WorldWideScience

Sample records for hybrid codes developed

  1. The hybrid opacity code SCO-RCG: recent developments

    CERN Document Server

    Pain, Jean-Christophe; Porcherot, Quentin; Blenski, Thomas

    2013-01-01

    Absorption and emission spectra of multicharged-ion plasmas contain a huge number of electron configurations and electric-dipolar lines, which can be handled by global methods. However, some transition arrays consist only of a small bunch of lines. For that reason, we developed the hybrid opacity code SCO-RCG combining the (statistical) super-transition-array method and the (detailed) fine-structure calculation (requiring the diagonalization of the Hamiltonian matrix) of atomic structure. In order to decide whether a detailed treatment of lines is necessary and to determine the validity of statistical methods, the code involves criteria taking into account coalescence of lines and porosity (localized absence of lines) in transition arrays. Data required for the calculation of detailed transition arrays (Slater, spin-orbit and dipolar integrals) are provided by the super-configuration code SCO, which takes into account plasma screening effects on wavefunctions. Then, level energies and lines are calculated by ...

  2. Hybrid Noncoherent Network Coding

    CERN Document Server

    Skachek, Vitaly; Nedic, Angelia

    2011-01-01

    We describe a novel extension of subspace codes for noncoherent networks, suitable for use when the network is viewed as a communication system that introduces both dimension and symbol errors. We show that when symbol erasures occur in a significantly large number of different basis vectors transmitted through the network and when the min-cut of the networks is much smaller then the length of the transmitted codewords, the new family of codes outperforms their subspace code counterparts. For the proposed coding scheme, termed hybrid network coding, we derive two upper bounds on the size of the codes. These bounds represent a variation of the Singleton and of the sphere-packing bound. We show that a simple concatenated scheme that represents a combination of subspace codes and Reed-Solomon codes is asymptotically optimal with respect to the Singleton bound. Finally, we describe two efficient decoding algorithms for concatenated subspace codes that in certain cases have smaller complexity than subspace decoder...

  3. Longitudinal development of extensive air showers: Hybrid code SENECA and full Monte Carlo

    Science.gov (United States)

    Ortiz, Jeferson A.; Medina-Tanco, Gustavo; de Souza, Vitor

    2005-06-01

    New experiments, exploring the ultra-high energy tail of the cosmic ray spectrum with unprecedented detail, are exerting a severe pressure on extensive air shower modelling. Detailed fast codes are in need in order to extract and understand the richness of information now available. Some hybrid simulation codes have been proposed recently to this effect (e.g., the combination of the traditional Monte Carlo scheme and system of cascade equations or pre-simulated air showers). In this context, we explore the potential of SENECA, an efficient hybrid tri-dimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultra-high energy cosmic rays. We extensively compare hybrid method with the traditional, but time consuming, full Monte Carlo code CORSIKA which is the de facto standard in the field. The hybrid scheme of the SENECA code is based on the simulation of each particle with the traditional Monte Carlo method at two steps of the shower development: the first step predicts the large fluctuations in the very first particle interactions at high energies while the second step provides a well detailed lateral distribution simulation of the final stages of the air shower. Both Monte Carlo simulation steps are connected by a cascade equation system which reproduces correctly the hadronic and electromagnetic longitudinal profile. We study the influence of this approach on the main longitudinal characteristics of proton, iron nucleus and gamma induced air showers and compare the predictions of the well known CORSIKA code using the QGSJET hadronic interaction model.

  4. Longitudinal development of extensive air showers: hybrid code SENECA and full Monte Carlo

    CERN Document Server

    Ortiz, J A; De Souza, V; Ortiz, Jeferson A.; Tanco, Gustavo Medina

    2004-01-01

    New experiments, exploring the ultra-high energy tail of the cosmic ray spectrum with unprecedented detail, are exerting a severe pressure on extensive air hower modeling. Detailed fast codes are in need in order to extract and understand the richness of information now available. Some hybrid simulation codes have been proposed recently to this effect (e.g., the combination of the traditional Monte Carlo scheme and system of cascade equations or pre-simulated air showers). In this context, we explore the potential of SENECA, an efficient hybrid tridimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultra-high energy cosmic rays. We extensively compare hybrid method with the traditional, but time consuming, full Monte Carlo code CORSIKA which is the de facto standard in the field. The hybrid scheme of the SENECA code is based on the simulation of each particle with the traditional Monte Carlo method at two steps of the shower devel...

  5. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.

    2014-05-20

    Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism

  6. Hybrid codes: Methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Winske, D. (Los Alamos National Lab., NM (USA)); Omidi, N. (California Univ., San Diego, La Jolla, CA (USA))

    1991-01-01

    In this chapter we discuss hybrid'' algorithms used in the study of low frequency electromagnetic phenomena, where one or more ion species are treated kinetically via standard PIC methods used in particle codes and the electrons are treated as a single charge neutralizing massless fluid. Other types of hybrid models are possible, as discussed in Winske and Quest, but hybrid codes with particle ions and massless fluid electrons have become the most common for simulating space plasma physics phenomena in the last decade, as we discuss in this paper.

  7. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.

    2014-05-20

    Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism

  8. The Hybrid Detailed / Statistical Opacity Code SCO-RCG: New Developments and Applications

    CERN Document Server

    Pain, Jean-Christophe; Porcherot, Quentin; Blenski, Thomas

    2013-01-01

    We present the hybrid opacity code SCO-RCG which combines statistical approaches with fine-structure calculations. Radial integrals needed for the computation of detailed transition arrays are calculated by the code SCO (Super-configuration Code for Opacity), which calculates atomic structure at finite temperature and density, taking into account plasma effects on the wave-functions. Levels and spectral lines are then computed by an adapted RCG routine of R. D. Cowan. SCO-RCG now includes the Partially Resolved Transition Array model, which allows one to replace a complex transition array by a small-scale detailed calculation preserving energy and variance of the genuine transition array and yielding improved high-order moments. An approximate method for studying the impact of strong magnetic field on opacity and emissivity was also recently implemented.

  9. Turbo Codes with Hybrid Interleaving Mode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the investigation of turbo codes, either random interleavers or structured interleavers are used. Combined two kinds of interleavers in one turbo encoder, a hybrid interleaving mode is proposed in this paper. Computer simulations show that the performance of turbo codes with the hybrid interleaving mode is better than that with the typical interleaving mode.

  10. Analysis of Non-binary Hybrid LDPC Codes

    CERN Document Server

    Sassatelli, Lucile

    2008-01-01

    In this paper, we analyse asymptotically a new class of LDPC codes called Non-binary Hybrid LDPC codes, which has been recently introduced. We use density evolution techniques to derive a stability condition for hybrid LDPC codes, and prove their threshold behavior. We study this stability condition to conclude on asymptotic advantages of hybrid LDPC codes compared to their non-hybrid counterparts.

  11. Computer code for intraply hybrid composite design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A computer program has been developed and is described herein for intraply hybrid composite design (INHYD). The program includes several composite micromechanics theories, intraply hybrid composite theories and a hygrothermomechanical theory. These theories provide INHYD with considerable flexibility and capability which the user can exercise through several available options. Key features and capabilities of INHYD are illustrated through selected samples.

  12. Multiview coding mode decision with hybrid optimal stopping model.

    Science.gov (United States)

    Zhao, Tiesong; Kwong, Sam; Wang, Hanli; Wang, Zhou; Pan, Zhaoqing; Kuo, C-C Jay

    2013-04-01

    In a generic decision process, optimal stopping theory aims to achieve a good tradeoff between decision performance and time consumed, with the advantages of theoretical decision-making and predictable decision performance. In this paper, optimal stopping theory is employed to develop an effective hybrid model for the mode decision problem, which aims to theoretically achieve a good tradeoff between the two interrelated measurements in mode decision, as computational complexity reduction and rate-distortion degradation. The proposed hybrid model is implemented and examined with a multiview encoder. To support the model and further promote coding performance, the multiview coding mode characteristics, including predicted mode probability and estimated coding time, are jointly investigated with inter-view correlations. Exhaustive experimental results with a wide range of video resolutions reveal the efficiency and robustness of our method, with high decision accuracy, negligible computational overhead, and almost intact rate-distortion performance compared to the original encoder.

  13. A New Efficient Hybrid Coding For Progressive Transmission Of Images

    Science.gov (United States)

    Akansu, Ali N.; Haddad, Richard A.

    1988-10-01

    The hybrid coding technique developed here involves a function of two concepts: progressive interactive image transmission coupled with transform differential coding. There are two notable features in this approach. First, a local average of an mxm (typically 5 x 5) pixel array is formed, quantized and transmitted to the receiver for a preliminary display. This initial pass provides a crude but recognizable image before any further processing or encoding. Upon request from the receiver, the technique then switches to an iterative transform differential encoding scheme. Each iteration progressively provides more image detail at the receiver as requested. Secondly, this hybrid coding technique uses a computationally efficient, real, orthogonal transform, called the Modified Hermite Transform(MHT) [1], to encode the difference image. This MHT is then compared with the Discrete Cosine Transform(DCT) [2] for the same hybrid algorithm. For the standard images tested, we found that the progressive differential coding method per-forms comparably to the well-known direct transform coding methods. The DCT was used as the standard in this traditional approach. This hybrid technique was within 5% of SNR peak-to-peak for the "LENA" image. Comparisons between MHT and DCT as the transform vehicle for the hybrid technique were also conducted. For a transform block size N=8, the DCT requires 50% more multiplications than the MHT. The price paid for this efficiency is modest. For the example tested ("LENA"), the DCT performance gain was 4.2 dB while the MHT was 3.8 dB.

  14. Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization

    CERN Document Server

    Sassatelli, Lucile

    2007-01-01

    In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-binary parts in their factor graph representation. The class of Hybrid LDPC codes is obviously larger than existing types of codes, which gives more degrees of freedom to find good codes where the existing codes show their limits. We give two examples where hybrid LDPC codes show their interest.

  15. Epetra developers coding guidelines.

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, Michael Allen; Sexton, Paul Michael

    2003-12-01

    Epetra is a package of classes for the construction and use of serial and distributed parallel linear algebra objects. It is one of the base packages in Trilinos. This document describes guidelines for Epetra coding style. The issues discussed here go beyond correct C++ syntax to address issues that make code more readable and self-consistent. The guidelines presented here are intended to aid current and future development of Epetra specifically. They reflect design decisions that were made in the early development stages of Epetra. Some of the guidelines are contrary to more commonly used conventions, but we choose to continue these practices for the purposes of self-consistency. These guidelines are intended to be complimentary to policies established in the Trilinos Developers Guide.

  16. Hybrid coded aperture and Compton imaging using an active mask

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, L.J. [Los Alamos National Laboratory, Los Alamos, NM (United States)], E-mail: schultz@lanl.gov; Wallace, M.S.; Galassi, M.C.; Hoover, A.S.; Mocko, M.; Palmer, D.M.; Tornga, S.R.; Kippen, R.M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Hynes, M.V.; Toolin, M.J.; Harris, B.; McElroy, J.E. [Raytheon Integrated Defense Systems, Tewksbury, MA (United States); Wakeford, D. [Bubble Technology Industries, Chalk River, Ontario (Canada); Lanza, R.C.; Horn, B.K.P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Wehe, D.K. [University of Michigan, Ann Arbor, MI (United States)

    2009-09-11

    The trimodal imager (TMI) images gamma-ray sources from a mobile platform using both coded aperture (CA) and Compton imaging (CI) modalities. In this paper we will discuss development and performance of image reconstruction algorithms for the TMI. In order to develop algorithms in parallel with detector hardware we are using a GEANT4 [J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, et al., IEEE Trans. Nucl. Sci. NS-53 (1) (2006) 270] based simulation package to produce realistic data sets for code development. The simulation code incorporates detailed detector modeling, contributions from natural background radiation, and validation of simulation results against measured data. Maximum likelihood algorithms for both imaging methods are discussed, as well as a hybrid imaging algorithm wherein CA and CI information is fused to generate a higher fidelity reconstruction.

  17. Spectral Shape of Check-Hybrid GLDPC Codes

    CERN Document Server

    Paolini, Enrico; Chiani, Marco; Fossorier, Marc P C

    2010-01-01

    This paper analyzes the asymptotic exponent of both the weight spectrum and the stopping set size spectrum for a class of generalized low-density parity-check (GLDPC) codes. Specifically, all variable nodes (VNs) are assumed to have the same degree (regular VN set), while the check node (CN) set is assumed to be composed of a mixture of different linear block codes (hybrid CN set). A simple expression for the exponent (which is also referred to as the growth rate or the spectral shape) is developed. This expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. Furthermore, it is shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function.

  18. Hybrid Coding of Image Sequences by Using Wavelet Transform

    Directory of Open Access Journals (Sweden)

    M. Surin

    2000-04-01

    Full Text Available In this paper, a new method of hybrid coding of image sequences byusing wavelet transform is proposed. The basic MPEG scheme with DCT hasbeen modificated in sense of replacement DCT by wavelet transform. Inthe proposed method, the motion estimation and compensation are usedfor motion vectors calculation and different frame between currentframe and compensated frame is coded by using wavelet transform. Someexperimental results of image sequences coding by using a new methodare presented.

  19. Portable code development in C

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  20. LiveCode mobile development

    CERN Document Server

    Lavieri, Edward D

    2013-01-01

    A practical guide written in a tutorial-style, ""LiveCode Mobile Development Hotshot"" walks you step-by-step through 10 individual projects. Every project is divided into sub tasks to make learning more organized and easy to follow along with explanations, diagrams, screenshots, and downloadable material.This book is great for anyone who wants to develop mobile applications using LiveCode. You should be familiar with LiveCode and have access to a smartphone. You are not expected to know how to create graphics or audio clips.

  1. A particle-based hybrid code for planet formation

    CERN Document Server

    Morishima, Ryuji

    2015-01-01

    We introduce a new particle-based hybrid code for planetary accretion. The code uses an $N$-body routine for interactions with planetary embryos while it can handle a large number of planetesimals using a super-particle approximation, in which a large number of small planetesimals are represented by a small number of tracers. Tracer-tracer interactions are handled by a statistical routine which uses the phase-averaged stirring and collision rates. We compare hybrid simulations with analytic predictions and pure $N$-body simulations for various problems in detail and find good agreements for all cases. The computational load on the portion of the statistical routine is comparable to or less than that for the $N$-body routine. The present code includes an option of hit-and-run bouncing but not fragmentation, which remains for future work.

  2. Adaptive hybrid subband image coding with DWT, DCT, and modified DPCM

    Science.gov (United States)

    Kim, Tae W.; Choe, Howard C.; Griswold, Norman C.

    1997-04-01

    Image coding based on subband decomposition with DPCM and PCM has received much attention in the areas of image compression research and industry. In this paper we present a new adaptive image subband coding with discrete wavelet transform, discrete cosine transform, and a modified DPCM. The main contribution of this work is the development of a simple, yet effective image compression and transmission algorithm. An important feature of this algorithm is the hybrid modified DPCM coding scheme which produces both simple, but significant, image compression and transmission coding.

  3. Overview of CODE V development

    Science.gov (United States)

    Harris, Thomas I.

    1991-01-01

    This paper is part of a session that is aimed at briefly describing some of today''s optical design software packages with emphasis on the program''s philosophy and technology. CODE V is the ongoing result of a development process that began in the 1960''s it is now the result of many people''s efforts. This paper summarizes the roots of the program some of its history dominant philosophies and technologies that have contributed to its usefulness and some that drive its continued development. ROOTS OF CODE V Conceived in the early 60''s This was at a time when there was skepticism that " automatic design" could design lenses equal or better than " hand" methods. The concepts underlying CODE V and its predecessors were based on ten years of experience and exposure to the problems of a group of lens designers in a design-for-manufacture environment. The basic challenge was to show that lens design could be done better easier and faster by high quality computer-assisted design tools. The earliest development was for our own use as an engineering services organization -an in-house tool for custom design. As a tool it had to make us efficient in providing lens design and engineering services as a self-sustaining business. PHILOSOPHY OF OVTIM!ZATION IN CODE V Error function formation Based on experience as a designer we felt very strongly that there should be a clear separation of

  4. Multiuser Cooperation with Hybrid Network Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    G. Wang

    2014-04-01

    Full Text Available In this paper a hybrid Network Coding Cooperation (hybrid-NCC system is proposed to achieve both reliable transmission and high throughput in wireless networks. To balance the transmission reliability with throughput, the users are divided into cooperative sub-networks based on the geographical information, and the cooperation is implemented in each sub-network. After receiving signals from the cooperative partners, each user encodes them by exploiting hybrid network coding and then forwards the recoded symbols via the Link-Adaptive Regenerative (LAR relaying. First, the Diversity-Multiplexing Tradeoff (DMT is analyzed to demonstrate that the proposed system is bandwidth-efficient. Second, the Symbol Error Probability (SEP is also derived, which shows that the proposed system achieves a higher reliability as compared to the traditional Complex Field Network Coding Cooperation (CFNCC. Moreover, because dedicated relays are not required, our proposed system can both reduce the costs and enhance the flexibility of the implementation. Finally, the analytical results are supported and validated by numerical simulations.

  5. Analysis of extensive air showers with the hybrid code SENECA

    CERN Document Server

    Ortiz, J A; Medina-Tanco, G; Ortiz, Jeferson A.; Souza, Vitor de; Medina-Tanco, Gustavo

    2005-01-01

    The ultrahigh energy tail of the cosmic ray spectrum has been explored with unprecedented detail. For this reason, new experiments are exerting a severe pressure on extensive air shower modeling. Detailed fast codes are in need in order to extract and understand the richness of information now available. In this sense we explore the potential of SENECA, an efficient hybrid tridimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultrahigh energy cosmic rays. We discuss the influence of this approach on the main longitudinal characteristics of proton, iron nucleus and gamma induced air showers for different hadronic interaction models. We also show the comparisons of our predictions with those of CORSIKA code.

  6. Analysis of extensive air showers with the hybrid code SENECA

    Science.gov (United States)

    Ortiz, Jeferson A.; de Souza, Vitor; Medina-Tanco, Gustavo

    The ultrahigh energy tail of the cosmic ray spectrum has been explored with unprecedented detail. For this reason, new experiments are exerting a severe pressure on extensive air shower modeling. Detailed fast codes are in need in order to extract and understand the richness of information now available. In this sense we explore the potential of SENECA, an efficient hybrid tridimensional simulation code, as a valid practical alternative to full Monte Carlo simulations of extensive air showers generated by ultrahigh energy cosmic rays. We discuss the influence of this approach on the main longitudinal characteristics of proton, iron nucleus and gamma induced air showers for different hadronic interaction models. We also show the comparisons of our predictions with those of CORSIKA code.

  7. Analysis of SMA Hybrid Composite Structures using Commercial Codes

    Science.gov (United States)

    Turner, Travis L.; Patel, Hemant D.

    2004-01-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  8. Transport Test Problems for Hybrid Methods Development

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

    2011-12-28

    This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.

  9. Path Weight Complementary Convolutional Code for Type-II Bit-Interleaved Coded Modulation Hybrid ARQ System

    Institute of Scientific and Technical Information of China (English)

    CHENG Yuxin; ZHANG Lei; YI Na; XIANG Haige

    2007-01-01

    Bit-interleaved coded modulation (BICM) is suitable to bandwidth-efficient communication systems. Hybrid automatic repeat request (HARQ) can provide more reliability to high-speed wireless data transmission. A new path weight complementary convolutional (PWCC) code used in the type-ll BICM-HARQ system is proposed. The PWCC code is composed of the original code and the complimentary code. The path in trellis with large hamming weight of the complimentary code is designed to compensate for the path in trellis with small hamming weight of the original code. Hence, both of the original code and the complimentary code can achieve the performance of the good code criterion of corresponding code rate. The throughput efficiency of the BICM-HARQ system wit PWCC code is higher than repeat code system, a little higher than puncture code system in low signal-to-noise ratio (SNR) values and much higher than puncture code system, the same as repeat code system in high SNR values. These results are confirmed by the simulation.

  10. Code Development for Collective Effects

    CERN Document Server

    Bruce Li, Kevin Shing; Hegglin, Stefan Eduard; Iadarola, Giovanni; Oeftiger, Adrian; Passarelli, Andrea; Romano, Annalisa; Rumolo, Giovanni; Schenk, Michael; CERN. Geneva. ATS Department

    2016-01-01

    The presentation will cover approaches and strategies of modeling and implementing collective effects in modern simulation codes. We will review some of the general approaches to numerically model collective beam dynamics in circular accelerators. We will then look into modern ways of implementing collective effects with a focus on plainness, modularity and flexibility, using the example of the PyHEADTAIL framework, and highlight some of the advantages and drawbacks emerging from this method. To ameliorate one of the main drawbacks, namely a potential loss of performance compared to the classical fully compiled codes, several options for speed improvements will be mentioned and discussed. Finally some examples and applications will be shown together with future plans and perspectives.

  11. C++ application development with Code::Blocks

    CERN Document Server

    Modak, Biplab Kumar

    2013-01-01

    This is a comprehensive tutorial with step-by-step instructions on how to develop applications with Code::Blocks.This book is for C++ developers who wish to use Code::Blocks to create applications with a consistent look and feel across multiple platforms. This book assumes that you are familiar with the basics of the C++ programming language.

  12. Codes & standards research, development & demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-22

    This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for SDOs to develop performance-based codes and standards for a commercial hydrogen fueled transportation sector in the U.S.

  13. HyCFS, a high-resolution shock capturing code for numerical simulation on hybrid computational clusters

    Science.gov (United States)

    Shershnev, Anton A.; Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Khotyanovsky, Dmitry V.

    2016-10-01

    The present paper describes HyCFS code, developed for numerical simulation of compressible high-speed flows on hybrid CPU/GPU (Central Processing Unit / Graphical Processing Unit) computational clusters on the basis of full unsteady Navier-Stokes equations, using modern shock capturing high-order TVD (Total Variation Diminishing) and WENO (Weighted Essentially Non-Oscillatory) schemes on general curvilinear structured grids. We discuss the specific features of hybrid architecture and details of program implementation and present the results of code verification.

  14. NASA Space Radiation Transport Code Development Consortium.

    Science.gov (United States)

    Townsend, Lawrence W

    2005-01-01

    Recently, NASA established a consortium involving the University of Tennessee (lead institution), the University of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking.

  15. Hybrid coding for split gray values in radiological image compression

    Science.gov (United States)

    Lo, Shih-Chung B.; Krasner, Brian; Mun, Seong K.; Horii, Steven C.

    1992-05-01

    Digital techniques are used more often than ever in a variety of fields. Medical information management is one of the largest digital technology applications. It is desirable to have both a large data storage resource and extremely fast data transmission channels for communication. On the other hand, it is also essential to compress these data into an efficient form for storage and transmission. A variety of data compression techniques have been developed to tackle a diversity of situations. A digital value decomposition method using a splitting and remapping method has recently been proposed for image data compression. This method attempts to employ an error-free compression for one part of the digital value containing highly significant value and uses another method for the second part of the digital value. We have reported that the effect of this method is substantial for the vector quantization and other spatial encoding techniques. In conjunction with DCT type coding, however, the splitting method only showed a limited improvement when compared to the nonsplitting method. With the latter approach, we used a nonoptimized method for the images possessing only the top three-most-significant- bit value (3MSBV) and produced a compression ratio of approximately 10:1. Since the 3MSB images are highly correlated and the same values tend to aggregate together, the use of area or contour coding was investigated. In our experiment, we obtained an average error-free compression ratio of 30:1 and 12:1 for 3MSB and 4MSB images, respectively, with the alternate value contour coding. With this technique, we clearly verified that the splitting method is superior to the nonsplitting method for finely digitized radiographs.

  16. Hybrid multinary modulation codes for page-oriented holographic data storage

    Science.gov (United States)

    Berger, G.; Dietz, M.; Denz, C.

    2008-11-01

    Hybrid multinary block codes for implementation in page-oriented holographic storage systems are proposed. The codes utilize combined phase and amplitude modulations to encode input data. In comparison to pure amplitude-or pure phase-modulated block code designs hybrid multinary modulation coding allows us to augment the storage density at an unchanged error rate. Two different hybrid modulation code designs are introduced. Experimental implementation is thoroughly discussed, especially concentrating on readout concepts. Phase-resolved readout is accomplished by optical addition and subtraction, using an unmodulated reference page. Experimental results indicate that the overall error rate is usually dominated by errors related to amplitude detection. The study suggests that capacity gains of up to 31% or 47% are reasonable when utilizing phase modulations in conjunction with binary or ternary amplitude modulation.

  17. Discrete fracture network code development

    Energy Technology Data Exchange (ETDEWEB)

    Dershowitz, W.; Doe, T.; Shuttle, D.; Eiben, T.; Fox, A.; Emsley, S.; Ahlstrom, E. [Golder Associates Inc., Redmond, Washington (United States)

    1999-02-01

    This report presents the results of fracture flow model development and application performed by Golder Associates Inc. during the fiscal year 1998. The primary objective of the Golder Associates work scope was to provide theoretical and modelling support to the JNC performance assessment effort in fiscal year 2000. In addition, Golder Associates provided technical support to JNC for the Aespoe project. Major efforts for performance assessment support included extensive flow and transport simulations, analysis of pathway simplification, research on excavation damage zone effects, software verification and cross-verification, and analysis of confidence bounds on Monte Carlo simulations. In addition, a Fickian diffusion algorithm was implemented for Laplace Transform Galerkin solute transport. Support for the Aespoe project included predictive modelling of sorbing tracer transport in the TRUE-1 rock block, analysis of 1 km geochemical transport pathways for Task 5', and data analysis and experimental design for the TRUE Block Scale experiment. Technical information about Golder Associates support to JNC is provided in the appendices to this report. (author)

  18. Lower Hybrid Current Drive and Heating for the National Transport Code Collaboration

    Science.gov (United States)

    Ignat, D. W.; Jardin, S. C.; McCune, D. C.; Valeo, E. J.

    2000-10-01

    The Lower hybrid Simulation Code LSC was originally written as a subroutine to the Toroidal Simulation Code TSC (Jardin, Pomphrey, Kessel, et al) and subsequently ported to a subroutine of TRANSP. Modifications to simplify the use of the LSC both as a callable module, and also independently of larger transport codes, and improve the documentation have been undertaken with the goal of installing LSC in the NTCC library. The physical model, which includes ray tracing from a Brambilla spectrum, 1D Fokker-Planck development of the electron distribution, the Karney-Fisch treatment of the electric field, heuristic diffusion of current and power and wall scattering, has not been changed. The computational approach is to suppress or remove from the control of the user numerical parameters such as step size and number of iterations while changing some code to be extremely stable in varied conditions. Essential graphics are now output as gnuplot commands and data for off-line post processing, but the original outputs to sglib are retained as an option. Examples of output are shown.

  19. Performance Evaluation of Hybrid ARQ with Code Combining in Packet-Oriented CDMA System

    Institute of Scientific and Technical Information of China (English)

    CHENQingchun; FANPingzhi

    2004-01-01

    In this paper, an extended SNR (signal to noise ratio) concept is proposed to explicate the contribution of code combining to the performance improvement of hybrid ARQ (Automatic repeat request) over the additive white Gaussian noise channel. By extending the Pursley's SNR analysis to hybrid ARQ with code combining in packet-oriented CDMA (Code division multiple access)system, the extended SNR formula is derived, which describes explicitly the SNR variation of the code symbol involved in code combining. It is revealed that the extended SNR formula includes Pursley's SNR formula as a specialcase. Moreover, it is shown that the effective SNR of the combined symbol is increased by a coefficient, which is proportional to the number of repeated replicas involved in the code combining. Based on the extended SNR formula and the resultant SNR variation, a quasi-analytical approximation method is proposed for the performance evaluation of hybrid ARQ with code combining. The residual error rates, average transmission number together with throughput performance are presented by means of numerical analysis and through simulations. It is validated that the extended SNR formula and the resultant quasi-analytical approximations offer a simplified routine to estimate the performance of hybrid ARQ with code combining, particularly for the applications whose reliability performance with respect to the FEC counterpart system could be numerically calculated or evaluated through simulations.

  20. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    Science.gov (United States)

    Massimo, F.; Atzeni, S.; Marocchino, A.

    2016-12-01

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for the solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.

  1. Health Code Number (HCN) Development Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  2. What do Codes of Conduct do? Hybrid Constitutionalization and Militarization in Military Markets

    DEFF Research Database (Denmark)

    Leander, Anna

    2012-01-01

    jursigenerativities) of these codes. The article illustrates the argument through an analysis of two jurisgenerative processes (linked to regulation and to politics) triggered by Codes of Conduct in commercial military markets. It shows that the codes are creating both a hybrid regulatory (or constitutional) network......-military/security professional involvement in the debate over the regulation of commercial military markets would be the appropriate way of handling it....

  3. Trends in the Development of Hybrid Drives

    National Research Council Canada - National Science Library

    Josef Morkus

    2016-01-01

    .... This paper deals with the growth in sales of vehicles with hybrid propulsion, the directions of their technological development, new solutions for transmission systems, the capacity and location...

  4. Hybrid Decoder Reconfiguration of AVS-P7 and MPEG-4 /AVC in the Reconfigurable Video Coding Framework

    Directory of Open Access Journals (Sweden)

    Zhang Zhaoyang

    2012-08-01

    Full Text Available With the rapid development of video coding technology, all kinds of video coding standards have been advanced in recent years with a variety of different and complex algorithms. They share common and/or similar coding tools, yet there is currently no explicit way to exploit such commonalities at the level of specifications or implementations. Reconfigurable video coding (RVC is to develop a video coding standard that overcomes many shortcomings of current standardization and specification process by updating and progressively incrementing a modular library of components. In this paper, a hybrid decoder reconfiguration is instantiated in the RVC framework by grouping the coding tools from AVS-P7 and MPEG-4/AVC. Experimental results show that compared with MPEG-4/AVC baseline profile, the reconfigurable coding system reduces the computational complexity and guarantees the coding performance at low bit rate. Moreover, it enriches the RVC video tool library (VTL by introducing the coding tools of AVS-P7, and also verifies the flexibility and re-configurability of RVC framework to meet the needs of different applications.

  5. A multi-scale code for flexible hybrid simulations

    CERN Document Server

    Leukkunen, L; Lopez-Acevedo, O

    2012-01-01

    Multi-scale computer simulations combine the computationally efficient classical algorithms with more expensive but also more accurate ab-initio quantum mechanical algorithms. This work describes one implementation of multi-scale computations using the Atomistic Simulation Environment (ASE). This implementation can mix classical codes like LAMMPS and the Density Functional Theory-based GPAW. Any combination of codes linked via the ASE interface however can be mixed. We also introduce a framework to easily add classical force fields calculators for ASE using LAMMPS, which also allows harnessing the full performance of classical-only molecular dynamics. Our work makes it possible to combine different simulation codes, quantum mechanical or classical, with great ease and minimal coding effort.

  6. Development of Tritium Permeation Analysis Code (TPAC)

    Energy Technology Data Exchange (ETDEWEB)

    Eung S. Kim; Chang H. Oh; Mike Patterson

    2010-10-01

    Idaho National Laboratory developed the Tritium Permeation Analysis Code (TPAC) for tritium permeation in the Very High Temperature Gas Cooled Reactor (VHTR). All the component models in the VHTR were developed and were embedded into the MATHLAB SIMULINK package with a Graphic User Interface. The governing equations of the nuclear ternary reaction and thermal neutron capture reactions from impurities in helium and graphite core, reflector, and control rods were implemented. The TPAC code was verified using analytical solutions for the tritium birth rate from the ternary fission, the birth rate from 3He, and the birth rate from 10B. This paper also provides comparisons of the TPAC with the existing other codes. A VHTR reference design was selected for tritium permeation study from the reference design to the nuclear-assisted hydrogen production plant and some sensitivity study results are presented based on the HTGR outlet temperature of 750 degrees C.

  7. Optical Code-Division Multiple-Access and Wavelength Division Multiplexing: Hybrid Scheme Review

    Directory of Open Access Journals (Sweden)

    P. Susthitha Menon

    2012-01-01

    Full Text Available Problem statement: Hybrid Optical Code-Division Multiple-Access (OCDMA and Wavelength-Division Multiplexing (WDM have flourished as successful schemes for expanding the transmission capacity as well as enhancing the security for OCDMA. However, a comprehensive review related to this hybrid system are lacking currently. Approach: The purpose of this paper is to review the literature on OCDMA-WDM overlay systems, including our hybrid approach of one-dimensional coding of SAC OCDMA with WDM signals. In addition, we present an additional review of other categorios of hybrid WDM/OCDMA schemes, where codes of OCDMA can be employed on each WDM wavelength. Furthermore, an essential background of OCDMA, recent coding techniques and security issues are also presented. Results: Our results indicate that the feasibility of transmitting both OCDMA and WDM users on the same spectrum band can be achieved using MQC family code with an acceptable performance as well as good data confidentiality. In addition, the WDM interference signals can be suppressed properly for detection of optical broadband CDMA using notch filters. Conclusion: The paper provides a comprehensive overview of hybrid OCDMA-WDM systems and can be used as a baseline study for other scientists in the similar scope of research.

