitz-Keenan, Analia

    2016-10-25

    Resin-based composite (RBC) is currently accepted as a viable material for the restoration of caries for posterior permanent teeth requiring surgical treatment. Despite the fact that the thermal conductivity of the RBC restorative material closely approximates that of natural tooth structure, postoperative hypersensitivity is sometimes still an issue. Dental cavity liners have historically been used to protect the pulp from the toxic effects of some dental restorative materials and to prevent the pain of thermal conductivity by placing an insulating layer between restorative material and the remaining tooth structure. The objective of this review was to assess the effects of using dental cavity liners in the placement of Class I and Class II resin-based composite posterior restorations in permanent teeth in children and adults. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 25 May 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 4) in the Cochrane Library (searched 25 May 2016), MEDLINE Ovid (1946 to 25 May 2016), Embase Ovid (1980 to 25 May 2016) and LILACS BIREME Virtual Health Library (Latin American and Caribbean Health Science Information database; 1982 to 25 May 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. We included randomized controlled trials assessing the effects of the use of liners under Class I and Class II posterior resin-based composite restorations in permanent teeth (in both adults and children). We included both parallel and split-mouth designs. We utilized standard methodological procedures prescribed by Cochrane for data collection and analysis. Two review authors screened the search results and assessed the eligibility of studies for

  4. The Post-Amalgam Era: Norwegian Dentists’ Experiences with Composite Resins and Repair of Defective Amalgam Restorations

    Science.gov (United States)

    Kopperud, Simen E.; Staxrud, Frode; Espelid, Ivar; Tveit, Anne Bjørg

    2016-01-01

    Amalgam was banned as a dental restorative material in Norway in 2008 due to environmental considerations. An electronic questionnaire was sent to all dentists in the member register of the Norwegian Dental Association (NTF) one year later, to evaluate dentists’ satisfaction with alternative restorative materials and to explore dentists’ treatment choices of fractured amalgam restorations. Replies were obtained from 61.3%. Composite was the preferred restorative material among 99.1% of the dentists. Secondary caries was the most commonly reported cause of failure (72.7%), followed by restoration fractures (25.1%). Longevity of Class II restorations was estimated to be ≥10 years by 45.8% of the dentists, but 71.2% expected even better longevity if the restoration was made with amalgam. Repair using composite was suggested by 24.9% of the dentists in an amalgam restoration with a fractured cusp. Repair was more often proposed among young dentists (p composite as a restorative material. Most dentists chose minimally- or medium invasive approaches when restoring fractured amalgam restorations. PMID:27110804

  5. The Post-Amalgam Era: Norwegian Dentists’ Experiences with Composite Resins and Repair of Defective Amalgam Restorations

    Directory of Open Access Journals (Sweden)

    Simen E. Kopperud

    2016-04-01

    Full Text Available Amalgam was banned as a dental restorative material in Norway in 2008 due to environmental considerations. An electronic questionnaire was sent to all dentists in the member register of the Norwegian Dental Association (NTF one year later, to evaluate dentists’ satisfaction with alternative restorative materials and to explore dentists’ treatment choices of fractured amalgam restorations. Replies were obtained from 61.3%. Composite was the preferred restorative material among 99.1% of the dentists. Secondary caries was the most commonly reported cause of failure (72.7%, followed by restoration fractures (25.1%. Longevity of Class II restorations was estimated to be ≥10 years by 45.8% of the dentists, but 71.2% expected even better longevity if the restoration was made with amalgam. Repair using composite was suggested by 24.9% of the dentists in an amalgam restoration with a fractured cusp. Repair was more often proposed among young dentists (p < 0.01, employees in the Public Dental Service (PDS (p < 0.01 and dentists working in counties with low dentist density (p = 0.03. There was a tendency towards choosing minimally invasive treatment among dentists who also avoided operative treatment of early approximal lesions (p < 0.01. Norwegian dentists showed positive attitudes towards composite as a restorative material. Most dentists chose minimally- or medium invasive approaches when restoring fractured amalgam restorations.

  6. SMA Hybrid Composites for Dynamic Response Abatement Applications

    Science.gov (United States)

    Turner, Travis L.

    2000-01-01

    A recently developed constitutive model and a finite element formulation for predicting the thermomechanical response of Shape Memory Alloy (SMA) hybrid composite (SMAHC) structures is briefly described. Attention is focused on constrained recovery behavior in this study, but the constitutive formulation is also capable of modeling restrained or free recovery. Numerical results are shown for glass/epoxy panel specimens with embedded Nitinol actuators subjected to thermal and acoustic loads. Control of thermal buckling, random response, sonic fatigue, and transmission loss are demonstrated and compared to conventional approaches including addition of conventional composite layers and a constrained layer damping treatment. Embedded SMA actuators are shown to be significantly more effective in dynamic response abatement applications than the conventional approaches and are attractive for combination with other passive and/or active approaches.

  7. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  8. Structural Acoustic Response of Shape Memory Alloy Hybrid Composite Panels

    Science.gov (United States)

    Turner, Travis L.

    1996-01-01

    A method has been developed to predict the structural acoustic response of shape memory alloy hybrid composite panels subjected to acoustic excitation. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Predictions of the normal velocity response and transmitted acoustic pressure for a clamped aluminum panel show excellent agreement with experimental measurements. Predicted transmission loss performance for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement.

  9. Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2004-01-01

    A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.

  10. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  11. Buckling induced delamination of graphene composites through hybrid molecular modeling

    Science.gov (United States)

    Cranford, Steven W.

    2013-01-01

    The efficiency of graphene-based composites relies on mechanical stability and cooperativity, whereby separation of layers (i.e., delamination) can severely hinder performance. Here we study buckling induced delamination of mono- and bilayer graphene-based composites, utilizing a hybrid full atomistic and coarse-grained molecular dynamics approach. The coarse-grain model allows exploration of an idealized model material to facilitate parametric variation beyond any particular molecular structure. Through theoretical and simulation analyses, we show a critical delamination condition, where ΔD∝kL4, where ΔD is the change in bending stiffness (eV), k the stiffness of adhesion (eV/Å4), and L the length of the adhered section (Å).

  12. Mechanical Characterization of Bio-Char Made Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Amit pandey

    2016-08-01

    Full Text Available Material discoveries and development have always been the cause of the growth and development of a nation and the need of naturally made materials is the need of hours. Thus this paper takes you to the development of a hybrid composite made of sisal fiber with epoxy as the matrix intertwined with softwood bio-char. Softwood chip bio-char, produced by slow pyrolysis, has a porous structure improving its nutrient absorbing capacity, surface area and thus a potential substituent. Bio-char has an appreciable carbon sequestration value i.e. a carbon absorbing product. The orientation of sisal fiber are changed and studied in longitudinal and orthogonal direction indicating superiority of longitudinal fiber orientation .It also addresses the variation in mechanical characteristic (tensile flexural and impact with different constituent of the new composite and its position in material selection charts with a direction for further work.

  13. Influence of Cavity Margin Design and Restorative Material on Marginal Quality and Seal of Extended Class II Resin Composite Restorations In Vitro.

    Science.gov (United States)

    Soliman, Sebastian; Preidl, Reinhard; Karl, Sabine; Hofmann, Norbert; Krastl, Gabriel; Klaiber, Bernd

    2016-01-01

    To investigate the influence of three cavity designs on the marginal seal of large Class II cavities restored with low-shrinkage resin composite limited to the enamel. One hundred twenty (120) intact human molars were randomly divided into 12 groups, with three different cavity designs: 1. undermined enamel, 2. box-shaped, and 3. proximal bevel. The teeth were restored with 1. an extra-low shrinkage (ELS) composite free of diluent monomers, 2. microhybrid composite (Herculite XRV), 3. nanohybrid composite (Filtek Supreme XTE), and 4. silorane-based composite (Filtek Silorane). After artificial aging by thermocycling and storage in physiological saline, epoxy resin replicas were prepared. To determine the integrity of the restorations' approximal margins, two methods were sequentially employed: 1. replicas were made of the 120 specimens and examined using SEM, and 2. the same 120 specimens were immersed in AgNO3 solution, and the dye penetration depth was observed with a light microscope. Statistical analysis was performed using the Kruskal-Wallis and the Dunn-Bonferroni tests. After bevel preparation, SEM observations showed that restorations did not exhibit a higher percentage of continuous margin (SEM-analysis; p>0.05), but more leakage was found than with the other cavity designs (pcomposite restorations and is no longer recommended. However, undermined enamel should be removed to prevent enamel fractures.

  14. Influence of Material Distribution on Impact Resistance of Hybrid Composites

    Science.gov (United States)

    Abatan, Ayu; Hu, Hurang

    1998-01-01

    Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.

  15. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  16. Design and Fabrication of E-Glass /carbon/graphite epoxy hybrid composite leaf spring

    Science.gov (United States)

    Gopalakrishnan, T.; Raja, M.; Jothi Prakash, V. M.; Gnanavel, C.

    2017-03-01

    The Automobile Industry has shown increase interest for replacement of steel leaf spring with that of composite leaf spring. Substituting composite materials for conventional metallic materials has many advantages because of higher specific stiffness, strength and fatigue resistance etc. This work deals with the replacement of conventional steel leaf spring with a hybrid Composite leaf spring using E -Glass/Carbon/Graphite/Epoxy. The hybrid composite is obtained by introducing more than one fiber in the reinforcement phase. The hybrid composite is fabricated by the vacuum bag technique. The result shows that introduction of carbon and graphite fiber in the reinforcement phase increases the stiffness of the composite.

  17. MoSi2-Base Hybrid Composite Passed Engine Test

    Science.gov (United States)

    Keith, Theo G., Jr.; Hebsur, Mohan

    1998-01-01

    The intermetallics compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity, and it is easily machined. Past research'at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) Particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 Composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus. The first tasks of the materials development effort were to develop improved processing methods to reduce costs and to use fine-diameter fibers that enable the manufacturing of complex shapes. Tape-casting methods were developed to fully infiltrate the fine SiC fibers with matrix powders. The resulting composites were hot pressed to 100-percent density. Composites with cross-plied fiber architectures with 30 vol. % hi-nicalon SiC fibers and 30 vol. % nitride particles are now made routinely and demonstrate a good balance of properties. The next task entailed the measurement of a wide variety of mechanical properties to confirm the suitability of this composite in engines. In particular, participants in this effort demonstrated that composites made with Hi-Nicalon fibers had strength and toughness properties equal to or better than those of the composites made with the large-diameter fibers that had been used previously. Another critically

  18. Influence of Carbon & Glass Fiber Reinforcements on Flexural Strength of Epoxy Matrix Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    T.D. Jagannatha

    2015-04-01

    Full Text Available Hybrid composite materials are more attracted by the engineers because of their properties like stiffness and high specific strength which leads to the potential application in the area of aerospace, marine and automobile sectors. In the present investigation, the flexural strength and flexural modulus of carbon and glass fibers reinforced epoxy hybrid composites were studied. The vacuum bagging technique was adopted for the fabrication of polymer hybrid composite materials. The hardness, flexural strength and flexural modulus of the hybrid composites were determined as per ASTM standards. The hardness, flexural strength and flexural modulus were improved as the fiber reinforcement contents increased in the epoxy matrix material.

  19. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Rajh, T.; Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Center for Nanoscale Materials

    2009-05-06

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  20. ASSESMENT OF SELF HEALING PROPERTY IN HYBRID FIBER POLYMERIC COMPOSITE

    Directory of Open Access Journals (Sweden)

    N.ABILASH

    2011-07-01

    Full Text Available In recent years, Natural fiber reinforced composites is an emerging area in polymer technology. Fibers resulting from plants are considered a budding substitute for non-renewable synthetic fibers like glass and carbon fibers. The objective of this study is to merge the benefits of natural and synthetic fibers by developing ahybrid composite of jute and glass fibers along with self healing property to eliminate delamination without compromising the benefits of hybridization. This concept offers the designer an ability to incorporate secondary functional ability of counteracting service degradation in addition to achieving the primary, usually structuralintegrity, requirement. The self-healing approach utilizes a releasable healing agent contained in a hollow fiber that is embedded in a resin system. Specimens are produced using a hollow glass fiber and epoxy resin. In addition, in the case of multiple fibers test, e-glass fibers are incorporated in the composite. When a crack isinitiated and propagates through the composite breaking the hollow fiber, a liquid healing agent comes out and fills the crack gap. Polymerization of the monomer healing agent is facilitated when it contacts a catalyst that is pre-coated on the outside surface of the hollow glass fiber. Self-healing materials also have the benefit ofoffering lighter and optimized structures as well as reduced maintenance cost.

  1. Impedance characterization of epoxy composite containing conductive hybrid carbon fillers

    Science.gov (United States)

    Othman, Raja Nor; Tawil, Siti Nooraya; Zailan, Suhaila

    2017-08-01

    Epoxy composites containg carbon fillers are prepared in this work with an intention to characterise their electrical properties. The performance of electrical conductivity of epoxy composites is assessed by adding various loadings of conductive carbon fillers into the neat epoxy. First, Carbon Black (CB) was incorporated within epoxy matrix at several loadings. The increase in the specific conductivity of more than five orders of magnitude was observed between 3 wt. % and 4 wt.% CB loading, recorded at 10 kHz frequency. As such, the critical percolation loading, pc was recorded in between 3 wt.% and 4 wt.%. For the samples containing CB at loading 4 wt.% and above, the conductivity remains independent of the frequency, indicating a purely ohmic behaviour. It is also observed that the specific conductivity values can be altered by increasing the hardener stirring time up to 15 minutes, where the pc was successfully lowered down to < 3 wt. % It was further intended to study the hybrid effects by adding CNT to the composites. The conductivity data showed that the composite becomes frequency independent, even at 2 wt. % carbon loading (1 wt. % CB + 1 wt. % CNT), demonstrating the roles contributed by high aspect ratio conductive CNT in enhancing the formation of percolated path at much lower loading.

  2. Marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS

    Directory of Open Access Journals (Sweden)

    Luciano Ribeiro CORREA NETTO

    2015-10-01

    Full Text Available Marginal integrity is one of the most crucial aspects involved in the clinical longevity of resin composite restorations.Objective To analyze the marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS.Material and Methods A base composite (B was produced with an organic matrix with UDMA/TEGDMA and 70 wt.% of barium borosilicate glass particles. To produce the model composite, 25 wt.% of UDMA were replaced by POSS (P25. The composites P90 and TPH3 (TP3 were used as positive and negative controls, respectively. Marginal integrity (%MI was analyzed in bonded class I cavities. The volumetric polymerization shrinkage (%VS and the polymerization shrinkage stress (Pss - MPa were also evaluated.Results The values for %MI were as follows: P90 (100% = TP3 (98.3% = B (96.9% > P25 (93.2%, (p<0.05. The %VS ranged from 1.4% (P90 to 4.9% (P25, while Pss ranged from 2.3 MPa (P90 to 3.9 MPa (B. For both properties, the composite P25 presented the worst results (4.9% and 3.6 MPa. Linear regression analysis showed a strong positive correlation between %VS and Pss (r=0.97, whereas the correlation between Pss and %MI was found to be moderate (r=0.76.Conclusions The addition of 25 wt.% of POSS in methacrylate organic matrix did not improve the marginal integrity of class I restorations. Filtek P90 showed lower polymerization shrinkage and shrinkage stress when compared to the experimental and commercial methacrylate composite.

  3. Adherence of Streptococcus mutans to Fiber-Reinforced Filling Composite and Conventional Restorative Materials.

    Science.gov (United States)

    Lassila, Lippo V J; Garoushi, Sufyan; Tanner, Johanna; Vallittu, Pekka K; Söderling, Eva

    2009-12-04

    OBJECTIVES.: The aim was to investigate the adhesion of Streptococcus mutans (S. mutans) to a short glass fibers reinforced semi-IPN polymer matrix composite resin. The effect of surface roughness on adhesion was also studied. For comparison, different commercial restorative materials were also evaluated. MATERIALS AND METHODS.: Experimental composite FC resin was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of IPN-resin and 55 wt% of silane treated silica fillers using high speed mixing machine. Three direct composite resins (Z250, Grandio and Nulite), resin-modified glass ionomers (Fuji II LC), amalgam (ANA 2000), fiber-reinforced composite (FRC) (everStick and Ribbond), and pre-fabricated ceramic filling insert (Cerana class 1) were tested in this study. Enamel and dentin were used as controls. The specimens (n=3/group) with or without saliva were incubated in a suspension of S. mutans allowing initial adhesion to occur. For the enumeration of cells on the disc surfaces as colony forming units (CFU) the vials with the microbe samples were thoroughly Vortex-treated and after serial dilutions grown anaerobically for 2 days at +37 degrees C on Mitis salivarius agars (Difco) containing bacitracin. Bacterial adhesion was also evaluated by using scanning electron microscopy. Surface roughness (Ra) of the materials was also determined using a surface profilometer. All results were statistically analyzed with one-way analysis of variance (ANOVA). RESULTS.: Composite FC resin and other commercial restorative materials showed similar adhesion of S. mutans, while adhesion to dentin and enamel was significantly higher (p<0.05). Surface roughness had no effect on bacterial adhesion. Saliva coating significantly decreased the adhesion for all materials (p<0.05). Composite FC resin had a significantly higher Ra value than control groups (p<0.05). CONCLUSIONS.: Short fiber-reinforced composite with semi-IPN polymer matrix revealed similar S. mutans adhesion

  4. Effect of Two Surface Sealants on Microleakage of Class V Resin Composite Restorations

    Directory of Open Access Journals (Sweden)

    Mosa Aboali

    2012-02-01

    Full Text Available Background and Aims: When composite resin polymerizes, shrinkage stresses tend to produce gaps at the tooth/ restoration interfaces. Surface sealants may reduce or avoid problems related to the marginal interface. The aim of this study was to evaluate the effect of two different surface sealants (Fortify and Optiguard on the microleakage of class V resin composite restorations. Materials and Methods: Twenty three sound noncarious molars were collected. Totally, 45 Class V cavities with the occlusal margins in enamel and cervical margins in cementum were prepared in both buccal and lingual surfaces. The specimens were randomly assigned in three groups (15 cavities in each group and then restored with a resin composite. After the finishing and polishing procedures, the restorations in each group were covered with a specific surface sealant, except for the control samples, which were not sealed. After placing restorations, the specimens were thermocycled and then immersed in a 50% silver nitrate solution (tracer agent for four hours, sectioned longitudinally and analyzed for leakage using a stereomicroscope in a blind manner. The marginal microleakage was evaluated at the occlusal and cervical interfaces and compared among the three groups using the Kruskall-Wallis and the Mann-Whitney U tests. Results: Microleakage was found in all groups at both occlusal and cervical margins. Significantly greater leakage was observed at the cervical margins compared to the enamel margins of the material groups (P=0.005. There was no statistically significant difference among the groups at occlusal margins (P=0.66. In the cervical region, Fortify showed improved results and statistically presented the lowest degree of microleakage (P=0.003. onclusion: The used sealant materials presented different rates of effectiveness and Fortify decreased marginal microleakage significantly.