  8. Developing an Online "Code of Conduct"

    Science.gov (United States)

    Summerville, Jennifer

    2005-01-01

    There are an increasing number of classes being offered via the World Wide Web. Although much of the information that we review regarding online learning seems positive, difficulties can arise. In particular, the anonymity that a web course can provide can be a blessing and a curse. In this article, the author suggests developing an online code of…

  9. Developing an Australian code of construction ethics

    Directory of Open Access Journals (Sweden)

    Sean Francis McCarthy

    2012-05-01

    Full Text Available This article looks at the increasing need to consider the role of ethics in construction. The industry, historically, has been challenged by allegations of a serious shortfall in ethical standards. Only limited attempts to date in Australia have been made to address that concern. Any ethical analysis should consider the definition of ethics and its historical development. This paper considers major historical developments in ethical thinking as well as contemporary thinking on ethics for professional sub-sets. A code could be developed specific to construction. Current methods of addressing ethics in construction and in other industries are also reviewed. This paper argues that developing a code of ethics, supported by other measures is the way forward. The author’s aim is to promote further discussion and promote the drafting of a code. This paper includes a summary of other ethical codes that may provide a starting point. The time for reform is upon us, and there is an urgent need for an independent body to take the lead, for fear of floundering and having only found ‘another debating topic’ (Uff 2006.

  10. A HYDROCHEMICAL HYBRID CODE FOR ASTROPHYSICAL PROBLEMS. I. CODE VERIFICATION AND BENCHMARKS FOR A PHOTON-DOMINATED REGION (PDR)

    Energy Technology Data Exchange (ETDEWEB)

    Motoyama, Kazutaka [National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Morata, Oscar; Hasegawa, Tatsuhiko [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Shang, Hsien; Krasnopolsky, Ruben, E-mail: shang@asiaa.sinica.edu.tw [Theoretical Institute for Advanced Research in Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China)

    2015-07-20

    A two-dimensional hydrochemical hybrid code, KM2, is constructed to deal with astrophysical problems that would require coupled hydrodynamical and chemical evolution. The code assumes axisymmetry in a cylindrical coordinate system and consists of two modules: a hydrodynamics module and a chemistry module. The hydrodynamics module solves hydrodynamics using a Godunov-type finite volume scheme and treats included chemical species as passively advected scalars. The chemistry module implicitly solves nonequilibrium chemistry and change of energy due to thermal processes with transfer of external ultraviolet radiation. Self-shielding effects on photodissociation of CO and H{sub 2} are included. In this introductory paper, the adopted numerical method is presented, along with code verifications using the hydrodynamics module and a benchmark on the chemistry module with reactions specific to a photon-dominated region (PDR). Finally, as an example of the expected capability, the hydrochemical evolution of a PDR is presented based on the PDR benchmark.

  11. A Hydrochemical Hybrid Code for Astrophysical Problems. I. Code Verification and Benchmarks for Photon-Dominated Region (PDR)

    CERN Document Server

    Motoyama, Kazutaka; Shang, Hsien; Krasnopolsky, Ruben; Hasegawa, Tatsuhiko

    2015-01-01

    A two dimensional hydrochemical hybrid code, KM2, is constructed to deal with astrophysical problems that would require coupled hydrodynamical and chemical evolution. The code assumes axisymmetry in cylindrical coordinate system, and consists of two modules: a hydrodynamics module and a chemistry module. The hydrodynamics module solves hydrodynamics using a Godunov-type finite volume scheme and treats included chemical species as passively advected scalars. The chemistry module implicitly solves non-equilibrium chemistry and change of the energy due to thermal processes with transfer of external ultraviolet radiation. Self-shielding effects on photodissociation of CO and H$_2$ are included. In this introductory paper, the adopted numerical method is presented, along with code verifications using the hydrodynamics modules, and a benchmark on the chemistry module with reactions specific to a photon-dominated region (PDR). Finally, as an example of the expected capability, the hydrochemical evolution of a PDR is...

  12. Performance improvement of hybrid subcarrier multiplexing optical spectrum code division multiplexing system using spectral direct decoding detection technique

    Science.gov (United States)

    Sahbudin, R. K. Z.; Abdullah, M. K.; Mokhtar, M.

    2009-06-01

    This paper proposes a hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system for the purpose of combining the advantages of both techniques. Optical spectrum code division multiple-access (OSCDMA) is one of the multiplexing techniques that is becoming popular because of the flexibility in the allocation of channels, ability to operate asynchronously, enhanced privacy and increased capacity in bursty nature networks. On the other hand, subcarrier multiplexing (SCM) technique is able to enhance the channel data rate of OSCDMA systems. In this paper, a newly developed detection technique for the OSCDM called spectral direct decoding (SDD) detection technique is compared mathematically with the AND subtraction detection technique. The system utilizes a new unified code construction named KS (Khazani-Syed) code. The results characterizing the bit-error-rate (BER) show that SDD offers a significant improved performance at BER of 10 -9.

  13. Development of a Hybrid Photopolymer for Stereolithography

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    New liquid free radical-cationic hybrid photopolymer, consisting of acrylate-based photocurable resin and epoxy-based photosensitive resin for stereolithography by UV laser was developed.The experiment results indicated that the hybrid photopolymer exhibits advantages of both the acrylate- based photosensitive resin and the epoxy- based photosensitive polymer contained in the hybrid system with relatively high photospeed and low linear shrinkage.Stereolithography parts without obvious distortion were built on the stereolithography apparatus HRPLAI from this hybrid resin successfully and efficiently.

  14. Development of hybrid rice in China

    Institute of Scientific and Technical Information of China (English)

    Yuan Longping; Wu Xiaojin

    2004-01-01

    @@ Introduction The success achieved in development of hybrid rice isa great breakthrough in rice breeding which provides aneffective way to markedly enhance rice yield on a largescale. China is the first country in the world to exploit riceheterosis commercially. Research on hybrid rice was initiatedin 1964.

  15. Spatial resolution enhancement residual coding using hybrid wavelets and directional filter banks

    Indian Academy of Sciences (India)

    Ankit Ashokrao Bhurane; Prateek Chaplot; Dushyanth Nutulapati; Vikram M Gadre

    2015-10-01

    Traditional video coding uses classical predictive coding techniques, where a signal is initially approximated by taking advantage of the various redundancies present. Most of the video coding standards, including the latest HEVC, use the well-accepted procedure of applying transform coding on self-contained (intra) and inter-predicted frame residuals. Nevertheless, it has been shown in the literature that, a normal video frames possess distinct characteristics compared to a residual frame. In this paper, we have made use of hybrid wavelet transforms and directional filter banks (HWD) to encode resolution enhancement residuals in the context of scalable video coding. The results are presented for the use of HWD in the framework of the Dirac video codec. The experiments are carried out on a variety of test frames. Our experiments on residue coding using HWD show better performance compared to the conventional DWT, when tested on the same platform of the well-known SPIHT algorithm.

  16. Codebook Design and Hybrid Digital/Analog Coding for Parallel Rayleigh Fading Channels

    OpenAIRE

    Shi, Shuying; Larsson, Erik G.; Skoglund, Mikael

    2011-01-01

    Low-delay source-channel transmission over parallel fading channels is studied. In this scenario separate sourceand channel coding is highly suboptimal. A scheme based on hybrid digital/analog joint source-channel coding istherefore proposed, employing scalar quantization and polynomial-based analog bandwidth expansion. Simulationsdemonstrate substantial performance gains. Funding agencies|European Community|248993|EL-LIIT||Knut and Alice Wallenberg Foundation||

  17. New developments in the Saphire computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.D.; Wood, S.T.; Kvarfordt, K.J. [Idaho Engineering Lab., Idaho Falls, ID (United States)] [and others

    1996-03-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a suite of computer programs that were developed to create and analyze a probabilistic risk assessment (PRA) of a nuclear power plant. Many recent enhancements to this suite of codes have been made. This presentation will provide an overview of these features and capabilities. The presentation will include a discussion of the new GEM module. This module greatly reduces and simplifies the work necessary to use the SAPHIRE code in event assessment applications. An overview of the features provided in the new Windows version will also be provided. This version is a full Windows 32-bit implementation and offers many new and exciting features. [A separate computer demonstration was held to allow interested participants to get a preview of these features.] The new capabilities that have been added since version 5.0 will be covered. Some of these major new features include the ability to store an unlimited number of basic events, gates, systems, sequences, etc.; the addition of improved reporting capabilities to allow the user to generate and {open_quotes}scroll{close_quotes} through custom reports; the addition of multi-variable importance measures; and the simplification of the user interface. Although originally designed as a PRA Level 1 suite of codes, capabilities have recently been added to SAPHIRE to allow the user to apply the code in Level 2 analyses. These features will be discussed in detail during the presentation. The modifications and capabilities added to this version of SAPHIRE significantly extend the code in many important areas. Together, these extensions represent a major step forward in PC-based risk analysis tools. This presentation provides a current up-to-date status of these important PRA analysis tools.

  18. Development of Reactivity Calculation Code for HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. G.; Kim, M. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Reactivity of the reactor core is measured by a multi-channel wide range reactivity computer (or called reactivity meter), which uses current signals from the compensated ion chamber (CIC) mounted on the courtside wall of the reflector tank in the pool [1]. Because there were a few difficulties in operating the reactivity meter in the MS-DOS environment, some researches have been carried out to improve and upgrade it on the Windows environment [2]. Nevertheless, it is still hard for reactor operators to immediately check the time-dependent reactivity in case of power excursion because of some limitations such as aging of devices and compatibility issues. In this study, a simple off-line tool which can estimate the timedependent reactivity by using the fission chamber signals has been developed, and utilized to the case of loose parts of dummy rod in the 86-2th cycles of HANARO. In order to check the reactivity quickly for reactor operators, the inverse kinetic quations have been incorporated, and several useful functions have been implemented to the code. in the case of 86-2th cycles of HANARO, the developed code showed good performance to estimate time dependent reactivity. In the future, the on line analysis modules will be implanted to the code with upgrade of the measrement equipment such as current meters and data acquisition devices. Additionally, reactivity will be estimated by using the reactivity meter in the MS-DOS enviroment, and the new Windows version, for the verification of the developed code.

  19. Parallel Computing Characteristics of CUPID code under MPI and Hybrid environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeon, Byoung Jin; Choi, Hyoung Gwon [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of)

    2014-05-15

    In this paper, a characteristic of parallel algorithm is presented for solving an elliptic type equation of CUPID via domain decomposition method using the MPI and the parallel performance is estimated in terms of a scalability which shows the speedup ratio. In addition, the time-consuming pattern of major subroutines is studied. Two different grid systems are taken into account: 40,000 meshes for coarse system and 320,000 meshes for fine system. Since the matrix of the CUPID code differs according to whether the flow is single-phase or two-phase, the effect of matrix shape is evaluated. Finally, the effect of the preconditioner for matrix solver is also investigated. Finally, the hybrid (OpenMP+MPI) parallel algorithm is introduced and discussed in detail for solving pressure solver. Component-scale thermal-hydraulics code, CUPID has been developed for two-phase flow analysis, which adopts a three-dimensional, transient, three-field model, and parallelized to fulfill a recent demand for long-transient and highly resolved multi-phase flow behavior. In this study, the parallel performance of the CUPID code was investigated in terms of scalability. The CUPID code was parallelized with domain decomposition method. The MPI library was adopted to communicate the information at the neighboring domain. For managing the sparse matrix effectively, the CSR storage format is used. To take into account the characteristics of the pressure matrix which turns to be asymmetric for two-phase flow, both single-phase and two-phase calculations were run. In addition, the effect of the matrix size and preconditioning was also investigated. The fine mesh calculation shows better scalability than the coarse mesh because the number of coarse mesh does not need to decompose the computational domain excessively. The fine mesh can be present good scalability when dividing geometry with considering the ratio between computation and communication time. For a given mesh, single-phase flow

  20. Using Coding Apps to Support Literacy Instruction and Develop Coding Literacy

    Science.gov (United States)

    Hutchison, Amy; Nadolny, Larysa; Estapa, Anne

    2016-01-01

    In this article the authors present the concept of Coding Literacy and describe the ways in which coding apps can support the development of Coding Literacy and disciplinary and digital literacy skills. Through detailed examples, we describe how coding apps can be integrated into literacy instruction to support learning of the Common Core English…

  1. Schrödinger's code-script: not a genetic cipher but a code of development.

    Science.gov (United States)

    Walsby, A E; Hodge, M J S

    2017-06-01

    In his book What is Life? Erwin Schrödinger coined the term 'code-script', thought by some to be the first published suggestion of a hereditary code and perhaps a forerunner of the genetic code. The etymology of 'code' suggests three meanings relevant to 'code-script which we distinguish as 'cipher-code', 'word-code' and 'rule-code'. Cipher-codes and word-codes entail translation of one set of characters into another. The genetic code comprises not one but two cipher-codes: the first is the DNA 'base-pairing cipher'; the second is the 'nucleotide-amino-acid cipher', which involves the translation of DNA base sequences into amino-acid sequences. We suggest that Schrödinger's code-script is a form of 'rule-code', a set of rules that, like the 'highway code' or 'penal code', requires no translation of a message. Schrödinger first relates his code-script to chromosomal genes made of protein. Ignorant of its properties, however, he later abandons 'protein' and adopts in its place a hypothetical, isomeric 'aperiodic solid' whose atoms he imagines rearranged in countless different conformations, which together are responsible for the patterns of ontogenetic development. In an attempt to explain the large number of combinations required, Schrödinger referred to the Morse code (a cipher) but in doing so unwittingly misled readers into believing that he intended a cipher-code resembling the genetic code. We argue that the modern equivalent of Schrödinger's code-script is a rule-code of organismal development based largely on the synthesis, folding, properties and interactions of numerous proteins, each performing a specific task. Copyright © 2016. Published by Elsevier Ltd.

  2. Hybrid Compton camera/coded aperture imaging system

    Science.gov (United States)

    Mihailescu, Lucian [Livermore, CA; Vetter, Kai M [Alameda, CA

    2012-04-10

    A system in one embodiment includes an array of radiation detectors; and an array of imagers positioned behind the array of detectors relative to an expected trajectory of incoming radiation. A method in another embodiment includes detecting incoming radiation with an array of radiation detectors; detecting the incoming radiation with an array of imagers positioned behind the array of detectors relative to a trajectory of the incoming radiation; and performing at least one of Compton imaging using at least the imagers and coded aperture imaging using at least the imagers. A method in yet another embodiment includes detecting incoming radiation with an array of imagers positioned behind an array of detectors relative to a trajectory of the incoming radiation; and performing Compton imaging using at least the imagers.

  3. Assessment of a Hybrid Continuous/Discontinuous Galerkin Finite Element Code for Geothermal Reservoir Simulations

    Science.gov (United States)

    Xia, Yidong; Podgorney, Robert; Huang, Hai

    2017-03-01

    FALCON (Fracturing And Liquid CONvection) is a hybrid continuous/discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (Multiphysics Object-Oriented Simulation Environment) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (V&V) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system modeling and simulation. The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of FALCON solution methods. The test problems vary in complexity from a single mechanical or thermal process, to coupled thermo-hydro-mechanical processes in geological porous medium. Numerical results obtained by FALCON agreed well with either the available analytical solutions or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Whenever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the FALCON code.

  4. Construction of TH code development and validation environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungjun; Kim, Hee-Kyung; Bae, Kyoo-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, each component of code development and validation system, i.e. IVS and Mercurial will be introduced and Redmine, the integrated platform of IVS and Mercurial, will be explained later. Integrated TH code validation system, IVS and code development and management environment are constructed. The code validation could be achieved by a comparison of results with corresponding experiments. The development of thermal-hydraulic (TH) system code for nuclear reactor requires much time and effort, also for its validation and verification(V and V). In previous, TASS/SMR-S code (hereafter TASS) for SMART is developed by KAERI through V and V process. On the way of code development, the version control of source code has great importance. Also, during the V and V process, the way to reduce repeated labor- and time-consuming work of running the code before releasing new version of TH code, is required. Therefore, the integrated platform for TH code development and validation environment is constructed. Finally, Redmine, the project management and issue tracking system, is selected as platform, Mercurial (hg) for source version control and IVS (Integrated Validation System) for TASS is constructed as a prototype for automated V and V. IVS is useful before release a new code version. The code developer can validate code result easily using IVS. Even during code development, IVS could be used for validation of code modification. Using Redmine and Mercurial, users and developers can use IVS result more effectively.

  5. Performance of Hybrid Concatenated Trellis Codes CPFSK with Iterative Decoding over Fading Channels

    CERN Document Server

    Gergis, Labib Francis

    2011-01-01

    Concatenation is a method of building long codes out of shorter ones, it attempts to meet the problem of decoding complexity by breaking the required computation into manageable segments. Concatenated Continuous Phase Frequency Shift Keying (CPFSK) facilitates powerful error correction. CPFSK also has the advantage of being bandwidth efficient and compatible with nonlinear amplifiers. Bandwidth efficient concatenated coded modulation schemes were designed for communication over Additive White Gaussian noise (AWGN), and Rayleigh fading channels. An analytical bounds on the performance of serial concatenated convolutional codes (SCCC), and parallel concatenated convolutionalcodes (PCCC), were derived as a base of comparison with the third category known as hybrid concatenated trellis codes scheme (HCTC). An upper bound to the average maximum-likelihood bit error probability of the three schemes were obtained. Design rules for the parallel, outer, and inner codes that maximize the interleaver's gain were discuss...

  6. Development of probabilistic internal dosimetry computer code

    Science.gov (United States)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  7. Integrated approach for hybrid rocket technology development

    Science.gov (United States)

    Barato, Francesco; Bellomo, Nicolas; Pavarin, Daniele

    2016-11-01

    Hybrid rocket motors tend generally to be simple from a mechanical point of view but difficult to optimize because of their complex and still not well understood cross-coupled physics. This paper addresses the previous issue presenting the integrated approach established at University of Padua to develop hybrid rocket based systems. The methodology tightly combines together system analysis and design, numerical modeling from elementary to sophisticated CFD, and experimental testing done with incremental philosophy. As an example of the approach, the paper presents the experience done in the successful development of a hybrid rocket booster designed for rocket assisted take off operations. It is thought that following the proposed approach and selecting carefully the most promising applications it is possible to finally exploit the major advantages of hybrid rocket motors as safety, simplicity, low cost and reliability.

  8. A new hybrid coding for protein secondary structure prediction based on primary structure similarity.

    Science.gov (United States)

    Li, Zhong; Wang, Jing; Zhang, Shunpu; Zhang, Qifeng; Wu, Wuming

    2017-03-16

    The coding pattern of protein can greatly affect the prediction accuracy of protein secondary structure. In this paper, a novel hybrid coding method based on the physicochemical properties of amino acids and tendency factors is proposed for the prediction of protein secondary structure. The principal component analysis (PCA) is first applied to the physicochemical properties of amino acids to construct a 3-bit-code, and then the 3 tendency factors of amino acids are calculated to generate another 3-bit-code. Two 3-bit-codes are fused to form a novel hybrid 6-bit-code. Furthermore, we make a geometry-based similarity comparison of the protein primary structure between the reference set and the test set before the secondary structure prediction. We finally use the support vector machine (SVM) to predict those amino acids which are not detected by the primary structure similarity comparison. Experimental results show that our method achieves a satisfactory improvement in accuracy in the prediction of protein secondary structure.

  9. NASA Multidimensional Stirling Convertor Code Developed

    Science.gov (United States)

    Tew, Roy C.; Thieme, Lanny G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and the NASA Glenn Research Center. These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. Glenn is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in house at Glenn and under various grants and contracts. These efforts include the development of a multidimensional Stirling computational fluid dynamics code, high-temperature materials, advanced controllers, an end-to-end system dynamics model, low-vibration techniques, advanced regenerators, and a lightweight convertor. Under a NASA grant, Cleveland State University (CSU) and its subcontractors, the University of Minnesota (UMN) and Gedeon Associates, have developed a twodimensional computer simulation of a CSUmod Stirling convertor. The CFD-ACE commercial software developed by CFD Research Corp. of Huntsville, Alabama, is being used. The CSUmod is a scaled version of the Stirling Technology Demonstrator Convertor (TDC), which was designed and fabricated by the Stirling Technology Company and is being tested by NASA. The schematic illustrates the structure of this model. Modeled are the fluid-flow and heat-transfer phenomena that occur in the expansion space, the heater, the regenerator, the cooler, the compression space, the surrounding walls, and the moving piston and displacer. In addition, the overall heat transfer, the indicated power, and the efficiency can be calculated. The CSUmod model is being converted to a two

  10. Development of Fast running DNBR Calculation Code

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk; Seo, K. W.; Kim, S. J.; Hwang, D. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SMART core adopted a core protection(SCOPS) and a supervising system(SCOMS) to satisfy the SAFDL for AOO and normal operation. Generally, the criteria is limited to the DNBR limit so that the DNBR calculation module is required in the protection and the supervising system of core. There are CPU time limit and calculation robustness as some requirements of the DNBR calculation module in SCOPS and SCOMS caused by hardware limitations. The non-iterative few channel methods are needed to satisfy the requirements. Non-iterative numerical method is similar to the CETOP algorithm originated from ref. 1. The method is known as the non-iterative prediction and correction method. An optimum number of channels for core lumping model is selected as 4- channel which is same channel number of CETOP model. A compensation model of lumped channel is needed to ensure that the 4-channel thermal hydraulic field is nearly equivalent to that field of 1/8-core model that is calculated by MATRA-S. The code called FAST that is fast running DNBR calculation is developed to satisfy the requirements of CPU time and calculation robustness. Present paper is described of characteristics and calculation results of developed FAST code

  11. FDA Developments: Food Code 2013 and Proposed Trans Fat Determination

    NARCIS (Netherlands)

    Grossman, M.R.

    2014-01-01

    268 Reports EFFL 4|2014 USA FDA Developments: Food Code 2013 and Proposed Trans Fat Determination Margaret Rosso Grossman* I. Food Code 2013 and Food Code Reference System Since 1993, the US Food and Drug Administration has published a Food Code, now updated every four years. In November 2013, the F

  12. FDA Developments: Food Code 2013 and Proposed Trans Fat Determination

    NARCIS (Netherlands)

    Grossman, M.R.

    2014-01-01

    268 Reports EFFL 4|2014 USA FDA Developments: Food Code 2013 and Proposed Trans Fat Determination Margaret Rosso Grossman* I. Food Code 2013 and Food Code Reference System Since 1993, the US Food and Drug Administration has published a Food Code, now updated every four years. In November 2013, the

  13. Multimedia Data Coding and its Development

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The requirements of data coding in multimedia applications are presented, the current technique of coding and relative standards is introduced, then the work that have been doing is presented, i.e. the wavelet-based coding method and the VE (Visual Entropy)-based coding method. The experiment results prove that these methods have gained a better perceptual quality of a reconstructed image and a lower bit rate. Their performance evaluations are better than JPEG (Joint Photographic Experts Group) coding. Finally, the future topics of study are put forward.

  14. TRAC code development status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Spore, J.W.; Liles, D.R.; Nelson, R.A.; Dotson, P.J.; Steinke, R.G.; Knight, T.D.; Henninger, R.J.; Martinez, V.; Jenks, R.P.; Cappiello, M.W.

    1986-01-01

    This report summarizes the characteristics and current status of the TRAC-PF1/MOD1 computer code. Recent error corrections and user-convenience features are described, and several user enhancements are identified. Current plans for the release of the TRAC-PF1/MOD2 computer code and some preliminary MOD2 results are presented. This new version of the TRAC code implements stability-enhancing two-step numerics into the 3-D vessel, using partial vectorization to obtain a code that has run 400% faster than the MOD1 code.

  15. ER@CEBAF: Modeling code developments

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-13

    A proposal for a multiple-pass, high energy, energy-recovery experiment using CEBAF is under preparation in the frame of a JLab-BNL collaboration. In view of beam dynamics investigations regarding this project, in addition to the existing model in use in Elegant a version of CEBAF is developed in the stepwise ray-tracing code Zgoubi, Beyond the ER experiment, it is also planned to use the latter for the study of polarization transport in the presence of synchrotron radiation, down to Hall D line where a 12 GeV polarized beam can be delivered. This Note briefly reports on the preliminary steps, and preliminary outcomes, based on an Elegant to Zgoubi translation.

  16. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  17. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy.

    Science.gov (United States)

    Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui

    2016-01-01

    For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And H ε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.

  18. Performance analysis and code recognition for dual N-ary orthogonal hybrid modulation systems

    Institute of Scientific and Technical Information of China (English)

    Qiao Xiaoqiang; Zhao Hangsheng; Cai Yueming

    2008-01-01

    A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and flat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.

  19. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy

    Directory of Open Access Journals (Sweden)

    Yu-Xian Zhang

    2016-01-01

    Full Text Available For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And Hε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.

  20. Outdoor Stand-Off Interrogation of Fissionable Material with a Hybrid Coded Imaging System

    Science.gov (United States)

    2013-06-01

    OUTDOOR STAND-OFF INTERROGATION OF FISSIONABLE MATERIAL WITH A HYBRID CODED IMAGING SYSTEM  A.L. Hutcheson  , B.F. Phlips, E.A. Wulf ...of the Hermes-III gamma ray simulator,” in Pulsed Power Conference, 1989. 7 th , 1898, p. 26. [5] E.A. Wulf , A.L. Hutcheson, B.F. Phlips, L.J

  1. Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system

    Science.gov (United States)

    Anas, Siti Barirah Ahmad; Seyedzadeh, Saleh; Mokhtar, Makhfudzah; Sahbudin, Ratna Kalos Zakiah

    2016-10-01

    Future Internet consists of a wide spectrum of applications with different bit rates and quality of service (QoS) requirements. Prioritizing the services is essential to ensure that the delivery of information is at its best. Existing technologies have demonstrated how service differentiation techniques can be implemented in optical networks using data link and network layer operations. However, a physical layer approach can further improve system performance at a prescribed received signal quality by applying control at the bit level. This paper proposes a coding algorithm to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied to obtain the desired signal quality. The properties of the new code are compared with other OCDMA codes proposed for service differentiation. In addition, a mathematical model is developed for performance evaluation of the proposed code using two different detection techniques, namely direct decoding and complementary subtraction.

  2. Non-Coding RNAs in Retinal Development

    Directory of Open Access Journals (Sweden)

    Robert Hindges

    2012-01-01

    Full Text Available Retinal development is dependent on an accurately functioning network of transcriptional and translational regulators. Among the diverse classes of molecules involved, non-coding RNAs (ncRNAs play a significant role. Members of this family are present in the cell as transcripts, but are not translated into proteins. MicroRNAs (miRNAs are small ncRNAs that act as post-transcriptional regulators. During the last decade, they have been implicated in a variety of biological processes, including the development of the nervous system. On the other hand, long-ncRNAs (lncRNAs represent a different class of ncRNAs that act mainly through processes involving chromatin remodeling and epigenetic mechanisms. The visual system is a prominent model to investigate the molecular mechanisms underlying neurogenesis or circuit formation and function, including the differentiation of retinal progenitor cells to generate the seven principal cell classes in the retina, pathfinding decisions of retinal ganglion cell axons in order to establish the correct connectivity from the eye to the brain proper, and activity-dependent mechanisms for the functionality of visual circuits. Recent findings have associated ncRNAs in several of these processes and uncovered a new level of complexity for the existing regulatory mechanisms. This review summarizes and highlights the impact of ncRNAs during the development of the vertebrate visual system, with a specific focus on the role of miRNAs and a synopsis regarding recent findings on lncRNAs in the retina.

  3. The FLUKA code for space applications Recent developments

    CERN Document Server

    Andersen, V; Battistoni, G; Campanella, M; Carboni, M; Cerutti, F; Empl, A; Fassò, A; Ferrari, A; Gadioli, E; Garzelli, M V; Lee, K; Ottolenghi, A; Pelliccioni, M; Pinsky, L S; Ranft, J; Roesler, S; Sala, P R; Wilson, T L

    2004-01-01

    The FLUKA Monte Carlo transport code is widely used for fundamental research, radioprotection and dosimetry, hybrid nuclear energy system and cosmic ray calculations. The validity of its physical models has been benchmarked against a variety of experimental data over a wide range of energies, ranging from accelerator data to cosmic ray showers in the earth atmosphere. The code is presently undergoing several developments in order to better fit the needs of space applications. The generation of particle spectra according to up-to- date cosmic ray data as well as the effect of the solar and geomagnetic modulation have been implemented and already successfully applied to a variety of problems. The implementation of suitable models for heavy ion nuclear interactions has reached an operational stage. At medium/high energy FLUKA is using the DPMJET model. The major task of incorporating heavy ion interactions from a few GeV/n down to the threshold for inelastic collisions is also progressing and promising results h...

  4. 3-D Parallel, Object-Oriented, Hybrid, PIC Code for Ion Ring Studies

    Science.gov (United States)

    Omelchenko, Y. A.

    1997-08-01

    The 3-D hybrid, Particle-in-Cell (PIC) code, FLAME has been developed to study low-frequency, large orbit plasmas in realistic cylindrical configurations. FLAME assumes plasma quasineutrality and solves the Maxwell equations with displacement current neglected. The electron component is modeled as a massless fluid and all ion components are represented by discrete macro-particles. The poloidal discretization is done by a finite-difference staggered grid method. FFT is applied in the azimuthal direction. A substantial reduction of CPU time is achieved by enabling separate time advances of background and beam particle species in the time-averaged fields. The FLAME structure follows the guidelines of object-oriented programming. Its C++ class hierarchy comprises the Utility, Geometry, Particle, Grid and Distributed base class packages. The latter encapsulates implementation of concurrent grid and particle algorithms. The particle and grid data interprocessor communications are unified and designed to be independent of both the underlying message-passing library and the actual poloidal domain decomposition technique (FFT's are local). Load balancing concerns are addressed by using adaptive domain partitions to account for nonuniform spatial distributions of particle objects. The results of 2-D and 3-D FLAME simulations in support of the FIREX program at Cornell are presented.

  5. Bio-bar-code functionalized magnetic nanoparticle label for ultrasensitive flow injection chemiluminescence detection of DNA hybridization.

    Science.gov (United States)

    Bi, Sai; Zhou, Hong; Zhang, Shusheng

    2009-10-07

    A signal amplification strategy based on bio-bar-code functionalized magnetic nanoparticles as labels holds promise to improve the sensitivity and detection limit of the detection of DNA hybridization and single-nucleotide polymorphisms by flow injection chemiluminescence assays.

  6. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  7. Frontier battery development for hybrid vehicles.

    Science.gov (United States)

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-04-23

    Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  8. Frontier battery development for hybrid vehicles

    Science.gov (United States)

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  9. Development of Premacy Hydrogen RE Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, N. [Mazda Motor Corporation, Hiroshima (Japan)

    2010-07-01

    Hydrogen powered ICE (internal combustion engine) vehicles can play an important role as an automotive power source in the future, because of its higher reliability and cost performance than those of fuel cell vehicles. Combined with hydrogen, Mazda's unique rotary engine (RE) has merits such as a prevention of hydrogen pre-ignition. Mazda has been developing hydrogen vehicles with the hydrogen RE from the early 1990s. Premacy (Mazda5) Hydrogen RE Hybrid was developed and launched in 2009, following RX-8 Hydrogen RE delivered in 2006. A series hybrid system was adopted in Premacy Hydrogen RE Hybrid. A traction motor switches its windings while the vehicle is moving. This switching technology allows the motor to be small and high-efficient. The lithium-ion high voltage battery, which has excellent input-output characteristics, was installed. These features extend the hydrogen fuel driving range to 200 km and obtain excellent acceleration performance. The hydrogen RE can be also operated by gasoline (Dual Fuel System). The additional gasoline operation makes hydrogen vehicles possible to drive in non-hydrogen station area. With approval from the Japanese Ministry of Land Infrastructure and Transport, Mazda Premacy Hydrogen RE Hybrid was delivered successfully to the Japanese market in the form of leasing. (orig.)

  10. Production Level CFD Code Acceleration for Hybrid Many-Core Architectures

    Science.gov (United States)

    Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.

    2012-01-01

    In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.

  11. Code Development and Analysis Program: developmental checkout of the BEACON/MOD2A code. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramsthaler, J. A.; Lime, J. F.; Sahota, M. S.

    1978-12-01

    A best-estimate transient containment code, BEACON, is being developed by EG and G Idaho, Inc. for the Nuclear Regulatory Commission's reactor safety research program. This is an advanced, two-dimensional fluid flow code designed to predict temperatures and pressures in a dry PWR containment during a hypothetical loss-of-coolant accident. The most recent version of the code, MOD2A, is presently in the final stages of production prior to being released to the National Energy Software Center. As part of the final code checkout, seven sample problems were selected to be run with BEACON/MOD2A.

  12. Using k-alpha emission to determine fast electron spectra using the Hybrid code ZEPHYROS

    CERN Document Server

    White, Thomas; Gregori, Gianluca

    2014-01-01

    A high intensity laser-solid interaction invariably drives a non-thermal fast electron current through the target, however characterizing these fast electron distributions can prove difficult. An understanding of how these electrons propagate through dense materials is of fundamental interest and has applications relevant to fast ignition schemes and ion acceleration. Here, we utilize an upgraded version of the Hybrid code ZEPHYROS to demonstrate how the resulting k-alpha emission from such an interaction can be used as a diagnostic to obtain the characteristic temperature, divergence and total energy of the fast electron population.

  13. Rate-prediction structure complexity analysis for multi-view video coding using hybrid genetic algorithms

    Science.gov (United States)

    Liu, Yebin; Dai, Qionghai; You, Zhixiang; Xu, Wenli

    2007-01-01

    Efficient exploitation of the temporal and inter-view correlation is critical to multi-view video coding (MVC), and the key to it relies on the design of prediction chain structure according to the various pattern of correlations. In this paper, we propose a novel prediction structure model to design optimal MVC coding schemes along with tradeoff analysis in depth between compression efficiency and prediction structure complexity for certain standard functionalities. Focusing on the representation of the entire set of possible chain structures rather than certain typical ones, the proposed model can given efficient MVC schemes that adaptively vary with the requirements of structure complexity and video source characteristics (the number of views, the degrees of temporal and interview correlations). To handle large scale problem in model optimization, we deploy a hybrid genetic algorithm which yields satisfactory results shown in the simulations.

  14. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay.

  15. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-09-01

    Full Text Available Underwater Acoustic Sensor Networks (UASNs have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay.

  16. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044

  17. Hybrid Codes Needed for Coordination over the Point-to-Point Channel

    CERN Document Server

    Cuff, Paul

    2011-01-01

    We consider a new fundamental question regarding the point-to-point memoryless channel. The source-channel separation theorem indicates that random codebook construction for lossy source compression and channel coding can be independently constructed and paired to achieve optimal performance for coordinating a source sequence with a reconstruction sequence. But what if we want the channel input to also be coordinated with the source and reconstruction? Such situations arise in network communication problems, where the correlation inherent in the information sources can be used to correlate channel inputs. Hybrid codes have been shown to be useful in a number of network communication problems. In this work we highlight their advantages over purely digital codebook construction by applying them to the point-to-point setting, coordinating both the channel input and the reconstruction with the source.

  18. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  19. Use of generalized curvilinear coordinate systems in electromagnetic and hybrid codes

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D.W. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-07-01

    The author develops a code to simulate the dynamics in the magnetosphere system. The calculation involves a single level, structured, curvilinear 2D mesh. The mesh density is varied to support regions which demand higher resolution.

  20. Recent developments in the Los Alamos radiation transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Forster, R.A.; Parsons, K. [Los Alamos National Lab., NM (United States)

    1997-06-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.

  1. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    OpenAIRE

    Na Zhu

    2016-01-01

    An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid veh...

  2. Development history of the Hybrid Test Vehicle

    Science.gov (United States)

    Trummel, M. C.; Burke, A. F.

    1983-01-01

    Phase I of a joint Department of Energy/Jet Propulsion Laboratory Program undertook the development of the Hybrid Test Vehicle (HTV), which has subsequently progressed through design, fabrication, and testing and evaluation phases. Attention is presently given to the design and test experience gained during the HTV development program, and a discussion is presented of the design features and performance capabilities of the various 'mule' vehicles, devoted to the separate development of engine microprocessor control, vehicle structure, and mechanical components, whose elements were incorporated into the final HTV design. Computer projections of the HTV's performance are given.

  3. Development of a Set of Neutron Kinetics Codes for CEFR

    Institute of Scientific and Technical Information of China (English)

    TIANHe-chun

    2003-01-01

    The function of some neutron kinetics analysis codes now used in CEFR is quite simple, which do not satisfy multi-purpose or detailed analysis requirements and their calculation accuracy is not so high.For this reason, it is necessary to develop a set of neutron kinetics codes for CEFR design, physical startup and operation. These developed codes include NKF, INHR, RHOT and DROP.

  4. Software development infrastructure for the HYBRID modeling and simulation project

    Energy Technology Data Exchange (ETDEWEB)

    Aaron S. Epiney; Robert A. Kinoshita; Jong Suk Kim; Cristian Rabiti; M. Scott Greenwood

    2016-09-01

    One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers

  5. Emerging Roles for Non-Coding RNAs in Male Reproductive Development in Flowering Plants

    Directory of Open Access Journals (Sweden)

    Josefina Rodriguez-Enriquez

    2012-12-01

    Full Text Available Knowledge of sexual reproduction systems in flowering plants is essential to humankind, with crop fertility vitally important for food security. Here, we review rapidly emerging new evidence for the key importance of non-coding RNAs in male reproductive development in flowering plants. From the commitment of somatic cells to initiating reproductive development through to meiosis and the development of pollen—containing the male gametes (sperm cells—in the anther, there is now overwhelming data for a diversity of non-coding RNAs and emerging evidence for crucial roles for them in regulating cellular events at these developmental stages. A particularly exciting development has been the association of one example of cytoplasmic male sterility, which has become an unparalleled breeding tool for producing new crop hybrids, with a non-coding RNA locus.

  6. Hybrid optical-digital encryption system based on wavefront coding paradigm

    Science.gov (United States)

    Konnik, Mikhail V.

    2012-04-01

    The wavefront coding is a widely used in the optical systems to compensate aberrations and increase the depth of field. This paper presents experimental results on application of the wavefront coding paradigm for data encryption. We use a synthesised diffractive optical element (DOE) to deliberately introduce a phase distortion during the images registration process to encode the acquired image. In this case, an optical convolution of the input image with the point spread function (PSF) of the DOE is registered. The encryption is performed optically, and is therefore is fast and secure. Since the introduced distortion is the same across the image, the decryption is performed digitally using deconvolution methods. However, due to noise and finite accuracy of a photosensor, the reconstructed image is degraded but still readable. The experimental results, which are presented in this paper, indicate that the proposed hybrid optical-digital system can be implemented as a portable device using inexpensive off-the-shelf components. We present the results of optical encryption and digital restoration with quantitative estimations of the images quality. Details of hardware optical implementation of the hybrid optical-digital encryption system are discussed.

  7. Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding

    Science.gov (United States)

    Lai, Hong; Zhang, Jun; Luo, Ming-Xing; Pan, Lei; Pieprzyk, Josef; Xiao, Fuyuan; Orgun, Mehmet A.

    2016-08-01

    With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.

  8. Integrated code development for studying laser driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Hideaki; Nagatomo, Hideo; Sunahara, Atsusi; Ohnishi, Naofumi; Naruo, Syuji; Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Present status and plan for developing an integrated implosion code are briefly explained by focusing on motivation, numerical scheme and issues to be developed more. Highly nonlinear stage of Rayleigh-Taylor instability of ablation front by laser irradiation has been simulated so as to be compared with model experiments. Improvement in transport and rezoning/remapping algorithms in ILESTA code is described. (author)

  9. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  10. A Trustability Metric for Code Search based on Developer Karma

    CERN Document Server

    Gysin, Florian S

    2010-01-01

    The promise of search-driven development is that developers will save time and resources by reusing external code in their local projects. To efficiently integrate this code, users must be able to trust it, thus trustability of code search results is just as important as their relevance. In this paper, we introduce a trustability metric to help users assess the quality of code search results and therefore ease the cost-benefit analysis they undertake trying to find suitable integration candidates. The proposed trustability metric incorporates both user votes and cross-project activity of developers to calculate a "karma" value for each developer. Through the karma value of all its developers a project is ranked on a trustability scale. We present JBender, a proof-of-concept code search engine which implements our trustability metric and we discuss preliminary results from an evaluation of the prototype.

  11. Hydrogen hybrid vehicle engine development: Experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  12. Development of covariance capabilities in EMPIRE code

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Pigni, M.T.; Oblozinsky, P.; Mughabghab, S.F.; Mattoon, C.M.; Capote, R.; Cho, Young-Sik; Trkov, A.

    2008-06-24

    The nuclear reaction code EMPIRE has been extended to provide evaluation capabilities for neutron cross section covariances in the thermal, resolved resonance, unresolved resonance and fast neutron regions. The Atlas of Neutron Resonances by Mughabghab is used as a primary source of information on uncertainties at low energies. Care is taken to ensure consistency among the resonance parameter uncertainties and those for thermal cross sections. The resulting resonance parameter covariances are formatted in the ENDF-6 File 32. In the fast neutron range our methodology is based on model calculations with the code EMPIRE combined with experimental data through several available approaches. The model-based covariances can be obtained using deterministic (Kalman) or stochastic (Monte Carlo) propagation of model parameter uncertainties. We show that these two procedures yield comparable results. The Kalman filter and/or the generalized least square fitting procedures are employed to incorporate experimental information. We compare the two approaches analyzing results for the major reaction channels on {sup 89}Y. We also discuss a long-standing issue of unreasonably low uncertainties and link it to the rigidity of the model.

  13. GEOS Code Development Road Map - May, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Scott [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Settgast, Randolph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fu, Pengcheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Antoun, Tarabay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-05-03

    GEOS is a massively parallel computational framework designed to enable HPC-based simulations of subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS will enable coupling of different solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. The overall architecture of the framework includes consistent data structures and will allow incorporation of additional physical and materials models as demanded by future applications. Along with predicting the initiation, propagation and reactivation of fractures, GEOS will also generate a seismic source term that can be linked with seismic wave propagation codes to generate synthetic microseismicity at surface and downhole arrays. Similarly, the output from GEOS can be linked with existing fluid/thermal transport codes. GEOS can also be linked with existing, non-intrusive uncertainty quantification schemes to constrain uncertainty in its predictions and sensitivity to the various parameters describing the reservoir and stimulation operations. We anticipate that an implicit-explicit 3D version of GEOS, including a preliminary seismic source model, will be available for parametric testing and validation against experimental and field data by Oct. 1, 2013.

  14. Development of Visualization Software for McCARD Code

    Science.gov (United States)

    Park, Chang Je; Lee, Byungchul; Shim, Hyung Jin; Yoeng Choi, Kwang; Roh, Chang Hyun

    2014-06-01

    In order to confirm geometrical modeling of input file of the McCARD (Monte Carlo Code for Advanced Reactor Design and analysis) code, a 2D visualization program with a 3D modeling has been developed. It requires lots of mathematical operations and advanced technologies for design graphical program of complicated geometries. The software is coded with the visual C++ language and run under the Windows PC environment.

  15. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  16. Acceleration of the Geostatistical Software Library (GSLIB) by code optimization and hybrid parallel programming

    Science.gov (United States)

    Peredo, Oscar; Ortiz, Julián M.; Herrero, José R.

    2015-12-01

    The Geostatistical Software Library (GSLIB) has been used in the geostatistical community for more than thirty years. It was designed as a bundle of sequential Fortran codes, and today it is still in use by many practitioners and researchers. Despite its widespread use, few attempts have been reported in order to bring this package to the multi-core era. Using all CPU resources, GSLIB algorithms can handle large datasets and grids, where tasks are compute- and memory-intensive applications. In this work, a methodology is presented to accelerate GSLIB applications using code optimization and hybrid parallel processing, specifically for compute-intensive applications. Minimal code modifications are added decreasing as much as possible the elapsed time of execution of the studied routines. If multi-core processing is available, the user can activate OpenMP directives to speed up the execution using all resources of the CPU. If multi-node processing is available, the execution is enhanced using MPI messages between the compute nodes.Four case studies are presented: experimental variogram calculation, kriging estimation, sequential gaussian and indicator simulation. For each application, three scenarios (small, large and extra large) are tested using a desktop environment with 4 CPU-cores and a multi-node server with 128 CPU-nodes. Elapsed times, speedup and efficiency results are shown.

  17. Hybrid microcircuit via development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, D.P.

    1980-06-01

    Manufacturing processes were developed for making holes in alumina substrates, metallizing substrates on both sides and through the holes (vias), dry film photolithographing 6-..mu..m-thick gold to 127-..mu..m line widths and spacings, determining via quality, and protecting vias during HMC assembly processes. The few problems encountered were solved, and via technology is now established as a reliable and repeatable production technology for hybrid microcircuits. Via resistance on product HMCs usually measures from 4 to 6 m..cap omega.. which is well below the 10 m..cap omega.. maximum limit.

  18. Recent developments in KTF. Code optimization and improved numerics

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin [Karlsruhe Institute of Technology (KIT) (Germany). Inst. for Neutron Physics and Reactor Technology (INR)

    2012-11-01

    The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)

  19. Development and Verification of Behavior of Tritium Analytic Code (BOTANIC)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Kim, Eung Soo [Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    VHTR, one of the Generation IV reactor concepts, has a relatively high operation temperature and is usually suggested as a heat source for many industrial processes, including hydrogen production process. Thus, it is vital to trace tritium behavior in the VHTR system and the potential permeation rate to the industrial process. In other words, tritium is a crucial issue in terms of safety in the fission reactor system. Therefore, it is necessary to understand the behavior of tritium and the development of the tool to enable this is vital.. In this study, a Behavior of Tritium Analytic Code (BOTANIC) an analytic tool which is capable of analyzing tritium behavior is developed using a chemical process code called gPROMS. BOTANIC was then further verified using the analytic solutions and benchmark codes such as Tritium Permeation Analysis Code (TPAC) and COMSOL. In this study, the Behavior of Tritium Analytic Code, BOTANIC, has been developed using a chemical process code called gPROMS. The code has several distinctive features including non-diluted assumption, flexible applications and adoption of distributed permeation model. Due to these features, BOTANIC has the capability to analyze a wide range of tritium level systems and has a higher accuracy as it has the capacity to solve distributed models. BOTANIC was successfully developed and verified using analytical solution and the benchmark code calculation result. The results showed very good agreement with the analytical solutions and the calculation results of TPAC and COMSOL. Future work will be focused on the total system verification.

  20. Design and Cost Performance of Decoding Technique for Hybrid Subcarrier Spectral Amplitude Coding-Optical Code Division Multiple Access System

    National Research Council Canada - National Science Library

    R. K.Z. Sahbudin; M. K. Abdullah; M. Mokhtar; S. Hitam; S. B.A. Anas

    2011-01-01

    ...) deploying the Khazani-Syed code was proposed. It was proposed as a mean of increasing the maximum number of simultaneous active users by increasing the subcarrier and/or the SAC-OCDMA code word...

  1. Hybrid pump for Pazflor deepwater development

    Energy Technology Data Exchange (ETDEWEB)

    Bibet, Pierre-Jean

    2010-07-01

    Subsea Processing gives engineers permanent technical challenges due to the comprehensive specifications which often stretch the proven limits of technology. It is particularly true for pumps that have to boost a multiphase effluent, because they must, often at the same time, be tolerant to free gas, able to handle very viscous, generate a high ?P, and be efficient. The Pazflor project decided to base the development on full utilization of subsea pumps. This paper presents the state of the art of the pumps that are designed to be installed on the sea floor. It further describes why existing technology could not match the technical requirements for the Pazflor project. It finally presents the pump specifically developed for this world first full field's development application, the so called 'Hybrid Pump', with the description of the associated qualification program and results. (Author)

  2. Developing integrated patient pathways using hybrid simulation

    Science.gov (United States)

    Zulkepli, Jafri; Eldabi, Tillal

    2016-10-01

    Integrated patient pathways includes several departments, i.e. healthcare which includes emergency care and inpatient ward; intermediate care which patient(s) will stay for a maximum of two weeks and at the same time be assessed by assessment team to find the most suitable care; and social care. The reason behind introducing the intermediate care in western countries was to reduce the rate of patients that stays in the hospital especially for elderly patients. This type of care setting has been considered to be set up in some other countries including Malaysia. Therefore, to assess the advantages of introducing this type of integrated healthcare setting, we suggest develop the model using simulation technique. We argue that single simulation technique is not viable enough to represent this type of patient pathways. Therefore, we suggest develop this model using hybrid techniques, i.e. System Dynamics (SD) and Discrete Event Simulation (DES). Based on hybrid model result, we argued that the result is viable to be as references for decision making process.

  3. Development of the Hybrid Sulfur Thermochemical Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Summers, William A.; Steimke, John L

    2005-09-23

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  4. Hybrid Warfare: Implications for CAF Force Development

    Science.gov (United States)

    2014-08-01

    also McCulloh and Johnson who demonstrate throughout their study that context is critical . Indeed, their summary statement for “hybrid warfare theory ...Muhr, eds., Hybrid and Cyber War as Consequences of the Asymmetry, Frankfurt : Peter Lang, 2011, p.95. Interestingly, the CFD Hybrid Warfare Concept...the highest political and military levels. The study of hybrid-type case studies yields the critical lesson that: “leadership is essential to victory

  5. SCDAP/RELAP5 code development and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Allison, C.M.; Hohorst, J.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-03-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The current version of the code is SCDAP/RELAP5/MOD3.1e. Although MOD3.1e contains a number of significant improvements since the initial version of MOD3.1 was released, new models to treat the behavior of the fuel and cladding during reflood have had the most dramatic impact on the code`s calculations. This paper provides a brief description of the new reflood models, presents highlights of the assessment of the current version of MOD3.1, and discusses future SCDAP/RELAP5/MOD3.2 model development activities.

  6. Application of hybrid coded genetic algorithm in fuzzy neural network controller

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and bi nary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during the crossover operation and decimal encoding during the mutation operation, and the way of accepting new individuals by probability adopted, by which a new individual is accepted and its parent is discarded when its fitness is higher than that of its parent, and a new individual is accepted by probability when its fitness is lower than that of its parent. And concludes with calculations made with an example that these improvements enhance the speed of genetic algorithms to optimize the fuzzy neural network controller.

  7. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  8. Alternative technological development for RF hybridization

    Science.gov (United States)

    Antônio Finardi, Célio; da Fontoura Ponchet, André; Battesini Adamo, Cristina; Flacker, Alexander; Cotrin Teixeira, Ricardo; Panepucci, Roberto Ricardo

    2017-03-01

    The paper presents a technological solution for high frequency packaging platform evaluated up to 40 GHz. The main purpose of this development was to define an alternative hybrid technology that is more flexible and faster to prototype compared with thin film or multi chip module (MCM-D). The alternative technology also shows adequate performance for high bit rate solutions integrating optical and electronics blocks. This approach consists of a soft substrate (laminate material), plating processes (electroless Ni-P/Au, electrolytic Au) and lithography patterning. Ground coplanar waveguide was used for microwave structures with excellent ground planes connections due to easy via holes implementation. We present results of high frequency packaging of important RF blocks, such as integrated broadband bias-T, transimpedance amplifier ICs and silicon photonics optical modulators. The paper demonstrates a solution for high frequency hybridization that can be implemented with standard substrates, designed with any shape and with large numbers of metalized via holes and compatible with usual assembling techniques.

  9. Aeroelastic code development activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D. [National Renewable Energy Lab., Golden, Colorado (United States)

    1996-09-01

    Designing wind turbines to be fatigue resistant and to have long lifetimes at minimal cost is a major goal of the federal wind program and the wind industry in the United States. To achieve this goal, we must be able to predict critical loads for a wide variety of different wind turbines operating under extreme conditions. The codes used for wind turbine dynamic analysis must be able to analyze a wide range of different wind turbine configurations as well as rapidly predict the loads due to turbulent wind inflow with a minimal set of degrees of freedom. Code development activities in the US have taken a two-pronged approach in order to satisfy both of these criteria: (1) development of a multi-purpose code which can be used to analyze a wide variety of wind turbine configurations without having to develop new equations of motion with each configuration change, and (2) development of specialized codes with minimal sets of specific degrees of freedom for analysis of two- and three-bladed horizontal axis wind turbines and calculation of machine loads due to turbulent inflow. In the first method we have adapted a commercial multi-body dynamics simulation package for wind turbine analysis. In the second approach we are developing specialized codes with limited degrees of freedom, usually specified in the modal domain. This paper will summarize progress to date in the development, validation, and application of these codes. (au) 13 refs.

  10. Code-first development with Entity Framework

    CERN Document Server

    Barskiy, Sergey

    2015-01-01

    This book is intended for software developers with some prior experience with the Microsoft .NET framework who want to learn how to use Entity Framework. This book will get you up and running quickly, providing many examples that illustrate all the key concepts of Entity Framework.

  11. HyDEn: a hybrid steganocryptographic approach for data encryption using randomized error-correcting DNA codes.

    Science.gov (United States)

    Tulpan, Dan; Regoui, Chaouki; Durand, Guillaume; Belliveau, Luc; Léger, Serge

    2013-01-01

    This paper presents a novel hybrid DNA encryption (HyDEn) approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach.

  12. Hybrid parallelization of the XTOR-2F code for the simulation of two-fluid MHD instabilities in tokamaks

    Science.gov (United States)

    Marx, Alain; Lütjens, Hinrich

    2017-03-01

    A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.

  13. Recent developments in standardization of high efficiency video coding (HEVC)

    Science.gov (United States)

    Sullivan, Gary J.; Ohm, Jens-Rainer

    2010-08-01

    This paper reports on recent developments in video coding standardization, particularly focusing on the Call for Proposals (CfP) on video coding technology made jointly in January 2010 by ITU-T VCEG and ISO/IEC MPEG and the April 2010 responses to that Call. The new standardization initiative is referred to as High Efficiency Video Coding (HEVC) and its development has been undertaken by a new Joint Collaborative Team on Video Coding (JCT-VC) formed by the two organizations. The HEVC standard is intended to provide significantly better compression capability than the existing AVC (ITU-T H.264 | ISO/IEC MPEG-4 Part 10) standard. The results of the CfP are summarized, and the first steps towards the definition of the HEVC standard are described.

  14. Codes and standards research, development and demonstration roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-22

    C&S RD&D Roadmap - 2008: This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for Standards Development Organizations (SDOs) to develop performance-based codes and standards for a commercial hydrogen fueled transportation sector in the U.S.

  15. Development of Traction Drive Motors for the Toyota Hybrid System

    Science.gov (United States)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  16. Hybrid rice achievements, development and prospect in China

    Institute of Scientific and Technical Information of China (English)

    MA Guo-hui; YUAN Long-ping

    2015-01-01

    This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was ifrst launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha–1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern ifeld managements in hybrid rice over the past decades are also discussed. Additional y, this article dealt with the intel ectual property protection (IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Final y, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.

  17. Development of Visual CINDER Code with Visual C⧣.NET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Oyeon [Institute for Modeling and Simulation Convergence, Daegu (Korea, Republic of)

    2016-10-15

    CINDER code, CINDER' 90 or CINDER2008 that is integrated with the Monte Carlo code, MCNPX, is widely used to calculate the inventory of nuclides in irradiated materials. The MCNPX code provides decay processes to the particle transport scheme that traditionally only covered prompt processes. The integration schemes serve not only the reactor community (MCNPX burnup) but also the accelerator community as well (residual production information). The big benefit for providing these options lies in the easy cross comparison of the transmutation codes since the calculations are based on exactly the same material, neutron flux and isotope production/destruction inputs. However, it is just frustratingly cumbersome to use. In addition, multiple human interventions may increase the possibility of making errors. The number of significant digits in the input data varies in steps, which may cause big errors for highly nonlinear problems. Thus, it is worthwhile to find a new way to wrap all the codes and procedures in one consistent package which can provide ease of use. The visual CINDER code development is underway with visual C .NET framework. It provides a few benefits for the atomic transmutation simulation with CINDER code. A few interesting and useful properties of visual C .NET framework are introduced. We also showed that the wrapper could make the simulation accurate for highly nonlinear transmutation problems and also increase the possibility of direct combination a radiation transport code MCNPX with CINDER code. Direct combination of CINDER with MCNPX in a wrapper will provide more functionalities for the radiation shielding and prevention study.

  18. Development of 1D Liner Compression Code for IDL

    Science.gov (United States)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  19. Hybrid information privacy system: integration of chaotic neural network and RSA coding

    Science.gov (United States)

    Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.

    2005-03-01

    Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.

  20. Forty Years' Development of Hybrid Rice:China's Experience

    Institute of Scientific and Technical Information of China (English)

    SUN Liang-xian; CHENG Shi-hua; DONG Hai-tao; CAO Li-yong; LI De-bao; YANG Shi-hua; ZHAI Hu-qu

    2004-01-01

    China is the first country where heterosis of hybrid rice was successfully exploited commercially on a large scale in the world. Hybrid rice has been developed for 40 years since Prof. Yuan initiated it in China. It had been planted about 330 million hectares with an increase of nearly 400 million tons of rice during 1976-2002. China's experience on hybrid rice could be attributed to utilization of various cytoplasmic male sterility (CMS) resources, high outcrossing rate CMS lines and stable environmentally induced genetic male sterile (EGMS) lines, improvement of diseases resistance and grain quality, and combination of ideal plant type with heterosis in hybrid rice breeding program. Innovative breeding techniques, e.g. improvement in root system, molecular marker-assisted selection and wild hybridization should be considered in further development of hybrid rice in China.

  1. Benchmarking a hybrid MHD/kinetic code with C-2 experimental data

    Science.gov (United States)

    Magee, Richard; Clary, Ryan; Dettrick, Sean; Korepanov, Sergey; Onofri, Marco; Smirnov, Artem; TAE Team

    2013-10-01

    The C-2 device creates field-reversed configuration (FRC) plasmas via the dynamic merging of two compact toroids and heated with neutral beams. Simulations of these plasmas are performed with Q2D - a hybrid MHD/Monte Carlo code that evolves the plasma according to the resistive MHD equations and treats the neutral beam injected fast ions as a minority kinetic species. Recent Q2D runs have resulted in testable predictions, namely that the axial profile of the fast ions is double-peaked, and charge-exchange neutrals are localized in pitch-angle. In some simulations, the fast particle population can induce magnetic fluctuations. These fluctuations are largest in the radial component, have a characteristic frequency approximately equal to the fast ion bounce frequency (f ~ 150 kHz), and a broad k spectrum. These fluctuations have the beneficial effect of smoothing out the double-peaked axial fast ion density profile, resulting in an increased fast ion density at the mid-plane. We will present results from a benchmarking study to quantitatively compare the results of Q2D runs to existing C-2 experimental data.

  2. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2015-05-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  3. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-05-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other’s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network’s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network’s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. Furthermore, with the use of fractional cooperation, the average recovery overhead is further reduced by around 5% for the primary network and around 10% for the secondary network when a high fractional cooperation probability is used.

  4. Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding

    Science.gov (United States)

    Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin

    2014-10-01

    Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.

  5. Development and assessment of the COBRA/RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Ha, Kwi Seok; Sim, Seok Ku

    1997-04-01

    The COBRA/RELAP5 code, a merged version of the COBRA-TF and RELAP5/MOD3.2 codes, has been developed to combine the realistic three-dimensional reactor vessel model of COBRA-TF with RELAP5/MOD3, thus to produce an advanced system analysis code with a multidimensional thermal-hydraulic module. This report provides the integration scheme of the two codes and the results of developmental assessments. These includes single channel tests, manometric flow oscillation problem, THTF Test 105, and LOFT L2-3 large-break loss-of-coolant experiment. From the single channel tests the integration scheme and its implementation were proven to be valid. Other simulation results showed good agreement with the experiments. The computational speed was also satisfactory. So it is confirmed that COBRA/RELAP5 can be a promising tool for analysis of complicated, multidimensional two-phase flow transients. The area of further improvements in the code integration are also identified. This report also serves as a user`s manual for the COBRA/RELAP5 code. (author). 6 tabs., 20 figs., 20 refs.

  6. On transform coding tools under development for VP10

    Science.gov (United States)

    Parker, Sarah; Chen, Yue; Han, Jingning; Liu, Zoe; Mukherjee, Debargha; Su, Hui; Wang, Yongzhe; Bankoski, Jim; Li, Shunyao

    2016-09-01

    Google started the WebM Project in 2010 to develop open source, royaltyfree video codecs designed specifically for media on the Web. The second generation codec released by the WebM project, VP9, is currently served by YouTube, and enjoys billions of views per day. Realizing the need for even greater compression efficiency to cope with the growing demand for video on the web, the WebM team embarked on an ambitious project to develop a next edition codec, VP10, that achieves at least a generational improvement in coding efficiency over VP9. Starting from VP9, a set of new experimental coding tools have already been added to VP10 to achieve decent coding gains. Subsequently, Google joined a consortium of major tech companies called the Alliance for Open Media to jointly develop a new codec AV1. As a result, the VP10 effort is largely expected to merge with AV1. In this paper, we focus primarily on new tools in VP10 that improve coding of the prediction residue using transform coding techniques. Specifically, we describe tools that increase the flexibility of available transforms, allowing the codec to handle a more diverse range or residue structures. Results are presented on a standard test set.

  7. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Surber, F.T.

    1979-09-30

    The results of investigations conducted under Ce Hybrid Vehicle Potential Assessment Task are reported in 10 volumes. This volume contains an overview of the study and its results. The purpose of the overall study was to determine if the petroleum fuel savings achievable through the use of hybrid electric vehicles is worth the R and D expenditures needed to develop the hybrid vehicles and to determine R and D priorities. It was concluded that by the year 2010 hybrid vehicles could replace 80% of the automotive power that would otherwise be produced from petroleum fuels; the public should not suffer any mobility loss through the use of hybrid vehicles; high initial and life-cycle costs are a limiting factor; and R and D funds should be spent for systems design and the development of low-cost batteries and controllers. (LCL)

  8. Relativistic Klystron Two-Beam Accelerator Simulation Code Development

    Science.gov (United States)

    Lidia, Steven; Ryne, Robert

    1997-05-01

    We present recent work on the development and testing of a 3-D simu- lation code for relativistic klystron two-beam accelerators (RK-TBAs). This new code utilizes symplectic integration techniques to push macro- particles, coupled to a circuit equation framework that advances the fields in the cavities. Space charge effects are calculated using a Green's function approach, and pipe wall effects are included in the electrostatic approximation. We present simulations of the LBNL/LLNL RK-TBA device, emphasizing cavity power development and beam dynamics, including the high- and low-frequency beam break-up instabilities.

  9. Mock Code: A Code Blue Scenario Requested by and Developed for Registered Nurses

    Science.gov (United States)

    Rideout, Janice; Pritchett-Kelly, Sherry; McDonald, Melissa; Mullins-Richards, Paula; Dubrowski, Adam

    2016-01-01

    The use of simulation in medical training is quickly becoming more common, with applications in emergency, surgical, and nursing education. Recently, registered nurses working in surgical inpatient units requested a mock code simulation to practice skills, improve knowledge, and build self-confidence in a safe and controlled environment. A simulation scenario using a high-fidelity mannequin was developed and will be discussed herein. PMID:28123919

  10. Progress and future development of hybrid rapeseed in China

    Institute of Scientific and Technical Information of China (English)

    Fu Tingdong; Zhou Yongming

    2013-01-01

    The hybrid growth of rapeseed now has reached to 4.7 × 106 hm2,accounting for 70%of total rapeseed growth area in China. Over the last 40 years,the researches and utilizations of hybrid rapeseed in China have sig-nificantly contributed to the development of rapeseed industry in China. The production of hybrid rapeseed mainly utilizes cytoplasmic male sterility(CMS),combined at the same time with nuclear male sterility and other pollinat-ing-control systems in China. The hybrid rapeseed studies in China are also characterized by the improvement of quality and oil content in hybrid breeding. Future studies to enhance the heterosis of rapeseed will be focused on several important issues,including the combination of heterosis and ideotype breeding,further increase of oil con-tent in hybrids,utilization of sub-genomic heterosis and resistance improvement. The paper will discuss the follow-ing perspectives in hybrid rapeseed studies:relationships among heterosis,quality and disease traits,solutions for excessive source and pool in hybrids compared with open-pollinated cultivars,and the importance of increasing harvest index of hybrids to achieve a better yield in hybrids.

  11. Developing PYTHON Codes for the Undergraduate ALFALFA Team

    Science.gov (United States)

    Troischt, Parker; Ryan, Nicholas; Alfalfa Team

    2016-03-01

    We describe here progress toward developing a number of new PYTHON routines to be used by members of the Undergraduate ALFALFA Team. The codes are designed to analyze HI spectra and assist in identifying and categorizing some of the intriguing sources found in the initial blind ALFALFA survey. Numerical integration is performed on extragalactic sources using 21cm line spectra produced with the L-Band Wide receiver at the National Astronomy and Ionosphere Center. Prior to the integration, polynomial fits are employed to obtain an appropriate baseline for each source. The codes developed here are part of a larger team effort to use new PYTHON routines in order to replace, upgrade, or supplement a wealth of existing IDL codes within the collaboration. This work has been supported by NSF Grant AST-1211005.