  5. Marginal and internal adaptation of class II restorations after immediate or delayed composite placement.

    Science.gov (United States)

    Dietschi, Didier; Monasevic, Manuela; Krejci, Ivo; Davidson, Carel

    2002-01-01

    Direct class II composite restorations still represent a challenge, particularly when proximal limits extend below the CEJ. The aim of this in vitro study was to evaluate the influence of the type of adhesive and the delay between adhesive placement and composite insertion on restoration adaptation. Direct class II MOD box-shaped composite restorations (n=8 per group) were placed on intact human third molars, with proximal margins 1mm above or under CEJ. All cavities were filled with a horizontal layering technique, immediately after adhesive placement (IP) or after a 24h delay (DP). A filled three-component adhesive (OptiBond FL: OB) and a single-bottle, unfilled one (Prime & Bond 2.1: PB) were tested. Marginal adaptation was assessed before and after each phase of mechanical loading (250000 cycles at 50 N, 250000 cycles at 75 N and 500000 cycles at 100 N); internal adaptation was evaluated after test completion. Gold-plated resin replicas were observed in the SEM and restoration quality evaluated in percentages of continuity (C) at the margins and within the internal interface, after sample section. Adaptation to beveled enamel proved satisfactory in all groups. After loading, adaptation to gingival dentin degraded more in PB-IP (C=55.1%) than PB-DP (C=86.9%) or OB-DP (C=89%). More internal defects were observed in PB samples (IP: C=79.2% and DP: C=86.3%) compared to OB samples (IP: C=97.4% and DP: C=98.3%). The filled adhesive (OB) produced a better adaptation than the 'one-bottle' brand (PB), hypothetically by forming a stress-absorbing layer, limiting the development of adhesive failures. Postponing occlusal loading (such as the indirect approach) improved also restoration adaptation.

  6. Efficient selection of homozy-gous lines of hybrid rice restorer with the transgene Xa21 using test cross and PCR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The homozygous restorer lines with a single copy of the transgene Xa21 have been obtained from the progenies of transgenic Minghui63 and Yanhui559 plants through PCR marker-assisted selection and test cross. These homozygous transgenic restorer lines can be used to breed hybrid rice with high resistance to bacterial leaf blight.

  7. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    Science.gov (United States)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  8. A Conservative Esthetic Approach Using Enamel Recontouring and Composite Resin Restorations

    Directory of Open Access Journals (Sweden)

    Paula Mathias

    2016-01-01

    Full Text Available Conservative clinical solutions, predictable esthetic, and immediate outcomes are important concepts of restorative dentistry. The aim of this case study was to recognize the selective enamel removal as an interesting conservative alternative to achieve optimal esthetic results and discuss the clinical protocol. This clinical report described an alternative esthetic and conservative treatment to transform the long and sharp aspect of the maxillary canines with a slightly aggressive aspect into features of slightly curved teeth with delicate lines. An accurate diagnostic and esthetic analysis of the smile was initially performed. The selective enamel removal was performed, and direct composite restoration was strategically placed. Clinical assessment showed good esthetic outcomes, enabling a smile harmony with an immediate, simple, and lower-cost technique. Practitioners should be exposed to conservative approaches to create esthetic smiles based on the selective enamel removal technique combined with composite resin.

  9. A Conservative Esthetic Approach Using Enamel Recontouring and Composite Resin Restorations

    Science.gov (United States)

    Andrade, Aline Silva

    2016-01-01

    Conservative clinical solutions, predictable esthetic, and immediate outcomes are important concepts of restorative dentistry. The aim of this case study was to recognize the selective enamel removal as an interesting conservative alternative to achieve optimal esthetic results and discuss the clinical protocol. This clinical report described an alternative esthetic and conservative treatment to transform the long and sharp aspect of the maxillary canines with a slightly aggressive aspect into features of slightly curved teeth with delicate lines. An accurate diagnostic and esthetic analysis of the smile was initially performed. The selective enamel removal was performed, and direct composite restoration was strategically placed. Clinical assessment showed good esthetic outcomes, enabling a smile harmony with an immediate, simple, and lower-cost technique. Practitioners should be exposed to conservative approaches to create esthetic smiles based on the selective enamel removal technique combined with composite resin. PMID:27812389

  10. Effect of Different Placement Techniques on Microleakage of Class V Composite Restorations

    Directory of Open Access Journals (Sweden)

    M. Moezyzadeh

    2009-09-01

    Full Text Available Objective: Various techniques of composite placement have been used to decrease microleakage around the composite restorations. Due to controversial results, the present study was conducted to investigate the effect of different placement techniques on microleakage in class V composite restorations.Materials and Methods: Sixty class V cavities were prepared on the buccal and lingual surfaces of 30 extracted healthy human premolars. The teeth were randomly assigned to five groups, and were restored with composite resin, using five different techniques:(1 horizontal increments (gingivo-occlusal, (2 horizontal increments (occluso-gingival,(3 oblique increments (gingivo-occlusal, (4 oblique increments (occluso-gingival, and(5 bulk placement. After thermocycling, 500 cycles of between 5°C and 55°C (SD=2,and immersion in 0.5% alcoholic Fuschin, the teeth were then sectioned and evaluated for microleakage by stereomicroscope (×16. Microleakage was scored on a 0-4 scale. Nonparametric Mann-Whitney U and Kruskal-Wallis tests served for statistical analysis.Results: Gingival margins of class V cavities showed microleakage regardless of the placement technique. Oblique (gingivo-occlusal technique showed less microleakage in gingival margins of the restorations compared to bulk technique. The least microleakagein gingival margins was related to group 3 while the most microleakage was related to group 5. Bulk and oblique (gingivo-occlusal incremental techniques produced significantlydifferent rate of microleakage (P<0.003. Group 3 showed the most difference with groups 5, 1, 2, and 4, respectively.Conclusion: Among four incremental techniques, the gingivo-occlusal oblique filling technique resulted in a lower leakage value, when compared to the bulk filling technique.

  11. Postoperative sensitivity in Class V composite restorations: Comparing soft start vs. constant curing modes of LED

    OpenAIRE

    Fahad Umer; Frahan Raza Khan

    2011-01-01

    Background: One of the major disadvantages associated with using composites is polymerization shrinkage; stresses are generated at the margins, and if these stresses exceed the bond strength, microleakage occurs at the tooth restoration interface which causes ingress of cariogenic bacteria, post-operative sensitivity, and secondary caries. LED offers several curing modes: constant cure, ramped cure, and soft start cure. It is claimed that soft start polymerization mode produces less polymeriz...

  12. Salivary bisphenol A levels and their association with composite resin restoration.

    Science.gov (United States)

    Lee, Jung-Ha; Yi, Seung-Kyoo; Kim, Se-Yeon; Kim, Ji-Soo; Son, Sung-Ae; Jeong, Seung-Hwa; Kim, Jin-Bom

    2017-04-01

    Composite resin has been increasingly used in an effort to remove minimal amount of tooth structure and are used for restoring not just carious cavities but also cervical abrasion. To synthesize composite resin, bisphenol A (BPA) is used. The aim of the study was to measure the changes in salivary BPA level related with composite resin restoration. ELISA was used to examine the BPA levels in the saliva collected from 30 volunteers whose teeth were filled with composite resin. Salivary samples were collected immediately before filling and 5 min and 7 d after filling. Wilcoxon signed-ranks test and linear regression were performed to test the significant differences of the changes in BPA levels in saliva. Before a new composite resin filling, there was no significant difference between with and without existing filling of composite resin and BPA level in the saliva was not correlated to the number of filled surfaces with composite resin. However, BPA level in the saliva increased to average 3.64 μg/L from average 0.15 μg/L after filling 5 min. BPA level increased in proportion with the number of filled surfaces. BPA level decreased to average 0.59 after filling 7 d. However it was higher than the BPA level before a new composite resin filling. Considering 50 μg/kg/day as the Tolerable Daily Intake of BPA suggested by European Food Safety Authority, the amount of BPA eluted in saliva after the composite resin filling is considered a safe level that is not a hazard to health at all. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (phybrid composite resin surfaces.

  14. Experimental and theoretical assessment of flexural properties of hybrid natural fibre composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Toftegaard, Helmuth Langmaack; Markussen, Christen Malte

    2014-01-01

    The concept of hybridization of natural fibre composites with synthetic fibres is attracting increasing scientific attention. The present study addresses the flexural properties of hybrid flax/glass/epoxy composites to demonstrate the potential benefits of hybridization. The study covers both...... experimental and theoretical assessments. Composite laminates with different hybrid fibre mixing ratios and different layer configurations were manufactured, and their volumetric composition and flexural properties were measured. The relationship between volume fractions in the composites is shown to be well...... predicted as a function of the hybrid fibre mixing ratio. The flexural modulus of the composites is theoretically assessed by using micromechanical models and laminate theory. The model predictions are compared with the experimentally determined flexural properties. Both approaches show that the flexural...

  15. Mechanical and tribological studies on nano particles reinforced hybrid aluminum based composite

    Directory of Open Access Journals (Sweden)

    Muley Aniruddha V.

    2015-01-01

    Full Text Available Hybrid metal matrix composites are new class of materials due to their better mechanical properties which can be achieved through proper selection and combination of materials. The work reported in this paper is based on fabrication of hybrid composites by using nano particles as reinforcements. The hybrid composites were fabricated by reinforcing them with nano sized SiC and Al2O3 particles in order to study mechanical and tribological properties of these enhanced materials. A stir casting method was used to obtain hybrid composites. LM 6 aluminum alloy was used as a matrix material. The results shown increase in hardness as well as in ultimate tensile strength of the composites with small wt.% of nano-sized hybrid reinforcements. The composites produced also exhibit better tribological properties.

  16. Marginal Integrity of Bulk Versus Incremental Fill Class II Composite Restorations.

    Science.gov (United States)

    Al-Harbi, F; Kaisarly, D; Bader, D; El Gezawi, M

    2016-01-01

    Bulk-fill composites have been introduced to facilitate the placement of deep direct resin composite restorations. This study aimed at analyzing the cervical marginal integrity of bulk-fill vs incremental and open-sandwich class II resin composite restorations after thermomechanical cycling using replica scanning electron microscopy (SEM) and ranking according to the World Dental Federation (FDI) criteria. Box-only class II cavities were prepared in 91 maxillary premolars with the gingival margin placed 1 mm above and below the cemento-enamel junction. Eighty-four premolars were divided into self-etch and total-etch groups, then subdivided into six restorative subgroups (n=7): 1-Tetric Ceram HB (TC) was used incrementally and in the open-sandwich technique with 2-Tetric EvoFlow (EF) and 3-Smart Dentin Replacement (SD). Bulk-fill restoratives were 4-SonicFill (SF), 5-Tetric N-Ceram Bulk Fill (TN), and 6-Tetric EvoCeram Bulk Fill (TE). In subgroups 1-5, Tetric N-Bond self-etch and Tetric N-Bond total-etch adhesives were used, whereas in subgroup 6, AdheSE self-etch and ExciTE F total etch were used. One more group (n=7) was restored with Filtek P90 Low Shrink Posterior Restorative (P9) only in combination with its self-etch P90 System Adhesive. Materials were manipulated and light cured (20 seconds, 1600 mW/cm(2)), and restorations were artificially aged by thermo-occlusal load cycling. Polyvinyl-siloxane impressions were taken and poured with epoxy resin. Resin replicas were examined by SEM (200×) for marginal sealing, and percentages of perfect margins were analyzed. Moreover, samples were examined using loupes (3.5×) and explorers and categorized according to the FDI criteria. Results were statistically analyzed (SEM by Kruskal-Wallis test and FDI by chi-square test) without significant differences in either the replica SEM groups (p=0.848) or the FDI criteria groups (p>0.05). The best SEM results at the enamel margin were in TC+EF/total-etch and SF

  17. Comparative study between Fortify and Nd:YAG laser used for marginal sealing in composite restorations

    Science.gov (United States)

    Navarro, Ricardo S.; Esteves, Grazia V.; Oliveira, Wilson T., Jr.; Matos, Adriana B.; Turbino, Mirian L.; Youssef, Michel N.; Matson, Edmir

    1999-05-01

    The aim of this study was to evaluate microleakage of composite restorations submitted to marginal treatment. Class V preparations with walls located in enamel were performed at buccal and lingual surfaces of eighteen recently extracted, non-carious human premolars. Cavities were restored with composite resins and adhesive system. Samples were stored in distilled water for 48h and polished with Sof-Lex discs. Teeth were randomly divide in six groups: G1 - Control; G2 - marginal treatment with surface sealant; G3 - Nd:YAG 25 Hz, 80mJ, 2W; G4 - Nd:YAG 20Hz, 100mJ, 2W; G5 - Nd:YAG 30Hz, 60mJ, 1.8W; G6 - Nd:YAG 30Hz, 40mJ, 1.2W. Contact fiberoptic (300μm) pulsed (1.064 μm) Nd:YAG laser was used for 30sec, under air cooling. Teeth were impermeabilized, immersed in a dye (Rhodamine B) for 4h at 37°, and sectioned. Specimens were evaluated under light microscopy and evaluated with scores. Results were analyzed with Kruskal- Wallis test (p=0.05) and showed that there were significant differences between marginal treatments; there were no significant differences beaten groups 1, 2, 4 and 3, 5, 6; lower values of microleakage were at groups 3, 5, 6. Nd:YAG laser showed marginal sealing ability and decreased microleakage of composite resins restorations.

  18. Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration.

    Science.gov (United States)

    Cao, Danfeng; Zhang, Yingchao; Li, Yao; Shi, Xiaoyu; Gong, Haihuan; Feng, Dan; Guo, Xiaowei; Shi, Zuosen; Zhu, Song; Cui, Zhanchen

    2017-09-01

    Superhydrophobic coatings were successfully fabricated by photo-crosslinked polyurethane (PU) and organic fluoro group-functionalized SiO2 nanoparticles (F-SiO2 NPs), and were introduced for preventing microleakage in a dental composite restoration. The F-SiO2 NPs possessed low surface energy and the PU can not only improve the mechanical stability but also promote F-SiO2 NPs to form multiscale structure, which could facilitate the properties of the as-prepared superhydrophobic coating by synergetic effect. The morphology and properties of the resulted superhydrophobic coatings with different PU/F-SiO2 ratios were studied using (1)H NMR spectrum, fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy and UV-vis spectrophotometry. The results showed that the superhydrophobic coatings with low PU/F-SiO2 ratio (1:3) possessed excellent hierarchical papillae structure with trapped air pockets, high contact angle (160.1°), low sliding angle (superhydrophobic property, the as-prepared superhydrophobic coatings effectively prevented water permeation in resin composite restoration evaluation. This research may provide an effective method to solve the problem of microleakage and will efficiently increase the success rate of dental composite restorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cavity Adaptation of Water-Based Restoratives Placed as Liners under a Resin Composite

    Directory of Open Access Journals (Sweden)

    Sheela B. Abraham

    2017-01-01

    Full Text Available Purpose. To investigate the cavity adaptation of mineral trioxide (ProRoot MTA/MT, tricalcium silicate (Biodentine/BD, and glass ionomer (Equia Fil/EF cements used as liners and the interfacial integrity between those liners and a composite resin placed as the main restorative material. Materials and Methods. Standardized class I cavities (n: 8 per group were prepared in upper premolars. Cavities were lined with a 1 mm thick layer of each of the tested materials and restored with Optibond FL adhesive and Herculite Precis composite resin. Cavity adaptation of the restorations was investigated by computerized X-ray microtomography. The regions of interest (ROI were set at the cavity-liner (CL interface and the liner-resin (LR interface. The percentage void volume fraction (%VVF in the ROI was calculated. The specimens were then sectioned and the interfaces were evaluated by reflection optical microscopy, to measure the % length (%LD of the interfacial gaps. Selected samples were further evaluated by scanning electron microscopy. Statistical analysis was performed by two-way ANOVA and Student-Newman-Keuls multiple comparison test (a=0.05. Results. MT showed significantly higher %VVF and %LD values in CL interfaces than BD and EF (p<0.05. No significant differences were found among the materials for the same values at the LR interfaces. Conclusions. When used as a composite liner, ProRoot MTA showed inferior cavity adaptation at dentin/liner interface when compared to Biodentine and Equia Fil.

  20. SEM Evaluation of Internal Adaptation of Bases and Liners under Composite Restorations

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2014-04-01

    Full Text Available The aim of this study was to evaluate the interfacial microgaps generating between different materials and between materials and dentin after polymerization of the composite restorations, using SEM. Methods: The materials investigated were a composite, an adhesive, a RMGI, and a calcium hydroxide. Thirty third molars were selected and two circular class V cavities (5 mm × 3 mm for each tooth were made. The teeth were randomly assigned into six groups and restored with a combination of the materials. The specimens were subjected to thermocycling and each tooth was sectioned mesiodistally in two halves. Each half was sectioned along the longitudinal axis through the center of the restorations to obtain a slice of 2 mm. The specimens were examined under SEM. The interfaces between the liners, the liners and dentin, and between the liners and the composite were examined for microgaps. Results: The results showed that there was not any significant difference in the mean width of microgaps in the interfaces between Dycal-dentin and Vitrebond-dentin (p>0.05. However, the width of microgaps in the interfaces between dentin-Clearfil Tri-S Bond was significantly smaller (p<0.05. The use of Clearfil Tri-S Bond reduced the possibility of microgap formation between the bonded interface and the materials tested.

  1. Hybrid carbon/glass fiber composites: Micromechanical analysis of structure–damage resistance relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    A computational study of the effect of microstructure of hybrid carbon/glass fiber composites on their strength is presented. Unit cells with hundreds of randomly located and misaligned fibers of various properties and arrangements are subject to tensile and compression loading, and the evolution...... of fiber damages is analyzed in numerical experiments. The effects of fiber clustering, matrix properties, nanoreinforcement, load sharing rules on the strength and damage resistance of composites are studied. It was observed that hybrid composites under uniform displacement loading might have lower...... strength than pure composites, while the strength of hybrid composites under inform force loading increases steadily with increasing the volume content of carbon fibers....

  2. Microleakage comparison of three types of adhesive systems versus GIC-based adhesive in class V composite restorations

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2016-06-01

    Full Text Available Background and aims: New dentin bonding agents and techniques have been developed to reduce microleakage and create higher bond strength. This in-vitro study compared the microleakage of three resin-based adhesives versus a GIC-based adhesive on class V composite restorations.  Materials and Methods: Class V cavities were prepared on the buccal surfaces of 72 sound premolars, randomly assigned to six groups (n=12 and treated as follows: without any treatment (negative control group; total-etch (OptiBond Solo Plus; two-step self-etch (OptiBond XTR; one-step self-etch (OptiBond All-in-One and GIC-based adhesive (Fuji bond LC with pre-cure and co-cure techniques. The treated cavities were filled with a micro-hybrid resin composite (Point 4, Kerr. Following finishing and polishing procedures, the specimens were placed in 100% humidity, stored in distilled water, thermocycled and then immersed in a methylene blue, sectioned, evaluated for microleakage and scored on a 0 to 3 ordinal scale.  Results: None of the adhesives tested were capable of completely eliminating marginal microleakage. There were statistically significant differences among the test groups at occlusal margins; but at cervical margins were not. The Fuji Bond LC with co-cure and control groups had significantly greater microleakage scores at the occlusal margins. At the cervical margins, the bonded restorations with OptiBond XTR and OptiBond All-in-One adhesives presented significantly lower microleakage scores. Also, there were no significant differences between the resin adhesive groups both at occlusal and cervical margins. The microleakage scores at the cervical margins were markedly higher than the occlusal margins in the groups bonded with OptiBond Solo Plus and Fuji Bond LC with pre-cure. The differences between Fuji Bond LC adhesive with pre-cure and co-cure techniques were significant. Conclusion: This study encourages application of the Fuji bond LC adhesive with pre

  3. An Experimental Study on Hybrid Noncompression CF Bracing and GF Sheet Wrapping Reinforcement Method to Restore Damaged RC Structures

    Directory of Open Access Journals (Sweden)

    Kang Seok Lee

    2015-01-01

    Full Text Available We describe a novel technique for restoration of reinforced concrete (RC structures that have sustained damage during an earthquake. The reinforcement scheme described here is a hybrid seismic retrofitting technique that combines noncompression X-bracing using CF with externally bonded GF sheets to strengthen RC structures that have sustained damage following an earthquake. The GF sheet is used to improve the ductility of columns, and the noncompression CF X-bracing system, which consists of CF bracing and anchors to replace the conventional steel bracing and bolt connections, is used to increase the lateral strength of the framing system. We report seismic restoration capacity, which enables reuse of the damaged RC frames via the hybrid CF X-bracing and GF sheet wrapping system. Cyclic loading tests were carried out to investigate hysteresis of the lateral load-drift relations, as well as the ductility. The GF sheet significantly improved the ductility of columns, resulting in a change in failure mode. The strengthening effect of conventional CF sheets used in columns is not sufficient with respect to lateral strength and stiffness. However, this study results in a significant increase in the strength of the structure due to the use of CF X-bracing and inhibited buckling failure of the bracing. This result can be exploited to develop guidelines for the application of the reinforcement system to restore damaged RC structures.