  12. A CASE FOR HYBRID INSTRUCTION ENCODING FOR REDUCING CODE SIZE IN EMBEDDED SYSTEM-ON-CHIPS BASED ON RISC PROCESSOR CORES

    Directory of Open Access Journals (Sweden)

    Govindarajalu Bakthavatsalam

    2014-01-01

    Full Text Available Embedded computing differs from general purpose computing in several aspects. In most embedded systems, size, cost and power consumption are more important than performance. In embedded System-on-Chips (SoC, memory is a scarce resource and it poses constraints on chip space, cost and power consumption. Whereas fixed instruction length feature of RISC architecture simplifies instruction decoding and pipeline implementation, its undesirable side effect is code size increase caused by large number of unused bits. Code size reduction minimizes memory size, chip space and power consumption all of which are significant for low power portable embedded systems. Though code size reduction has drawn the attention of architects and developers, the solutions currently used are more of cure than of prevention. Considering the huge number of embedded applications, there is a need for a dedicated processor optimized for low power and portable embedded systems. In the study, we propose a variation of Hybrid Instruction Encoding (HIE for the embedded processors. Our scheme uses fixed number of multiple instruction lengths with provision for hybrid sizes for the offset and the immediate fields thereby reducing the number of unused bits. We simulated the HIE for the MIPS32 processors and measured code sizes of various embedded applications of MiBench and MediaBench benchmarks using an offline tool developed newly. We noticed up to 27% code reduction for large and medium sized embedded applications respectively. This results in reduction of on-chip memory capacity up to 1 mega bytes that is very significant for SoC based embedded applications. Considering the large market share of embedded systems, it is worth investing in a new architecture and development of dedicated HIE-RISC processor cores for portable embedded systems based on SoCs.

  13. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect

    Science.gov (United States)

    Marocchino, A.; Massimo, F.; Rossi, A. R.; Chiadroni, E.; Ferrario, M.

    2016-09-01

    In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.

  14. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect

    Energy Technology Data Exchange (ETDEWEB)

    Marocchino, A., E-mail: albz.uk@gmail.com [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Massimo, F. [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Rossi, A.R. [Dipartimento di Fisica, University of Milan and INFN-Milano, Milano (Italy); Chiadroni, E.; Ferrario, M. [INFN-LNF, Frascati (Italy)

    2016-09-01

    In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.

  15. Developing a Working Code of Ethics for Human Resource Personnel.

    Science.gov (United States)

    Rampal, Kuldip R.

    1991-01-01

    To develop codes of ethics for their profession, college human resources personnel must first understand their primary job-related responsibilities. These include being alert to evolving organizational needs; coordinating needed training of employees; appreciating the nuances of psychology, communication, and motivation; and observing employee…

  16. General Relativistic Smoothed Particle Hydrodynamics code developments: A progress report

    Science.gov (United States)

    Faber, Joshua; Silberman, Zachary; Rizzo, Monica

    2017-01-01

    We report on our progress in developing a new general relativistic Smoothed Particle Hydrodynamics (SPH) code, which will be appropriate for studying the properties of accretion disks around black holes as well as compact object binary mergers and their ejecta. We will discuss in turn the relativistic formalisms being used to handle the evolution, our techniques for dealing with conservative and primitive variables, as well as those used to ensure proper conservation of various physical quantities. Code tests and performance metrics will be discussed, as will the prospects for including smoothed particle hydrodynamics codes within other numerical relativity codebases, particularly the publicly available Einstein Toolkit. We acknowledge support from NSF award ACI-1550436 and an internal RIT D-RIG grant.

  17. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  18. Development of a predictive code for aircrew radiation exposure (PCAIRE)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Bennett, L.G.I.; Green, A.R.; McCall, M.J.; Ellaschuk, B.; Pierre, M.; Butler, A.; Desormeaux, M. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2003-07-01

    Jet aircrew are routinely exposed to levels of natural background radiation (i.e., galactic cosmic radiation) that are significantly higher than those present at ground level. This paper describes the method of collecting and analyzing radiation data from numerous worldwide flights, and the encapsulation of these results into a computer code (PCAIRE) for the prediction of the aircrew radiation exposure on any flight in the world at any period in the solar cycle. Predictions from the PCAIRE code were then compared to integral doses measured at commercial altitudes during experimental flights made by various research groups over the past five years over the given solar cycle. In general, the code predictions are in agreement with the measured data within {+-} 20%. An additional correlation has been developed for estimation of aircrew exposure resulting from solar particle events. (author)

  19. Development of a subchannel analysis code MATRA (Ver. {alpha})

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. J.; Hwang, D. H

    1998-04-01

    A subchannel analysis code MATRA-{alpha}, an interim version of MATRA, has been developed to be run on an IBM PC or HP WS based on the existing CDC CYBER mainframe version of COBRA-IV-I. This MATRA code is a thermal-hydraulic analysis code based on the subchannel approach for calculating the enthalpy and flow distribution in fuel assemblies and reactor cores for both steady-state and transient conditions. MATRA-{alpha} has been provided with an improved structure, various functions, and models to give the more convenient user environment and to increase the code accuracy, various functions, and models to give the more convenient user environment and to increase the code accuracy. Among them, the pressure drop model has been improved to be applied to non-square-lattice rod arrays, and the lateral transport models between adjacent subchannels have been improved to increase the accuracy in predicting two-phase flow phenomena. Also included in this report are the detailed instructions for input data preparation and for auxiliary pre-processors to serve as a guide to those who want to use MATRA-{alpha}. In addition, we compared the predictions of MATRA-{alpha} with the experimental data on the flow and enthalpy distribution in three sample rod-bundle cases to evaluate the performance of MATRA-{alpha}. All the results revealed that the prediction of MATRA-{alpha} were better than those of COBRA-IV-I. (author). 16 refs., 1 tab., 13 figs.

  20. A Hybrid Scheme Based on Pipelining and Multitasking in Mobile Application Processors for Advanced Video Coding

    Directory of Open Access Journals (Sweden)

    Muhammad Asif

    2015-01-01

    Full Text Available One of the key requirements for mobile devices is to provide high-performance computing at lower power consumption. The processors used in these devices provide specific hardware resources to handle computationally intensive video processing and interactive graphical applications. Moreover, processors designed for low-power applications may introduce limitations on the availability and usage of resources, which present additional challenges to the system designers. Owing to the specific design of the JZ47x series of mobile application processors, a hybrid software-hardware implementation scheme for H.264/AVC encoder is proposed in this work. The proposed scheme distributes the encoding tasks among hardware and software modules. A series of optimization techniques are developed to speed up the memory access and data transferring among memories. Moreover, an efficient data reusage design is proposed for the deblock filter video processing unit to reduce the memory accesses. Furthermore, fine grained macroblock (MB level parallelism is effectively exploited and a pipelined approach is proposed for efficient utilization of hardware processing cores. Finally, based on parallelism in the proposed design, encoding tasks are distributed between two processing cores. Experiments show that the hybrid encoder is 12 times faster than a highly optimized sequential encoder due to proposed techniques.

  1. Development and assessment of best estimate integrated safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu (and others)

    2007-03-15

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published.

  2. Electromagnetic self-consistent field initialization and fluid advance techniques for hybrid-kinetic PWFA code Architect

    Science.gov (United States)

    Massimo, F.; Marocchino, A.; Rossi, A. R.

    2016-09-01

    The realization of Plasma Wakefield Acceleration experiments with high quality of the accelerated bunches requires an increasing number of numerical simulations to perform first-order assessments for the experimental design and online-analysis of the experimental results. Particle in Cell codes are the state-of-the-art tools to study the beam-plasma interaction mechanism, but due to their requirements in terms of number of cores and computational time makes them unsuitable for quick parametric scans. Considerable interest has been shown thus in methods which reduce the computational time needed for the simulation of plasma acceleration. Such methods include the use of hybrid kinetic-fluid models, which treat the relativistic bunches as in a PIC code and the background plasma electrons as a fluid. A technique to properly initialize the bunch electromagnetic fields in the time explicit hybrid kinetic-fluid code Architect is presented, as well the implementation of the Flux Corrected Transport scheme for the fluid equations integrated in the code.

  3. Recent Developments in the CONRAD Code regarding Experimental Corrections

    Directory of Open Access Journals (Sweden)

    Noguère G.

    2013-03-01

    Full Text Available The CONRAD code is an object-oriented software tool developed at CEA Cadarache since 2005 to deal with problems arising during the evaluation process (data assimilation and analysis, physical modelling, propagation of uncertainties…. This paper will present recent developments concerning the experimental corrections, which are required when a neutron resonance shape analysis is performed. Several experimental aspects are detailed in this work: the possibility to use spectra in energy as well as in time, the implementation of both analytical (Chi-Square and Monte-Carlo resolution functions, the sample homogeneity corrections using log-normal distributions. Each development aspect is illustrated with several examples and comparisons with other resonance analysis codes (SAMMY, REFIT.

  4. Development of sorghum varieties and hybrids for dryland areas of ...

    African Journals Online (AJOL)

    Mo

    A study was conducted to scrutinize the development of sorghum (Sorghum bicolar) varieties and hybrids .... national variety trial in the case of open pollinated varieties ...... Principles of field crop production. 3rd Ed., Macmillan. Publishing Co.

  5. DEVELOPMENT OF CODOMINANT MARKERS FOR IDENTIFYING SPECIES HYBRIDS

    Science.gov (United States)

    Herein we describe a simple method for developing species-diagnostic markers that would permit the rapid identification of hybrid individuals. Our method relies on amplified length polymorphism (AFLP) and single strand conformation polymorphism (SSCP) technologies, both of which...

  6. Python-Assisted MODFLOW Application and Code Development

    Science.gov (United States)

    Langevin, C.

    2013-12-01

    The U.S. Geological Survey (USGS) has a long history of developing and maintaining free, open-source software for hydrological investigations. The MODFLOW program is one of the most popular hydrologic simulation programs released by the USGS, and it is considered to be the most widely used groundwater flow simulation code. MODFLOW was written using a modular design and a procedural FORTRAN style, which resulted in code that could be understood, modified, and enhanced by many hydrologists. The code is fast, and because it uses standard FORTRAN it can be run on most operating systems. Most MODFLOW users rely on proprietary graphical user interfaces for constructing models and viewing model results. Some recent efforts, however, have focused on construction of MODFLOW models using open-source Python scripts. Customizable Python packages, such as FloPy (https://code.google.com/p/flopy), can be used to generate input files, read simulation results, and visualize results in two and three dimensions. Automating this sequence of steps leads to models that can be reproduced directly from original data and rediscretized in space and time. Python is also being used in the development and testing of new MODFLOW functionality. New packages and numerical formulations can be quickly prototyped and tested first with Python programs before implementation in MODFLOW. This is made possible by the flexible object-oriented design capabilities available in Python, the ability to call FORTRAN code from Python, and the ease with which linear systems of equations can be solved using SciPy, for example. Once new features are added to MODFLOW, Python can then be used to automate comprehensive regression testing and ensure reliability and accuracy of new versions prior to release.

  7. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Na Zhu

    2016-02-01

    Full Text Available An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid vehicle systems available in market and under development. Hybrid vehicle technology is a new area and developed rapidly in the field of automotive and mechanical engineering. Students need not only the fundamentals and concepts from college, but also the ability to keep up with the latest technology after their graduation. Therefore, a blended course type is employed to help students have a better understanding of the fundamentals of hybrid vehicle and developing their self-studying ability. Topics in the course have three steps of learning. Firstly, on-ground lecture is given in class, where the instructor explains basic knowledge, such as principles, equations, and design rules.  In this way, the students will have enough background knowledge and be able to conduct further self-reading and research work. Secondly, students are required to go to university’s desire to learn (D2L online system and finish the online part of the topic. In the D2L system, students will find a quiz and its supporting materials. Thirdly, students come back to the on-ground lecture and discuss the quiz in groups with instructor. After the discussion, the instructor gives students a conclusion of the topic and moves forward to the next topic. A computer simulation class is also given to help student better understand the operation strategies of the hybrid vehicle systems and have a trial of design of hybrid vehicle.

  8. Scientific codes developed and used at GRS. Nuclear simulation chain

    Energy Technology Data Exchange (ETDEWEB)

    Schaffrath, Andreas; Sonnenkalb, Martin; Sievers, Juergen; Luther, Wolfgang; Velkov, Kiril [Gesellschaft fuer Anlagen und Reaktorsicherheit (GRS) gGmbH, Garching/Muenchen (Germany). Forschungszentrum

    2016-05-15

    Over 60 technical experts of the reactor safety research division of the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH are developing and validating reliable methods and computer codes - summarized under the term nuclear simulation chain - for the safety-related assessment for all types of nuclear power plants (NPP) and other nuclear facilities considering the current state of science and technology. This nuclear simulation chain has to be able to simulate and assess all relevant physical processes and phenomena for all operating states and (severe) accidents. In the present contribution, the nuclear simulation chain developed and applied by GRS as well as selected examples of its application are presented. The latter demonstrate impressively the width of its scope and its performance. The GRS codes can be passed on request to other (national as well as international) organizations. This contributes to a worldwide increase of the nuclear safety standards. The code transfer is especially important for developing and emerging countries lacking the financial means and/or the necessary know-how for this purpose. At the end of this contribution, the respective course of action is described.

  9. Development and Meiosis of Three Interspecific Hybrids with Cultivated Barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Von Bothmer, R.; Flink, J.; Linde-Laursen, Ib

    1986-01-01

    The development and meiosis of three interspecific hybrids between cultivated barley (Hordeum vulgare L.) and H. secalinum Schreb., H. tetraploidum Covas, and H. parodii Covas, respectively, were studied. All three hybrid combinations developed very slowly vegetatively. Meiosis of the hybrids...

  10. PLUTO code for computational Astrophysics: News and Developments

    Science.gov (United States)

    Tzeferacos, P.; Mignone, A.

    2012-01-01

    We present an overview on recent developments and functionalities available with the PLUTO code for astrophysical fluid dynamics. The recent extension of the code to a conservative finite difference formulation and high order spatial discretization of the compressible equations of magneto-hydrodynamics (MHD), complementary to its finite volume approach, allows for a highly accurate treatment of smooth flows, while avoiding loss of accuracy near smooth extrema and providing sharp non-oscillatory transitions at discontinuities. Among the novel features, we present alternative, fully explicit treatments to include non-ideal dissipative processes (namely viscosity, resistivity and anisotropic thermal conduction), that do not suffer from the usual timestep limitation of explicit time stepping. These methods, offsprings of the multistep Runge-Kutta family that use a Chebyshev polynomial recursion, are competitive substitutes of computationally expensive implicit schemes that involve sparse matrix inversion. Several multi-dimensional benchmarks and appli-cations assess the potential of PLUTO to efficiently handle many astrophysical problems.

  11. Report on FY15 alloy 617 code rules development

    Energy Technology Data Exchange (ETDEWEB)

    Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hollinger, Greg [Becht Engineering Co., Inc., Liberty Corner, NJ (United States); Pease, Derrick [Becht Engineering Co., Inc., Liberty Corner, NJ (United States); Carter, Peter [Stress Engineering Services, Inc., Houston, TX (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Due to its strength at very high temperatures, up to 950°C (1742°F), Alloy 617 is the reference construction material for structural components that operate at or near the outlet temperature of the very high temperature gas-cooled reactors. However, the current rules in the ASME Section III, Division 5 Subsection HB, Subpart B for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 650°C (1200°F) (Corum and Brass, Proceedings of ASME 1991 Pressure Vessels and Piping Conference, PVP-Vol. 215, p.147, ASME, NY, 1991). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep, which is the basis for the current simplified rules. This temperature, 650°C (1200°F), is well below the temperature range of interest for this material for the high temperature gas-cooled reactors and the very high temperature gas-cooled reactors. The only current alternative is, thus, a full inelastic analysis requiring sophisticated material models that have not yet been formulated and verified. To address these issues, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods applicable to very high temperatures. The proposed rules for strain limits and creep-fatigue evaluation were initially documented in the technical literature (Carter, Jetter and Sham, Proceedings of ASME 2012 Pressure Vessels and Piping Conference, papers PVP 2012 28082 and PVP 2012 28083, ASME, NY, 2012), and have been recently revised to incorporate comments and simplify their application. Background documents have been developed for these two code cases to support the ASME Code committee approval process. These background documents for the EPP strain limits and creep-fatigue code cases are documented in this report.

  12. Development of the SCHAMBETA code for scoping analysis of HCDA

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Hahn, D. H

    2000-06-01

    A computer code, SCHAMBETA(Scoping Code for HCDA Analysis using Modified Bethe-Tait Method), is developed to investigate the core disassembly process following a meltdown accident in the framework of a mofified Bethe-Tait method as part of the scoping analysis work to demonstrate the inherent safety of conceptual designs of Korea Advanced Liquid Metal Reactor(KALIMER), A 150 Mwe pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. The methodologies adopted in the code ared particularly useful to perform various parametric studies for better understanding of core disassembly process of liquid metal fast reactors as well as to estimate upper-limit values of the energy release resulting from a power excursion. In the SCHAMBETA code, the core kinetics and hydraulic behavior of the KALIMER is followed over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion, starting at the time that the sodium-voided core reaches the melting temperature of the metallic fuels. For this purpose, the equations of state of pressure-energy density relationship are derived for the saturated-vapor as well as the solid liquid of metallic uranium fuel, and implemenmted into the formulations of the disassembly reactivity. Mathematical formulations are then developed, in the framework of Modified Bethe-Tait method, in a form relevant to utilize the improved equations of state as well as to consider Doppler effects, for scoping analysis of the super-prompt-critical power excursions driven by a specified rate of reactivity insertion.

  13. The development of a mathematical model of a hybrid airship

    Science.gov (United States)

    Abdul Ghaffar, Alia Farhana

    The mathematical model of a winged hybrid airship is developed for the analysis of its dynamic stability characteristics. A full nonlinear equation of motion that describes the dynamics of the hybrid airship is determined and for completeness, some of the components in the equations are estimated using the appropriate methods that has been established and used in the past. Adequate assumptions are made in order to apply any relevant computation and estimation methods. While this hybrid airship design is unique, its modeling and stability analysis were done according to the typical procedure of conventional airships and aircrafts. All computations pertaining to the hybrid airship's equation of motion are carried out and any issues related to the integration of the wing to the conventional airship design are discussed in this thesis. The design of the hybrid airship is also slightly modified to suit the demanding requirement of a complete and feasible mathematical model. Then, linearization is performed under a chosen trim condition, and eigenvalue analysis is carried out to determine the general dynamic stability characteristics of the winged hybrid airship. The result shows that the winged hybrid airship possesses dynamic instability in longitudinal pitch motion and lateral-directional slow roll motion. This is due to the strong coupling between the aerostatic lift from the buoyant gas and aerodynamic lift from the wing.

  14. An implementation of hybrid parallel CUDA code for the hyperonic nuclear forces

    CERN Document Server

    Nemura, Hidekatsu

    2016-01-01

    We present our recent effort to develop a GPGPU program to calculate 52 channels of the Nambu-Bethe-Salpeter (NBS) wave functions in order to study the baryon interactions, from nucleon-nucleon to $\\Xi-\\Xi$, from lattice QCD. We adopt CUDA programming to perform the multi-GPU execution on a hybrid parallel programming with MPI and OpenMP. Effective baryon block algorithm is briefly outlined, which calculates efficaciously a large number of NBS wave functions at a time, and three CUDA kernel programs are implemented to materialize the effective baryon block algorithm using GPUs on the single-program multiple-data (SPMD) programming model. In order to parallelize multiple GPUs, we take both two approaches by dividing the time dimension and by dividing the spatial dimensions. Performances are measured using HA-PACS supercomputer in University of Tsukuba, which includes NVIDIA M2090 and NVIDIA K20X GPUs. Strong scaling and weak scaling measured by using both M2090 and K20X GPUs are presented. We find distinct dif...

  15. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  16. The role of the PIRT process in identifying code improvements and executing code development

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Boyack, B.E. [Los Alamos National Lab., NM (United States)

    1997-07-01

    In September 1988, the USNRC issued a revised ECCS rule for light water reactors that allows, as an option, the use of best estimate (BE) plus uncertainty methods in safety analysis. The key feature of this licensing option relates to quantification of the uncertainty in the determination that an NPP has a {open_quotes}low{close_quotes} probability of violating the safety criteria specified in 10 CFR 50. To support the 1988 licensing revision, the USNRC and its contractors developed the CSAU evaluation methodology to demonstrate the feasibility of the BE plus uncertainty approach. The PIRT process, Step 3 in the CSAU methodology, was originally formulated to support the BE plus uncertainty licensing option as executed in the CSAU approach to safety analysis. Subsequent work has shown the PIRT process to be a much more powerful tool than conceived in its original form. Through further development and application, the PIRT process has shown itself to be a robust means to establish safety analysis computer code phenomenological requirements in their order of importance to such analyses. Used early in research directed toward these objectives, PIRT results also provide the technical basis and cost effective organization for new experimental programs needed to improve the safety analysis codes for new applications. The primary purpose of this paper is to describe the generic PIRT process, including typical and common illustrations from prior applications. The secondary objective is to provide guidance to future applications of the process to help them focus, in a graded approach, on systems, components, processes and phenomena that have been common in several prior applications.

  17. Recent development of the photoionization / PDR code Cloudy

    Science.gov (United States)

    van Hoof, P. A. M.; Porter, R. L.; Ferland, G. J.

    2011-05-01

    Cloudy is a widely used open-source modeling tool for photoionized and PDR/XDR environments. It was the first code that could produce a unified and fully self-consistent model of both the ionized region and the PDR surrounding a central source. Such an environment can e.g. be found in massive star forming regions, in planetary nebulae or around AGN. The code is also capable of producing "classical" PDR models that do not include an ionized region. The emphasis of the code is on detailed and state-of-the-art treatment of micro-physical processes. Cloudy is continually being updated to improve this treatment and to add more and newer atomic and molecular data. On this poster we will discuss some of these developments, including the addition of the LAMDA, CDMS and JPL molecular line databases. These will allow us to make NLTE predictions for the molecular line emission, but the accuracy of those predictions will be limited by the quality (or even absence) of collision strength data. We will discuss the impact this has on the accuracy of the predicted spectra in typical ISM conditions.

  18. MARS15 Code Developments Driven by the Intensity Frontier Needs

    CERN Document Server

    Mokhov, N V; Rakhno, I L; Striganov, S I; Tropin, I S; Eidelman, Yu I; Aarnio, P; Gudima, K K; Konobeev, A Yu

    2014-01-01

    The MARS15(2012) is the latest version of a multi-purpose Monte-Carlo code developed since 1974 for detailed simulation of hadronic and electromagnetic cascades in an arbitrary 3-D geometry of shielding, accelerator, detector and spacecraft components with energy ranging from a fraction of an electronvolt to 100 TeV. Driven by needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, the code has been recently substantially improved and extended. These include inclusive and exclusive particle event generators in the 0.7 to 12 GeV energy range, proton inelastic interaction modeling below 20 MeV, implementation of the EGS5 code for electromagnetic shower simulation at energies from 1 keV to 20 MeV, stopping power description in compound materials, new module for DPA calculations for neutrons from a fraction of eV to 20-150 MeV, user-friendly DeTra-based method to calculate nuclide inventories, and new ROOT-based geometry.

  19. Stellarator-specific developments for the systems code PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, Felix; Beidler, Craig; Dinklage, Andreas; Feng, Yuehe; Geiger, Joachim; Schauer, Felix; Turkin, Yuriy; Wolf, Robert; Xanthopoulos, Pavlos [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Knight, Peter; Ward, David [Culham Centre for Fusion Energy, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)

    2014-07-01

    The ultimate goal of fusion research is to demonstrate the feasibility of economic production of electricity. The most promising concepts to achieve this by magnetic confinement are the Tokamak and the Stellarator. System codes are used to study the general properties of a fusion power plant. Built in a modular way systems codes describe the physical and technical properties of the power plant components. For the Helical Advanced Stellarator (HELIAS) concept modules have been developed in the frame of the existing Tokamak systems code PROCESS. These include: A geometry model based on Fourier coefficients which represent the complex 3-D plasma shape, a divertor model which assumes diffusive cross-field transport and high radiation at the X-point, a coil model which uses a scaling based on the HELIAS design and a transport model which either employs empirical confinement time scalings or sophisticated 1-D collisional and turbulent transport calculations. This approach aims at a direct comparison between Tokamak and Stellarator power plant designs.

  20. Development of tools for automatic generation of PLC code

    CERN Document Server

    Koutli, Maria; Rochez, Jacques

    This Master thesis was performed at CERN and more specifically in the EN-ICE-PLC section. The Thesis describes the integration of two PLC platforms, that are based on CODESYS development tool, to the CERN defined industrial framework, UNICOS. CODESYS is a development tool for PLC programming, based on IEC 61131-3 standard, and is adopted by many PLC manufacturers. The two PLC development environments are, the SoMachine from Schneider and the TwinCAT from Beckhoff. The two CODESYS compatible PLCs, should be controlled by the SCADA system of Siemens, WinCC OA. The framework includes a library of Function Blocks (objects) for the PLC programs and a software for automatic generation of the PLC code based on this library, called UAB. The integration aimed to give a solution that is shared by both PLC platforms and was based on the PLCOpen XML scheme. The developed tools were demonstrated by creating a control application for both PLC environments and testing of the behavior of the code of the library.

  1. Large-Eddy Simulation Code Developed for Propulsion Applications

    Science.gov (United States)

    DeBonis, James R.

    2003-01-01

    A large-eddy simulation (LES) code was developed at the NASA Glenn Research Center to provide more accurate and detailed computational analyses of propulsion flow fields. The accuracy of current computational fluid dynamics (CFD) methods is limited primarily by their inability to properly account for the turbulent motion present in virtually all propulsion flows. Because the efficiency and performance of a propulsion system are highly dependent on the details of this turbulent motion, it is critical for CFD to accurately model it. The LES code promises to give new CFD simulations an advantage over older methods by directly computing the large turbulent eddies, to correctly predict their effect on a propulsion system. Turbulent motion is a random, unsteady process whose behavior is difficult to predict through computer simulations. Current methods are based on Reynolds-Averaged Navier- Stokes (RANS) analyses that rely on models to represent the effect of turbulence within a flow field. The quality of the results depends on the quality of the model and its applicability to the type of flow field being studied. LES promises to be more accurate because it drastically reduces the amount of modeling necessary. It is the logical step toward improving turbulent flow predictions. In LES, the large-scale dominant turbulent motion is computed directly, leaving only the less significant small turbulent scales to be modeled. As part of the prediction, the LES method generates detailed information on the turbulence itself, providing important information for other applications, such as aeroacoustics. The LES code developed at Glenn for propulsion flow fields is being used to both analyze propulsion system components and test improved LES algorithms (subgrid-scale models, filters, and numerical schemes). The code solves the compressible Favre-filtered Navier- Stokes equations using an explicit fourth-order accurate numerical scheme, it incorporates a compressible form of

  2. The ICPC coding system in pharmacy : developing a subset, ICPC-Ph

    NARCIS (Netherlands)

    van Mil, JWF; Brenninkmeijer, R; Tromp, TFJ

    1998-01-01

    The ICPC system is a coding system developed for general medical practice, to be able to code the GP-patient encounters and other actions. Some of the codes can be easily used by community pharmacists to code complaints and diseases in pharmaceutical care practice. We developed a subset of the ICPC

  3. Merging photovoltaic hardware development with hybrid applications in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    1993-11-01

    The use of multi-source power systems, ``hybrids,`` is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The US Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

  4. Merging photovoltaic hardware development with hybrid applications in the USA

    Science.gov (United States)

    Bower, W.

    The use of multi-source power systems, 'hybrids,' is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The U.S. Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

  5. Linear benchmarks between the hybrid codes HYMAGYC and HMGC to study energetic particle driven Alfvénic modes

    Science.gov (United States)

    Fogaccia, G.; Vlad, G.; Briguglio, S.

    2016-11-01

    Resonant interaction between energetic particles (EPs), produced by fusion reactions and/or additional heating systems, and shear Alfvén modes can destabilize global Alfvénic modes enhancing the EP transport. In order to investigate the EP transport in present and next generation fusion devices, numerical simulations are recognized as a very important tool. Among the various numerical models, the hybrid MHD gyrokinetic one has shown to be a valid compromise between a sufficiently accurate wave-particle interaction description and affordable computational resource requirements. This paper presents a linear benchmark between the hybrid codes HYMAGYC and HMGC. The HYMAGYC code solves the full, linear MHD equations in general curvilinear geometry for the bulk plasma and describes the EP population by the nonlinear gyrokinetic Vlasov equation. On the other side, HMGC solves the nonlinear, reduced O≤ft(ε 03\\right) , pressureless MHD equations ({ε0} being the inverse aspect ratio) for the bulk plasma and the drift kinetic Vlasov equation for the EPs. The results of the HYMAGYC and HMGC codes have been compared both in the MHD limit and in a wide range of the EP parameter space for two test cases (one of which being the so-called TAE n  =  6 ITPA Energetic Particle Group test case), both characterized by {ε0}\\ll 1 . In the first test case (test case A), good qualitative agreement is found w.r.t. real frequencies, growth rates and spatial structures of the most unstable modes, with some quantitative differences for the growth rates. For the so-called ITPA test case (test case B), at the nominal energetic particle density value, the disagreement between the two codes is, on the contrary, also qualitative, as a different mode is found as the most unstable one.

  6. Development of a predictive code for aircrew radiation exposure.

    Science.gov (United States)

    McCall, M J; Lemay, F; Bean, M R; Lewis, B J; Bennett, L G I

    2009-10-01

    Using the empirical data measured by the Royal Military College with a tissue equivalent proportional counter, a model was derived to allow for the interpolation of the dose rate for any global position, altitude and date. Through integration of the dose-rate function over a great circle flight path or between various waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAire) was further developed to provide an estimate of the total dose equivalent on any route worldwide at any period in the solar cycle.

  7. Expression of macro non-coding RNAs Meg8 and Irm in mouse embryonic development.

    Science.gov (United States)

    Gu, Tiantian; He, Hongjuan; Han, Zhengbin; Zeng, Tiebo; Huang, Zhijun; Liu, Qi; Gu, Ning; Chen, Yan; Sugimoto, Kenkichi; Jiang, Huijie; Wu, Qiong

    2012-07-01

    Non-coding RNAs (ncRNAs) Meg8 and Irm were previously identified as alternatively splicing isoforms of Rian gene. Ascertaining ncRNAs spatiotemporal expression patterns is crucial for understanding the physiological roles of ncRNAs during tissue and organ development. In this study in mouse embryos, we focused on the developmental regulation expression of imprinted macro ncRNAs, Meg8 and Irm by using in situ hybridization and quantitative real-time RT-PCR (QRT-PCR). The in situ hybridization results showed that Meg8 and Irm were expressed in the developing brain at embryonic day 10.5 (E10.5) and E11.5, while Irm expression signals were strikingly detected in the somite, where Meg8 expression signals were undetectable. By E15.5, they were expressed in brain, tongue, liver, lung and neuroendocrine tissues, while Irm displayed more restricted expression in tongue and skeletal muscle than Meg8. Furthermore, quantitative analysis confirmed that they were highly expressed in tongue and brain at E12.5, E15.5 and E18.5. These results indicated that Meg8 and Irm might be coordinately expressed and functionally correlated in diverse of organs. Notably, Irm was more closely associated with morphogenesis of skeletal muscle in contrast to Meg8 during embryonic development.

  8. From StGermain to Underworld: Enabling Community-based code Development in Geodynamics

    Science.gov (United States)

    Quenette, S. M.; Moresi, L.; Sunter, P. D.; Hodkinson, L.; Lo, A.; Hassan, R.; Appelbe, B.; Turnbull, R.

    2005-12-01

    Each discipline of geophysics has traditionally focused on limited sets of closely related phenomena using methodologies and data sets optimized for its specific area of interest. Why is that? Single discipline, single scale, foundation physics problems are relatively easy to code in Fortran, and hence they eventually become optimized for best performance whilst simultaneously becoming difficult to adapt to new interests. Yet geodynamicists want to break these ``out-of-scope'' barriers, and incorporate signals of interests beyond their immediate phenomena of interest. In turn this often entails a multi physics, multi scale and multi discipline development model. Multi physics is potentially easy to code, but application limited by the choice of numerical technique of the code. Multi scale is a numerical and discretisation issue that is closely related to the fundamental data structures of the code. This is difficult to change, and the ideal is hybrids of optimized solutions at desired scales. Multi discipline is much more focused on people and how they form problem constraints, the language / ontology they use, and their expectation in usability. In summary: facilitating a multi scale, multi physics , multi disciplinary development environment is difficult, complicated and generally not of core interest to a geodynamicist. However, today, with more powerful CPU architectures, we can move away from Fortran style coding with little wall-time cost. We have more powerful numerical techniques and models for constitutive laws, where disciplines beyond those specific to geodynamics such as numerical science, material science and computational science have progressed. Furthermore, more well proven and established libraries are available, when chosen and applied appropriately, lead to less work and for better results. How can we capitalize on this? We propose a multi-level community development model that allows computational scientists, numerical scientists, material

  9. Development of sunflower hybrids tolerant to tribenuron methyl

    Directory of Open Access Journals (Sweden)

    Jocić Siniša

    2011-01-01

    Full Text Available Discovery of tribenuron-methyl resistant wild Helianthus annuus L. population (ANN-KAN created an opportunity for expansion of sunflower herbicide resistance breeding program. The aim of this study was development of sunflower hybrids resistant to tribenuron-methyl. Creation of tribenuron-methyl resistant hybrids would enable the use of a wider palette of herbicides for sunflower, more efficient chemical control of Cirsium arvense and more economically profitable post-emergence control of some annual broad-leaves weeds in sunflower. Original populations SURES-1 and SURES-2 are homozygous for resistance to tribenuron-methyl. F1 generations produced from the crossings are completely resistant to tribenuron-methyl, pointing out to dominant way of inheritance of this trait. Studies on the exact number of genes controlling the resistance are in progress. Tribenuron-methyl resistance was transferred from original populations into a number of female and male inbred lines of cultivated sunflower. These inbred lines could enable creation of a number of hybrids resistant to tribenuron-methyl. Hybrids SUMO-1-PR, SUMO-2- OR and SUMO-3 are resistant to doubled application dose of tribenuron-methyl. Agronomical characteristics of these hybrids are on the level with the leading conventional sunflower hybrids.