  4. Fiber-reinforced bioactive and bioabsorbable hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, Mikko; Godinho, Pedro; Kellomaeki, Minna [Tampere University of Technology, Institute of Biomaterials, Hermiankatu 12, PO Box 589, FIN-33101 Tampere (Finland); Toermaelae, Pertti [Bioretec Ltd, Hermiankatu 22, PO Box 135, FI-33721 Tampere (Finland)], E-mail: mikko.huttunen@tut.fi

    2008-09-01

    Bioabsorbable polymeric bone fracture fixation devices have been developed and used clinically in recent decades to replace metallic implants. An advantage of bioabsorbable polymeric devices is that these materials degrade in the body and the degradation products exit via metabolic routes. Additionally, the strength properties of the bioabsorbable polymeric devices decrease as the device degrades, which promotes bone regeneration (according to Wolff's law) as the remodeling bone tissue is progressively loaded. The most extensively studied bioabsorbable polymers are poly-{alpha}-hydroxy acids. The major limitation of the first generation of bioabsorbable materials and devices was their relatively low mechanical properties and brittle behavior. Therefore, several reinforcing techniques have been used to improve the mechanical properties. These include polymer chain orientation techniques and the use of fiber reinforcements. The latest innovation for bioactive and fiber-reinforced bioabsorbable composites is to use both bioactive and bioresorbable ceramic and bioabsorbable polymeric fiber reinforcement in the same composite structure. This solution of using bioactive and fiber-reinforced bioabsorbable hybrid composites is examined in this study.

  5. Ultra-high modulus organic fiber hybrid composites

    Science.gov (United States)

    Champion, A. R.

    1981-01-01

    An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.

  6. Effect of cooled composite inserts in the sealing ability of resin composite restorations placed at intraoral temperatures: an in vitro study.

    Science.gov (United States)

    de la Torre-Moreno, Francisco José; Rosales-Leal, Juan Ignacio; Bravo, Manuel

    2003-01-01

    Polymerization shrinkage causes microleakage of resin composite restorations. New materials and operative techniques should be developed in order to reduce polymerization shrinkage. This research studied the effects of cooled composite inserts and room-temperature composite inserts in the sealing ability of resin composite restorations placed at intraoral temperatures. Forty-eight extracted human molars (providing a total of 155 sections) were kept at intraoral temperatures, and Class V cavities were restored with an ormocer-based resin composite (Admira, Voco). Three restorative techniques were used: conventional bulk insertion (Group I or control group) (n = 53 sections), room-temperature resin composite inserts (Group II) (n = 52) and cooled resin composite inserts (Group III) (n = 50). Microleakage and penetrating microleakage were studied under the microscope. Cooled composite inserts reduce microleakage at the gingival margins with respect to Groups I (p = 0.002) and II (p = 0.014). When small-size cooled composite inserts were used, the sealing ability at the gingival margins of Class V composite restorations was improved with respect to the bulk insertion technique and the room-temperature composite inserts technique.

  7. Root canal filling: fracture strength of fiber-reinforced composite-restored roots and finite element analysis.

    Science.gov (United States)

    Rippe, Marília Pivetta; Santini, Manuela Favarin; Bier, Carlos Alexandre Souza; Borges, Alexandre Luiz Souto; Valandro, Luiz Felipe

    2013-01-01

    The aims of this study were to evaluate the effect of root canal filling techniques on root fracture resistance and to analyze, by finite element analysis (FEA), the expansion of the endodontic sealer in two different root canal techniques. Thirty single-rooted human teeth were instrumented with rotary files to a standardized working length of 14 mm. The specimens were embedded in acrylic resin using plastic cylinders as molds, and allocated into 3 groups (n=10): G(lateral) - lateral condensation; G(single-cone) - single cone; G(tagger) - Tagger's hybrid technique. The root canals were prepared to a length of 11 mm with the #3 preparation bur of a tapered glass fiber-reinforced composite post system. All roots received glass fiber posts, which were adhesively cemented and a composite resin core was built. All groups were subjected to a fracture strength test (1 mm/min, 45°). Data were analyzed statistically by one-way ANOVA with a significance level of 5%. FEA was performed using two models: one simulated lateral condensation and Tagger's hybrid technique, and the other one simulated the single-cone technique. The second model was designed with an amount of gutta-percha two times smaller and a sealer layer two times thicker than the first model. The results were analyzed using von Mises stress criteria. One-way ANOVA indicated that the root canal filling technique affected the fracture strength (p=0.004). The G(lateral) and G(tagger) produced similar fracture strength values, while G(single-cone) showed the lowest values. The FEA showed that the single-cone model generated higher stress in the root canal walls. Sealer thickness seems to influence the fracture strength of restored endodontically treated teeth.

  8. Restoration of endodontically treated anterior teeth: an evaluation of coronal microleakage of glass ionomer and composite resin materials.

    Science.gov (United States)

    Diaz-Arnold, A M; Wilcox, L R

    1990-12-01

    A glass ionomer material was evaluated for coronal microleakage in permanent lingual access restorations of endodontically treated anterior teeth. The material was tested as a restoration, placed over a zinc oxide-eugenol base, and as a base with an acid-etched composite resin veneer and a dentinal bonding agent. Restored teeth were thermocycled, immersed in silver nitrate, developed, and sectioned to assess microleakage. Significant coronal leakage was observed with all materials used.

  9. Influence of Stacking Sequence and Notch Angle on the Charpy Impact Behavior of Hybrid Composites

    Science.gov (United States)

    Behnia, S.; Daghigh, V.; Nikbin, K.; Fereidoon, A.; Ghorbani, J.

    2016-09-01

    The low-velocity impact behavior of hybrid composite laminates was investigated. The epoxy matrix was reinforced with aramid, glass, basalt, and carbon fabrics using the hand lay-up technique. Different stacking sequences and notch angles were and notch angles considered and tested using a Charpy impact testing machine to study the hybridization and notch angle effects on the impact response of the hybrid composites. The energy absorption capability of specimens with different stacking sequences and notch angles is compared and discussed. It is shown that the hybridization can enhance the mechanical performance of composite materials.

  10. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  11. Characterisation of metal–thermoplastic composite hybrid joints by means of a mandrel peel test

    NARCIS (Netherlands)

    Su, Yibo; Rooij, de Matthijn; Grouve, Wouter; Warnet, Laurent

    2016-01-01

    Fastener free metal–carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the metal–thermoplastic composite interface is crucial for the performance of the entire hybrid joint. Optimisation of the interface requires an e

  12. Clinical longevity of extensive direct composite restorations in amalgam replacement : Up to 3.5 years follow-up

    NARCIS (Netherlands)

    Scholtanus, Johannes D.; Ozcan, Mutlu

    2014-01-01

    Objectives: This prospective clinical trial evaluated the longevity of direct resin composite (DRC) restorations made on stained dentin that is exposed upon removal of existing amalgam restorations in extensive cavities with severely reduced macro-mechanical retention for amalgam replacement. Method

  13. Resin composite restoration in primary anterior teeth using short-post technique and strip crowns: a case report.

    Science.gov (United States)

    Mendes, Fausto Medeiros; De Benedetto, Monique Saveriano; del Conte Zardetto, Cristina Giovannetti; Wanderley, Marcia Turolla; Correa, Maria Salete Nahás Pires

    2004-10-01

    A case report describing a technique for the restoration of endodontically treated primary maxillary incisors with resin composite short posts and celluloid strip crowns in a 3-year-old boy is presented. The technique offers the advantages of using one restorative material, improving esthetics, and reducing chairtime and costs.

  14. Microleakage of Composite Restorations Following Chemo-mechanical and Conventional Caries Removal

    Directory of Open Access Journals (Sweden)

    SM. Mousavinenasab

    2004-12-01

    Full Text Available Statement of Problem: Microleakage is the most important factor in composite restorations failure, resulting in marginal degradation, marginal staining, secondary caries and pulp damage. One of the factors that influence microleakage is the method of cariesremoval. Convention rotary instrumentation generates smear layer on the dental surface,whereas chemo -mechanical caries removal increases surface roughness.Purpose: The aim of this study was to compare the microleakage of composite restorations following caries removal via conventional versus chemo -mechanical methods.Materials and Methods : One hundred class V carious human posterior teeth were randomly divided into two equal groups. Caries were completely removed with carbide burs in group one and according to manufacturer's instruction in chemo -mechanical group (Carisolv group or group two. Then the same composite restorative material, followed by finishing and polishing, filled all the cavities. Subsequently the specimens were thermocycled and then placed in dye solution. The teeth were sectioned through the restorations and evaluated for microleakage scores using a stereomicroscope. The data were analyzed using Mann-Whitney-U test.Results: Prevalence of scores 0 and 1 of microleakage in occlusal margins in group one was 80% and 20%, respectively and in group two 74% and 36%, respectively. Prevalence of scores 0, 1 and 2 of microleakage in gingival margins in group one was 56%, 36% and8%, respectively and 42%, 42% and 16% in group two, respectively. Scores 3 and 4 of microleakage were not seen in any of the groups. Statistical analysis showed significant difference in microleakage between occlusal and gingival margins in each group (P0.05.Conclusion: The results from this study indicate no significant difference in microleakage between conventional and chemo -mechanical caries removal methods.

  15. Contraction behaviors of dental composite restorations--finite element investigation with DIC validation.

    Science.gov (United States)

    Chuang, Shu-Fen; Chang, Chih-Han; Chen, Terry Yuan-Fang

    2011-11-01

    The objective of this study was to examine the effects of cavity configuration on the polymerization shrinkage and stress of light-cured composite restorations by combining local strain measurement and a finite element analysis (FEA). Dental mesio-occluso-distal cavities of various widths and depths (each for 2 vs. 4 mm), representing different configuration factors, were prepared on extracted molars. The displacements of the bonded tooth cusps and cavity floors, caused by polymerization shrinkage of composite restorations, were assessed utilizing a digital-image-correlation (DIC) technique. The cervical marginal microleakage was investigated by examining the resin replicas of these restorations under SEM. The local material properties of the polymerized composite along the curing depth were defined by the nanoindentation test and applied in the subsequent FEA. In the FEA, four models were generated to correspond with the experimental restorations. In the DIC measurement results, the 4(w)×4(D) mm cavity presented the greatest values of inward displacements at the cusp and floor. The cavity depth, rather than the cavity width, was found to significantly correlate to the floor deformation, the location of shrinkage centers, and also the cervical microleakage ratio. The FEA simulation results showed that the 2(w)×4(D) mm cavity presented the maximal von Mises and principal stress located respectively on the cervical margins and cavity floor. Additional safety factor analysis showed a high risk of bond failure over the cavity floor in the 4-mm deep cavity. With the experimental validation, the simulation revealed that the cavity depth was significant to the formation of contraction stress and the incidence of interfacial debonding.

  16. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.

    Science.gov (United States)

    Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F

    2015-10-01

    Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Mine tailings composition in a historic site: implications for ecological restoration.

    Science.gov (United States)

    Courtney, R

    2013-02-01

    Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg(-1) for Pb and up to 20,000 mg kg(-1) for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.

  18. Swept source optical coherence tomography for quantitative and qualitative assessment of dental composite restorations

    Science.gov (United States)

    Sadr, Alireza; Shimada, Yasushi; Mayoral, Juan Ricardo; Hariri, Ilnaz; Bakhsh, Turki A.; Sumi, Yasunori; Tagami, Junji

    2011-03-01

    The aim of this work was to explore the utility of swept-source optical coherence tomography (SS-OCT) for quantitative evaluation of dental composite restorations. The system (Santec, Japan) with a center wavelength of around 1300 nm and axial resolution of 12 μm was used to record data during and after placement of light-cured composites. The Fresnel phenomenon at the interfacial defects resulted in brighter areas indicating gaps as small as a few micrometers. The gap extension at the interface was quantified and compared to the observation by confocal laser scanning microscope after trimming the specimen to the same cross-section. Also, video imaging of the composite during polymerization could provide information about real-time kinetics of contraction stress and resulting gaps, distinguishing them from those gaps resulting from poor adaptation of composite to the cavity prior to polymerization. Some samples were also subjected to a high resolution microfocus X-ray computed tomography (μCT) assessment; it was found that differentiation of smaller gaps from the radiolucent bonding layer was difficult with 3D μCT. Finally, a clinical imaging example using a newly developed dental SS-OCT system with an intra-oral scanning probe (Panasonic Healthcare, Japan) is presented. SS-OCT is a unique tool for clinical assessment and laboratory research on resin-based dental restorations. Supported by GCOE at TMDU and NCGG.

  19. Fracture Resistance of Premolars Restored by Various Types and Placement Techniques of Resin Composites

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2012-01-01

    Full Text Available To verify the fracture resistance of premolars with mesioocclusodistal preparations restored by different resin composites and placement techniques. Sixty premolars were randomly divided into two groups based on type of composite resin: Filtek P60 or Nulite F, and then each group was separated into three subgroups: bulk, centripetal, and fiber insert according to the type of placement method (n=10. Single-bond adhesive system was used as composite bonding according to the manufacturer's instructions. Specimens were restored in Groups 1, 2, and 3 with Filtek P60 and in Groups 4, 5, and 6 with Nulite F. After being stored 24 hours at 37∘C, a 4 mm diameter steel sphere in a universal testing machine was applied on tooth buccal and lingual cusps at a cross-head speed of 5 mm/min until fracture occurred. Groups 3 and 6 showed higher fracture resistance than Groups 1, 2, 4, and 5. Among the placement techniques, the fiber insert method had a significant effect, but the type of composite was ineffective. The insertion technique in contrast to the type of material had a significant influence on the fracture resistance of premolar teeth.

  20. Adaptation of two different calcium hydroxide bases under a composite restoration.

    Science.gov (United States)

    Papadakou, M; Barnes, I E; Wassell, R W; McCabe, J F

    1990-10-01

    A preliminary scanning electron microscope (SEM) study was carried out to investigate how the adaptation of two calcium hydroxide bases (one chemically cured, one light cured) was affected by the polymerization contraction of a supervening light-cured composite resin restoration. Occlusal cavities were prepared in 40 sound extracted human premolars, divided into two equal groups. In the first group a chemically cured calcium hydroxide (Dycal, De Trey Dentsply, Konstanz, FRG) was placed as a base. In the second group a new light-cured calcium hydroxide product (Prisma VLC Dycal, De Trey Dentsply) was used. The restorations were completed with an acid-etched, incrementally placed composite resin. The specimens were sectioned vertically and debrided. A replica was made of each half-tooth. The interfaces between composite resin/base and base/dentine were viewed and photographed in the SEM. The marginal adaptation at these two interfaces was classified into three categories according to the extent of the gaps that were observed. Prisma VLC Dycal base was found to be pulled away from the dentine floor of the cavity as a result of an apparent adhesion to the composite resin during polymerization contraction. Dycal was better adapted to the cavity floor than Prisma VLC Dycal. Disorganization of the resin-bonded Prisma VLC Dycal was minimal even after acid etching the enamel, sectioning and ultrasonic debridement. Dycal appeared to be more friable, and occasionally exhibited marked disorganization as a result of these procedures.

  1. The effect of a fiber reinforced cavity configuration on load bearing capacity and failure mode of endodontically treated molars restored with CAD/CAM resin composite overlay restorations

    NARCIS (Netherlands)

    Rocca, G.T.; Saratti, C.M.; Cattani-Lorente, M.; Feilzer, A.J.; Scherrer, S.; Krecji, I.

    2015-01-01

    Objectives To evaluate the fracture strength and the mode of failure of endodontically treated molars restored with CAD/CAM overlays with fiber reinforced composite build-up of the pulp chamber. Methods 40 Devitalized molars were cut over the CEJ and divided into five groups (n = 8). The pulp chambe

  2. Reinforced composite restoration following trauma to a mandibular tooth: technique and follow-up treatment.

    Science.gov (United States)

    Smidt, Ami; Sharon, Eldad; Adler, Mordekhai Lipovetsky

    2012-10-01

    The loss of an entire tooth in the anterior region is accompanied by impairment of esthetics, function, phonetics, and self-esteem. It is common knowledge that treatment with implants during childhood or early adolescence is not an option. Splinting of adjacent teeth during growth and development may interfere with the independent process of teeth realignment and repositioning during that phase of life. Other creative solutions must be offered, such as free-standing composite buildup restorations on compromised broken teeth or single wing/cantilevered restorations adhered to one neighboring tooth during the growth period. The positive effects of reinforced composite materials were researched and presented in the literature. Their use is clearly indicated for interim and economical restorations. Long-term follow-up on a mandibular incisor that experienced trauma, losing its clinical crown and vitality when the patient was 12 years of age, is discussed with all the various aspects of material selection, future considerations, and long-term follow-up to adulthood, when a conventional crown was prepared and delivered.

  3. Cavity Adaptation of Water-Based Restoratives Placed as Liners under a Resin Composite

    Science.gov (United States)

    Gaintantzopoulou, Maria D.; Eliades, George

    2017-01-01

    Purpose. To investigate the cavity adaptation of mineral trioxide (ProRoot MTA/MT), tricalcium silicate (Biodentine/BD), and glass ionomer (Equia Fil/EF) cements used as liners and the interfacial integrity between those liners and a composite resin placed as the main restorative material. Materials and Methods. Standardized class I cavities (n: 8 per group) were prepared in upper premolars. Cavities were lined with a 1 mm thick layer of each of the tested materials and restored with Optibond FL adhesive and Herculite Precis composite resin. Cavity adaptation of the restorations was investigated by computerized X-ray microtomography. The regions of interest (ROI) were set at the cavity-liner (CL) interface and the liner-resin (LR) interface. The percentage void volume fraction (%VVF) in the ROI was calculated. The specimens were then sectioned and the interfaces were evaluated by reflection optical microscopy, to measure the % length (%LD) of the interfacial gaps. Selected samples were further evaluated by scanning electron microscopy. Statistical analysis was performed by two-way ANOVA and Student-Newman-Keuls multiple comparison test (a = 0.05). Results. MT showed significantly higher %VVF and %LD values in CL interfaces than BD and EF (p Biodentine and Equia Fil. PMID:28465685

  4. The Influence of Composite Thickness with or without Fibers on Fracture Resistance of Direct Restorations in Endodontically Treated Teeth

    OpenAIRE

    Torabzadeh, Hassan; Ghassemi, Amir; Sanei, Masoud; Razmavar, Sara; Sheikh-Al-Eslamian, Seyedeh Mahsa

    2014-01-01

    Introduction: This in vitro study evaluated the influence of composite thickness (with or without fiber reinforcement) on fracture resistance of direct restorations in endodontically treated teeth. Methods and Materials: Fifty-six intact human premolars were chosen and randomly divided into four groups (n=14). After preparation of a mesio-occluso-distal (MOD) cavities and cusp reduction, the teeth were endodontically treated. Subsequently, the samples were restored with composite resin using ...

  5. Effect of different placement techniques on marginal microleakage of deep class-II cavities restored with two composite resin formulations

    Directory of Open Access Journals (Sweden)

    Radhika M

    2010-01-01

    Full Text Available Aim: The study aims to evaluate and compare marginal microleakage in deep class II cavities restored with various techniques using different composites. Materials and Methods: Sixty freshly extracted teeth were divided into six groups of 10 teeth each. Standardized class II cavities were made and were restored using composites of different consistencies with different placement techniques. Group 1 with Microhybrid composite, Group 2 with Packable composite, Group 3 Microhybrid composite with a flowable composite liner, Group 4 Packable composite with a flowable composite liner, Group 5 Microhybrid composite with precured composite insert in second increment and Group 6 Packable composite with precured insert in second increment. Specimens then were stored in distilled water, thermocycled and immersed in 50% silver nitrate solution. These specimens were sectioned and evaluated for microleakage at the occlusal and cervical walls separately using stereomicroscope. Results: The results demonstrated that in the occlusal wall, packable composite, showed significantly more marginal microleakage than the other groups. In the cervical wall, teeth restored with a flowable composite liner showed less marginal microleakage when compared to all other groups. Conclusion: Based on the results of this study, the use of flowable composite as the first increment is recommended in deep class II cavities.

  6. Repair vs replacement of direct composite restorations: a survey of teaching and operative techniques in Oceania.

    Science.gov (United States)

    Brunton, Paul A; Ghazali, Amna; Tarif, Zahidah H; Loch, Carolina; Lynch, Christopher; Wilson, Nairn; Blum, Igor R

    2017-04-01

    To evaluate the teaching and operative techniques for the repair and/or replacement of direct resin-based composite restorations (DCRs) in dental schools in Oceania. A 14-item questionnaire was mailed to the heads of operative dentistry in 16 dental schools in Oceania (Australia, New Zealand, Fiji and Papua New Guinea). The survey asked whether the repair of DCRs was taught within the curriculum; the rationale behind the teaching; how techniques were taught, indications for repair, operative techniques, materials used, patient acceptability, expected longevity and recall systems. All 16 schools participated in the study. Thirteen (81%) reported the teaching of composite repairs as an alternative to replacement. Most schools taught the theoretical and practical aspects of repair at a clinical level only. All 13 schools (100%) agreed on tooth substance preservation being the main reason for teaching repair. The main indications for repair were marginal defects (100%), followed by secondary caries (69%). All 13 schools that performed repairs reported high patient acceptability, and considered it a definitive measure. Only three schools (23%) claimed to have a recall system in place following repair of DCRs. Most respondents either did not know or did not answer when asked about the longevity of DCRs. Repair of DCRs seems to be a viable alternative to replacement, which is actively taught within Oceania. Advantages include it being minimally invasive, preserving tooth structure, and time and money saving. However, standardised guidelines need to be developed and further clinical long-term studies need to be carried out. The decision between replacing or repairing a defective composite restoration tends to be based on what clinicians have been taught, tempered by experience and judgement. This study investigated the current status of teaching and operative techniques of repair of direct composite restorations in dental schools in Oceania. Copyright © 2017 Elsevier Ltd

  7. Clinical Impact of Dental Adhesives on Postoperative Sensitivity in Class I and Class II Resin-Composite Restorations

    OpenAIRE

    Manchorova-Veleva Neshka A.; Vladimirov Stoyan B.; Keskinova Donka А.

    2015-01-01

    BACKGROUND: Self-etch adhesives are believed to prevent postoperative sensitivity when used under posterior resin-based composite restorations. STUDY OBJECTIVE: A hypothesis that a one-step self-etch adhesive (1-SEA) would result in less postoperative sensitivity than a three-step etch-and-rinse adhesive (3-E&RA) was tested. PATIENTS AND METHODS: One hundred restorations were placed with a 1-SEA and 100 restorations with a 3-E&RA. Teeth were restored with Filtek Supreme nanofilled resin-compo...

  8. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  9. Analysis of SMA Hybrid Composite Structures using Commercial Codes

    Science.gov (United States)

    Turner, Travis L.; Patel, Hemant D.

    2004-01-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  10. Finite Element Analysis of the Effect of Proximal Contour of Class II Composite Restorations on Stress Distribution

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Moghaddas

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of proximal contour of class II composite restorations placed with straight or contoured matrix band using composite resins with different modulus of elasticity on stress distribution by finite element method. Methods: In order to evaluate the stress distribution of class II composite restorations using finite element method, upper right first molar and second premolar were modeled. Proximal boxes were designed and restored with universal Z250 and packable P60 composite resins (3M ESPE using two matrix systems: flat Tofflemire matrix and precurved sectional matrix. Finally models were evaluated under loads of 200 and 400 Newton at 90 degrees angle and the results were graphically illustrated in the form of Von Misses stresses. Results: In general the stress obtained under 400 Newton load was significantly greater than the stress of models under 200 Newton load. Von Misses stress distribution pattern of two different Z250 and P60 composites were very similar in all modes of loading and proximal contour. In all analyzed models there was a significant difference between models restored with Tofflemire matrix with flat contour and models restored with sectional matrix with curved contour. This difference was greater in first molar than second premolar. Conclusion: Use of a contoured matrix band results in less stress in class II composite resin restorations.

  11. Finite Element Analysis of the Effect of Proximal Contour of Class II Composite Restorations on Stress Distribution

    Directory of Open Access Journals (Sweden)

    Hossein Abachizadeh

    2012-09-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of proximal contour of class II composite restorations placed with straight or contoured matrix band using composite resins with different modulus of elasticity on stress distribution by finite element method. Methods: In order to evaluate the stress distribution of class II composite restorations using finite element method, upper right first molar and second premolar were modeled. Proximal boxes were designed and restored with universal Z250 and packable P60 composite resins (3M ESPE using two matrix systems: flat Tofflemire matrix and precurved sectional matrix. Finally models were evaluated under loads of 200 and 400 Newton at 90 degrees angle and the results were graphically illustrated in the form of Von Misses stresses. Results: In general the stress obtained under 400 Newton load was significantly greater than the stress of models under 200 Newton load. Von Misses stress distribution pattern of two different Z250 and P60 composites were very similar in all modes of loading and proximal contour. In all analyzed models there was a significant difference between models restored with Tofflemire matrix with flat contour and models restored with sectional matrix with curved contour. This difference was greater in first molar than second premolar. Conclusion: Use of a contoured matrix band results in less stress in class II composite resin restorations.

  12. Three-dimensional finite element simulation of intermingled-fiber hybrid composite behavior

    Science.gov (United States)

    Mital, Subodh K.; Chamis, Christos C.

    1992-01-01

    Three-dimensional finite element methods and the intraply hybrid micromechanics equations are used to predict composite properties for a unidirectional graphite-epoxy primary composite with S-glass fibers used as hybridizing fibers. The micromechanics equations are embedded in a computer code ICAN (Integrated Composites Analyzer). The three-dimensional finite element model consists of three-by-three unit cell array, with a total fiber volume ratio of 0.54. There is a good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite element methods and micromechanics equations can be used to obtain the properties of intermingled hybrid composites needed for analysis/design of hybrid composite structures.

  13. Minimally invasive use of coloured composite resin in aesthetic restoration of periodontially involved teeth: Case report.

    Science.gov (United States)

    Wahbi, M A; Al Sharief, H S; Tayeb, H; Bokhari, A

    2013-04-01

    Gingival recession causes not only aesthetic problems, but problems with oral hygiene, plaque accumulation, speech, and tooth sensitivity. Replacing the missing gingival tissue with composite resin, when indicated, can be a time- and cost-effective solution. Here we report the case of a 25-year-old female who presented with generalized gingival recession. Black triangles were present between the maxillary and mandibular anterior teeth due to loss of interdental tissues, caused by recent periodontal surgery. She also had slightly malposed maxillary anterior teeth. The patient elected to replace gingival tissue with pink composite resin and to alter the midline with composite resin veneers. The first treatment phase involved placement of pink gingival composite to restore the appearance of interdental papilla to her upper (16, 15, 14, 13, 12, 11, 21, 22, 23, and 24) and lower (34, 33, 32, 31, 41, 42, 43, and 44) teeth. Phase two was to place direct composite resin bonded veneers on her upper (16, 15, 14, 13, 12, 11, 21, 22, 23, and 24) teeth to alter the midline and achieve desired colour. The third treatment phase was to level the lower incisal edge shape by enameloplasty (31, 32, 41, and 42) to produce a more youthful and attractive smile. This case report and brief review attempt to describe the clinical obstacles and the current treatment options along with a suggested protocol. Use of contemporary materials such as gingival coloured composite to restore lost gingival tissue and improve aesthetics can be a simple and cost-effective way to manage patients affected by generalized aggressive periodontitis (AgP).

  14. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    Science.gov (United States)

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    To assess the microhardness of three resin composites employed in the adhesive luting of indirect composite restorations and examine the influence of the overlay material and thickness as well as the curing time on polymerization rate. Three commercially available resin composites were selected: Enamel Plus HRI (Micerium) (ENA), Saremco ELS (Saremco Dental) (SAR), Esthet-X HD (Dentsply/DeTrey) (EST-X). Post-polymerized cylinders of 6 different thicknesses were produced and used as overlays: 2 mm, 3 mm, 3.5 mm, 4 mm, 5 mm, and 6 mm. Two-mm-thick disks were produced and employed as underlays. A standardized amount of composite paste was placed between the underlay and the overlay surfaces which were maintained at a fixed distance of 0.5 mm. Light curing of the luting composite layer was performed through the overlays for 40, 80, or 120 s. For each specimen, the composite to be cured, the cured overlay, and the underlay were made out of the same batch of resin composite. All specimens were assigned to three experimental groups on the basis of the resin composite used, and to subgroups on the basis of the overlay thickness and the curing time, resulting in 54 experimental subgroups (n = 5). Forty-five additional specimens, 15 for each material under investigation, were produced and subjected to 40, 80, or 120 s of light curing using a microscope glass as an overlay; they were assigned to 9 control subgroups (n = 5). Three Vicker's hardness (VH) indentations were performed on each specimen. Means and standard deviations were calculated. Data were statistically analyzed using 3-way ANOVA. Within the same material, VH values lower than 55% of control were not considered acceptable. The used material, the overlay thickness, and the curing time significantly influenced VH values. In the ENA group, acceptable hardness values were achieved with 3.5-mm or thinner overlays after 120 or 80 s curing time (VH 41.75 and 39.32, respectively), and with 2-mm overlays after 40 s (VH 54

  15. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    Science.gov (United States)

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.

  16. Challenges to the clinical placement and evaluation of adhesively-bonded, cervical composite restorations.

    Science.gov (United States)

    Kubo, Shisei; Yokota, Hiroaki; Yokota, Haruka; Hayashi, Yoshihiko

    2013-01-01

    The incidence of non-carious cervical lesions (NCCLs) has been increasing. The clinical performance of resin composites in NCCLS was previously unsatisfactory due to their non-retentive forms and margins lying on dentin. In order to address this problem, a lot of effort has been put into developing new dentin adhesives and restorative techniques. This article discusses these challenges and the criteria used for evaluating clinical performance as they relate to clinical studies, especially long-term clinical trials. Polymerization contraction, thermal changes and occlusal forces generate debonding stresses at adhesive interfaces. In laboratory studies, we have investigated how these stresses can be relieved by various restorative techniques and how bond strength and durability can be enhanced. Lesion forms, restorative techniques, adhesives (adhesive strategies, bond strengths, bond durability, and the relationship between enamel and dentin bond strengths) were found to have a complex relationship with microleakage. With regard to some restorative techniques, only several short-term clinical studies were available. Although in laboratory tests marginal sealing improved with a low-viscosity resin liner, an enamel bevel or prior enamel etching with phosphoric acid, clinical studies failed to detect significant effects associated with these techniques. Long-term clinical trials demonstrated that adhesive bonds continuously degraded in various ways, regardless of the adhesion strategy used. Early loss of restoration may no longer be the main clinical problem when reliable adhesives are properly used. Marginal discoloration increased over time and may become a more prominent reason for repair or replacement. Reliable and standardized criteria for the clinical evaluation of marginal discoloration should be established as soon as possible and they should be based on evidence and a policy of minimal intervention. Copyright © 2012 Academy of Dental Materials. Published by

  17. Short fibre-reinforced composite for extensive direct restorations: a laboratory and computational assessment.

    Science.gov (United States)

    Barreto, Bruno Castro Ferreira; Van Ende, Annelies; Lise, Diogo Pedrollo; Noritomi, Pedro Yoshito; Jaecques, Siegfried; Sloten, Jos Vander; De Munck, Jan; Van Meerbeek, Bart

    2016-06-01

    The objective of the study was to evaluate the effectiveness of a short fibre-reinforced composite (FRC) applied in combination with a conventional filler composite (CFC) on the fatigue resistance, fracture strength, failure mode and stress distribution, for restorations of premolars under two loading angles. Thirty-two inferior premolars received extensive cavities with removal of the lingual cusp. Teeth were restored directly using 'FRC (EverX Posterior, GC) + CFC (G-aenial, GC)' or 'CFC only' and received two fatigue/fracture loadings at two different angles (0°/45°) (n = 8). Data were submitted to two-way ANOVA (α = 5 %) and Tukey test. Failure mode was analysed using SEM. Four 3D finite element (FE) models were constructed and static, linear and elastic analyses were performed. Maximum principal and von Mises stresses were evaluated. All specimens survived the mechanical fatigue simulation. No statistical difference in fracture resistance was recorded between FRC + CFC and CFC only, considering both loading angles (p = 0.115). However, the 0° loading showed a statistical significant higher strength than the 45° loading (p = 0.000). Failure mode analysis revealed more repairable fractures upon 0° loading, versus more root fractures (unrepairable) upon 45° loading. FE revealed a higher amount of stress upon 45° loading, with tensile stress being imposed to the lingual cervical area. The fracture strength was not increased using the FRC. Loading at a 45° decreased significantly the fracture resistance. The restoration of extensive cavities in posterior tooth is a challenge for the clinicians and the choice of the material that increases the fracture strength of tooth-restoration complex is required.

  18. Clinical Investigation of a New Bulk Fill Composite Resin in the Restoration of Posterior Teeth

    Science.gov (United States)

    2016-09-07

    Dental Restoration Failure of Marginal Integrity; Dental Caries; Unrepairable Overhanging of Dental Restorative Materials; Poor Aesthetics of Existing Restoration; Secondary Dental Caries Associated With Failed or Defective Dental Restorations; Fractured Dental Restorative Materials Without Loss of Materials; Fracture of Dental Restorative Materials With Loss of Material

  19. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    Science.gov (United States)

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (P.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (Padhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Nanoscopic dynamics in hybrid hydroxyapatite-CTAB composite

    Science.gov (United States)

    Dubey, P. S.; Sharma, V. K.; Mitra, S.; Verma, G.; Hassan, P. A.; Dutta, B.; Johnson, M.; Mukhopadhyay, R.

    2017-06-01

    Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. HAp nanoparticles were synthesized by the co-precipitation method using cetyltrimethylammonium bromide (CTAB) micelles as a template and are characterized using x-ray diffraction, electron microscopy, and thermal gravimetric measurements. Transmission electron microscope (TEM) demonstrates the formation of rod-shaped HAp. Dynamics of CTAB in HAp-CTAB composite as studied by using quasielastic neutron scattering (QENS) technique is reported here. HAp-CTAB composite provides an ideal system for studying the dynamics of CTAB micelles without any aqueous media. QENS data indicate that the observed dynamics are reminiscent of localized motions in ionic micellar systems, consisting of segmental and fast torsional motions. Segmental dynamics has been described with a model, in which hydrogen atoms in the alkyl chain undergoes localized translation diffusion and the CH3 unit associated with the head group undergo 3-fold jump rotation. Within this model, the hydrogen atoms in the alkyl chain undergo diffusion within spherical domains having different radii and diffusivities. A simple linear distribution of the radius and diffusivity has been assumed, in which the CH2 unit nearest to the head group has the least value and the ones furthest from the head group, that is, at the end of the alkyl chain has the largest value. The fast torsional motion is described by a 2-fold jump rotation model. Quantitative estimate of the different parameters characterizing various dynamical motions active within the time scale of the instrument is also presented. We have provided a detailed description of the observed dynamical features in hybrid HAp-CTAB composite, a potential candidate for biomedical applications.

  1. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    Science.gov (United States)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  2. Marginal adaptation of heat-pressed glass-ceramic veneers to Class 3 composite restorations in vitro.

    Science.gov (United States)

    Christgau, M; Friedl, K H; Schmalz, G; Edelmann, K

    1999-01-01

    The aim of the present in vitro study was to compare the marginal adaptation and integrity of heat-pressed glass-ceramic veneers to adjacent class 3 composite restorations and to enamel using four dual-curing composite resin cements of different viscosity with their corresponding dentin bonding agents. Thirty-six caries-free human maxillary incisors were first restored with mesial and distal class 3 composite restorations and then prepared for facial ceramic veneers. The cavity margins of the veneers were located either in the class 3 composite restorations or in the residual enamel. Heat-pressed glass-ceramic veneers (IPS Empress) were inserted adhesively using one of the following four luting systems in nine teeth: SonoCem (SC) with EBS; Variolink Ultra (VU), Variolink High-Viscosity (VHV), and Variolink Low-Viscosity (VLV) with Syntac. The veneer margins in the region of the composite restoration and in the region apical to the composite restoration (ceramic/composite resin cement interfaces, composite resin cement/composite restoration interface, and composite resin cement/enamel interface) were evaluated before and after thermo-cycling and mechanical loading (TCML) by quantitative margin analysis under a scanning electron microscope (SEM) using an image analysis system. Furthermore, microleakage was assessed in each tooth by dye penetration after TCML. For all luting systems, SEM analysis revealed excellent marginal adaptation of the ceramic veneers to the composite restorations as well as to enamel. The median percentages of marginal gap formation were 1.1% and less before TCML and 5.1% and less after TCML. The error-rates method revealed no statistical influence of the interface or of the viscosity of the luting material. Maximal values of dye penetration showed a significantly higher microleakage at veneers cemented with VU (median: 86.4%) compared to SC (median: 13.3%). In conclusion, the present data demonstrated that existing clinically acceptable class

  3. Clinical performance of Class I nanohybrid composite restorations with resin-modified glass-ionomer liner and flowable composite liner: A randomized clinical trial

    Science.gov (United States)

    Suhasini, Krishtipati; Madhusudhana, Koppolu; Suneelkumar, Chinni; Lavanya, Anumula; Chandrababu, K. S.; Kumar, Perisetty Dinesh

    2016-01-01

    Background: Liners play a vital role in minimizing polymerization shrinkage stress by elastic bonding concept and increase the longevity and favorable outcome for composite restorations. Aims: The aim of this study was to evaluate the clinical performance of nanohybrid composite restorations using resin-modified glass-ionomer and flowable composite liners. Settings and Design: A single-centered, double-blinded randomized clinical trial, with split-mouth design and equal allocation ratio that was conducted in the Department of Conservative Dentistry and Endodontics. Materials and Methods: In forty patients, a total of eighty Class I restorations were placed with resin-modified glass-ionomer cement (RMGIC) liner (FUJI II LC, GC America) in one group and flowable composite liner (smart dentin replacement/SDR, Dentsply Caulk, Milford, DE, USA) in another group. All restorations were clinically evaluated by two examiners, immediately (baseline), 3, 6, and 12 months using US Public Health Service modified criteria. Statistical Analysis Used: Statistical analysis was performed using McNemar's test (P < 0.05). Results: There was no significant difference in the color match, marginal discoloration, surface roughness, and marginal adaptation. Restorations with RMGIC liner group show 20% Bravo scores on anatomic form at 12 months but are still clinically acceptable. Conclusion: Nanohybrid composite restorations with RMGIC (Fuji II LC) and flowable composite liner (SDR) demonstrated clinically acceptable performance after 12 months. PMID:27994310

  4. Comparison of chemical composition of materials used in dental restorations 08 years after the irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Mireia Florencio; Santos, Adimir dos, E-mail: mfmaio@ipen.b, E-mail: asantos@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil); Fernandes, Marco A.R., E-mail: marcosrf@salesiano-ata.b [UNESP, Botucatu, SP (Brazil). Faculdade de Medicina

    2009-07-01

    The purpose of this work consisted of quantitative studies of the effects caused by ionizing radiation on the materials commonly used in dental restorations (amalgam, composite resin and Compomer), to mitigate the deleterious effects of radiotherapy when patients with tumors in head and neck, observed when the teeth are restored within the field of radiation. Samples were submitted to the beam of radiation from a source of cobalt-therapy, and analyzed by a X-ray fluorescence technique, by comparing the chemical composition of samples before and after irradiation. Gamma spectrometry was performed with detector of NaI and HPGe in the same samples. Then, the samples were kept in an appropriate place and after 08 years is repeated the same analysis. With these tests, it was possible to verify small changes in the composition of bodies of evidence due to the interaction 08 years after exposure to gamma radiation beams, simulating a patient who develops deleterious effects of radiation after the end radiotherapy treatment. (author)

  5. Effects of composite restorations on nitric oxide and uric acid levels in saliva

    Directory of Open Access Journals (Sweden)

    Nilgun Akgul

    2015-01-01

    Full Text Available Background and Aims: Dental materials that are used in dentistry should be harmless to oral tissues, and should, therefore, not contain any leachable toxic and diffusible substances capable of causing side effects. This study was intended to investigate the effects on salivary nitric oxide (NO and uric acid (UA levels after application of dental composite filling materials to healthy volunteers. Materials and Methods: A total of 52 individuals (32 female and 20 male participated in the study. Filtek Z250 composite filling material (3M ESPE, St Paul, MN, USA was applied to healthy volunteers. Saliva samples were collected before restoration (baseline and 1 h, 1-day, 7 days, and 30 days after restoration. NO concentrations were measured using the Griess reaction method, and UA was measured using an enzymatic method. Data were analyzed using repeated measures ANOVA and the Bonferroni post-hoc test (α =5%. Results: NO values increased statistically significant after 7 days (P 0.05. There was no correlation between NO and UA levels in saliva (P > 0.05. Conclusion: Composite resins activated the antioxidant system in saliva. However, further studies are now needed to confirm our findings and to permit a definitive conclusion.