  10. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    Science.gov (United States)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  11. Development of the strontium iodide coded aperture (SICA) instrument

    Science.gov (United States)

    Mitchell, Lee J.; Phlips, Bernard F.; Grove, J. Eric; Cordes, Ryan

    2015-08-01

    The work reports on the development of a Strontium Iodide Coded Aperture (SICA) instrument for use in space-based astrophysics, solar physics, and high-energy atmospheric physics. The Naval Research Laboratory is developing a prototype coded aperture imager that will consist of an 8 x 8 array of SrI2:Eu detectors, each read out by a silicon photomultiplier. The array would be used to demonstrate SrI2:Eu detector performance for space-based missions. Europium-doped strontium iodide (SrI2:Eu) detectors have recently become available, and the material is a strong candidate to replace existing detector technology currently used for space-based gamma-ray astrophysics research. The detectors have a typical energy resolution of 3.2% at 662 keV, a significant improvement over the 6.5% energy resolution of thallium-doped sodium iodide. With a density of 4.59 g/cm and a Zeff of 49, SrI2:Eu has a high efficiency for MeV gamma-ray detection. Coupling this with recent improvements in silicon photomultiplier technology (i.e., no bulky photomultiplier tubes) creates high-density, large-area, low-power detector arrays with good energy resolution. Also, the energy resolution of SrI2:Eu makes it ideal for use as the back plane of a Compton telescope.

  12. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    Science.gov (United States)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  13. Parallel evolution of chordate cis-regulatory code for development.

    Directory of Open Access Journals (Sweden)

    Laura Doglio

    2013-11-01

    Full Text Available Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs, yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations.

  14. 78 FR 33838 - DOE Participation in Development of the International Energy Conservation Code

    Science.gov (United States)

    2013-06-05

    ... Code AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice and... by the International Code Council (ICC) to develop the International Energy Conservation Code (IECC... on actions taken on DOE's code change proposals and technical analysis at the ICC Committee...

  15. Development of integrated fuel cell hybrid power source for electric forklift

    Science.gov (United States)

    Keränen, T. M.; Karimäki, H.; Viitakangas, J.; Vallet, J.; Ihonen, J.; Hyötylä, P.; Uusalo, H.; Tingelöf, T.

    A hybrid drivetrain comprising a 16 kW polymer electrolyte membrane fuel cell system, ultracapacitor modules and a lead-acid battery was constructed and experimentally tested in a real counterweight forklift application. A scaled-down version of the hybrid system was assembled and tested in a controlled laboratory environment using a controllable resistive load. The control loops were operating in an in-house developed embedded system. The software is designed for building generic control applications, and the source code has been released as open source and made available on the internet. The hybrid drivetrain supplied the required 50 kW peak power in a typical forklift work cycle consisting of both loaded and unloaded driving, and lifting of a 2.4 tonne load. Load variations seen by the fuel cell were a fraction of the total current drawn by the forklift, with the average fuel cell power being 55% of nominal rating. A simple fuel cell hybrid model was also developed to further study the effects of energy storage dimensioning. Simulation results indicate that while a battery alone significantly reduces the load variations of the fuel cell, an ultracapacitor reduces them even further. Furthermore, a relatively small ultracapacitor is enough to achieve most of the potential benefit.

  16. Finite element code development for modeling detonation of HMX composites

    Science.gov (United States)

    Duran, Adam V.; Sundararaghavan, Veera

    2017-01-01

    In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.

  17. The Monte Carlo code MCSHAPE: Main features and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Scot, Viviana, E-mail: viviana.scot@unibo.it; Fernandez, Jorge E.

    2015-06-01

    MCSHAPE is a general purpose Monte Carlo code developed at the University of Bologna to simulate the diffusion of X- and gamma-ray photons with the special feature of describing the full evolution of the photon polarization state along the interactions with the target. The prevailing photon–matter interactions in the energy range 1–1000 keV, Compton and Rayleigh scattering and photoelectric effect, are considered. All the parameters that characterize the photon transport can be suitably defined: (i) the source intensity, (ii) its full polarization state as a function of energy, (iii) the number of collisions, and (iv) the energy interval and resolution of the simulation. It is possible to visualize the results for selected groups of interactions. MCSHAPE simulates the propagation in heterogeneous media of polarized photons (from synchrotron sources) or of partially polarized sources (from X-ray tubes). In this paper, the main features of MCSHAPE are illustrated with some examples and a comparison with experimental data. - Highlights: • MCSHAPE is an MC code for the simulation of the diffusion of photons in the matter. • It includes the proper description of the evolution of the photon polarization state. • The polarization state is described by means of the Stokes vector, I, Q, U, V. • MCSHAPE includes the computation of the detector influence in the measured spectrum. • MCSHAPE features are illustrated with examples and comparison with experiments.

  18. Methodology, status and plans for development and assessment of Cathare code

    Energy Technology Data Exchange (ETDEWEB)

    Bestion, D.; Barre, F.; Faydide, B. [CEA - Grenoble (France)

    1997-07-01

    This paper presents the methodology, status and plans for the development, assessment and uncertainty evaluation of the Cathare code. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the status of the code development and assessment is presented. The general strategy used for the development and the assessment of the code is presented. Analytical experiments with separate effect tests, and component tests are used for the development and the validation of closure laws. Successive Revisions of constitutive laws are implemented in successive Versions of the code and assessed. System tests or integral tests are used to validate the general consistency of the Revision. Each delivery of a code Version + Revision is fully assessed and documented. A methodology is being developed to determine the uncertainty on all constitutive laws of the code using calculations of many analytical tests and applying the Discrete Adjoint Sensitivity Method (DASM). At last, the plans for the future developments of the code are presented. They concern the optimization of the code performance through parallel computing - the code will be used for real time full scope plant simulators - the coupling with many other codes (neutronic codes, severe accident codes), the application of the code for containment thermalhydraulics. Also, physical improvements are required in the field of low pressure transients and in the modeling for the 3-D model.

  19. Multiple description coding with spatial-temporal hybrid interpolation for video streaming in peer-to-peer networks

    Institute of Scientific and Technical Information of China (English)

    LU Meng-ting; LIN Chang-kuan; YAO Jason; CHEN Homer H.

    2006-01-01

    In this paper, we present an innovative design of multiple description coding with spatial-temporal hybrid interpolation (MDC-STHI) for peer-to-peer (P2P) video streaming. MDC can be effective in P2P networks because the nature of overlay routing makes path diversity more feasible. However, most MDC schemes require a redesign of video coding systems and are not cost-effective for wide deployment. We base our work on multiple state video coding, a form of MDC that can utilize standard codecs. Two quarter-sized video bit streams are generated as redundancies and embedded in the original-sized streams. With MDC-STHI, the nodes in P2P network can adjust the streaming traffic to satisfy the constraints of their devices and network environment. By design, the redundancies are used to compensate for missing frames, and can also be streamed independently to fulfill certain needs of low rate, low resolution applications. For better error concealment, optimal weights for spatial and temporal interpolation are determined at the source, quantized, and included in redundancies.

  20. Analyses to support development of risk-informed separation distances for hydrogen codes and standards.

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, Jeffrey L.; Houf, William G. (Sandia National Laboratories, Livermore, CA); Fluer, Inc., Paso Robels, CA; Fluer, Larry (Fluer, Inc., Paso Robels, CA); Middleton, Bobby

    2009-03-01

    The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk, code and standard development organizations are tilizing risk-informed concepts in developing hydrogen codes and standards.

  1. Developing a code of ethics for human cloning.

    Science.gov (United States)

    Collmann, J; Graber, G

    2000-01-01

    Under what conditions might the cloning of human beings constitute an ethical practice? A tendency exists to analyze human cloning merely as a technical procedure. As with all revolutionary technological developments, however, human cloning potentially exists in a broad social context that will both shape and be shaped by the biological techniques. Although human cloning must be subjected to technical analysis that addresses fundamental ethical questions such as its safety and efficacy, questions exist that focus our attention on broader issues. Asserting that cloning inevitably leads to undesirable consequences commits the fallacy of technological determinism and untenably separates technological and ethical evaluation. Drawing from the Report of the National Bioethics Advisory Committee and Aldous Huxley's Brave New World, we offer a draft "Code of Ethics for Human Cloning" in order to stimulate discussion about the ethics of the broader ramifications of human cloning as well as its particular technological properties.

  2. Low complexity source and channel coding for mm-wave hybrid fiber-wireless links

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Vegas Olmos, Juan José; Pang, Xiaodan;

    2014-01-01

    performance of several encoded high-definition video sequences constrained by the channel bitrate and the packet size. We argue that light video compression and low complexity channel coding for the W-band fiber-wireless link enable low-delay multiple channel 1080p wireless HD video transmission....

  3. A fully parallel, high precision, N-body code running on hybrid computing platforms

    CERN Document Server

    Capuzzo-Dolcetta, R; Punzo, D

    2012-01-01

    We present a new implementation of the numerical integration of the classical, gravitational, N-body problem based on a high order Hermite's integration scheme with block time steps, with a direct evaluation of the particle-particle forces. The main innovation of this code (called HiGPUs) is its full parallelization, exploiting both OpenMP and MPI in the use of the multicore Central Processing Units as well as either Compute Unified Device Architecture (CUDA) or OpenCL for the hosted Graphic Processing Units. We tested both performance and accuracy of the code using up to 256 GPUs in the supercomputer IBM iDataPlex DX360M3 Linux Infiniband Cluster provided by the italian supercomputing consortium CINECA, for values of N up to 8 millions. We were able to follow the evolution of a system of 8 million bodies for few crossing times, task previously unreached by direct summation codes. The code is freely available to the scientific community.

  4. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  5. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  6. Channel Efficiency with Security Enhancement for Remote Condition Monitoring of Multi Machine System Using Hybrid Huffman Coding

    Science.gov (United States)

    Datta, Jinia; Chowdhuri, Sumana; Bera, Jitendranath

    2016-12-01

    This paper presents a novel scheme of remote condition monitoring of multi machine system where a secured and coded data of induction machine with different parameters is communicated between a state-of-the-art dedicated hardware Units (DHU) installed at the machine terminal and a centralized PC based machine data management (MDM) software. The DHUs are built for acquisition of different parameters from the respective machines, and hence are placed at their nearby panels in order to acquire different parameters cost effectively during their running condition. The MDM software collects these data through a communication channel where all the DHUs are networked using RS485 protocol. Before transmitting, the parameter's related data is modified with the adoption of differential pulse coded modulation (DPCM) and Huffman coding technique. It is further encrypted with a private key where different keys are used for different DHUs. In this way a data security scheme is adopted during its passage through the communication channel in order to avoid any third party attack into the channel. The hybrid mode of DPCM and Huffman coding is chosen to reduce the data packet length. A MATLAB based simulation and its practical implementation using DHUs at three machine terminals (one healthy three phase, one healthy single phase and one faulty three phase machine) proves its efficacy and usefulness for condition based maintenance of multi machine system. The data at the central control room are decrypted and decoded using MDM software. In this work it is observed that Chanel efficiency with respect to different parameter measurements has been increased very much.

  7. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Courau, T.; Plagne, L.; Ponicot, A. [EDF R and D, 1, Avenue du General de Gaulle, 92141 Clamart Cedex (France); Sjoden, G. [Nuclear and Radiological Engineering, Georgia Inst. of Technology, Atlanta, GA 30332 (United States)

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadrature required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)

  8. Trends in EFL Technology and Educational Coding: A Case Study of an Evaluation Application Developed on LiveCode

    Science.gov (United States)

    Uehara, Suwako; Noriega, Edgar Josafat Martinez

    2016-01-01

    The availability of user-friendly coding software is increasing, yet teachers might hesitate to use this technology to develop for educational needs. This paper discusses studies related to technology for educational uses and introduces an evaluation application being developed. Through questionnaires by student users and open-ended discussion by…

  9. OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads

    Science.gov (United States)

    Kosakowski, G.; Kulik, D. A.; Shao, H.

    2012-04-01

    OpenGeoSys-GEMS is a generic purpose reactive transport code based on the operator splitting approach. The code couples the Finite-Element groundwater flow and multi-species transport modules of the OpenGeoSys (OGS) project (http://www.ufz.de/index.php?en=18345) with the GEM-Selektor research package to model thermodynamic equilibrium of aquatic (geo)chemical systems utilizing the Gibbs Energy Minimization approach (http://gems.web.psi.ch/). The combination of OGS and the GEM-Selektor kernel (GEMS3K) is highly flexible due to the object-oriented modular code structures and the well defined (memory based) data exchange modules. Like other reactive transport codes, the practical applicability of OGS-GEMS is often hampered by the long calculation time and large memory requirements. • For realistic geochemical systems which might include dozens of mineral phases and several (non-ideal) solid solutions the time needed to solve the chemical system with GEMS3K may increase exceptionally. • The codes are coupled in a sequential non-iterative loop. In order to keep the accuracy, the time step size is restricted. In combination with a fine spatial discretization the time step size may become very small which increases calculation times drastically even for small 1D problems. • The current version of OGS is not optimized for memory use and the MPI version of OGS does not distribute data between nodes. Even for moderately small 2D problems the number of MPI processes that fit into memory of up-to-date workstations or HPC hardware is limited. One strategy to overcome the above mentioned restrictions of OGS-GEMS is to parallelize the coupled code. For OGS a parallelized version already exists. It is based on a domain decomposition method implemented with MPI and provides a parallel solver for fluid and mass transport processes. In the coupled code, after solving fluid flow and solute transport, geochemical calculations are done in form of a central loop over all finite

  10. Formation and transport of entropy structures in the magnetotail simulated with a 3-D global hybrid code

    Science.gov (United States)

    Lin, Y.; Wing, S.; Johnson, J. R.; Wang, X. Y.; Perez, J. D.; Cheng, L.

    2017-06-01

    Global structure and evolution of flux tube entropy S, integrated over closed field lines, associated with magnetic reconnection in the magnetotail are investigated using the AuburN Global hybrId codE in three dimensions (3-D), ANGIE3D. Flux tubes with decreased entropy, or "bubbles," are found to be generated due to the sudden change of flux tube topology and thus volume in reconnection. By tracking the propagation of the entropy-depleted flux tubes, the roles of the entropy structure in plasma transport to the inner magnetosphere is examined with a self-consistent global hybrid simulation for the first time. The value of S first decreases due to the shortening of flux tubes and then increases due to local ion heating as the bubbles are injected earthward by interchange-ballooning instability, finally oscillating around an equilibrium radial distance where S is nearly the same as the ambient value. The pressure remains anisotropic and not constant along the flux tubes during their propagation with a nonzero heat flux along the field line throughout the duration of the simulation. The correlation of these bubbles with earthward fast flows and specific entropy s is also studied.

  11. Near term hybrid passenger vehicle development program, phase 1

    Science.gov (United States)

    1980-01-01

    Missions for hybrid vehicles that promise to yield high petroleum impact were identified and a preliminary design, was developed that satisfies the mission requirements and performance specifications. Technologies that are critical to successful vehicle design, development and fabrication were determined. Trade-off studies to maximize fuel savings were used to develop initial design specifications of the near term hybrid vehicle. Various designs were "driven" through detailed computer simulations which calculate the petroleum consumption in standard driving cycles, the petroleum and electricity consumptions over the specified missions, and the vehicle's life cycle costs over a 10 year vehicle lifetime. Particular attention was given to the selection of the electric motor, heat engine, drivetrain, battery pack and control system. The preliminary design reflects a modified current compact car powered by a currently available turbocharged diesel engine and a 24 kW (peak) compound dc electric motor.

  12. Development of lead-free solders for hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Frear, D.R.; Robinson, D.G.

    1996-01-01

    Extensive work has been conducted by industry to develop lead-free solders for electronics applications. The driving force behind this effort is pressure to ban or tax the use of lead-bearing solders. There has been further interest to reduce the use of hazardous chemical cleaners. Lead-free soldering and low-residue, ``no clean`` assembly processing are being considered as solutions to these environmental issues. Most of the work has been directed toward commercial and military printed wiring board (PWB) technology, although similar problems confront the hybrid microcircuit (HMC) industry, where the development of lead-free HMC solders is generally lagging. Sandia National Laboratories is responsible for designing a variety of critical, high reliability hybrid components for radars. Sandia has consequently initiated a project, as part of its Environmentally Conscious Manufacturing program, to develop low-residue, lead-free soldering for HMCs. This paper discusses the progress of that work.

  13. Flow Analysis of Code Customizations

    DEFF Research Database (Denmark)

    Hessellund, Anders; Sestoft, Peter

    2008-01-01

    Inconsistency between metadata and code customizations is a major concern in modern, configurable enterprise systems. The increasing reliance on metadata, in the form of XML files, and code customizations, in the form of Java files, has led to a hybrid development platform. The expected consisten...

  14. Development tools for hybrids and electric cars; Entwicklungswerkzeuge fuer Hybrid- und Elektroautos

    Energy Technology Data Exchange (ETDEWEB)

    Lauff, Ulrich; Stoermer, Christoph; Dollmaier, Thomas; Klauda, Matthias [ETAS GmbH, Stuttgart (Germany)

    2010-02-15

    With the ongoing CO{sub 2} discussion as a backdrop, there is a rush to get hybrid and electric vehicles ready for series production. This calls for the development of numerous new components and systems, along with their integration in the vehicle. The function, safety, and reliability of both ECU software and electronics contribute to a successful market introduction of the new vehicle concepts. To handle the design, implementation, testing, integration, and calibration of the complex functions of electronic controls, engineers require development tools suited to these tasks. (orig.)

  15. Learning Concepts, Language, and Literacy in Hybrid Linguistic Codes: The Multilingual Maze of Urban Grade 1 Classrooms in South Africa

    Science.gov (United States)

    Henning, Elizabeth

    2012-01-01

    From the field of developmental psycholinguistics and from conceptual development theory there is evidence that excessive linguistic "code-switching" in early school education may pose some hazards for the learning of young multilingual children. In this article the author addresses the issue, invoking post-Piagetian and neo-Vygotskian…

  16. Developing Fortran Code for Kriging on the Stampede Supercomputer

    Science.gov (United States)

    Hodgess, Erin

    2016-04-01

    Kriging is easily accessible in the open source statistical language R (R Core Team, 2015) in the gstat (Pebesma, 2004) package. It works very well, but can be slow on large data sets, particular if the prediction space is large as well. We are working on the Stampede supercomputer at the Texas Advanced Computing Center to develop code using a combination of R and the Message Passage Interface (MPI) bindings to Fortran. We have a function similar to the autofitVariogram found in the automap (Hiemstra {et al}, 2008) package and it is very effective. We are comparing R with MPI/Fortran, MPI/Fortran alone, and R with the Rmpi package, which uses bindings to C. We will present results from simulation studies and real-world examples. References: Hiemstra, P.H., Pebesma, E.J., Twenhofel, C.J.W. and G.B.M. Heuvelink, 2008. Real-time automatic interpolation of ambient gamma dose rates from the Dutch Radioactivity Monitoring Network. Computers and Geosciences, accepted for publication. Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers and Geosciences, 30: 683-691. R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  17. The role of the uncertainty in code development

    Energy Technology Data Exchange (ETDEWEB)

    Barre, F. [CEA-Grenoble (France)

    1997-07-01

    From a general point of view, all the results of a calculation should be given with their uncertainty. It is of most importance in nuclear safety where sizing of the safety systems, therefore protection of the population and the environment essentially depends on the calculation results. Until these last years, the safety analysis was performed with conservative tools. Two types of critics can be made. Firstly, conservative margins can be too large and it may be possible to reduce the cost of the plant or its operation with a best estimate approach. Secondly, some of the conservative hypotheses may not really conservative in the full range of physical events which can occur during an accident. Simpson gives an interesting example: in some cases, the majoration of the residual power during a small break LOCA can lead to an overprediction of the swell level and thus of an overprediction of the core cooling, which is opposite to a conservative prediction. A last question is: does the accumulation of conservative hypotheses for a problem always give a conservative result? The two phase flow physics, mainly dealing with situation of mechanical and thermal non-equilibrium, is too much complicated to answer these questions with a simple engineer judgement. The objective of this paper is to make a review of the quantification of the uncertainties which can be made during code development and validation.

  18. Recent developments in seismic analysis in the code Aster; Les developpements recents en analyse sismique dans le code aster

    Energy Technology Data Exchange (ETDEWEB)

    Guihot, P.; Devesa, G.; Dumond, A.; Panet, M.; Waeckel, F.

    1996-12-31

    Progress in the field of seismic qualification and design methods made these last few years allows physical phenomena actually in play to be better considered, while cutting down the conservatism associated with some simplified design methods. So following the change in methods and developing the most advantageous ones among them contributes to the process of the seismic margins assessment and the preparation of new design tools for future series. In this paper, the main developments and improvements in methods which have been made these last two years in the Code Aster, in order to improve seismic calculation methods and seismic margin assessment are presented. The first development relates to making the MISS3D soil structure interaction code available, thanks to an interface made with the Code Aster. The second relates to the possibility of making modal basis time calculations on multi-supported structures by considering local non linearities like impact, friction or squeeze fluid forces. Recent developments in random dynamics and postprocessing devoted to earthquake designs are then mentioned. Three applications of these developments are then ut forward. The first application relates to a test case for soil structure interaction design using MISS3D-Aster coupling. The second is a test case for a multi-supported structure. The last application, more for manufacturing, refers to seismic qualification of Main Live Steam stop valves. First results of the independent validation of the Code Aster seismic design functionalities, which provide and improve the quality of software, are also recalled. (authors). 11 refs.

  19. A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers.

    Science.gov (United States)

    Yan, Zhongdan; Gan, Ning; Zhang, Huairong; Wang, De; Qiao, Li; Cao, Yuting; Li, Tianhua; Hu, Futao

    2015-09-15

    A novel sandwich-hybridization assay for simultaneous electrochemical detection of multiple DNA targets related to human immune deficiency virus (HIV) and tuberculosis (TB) was developed based on the different quantum dots-PowerVision(TM) polymer nanotracers. The polymer nanotracers were respectively fabricated by immobilizing SH-labeled oligonucleotides (s-HIV or s-TB), which can partially hybrid with virus DNA (HIV or TB), on gold nanoparticles (Au NPs) and then modified with PowerVision(TM) (PV) polymer-encapsulated quantum dots (CdS or PbS) as signal tags. PV is a dendrimer enzyme linked polymer, which can immobilize abundant QDs to amplify the stripping voltammetry signals from the metal ions (Pb or Cd). The capture probes were prepared through the immobilization of SH-labeled oligonucleotides, which can complementary with HIV and TB DNA, on the magnetic Fe3O4@Au (GMPs) beads. After sandwich-hybridization, the polymer nanotracers together with HIV and TB DNA targets were simultaneously introduced onto the surface of GMPs. Then the two encoding metal ions (Cd(2+) and Pb(2+)) were used to differentiate two viruses DNA due to the different subsequent anodic stripping voltammetric peaks at -0.84 V (Cd) and -0.61 V (Pb). Because of the excellent signal amplification of the polymer nanotracers and the great specificity of DNA targets, this assay could detect targets DNA as low as 0.2 femtomolar and exhibited excellent selectivity with the dynamitic range from 0.5 fM to 500 pM. Those results demonstrated that this electrochemical coding assay has great potential in applications for screening more viruses DNA while changing the probes.

  20. Ways of Developing Plants in Interspecific Hybridization of Cotton

    Institute of Scientific and Technical Information of China (English)

    RAKHMANKULOV; S; DAMINOVA; D; RAKHMANKULOV; M

    2008-01-01

    It is known,that there are various barriers to fertilization,development of embryos,and endosperm because of different number of chromosomes in parents in the interspecific hybridization of cotton.Thus the factors providing normal cell fission of a germ and endosperm are necessary.It is necessary to culture embryos in vitro on the artificial environments containing various phytohormones,or to

  1. Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction.

    Science.gov (United States)

    Zhou, Jun; Xu, Mingdi; Tang, Dianping; Gao, Zhuangqiang; Tang, Juan; Chen, Guonan

    2012-12-28

    A label-free, non-enzyme immunosensing strategy is designed for ultrasensitive electronic detection of disease-related proteins (carcinoembryonic antigen as a model) by using gold nanoparticle-based bio-bar codes and an in situ amplified DNA-based hybridization chain reaction.

  2. Development of Advanced In core Management Codes for Ulchin Unit 1, 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hee; Park, Moon Gyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the first case of FRAMATOME`s plants, Ulchin Unit 1 Cycle 8 core was loaded with V5H fuel. Because of the heterogeneity in the axial enrichment of the V5H fuel, FRAMATOME`s 2-D in core management codes, CEDRIC-CARIN-ESTHER, are no longer valid to be used for in core management. In order to analyze Ulchin Unit 1 an 2 cores loaded with V5H fuel exactly, this study substituted them with WH`s In core-3D and Tote code. The previous IN CORE-Tote codes have been utilized on the HP workstation or the IBM mainframe which are not easily accessible by the site engineers and require the complicated manipulation in the computer network system. This study developed the PC-version of IN CORE-3D and Tote codes available in plants, including an interface code linking the data measured by the in core instrument system (RIC-KIT system) to IN CORE code. These codes reduce the time to manage in core and increase the economic benefits. We installed the developed codes in Ulchin Unit 1 and 2 and actually applied them to the core power distribution measurement performed during Cycle 8 power escalation tests. The results satisfied all limits of Technical Specification very well. The major contents of this study can be categorized as follows. 1. Analysis of the in core management codes. (a) Analysis of flux mapping system and measurement reduction algorithm. (b) Analysis of the methodology of in core management codes. 2. Development and verification of PC-version in core management codes. (a) Development of the measured-data processing code (C2I). (b) Development of PC-version IN CORE code. (c) Development of PC-version Tote code (d) Verification of the developed codes. 3. Application to core physics test of Ulchin until cycle 8. (a) Power distribution measurement at 75% and 100%. (author). 14 refs., figs., tabs.

  3. Development of Teaching Materials for a Physical Chemistry Experiment Using the QR Code

    OpenAIRE

    吉村, 忠与志

    2008-01-01

    The development of teaching materials with the QR code was attempted in an educational environment using a mobile telephone. The QR code is not sufficiently utilized in education, and the current study is one of the first in the field. The QR code is encrypted. However, the QR code can be deciphered by mobile telephones, thus enabling the expression of text in a small space.Contents of "Physical Chemistry Experiment" which are available on the Internet are briefly summarized and simplified. T...

  4. Development, Verification and Validation of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) Code

    Science.gov (United States)

    Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.

    2016-01-01

    With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.

  5. Development of the pneumatic service robot with a hybrid type

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol U; Choi, Hyeun Seok; Han, Chang Soo [Hanyang Univ., Seoul (Korea, Republic of)

    2001-07-01

    In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified.

  6. Recent Developments in the MCNP-POLIMI Postprocessing Code

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, S.A.

    2004-12-17

    The design and analysis of measurements performed with organic scintillators rely on the use of Monte Carlo codes to simulate the interaction of neutrons and photons, originating from fission and other reactions, with the materials present in the system and the radiation detectors. MCNP-PoliMi is a modification of the MCNP-4c code that models the physics of secondary particle emission from fission and other processes realistically. This characteristic allows for the simulation of the higher moments of the distribution of the number of neutrons and photons in a multiplying system. The present report describes the recent additions to the MCNP-PoliMi post-processing code. These include the simulation of detector dead time, multiplicity, and third order statistics.

  7. Development of Vibro-packed fuel design code

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masahiro; Sekine, Nobuyuki; Pouchon, M.A.; Miyamoto, Hiroshi [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Management and Fuel Cycle Research Center, Tokai, Ibaraki (Japan); Nakajima, Yasuo [Japan Nuclear Cycle Development Inst., Heat Office, Executive Office for Policy Planning and Administration, Tokai, Ibaraki (Japan)

    2002-06-01

    In the feasibility study of a FBR cycle system, Vibro-packed fuel is considered. For the design and evaluation, three Vibro-pack-specific models are incorporated into the design code. Matthews' sintering model is used to calculate the neck growth rate between particles. The SPACON model, introduced by Botta et al. is used to calculate the effective thermal conductivity of fuel and the heat transport between fuel and cladding. A three-dimensional distinct element method is applied to analyze the mechanical properties, resulting in empirical Young's module. Experimental data will be used for the evaluation of each model, and irradiation test data will be used for evaluation of the total code. Consequently, the code reliability will be determined and potentially increased. This will constitute an important step towards fuel licensing. (author)

  8. On the development of an intrinsic hybrid composite

    Science.gov (United States)

    Kießling, R.; Ihlemann, J.; Riemer, M.; Drossel, W.-G.; Scharf, I.; Lampke, T.; Sharafiev, S.; Pouya, M.; F-X Wagner, M.

    2016-03-01

    Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces.

  9. Parallel Beam Dynamics Code Development for High Intensity Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>1 Parallel PIC algorithm Self field solver is the key part of a high intensity beam dynamic PIC code which usually adopts the P-M (Particle-Mesh) method to solve the space charge. The P-M method is composed of four major

  10. The JCSS probabilistic model code: Experience and recent developments

    NARCIS (Netherlands)

    Chryssanthopoulos, M.; Diamantidis, D.; Vrouwenvelder, A.C.W.M.

    2003-01-01

    The JCSS Probabilistic Model Code (JCSS-PMC) has been available for public use on the JCSS website (www.jcss.ethz.ch) for over two years. During this period, several examples have been worked out and new probabilistic models have been added. Since the engineering community has already been exposed t

  11. Case study: developing product lines using ICD-9-CM codes.

    Science.gov (United States)

    Benz, P D; Burnham, J

    1985-12-01

    In this marketing case study, Thomas Jefferson University Hospital used a product line approach to maximize the use of its resources. The method used, based on ICD-9-CM codes, fulfilled the demands of increased efficiency by encouraging customer-oriented thinking, enhancing communication with physicians and patients, and helping the institution to compete more effectively.

  12. Recent radiation damage studies and developments of the Marlowe code

    Science.gov (United States)

    Ortiz, C. J.; Souidi, A.; Becquart, C. S.; Domain, C.; Hou, M.

    2014-07-01

    Radiation damage in materials relevant to applications evolves over time scales spanning from the femtosecond - the characteristic time for an atomic collision - to decades - the aging time expected for nuclear materials. The relevant kinetic energies of atoms span from thermal motion to the MeV range.The question motivating this contribution is to identify the relationship between elementary atomic displacements triggered by irradiation and the subsequent microstructural evolution of metals in the long term. The Marlowe code, based on the binary collision approximation (BCA) is used to simulate the sequences of atomic displacements generated by energetic primary recoils and the Object Kinetic Monte Carlo code LAKIMOCA, parameterized on a range of ab initio calculations, is used to predict the subsequent long-term evolution of point defect and clusters thereof. In agreement with full Molecular Dynamics, BCA displacement cascades in body-centered cubic (BCC) Fe and a face-centered cubic (FCC) Febond Nibond Cr alloy display recursive properties that are found useful for predictions in the long term.The case of defects evolution in W due to external irradiation with energetic H and He is also discussed. To this purpose, it was useful to extend the inelastic energy loss model available in Marlowe up to the Bethe regime. The last version of the Marlowe code (version 15) was delivered before message passing instructions softwares (such as MPI) were available but the structure of the code was designed in such a way to permit parallel executions within a distributed memory environment. This makes possible to obtain N different cascades simultaneously using N independent nodes without any communication between processors. The parallelization of the code using MPI was recently achieved by one author of this report (C.J.O.). Typically, the parallelized version of Marlowe allows simulating millions of displacement cascades using a limited number of processors (<64) within only

  13. A study on the interlink of CANDU safety analysis codes with development of GUI system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Jeo, Y. J.; Park, Q. C. [Seoul National Univ., Seoul (Korea, Republic of); Kim, H. T.; Min, B. J. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    In order to improve the CANDU safety analysis code system, the interlink of containment analysis code, PRESCON2 to the system thermal hydraulics analysis code, CATHENA, has been implemented with development of the GUI system. Before the GUI development, we partly corrected two codes to optimize on the PC environment. The interlink of two codes could be executed by introducing three interlinking variables, mass flux, mixture enthalpy, and mixture specific volume. To guarantee the robustness of the codes, two codes are extremely linked by using the GUI system. The GUI system provides much of user-friendly functions and will be improved step by step. This study is expected to improve the safety assessment system and technology for CANDU NPPs.