  6. Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites

    Science.gov (United States)

    Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.

    2016-11-01

    Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.

  7. Comparison of cone - beam computed tomography and intraoral radiography in detection of recurrent caries under composite restorations

    Energy Technology Data Exchange (ETDEWEB)

    Kasraei, Shahin; Shokri, Abbas; Poorolajal, Jalal; Rahmani, Hamid, E-mail: Dr.a.shokri@gmail.com [Hamadan University of Medical Sciences Hamadan (Iran, Islamic Republic of); Khajeh, Samira [Kurdistan University of Medical Sciences, Sanandaj (Iran, Islamic Republic of)

    2017-01-15

    Secondary caries is the most common cause of dental restoration failures. This study aimed to compare the diagnostic accuracy of conventional and digital intraoral radiography and cone beam computed tomography (CBCT) for detection of recurrent caries around composite restorations mesio-occluso-distal (MOD) cavities were prepared using bur on 45 extracted sound human molar teeth. The teeth were divided into 3 groups. In the control group, cavities were restored with composite resin after etching and bonding (n=15). In Group 2, 500-μm thick wax was placed over the buccal, lingual and gingival walls and the cavities were restored with composite resin. Group 3 specimens were subjected to pH cycling and artificial caries were created on the buccal, lingual and gingival walls. The cavities were restored with composite. Conventional and digital photo-stimulable phosphor (PSP; Optime) radiographs and two CBCTs images (NewTom 3G and Cranex 3D) were obtained from them. Presence or absence of caries in the cavity walls was assessed on these images. Data were analyzed using Kappa statistic. The diagnostic accuracy of CBCT was significantly higher than that of digital and conventional intraoral radiography (p<0.05). The accuracy was 0.83, 0.78, 0.55 and 0.49 for CBCT Cranex 3D, CBCT NewTom 3G, conventional and digital intraoral radiography, respectively. CBCT has a higher diagnostic accuracy than digital and conventional intraoral radiography for detection of secondary caries around composite restorations. (author)

  8. Analysis of Fracture Signals from Tooth/Composite Restoration According to AE Sensor Attachment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Ja Uk; Choi, Nak Sam [Hanyang University, Ansan (Korea, Republic of)

    2011-10-15

    Acoustic emission(AE) signals during the polymerization shrinkage of composite resin subjected to the LED light exposure were detected through a wave guide method and a direct sensor attachment method. For PMMA, human tooth, stainless steel substrate, data of AE hits and amplitudes were compared. For the test using the wave guide, AE amplitudes decreased because of the attenuant wave. However, AE hits and 1st peak frequency distribution were not different according to the sensor attachments. Through the experiments, wave guide could be used for a nondestructive evaluation of the marginal disintegrative fracture of dental restoration.

  9. Effects of pulp capping materials on fracture resistance of Class II composite restorations

    OpenAIRE

    2015-01-01

    Objective: The aim of this study was to investigate the effect of cavity design and the type of pulp capping materials on the fracture resistance of Class II composite restorations. Materials and Methods: Sixty freshly extracted, sound molar teeth were selected for the study. A dovetail cavity on the mesio-occlusal and a slot cavity on disto-occlusal surfaces of each tooth were prepared, and the teeth were divided 4 groups which one of them as a control group. The pulp capping materials (Ther...

  10. Mode I fracture toughness of carbon-glass/epoxy interply hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ha Na; Kim, Yon Jig [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-05-15

    In this study, the fracture toughness of carbon-glass fiber reinforced epoxy interply hybrid composite was investigated. In this experiment, the interply hybrid composites were manufactured using a vacuum-assisted resin transfer molding (VARTM) process. The fracture toughness of the interply hybrid composites was decreased with increasing the number of glass fabrics. The decrease in fracture toughness with an increase in the glass fiber content can be expressed in the form of a linear equation. Test results showed that the arrangement of fiber significantly influences the fracture toughness of the composite material. Glass fiber was effective against improving the fracture toughness of the hybrid composite when the glass fibers are dispersed by multi layers rather than a single layer.

  11. Hybrid Fibre Polylactide Acid Composite with Empty Fruit Bunch: Chopped Glass Strands

    Directory of Open Access Journals (Sweden)

    K. Y. Tshai

    2014-01-01

    Full Text Available Hybrid polylactide acid (PLA composites reinforced with palm empty fruit bunch (EFB and chopped strand E-glass (GLS fibres were investigated. The hybrid fibres PLA composite was prepared through solution casting followed by pelletisation and subsequent hot compression press into 1 mm thick specimen. Chloroform and dichloromethane were used as solvent and their effectiveness in dissolving PLA was reported. The overall fibre loading was kept constant at volume fraction, Vf, of 20% while the ratio of EFB to GLS fibre was varied between Vf of 0 : 20 to 20 : 0. The inclusion of GLS fibres improved the tensile and flexural performance of the hybrid composites, but increasing the glass fibre length from 3 to 6 mm has a negative effect on the mechanical properties of the hybrid composites. Moreover, the composites that were prepared using chloroform showed superior tensile and flexural properties compared to those prepared with dichloromethane.

  12. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored...... by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....

  13. Comparative evaluation of slot versus dovetail design in class III composite restorations in primary anterior teeth.

    Science.gov (United States)

    Rathnam, Arun; Nidhi, Madan; Shigli, Anand L; Indushekar, K R

    2010-01-01

    The esthetic restorations of primary anterior teeth have always occupied an important part of the pediatric dentist's armamentarium. Various materials have been tried for this purpose and ample materials have been researched in an attempt to fulfill the prerequisites for an ideal esthetic restorative material.Composite resins have been traditionally noted to have decreased bonding ability to primary teeth and the use of secondary retentive features has been advocated to increase bonding. Fifty pairs of anterior class III carious teeth were selected having mirror image lesions on their contralateral proximal surfaces. These teeth were prepared with either a slot or a modified dovetail type of cavity preparation. The patients were then kept on recall to check the clinical characteristics of the restorations at 3, 6, and 12 months. The criteria for evaluation included marginal adaptation, anatomic form, surface discoloration and secondary caries. It was concluded from the results that the both slot and dovetail types of cavity preparations were equally effacious when clinically reviewed for a period of 12 months. Hence the use of slot type of cavity preparation with reduced loss of the tooth structure is indicated for class III cavities in primary anterior teeth.

  14. The effect of polishing systems on microleakage of tooth-coloured restoratives. Part 2: composite and polyacid-modified composite resins.

    Science.gov (United States)

    Yap, A U; Wong, M L; Lim, A C

    2000-03-01

    The purpose of this in vitro study was to investigate the effect of polishing systems on the microleakage of composite and polyacid-modified composite resins. Class V cavities were prepared at the cemento-enamel junction of 80 freshly extracted posterior teeth. The prepared teeth were randomly divided into two groups and restored with conventional or polyacid-modified composite resins. The restored teeth were stored in distilled water at 37 degrees C for 1 week after removal of excess restorative with diamond finishing burs. The restored teeth were then divided into four groups of ten and finished/polished using the following systems: Two Striper micron finishing system (MFS), Sof-Lex XT (Sof-Lex), Enhance composite finishing and polishing system (Enhance), and Shofu composite finishing kit (Shofu). The finished restorations were subjected to dye penetration testing. Results showed that the microleakage resistance at both enamel and dentin margins of composite and polyacid-modified composite resins are not significantly affected by the different polishing systems.

  15. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  16. Fracture Strength of Indirect Resin Composite Laminates to Teeth with Existing Restorations : An Evaluation of Conditioning Protocols

    NARCIS (Netherlands)

    Mese, Ayse; Ozcan, Mutlu

    2009-01-01

    Purpose: This study evaluated the fracture strength and failure types of indirect resin-based composite laminates bonded to teeth with aged Class III composite restorations that were conditioned according to various protocols. Materials and Methods: Maxillary central incisors (N = 60) with window-ty

  17. Histo-pathological study of pulp response to a composite resin restoration with two lining materials.

    Science.gov (United States)

    Aoki, S; Ishikawa, T

    1990-11-01

    This histopathological study investigated the pulp reaction to a restoration system employing a posterior composite resin with or without the pulp protection of visible light curing calcium hydroxide composition and alpha-TCP cement lining to dentin. Black's class V cavities were prepared in 120 adult dog teeth. They were then extracted for histological examination. As a result of this study, their lining materials were found to be effective in pulp protection. To understand the pathological finding, the pH values of "Fulfil", "Universal bond", "VLC Dycal" and "Vitacemen Type II" were measured. The pH levels of "Fulfil" and "Universal Bond" were mildly acidic (4.79-5.18) before polymerization, with no subsequent changes. "VLC Dycal" was initially a strongly alkaline (11.75) and remained this condition. "Vitacemen Type II" was initially acidic (3.78), but eventually reached the milder acidity of 5.12 after 24 hours.

  18. Class I and Class II silver amalgam and resin composite posterior restorations: teaching approaches in Canadian faculties of dentistry.

    Science.gov (United States)

    McComb, Dorothy

    2005-06-01

    A 10-question survey was mailed to the 10 Canadian faculties of dentistry to determine current approaches to teaching undergraduates about silver amalgam and resin composite for posterior restorations in adults and children. Responses were received from all 10 pedodontic programs and from 8 of the 10 operative and restorative programs. The use of silver amalgam and posterior composite for restorations of primary and permanent teeth is covered in the curricula of all dental schools, but the relative emphasis on the 2 materials varies. In the operative and restorative programs, curriculum time devoted to silver amalgam is either greater than or equal to that devoted to posterior composite. Five of the 8 schools reported greater educational emphasis on silver amalgam for the permanent dentition; however, course directors noted that the preference among patients seen in clinics is tending toward composite restorations. Curricula appear designed to educate students about the optimal use of both materials. Requirements for performance of restorations during training generally do not specify the type of material; these requirements range from 60 restorations to 250 surfaces. Five of the 8 schools conduct clinical competency tests with both materials. The responses from the pedodontic programs were more diverse. The proportion of curriculum time devoted to each type of material in these programs ranged from less than 25% to more than 75%. Five schools reported more emphasis on silver amalgam, 3 schools reported equal emphasis, and 2 schools reported more emphasis on posterior composite. No clinical requirements were specified in any of the undergraduate pedodontic programs. Within some of the faculties, there were differences between the operative and restorative program and the pedodontic program with respect to emphasis on different materials for the posterior dentition.

  19. Longevity of direct and indirect resin composite restorations in permanent posterior teeth: A systematic review and meta-analysis.

    Science.gov (United States)

    da Veiga, Ana Maria Antonelli; Cunha, Amanda Carneiro; Ferreira, Daniele Masterson Tavares Pereira; da Silva Fidalgo, Tatiana Kelly; Chianca, Thomaz Kauark; Reis, Kátia Rodrigues; Maia, Lucianne Cople

    2016-11-01

    The aim of this systematic review and meta-analysis was to assess the differences in clinical performance in direct and indirect resin composite restorations in permanent posterior teeth. PubMed, the Cochrane Library, Web of Science, Scopus, LILACS, BBO, ClinicalTrials.gov and SiGLE were searched without restrictions. We included randomized clinical trials (RCTs) that compared the clinical performance of direct and indirect resin composite restorations in Class I and Class II cavities in permanent teeth, with at least two years of follow-up. The risk of bias tool suggested by Cochrane Collaboration was used for quality assessment. After duplicate removal, 912 studies were identified. Twenty fulfilled the inclusion criteria after the abstract screening. Two articles were added after a hand search of the reference list of included studies. After examination, nine RCTs were included in the qualitative analysis and five were considered to have a 'low' risk of bias. The overall risk difference in longevity between direct and indirect resin composite restorations in permanent posterior teeth (p>0.05) at five-year follow-up was 1.494 [0.893-2.500], and regardless of the type of tooth restored, that of molar and premolars was 0.716 [0.177-2.888] at three-year follow-up. Based on the findings, there was no difference in longevity of direct and indirect resin composite restorations regardless of the type of material and the restored tooth. Contemporary dentistry is based on minimally invasive restorations. Any indication of a less conservative technique must have unquestionable advantages. In vitro and in vivo studies reveal contradictory evidence of the clinical performance of direct and indirect resin composite restorations in posterior teeth. Thus this study clarified this doubt. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Clinical evaluation of a flowable resin composite and flowable compomer for preventive resin restorations.

    Science.gov (United States)

    Qin, Man; Liu, HongSheng

    2005-01-01

    This clinical study evaluated the retention and caries protection of a flowable resin composite (Flow Line) and a flowable compomer (Dyract Flow) used in preventive resin restorations as compared to the conventional preventive resin technique which uses a resin composite (Brilliant) and a sealant (Concise). This study observed 205 permanent molars with small carious cavities less than 1.5 mm in width, which were obtained from 165 children aged 7 to 15 years. Flowable resin composite was used to treat 75 teeth, and 71 teeth were treated with flowable compomer in both cavities and caries-free fissures. For the control group, 59 teeth were treated with resin composite in cavities and sealant in caries-free fissures. The teeth were evaluated at 3, 6, 12, 18 and 24-month intervals. After three months, all 205 treated teeth were completely intact. After six months, 66 of the 71 teeth treated with flowable resin composite and 65 of the 70 teeth treated with flowable compomer were complete, compared to 57 of the 58 teeth treated with the conventional preventive resin technique. After 12 months, 60 of the 67 teeth treated with flowable resin composite and 61 of the 67 teeth treated with flowable compomer were complete, compared to 51 of the 55 teeth treated with the conventional preventive resin technique. After 18 months, 53 of the 61 teeth treated with flowable resin composite and 54 of the 62 teeth treated with flowable compomer were complete, compared to 47 of the 53 teeth treated with the conventional preventive resin technique. After 24 months, 49 of the 58 teeth treated with flowable resin composite and 45 of the 57 teeth treated with flowable compomer were complete, compared to 42 of the 52 teeth treated with the conventional preventive resin technique. There were no statistically significant differences in retention rates among all groups after 3, 6, 12, 18 or 24-months (p>0.05). One tooth treated with flowable resin composite and one tooth treated with flowable

  1. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Liang; Gong, Jie [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zeng, Changfeng [College of Mechanic and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zhang, Lixiong, E-mail: lixiongzhang@yahoo.com [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2013-10-15

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20–55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation–gelation–hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca{sup 2+}-exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag{sup +}-exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca{sup 2+}-exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag{sup +}-exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9 × 10{sup 6} CFU mL{sup −1}E. coli concentration to zero within 4 h of incubation time with the Ag{sup +}-exchanged hybrid composite amount of 0.4 g L{sup −1}. The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca{sup 2+} and then with Ag{sup +}. These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. - Graphical abstract: Zeolite A/chitosan hybrid composites were prepared by in situ transformation of precursors in the chitosan matrix, which possess macroporous structures and exhibit superior bioactivity and antimicrobial activity and potential biomedical

  2. Hybrid Testing of Composite Structures with Single-Axis Control

    DEFF Research Database (Denmark)

    Waldbjørn, Jacob Paamand; Høgh, Jacob Herold; Stang, Henrik

    2013-01-01

    a hybrid testing platform is introduced for single-component hybrid testing. In this case, the boundary between the numerical model and experimental setup is defined by multiple Degrees-Of-Freedoms (DOFs) which highly complicate the transferring of response between the two substructures. Digital Image......Hybrid testing is a substructuring technique where a structure is emulated by modelling a part of it in a numerical model while testing the remainder experimentally. Previous research in hybrid testing has been performed on multi-component structures e.g. damping fixtures, however in this paper...... Correlation (DIC) is therefore implemented for displacement control of the experimental setup. The hybrid testing setup was verified on a multicomponent structure consisting of a beam loaded in three point bending and a numerical structure of a frame. Furthermore, the stability of the hybrid testing loop...

  3. Mechanistic aspects of fracture and fatigue in resin based dental restorative composites

    Science.gov (United States)

    Shah, Minalben B.

    For resin based dental restorative composites, one of the major challenges is to optimize the balance between mechanical and optical properties. Although fracture is the second leading cause of dental restorative failures, very limited mechanistic understanding exists on a microscopic level. In the present study, the fracture properties and mechanisms of two commercial dental resin composites with different microstructures are examined using double notched four point beam bending and pre-cracked compact-tension, C(T), specimens. Four point bend flexural strength was also measured using un-notched beam samples. The first material is a microhybrid composite that combines a range of nano and micro scale filler particles to give an average particle size of 0.6 mum, while the second is a nanofill composite reinforced entirely with nano particles and their agglomerates. The influences of 60 days water hydration and a post-cure heat treatment were also examined. Fracture resistance curve (R-curve) experiments have demonstrated the microhybrid composite to be more fracture resistant than the nanofill composite in both as-processed and hydrated conditions. Rising fracture resistance with crack extension was observed in all specimens, independent of the environmental conditions. Compared to the as-processed condition, a significant reduction in the peak toughness was observed for the nanofill composite after 60 days of water aging. Hydration lowered flexural strength of both composites which was attributed to hydrolytic matrix degradation with additional interfacial debonding causing larger strength decrease in the nanofill. Optical and SEM observations revealed an interparticle matrix crack path promoting crack deflection as a toughening mechanism in all cases except the hydrated nanofill which showed particle-matrix debonding. Crack bridging was another observed extrinsic toughening mechanism that was believed to be responsible for the rising fracture resistance curve (R

  4. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2015-01-01

    The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....... automatically using the Python based code. 3D computational studies of environment and fatigue analyses of multiscale composites with secondary nano-scale reinforcement in different material phases and different CNTs arrangements are carried out systematically in this paper. It was demonstrated that composites...