  14. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  15. On the performance of hybrid-ARQ with incremental redundancy and with code combining over relay channels

    KAUST Repository

    Chelli, Ali

    2013-08-01

    In this paper, we consider a relay network consisting of a source, a relay, and a destination. The source transmits a message to the destination using hybrid automatic repeat request (HARQ). The relay overhears the transmitted messages over the different HARQ rounds and tries to decode the data packet. In case of successful decoding at the relay, both the relay and the source cooperate to transmit the message to the destination. The channel realizations are independent for different HARQ rounds. We assume that the transmitter has no channel state information (CSI). Under such conditions, power and rate adaptation are not possible. To overcome this problem, HARQ allows the implicit adaptation of the transmission rate to the channel conditions by the use of feedback. There are two major HARQ techniques, namely HARQ with incremental redundancy (IR) and HARQ with code combining (CC). We investigate the performance of HARQ-IR and HARQ-CC over a relay channel from an information theoretic perspective. Analytical expressions are derived for the information outage probability, the average number of transmissions, and the average transmission rate. We illustrate through our investigation the benefit of relaying. We also compare the performance of HARQ-IR and HARQ-CC and show that HARQ-IR outperforms HARQ-CC. © 2013 IEEE.

  16. Study on a new meteorological sampling scheme developed for the OSCAAR code system

    OpenAIRE

    Liu, X.; 富田 賢一; 本間 俊充

    2002-01-01

    One important step in Level 3 Probabilistic Safety Assessment is meteorological sequence sampling, on which the previous studies were mainly related to code systems using straight line plume model and more efforts are needed for trajectory puff model such as the OSCAAR code system. This report describes the development of a new meteorological sampling scheme for the OSCAAR code system that explicitly considers population distribution. A group of principles was set forth for the development of...

  17. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly

  18. A high burnup model developed for the DIONISIO code

    Energy Technology Data Exchange (ETDEWEB)

    Soba, A. [U.A. Combustibles Nucleares, Comisión Nacional de Energía Atómica, Avenida del Libertador 8250, 1429 Buenos Aires (Argentina); Denis, A., E-mail: denis@cnea.gov.ar [U.A. Combustibles Nucleares, Comisión Nacional de Energía Atómica, Avenida del Libertador 8250, 1429 Buenos Aires (Argentina); Romero, L. [U.A. Reactores Nucleares, Comisión Nacional de Energía Atómica, Avenida del Libertador 8250, 1429 Buenos Aires (Argentina); Villarino, E.; Sardella, F. [Departamento Ingeniería Nuclear, INVAP SE, Comandante Luis Piedra Buena 4950, 8430 San Carlos de Bariloche, Río Negro (Argentina)

    2013-02-15

    A group of subroutines, designed to extend the application range of the fuel performance code DIONISIO to high burn up, has recently been included in the code. The new calculation tools, which are tuned for UO{sub 2} fuels in LWR conditions, predict the radial distribution of power density, burnup, and concentration of diverse nuclides within the pellet. The balance equations of all the isotopes involved in the fission process are solved in a simplified manner, and the one-group effective cross sections of all of them are obtained as functions of the radial position in the pellet, burnup, and enrichment in {sup 235}U. In this work, the subroutines are described and the results of the simulations performed with DIONISIO are presented. The good agreement with the data provided in the FUMEX II/III NEA data bank can be easily recognized.

  19. A high burnup model developed for the DIONISIO code

    Science.gov (United States)

    Soba, A.; Denis, A.; Romero, L.; Villarino, E.; Sardella, F.

    2013-02-01

    A group of subroutines, designed to extend the application range of the fuel performance code DIONISIO to high burn up, has recently been included in the code. The new calculation tools, which are tuned for UO2 fuels in LWR conditions, predict the radial distribution of power density, burnup, and concentration of diverse nuclides within the pellet. The balance equations of all the isotopes involved in the fission process are solved in a simplified manner, and the one-group effective cross sections of all of them are obtained as functions of the radial position in the pellet, burnup, and enrichment in 235U. In this work, the subroutines are described and the results of the simulations performed with DIONISIO are presented. The good agreement with the data provided in the FUMEX II/III NEA data bank can be easily recognized.

  20. Development of low cost custom hybrid microcircuit technology

    Science.gov (United States)

    Perkins, K. L.; Licari, J. J.

    1981-01-01

    Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.

  1. Development of a 40 T compact hybrid magnet

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K.; Awaji, S.; Kobayashi, N. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research] [and others

    1996-07-01

    A 40 T compact hybrid magnet consisting of a 16 T outer superconducting magnet and a 24 T inner resistive magnet is conceptually designed. A highly strengthened superconducting magnet with a 360 mm room temperature bore can be made using newly developed (Nb,Ti){sub 3}Sn wires with Cu-Nb or Cu-Al{sub 2}O{sub 3} reinforcing stabilizer, and as a result the coil weight is outstandingly reduced by about 70%. A poly-Bitter resistive magnet which generates 24 T in a 14 mm room temperature bore is realized consuming 8 MW power.

  2. Development of outer-iteration free scheme for MATRA code

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk; Kim, S. J.; Park, J. P.; Hwang, D. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The Picard scheme involves successive updating of the coefficient on the previously calculated values. The outer-iteration is terminated at that time being satisfied with boundary condition on which a lateral pressure difference between subchannels is even at exit plane. Diversion cross flow is generated to reduce the lateral pressure difference at each axial node. The physics can be numerically implemented with using approximation to force the lateral pressure difference to be the zero. The idea is firstly realized by prediction-correction method by C. Chiu. In this code, two-step method is adopted to approximate the lateral pressure difference term using diversion cross flow. The approximation allows the outer-iteration free scheme. The present study describes the implementation of outer-iteration free scheme, called non-iterative prediction-correction method into MATRA code. Outer-iteration free algorithm is implemented into the subchannel code MATRA. Original prediction-correction method applied only two channel is successfully expanded into the multichannel application. In comparison with the convectional outer-iteration numerical scheme, the present algorithm showed the more efficient and compatible accuracy on the verification problems, such as SMT- 5x5 problem and KSNP single assembly problem. In addition, outer-iteration free algorithm can be calculated in lower mass flow condition in which conventional scheme is breakdown.

  3. Development of a PET/Cerenkov-light hybrid imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871 (Japan); Watabe, Hiroshi [CYRIC, Tohoku University, Miyagi 980-8578 (Japan)

    2014-09-15

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET

  4. Hybrid2: The hybrid system simulation model, Version 1.0, user manual

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.

    1996-06-01

    In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.

  5. Methodology, status, and plans for development and assessment of the RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.W.; Riemke, R.A. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1997-07-01

    RELAP/MOD3 is a computer code used for the simulation of transients and accidents in light-water nuclear power plants. The objective of the program to develop and maintain RELAP5 was and is to provide the U.S. Nuclear Regulatory Commission with an independent tool for assessing reactor safety. This paper describes code requirements, models, solution scheme, language and structure, user interface validation, and documentation. The paper also describes the current and near term development program and provides an assessment of the code`s strengths and limitations.

  6. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  7. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  8. Development of hybrid genetic algorithms for product line designs.

    Science.gov (United States)

    Balakrishnan, P V Sundar; Gupta, Rakesh; Jacob, Varghese S

    2004-02-01

    In this paper, we investigate the efficacy of artificial intelligence (AI) based meta-heuristic techniques namely genetic algorithms (GAs), for the product line design problem. This work extends previously developed methods for the single product design problem. We conduct a large scale simulation study to determine the effectiveness of such an AI based technique for providing good solutions and bench mark the performance of this against the current dominant approach of beam search (BS). We investigate the potential advantages of pursuing the avenue of developing hybrid models and then implement and study such hybrid models using two very distinct approaches: namely, seeding the initial GA population with the BS solution, and employing the BS solution as part of the GA operator's process. We go on to examine the impact of two alternate string representation formats on the quality of the solutions obtained by the above proposed techniques. We also explicitly investigate a critical managerial factor of attribute importance in terms of its impact on the solutions obtained by the alternate modeling procedures. The alternate techniques are then evaluated, using statistical analysis of variance, on a fairy large number of data sets, as to the quality of the solutions obtained with respect to the state-of-the-art benchmark and in terms of their ability to provide multiple, unique product line options.

  9. Methodology, status and plans for development and assessment of TUF and CATHENA codes

    Energy Technology Data Exchange (ETDEWEB)

    Luxat, J.C.; Liu, W.S.; Leung, R.K. [Ontario Hydro, Toronto (Canada)] [and others

    1997-07-01

    An overview is presented of the Canadian two-fluid computer codes TUF and CATHENA with specific focus on the constraints imposed during development of these codes and the areas of application for which they are intended. Additionally a process for systematic assessment of these codes is described which is part of a broader, industry based initiative for validation of computer codes used in all major disciplines of safety analysis. This is intended to provide both the licensee and the regulator in Canada with an objective basis for assessing the adequacy of codes for use in specific applications. Although focused specifically on CANDU reactors, Canadian experience in developing advanced two-fluid codes to meet wide-ranging application needs while maintaining past investment in plant modelling provides a useful contribution to international efforts in this area.

  10. Automatic Generation of Agents using Reusable Soft Computing Code Libraries to develop Multi Agent System for Healthcare

    Directory of Open Access Journals (Sweden)

    Priti Srinivas Sajja

    2015-04-01

    Full Text Available This paper illustrates architecture for a multi agent system in healthcare domain. The architecture is generic and designed in form of multiple layers. One of the layers of the architecture contains many proactive, co-operative and intelligent agents such as resource management agent, query agent, pattern detection agent and patient management agent. Another layer of the architecture is a collection of libraries to auto-generate code for agents using soft computing techniques. At this stage, codes for artificial neural network and fuzzy logic are developed and encompassed in this layer. The agents use these codes for development of neural network, fuzzy logic or hybrid solutions such as neuro-fuzzy solution. Third layer encompasses knowledge base, metadata and other local databases. The multi layer architecture is supported by personalized user interfaces for friendly interaction with its users. The framework is generic, flexible, and designed for a distributed environment like the Web; with minor modifications it can be employed on grid or cloud platform. The paper also discusses detail design issues, suitable applications and future enhancement of the work.

  11. Development and characterization of interspecific hybrids between Oryza sativa and O. latifolia by in situ hybridization

    Institute of Scientific and Technical Information of China (English)

    YI ChuanDeng; TANG ShuZhu; ZHOU Yong; LIANG GuoHua; GONG ZhiYun; GU MingHong

    2008-01-01

    Oryza sativa and O. latifolia belong to the AA and CCDD genomes of Oryza, respectively. In this study, interspecific hybrids of these species were obtained using the embryo rescue technique. Hybrid pani-cle traits, such as long awns, small grain, exoteric large purple stigma, grain shattering and dispersed panicles, resemble that of the paternal parent, O. latifolia, whereas there is obvious heterosis in such respects as plant height, tillering ability and vegetative vigor. Chromosome pairing and the genomic components of the hybrid were subsequently investigated using genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) analysis. Based on the mitotic metaphase chromosome numbers of the root tips investigated, the hybrid is a triploid with 36 chromosomes. The genomic con-stitution of the hybrid is ACD. In the meiotic metaphase I of the hybrid pollen mother cell, poor chro-mosome pairing was identified and most of the chromosomes were univalent, which resulted in com-plete male sterility in the hybrid.

  12. Sustainable Development in Emerging Markets & CSR Codes of Conduct: Oil and Gas Industry in Brazil

    OpenAIRE

    Costa, Ligia Maura; FGV-EAESp

    2013-01-01

    This paper intends to provide a comparative analysis of corporate social responsibility codes of conduct (CSR Codes) of the oil and gas industry operating in Brazil with the provisions embodied in the international legal framework system, such as the United Nations Declaration of Human Rights and the Fundamental Conventions of the International Labour Organization. For comparative purposes, and given the usual structure that CSR Codes tend to follow, the analysis has been developed around the...

  13. Monkey hybrid stem cells develop cellular features of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Lorthongpanich Chanchao

    2010-02-01

    Full Text Available Abstract Background Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's disease would be valuable for drug discovery research. Results To test this hypothesis, a pluripotent Huntington's disease monkey hybrid cell line (TrES1 was established from a tetraploid Huntington's disease monkey blastocyst generated by the fusion of transgenic Huntington's monkey skin fibroblast and a wild-type non-transgenic monkey oocyte. The TrES1 developed key Huntington's disease cellular pathological features that paralleled neural development. It expressed mutant huntingtin and stem cell markers, was capable of differentiating to neural cells, and developed teratoma in severely compromised immune deficient (SCID mice. Interestingly, the expression of mutant htt, the accumulation of oligomeric mutant htt and the formation of intranuclear inclusions paralleled neural development in vitro , and even mutant htt was ubiquitously expressed. This suggests the development of Huntington's disease cellular features is influenced by neural developmental events. Conclusions Huntington's disease cellular features is influenced by neural developmental events. These results are the first to demonstrate that a pluripotent stem cell line is able to mimic Huntington's disease progression that parallels neural development, which could be a useful cell model for investigating the developmental impact on Huntington's disease pathogenesis.

  14. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  15. Development of an MCNP-tally based burnup code and validation through PWR benchmark exercises

    Energy Technology Data Exchange (ETDEWEB)

    El Bakkari, B. [ERSN-LMR, Department of physics, Faculty of Sciences P.O.Box 2121, Tetuan (Morocco)], E-mail: bakkari@gmail.com; El Bardouni, T.; Merroun, O.; El Younoussi, Ch.; Boulaich, Y. [ERSN-LMR, Department of physics, Faculty of Sciences P.O.Box 2121, Tetuan (Morocco); Chakir, E. [EPTN-LPMR, Faculty of Sciences Kenitra (Morocco)

    2009-05-15

    The aim of this study is to evaluate the capabilities of a newly developed burnup code called BUCAL1. The code provides the full capabilities of the Monte Carlo code MCNP5, through the use of the MCNP tally information. BUCAL1 uses the fourth order Runge Kutta method with the predictor-corrector approach as the integration method to determine the fuel composition at a desired burnup step. Validation of BUCAL1 was done by code vs. code comparison. Results of two different kinds of codes are employed. The first one is CASMO-4, a deterministic multi-group two-dimensional transport code. The second kind is MCODE and MOCUP, a link MCNP-ORIGEN codes. These codes use different burnup algorithms to solve the depletion equations system. Eigenvalue and isotope concentrations were compared for two PWR uranium and thorium benchmark exercises at cold (300 K) and hot (900 K) conditions, respectively. The eigenvalue comparison between BUCAL1 and the aforementioned two kinds of codes shows a good prediction of the systems'k-inf values during the entire burnup history, and the maximum difference is within 2%. The differences between the BUCAL1 isotope concentrations and the predictions of CASMO-4, MCODE and MOCUP are generally better, and only for a few sets of isotopes these differences exceed 10%.

  16. Development of environmental dose assessment system (EDAS) code of PC version

    CERN Document Server

    Taki, M; Kobayashi, H; Yamaguchi, T

    2003-01-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessme...

  17. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Science.gov (United States)

    Phadte, D.; Patidar, C. B.; Pal, M. K.

    2017-04-01

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  18. Development of Hybrid Product Breakdown Structure for NASA Ground Systems

    Science.gov (United States)

    Monaghan, Mark W.; Henry, Robert J.

    2013-01-01

    The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product

  19. Overview of NASA Multi-Dimensional Stirling Convertor Code Development and Validation Effort

    Science.gov (United States)

    Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David

    2003-01-01

    A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and ``two space'' test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow rig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this multi-D code development effort.

  20. Development of stem borer resistant transgenic parental lines involved in the production of hybrid rice.

    Science.gov (United States)

    Ramesh, S; Nagadhara, D; Pasalu, I C; Kumari, A Padma; Sarma, N P; Reddy, V D; Rao, K V

    2004-07-15

    Stem borer resistant transgenic parental lines, involved in hybrid rice, were produced by Agrobacterium-mediated gene transfer method. Two pSB111 super-binary vectors containing modified cry1Ab/cry1Ac genes driven by maize ubiquitin promoter, and herbicide resistance gene bar driven by cauliflower mosaic virus 35S promoter were, used in this study. Embryogenic calli after co-cultivation with Agrobacterium were selected on the medium containing phosphinothricin. Southern blot analyses of primary transformants revealed the stable integration of bar, cry1Ab and cry1Ac coding sequences into the genomes of three parental lines with a predominant single copy integration and without any rearrangement of T-DNA. T1 progeny plants disclosed a monogenic pattern (3:1) of transgene segregation as confirmed by molecular analyses. Furthermore, the co-segregation of bar and cry genes in T1 progenies suggested that the transgenes are integrated at a single site in the rice genome. In different primary transformants with alien inbuilt resistance, the levels of cry proteins varied between 0.03 and 0.13% of total soluble proteins. These transgenic lines expressing insecticidal proteins afforded substantial resistance against stem borers. This is the first report of its kind dealing with the introduction of Bacillus thuringiensis (Bt) cry genes into the elite parental lines involved in the development of hybrid rice.

  1. Implementation of Lumped Plasticity Models and Developments in an Object Oriented Nonlinear Finite Element Code

    Science.gov (United States)

    Segura, Christopher L.

    Numerical simulation tools capable of modeling nonlinear material and geometric behavior are important to structural engineers concerned with approximating the strength and deformation capacity of a structure. While structures are typically designed to behave linear elastic when subjected to building code design loads, exceedance of the linear elastic range is often an important consideration, especially with regards to structural response during hazard level events (i.e. earthquakes, hurricanes, floods), where collapse prevention is the primary goal. This thesis addresses developments made to Mercury, a nonlinear finite element program developed in MATLAB for numerical simulation and in C++ for real time hybrid simulation. Developments include the addition of three new constitutive models to extend Mercury's lumped plasticity modeling capabilities, a constitutive driver tool for testing and implementing Mercury constitutive models, and Mercury pre and post-processing tools. Mercury has been developed as a tool for transient analysis of distributed plasticity models, offering accurate nonlinear results on the material level, element level, and structural level. When only structural level response is desired (collapse prevention), obtaining material level results leads to unnecessarily lengthy computational time. To address this issue in Mercury, lumped plasticity capabilities are developed by implementing two lumped plasticity flexural response constitutive models and a column shear failure constitutive model. The models are chosen for implementation to address two critical issues evident in structural testing: column shear failure and strength and stiffness degradation under reverse cyclic loading. These tools make it possible to model post-peak behavior, capture strength and stiffness degradation, and predict global collapse. During the implementation process, a need was identified to create a simple program, separate from Mercury, to simplify the process of

  2. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  3. Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Seo, K. W

    2006-01-15

    A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC.

  4. Development and Validation of Generalized Lifting Line Based Code for Wind Turbine Aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F.; Garrel, A. van; Schepers, J.G. [ECN Wind Energy, Petten (Netherlands)

    2011-01-15

    In order to accurately model large, advanced and efficient wind turbines, more reliable and realistic aerodynamic simulation tools are necessary. Most of the available codes are based on the blade element momentum theory. These codes are fast but not well suited to properly describe the physics of wind turbines. On the other hand, by using computational fluid-dynamics codes, in which full Navier-Stokes equations are implemented, a strong expertise and a lot of computer time to perform analyses are required. A code, based on a generalized form of Prandtl's lifting line in combination with a free wake vortex wake has been developed at Energy research Centre of Netherlands. In the present work, the development of this new code is presented, together with the results coming from numerical-experimental comparisons. The final part of the work is dedicated to the analysis of innovative configurations like winglets and curved blades.

  5. Safety, codes and standards for hydrogen installations. Metrics development and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aaron P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); San Marchi, Christopher W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-04-01

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  6. On the Use of Hybrid Development Approaches in Software and Systems Development

    DEFF Research Database (Denmark)

    Kuhrmann, Marco; Münch, Jürgen; Diebold, Philipp;

    2016-01-01

    embody this framework with more agile (and/or lean) practices to keep their flexibility. The paper at hand provides insights into the HELENA study with which we aim to investigate the use of “Hybrid dEveLopmENt Approaches in software systems development”. We present the survey design and initial findings...

  7. Code development of the national hemovigilance system and expansion strategies for hospital blood banks

    Directory of Open Access Journals (Sweden)

    Kim Jeongeun

    2012-01-01

    Full Text Available Objectives : The aims of this study were to develop reportable event codes that are applicable to the national hemovigilance systems for hospital blood banks, and to present expansion strategies for the blood banks. Materials and Methods : The data were obtained from a literature review and expert consultation, followed by adding to and revising the established hemovigilance code system and guidelines to develop reportable event codes for hospital blood banks. The Medical Error Reporting System-Transfusion Medicine developed in the US and other codes of reportable events were added to the Korean version of the Biologic Products Deviation Report (BPDR developed by the Korean Red Cross Blood Safety Administration, then using these codes, mapping work was conducted. We deduced outcomes suitable for practice, referred to the results of the advisory councils, and conducted a survey with experts and blood banks practitioners. Results : We developed reportable event codes that were applicable to hospital blood banks and could cover blood safety - from blood product safety to blood transfusion safety - and also presented expansion strategies for hospital blood banks. Conclusion : It was necessary to add 10 major categories to the blood transfusion safety stage and 97 reportable event codes to the blood safety stage. Contextualized solutions were presented on 9 categories of expansion strategies of hemovigilance system for the hospital blood banks.

  8. Open-Source Development of the Petascale Reactive Flow and Transport Code PFLOTRAN

    Science.gov (United States)

    Hammond, G. E.; Andre, B.; Bisht, G.; Johnson, T.; Karra, S.; Lichtner, P. C.; Mills, R. T.

    2013-12-01

    Open-source software development has become increasingly popular in recent years. Open-source encourages collaborative and transparent software development and promotes unlimited free redistribution of source code to the public. Open-source development is good for science as it reveals implementation details that are critical to scientific reproducibility, but generally excluded from journal publications. In addition, research funds that would have been spent on licensing fees can be redirected to code development that benefits more scientists. In 2006, the developers of PFLOTRAN open-sourced their code under the U.S. Department of Energy SciDAC-II program. Since that time, the code has gained popularity among code developers and users from around the world seeking to employ PFLOTRAN to simulate thermal, hydraulic, mechanical and biogeochemical processes in the Earth's surface/subsurface environment. PFLOTRAN is a massively-parallel subsurface reactive multiphase flow and transport simulator designed from the ground up to run efficiently on computing platforms ranging from the laptop to leadership-class supercomputers, all from a single code base. The code employs domain decomposition for parallelism and is founded upon the well-established and open-source parallel PETSc and HDF5 frameworks. PFLOTRAN leverages modern Fortran (i.e. Fortran 2003-2008) in its extensible object-oriented design. The use of this progressive, yet domain-friendly programming language has greatly facilitated collaboration in the code's software development. Over the past year, PFLOTRAN's top-level data structures were refactored as Fortran classes (i.e. extendible derived types) to improve the flexibility of the code, ease the addition of new process models, and enable coupling to external simulators. For instance, PFLOTRAN has been coupled to the parallel electrical resistivity tomography code E4D to enable hydrogeophysical inversion while the same code base can be used as a third

  9. Towards the optimization of a gyrokinetic Particle-In-Cell (PIC) code on large-scale hybrid architectures

    Science.gov (United States)

    Ohana, N.; Jocksch, A.; Lanti, E.; Tran, T. M.; Brunner, S.; Gheller, C.; Hariri, F.; Villard, L.

    2016-11-01

    With the aim of enabling state-of-the-art gyrokinetic PIC codes to benefit from the performance of recent multithreaded devices, we developed an application from a platform called the “PIC-engine” [1, 2, 3] embedding simplified basic features of the PIC method. The application solves the gyrokinetic equations in a sheared plasma slab using B-spline finite elements up to fourth order to represent the self-consistent electrostatic field. Preliminary studies of the so-called Particle-In-Fourier (PIF) approach, which uses Fourier modes as basis functions in the periodic dimensions of the system instead of the real-space grid, show that this method can be faster than PIC for simulations with a small number of Fourier modes. Similarly to the PIC-engine, multiple levels of parallelism have been implemented using MPI+OpenMP [2] and MPI+OpenACC [1], the latter exploiting the computational power of GPUs without requiring complete code rewriting. It is shown that sorting particles [3] can lead to performance improvement by increasing data locality and vectorizing grid memory access. Weak scalability tests have been successfully run on the GPU-equipped Cray XC30 Piz Daint (at CSCS) up to 4,096 nodes. The reduced time-to-solution will enable more realistic and thus more computationally intensive simulations of turbulent transport in magnetic fusion devices.

  10. Developing a Code of Practice for Learning Analytics

    Science.gov (United States)

    Sclater, Niall

    2016-01-01

    Ethical and legal objections to learning analytics are barriers to development of the field, thus potentially denying students the benefits of predictive analytics and adaptive learning. Jisc, a charitable organization that champions the use of digital technologies in UK education and research, has attempted to address this with the development of…

  11. Development of a hybrid cooler; Udvikling af hybridkoeler

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Toftegaard, R.; Weinkauff Kristoffersen, J. [Teknologisk Institut, Aarhus (Denmark); Juel Skovrup, M. [IPU, Kgs. Lyngby (Denmark); Ibsen, C. [VP Industries, Lem (Denmark)

    2013-04-15

    The project aims to develop a hybrid cooler which acts as a dry cooler in the winter and as cooling tower in summer. Energy consumption for cooling systems with a dry cooler and a cooling tower, respectively, is comparable in the winter months. This phase 1 of the project shows that improvements of 50-100% on the performance of a hybrid cooler can be achieved as compared to a dry cooler. The improvement is achieved by humidifying the air with recirculated water through nozzles so that the air temperature decreases from the dry temperature to the wet temperature, and that the dry cooler surface is humidified with a film of water, which increases the heat transfer coefficient considerably compared to a dry surface. The experiments showed that a humidifier system cannot be used without further action. At face velocities less than 5 m/s the humidification does not yield any improvement, and in some cases the heat transfer in a standard dry cooler is decreased. This is due to entrainment of not fully vaporized droplets which are deposited between the dry cooler fins and form bridges that block parts of the cooler. By modifying the surface characteristics with a coating, it will be possible to drain the water away so that no bridges are formed. The company Accoat, which makes special surfaces, will therefore be associated to phase 2 of the project. Another aspect that was evident in the tests, is the formation of biofilm on the heat exchanger surface, which can reduce performance by up to 25%. Biofilm can be prevented by treating the feed water, and therefore Danish Clean Water A/S associated to phase 2 of the project, as they produce water purification systems for biofouling decomposition. (LN)

  12. Development of probabilistic fracture mechanics code PASCAL and user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Katsuyuki; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Li, Yinsheng; Kato, Daisuke [Fuji Research Institute Corporation, Tokyo (Japan)

    2001-03-01

    As a part of the aging and structural integrity research for LWR components, a new PFM (Probabilistic Fracture Mechanics) code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed since FY1996. This code evaluates the failure probability of an aged reactor pressure vessel subjected to transient loading such as PTS (Pressurized Thermal Shock). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics methodologies and computer performance. The code has some new functions in optimized sampling and cell dividing procedure in stratified Monte Carlo simulation, elastic-plastic fracture criterion of R6 method, extension analysis models in semi-elliptical crack, evaluation of effect of thermal annealing and etc. In addition, an input data generator of temperature and stress distribution time histories was also prepared in the code. Functions and performance of the code have been confirmed based on the verification analyses and some case studies on the influence parameters. The present phase of the development will be completed in FY2000. Thus this report provides the user's manual and theoretical background of the code. (author)

  13. Development of thermal hydraulic models for the reliable regulatory auditing code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.; Lee, S. W. [Korea Automic Energy Research Institute, Taejon (Korea, Republic of)

    2004-02-15

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the second step of the 3 year project, and the main researches were focused on the development of downcorner boiling model. During the current year, the bubble stream model of downcorner has been developed and installed in he auditing code. The model sensitivity analysis has been performed for APR1400 LBLOCA scenario using the modified code. The preliminary calculation has been performed for the experimental test facility using FLUENT and MARS code. The facility for air bubble experiment has been installed. The thermal hydraulic phenomena for VHTR and super critical reactor have been identified for the future application and model development.

  14. 77 FR 17460 - Multistakeholder Process To Develop Consumer Data Privacy Codes of Conduct

    Science.gov (United States)

    2012-03-26

    ... Privacy Bill of Rights and directs NTIA to convene open, transparent, consensus-based processes in which stakeholders develop legally enforceable codes of conduct that implement the Consumer Privacy Bill of Rights in...

  15. Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramirez, Jaime

    1983-06-01

    A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.

  16. Development of design automation codes using software engineering methods

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.J. II

    1976-10-31

    The Electrical Engineering Department of the Lawrence Livermore Laboratory (LLL) has recently formed a Design Automation (DA) Group responsible for development of new DA capabilities at the Laboratory. This paper briefly discusses the environment in which the software is being produced, and methodologies employed by the development team. The discussion of software engineering approaches should be of interest to small groups producing relatively large complex software systems. (auth)

  17. A Hybrid Fuzzy Model for Lean Product Development Performance Measurement

    Science.gov (United States)

    Osezua Aikhuele, Daniel; Mohd Turan, Faiz

    2016-02-01

    In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.

  18. Overview of NASA Multi-dimensional Stirling Convertor Code Development and Validation Effort

    Science.gov (United States)

    Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David

    2002-01-01

    A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this

  19. Development of Continuous-Energy Eigenvalue Sensitivity Coefficient Calculation Methods in the Shift Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Martin, William R [University of Michigan; Rearden, Bradley T [ORNL; Williams, Mark L [ORNL

    2012-01-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.

  20. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    Science.gov (United States)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  1. Development of statistical analysis code for meteorological data (W-View)

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Haruo; Sekita, Tsutomu; Yamaguchi, Takenori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A computer code (W-View: Weather View) was developed to analyze the meteorological data statistically based on 'the guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). The code gives statistical meteorological data to assess the public dose in case of normal operation and severe accident to get the license of nuclear reactor operation. This code was revised from the original code used in a large office computer code to enable a personal computer user to analyze the meteorological data simply and conveniently and to make the statistical data tables and figures of meteorology. (author)

  2. Development of the multistep compound process calculation code

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan)

    1998-03-01

    A program `cmc` has been developed to calculate the multistep compound (MSC) process by Feshback-Kerman-Koonin. A radial overlap integral in the transition matrix element is calculated microscopically, and comparisons are made for neutron induced {sup 93}Nb reactions. Strengths of the two-body interaction V{sub 0} are estimated from the total MSC cross sections. (author)

  3. The BCL2 code to dopaminergic development and Parkinson's disease

    NARCIS (Netherlands)

    van der Heide, L.P.; Smidt, M.P.

    2013-01-01

    Continuous, nonrandom cell death during development of the dopaminergic system is carefully orchestrated by locally secreted growth factors and the expression of transcription factors to ensure every neuron is carefully placed in its appropriate position and no 'miswiring' occurs. We hypothesize tha

  4. HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

    2009-04-15

    The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer

  5. Implementation and performance of FDPS: A Framework Developing Parallel Particle Simulation Codes

    CERN Document Server

    Iwasawa, Masaki; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro

    2016-01-01

    We have developed FDPS (Framework for Developing Particle Simulator), which enables researchers and programmers to develop high-performance parallel particle simulation codes easily. The basic idea of FDPS is to separate the program code for complex parallelization including domain decomposition, redistribution of particles, and exchange of particle information for interaction calculation between nodes, from actual interaction calculation and orbital integration. FDPS provides the former part and the users write the latter. Thus, a user can implement a high-performance fully parallelized $N$-body code only in 120 lines. In this paper, we present the structure and implementation of FDPS, and describe its performance on three sample applications: disk galaxy simulation, cosmological simulation and Giant impact simulation. All codes show very good parallel efficiency and scalability on K computer and XC30. FDPS lets the researchers concentrate on the implementation of physics and mathematical schemes, without wa...

  6. An Overview of the MARS and CUPID Code Development: Numerical Aspect

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun [Pusan National University, Pusan (Korea, Republic of)

    2015-10-15

    The MARS code development project launched at Korea Atomic Energy Research Institute (KAERI) in 1997 as one of R and D activities for technology selfreliance. The backbone of the MARS code is the consolidated version of the COBRA-TF and RELAP5/MOD3 codes. Because the two codes use the same numerical solution scheme known as the semiimplicit scheme, the implicit coupling was easily devised and implemented. The key advantages of the semi-implicit scheme are that (i) it can be easily extended to three-dimensional two-phase flows and (ii) it is very robust for two-phase flow calculations. Because of these features, it was adopted in the component-scale code, CUPID. In this paper, the numerical aspect of the MARS and CUPID codes are discussed. The semi-implicit scheme has worked very successfully in the MARS and CUPID codes. But, its time step is limited by the Courant limit, that is, the minimum of (dZi/Ui) or cell transit time. This requires long computational time for a problem with fine meshes and a fast flow. This feature also limits the computational efficiency for slow transients or steady state calculations. Especially for the CUPID code that usually uses finer meshes, this becomes a serious disadvantage.