  5. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  6. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  7. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    Science.gov (United States)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  8. Comparison of nanoleakage in composite restorations following application of self-etch and total-etch adhesives in primary and permanent teeth

    Directory of Open Access Journals (Sweden)

    Makarem A

    2007-01-01

    Full Text Available Background and Aim: Nanoleakage can cause discoloration around restoration margins, secondary caries, postoperative sensitivity and finally loss of restoration, thus adequate hybrid layer is of primary importance in prevention of nanoleakage in adhesive restorations. Because of structural differences between primary and permanent dentin, evaluation of nanoleakge in primary teeth is very important. The aim of this study was to evaluate the nanoleakage in composite restorations following application of self -etch and total-etch adhesives in primary and permanent teeth. Materials and Methods: In this experimental study, Cl V cavities were prepared in buccal surfaces of 20 extracted primary molars and 20 extracted premolars. Each group was divided into 2 subgroups: In group (A, Gluma One Bond and in group (B, iBond adhesive materials were applied. After silver nitrate staining, specimens were mesiodistally sectioned and polished and then SEM examination was carried out to measure the nanoleakage .Data were analyzed statistically using, ANOVA and Duncan tests with p<0.05 as the limit of significance. Results: Factors tested had no significant effect on each other. Primary teeth showed more nanoleakage than permanent teeth (P<0.05. Mean nanoleakage was significantly higher in cervical than occlusal margins (P<0.05 and also in iBond than in Gluma One Bond in primary teeth (P<0.05. In permanent teeth, the lowest nanoleakage was observed in Gluma One Bond. Conclusion: The result of this study indicates that the use of total etch dentin adhesives (Gluma One Bond in bonded restorations results in less nanoleakage in primary and permanent teeth.

  9. Porcelain laminate veneer restorations bonded with a three-liquid silane bonding agent and a dual-activated luting composite.

    Science.gov (United States)

    Matsumura, Hideo; Aida, Yukiko; Ishikawa, Yumi; Tanoue, Naomi

    2006-12-01

    This clinical report describes the fabrication and bonding of porcelain laminate veneer restorations in a patient with anterior open spaces. Laminate veneer restorations made of feldspathic porcelain were etched with 5% hydrofluoric acid, rinsed under tap water, ultrasonically cleaned with methanol, and primed with a chemically activated three-liquid silane bonding agent (Clearfil Porcelain Bond). The enamel surfaces were etched with 40% phosphoric acid, rinsed with water, and primed with a two-liquid bonding agent (Clearfil New Bond) that contained a hydrophobic phosphate (10-methacryloyloxydecyl dihydrogen phosphate; MDP). The restorations were bonded with a dual-activated luting composite (Clapearl DC). The veneers have been functioning satisfactorily for an observation period of one year. Combined use of the Clearfil bonding agents and Clapearl DC luting composite is an alternative to conventional materials for seating porcelain laminate veneer restorations, although the system is inapplicable to dentin bonding.

  10. Multifunctional Shielding and Self-Healing HybridSil Smart Composites for Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has recently developed multifunctional shielding and self-healing HybridSil (HS) smart composites via the inclusion of innovative nanoshell...

  11. Hybrid Polyvinyl Alcohol and Cellulose Fiber Pulp Instead of Asbestos Fibers in Cement-Based Composites

    Science.gov (United States)

    Shokrieh, M. M.; Mahmoudi, A.; Shadkam, H. R.

    2015-05-01

    The Taguchi method was used to determine the optimum content of a four-parameters cellulose fiber pulp, polyvinyl alcohol (PVA) fibers, a silica fume, and bentonite for cement-based composite sheets. Then cement composite sheets from the hybrid of PVA and the cellulose fiber pulp were manufactured, and their moduli of rapture were determined experimentally. The result obtained showed that cement composites with a hybrid of PVA and cellulose fiber pulp had a higher flexural strength than cellulose-fiber- reinforced cement ones, but this strength was rather similar to that of asbestos-fiber-reinforced cement composites. Also, using the results of flexural tests and an analytical method, the tensile and compressive moduli of the hybrid of PVA and cement sheet were calculated. The hybrid of PVA and cellulose fiber pulp is proposed as an appropriate alternative for substituting asbestos in the Hatschek process.

  12. Indicators of the risk mechanics for Class-I and Class-II amalgam and composite resin restorations

    OpenAIRE

    Fernández, Eduardo; Arroyo, Erik Dreyer; Pardo, Claudia Letelier; OLIVEIRA JUNIOR,Osmir Batista de; Cortés, Gustavo Moncada [UNESP; Casielles,Javier Martín

    2014-01-01

    AIM: To determine indicators of prognosis for mechanical risks of amalgam and composite resin restorations in permanent teeth. METHODS: Thirty-nine adult patients with direct clinical, photographic, radiographic and model examinations. A total of 256 restorations were classified as "not satisfactory," with Bravo or Charlie values according to the modified Ryge /USPHS criteria. The total "n" was divided into Bravo and Charlie groups according to the value obtained in the "marginal adaptation" ...

  13. Adhesive analysis of voids in class II composite resin restorations at the axial and gingival cavity walls restored under in vivo versus in vitro conditions

    Science.gov (United States)

    Purk, John H.; Dusevich, Vladimir; Glaros, Alan; Eick, J. David

    2007-01-01

    Objectives Adhesive analysis, under the scanning electron microscope of microtensile specimens that failed through the adhesive interface, was conducted to evaluate the amount of voids present at the axial versus gingival cavity walls of class II composite restorations restored under in vivo and in vitro conditions. Methods Five patients received class II resin composite restorations, under in vivo and in vitro conditions. A total of 14 premolar teeth yielded 59 (n = 59) microtensile adhesive specimens that fractured through the adhesive interface. The fractured surfaces of all specimens were examined and the % area of voids was measured. Results Voids at the adhesive joint were highly predictive of bond strengths. An increase in the number of voids resulted in a decrease in the microtensile bond strength. The area of voids at the adhesive interface was as follows: in vivo axial 13.6 ± 25.6% (n = 12); in vivo gingival 48.8 ± 29.2% (n = 12); in vitro axial 0.0 ± 0.0% (n = 19) and in vitro gingival 11.7 ± 17.6% (n = 16). Significance Composite resin may bond differently to dentin depending upon the amount of voids and the cavity wall involved. The bond to the gingival wall was not as reliable as the bond to the axial wall. An increase in the amount of surface voids was a major factor for reducing microtensile bond strengths of adhesive to dentin. PMID:16950506

  14. [The method of esthetic crown restoration with composite resin jacket crown in primary molars].

    Science.gov (United States)

    Doi, K; Shibui, N; Suda, M; Uehara, M; Karibe, H; Kondou, K

    1990-10-01

    The term "esthetics" has recently been also used in the dental field, and a field called esthetic dentistry is increasingly being noted. The number of not only adult but also pediatric patients who visit for treatment aiming at esthetic recovery is being increased. Inpedodontics, composite resin of the coronal color is generally used in the restoration of deciduous incisors. However, the method using metal crowns for the deciduous teeth is used for the deciduous molars at present. We applied a composite resin jacket crown to the deciduous molar in a way similar to that of esthetic crown restoration for the anterior teeth. The surgical procedure before crown preparation varied slightly according to the presence or absence of pulpal treatment of vital teeth and with non-vital teeth, but the application was performed as follows: 1) Desensitization of pulp, pulpal treatment and core construction. 2) Preparation of crown. 3) Selection, trial set and occlusal equilibration of a metal crown for the deciduous tooth. 4) Precision impression with a silicone impression material. 5) Removal of the metal crown for the deciduous tooth from the impression material. 6) Making of an under-cut to the abutment tooth on the buccal lingual side. 7) Filling of the impression with chemical polymerization resin. 8) Application of pressure in the oral cavity. 9) Adjustment of edge and crown forms. Thus, the preparation method for the composite resin jacket crown was relatively simple. Since this surgery, the patient has been followed up for 1 year and 6 months, and no specifically troublesome points have been observed clinically. The patient and her parents are satisfied with the results.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites.

    Science.gov (United States)

    Das, Sekhar

    2017-09-15

    Hybrid composites were prepared with jute fabric and un-shredded newspaper in polyester resin matrix. The experiment was designed 1:2 weights ratio jute and unshredded newspaper to have 42 (w/w)% fibre content hybrid composites and two different sequences jute/paper/jute and paper/jute/paper of waste newspaper and jute fabric arrangement. Reinforcing material is characterized by chemically, X-ray diffraction methods, Fourier transform infrared spectroscopy and tensile testing. The tensile, flexural and interlaminar shear strength and fracture surface morphology of composites were evaluated and compared. It was found that tensile and flexural properties of the hybrid composite are higher than that of pure paper-based composite but less than pure woven jute composite. The hybridization effect of woven jute fabric and layering pattern effect on mechanical properties of newspaper/woven jute fabric hybrid composites were studied. The test results of composites were analyzed by one-way ANOVA (α=0.05), it showed significant differences among the groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mechanical Behavior of Hybrid Glass/Steel Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Amanda K. McBride

    2017-04-01

    Full Text Available While conventional fiber-reinforced polymer composites offer high strength and stiffness, they lack ductility and the ability to absorb energy before failure. This work investigates hybrid fiber composites for structural applications comprised of polymer, steel fiber, and glass fibers to address this shortcoming. Varying volume fractions of thin, ductile steel fibers were introduced into glass fiber reinforced epoxy composites. Non-hybrid and hybrid composite specimens were prepared and subjected to monolithic and half-cyclic tensile testing to obtain stress-strain relationships, hysteresis behavior, and insight into failure mechanisms. Open-hole testing was used to assess the vulnerability of the composites to stress concentration. Incorporating steel fibers into glass/epoxy composites offered a significant improvement in energy absorption prior to failure and material re-centering capabilities. It was found that a lower percentage of steel fibers (8.2% in the hybrid composite outperformed those with higher percentages (15.7% and 22.8% in terms of energy absorption and re-centering, as the glass reinforcement distributed the plasticity over a larger area. A bilinear hysteresis model was developed to predict cyclic behavior of the hybrid composite.

  17. Reasons for Retreatment of Amalgam and Composite Restorations among the Patients Referring to Tabriz Faculty of Dentistry

    Directory of Open Access Journals (Sweden)

    Siavash Savadi Oskoee

    2007-06-01

    Full Text Available

    Background and aims. Retreatment of existing restorations not only requires a lot of money and time but also there is a danger of weakening tooth structure and irritating the pulp. Since awareness of the reasons for the retreatment of teeth will save the teeth from possible future failure, the aim of this study was to assess the reasons for retreatment of amalgam and composite restorations in patients referring to Tabriz Faculty of Dentistry.

    Materials and methods. In this descriptive study, the subjects had previously received an amalgam or a composite restoration in the Operative Department by dental students and were judged to need retreatment in their second visit. A total of 300 defective teeth were selected by simple random sampling method. The data was collected through examination and questionnaires and analyzed using chi-square test.

    Results. There was a statistically significant association between the type of the restorative material and the reason for retreatment (p=0.001.

    Conclusion. Although the reasons for the retreatment of amalgam and composite restorations were different, recurrent caries was the main reason for the retreatment for both restorative materials.

  18. Evaluation of dental adhesive systems with amalgam and resin composite restorations: comparison of microleakage and bond strength results.

    Science.gov (United States)

    Neme, A L; Evans, D B; Maxson, B B

    2000-01-01

    A variety of laboratory tests have been developed to assist in predicting the clinical performance of dental restorative materials. Additionally, more than one methodology is in use for many types of tests performed in vitro. This project assessed and compared results derived from two specific laboratory testing methods, one for bond strength and one for microleakage. Seven multi-purpose dental adhesives were tested with the two methodologies in both amalgam and resin composite restorations. Bond strength was determined with a punch-out method in sections of human molar dentin. Microleakage was analyzed with a digital imaging system (Image-Pro Plus, Version 1.3) to determine the extent of dye penetration in Class V preparations centered at the CEJ on both the buccal and lingual surfaces of human molar teeth. There were 32 treatment groups (n = 10); seven experimental (dental adhesives) and one control (copal varnish, 37% phosphoric acid) followed by restoration with either amalgam or resin composite. Specimens were thermocycled 500 times in 5 degrees and 55 degrees C water with a one-minute dwell time. Bond strength and microleakage values were determined for each group. ANOVA and Student-Newman-Keuls tests demonstrated an interaction between restorative material and adhesive system with a significant difference among adhesives (p resin composite restorations than in the amalgam restorations. Bond strength testing was more discriminating than microleakage evaluation in identifying differences among materials.

  19. Composite resin restorations of non-carious cervical lesions in patients with diabetes mellitus and periodontal disease: pilot study.

    Science.gov (United States)

    Nassar, Carlos A; Nassar, Patrícia O; Secundes, Mayron B; Busato, Priscilla do Monte Ribeiro; Camilotti, Veridiana

    2012-01-01

    Diabetes mellitus is a set of metabolic diseases characterized by hyperglycemia resulting from absolute or relative deficiency in insulin secretion by the pancreas and/or impaired insulin action in target tissues. Oral health maintenance through health care, as well as metabolic control are important measures for the overall health of diabetic patients. The objective of this study was to determine the relationship between biocompatibility of composite resin restorations with different nanoparticles, polishing in abfraction lesions in anterior and posterior teeth with periodontal tissues in patients with diabetes mellitus. We selected 20 patients--10 patients with diabetes mellitus and 10 patients without diabetes mellitus-, but with a total of 30 restorations in each group receiving composite resin restorations, who were evaluated for periodontal purposes: Plaque Index, Gingival Index; Probing Depth, Clinical Attachment Level and Bleeding on Probing. In addition, the restorations will receive assessments according to criteria for Marginal Adaptation, Anatomical Shape, Marginal Discoloration, ormation of caries, Post-operative Sensitivity and Retention. The total period was 90 days. The results showed a significant improvement in periodontal parameters assessed (p 0.05) among all criteria evaluated within the 90-day period. Thus, we conclude that in a short period (90 days) there is clinical biocompatibility of composite resin with nanoparticles restorations in abfraction lesions and periodontal tissues of patients with diabetes mellitus, regardless the type of polish these restorations receive.

  20. Selection of wide compatible restorer lines and their application in hybrid rice breeding

    Institute of Scientific and Technical Information of China (English)

    XIEXiaoba; ZHANGShanqing; FANGHongming

    1997-01-01

    Since the middle of 1980's, wide compatibility(WC) rice lines have been screened by rice breeders in China and applied in hybrid rice breeding program. Several WC fines such as Pecos, T984, Lunhui 422, and 02428 withideal agronomic characters were identified.

  1. Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars.

    Science.gov (United States)

    Magne, Pascal; Knezevic, Alena

    2009-02-01

    To assess the influence of material selection (porcelain versus composite resin) for overlay-type restoration of endodontically treated molars and its effect on the in vitro fatigue resistance and failure mode. A standardized tooth preparation was applied to 30 extracted molars, including root canal treatment, 3-mm coverage of all cusps, a mesial box 1.5 mm below the cementoenamel junction (CEJ), a distal box in enamel, a glass-ionomer base, and immediately sealed dentin. Using the Cerec machine (Sirona), all teeth were restored with an overlay of standardized thickness and occlusal anatomy. Fifteen restorations were milled in the ceramic Vita MKII block (Vident) and the other 15 using the composite resin Paradigm MZ100 block (3M ESPE). The intaglio surfaces of the ceramic restorations were etched and silanated. The intaglio surfaces of the composite resin overlays were airborne-particle abraded and silanated. Preparations were airborne-particle abraded and etched before restoration insertion. All restorations were adhesively luted with an adhesive resin (Optibond FL, Kerr) and a light-curing composite resin (Filtek Z100, 3M ESPE). Cyclic isometric chewing (5 Hz) was simulated, starting with a load of 200 N (5,000 cycles), followed by stages of 400, 600, 800, 1,000, 1,200, and 1,400 N at a maximum of 30,000 cycles each. Samples were loaded until fracture or to a maximum of 185,000 cycles. MKII overlays fractured at a mean load of 1,147 N, and none of them withstood all 185,000 loading cycles (survival = 0%); with MZ100, the survival rate was 73%. With MKII, 40% of the fractures ended below the CEJ; with MZ100, only 25% did. Composite resin MZ100 increased the fatigue resistance of overlay-type restorations in endodontically treated molars when compared to porcelain MKII. The efficiency of the bond strategy (immediate dentin sealing) was demonstrated by the absence of adhesive failures.

  2. Synergy effects of hybrid carbon system on properties of composite bipolar plates for fuel cells

    Science.gov (United States)

    Kim, Jong Wan; Kim, Nam Hoon; Kuilla, Tapas; Kim, Tae Jin; Rhee, Kyong Yop; Lee, Joong Hee

    A hybrid carbon system of graphite powder (GP) and continuous carbon fibre fabric (CFF) is used for an epoxy composite to improve the electrical conductivity, mechanical properties and mouldability of a composite bipolar plate. These improvements are achieved simultaneously by inserting several layers of CFF into the GP/epoxy composite to enhance the mechanical properties and in-plane conductivity. The electrical properties, flexural strength and mouldability of the composite plates are measured as a function of conducting filler content and number of CFF layers. The composites show improved electrical conductivity, flexural properties and mouldability. Composites with 70-75 vol.% carbon fillers have the highest electrical conductivity with reasonable flexural properties. These results suggest that the poor mouldability and low through-plane electrical conductivity of the continuous fibre composite bipolar plate, as well as the weak flexural properties of GP composites, can be overcome by incorporating a GP/CFF hybrid system.

  3. Curriculum time compared to clinical procedures in amalgam and composite posterior restorations in U.S. dental schools: a preliminary study.

    Science.gov (United States)

    Rey, Rosalia; Nimmo, Susan; Childs, Gail S; Behar-Horenstein, Linda S

    2015-03-01

    Dental clinicians have an expanding range of biomaterial choices for restoring tooth structure. Scientific developments in cariology, advances in dental biomaterials, and patients' esthetic concerns have led to a reduction in amalgam restorations and an increase in composite restorations. The aim of this study was to compare teaching time with students' clinical procedures in amalgam and composite posterior restorations in dental schools across the United States. Academic deans in 60 schools were invited to complete a survey that asked for the amount of instructional time for amalgam and composite posterior restorations and the number of clinical restorations performed by their Classes of 2009, 2010, and 2011. Of these 60, 12 returned surveys with complete data, for a 20% response rate. Responses from these schools showed little change in lecture and preclinical laboratory instruction from 2009 to 2011. There was a slight increase in two-surface restorations for both amalgam and composites; however, the total number of reported composite and amalgam restorations remained the same. Of 204,864 restorations reported, 53% were composite, and 47% were amalgam. There were twice as many multisurface large or complex amalgam restorations as composites. One-surface composite restorations exceeded amalgams. Among the participating schools, there was little to no change between curriculum time and clinical procedures. Findings from this preliminary study reflect a modest increase in two-surface resin-based restorations placed by dental students from 2009 to 2011 and little change in curricular time devoted to teaching amalgam restorations. The total number of posterior composite restorations placed by students in these schools was slightly higher than amalgams.

  4. Assessing ex vivo dental biofilms and in vivo composite restorations using cross-polarization optical coherence tomography

    Science.gov (United States)

    Jones, R.; Aparicio, C.; Chityala, R.; Chen, R.; Fok, A.; Rudney, J.

    2012-01-01

    A cross-polarization 1310-nm optical coherence tomography system (CP-OCT), using a beam splitter based design, was used to assess ex vivo growth of complex multi-species dental biofilms. These biofilm microcosms were derived from plaque samples along the interface of composite or amalgam restoration in children with a history of early childhood caries. This paper presents a method of measuring the mean biofilm height of mature biofilms using CP-OCT. For our in vivo application, the novel swept source based CP-OCT intraoral probe (Santec Co. Komaki, Japan) dimensions and system image acquisition speed (20 image frames/second) allowed imaging pediatric subjects as young as 4 years old. The subsurface enamel under the interface of composite resin restorations of pediatric subjects were imaged using CP-OCT. Cavitated secondary caries is clearly evident from sound resin composite restorations.

  5. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.