  7. Overview of numerical codes developed for predicted electrothermal deicing of aircraft blades

    Science.gov (United States)

    Keith, Theo G.; De Witt, Kenneth J.; Wright, William B.; Masiulaniec, K. Cyril

    1988-01-01

    An overview of the deicing computer codes that have been developed at the University of Toledo under sponsorship of the NASA-Lewis Research Center is presented. These codes simulate the transient heat conduction and phase change occurring in an electrothermal deicier pad that has an arbitrary accreted ice shape on its surface. The codes are one-dimensional rectangular, two-dimensional rectangular, and two-dimensional with a coordinate transformation to model the true blade geometry. All modifications relating to the thermal physics of the deicing problem that have been incorporated into the codes will be discussed. Recent results of reformulating the codes using different numerical methods to increase program efficiency are described. In particular, this reformulation has enabled a more comprehensive two-dimensional code to run in much less CPU time than the original version. The code predictions are compared with experimental data obtained in the NASA-Lewis Icing Research Tunnel with a UH1H blade fitted with a B. F. Goodrich electrothermal deicer pad. Both continuous and cyclic heater firing cases are considered. The major objective in this comparison is to illustrate which codes give acceptable results in different regions of the airfoil for different heater firing sequences.

  8. Development of an Experimental Vehicle with Hybrid Energy System

    Directory of Open Access Journals (Sweden)

    Patricia Ciancio

    2013-06-01

    Full Text Available The first solar car competition in Latin America, in «The Solar Road» category, across the AtacamaDesert, Chile (2011 gave origin to an interdisciplinary project to encourage the use of sustainableenergy applied to the urban transport, without the use of fossil fuels damaging to the environment. Itaimed to develop a vehicle with minimum energy consumption for its transport, lightweight, stable,low-cost, and zero emission based on the combination of photovoltaic solar energy and electricpower obtained from a generator driven by human traction both stored in a battery. In this paper, theinherent aspects of the project and execution stages of an experimental hybrid vehicle, called PampaSolar, are presented. This includes the conception and sizing of the resistant structure, adoption ofthe solar cells configuration, battery sizing and choice, three-phase generator and electronicinstrumentation development, according to the basis of the competition and related loads. The analysisof the results of electric, electronic, mechanical, and vehicle energy systems during competitiondemonstrated a reliable performance, getting the award for the most efficient use of solar energy.

  9. Developing molecular dynamics simulation codes using mixed language programming

    Energy Technology Data Exchange (ETDEWEB)

    DeBoni, T.; Feo, J.T. [Lawrence Livermore National Lab., CA (United States); Caffey, H.; Hausheer, F. [BioNumerik Pharmaceuticals, Inc., San Antonio, TX (United States)

    1994-05-01

    We describe our experiences parallelizing a large-scale scientific application to model systems of discrete particles. We describe the approach and tasks undertaken to parallelize this application using two different programming paradigms: imperative and functional. The objectives of both exercises were to maximize performance, parallelism and portability, and to minimize program development costs. We believe this study reveals an important relationship between conventional and novel parallel programming paradigms, and identifies important attributes that novel paradigms must have to gain wide acceptance.

  10. Use of Data to Develop a Code Blue Training Program

    Science.gov (United States)

    2017-01-28

    basic journal publishing charges (to include costs fo r tables and black and white photos). We cannot pay for reprints. If you are 59 MOW staff member...SGS R&D: Tri-Service Nursing Research Program (TSNRP); Defense Medical Research & Development Program (DMRDP): NIH: Congressionally Directed...JO days before fina l clearance is required to publish/present your materials. If you have any questions or concerns, please contact the S9 CRD

  11. Development of Hydrophobic Coatings for Water-Repellent Surfaces Using Hybrid Methodology

    Science.gov (United States)

    2014-04-01

    windows, optical components, protective eyewear, and clothing, this type of surface is desired for the material to be soil repellent and water ...Development of Hydrophobic Coatings for Water - Repellent Surfaces Using Hybrid Methodology by Amanda S. Weerasooriya, Jacqueline Yim, Andres A...Proving Ground, MD 21005-5069 ARL-TR-6898 April 2014 Development of Hydrophobic Coatings for Water - Repellent Surfaces Using Hybrid

  12. Linear engine development for series hybrid electric vehicles

    Science.gov (United States)

    Toth-Nagy, Csaba

    This dissertation argues that diminishing oil reserves, concern over global climate change, and desire to improve ambient air quality all demand the development of environment-friendly personal transportation. In certain applications, series hybrid electric vehicles offer an attractive solution to reducing fuel consumption and emissions. Furthermore, linear engines are emerging as a powerplant suited to series HEV applications. In this dissertation, a linear engine/alternator was considered as the auxiliary power unit of a range extender series hybrid electric vehicle. A prototype linear engine/alternator was developed, constructed and tested at West Virginia University. The engine was a 2-stroke, 2-cylinder, dual piston, direct injection, diesel engine. Experiment on the engine was performed to study its behavior. The study variables included mass of the translator, amount of fuel injected, injection timing, load, and stroke with operating frequency and mechanical efficiency as the basis of comparison. The linear engine was analyzed in detail and a simple simulation model was constructed to compare the trends of simulation with the experimental data and to expand on the area where the experimental data were lacking. The simulation was based on a simple and analytical model, rather than a detailed and intensely numerical one. The experimental and theoretical data showed similar trends. Increasing translator mass decreased the operating frequency and increased compression ratio. Larger mass and increased compression ratio improved the ability of the engine to sustain operation and the engine was able to idle on less fuel injected into the cylinder. Increasing the stroke length caused the operating frequency to drop. Increasing fueling or decreasing the load resulted in increased operating frequency. This projects the possibility of using the operating frequency as an input for feedback control of the engine. Injection timing was varied to investigate two different

  13. CopenHybridDevelopment of a CO2 Neutral Hybrid Street Lighting System for the Danish Municipalities’ Illumination Classes

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Thorseth, Anders

    2013-01-01

    A mathematical model has been developed for the energy system of the hybrid street lighting making it possible to simulate a given configuration (solar panel performance data, size and orientation - wind turbine performance data, projected area and height - battery data) over a year in an urban...

  14. Computer code system for the R and D of nuclear fuel cycle with fast reactor. 5. Development and application of reactor analysis code system

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kenji; Hazama, Taira; Chiba, Go; Ohki, Shigeo; Ishikawa, Makoto [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2002-12-01

    In the core design of fast reactors (FRs), it is very important to improve the prediction accuracy of the nuclear characteristics for both reducing cost and ensuring reliability of FR plants. A nuclear reactor analysis code system for FRs has been developed by the Japan Nuclear Cycle Development Institute (JNC). This paper describes the outline of the calculation models and methods in the system consisting of several analysis codes, such as the cell calculation code CASUP, the core calculation code TRITAC and the sensitivity analysis code SAGEP. Some examples of verification results and improvement of the design accuracy are also introduced based on the measurement data from critical assemblies, e.g, the JUPITER experiment (USA/Japan), FCA (Japan), MASURCA (France), and BFS (Russia). Furthermore, application fields and future plans, such as the development of new generation nuclear constants and applications to MA{center_dot}FP transmutation, are described. (author)

  15. Extension of hybrid micro-depletion model for decay heat calculation in the DYN3D code

    Energy Technology Data Exchange (ETDEWEB)

    Bilodid, Yurii; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety; Kotlyar, D. [Georgia Institute of Technology, Atlanta, GA (United States); Shwageraus, E. [Cambridge Univ. (United Kingdom)

    2017-06-01

    This work extends the hybrid micro-depletion methodology, recently implemented in DYN3D, to the decay heat calculation by accounting explicitly for the heat contribution from the decay of each nuclide in the fuel.

  16. Practical Salesforce.com development without code customizing salesforce on the Force.com platform

    CERN Document Server

    Weinmeister, Philip

    2014-01-01

    Are you facing a challenging Salesforce.com problem-say, relating to customization, configuration, reporting, dashboards, or formulation-that you can't quite crack? Or maybe you are hoping to infuse some creativity into your solution design strategy to solve problems faster or make solutions more efficient? Practical Salesforce.com Development Without Code shows you how to unlock the power of the Force.com platform to solve real business problems-and all without writing a line of code. Adhering to Salesforce.com's ""Clicks, not code"" mantra, Salesforce.com expert Phil Weinmeister walks you t

  17. Strategies for developing subchannel capability in an advanced system thermalhydraulic code: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Rao, Y.F., E-mail: zhong.cheng@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-06-15

    In the framework of developing next generation safety analysis tools, Canadian Nuclear Laboratories (CNL) has planned to incorporate subchannel analysis capability into its advanced system thermalhydraulic code CATHENA 4. This paper provides a literature review and an assessment of current subchannel codes. It also evaluates three code-development methods: (i) static coupling of CATHENA 4 with the subchannel code ASSERT-PV, (ii) dynamic coupling of the two codes, and (iii) fully implicit implementation for a new, standalone CATHENA 4 version with subchannel capability. Results of the review and assessment suggest that the current ASSERT-PV modules can be used as the base for the fully implicit implementation of subchannel capability in CATHENA 4, and that this option may be the most cost-effective in the long run, resulting in savings in user application and maintenance costs. In addition, improved versatility of the tool could be accomplished by the addition of new features that could be added as part of its development. The new features would improve the capabilities of the existing subchannel code in handling low, reverse, and stagnant flows often encountered in system thermalhydraulic analysis. Therefore, the method of fully implicit implementation is preliminarily recommended for further exploration. A feasibility study will be performed in an attempt to extend the present work into a preliminary development plan. (author)

  18. Plutonium and uranium isotopic analysis: recent developments of the MGA++ code suite

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, W; Clark, D; Parker, W E; Romine, W; Ruhter, W; Wang, T F

    1999-09-17

    The Lawrence Livermore National Laboratory develops sophisticated gamma-ray analysis codes for isotopic determinations of nuclear materials based on the principles of the MultiGroup Analysis (MGA). MGA methodology has been upgraded and expanded and is now comprised of a suite of codes known as MGA++. A graphical user interface has also been developed for viewing the data and the fitting procedure. The code suite provides plutonium and uranium isotopic analysis for data collected with high-purity germanium planar and/or coaxial detector systems. The most recent addition to the MGA++ code suite, MGAHI, analyzes Pu data using higher-energy gamma rays (200 keV and higher) and is particularly useful for Pu samples that are enclosed in thick-walled containers. Additionally, the code suite can perform isotopic analysis of uranium spectra collected with cadmium-zinc-telluride (CZT) detectors. We are currently developing new codes with will integrate into the MGA++ suite. These will include Pu isotopic analysis capabilities for data collected with CZT detectors, and U isotopic analysis with high-purity germanium detectors, which utilizes only higher energy gamma rays. Future development of MGA++ will include a capability for isotopic analyses on mixtures of Pu and U.

  19. Development of hybrid electric vehicle powertrain test system based on virtue instrument

    Science.gov (United States)

    Xu, Yanmin; Guo, Konghui; Chen, Liming

    2017-05-01

    Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.

  20. Development of hybrid gas detectors for monitoring neutrons induced from the large intensity proton linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shim, G. S.; Lee, G. S.; Ahn, S. H. [Korea Univ., Seoul (Korea, Republic of)

    2005-05-15

    Design of a hybrid gaseous detector for slow neutrons. Construction of the hybrid gaseous detector and tests with a {sup 52}Cf isotope and the MC-50 cyclotron. Designs, constructions, and tests for hybrid scintillators using various neutron sensitive materials (2{sup nd} year). Application to development of detectors for high energy physics (2{sup nd} year). Practical R and Ds for applications to medical and industrial purposes (3{sup rd} year)

  1. Hybrid Rice Research and Development in China and Its New Progress

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Hybrid rice's history and its development up to date are described in the paper. Compared with the conventional rice, hybrid rice can increase grain yield by about 20%. Hybrid rice breeding in China has been advancing along the three-line method, to two-line method, to super high-yielding rice application strategically and its success in higher degree will be seen by the utilization of distant heterosis cooperated with biotechnology.

  2. Development of commercial hybrid electric vehicle with native key components

    Directory of Open Access Journals (Sweden)

    S. V. Bakhmutov

    2014-01-01

    Full Text Available The perspectives of development of medium weight cargo vehicles with hybrid powertrain including Russian native key components are considered in this article. Series-parallel scheme of HEV is more relevant owing to limitations of series and parallel schemes. An example of this technology is described. This technical solution has good facilities for variation of HEV and AWD type. The authors have patented it. In addition, another main issue is to choose the types of key components with good correlation for parameters of ICE, electric motors, batteries, and inverter. Using mathematical model of the vehicle a selection and correlation of technical characteristics were carried out to meet ecological and economical requirements. After computing calculation two control strategies were accepted. The first strategy contributes to good fuel consumption, while the other one is aimed at ecology. Researchers use test benches to confirm the results of calculation, and this one was built by the authors applying native components. The result of experiment on the test bench is the growth of fuel consumption of the medium weight cargo vehicle by 25% and compliance with ecological class Euro-4.

  3. New developments of the CARTE thermochemical code: I-parameter optimization

    Science.gov (United States)

    Desbiens, N.; Dubois, V.

    We present the calibration of the CARTE thermochemical code that allows to compute the properties of a wide variety of CHON explosives. We have developed an optimization procedure to obtain an accurate multicomponents EOS (fluid phase and condensed phase of carbon). We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and we extensively compare our calculations with measured detonation properties for several explosives.

  4. New developments of the CARTE thermochemical code: I-parameter optimization

    Directory of Open Access Journals (Sweden)

    Dubois V.

    2011-01-01

    Full Text Available We present the calibration of the CARTE thermochemical code that allows to compute the properties of a wide variety of CHON explosives. We have developed an optimization procedure to obtain an accurate multicomponents EOS (fluid phase and condensed phase of carbon. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and we extensively compare our calculations with measured detonation properties for several explosives.

  5. Development of probabilistic RESRAD computer codes for NRC decommissioning and license termination applications.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. Y.; Yu, C.; Mo. T.; Trottier, C.

    2000-10-17

    In 1999, the US Nuclear Regulatory Commission (NRC) tasked Argonne National Laboratory to modify the existing RESRAD and RESRAD-BUILD codes to perform probabilistic, site-specific dose analysis for use with the NRC's Standard Review Plan for demonstrating compliance with the license termination rule. The RESRAD codes have been developed by Argonne to support the US Department of Energy's (DOEs) cleanup efforts. Through more than a decade of application, the codes already have established a large user base in the nation and a rigorous QA support. The primary objectives of the NRC task are to: (1) extend the codes' capabilities to include probabilistic analysis, and (2) develop parameter distribution functions and perform probabilistic analysis with the codes. The new codes also contain user-friendly features specially designed with graphic-user interface. In October 2000, the revised RESRAD (version 6.0) and RESRAD-BUILD (version 3.0), together with the user's guide and relevant parameter information, have been developed and are made available to the general public via the Internet for use.

  6. Development of a model and computer code to describe solar grade silicon production processes

    Science.gov (United States)

    Gould, R. K.; Srivastava, R.

    1979-01-01

    Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.

  7. A restructuring proposal based on MELCOR for severe accident analysis code development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Song, Y. M.; Kim, D. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    In order to develop a template based on existing MELCOR code, current data saving and transferring methods used in MELCOR are addressed first. Then a naming convention for the constructed module is suggested and an automatic program to convert old variables into new derived type variables has been developed. Finally, a restructured module for the SPR package has been developed to be applied to MELCOR. The current MELCOR code ensures a fixed-size storage for four different data types, and manages the variable-sized data within the storage limit by storing the data on the stacked packages. It uses pointer to identify the variables between the packages. This technique causes a difficult grasping of the meaning of the variables as well as memory waste. New features of FORTRAN90, however, make it possible to allocate the storage dynamically, and to use the user-defined data type which lead to a restructured module development for the SPR package. An efficient memory treatment and as easy understanding of the code are allowed in this developed module. The validation of the template has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. The template for the SPR package suggested in this report hints the extension of the template to the entire code. It is expected that the template will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models. 3 refs., 15 figs., 16 tabs. (Author)

  8. Development of OCDMA system based on Flexible Cross Correlation (FCC) code with OFDM modulation

    Science.gov (United States)

    Aldhaibani, A. O.; Aljunid, S. A.; Anuar, M. S.; Arief, A. R.; Rashidi, C. B. M.

    2015-03-01

    The performance of the OCDMA systems is governed by numerous quantitative parameters such as the data rate, simultaneous number of users, the powers of transmitter and receiver, and the type of codes. This paper analyzes the performance of the OCDMA system using OFDM technique to enhance the channel data rate, to save power and increase the number of user of OSCDMA systems compared with previous hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system. The average received signal to noise ratio (SNR) with the nonlinearity of subcarriers is derived. The theoretical results have been evaluated based on BER and number of users as well as amount of power saved. The proposed system gave better performance and save around -6 dBm of the power as well as increase the number of users twice compare to SCM/OCDMA system. In addition it is robust against interference and much more spectrally efficient than SCM/OCDMA system. The system was designed based on Flexible Cross Correlation (FCC) code which is easier construction, less complexity of encoder/decoder design and flexible in-phase cross-correlation for uncomplicated to implement using Fiber Bragg Gratings (FBGs) for the OCDMA systems for any number of users and weights. The OCDMA-FCC_OFDM improves the number of users (cardinality) 108% compare to SCM/ODCMA-FCC system.

  9. Development of the Verification and Validation Matrix for Safety Analysis Code SPACE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yo Han; Ha, Sang Jun; Yang, Chang Keun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    Korea Electric Power Research Institute (KEPRI) has been developed the safety analysis code, called as SPACE (Safety and Performance Analysis CodE for Nuclear Power Plant), for typical pressurized water reactors (PWR). Current safety analysis codes were conducted from foreign vendors, such as Westinghouse Electric Corp., ABB Combustion Engineering Inc., Kraftwerk Union, etc. Considering the conservatism and inflexibility of the foreign code systems, it is difficult to expand the application areas and analysis scopes. To overcome the mentioned problems KEPRI has launched the project to develop the native safety analysis code with Korea Power Engineering Co.(KOPEC), Korea Atomic Energy Research Inst.(KAERI), Korea Nuclear Fuel(KNF), and Korea Hydro and Nuclear Power Co.(KHNP) under the funding of Ministry of Knowledge Economy (MKE). As a result of the project, the demo-version of SPACE has been released in July 2009. As an advance preparation of the next step, KEPRI and colleagues have developed the verification and validation (V and V) matrix for SPACE. To develop the matrix, the preceding studies and experiments were reviewed. After mature consideration, the V and V matrix has been developed and the experiment plans were designed for the next step to compensate the lack of data.

  10. Developing a code of ethics for academics. Commentary on 'Ethics for all: differences across scientific society codes' (Bullock and Panicker).

    Science.gov (United States)

    Fisher, Celia B

    2003-04-01

    This article discusses the possibilities and pitfalls of constructing a code of ethics for university professors. Professional, educational, legal, and policy questions regarding the goals, format, and content of an academic ethics code are raised and a series of aspirational principles and enforceable standards that might be included in such a document are presented for discussion and debate.

  11. Developing a Coding Scheme to Analyse Creativity in Highly-constrained Design Activities

    DEFF Research Database (Denmark)

    Dekoninck, Elies; Yue, Huang; Howard, Thomas J.;

    2010-01-01

    of design and analysis on a highly constrained design task. This paper shows how design changes can be coded using a scheme based on creative ‘modes of change’. The coding scheme can show the way a designer moves around the design space, and particularly the strategies that are used by a creative designer......This work is part of a larger project which aims to investigate the nature of creativity and the effectiveness of creativity tools in highly-constrained design tasks. This paper presents the research where a coding scheme was developed and tested with a designer-researcher who conducted two rounds...... to skip from one ‘train of solutions’ to new avenues. The coding scheme can be made more robust by: ensuring design change is always coded relative to a reference design; tightening up definitions of ‘system’, ‘element’ and ‘function’; and using a matrix to develop a more complete set of codes. A much...

  12. Alquimia: Exposing mature biogeochemistry capabilities for easier benchmarking and development of next-generation subsurface codes

    Science.gov (United States)

    Johnson, J. N.; Molins, S.

    2015-12-01

    The complexity of subsurface models is increasing in order to address pressing scientific questions in hydrology and climate science. In particular, models that attempt to explore the coupling between microbial metabolic activity and hydrology at larger scales need an accurate representation of their underlying biogeochemical systems. These systems tend to be very complicated, and they result in large nonlinear systems that have to be coupled with flow and transport algorithms in reactive transport codes. The complexity inherent in implementing a robust treatment of biogeochemistry is a significant obstacle in the development of new codes. Alquimia is an open-source software library intended to help developers of these codes overcome this obstacle by exposing tried-and-true biogeochemical capabilities in existing software. It provides an interface through which a reactive transport code can access and evolve a chemical system, using one of several supported geochemical "engines." We will describe Alquimia's current capabilities, and how they can be used for benchmarking reactive transport codes. We will also discuss upcoming features that will facilitate the coupling of biogeochemistry to other processes in new codes.

  13. Recent development and application of a new safety analysis code for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J., E-mail: Brad.Merrill@inl.gov; Humrickhouse, Paul W.; Shimada, Masashi

    2016-11-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  14. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  15. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  16. Evolution of Debris of a Tidally Disrupted Star by a Massive Black Hole Development of a Hybrid Scheme of the SPH and TVD Methods

    CERN Document Server

    Lee, H M; Lee, Hyung Mok; Kim, Sungsoo S.

    1996-01-01

    The evolution of the stellar debris after tidal disruption due to the super massive black hole's tidal force is difficult to solve numerically because of the large dynamical range of the problem. We developed an SPH (Smoothed Particle Hydrodynamics) - TVD (Total Variation Diminishing) hybrid code in which the SPH is used to cover a widely spread debris and the TVD is used to compute the stream collision more accurately. While the code in the present form is not sufficient to obtain desired resoultion, it could provide a useful tool in studying the aftermath of the stellar disruption by a massive black hole.

  17. Development of an Auxiliary Power Unit Specification for Medium Duty Series Hybrid Electric Vehicles

    Science.gov (United States)

    1998-06-01

    As a part of the Defense Advanced Research Projects Agency (DARPA) program to develop hybrid and electric vehicles , a specification for medium duty...hybrid electric vehicles . Intended applications include medium duty commercial vehicles and buses. For the purposes of this specification an APU is

  18. Code Development of Radioactive Aerosol Scrubbing in Pool-Injection Zone

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyun Joung; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jang, Dong Soon [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the injection zone. The developed code has been verified using the experimental results and evaluated parametrically on the input variables. In injection zone, the initial steam condensation was most effective mechanism for the aerosol removal, and the steam fraction and pool temperature were highly affected on the decontamination factor by initial steam condensation. The aerosol scrubbing code will be updated to evaluate the decontamination factor at rise zone and finally whole pool scrubber phenomena. If a severe accident occurs in a nuclear power plant (NPP), the aerosol and gaseous fission products might be produced in the reactor vessel, and then released to the environment after the containment failure. FCVS (Filtered Containment Venting System) is one of the severe accident mitigation systems for retaining the containment integrity by discharging the high-temperature and high-pressure fission products to the environment after passing through the filtration system. In general, the FCVS is categorized into two types, wet and dry types. The scrubbing pool could play an important role in the wet type FCVS because a large amount of aerosol is captured in the water pool. The pool scrubbing phenomena have been modelled and embedded in several computer codes, such as SPARC (Suppression Pool Aerosol Removal Code), BUSCA (BUbble Scrubbing Algorithm) and SUPRA (Suppression Pool Retention Analysis). These codes aim at simulating the pool scrubbing process and estimating the decontamination factors (DFs) of the radioactive aerosol and iodine gas in the water pool, which is defined as the ratio of initial mass of the specific radioactive material to final massy after passing through the water pool. The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the injection

  19. Developments in Communication Ethics: The Ethics Commission, Code of Professional Responsibilities, Credo for Ethical Communication.

    Science.gov (United States)

    Andersen, Kenneth E.

    2000-01-01

    Traces aspects of the evolution of interest in ethical issues by the National Communication Association (NCA), the effort to develop a Professional Code, and the development of the Credo for Ethical Communication adopted by the NCA Legislative Council November 6, 1999. Includes a copy of the Credo. (NH)

  20. Development of a computer code for thermal hydraulics of reactors (THOR). [BWR and PWR

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W

    1975-01-01

    The purpose of the advanced code development work is to construct a computer code for the prediction of thermohydraulic transients in water-cooled nuclear reactor systems. The fundamental formulation of fluid dynamics is to be based on the one-dimensional drift flux model for non-homogeneous, non-equilibrium flows of two-phase mixtures. Particular emphasis is placed on component modeling, automatic prediction of initial steady state conditions, inclusion of one-dimensional transient neutron kinetics, freedom in the selection of computed spatial detail, development of reliable constitutive descriptions, and modular code structure. Numerical solution schemes have been implemented to integrate simultaneously the one-dimensional transient drift flux equations. The lumped-parameter modeling analyses of thermohydraulic transients in the reactor core and in the pressurizer have been completed. The code development for the prediction of the initial steady state has been completed with preliminary representation of individual reactor system components. A program has been developed to predict critical flow expanding from a dead-ended pipe; the computed results have been compared and found in good agreement with idealized flow solutions. Transport properties for liquid water and water vapor have been coded and verified.

  1. Development of hybrid fluid jet/float polishing process

    Science.gov (United States)

    Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.

    2013-09-01

    On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.

  2. Arc View/Avenue: Coding styles and utility scripts for efficient development

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, J.

    1996-05-07

    Effectiveness and efficiency of software development can be greatly increased by writing modularized code using informal (styles) and formal (standards) work approaches. Software development is about connecting pieces into a coherent whole. Thus consistent work approaches provide a structure that allows individuals and teams to minimize the time and thought put into making these connections. These investments in structure return even more benefits in the maintenance phase when old code has to be examined by new programmers, or after time has passed. We present some examples of coding style for Avenue: a simplified form of Hungarian notation (notationHungarian, stringCustomerName, etc.), script naming prefixes and suffixes, and options in script headers. We demonstrate several modular, object-like utility scripts that can be used alone or combined into other utilities. These include developer tools such as a System.Echo substitute for Windows, a Window inspector, and a script for detecting and dealing with multiple display resolutions.

  3. TOOKUIL: A case study in user interface development for safety code application

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G. [and others

    1997-07-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interface named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.

  4. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  5. Development of Variational Data Assimilation Methods for the MoSST Geodynamo Code

    Science.gov (United States)

    Egbert, G. D.; Erofeeva, S.; Kuang, W.; Tangborn, A.; Dimitrova, L. L.

    2013-12-01

    A range of different approaches to data assimilation for Earth's geodynamo are now being pursued, from sequential schemes based on approximate covariances of various degrees of sophistication, to variational methods for models of varying degrees of physical completeness. While variational methods require development of adjoint (and possible tangent linear) variants on the forward code---a challenging programming task for a fully self-consistent modern dynamo code---this approach may ultimately offer significant advantages. For example, adjoint based variational approaches allow initial, boundary, and forcing terms to be explicitly adjusted to combine data from modern and historical eras into dynamically consistent maps of core state, including flow, buoyancy and magnetic fields. Here we describe development of tangent linear and adjoint codes for the Modular Scalable Self-consistent Three-dimensional (MoSST) geodynamo simulator, and present initial results from simple synthetic data assimilation experiments. Our approach has been to develop the exact linearization and adjoint of the actual discrete functions represented by the computer code. To do this we use a 'divide-and-concur' approach: the code is decomposed as the sequential action of a series of linear and non-linear procedures on specified inputs. Non-linear procedures are first linearized about a pre-computed input background state (derived by running the non-linear forward model), and a tangent linear time-step code is developed. For small perturbations of initial state the linearization appears to remain valid for times comparable to the secular variation time-scale. Adjoints for each linear (or linearized) procedure were then developed and tested separately (for symmetry), and then merged into adjoint procedures of increasing complexity. We have completed development of the adjoint for a serial version of the MoSST code, explore time limits of forward operator linearization, and discuss next steps

  6. DEVELOPMENT OF A HYBRID MODEL FOR THREE-DIMENSIONAL GIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulat ed Irregular Network (TIN) and octree models are integrated in this hybrid model. The TIN model works as a surface-based model which mainly serves for surface presentation and visualization. On the other hand, the octree encoding supports volumetric analysis. The designed data structure brings a major advantage in the three-dimensional selective retrieval. This technique increases the efficiency of three-dimensional data operation.

  7. Research on the improvement of nuclear safety -The development of a severe accident analysis code-

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heui Dong; Cho, Sung Won; Park, Jong Hwa; Hong, Sung Wan; Yoo, Dong Han; Hwang, Moon Kyoo; Noh, Kee Man; Song, Yong Man [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity and is intended to improve existing models and develop analytical tools for the assessment of severe accidents. A correlation equation of the flame velocity of pre mixture gas of H{sub 2}/air/steam has been suggested and combustion flame characteristic was analyzed using a developed computer code. For the analysis of the expansion phase of vapor explosion, the mechanical model has been developed. The development of a debris entrainment model in a reactor cavity with captured volume has been continued to review and examine the limitation and deficiencies of the existing models. Pre-test calculation was performed to support the severe accident experiment for molten corium concrete interaction study and the crust formation process and heat transfer characteristics of the crust have been carried out. A stress analysis code was developed using finite element method for the reactor vessel lower head failure analysis. Through international program of PHEBUS-FP and participation in the software development, the research on the core degradation process and fission products release and transportation are undergoing. CONTAIN and MELCOR codes were continuously updated under the cooperation with USNRC and French developed computer codes such as ICARE2, ESCADRE, SOPHAEROS were also installed into the SUN workstation. 204 figs, 61 tabs, 87 refs. (Author).

  8. Application of software engineering to development of reactor-safety codes

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, N P; Niccoli, L G

    1980-11-01

    As a result of the drastically increasing cost of software and the lack of an engineering approach, the technology of Software Engineering is being developed. Software Engineering provides an answer to the increasing cost of developing and maintaining software. It has been applied extensively in the business and aerospace communities and is just now being applied to the development of scientific software and, in particular, to the development of reactor safety codes at HEDL.

  9. Development and Application of Nucleic Acid Hybridization Techniques to Arbovirus Surveillance and Diagnosis.

    Science.gov (United States)

    1986-11-04

    The pVV9 and pWV7 probes were more specific for dengue-2 RNA, but-o ::e cross reaction with other dengue serotypes was noted. ,PdUc1biLity Codes S...contained dengue specific inserts that strongly hybridized to dengue-2 RMA and to the RNA of other dengue serotypes to varying degrees (Figure 6). The pVVl

  10. Methodology, status and plans for development and assessment of the code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Teschendorff, V.; Austregesilo, H.; Lerchl, G. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH Forschungsgelaende, Garching (Germany)

    1997-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.

  11. Basic Pilot Code Development for Two-Fluid, Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.; Ha, K. S.; Kang, D. H

    2006-03-15

    A basic pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. Using 9 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. - During the simulation of a two-phase flow, the calculation reaches a quasisteady state with small-amplitude oscillations. The oscillations seem to be induced by some numerical causes. The research items for the improvement of the basic pilot code are listed in the last section of this report.

  12. Development of environmental dose assessment system (EDAS) code of PC version

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Mitsumasa; Kikuchi, Masamitsu; Kobayashi, Hideo; Yamaguchi, Takenori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessment with JAERI. (author)

  13. Development and Verification of Smoothed Particle Hydrodynamics Code for Analysis of Tsunami near NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Young Beom; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    It becomes more complicated when considering the shape and phase of the ground below the seawater. Therefore, some different attempts are required to precisely analyze the behavior of tsunami. This paper introduces an on-going activities on code development in SNU based on an unconventional mesh-free fluid analysis method called Smoothed Particle Hydrodynamics (SPH) and its verification work with some practice simulations. This paper summarizes the on-going development and verification activities on Lagrangian mesh-free SPH code in SNU. The newly developed code can cover equation of motions and heat conduction equation so far, and verification of each models is completed. In addition, parallel computation using GPU is now possible, and GUI is also prepared. If users change input geometry or input values, they can simulate for various conditions geometries. A SPH method has large advantages and potential in modeling of free surface, highly deformable geometry and multi-phase problems that traditional grid-based code has difficulties in analysis. Therefore, by incorporating more complex physical models such as turbulent flow, phase change, two-phase flow, and even solid mechanics, application of the current SPH code is expected to be much more extended including molten fuel behaviors in the sever accident.

  14. Update on the Development and Validation of MERCURY: A Modern, Monte Carlo Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Procassini, R J; Taylor, J M; McKinley, M S; Greenman, G M; Cullen, D E; O' Brien, M J; Beck, B R; Hagmann, C A

    2005-06-06

    An update on the development and validation of the MERCURY Monte Carlo particle transport code is presented. MERCURY is a modern, parallel, general-purpose Monte Carlo code being developed at the Lawrence Livermore National Laboratory. During the past year, several major algorithm enhancements have been completed. These include the addition of particle trackers for 3-D combinatorial geometry (CG), 1-D radial meshes, 2-D quadrilateral unstructured meshes, as well as a feature known as templates for defining recursive, repeated structures in CG. New physics capabilities include an elastic-scattering neutron thermalization model, support for continuous energy cross sections and S ({alpha}, {beta}) molecular bound scattering. Each of these new physics features has been validated through code-to-code comparisons with another Monte Carlo transport code. Several important computer science features have been developed, including an extensible input-parameter parser based upon the XML data description language, and a dynamic load-balance methodology for efficient parallel calculations. This paper discusses the recent work in each of these areas, and describes a plan for future extensions that are required to meet the needs of our ever expanding user base.