    Science.gov (United States)

    Rohm, Martin; Schneiders, Matthias; Müller, Constantin; Kreilinger, Alex; Kaiser, Vera; Müller-Putz, Gernot R; Rupp, Rüdiger

    2013-10-01

    The bilateral loss of the grasp function associated with a lesion of the cervical spinal cord severely limits the affected individuals' ability to live independently and return to gainful employment after sustaining a spinal cord injury (SCI). Any improvement in lost or limited grasp function is highly desirable. With current neuroprostheses, relevant improvements can be achieved in end users with preserved shoulder and elbow, but missing hand function. The aim of this single case study is to show that (1) with the support of hybrid neuroprostheses combining functional electrical stimulation (FES) with orthoses, restoration of hand, finger and elbow function is possible in users with high-level SCI and (2) shared control principles can be effectively used to allow for a brain-computer interface (BCI) control, even if only moderate BCI performance is achieved after extensive training. The individual in this study is a right-handed 41-year-old man who sustained a traumatic SCI in 2009 and has a complete motor and sensory lesion at the level of C4. He is unable to generate functionally relevant movements of the elbow, hand and fingers on either side. He underwent extensive FES training (30-45min, 2-3 times per week for 6 months) and motor imagery (MI) BCI training (415 runs in 43 sessions over 12 months). To meet individual needs, the system was designed in a modular fashion including an intelligent control approach encompassing two input modalities, namely an MI-BCI and shoulder movements. After one year of training, the end user's MI-BCI performance ranged from 50% to 93% (average: 70.5%). The performance of the hybrid system was evaluated with different functional assessments. The user was able to transfer objects of the grasp-and-release-test and he succeeded in eating a pretzel stick, signing a document and eating an ice cream cone, which he was unable to do without the system. This proof-of-concept study has demonstrated that with the support of hybrid FES

  6. Evaluation of internal adaptation of Class V resin composite restorations using three techniques of polymerization

    Directory of Open Access Journals (Sweden)

    José Carlos Pereira

    2007-02-01

    Full Text Available OBJECTIVE: The purpose of this in vitro study was to evaluate the internal adaptation of Class V composite restorations to the cavity walls using three different techniques of polymerization. METHODS: Standard cavities were prepared on the buccal and lingual surfaces of 24 extracted human third molars with margins located above and below the cementoenamel junction. Restorations were placed in one increment using two restorative systems: 3M Filtek A110/ Single Bond (M and 3M Filtek Z250/ Single Bond (H in the same tooth, randomly in the buccal and lingual surfaces. Resin composites were polymerized using three techniques: Group 1 - Conventional (60 s - 600 mW/cm²; Group 2 - Soft-start (20 s - 200 mW/cm² , 40 s - 600 mW/cm²; Group 3 - Pulse Activation (3 s - 200 mW/cm², 3-min hiatus, 57 s - 600 mW/cm². Buccolingual sections were polished, impressions taken and replicated. Specimens were assessed under scanning electron microscopy up to X1000 magnification. Scores were given for presence or absence of gaps (0 - no gap; 1 - gap in one wall; 2 - gap in two walls; 3 - gap in three walls. RESULTS: The mean scores of the groups were (±SD were: G1M-3.0 (± 0.0; G2M-2.43 (± 0.8; G3M- 1.71 (± 0.9; G1H- 2.14 (± 1.2; G2H- 2.00 (± 0.8; G3H- 1.67 (± 1.1. Data were analyzed using Kruskal-Wallis and Dunnet's tests. No statistically significant difference (p>0.05 was found among groups. Gaps were observed in all groups. CONCLUSIONS: The photocuring technique and the type of resin composite had no influence on the internal adaptation of the material to the cavity walls. A positive effect was observed when the slow polymerization techniques were used.

  7. Replacement of Anterior Composite Resin Restorations Using Conservative Ceramics for Occlusal and Periodontal Rehabilitation: An 18-Month Clinical Follow-Up

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandes da Cunha

    2016-01-01

    Full Text Available This case report describes a patient with discolored and fractured composite resin restorations on the anterior teeth in whom substitution was indicated. After wax-up and mock-up, the composite was removed and replaced with minimally invasive ceramic laminates. An established and predictable protocol was performed using resin cement. Minimally invasive ceramic restorations are increasingly being used to replace composite restorations. This treatment improves the occlusal and periodontal aspects during the planning and restorative phases, such as anterior guides, and laterality can be restored easily with ceramic laminates. In addition, the surface smoothness and contour of ceramic restorations do not affect the health of the surrounding periodontal tissues. Here we present the outcome after 18 months of clinical follow-up in a patient in whom composite resin restorations in the anterior teeth were replaced with minimally invasive ceramic laminates.

  8. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro.

    Science.gov (United States)

    Gama-Teixeira, Adriana; Simionato, Maria Regina Lorenzeti; Elian, Silvia Nagib; Sobral, Maria Angela Pita; Luz, Maria Aparecida Alves de Cerqueira

    2007-01-01

    The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC); amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.

  9. Biomechanical characteristics of polymeric UHMWPE composites with hybrid matrix and dispersed fillers

    Science.gov (United States)

    Panin, Sergey; Kornienko, Lyudmila; Shilko, Sergey; Thuc, Nguyen Xuan; Korchagin, Mikhail; Chaikina, Marina

    2015-11-01

    In order to develop artificial joint implants some biomechanical properties of composites with UHMWPE and hybrid (polymer-polymeric) "UHMWPE+PTFE" matrix with dispersed fillers were studied. A comparative analysis of the effectiveness of adding hydroxyapatite micron- and nanopowders as a biocompatible filler was carried out. It was shown that under dry sliding friction the wear rate of nanocomposites with the hybrid matrix is lower as compared with composites with the non-hybrid one. Mechanical activation of components further enhances the durability of nano- and microcomposites to almost double it without any significant reduction in the strength characteristics.

  10. Fracture Resistance of Endodontically Treated Teeth Restored With Bulk Fill, Bulk Fill Flowable, Fiber-reinforced, and Conventional Resin Composite.

    Science.gov (United States)

    Atalay, C; Yazici, A R; Horuztepe, A; Nagas, E; Ertan, A; Ozgunaltay, G

    2016-01-01

    The aim of this in vitro study was to evaluate the fracture resistance of endodontically treated teeth restored with different types of restorative resins. Seventy-two sound maxillary premolar teeth were randomly divided into six groups (n=12). The teeth in the first group were left intact and tested as unprepared negative control (group I) specimens. The teeth in the remaining five groups were prepared with MOD cavities and endodontically treated. The teeth in one of the five groups (positive control group II) were unrestored. The rest of the prepared cavities were restored as follows: group III: bulk fill resin composite/Filtek Bulk Fill (3M ESPE); group IV: bulk fill flowable resin composite + nanohybrid/SureFil SDR Flow + Ceram.X Mono (Dentsply); group V: fiber-reinforced composite + posterior resin composite/GC everX posterior + G-aenial posterior (GC Corp.); and group VI: nanohybrid resin composite/Tetric N-Ceram (Ivoclar/Vivadent). Each restorative material was used with its respective adhesive system. The restored teeth were stored in distilled water for 24 hours at 37°C and were then thermocycled (5-55°C, 1000×). Specimens were subjected to a compressive load until fracture at a crosshead speed of 0.5 mm/min. The data were analyzed using one-way analysis of variance followed by the post hoc Tukey honestly significantly different test (p0.05). The lowest values were obtained in the positive control group (group II); these values were significantly lower than those of the other groups (pcomposite were not different from those restored with conventional nanohybrid resin composite.

  11. Fatigue of hybrid glass/carbon composites: 3D computational studies

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2014-01-01

    3D computational simulations of fatigue of hybrid carbon/glass fiber reinforced composites is carried out using X-FEM and multifiber unit cell models. A new software code for the automatic generation of unit cell multifiber models of composites with randomly misaligned fibers of various properties...... and geometrical parameters is developed. With the use of this program code and the X-FEM method, systematic investigations of the effect of microstructure of hybrid composites (fraction of carbon versus glass fibers, misalignment, and interface strength) and the loading conditions (tensile versus compression...... cyclic loading effects) on fatigue behavior of the materials are carried out. It was demonstrated that the higher fraction of carbon fibers in hybrid composites is beneficial for the fatigue lifetime of the composites under tension-tension cyclic loading, but might have negative effect on the lifetime...

  12. Flexural, Impact Properties and Sem Analysis of Bamboo and Glass Fiber Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Raghavendra Rao. H

    2014-08-01

    Full Text Available The Flexural, Impact properties and Scanning electron microscope analysis of Bamboo/glass fibers Reinforced polyester Hybrid composites were studied. The effect of alkali treatment of the bamboo fibers on these properties was also studied. It was observed that the Flexural, impact properties of the hybrid composite increase with glass fiber content. These properties found to be higher when alkali treated bamboo fibers were used in the hybrid composites. The elimination of amorphous hemi-cellulose with alkali treated leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations. The author investigated the interfacial bonding between Glass/Bamboo reinforced polyester composites. The effect of alkali treatment on the bonding between Glass/Bamboo composites was also studied.

  13. Experimental Investigation on Shear and Hardness of Abaca based Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Vijaya Ramnath B.

    2016-01-01

    Full Text Available Present technology development in the area of materials replaces the conventional materials used in automobile and aerospace sector by composite materials due their less weight and bio degradability. This paper aims to fabricate and investigate the mechanical properties of abaca-raffia hybrid composite fabricated by hand layup process. Since, abaca fiber has more strength than other fibers like kenaf, banana and sisal, the composite with this fiber can be suitable replacement material for automotive applications.The properties like double shear and hardnessare evaluated andthe result shows that the double shear properties and hardness of the hybrid composites [GFRP+Abaca+Raffia] is higher than other two combinations. The internal microstructure of the hybrid composites were analysed using Scanning electron microscope (SEM.

  14. A retrospective clinical evaluation of success rate in endodontic-treated premolars restored with composite resin and fiber reinforced composite posts

    Directory of Open Access Journals (Sweden)

    Marjaneh Ghavamnasiri

    2011-01-01

    Full Text Available Background : The aim of this retrospective study was to assess the survival rate and causes of failure of quartz fiber posts used to restore endodontically treated teeth. Materials and Methods : Thirty-eight patients with endodontically treated premolar and anterior teeth that were then restored with a coronoradicular quartz fiber post and extensive composite resin restorations were selected for participation in the study. The age of the restorations ranged from 1 to 6 years. Survival probabilities of the restorations as well as causes of failures were analyzed using the Kaplan-Meier analysis and the Logistic regression (α = 0.05. Results : The overall cumulative survival rate (48.8% was determined, while the survival probabilities after 1, 2, 4, 5, and 6 years of service were 88.37%, 60.95%, 45.71%, 32.65%, and 0%, respectively. Conclusions : The survival probability of endodontically treated teeth restored with a quartz fiber post and composite restorations is associated with the dental arch.

  15. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.

    Science.gov (United States)

    Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich

    2014-04-01

    For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The aim of this study was to compare the fatigue resistance of modern dental ceramic materials versus dental resin composites in order to address such conflicts. Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 and stored for 14 days in distilled water at 37°C. The following ceramic materials were selected for testing: a high-strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e-max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (Trilux Forte, Vita). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, Voco; Tetric EvoCeram, Ivoclar-Vivadent; and CeramX Duo, Dentsply). Fifteen specimens were tested in water for initial strength (σin) in 4-point bending. Using the same test set-up, the residual flexural fatigue strength (σff) was determined using the staircase approach after 10(4) cycles at 0.5 Hz (n=25). Weibull parameters σ0 and m were calculated for the σin specimens, whereas the σff and strength loss in percentage were obtained from the fatigue experiment. The zirconium oxide ceramic showed the highest σin and σff (768 and 440 MPa, respectively). Although both lithium disilicate ceramics were similar in the static test, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material Clearfil Majesty Posterior showed superior fatigue performance

  16. Comparative in vitro assessment of color stability of hybrid esthetic restorative materials against various children′s beverages

    Directory of Open Access Journals (Sweden)

    Kavita Hotwani

    2014-01-01

    Full Text Available Purpose: The present study was aimed to evaluate and compare the color stability of two hybrid tooth-colored restorative materials, namely, resin-modified glass ionomer cement (GC Fuji II LC Capsules - GC Corporation, Tokyo, Japan and giomer (Beautifil II - Shofu Inc, Kyoto, Japan when subjected to immersion in various children′s beverages. Materials and Methods: Standardized disc specimens were prepared using the test restorative materials. After preparation and rehydration of the specimens, baseline color evaluations were performed using spectrophotometer. The readings were recorded according to CIELAB color space. The experimental groups were further subdivided for immersion in orange juice, bournvita milk, and coke. Subsequent to immersion and pH cycling, new color evaluations were carried out after 1 week and 4 weeks for all the experimental groups. The mean color change values were calculated. Results: The obtained data was subjected to statistical analysis. The results indicated that giomer specimens exhibited less color change as compared to RMGIC specimens indicating better color stability. The maximum color changes were found with the use of coke for a period of 4 weeks. Conclusion: Amongst the two materials, giomer showed less color changes as compared to RMGIC indicating a better color stability.

  17. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites.

    Science.gov (United States)

    Stawarczyk, Bogna; Liebermann, Anja; Eichberger, Marlis; Güth, Jan-Frederik

    2015-03-01

    To determine the mechanical and optical properties of CAD/CAM composites (LAVA Ultimate, Cerasmart, Shofu Block and two exp. CAD/CAM composites), a hybrid material (VITA Enamic), a leucite (IPS Empress CAD) and a lithium disilicate glass-ceramic (IPS e.max CAD). Three-point flexural strength (FS) was investigated according ISO 6872:2008 (N=240/n=30). Two-body wear (TBW) was analyzed in a chewing simulator (1,200,000 cycles, 50N, 5°/55°C) using human teeth as antagonists (N=120/n=15). Quantitative analysis of wear was carried out with a 3D-scanner and associated matching software. Discoloration rate (DR) after 14 days of storage in cress, curry, red wine, and distilled water (N=384/n=12), and translucency (T) (N=384/n=48) of CAD/CAM materials were measured in a spectrophotometer (400-700nm wavelength). Data were analyzed using two-/one-way ANOVA with Scheffé post-hoc test, Kruskal-Wallis-H test, and linear mixed models (α=0.05). IPS e.max CAD showed the highest FS (pCAD/CAM composites (exception: Shofu Block). The lowest FS showed VITA Enamic and IPS Empress CAD (pCAD, VITA Enamic, exp. CAD/CAM composite 2, followed by IPS e.max presented lower material TBW than the remaining CAD/CAM materials (pcurry>cress>distilled water) exerted the highest influence on DR (pCAD/CAM material. Glass-ceramics showed lower DR than CAD/CAM composites (pCAD/CAM composites presented moderate FS, high T and antagonist friendly behavior. Glass-ceramic demonstrated the most favorable DR and lowest TBW on the material side. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Hybrid composites - State-of-the-art review: Analysis, design, application and fabrication

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.

    1977-01-01

    The review covers hybrid composites that consist of two or more different types of fibers (or fiber composites) in a frequently repeated pattern in a laminate. The fibers considered are boron, graphite, glass, and Kevlar; the resins considered include mostly structural epoxies, with some utilization of polyimides and thermoplastics. The review shows that considerable data have been generated for the tensile strength properties, as well as tensile and thermal fatigue, of interply hybrids, and for the impact resistance of interply and intraply hybrids. The rule of mixtures appears to be adequate for predicting longitudinal and transverse mechanical properties of unidirectional interply hybrids, and linear laminate theory appears to be adequate for predicting the elastic response of hybrids.

  19. N-stearoylethanolamine restores pancreas lipid composition in obesity-induced insulin resistant rats.

    Science.gov (United States)

    Onopchenko, Oleksandra V; Kosiakova, Galina V; Oz, Murat; Klimashevsky, Vitaliy M; Gula, Nadiya M

    2015-01-01

    This study investigates the protective effect of N-stearoylethanolamine (NSE), a bioactive N-acylethanolamine , on the lipid profile distribution in the pancreas of obesity-induced insulin resistant (IR) rats fed with prolonged high fat diet (58% of fat for 6 months). The phospholipid composition was determined using 2D thin-layer chromatography. The level of individual phospholipids was estimated by measuring inorganic phosphorus content. The fatty acid (FA) composition and cholesterol level were investigated by gas-liquid chromatography. Compared to controls, plasma levels of triglycerides and insulin were significantly increased in IR rats. The pancreas lipid composition indicated a significant reduction of the free cholesterol level and some phospholipids such as phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer) compared to controls. Moreover, the FA composition of pancreas showed a significant redistribution of the main FA (18:1n-9, 18:2n-6, 18:3n-6 and 20:4n-6) levels between phospholipid, free FA, triglyceride fractions under IR conditions that was accompanied by a change in the estimated activities of Δ9-, Δ6-, Δ5-desaturase. Administration of N-stearoylethanolamine (NSE, 50 mg/kg daily per os for 2 weeks) IR rats triggered an increase in the content of free cholesterol, PtdCho and normalization of PtdEtn, PtdSer level. Furthermore, the NSE modulated the activity of desaturases, thus influenced FA composition and restored the FA ratios in the lipid fractions. These NSE-induced changes were associated with a normalization of plasma triglyceride content, considerable decrease of insulin and index HOMA-IR level in rats under IR conditions.

  20. A new methodology for fluorescence analysis of composite resins used in anterior direct restorations.

    Science.gov (United States)

    de Lima, Liliane Motta; Abreu, Jessica Dantas; Cohen-Carneiro, Flavia; Regalado, Diego Ferreira; Pontes, Danielson Guedes

    2015-01-01

    The aim of this study was to use a new methodology to evaluate the fluorescence of composite resins for direct restorations. Microhybrid (group 1, Amelogen; group 2, Opallis; group 3, Filtek Z250) and nanohybrid (group 4, Filtek Z350 XT; group 5, Brilliant NG; group 6, Evolu-X) composite resins were analyzed in this study. A prefabricated matrix was used to prepare 60 specimens of 7.0 × 3.0 mm (n = 10 per group); the composite resin discs were prepared in 2 increments (1.5 mm each) and photocured for 20 seconds. To establish a control group of natural teeth, 10 maxillary central incisor crowns were horizontally sectioned to create 10 discs of dentin and enamel tissues with the same dimensions as the composite resin specimens. The specimens were placed in a box with ultraviolet light, and photographs were taken. Aperture 3.0 software was used to quantify the central portion of the image of each specimen in shades of red (R), green (G), and blue (B) of the RGB color space. The brighter the B shade in the evaluated area of the image, the greater the fluorescence shown by the specimen. One-way analysis of variance revealed significant differences between the groups. The fluorescence achieved in group 1 was statistically similar to that of the control group and significantly different from those of the other groups (Bonferroni test). Groups 3 and 4 had the lowest fluorescence values, which were significantly different from those of the other groups. According to the results of this study, neither the size nor the amount of inorganic particles in the evaluated composite resin materials predicts if the material will exhibit good fluorescence.

  1. Water Uptake of a Silorane-Based Composite Used in Restorative Dentistry

    Science.gov (United States)

    Pieters, P.; Gaumet, S.; Bérard, A.; Dupuis, V.; Tassery, H.; Gillet, D.

    2014-07-01

    The mechanical properties of the resin-based composites used in restorative dentistry are known to be influenced by the presence of water. The aim of this study was to characterize in vitro the parameters of water uptake of a silorane-based composite (SBC). Polymerized discs of one SBC (Filtek Silorane®), two different resin-based composites (RBCs: Grandio®, G, and Tetric®, T), and a compomer (Hytac®, H), either immersed in distilled water or held in dried air, were compared. Specimens were weighed over one year, and variations in their weight, the kinetics of water uptake, and the diffusion coefficient D were determined. The equilibrium time was one week for the two RBCs, about two months for the SBC, and about six months for the compomer. The water uptake was in the range of 17-21mg/mm3 for the SBC and the compomer, but about 8 mg/mm3 for the RBCs. The values of D (10-12 m2 s-1) were 15.96 for the SBC, 23.26 for G, 45.87 for T, and 27.39 for H. The SBC showed a decrease in the diffusion coefficient, its equilibrium time was about two months, and its total water uptake was close to that of the compomer.

  2. The role of the ionomer glass component in polyacid-modified composite resin dental restorative materials.

    Science.gov (United States)

    Adusei, Gabriel O; Deb, Sanjukta; Nicholson, John W

    2004-07-01

    In order to model the processes that occur within polyacid-modified composite resin ("compomer") dental restoratives, a series of experiments has been carried out with silanated and silane-free ionomer glass G338, and silanated and silane-free unreactive glass (Raysorb T-4000). In an acid-base reaction with dental grade aqueous maleic acid-acrylic acid copolymer solution, the setting time of the silanted G338 was found to be 9 min, compared with 5 min for the silane-free glass. Inclusion of each glass in an experimental composite resin system showed that the formulations which contained G338 absorbed more water than the formulations which contained Raysorb T-4000, regardless of whether or not the glass was silanted. Biaxial flexure strength was superior for experimental composites containing Raysorb T-4000, with highest results being obtained with the silanated glass. Overall these results demonstrate that silanation of the filler is essential for optimal physical properties but that, for the ionomer glass, it inhibits the acid-base reaction. The presence of ionomer glass led to an increase in water uptake compared with the unreactive glass, regardless of the presence of silane.

  3. Development of caries adjacent to composite restorations after exposure to dentifrices with different fluoride concentrations

    Directory of Open Access Journals (Sweden)

    Dayse Andrade Romão

    Full Text Available Objective To evaluate the development of recurrent caries after exposure to fluoride dentifrices with different concentrations. Material and method: 48 samples of bovine incisors (4x4mm2 were exposed to pH cycling for 7 days before the preparation of the cavities (2mm deep. The samples were restored with a microhybrid resin composite. Then, the samples were exposed to thermal cycling (350 cycles and they were randomly allocated into 4 treatment groups (n = 12: Group A - non-fluoridated dentifrice (negative control; Group B - 500 ppm dentifrice; Group C - 750 ppm dentifrice; group D - 1100 ppm dentifrice (positive control. The samples were treated with solutions of each dentifrice (9.6 ml water/1.6 g dentifrice for 60 seconds and then were immersed in demineralizing (3 h and remineralizing (2 h solutions 3 times a day. Next, the samples were immersed in a remineralizing solution for 18 hours. Then, the blocks were sectioned for examination of the length of the outer caries lesion, using polarized light microscopy. The ANOVA parametric test complemented by the Tukey test with a confidence level of 95%, were used in the statistical analysis. Result: A smaller lesion length was observed in the group treated with the fluoride concentration of 1100 ppm F, but there were no differences between toothpastes with fluoride concentrations of 500 and 750 ppm F. Conclusion: The use of fluoride dentifrices (1100 ppm reduces the development of caries adjacent to dental restorations.

  4. Microleakage and Micrographic Evaluation of Composite Restorations With Various Bases Over ZOE Layer in Pulpotomized Primary Molars

    Directory of Open Access Journals (Sweden)

    M. Rezamand

    2011-12-01

    Full Text Available Objective: Zinc oxide eugenol (ZOE under composite restorations should be covered with a suitable material in order to prevent the harmful effect of ZOE on the composite. The aim of this in vitro study was to evaluate microleakage of composite restorations in pulpotomized primary molars with different bases for covering the ZOE layer and to assess the distance between different layers.Materials and Methods: Proximo-occlusal cavities were prepared in 78 extracted second primary molars. Carious lesions were removed and pulpotomy was carried out. Zinc oxide eugenol paste was placed in 2-mm thickness. The teeth were randomly divided in 6 groups and restored as follows: 1. Light-cured composite; 2. Resin-modified glass-ionomer and composite resin; 3. Glass-ionomer and composite resin; 4. Light-cured calcium hydroxide and composite resin; 5.Calcium hydroxide and composite resin; 6. Amalgam and composite resin. The restored specimens were thermocycled for 500 cycles (5°C/55°C and microleakage was assessed by dye penetration technique. Three specimens from each group were processed for scanning electron microscope evaluation to determine the distance between the layers. The results were analyzed by Kruskal-Wallis and Dunn tests.Results: Microleakage assessment revealed significant differences between the groups (P=0.04, with the amalgam group exhibiting the lowest microleakage values. In SEM micrographs no significant differences were observed in the distance between ZOE base layers (P=0.94 and base-composite layers (P=0.47; however, the amalgam group had the lowest distances.Conclusion: The use of amalgam over zinc oxide eugenol layer in pulpotomized primary molars decreases microleakage.

  5. Media composition influences yeast one- and two-hybrid results

    Directory of Open Access Journals (Sweden)

    Gonzalez Kim L

    2011-08-01

    Full Text Available Abstract Although yeast two-hybrid experiments are commonly used to identify protein interactions, the frequent occurrence of false negatives and false positives hampers data interpretation. Using both yeast one-hybrid and two-hybrid experiments, we have identified potential sources of these problems: the media preparation protocol and the source of the yeast nitrogen base may not only impact signal range but also effect whether a result appears positive or negative. While altering media preparation may optimize signal differences for individual experiments, media preparation must be reported in detail to replicate studies and accurately compare results from different experiments.

  6. The influence of finishing/polishing time and cooling system on surface roughness and microhardness of two different types of composite resin restorations

    OpenAIRE

    Kaminedi, Raja Rajeswari; Penumatsa, Narendra Varma; Priya, Tulasi; Baroudi, Kusai

    2014-01-01

    Objective: The aim of this study was to evaluate the effect of finishing time and polishing time on surface roughness and microhardness of nanofilled and hybrid resin composites. Materials and Methods: Hundred disk composite specimens from micro hybrid composite and nanohybrid composite were prepared, 50 for each type of composite. The specimens were divided into five groups according to the time of finishing and polishing (immediate, 15 min, 24 h and dry). Composite under the Mylar strip wit...

  7. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    Science.gov (United States)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  8. Effect of an Angle-Ply Orientation on Tensile Properties of Kevlar/glass Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Guru Raja M . N

    2013-10-01

    Full Text Available Hybrid composites are considered materials of great potential for engineering applications. One advantage of hybrid composite materials for the designer is that the properties of a composite can be controlled to a considerable extent by the choice of fibers and matrix and by adjusting the orientation of the fiber. The scope for this tailoring of the properties of the material is much greater, however, when different kinds of fiber orientations are incorporated in the same resin matrix. For the study of potential of these materials, in this work specimens were prepared with different angle ply orientation of kevlar/glass hybrid with epoxy resin as an adhesive. Three orientations viz 0/90, 45/45 and 30/60 were considered for studies. Mechanical properties such as tensile strength, tensile modulus, & peak load of the hybrid composites were determined as per ASTM standards. Vacuum bagging technique was adopted for the fabrication of hybrid specimens. It was observed that angle ply orientation at 0/90 showed significant increase in tensile properties as compared to other orientation. Finally, the failure analysis of hybrid composites is also discussed.

  9. Effect of surface roughness of cavity preparations on the microleakage of Class V resin composite restorations.

    Science.gov (United States)

    Shook, Larry W; Turner, Edgar W; Ross, Judith; Scarbecz, Mark

    2003-01-01

    This study determined whether surface roughness of the internal walls of a Class V resin composite preparation, using a carbide bur, a medium-grit diamond bur and a fine-grit diamond bur, affected the degree of microleakage of the restoration. The facial and lingual surfaces of 45 non-carious extracted human molars provided 90 samples for evaluation. The specimen surfaces were assigned randomly in equal numbers to one of three groups (n = 30). Conservative Class V composite preparations were made using one of three different burs: a 330-carbide bur, a 330 fine-grit diamond bur or a 330 medium-grit diamond bur (Brasseler USA). After acid etching, PQ1 (Ultradent Products Inc) primer/bonding resin and Vitalescence (Ultradent Products Inc) were applied and cured following the manufacturers' instructions. After minor finishing, the apices of all root surfaces were sealed with Vitrebond (3M), and the unprepared external surfaces were sealed with nail polish to within 1 mm of the restoration margins. The specimens were stored in distilled water at room temperature for 24 hours, then subjected to 1,200 thermocycles at 5 degrees C and 55 degrees C with a 30-second dwell time. After cycling, the teeth were immersed in a 5% solution of methylene blue dye for 12 hours. The molars were invested in clear acrylic casting resin, labeled, then sectioned once vertically approximately midway through the facial and lingual surfaces using a diamond coated saw blade. Microleakage was evaluated using a 10x microscope for the enamel and cementum surfaces and blindly scored by two independent examiners. In all cases, regardless of the examiner, at both the enamel and the dentin margins, the analysis revealed no statistically significant differences in microleakage across bur types. Further results show that dentin margins leaked significantly more than enamel margins for all bur types.

  10. Evaluation of Gingival Microleakage in Class II Composite Restorations with Different Lining Techniques: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Vedavathi Bore Gowda

    2015-01-01

    Full Text Available Aim. To compare the microleakage in class II composite restorations without a liner/with resin modified glass ionomer and flowable composite liner. Method. Forty standardized MO cavities were prepared on human permanent mandibular molars extracted for periodontal reasons and then divided into 4 groups of ten specimens. The cavity preparations were etched, rinsed, blot dried, and light cured and Adper Single Bond 2 is applied. Group 1 is restored with Filtek P60 packable composite in 2 mm oblique increments. Group 2 is precure group where 1 mm Filtek Z350 flowable liner is applied and light cured for 20 sec. Group 3 is the same as Group 2, but the liner was cocured with packable composite. In Group 4, 1 mm RMGIC, Fuji Lining LC is applied and cured for 20 sec. All the teeth were restored as in Group 1. The specimens were coated with nail varnish leaving 1 mm around the restoration, subjected to thermocycling, basic fuchsin dye penetration, sectioned mesiodistally, and observed under a stereomicroscope. Results. The mean leakage scores of the individual study groups were Group 1 (33.40, Group 2 (7.85, Group 3 (16.40, and Group 4 (24.35. Group 1 without a liner showed maximum leakage. Flowable composite liner precured was the best.

  11. Have wet meadow restoration projects in the Southwestern U.S. been effective in restoring geomorphology, hydrology, soils, and plant species composition?

    Directory of Open Access Journals (Sweden)

    Ramstead Karissa M

    2012-09-01

    Full Text Available Abstract Background Wet meadows occur in numerous locations throughout the American Southwest, but in many cases have become heavily degraded. Among other things they have frequently been overgrazed and have had roads built through them, which have affected the hydrology of these wetland ecosystems. Because of the important hydrologic and ecological functions they are believed to perform, there is currently significant interest in wet meadow restoration. Several restoration projects have been completed recently or are underway in the region, sometimes at considerable expense and with minimal monitoring. The objective of this review was to evaluate the effects of wet meadow restoration projects in the southwestern United States on geomorphology, hydrology, soils and plant species composition. A secondary objective was to determine the effects of wet meadow restoration projects on wildlife. Methods Electronic databases, internet search engines, websites and personal contacts were used to find articles of relevance to this review. Articles were filtered by title, abstract and full text. Summary information for each of the articles remaining after the filtering process was compiled and used to assess the quality of the evidence presented using two different approaches. Results Our searches yielded 48 articles, of which 25 were published in peer-reviewed journals, 14 were monitoring or project reports, and 9 were published in conference proceedings or are unpublished theses or manuscripts. A total of 26 operational-scale restoration projects were identified. A wide range of restoration techniques were employed, ranging from small-scale manipulations of stream channels (e.g., riffle structures to large scale pond-and-plug projects. Other common restoration techniques included fencing to exclude livestock (and sometimes also native ungulates, other forms of grazing management, seeding, and transplanting seedlings. Most of the articles reported that

  12. Two years survival rate of class II composite resin restorations prepared by ART with and without a chemomechanical caries removal gel in primary molars.

    NARCIS (Netherlands)

    Topaloglu-Ak, A.; Eden, E.; Frencken, J.E.F.M.; Oncag, O.

    2009-01-01

    The aim was to test the null hypotheses that there is no difference: (1) in carious lesion development at the restoration margin between class II composite resin restorations in primary molars produced through the atraumatic restorative treatment (ART) with and without a chemomechanical caries

  13. Two years survival rate of class II composite resin restorations prepared by ART with and without a chemomechanical caries removal gel in primary molars.

    NARCIS (Netherlands)

    Topaloglu-Ak, A.; Eden, E.; Frencken, J.E.F.M.; Oncag, O.

    2009-01-01

    The aim was to test the null hypotheses that there is no difference: (1) in carious lesion development at the restoration margin between class II composite resin restorations in primary molars produced through the atraumatic restorative treatment (ART) with and without a chemomechanical caries remov

  14. Influence of microleakage, surface roughness and biofilm control on secondary caries formation around composite resin restorations: an in situ evaluation

    Directory of Open Access Journals (Sweden)

    Fábio Garcia Lima

    2009-02-01

    Full Text Available This study was carried out to evaluate in situ the influence of microleakage, surface roughness and biofilm control on caries formation around composite resin restorations. During 28 days, 12 volunteers wore palatal devices containing bovine enamel slabs restored with composite resin. Restorations were made without leakage, when the adhesive system was applied, or with leakage, when adhesive system was omitted. Half of the restorations in each group were finished and the remaining were finished and polished. In one side of the palatal device, biofilm was left to accumulate over the restored slabs, and in the other side dental slabs were brushed, to allow biofilm removal. There was an extraoral application of 20% sucrose solution (8x/day over the enamel slabs. The formation of caries lesions (white spots was evaluated by visual inspection under stereomicroscopy. Additionally, the dental slabs were sectioned and observed under polarized light microscopy. Data were submitted to Kruskal-Wallis test and Spearman's correlation test at 5% significance level. Polishing and bonding were not significant factors regarding white spot formation (p>0.05. Biofilm control (brushing was associated with reduction of caries formation close to the restorations (p<0.01. Polarized light microscopy confirmed the visual inspection findings. These results suggest that while microleakage and surface roughness did not influence caries lesion formation, biofilm control may prevent the enamel demineralization.

  15. Influence of microleakage, surface roughness and biofilm control on secondary caries formation around composite resin restorations: an in situ evaluation.

    Science.gov (United States)

    Lima, Fábio Garcia; Romano, Ana Regina; Correa, Marcos Britto; Demarco, Flávio Fernando

    2009-01-01

    This study was carried out to evaluate in situ the influence of microleakage, surface roughness and biofilm control on caries formation around composite resin restorations. During 28 days, 12 volunteers wore palatal devices containing bovine enamel slabs restored with composite resin. Restorations were made without leakage, when the adhesive system was applied, or with leakage, when adhesive system was omitted. Half of the restorations in each group were finished and the remaining were finished and polished. In one side of the palatal device, biofilm was left to accumulate over the restored slabs, and in the other side dental slabs were brushed, to allow biofilm removal. There was an extraoral application of 20% sucrose solution (8x/day) over the enamel slabs. The formation of caries lesions (white spots) was evaluated by visual inspection under stereomicroscopy. Additionally, the dental slabs were sectioned and observed under polarized light microscopy. Data were submitted to Kruskal-Wallis test and Spearman's correlation test at 5% significance level. Polishing and bonding were not significant factors regarding white spot formation (p>0.05). Biofilm control (brushing) was associated with reduction of caries formation close to the restorations (p<0.01). Polarized light microscopy confirmed the visual inspection findings. These results suggest that while microleakage and surface roughness did not influence caries lesion formation, biofilm control may prevent the enamel demineralization.

  16. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations

    Directory of Open Access Journals (Sweden)

    Parnian Alizadeh Oskoee

    2017-03-01

    Full Text Available Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90] and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C. Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P < 0.05. Results. The maximum and minimum gaps were detected in groups 1-A and 2-B, respectively. The effects of composite resin type, preheating and interactive effect of these variables on gap formation were significant (P<0.001. Post-hoc Tukey tests showed greater gap in dimethacrylate compared to silorane composite resins (P< 0.001. In each group, gap values were greater in composite resins at room temperature compared to composite resins after 40 preheating cycles (P<0.001. Conclusion. Gap formation at the gingival margins of Class V cavities decreased due to preheating of both composite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation.

  17. Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids.

    Science.gov (United States)

    Iovene, Marina; Savarese, Salvatore; Cardi, Teodoro; Frusciante, Luigi; Scotti, Nunzia; Simon, Philipp W; Carputo, Domenico

    2007-05-01

    Somatic hybrids between the wild incongruent species Solanum bulbocastanum (2n = 2x = 24) and S. tuberosum haploids (2n = 2x = 24) have been characterized for their nuclear and cytoplasmic genome composition. Cytologic observations revealed the recovery of 8 (near-)tetraploid and 3 hexaploid somatic hybrids. Multicolor genomic in situ hybridization (GISH) analysis was carried out to study the genomic dosage of the parental species in 5 somatic hybrids with different ploidy. The GISH procedure used was effective in discriminating parental genomes in the hybrids; most chromosomes were unambiguously colored. Two (near-)tetraploid somatic hybrids showed the expected 2:2 cultivated-to-wild genomic dosage; 2 hexaploids revealed a 4:2 cultivated-to-wild genomic dosage, and 1 hexaploid had a 2:4 cultivated-to-wild genomic dosage. Characterization of hybrid cytoplasmic genomes was performed using gene-specific primers that detected polymorphisms between the fusion parents in the intergenic regions. The analysis showed that most of the somatic hybrids inherited the plastidial and mitochondrial DNA of the cultivated parent. A few hybrids, with a rearranged mitochondrial genome (showing fragments derived from both parents), were also identified. These results confirmed the potential of somatic hybridization in producing new variability for genetic studies and breeding.

  18. Tensile and Compressive Properties of Woven Kenaf/Glass Sandwich Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman J. Sharba

    2016-01-01

    Full Text Available Monotonic (tensile and compression properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.

  19. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    Science.gov (United States)

    Parali, Levent; Şabikoğlu, İsrafil; Kurbanov, Mirza A.

    2014-11-01

    A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO3, SiO2 to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO3 or SiO2), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT-PVDF) and the hybrid structure (PZT-PVDF-BaTiO3) composite are compared. The d33 value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d33 value and the coupling factor of the hybrid structure (PZT-HDPE-SiO2) have exhibited about 68 and 52% increase according to microstructure composite (PZT-HDPE), respectively.

  20. A new system for posterior restorations: a combination of ceramic optimized polymer and fiber-reinforced composite.

    Science.gov (United States)

    Rosenthal, L; Trinkner, T; Pescatore, C

    1997-01-01

    Due to the need for increased strength characteristics and enhanced aesthetic expectations of the patients, metal-free, aesthetic restorative systems for the anterior and posterior dentition are currently available. A new "space-age" restorative material has been developed that is a combination of a ceramic optimized polymer (Ceromer) (Targis/Vectris, Ivoclar Williams, Amherst, NY) and a fiber-reinforced composite framework material. The purpose of this article is to discuss the qualities that render this material particularly suitable for a variety of indications, including laboratory-fabricated restorations for the stress-bearing posterior regions. The material lends itself to diversification. Its indication for inlays, onlays, full-coverage crown restorations, and conservative single pontic inlay bridges is presented.

  1. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2015-01-01

    The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with and without secondary CNT reinforcement is simulated using multiscale 3D unit cells. The materials behavior under both mechanical cyclic loading and combined mechanical and environmental loading (with phase properties degraded due to the moisture effects) is studied. The multiscale unit cells are generated...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....

  2. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    Science.gov (United States)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  3. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    Science.gov (United States)

    Laberge, Kelsen E.; Handschuh, Robert F.; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program, allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite) configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here s