  15. Development of MATRA-LMR code {alpha}-version for LMR subchannel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Seok; Kim, Young Gyun; Kim, Young Gin

    1998-05-01

    Since the sodium boiling point is very high, maximum cladding and pin temperature are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the core temperature distribution to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR is being developed for LMR. The major modification are as follows : A) The sodium properties table is implemented as subprogram in the code. B) Heat transfer coefficients are changed for LMR C) The pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. To assess the development status of MATRA-LMR code, calculations have been performed for ORNL 19 pin and EBR-II 61 pin tests. MATRA-LMR calculation results are also compared with the results obtained by the ALTHEN code, which uses more simplied thermal hydraulic model. The MATRA-LMR predictions are found to agree well to the measured values. The differences in results between MATRA-LMR and SLTHEN have occurred because SLTHEN code uses the very simplied thermal-hydraulic model to reduce computing time. MATRA-LMR can be used only for single assembly analysis, but it is planned to extend for multi-assembly calculation. (author). 18 refs., 8 tabs., 14 figs.

  16. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  17. Development of continuous-energy eigenvalue sensitivity coefficient calculation methods in the shift Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, C.; Martin, W. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104 (United States); Rearden, B.; Williams, M. [Oak Ridge National Laboratory, Reactor and Nuclear Systems Div., Bldg. 5700, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States)

    2012-07-01

    Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the Shift Monte Carlo code within the SCALE code package. The methods were used for two small-scale test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods. (authors)

  18. Solution of 3-dimensional time-dependent viscous flows. Part 2: Development of the computer code

    Science.gov (United States)

    Weinberg, B. C.; Mcdonald, H.

    1980-01-01

    There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow equations to aid in the design of helicopter rotors. The development of a computer code to solve a three dimensional unsteady approximate form of the Navier-Stokes equations employing a linearized block emplicit technique in conjunction with a QR operator scheme is described. Results of calculations of several Cartesian test cases are presented. The computer code can be applied to more complex flow fields such as these encountered on rotating airfoils.

  19. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, Taylor S. [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.

  20. Development of an Electrochemical-Cantilever Hybrid Platform

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie

    I denne afhandling er udviklingen af en nyskabende elektrokemisk-cantilever hybrid sensor platform præsenteret. Mikro cantileverer er meget følsomme over for ændringer i overflade stress, mens elektrokemiske metoder tillader kontrol og udlæsning af overflade ladning og potentiale. Det kan bruges...

  1. Development and characterization of hybrids from native wine yeasts

    Directory of Open Access Journals (Sweden)

    Verónica García

    2012-06-01

    Full Text Available For commercial purposes, the winemaking industry is constantly searching for new yeast strains. Historically, this has been achieved by collecting wild strains and selecting the best for industrial use through an enological evaluation. Furthermore, the increasing consumer demands have forced the industry to incorporate new strategies such as genetic engineering to obtain improved strains. In response to the lack of public acceptance of this methodology, alternative strategies based on breeding have gained acceptance in recent years. Through the use of conjugation of individual spores without the support of genetic engineering methods we generated intraspecific hybrids from wild strains with outstanding enological characteristics and interdelta fingerprinting was used to confirm the hybrid condition. A detailed enological characterization of the hybrids in synthetic and natural must indicates that physiological parameters such as sporulation, residual sugar, ethanol yield and total nitrogen uptake are within the levels determined for the parental strains, however, other parameters such as growth rate, lag phase and ethanol production show statistical differences with some parental or commercial strains. These findings allow us to propose these hybrids as new wine-making strains.

  2. Development and application of a deflagration pressure analysis code for high level waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, S.J.; Thomas, J.K.

    1994-06-01

    The Deflagration Pressure Analysis Code (DPAC) was developed primarily to evaluate peak pressures for deflagrations in radioactive waste storage and process facilities at the Savannah River Site (SRS). Deflagrations in these facilities are generally considered to be incredible events, but it was judged prudent to develop modeling capabilities in order to facilitate risk estimates. DPAC is essentially an engineering analysis tool, as opposed to a detailed thermal hydraulics code. It accounts for mass loss via venting, energy dissipation by radiative heat transfer, and gas PdV work. Volume increases due to vessel deformation can also be included using pressure-volume data from a structural analysis of the enclosure. This paper presents an overview of the code, benchmarking, and applications at SRS.

  3. End-of-life decisions in Malaysia: Adequacies of ethical codes and developing legal standards.

    Science.gov (United States)

    Kassim, Puteri Nemie Jahn; Alias, Fadhlina

    2015-06-01

    End-of-life decision-making is an area of medical practice in which ethical dilemmas and legal interventions have become increasingly prevalent. Decisions are no longer confined to clinical assessments; rather, they involve wider considerations such as a patient's religious and cultural beliefs, financial constraints, and the wishes and needs of family members. These decisions affect everyone concerned, including members of the community as a whole. Therefore it is imperative that clear ethical codes and legal standards are developed to help guide the medical profession on the best possible course of action for patients. This article considers the relevant ethical, codes and legal provisions in Malaysia governing certain aspects of end-of-life decision-making. It highlights the lack of judicial decisions in this area as well as the limitations with the Malaysian regulatory system. The article recommends the development of comprehensive ethical codes and legal standards to guide end-of-life decision-making in Malaysia.

  4. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    Energy Technology Data Exchange (ETDEWEB)

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  5. Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code

    Science.gov (United States)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun

    2015-03-01

    We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.

  6. Non-coding RNAs in the development of sensory organs and related diseases.

    Science.gov (United States)

    Conte, Ivan; Banfi, Sandro; Bovolenta, Paola

    2013-11-01

    Genomes are transcribed well beyond the conventionally annotated protein-encoding genes and produce many thousands of regulatory non-coding RNAs (ncRNAs). In the last few years, ncRNAs, especially microRNAs and long non-coding RNA, have received increasing attention because of their implication in the function of chromatin-modifying complexes and in the regulation of transcriptional and post-transcriptional events. The morphological events and the genetic networks responsible for the development of sensory organs have been well delineated and therefore sensory organs have provided a useful scenario to address the role of ncRNAs. In this review, we summarize the current information on the importance of microRNAs and long non-coding RNAs during the development of the eye, inner ear, and olfactory system in vertebrates. We will also discuss those cases in which alteration of ncRNA expression has been linked to pathological conditions affecting these organs.

  7. Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution

    Science.gov (United States)

    Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi

    2015-05-01

    In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs

  8. DNA elimination in embryogenic development of Pennisetum glaucum x Pennisetum purpureum (Poaceae) hybrids.

    Science.gov (United States)

    Nunes, J D; Azevedo, A L S; Pereira, A V; Paula, C M P; Campos, J M S; Lédo, F J S; Santos, V B

    2013-10-22

    Interspecific hybridization between Napier grass (Pennisetum purpureum), which is widely grown in Brazil for cattle forage, and pearl millet (Pennisetum glaucum) has been used as a breeding strategy for the development of improved cultivars. However, the hybrid between these two species is sterile due to its triploid condition (2n = 3x = 21 chromosomes), which hinders its use in crop breeding programs. It is known that genomic alterations result from the hybridization process. In order to measure the loss of DNA during embryo development, we used flow cytometry to estimate the nuclear DNA content of triploid and tetraploid embryos produced by interspecific hybridization between Napier grass and pearl millet. The triploid and tetraploid hybrids had a mean DNA content of 4.99-4.87 and 5.25-4.84 pg, at 10 and 30 days after pollination, respectively. The mean reduction in DNA content was higher in the tetraploid hybrids. The flow cytometry results revealed progressive genomic instability in these triploid and tetraploid hybrids, with this instability causing significant alterations in the DNA content of the hybrids.

  9. Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)

    2007-07-15

    Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.

  10. User input verification and test driven development in the NJOY21 nuclear data processing code

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Amelia Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Conlin, Jeremy Lloyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCartney, Austin Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-21

    Before physically-meaningful data can be used in nuclear simulation codes, the data must be interpreted and manipulated by a nuclear data processing code so as to extract the relevant quantities (e.g. cross sections and angular distributions). Perhaps the most popular and widely-trusted of these processing codes is NJOY, which has been developed and improved over the course of 10 major releases since its creation at Los Alamos National Laboratory in the mid-1970’s. The current phase of NJOY development is the creation of NJOY21, which will be a vast improvement from its predecessor, NJOY2016. Designed to be fast, intuitive, accessible, and capable of handling both established and modern formats of nuclear data, NJOY21 will address many issues that many NJOY users face, while remaining functional for those who prefer the existing format. Although early in its development, NJOY21 is quickly providing input validation to check user input. By providing rapid and helpful responses to users while writing input files, NJOY21 will prove to be more intuitive and easy to use than any of its predecessors. Furthermore, during its development, NJOY21 is subject to regular testing, such that its test coverage must strictly increase with the addition of any production code. This thorough testing will allow developers and NJOY users to establish confidence in NJOY21 as it gains functionality. This document serves as a discussion regarding the current state input checking and testing practices of NJOY21.

  11. Development of An Automatic Verification Program for Thermal-hydraulic System Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Ahn, K. T.; Ko, S. H.; Kim, Y. S.; Kim, D. W. [Pusan National University, Busan (Korea, Republic of); Suh, J. S.; Cho, Y. S.; Jeong, J. J. [System Engineering and Technology Co., Daejeon (Korea, Republic of)

    2012-05-15

    As a project activity of the capstone design competitive exhibition, supported by the Education Center for Green Industry-friendly Fusion Technology (GIFT), we have developed a computer program which can automatically perform non-regression test, which is needed repeatedly during a developmental process of a thermal-hydraulic system code, such as the SPACE code. A non-regression test (NRT) is an approach to software testing. The purpose of the non-regression testing is to verify whether, after updating a given software application (in this case, the code), previous software functions have not been compromised. The goal is to prevent software regression, whereby adding new features results in software bugs. As the NRT is performed repeatedly, a lot of time and human resources will be needed during the development period of a code. It may cause development period delay. To reduce the cost and the human resources and to prevent wasting time, non-regression tests need to be automatized. As a tool to develop an automatic verification program, we have used Visual Basic for Application (VBA). VBA is an implementation of Microsoft's event-driven programming language Visual Basic 6 and its associated integrated development environment, which are built into most Microsoft Office applications (In this case, Excel)

  12. Optimization of high-definition video coding and hybrid fiber-wireless transmission in the 60 GHz band

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Pham, Tien Thang; Beltrán, Marta;

    2011-01-01

    We demonstrate that, by jointly optimizing video coding and radio-over-fibre transmission, we extend the reach of 60-GHz wireless distribution of high-quality high-definition video satisfying low complexity and low delay constraints, while preserving superb video quality.......We demonstrate that, by jointly optimizing video coding and radio-over-fibre transmission, we extend the reach of 60-GHz wireless distribution of high-quality high-definition video satisfying low complexity and low delay constraints, while preserving superb video quality....

  13. Cross-Layer Approach using k-NN Based Adaptive Modulation Coding (AMC and Incremental Redundancy Hybrid Automatic Repeat Request (IR-HARQ for MIMO

    Directory of Open Access Journals (Sweden)

    J. Sofia Priya Dharshini

    2014-09-01

    Full Text Available In MIMO Technology, a cross layer design enhances the spectral efficiency, reliability and throughput of the network. In this paper, a cross-layer approach using k-NN based Adaptive Modulation Coding (AMC and Incremental Redundancy Hybrid Automatic Repeat Request (IR-HARQ is proposed for MIMO Systems. The proposed cross layer approach connects physical layer and data link layer to enhance the performance of MIMO network. By means of MIMO fading channels, the coded symbols are forwarded in the physical layer on a frame by frame fashion subsequently using Space Time Block Coding (STBC. The receiver computes the signal to noise ratio (SNR and forwards back to the AMC controller. The controller selects a suitable MCS for the next transmission through k-NN classifier supervised learning algorithm. IR-HARQ is utilized at the data link layer to regulate packet retransmissions. The obtained results prove that the proposed technique has better performance in terms of throughput, BER and spectral efficiency

  14. Building energy, building leadership : recommendations for the adoption, development, and implementation of a commercial building energy code in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Akerstream, T. [Manitoba Hydro, Winnipeg, MB (Canada); Allard, K. [City of Thompson, Thompson, MB (Canada); Anderson, N.; Beacham, D. [Manitoba Office of the Fire Commissioner, Winnipeg, MB (Canada); Andrich, R. [The Forks North Portage Partnership, MB (Canada); Auger, A. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency; Downs, R.G. [Shindico Realty Inc., Winnipeg, MB (Canada); Eastwood, R. [Number Ten Architectural Group, Winnipeg, MB (Canada); Hewitt, C. [SMS Engineering Ltd., Winnipeg, MB (Canada); Joshi, D. [City of Winnipeg, Winnipeg, MB (Canada); Klassen, K. [Manitoba Dept. of Energy Science and Technology, Winnipeg, MB (Canada); Phillips, B. [Unies Ltd., Winnipeg, MB (Canada); Wiebe, R. [Ben Wiebe Construction Ltd., Winnipeg, MB (Canada); Woelk, D. [Bockstael Construction Ltd., Winnipeg, MB (Canada); Ziemski, S. [CREIT Management LLP, Winnipeg, MB (Canada)

    2006-09-15

    This report presented a strategy and a set of recommendations for the adoption, development and implementation of an energy code for new commercial construction in Manitoba. The report was compiled by an advisory committee comprised of industry representatives and government agency representatives. Recommendations were divided into 4 categories: (1) advisory committee recommendations; (2) code adoption recommendations; (3) code development recommendations; and (4) code implementation recommendations. It was suggested that Manitoba should adopt an amended version of the Model National Energy Code for Buildings (1997) as a regulation under the Buildings and Mobile Homes Act. Participation in a national initiative to update the Model National Energy Code for Buildings was also advised. It was suggested that the energy code should be considered as the first step in a longer-term process towards a sustainable commercial building code. However, the code should be adopted within the context of a complete market transformation approach. Other recommendations included: the establishment of a multi-stakeholder energy code task group; the provision of information and technical resources to help build industry capacity; the establishment of a process for energy code compliance; and an ongoing review of the energy code to assess impacts and progress. Supplemental recommendations for future discussion included the need for integrated design by building design teams in Manitoba; the development of a program to provide technical assistance to building design teams; and collaboration between post-secondary institutions to develop and deliver courses on integrated building design to students and professionals. 17 refs.

  15. Development of a hybrid scaffold and a bioreactor for cartilage regeneration

    Institute of Scientific and Technical Information of China (English)

    LEE Seung-Jae; LEE In Hwan; PARK Jeong Hun; GWAK So-Jung; RHIE Jong-Won; CHO Dong-Woo; KO Tae Jo; KIM Dong Sung

    2009-01-01

    We developed a hybrid scaffold and a bioreactor for cartilage regeneration. The hybrid scaffold was developed as combination of two components: a biodegradable framework and hydrogel-containing chondrocytes. We performed the MTT cell proliferation assay to compare the proliferation and viability of chondrocytes on three types of scaffolds: an alginate gel, the hybrid scaffold, and an alginate sponge. Cells were encapsulated in 2% agarose gel. The bioreactor consisted of a circulation system and a compression system. We performed dynamic cell culture on these agarose gels in the bioreactor for 3 days.

  16. Noise and vibration reduction technology in hybrid vehicle development; Hybrid sha kaihatsu ni okeru shindo soon teigen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioa, T.; Sugita, H. [Toyota Motor Corp., Aichi (Japan)

    2000-03-01

    Accomplishing both environmental protection and good NVH performance has become a significant task in automotive development The first-in-the-world hybrid passenger car of mass production. 'Prius', has achieved superior NV performance compared with conventional vehicles with a 1.5-liter engine along with 50% reduction of fuel consumption and CO{sub 2} emissions. low HC, CO and NO{sub x} emissions. This paper describes NV reduction technology for solving problems peculiar to the hybrid vehicle such as engine start/stop vibration, drone noise at low engine speed and motor/generator noise and vibration. It also mentions application technology of low rolling resistance tires with light weight wheels and recycled material for sound proofing. (author)

  17. Using a Serious Game Approach to Teach Secure Coding in Introductory Programming: Development and Initial Findings

    Science.gov (United States)

    Adamo-Villani, Nicoletta; Oania, Marcus; Cooper, Stephen

    2013-01-01

    We report the development and initial evaluation of a serious game that, in conjunction with appropriately designed matching laboratory exercises, can be used to teach secure coding and Information Assurance (IA) concepts across a range of introductory computing courses. The IA Game is a role-playing serious game (RPG) in which the student travels…

  18. Whose Code of Conduct Matters Most? Examining the Link between Academic Integrity and Student Development

    Science.gov (United States)

    Biswas, Ann E.

    2013-01-01

    Although most colleges strive to nurture a culture of integrity, incidents of dishonest behavior are on the rise. This article examines the role student development plays in students' perceptions of academic dishonesty and in their willingness to adhere to a code of conduct that may be in sharp contrast to traditional integrity policies.

  19. Using a Serious Game Approach to Teach Secure Coding in Introductory Programming: Development and Initial Findings

    Science.gov (United States)

    Adamo-Villani, Nicoletta; Oania, Marcus; Cooper, Stephen

    2013-01-01

    We report the development and initial evaluation of a serious game that, in conjunction with appropriately designed matching laboratory exercises, can be used to teach secure coding and Information Assurance (IA) concepts across a range of introductory computing courses. The IA Game is a role-playing serious game (RPG) in which the student travels…

  20. Development and preliminary verification of the 3D core neutronic code: COCO

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H.; Mo, K.; Li, W.; Bai, N.; Li, J. [Reactor Design and Fuel Management Research Center, China Nuclear Power Technology Research Inst., 47F/A Jiangsu Bldg., Yitian Road, Futian District, Shenzhen (China)

    2012-07-01

    As the recent blooming economic growth and following environmental concerns (China)) is proactively pushing forward nuclear power development and encouraging the tapping of clean energy. Under this situation, CGNPC, as one of the largest energy enterprises in China, is planning to develop its own nuclear related technology in order to support more and more nuclear plants either under construction or being operation. This paper introduces the recent progress in software development for CGNPC. The focus is placed on the physical models and preliminary verification results during the recent development of the 3D Core Neutronic Code: COCO. In the COCO code, the non-linear Green's function method is employed to calculate the neutron flux. In order to use the discontinuity factor, the Neumann (second kind) boundary condition is utilized in the Green's function nodal method. Additionally, the COCO code also includes the necessary physical models, e.g. single-channel thermal-hydraulic module, burnup module, pin power reconstruction module and cross-section interpolation module. The preliminary verification result shows that the COCO code is sufficient for reactor core design and analysis for pressurized water reactor (PWR). (authors)

  1. Whose Code of Conduct Matters Most? Examining the Link between Academic Integrity and Student Development

    Science.gov (United States)

    Biswas, Ann E.

    2013-01-01

    Although most colleges strive to nurture a culture of integrity, incidents of dishonest behavior are on the rise. This article examines the role student development plays in students' perceptions of academic dishonesty and in their willingness to adhere to a code of conduct that may be in sharp contrast to traditional integrity policies.

  2. A hybrid path-oriented code assignment CDMA-based MAC protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-11-04

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  3. A Hybrid Path-Oriented Code Assignment CDMA-Based MAC Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Huifang Chen

    2013-11-01

    Full Text Available Due to the characteristics of underwater acoustic channel, media access control (MAC protocols designed for underwater acoustic sensor networks (UWASNs are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA CDMA MAC (POCA-CDMA-MAC, is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA or receiver-oriented code assignment (ROCA. Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  4. Development of a dynamic coupled hydro-geomechanical code and its application to induced seismicity

    Science.gov (United States)

    Miah, Md Mamun

    This research describes the importance of a hydro-geomechanical coupling in the geologic sub-surface environment from fluid injection at geothermal plants, large-scale geological CO2 sequestration for climate mitigation, enhanced oil recovery, and hydraulic fracturing during wells construction in the oil and gas industries. A sequential computational code is developed to capture the multiphysics interaction behavior by linking a flow simulation code TOUGH2 and a geomechanics modeling code PyLith. Numerical formulation of each code is discussed to demonstrate their modeling capabilities. The computational framework involves sequential coupling, and solution of two sub-problems- fluid flow through fractured and porous media and reservoir geomechanics. For each time step of flow calculation, pressure field is passed to the geomechanics code to compute effective stress field and fault slips. A simplified permeability model is implemented in the code that accounts for the permeability of porous and saturated rocks subject to confining stresses. The accuracy of the TOUGH-PyLith coupled simulator is tested by simulating Terzaghi's 1D consolidation problem. The modeling capability of coupled poroelasticity is validated by benchmarking it against Mandel's problem. The code is used to simulate both quasi-static and dynamic earthquake nucleation and slip distribution on a fault from the combined effect of far field tectonic loading and fluid injection by using an appropriate fault constitutive friction model. Results from the quasi-static induced earthquake simulations show a delayed response in earthquake nucleation. This is attributed to the increased total stress in the domain and not accounting for pressure on the fault. However, this issue is resolved in the final chapter in simulating a single event earthquake dynamic rupture. Simulation results show that fluid pressure has a positive effect on slip nucleation and subsequent crack propagation. This is confirmed by

  5. New developments of the CARTE thermochemical code: Calculation of detonation properties of high explosives

    Science.gov (United States)

    Dubois, Vincent; Desbiens, Nicolas; Auroux, Eric

    2010-07-01

    We present the improvements of the CARTE thermochemical code which provides thermodynamic properties and chemical compositions of CHON systems over a large range of temperature and pressure with a very small computational cost. The detonation products are split in one or two fluid phase (s), treated with the MCRSR equation of state (EOS), and one condensed phase of carbon, modeled with a multiphase EOS which evolves with the chemical composition of the explosives. We have developed a new optimization procedure to obtain an accurate multicomponents EOS. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and measured detonation properties for several explosives.

  6. Development of core fuel management code system for WWER-type reactors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, a core fuel management program for hexagonal pressurized water type WWER reactors (CFMHEX) has been developed, which is based on advanced three-dimensional nodal method and integrated with thermal hydraulic code to realize the coupling of neutronics and thermal-hydraulics. In CFMHEX, all these feedback effects such as burnup, power distribution, moderator density, and control rod insertion are considered. The verification and validation of the code system have been examined through the IAEA WWER-1000-type Kalinin NPP benchmark problem. The numerical results are in good agreement with measurements and are close to those of other international institutes.

  7. Lineage development of cell fusion hybrids upon somatic reprogramming

    OpenAIRE

    2011-01-01

    Tese de mestrado. Biologia (Biologia Molecular e Genética). Universidade de Lisboa, Faculdade de Ciências, 2011 Somatic cell reprogramming has been extensively studied over the last years and opened new perspectives in the use of pluripotent cells for regenerative biomedical purposes. Spontaneous cell fusion has been suggested to be involved in regenerative processes in vivo. Strong evidences support the hypothesis that the reprogrammed hybrids resulting from the fusion between a pluripote...

  8. Development of a code system DEURACS for theoretical analysis and prediction of deuteron-induced reactions

    Directory of Open Access Journals (Sweden)

    Nakayama Shinsuke

    2017-01-01

    Full Text Available We have developed an integrated code system dedicated for theoretical analysis and prediction of deuteron-induced reactions, which is called DEUteron-induced Reaction Analysis Code System (DEURACS. DEURACS consists of several calculation codes based on theoretical models to describe respective reaction mechanisms and it was successfully applied to (d,xp and (d,xn reactions. In the present work, the analysis of (d,xn reactions is extended to higher incident energy up to nearly 100 MeV and also DEURACS is applied to (d,xd reactions at 80 and 100 MeV. The DEURACS calculations reproduce the experimental double-differential cross sections for the (d,xn and (d,xd reactions well.

  9. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  10. Development of an Object-Oriented Turbomachinery Analysis Code within the NPSS Framework

    Science.gov (United States)

    Jones, Scott M.

    2014-01-01

    During the preliminary or conceptual design phase of an aircraft engine, the turbomachinery designer has a need to estimate the effects of a large number of design parameters such as flow size, stage count, blade count, radial position, etc. on the weight and efficiency of a turbomachine. Computer codes are invariably used to perform this task however, such codes are often very old, written in outdated languages with arcane input files, and rarely adaptable to new architectures or unconventional layouts. Given the need to perform these kinds of preliminary design trades, a modern 2-D turbomachinery design and analysis code has been written using the Numerical Propulsion System Simulation (NPSS) framework. This paper discusses the development of the governing equations and the structure of the primary objects used in OTAC.

  11. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Böhlen, T.T.; Cerutti, F.; Chin, M.P.W. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Fassò, A. [ELI Beamlines, Harfa Office Park Ceskomoravská 2420/15a, 190 93 Prague 9 (Czech Republic); Ferrari, A., E-mail: alfredo.ferrari@cern.ch [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Ortega, P.G. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Mairani, A. [Unità di Fisica Medica, Fondazione CNAO, I-27100 Pavia (Italy); Sala, P.R. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Smirnov, G.; Vlachoudis, V. [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland)

    2014-06-15

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  12. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    CERN Document Server

    Böhlen, T T; Chin, M P W; Fassò, A; Ferrari, A; Ortega, P G; Mairani, A; Sala, P R; Smirnov, G; Vlachoudis, V

    2014-01-01

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  13. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications

    Science.gov (United States)

    Böhlen, T. T.; Cerutti, F.; Chin, M. P. W.; Fassò, A.; Ferrari, A.; Ortega, P. G.; Mairani, A.; Sala, P. R.; Smirnov, G.; Vlachoudis, V.

    2014-06-01

    The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.

  14. Development of a code system DEURACS for theoretical analysis and prediction of deuteron-induced reactions

    Science.gov (United States)

    Nakayama, Shinsuke; Kouno, Hiroshi; Watanabe, Yukinobu; Iwamoto, Osamu; Ye, Tao; Ogata, Kazuyuki

    2017-09-01

    We have developed an integrated code system dedicated for theoretical analysis and prediction of deuteron-induced reactions, which is called DEUteron-induced Reaction Analysis Code System (DEURACS). DEURACS consists of several calculation codes based on theoretical models to describe respective reaction mechanisms and it was successfully applied to (d,xp) and (d,xn) reactions. In the present work, the analysis of (d,xn) reactions is extended to higher incident energy up to nearly 100 MeV and also DEURACS is applied to (d,xd) reactions at 80 and 100 MeV. The DEURACS calculations reproduce the experimental double-differential cross sections for the (d,xn) and (d,xd) reactions well.

  15. 2D ArcPIC Code Description: Description of Methods and User / Developer Manual (second edition)

    CERN Document Server

    Sjobak, Kyrre Ness

    2014-01-01

    Vacuum discharges are one of the main limiting factors for future linear collider designs such as that of the Compact LInear Collider (CLIC). To optimize machine efficiency, maintaining the highest feasible accelerating gradient below a certain breakdown rate is desirable; understanding breakdowns can therefore help us to achieve this goal. As a part of ongoing theoretical research on vacuum discharges at the Helsinki Institute of Physics, the build-up of plasma can be investigated through the particle-in-cell method. For this purpose, we have developed the 2D ArcPIC code introduced here. We present an exhaustive description of the 2D ArcPIC code in several parts. In the first chapter, we introduce the particle-in-cell method in general and detail the techniques used in the code. In the second chapter, we describe the code and provide a documentation and derivation of the key equations occurring in it. In the third chapter, we describe utilities for running the code and analyzing the results. The last chapter...

  16. Ethics in human experimentation: the two military physicians who helped develop the Nuremberg Code.

    Science.gov (United States)

    Temme, Leonard A

    2003-12-01

    The Nuremberg Code is generally considered the beginning of modern ethics in human experimentation. The Code is a list of 10 principles that Judge Walter Beals included in the judgment he delivered at the close of the Nuremberg Medical Trial on 19 August 1947. Recently, scholars have studied the origin of the Code, who wrote it, and why. This is important to military medicine and the Aerospace Medical Association in particular because many of the defendants claimed their crimes were experiments in aviation and environmental physiology conducted under wartime conditions. The chief prosecutor of the Nuremberg Medical Trial, General Telford Taylor, relied on the guidance of an advisor provided by the American Medical Association, Andrew C. Ivy, one of the foremost physiologists of his time. The neurologist, Leo Alexander, then a colonel in the U.S. Army Reserves, was another medical advisor. Both men were crucial to the development of Taylor's courtroom strategy. The material Alexander and Ivy provided was incorporated verbatim in the section of the judgment that became the Code. Although both men contributed to the Code, Ivy provided what seems to be the first formulation of many of these principles during a meeting of Allied medical investigators at the Pasteur Institute in July 1946. Naval researchers should note that Ivy had been the Director of the Research Division of the Naval Medical Research Institute when it was commissioned on October 27, 1942.

  17. Long non-coding RNA expression profiling of mouse testis during postnatal development.

    Directory of Open Access Journals (Sweden)

    Jin Sun

    Full Text Available Mammalian testis development and spermatogenesis play critical roles in male fertility and continuation of a species. Previous research into the molecular mechanisms of testis development and spermatogenesis has largely focused on the role of protein-coding genes and small non-coding RNAs, such as microRNAs and piRNAs. Recently, it has become apparent that large numbers of long (>200 nt non-coding RNAs (lncRNAs are transcribed from mammalian genomes and that lncRNAs perform important regulatory functions in various developmental processes. However, the expression of lncRNAs and their biological functions in post-natal testis development remain unknown. In this study, we employed microarray technology to examine lncRNA expression profiles of neonatal (6-day-old and adult (8-week-old mouse testes. We found that 8,265 lncRNAs were expressed above background levels during post-natal testis development, of which 3,025 were differentially expressed. Candidate lncRNAs were identified for further characterization by an integrated examination of genomic context, gene ontology (GO enrichment of their associated protein-coding genes, promoter analysis for epigenetic modification, and evolutionary conservation of elements. Many lncRNAs overlapped or were adjacent to key transcription factors and other genes involved in spermatogenesis, such as Ovol1, Ovol2, Lhx1, Sox3, Sox9, Plzf, c-Kit, Wt1, Sycp2, Prm1 and Prm2. Most differentially expressed lncRNAs exhibited epigenetic modification marks similar to protein-coding genes and tend to be expressed in a tissue-specific manner. In addition, the majority of differentially expressed lncRNAs harbored evolutionary conserved elements. Taken together, our findings represent the first systematic investigation of lncRNA expression in the mammalian testis and provide a solid foundation for further research into the molecular mechanisms of lncRNAs function in mammalian testis development and spermatogenesis.

  18. Development of best estimate auditing code for CANDU thermal-hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Won Jae; Hwang, Moon Kyu; Lim, Hong Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3.The study was performed by reconsideration of the previous code assessment works and phenomena identification for essential accident scenario. Improvement areas of model development for auditing tool were identified based on the code comparison and PIRT results. Nine models have been improved significantly for the analysis of LOCA and Mon LOCA event. Conceptual problem or separate effect assessment have been performed to verify the model improvement. The linking calculation with CONTAIN 2.0 has been also enabled to establish the unified auditing code system. Analysis for the CANDU plant real transient and hypothetical LOCA bas been performed using the improved version. It has been concluded that the developed version can be utilized for the auditing analysis of LOCA and non-LOCA event for the CANDU reactor. 25 refs., 84 figs., 36 tabs. (Author)

  19. PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Lin, Lianshan [ORNL

    2013-01-01

    To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced features facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.

  20. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  1. Recent neutronics developments for reactor safety studies with SIMMER code at KIT

    Science.gov (United States)

    Rineiski, A.; Marchetti, M.; Andriolo, L.; Gabrielli, F.

    2017-01-01

    The SIMMER family of codes is applied for safety studies of sodium fast reactors and reactors of other types. Both neutronics and fluid-dynamics parts of SIMMER are under development. In the paper new neutronics capabilities are presented. In particular developments for neutron transport solvers and a new technique for taking into account thermal expansion effects are described. These new capabilities facilitate 3D simulations and improve accuracy of modelling for the initiation transient phase during a hypothetical severe accident.

  2. Development of eggplant hybrid cultivar ‘BATEM FILIZI’ and determination of yield performance

    Directory of Open Access Journals (Sweden)

    Hatice Filiz BOYACI

    2014-12-01

    Full Text Available Eggplant (Solanum melongena L. cultivation is an important part of vegetable production in Turkey. It is highly affected by abiotic stress factors such as low temperatures during growth and development. The present study was aimed to improve new hybrid varieties with high quality and fruit setting under undesirable environmental conditions in eggplant. The 39 inbred lines were developed from eggplant genepool by using pedigree breeding method at the Bati Akdeniz Agricultural Research Institute. They were characterized morphologically and evaluated for phylogenetic relationship among them. Selected seven lines were crossed each other to obtain F1 hybrids. Thirteen hybrids from these crosses were examined for their rate of heterosis and heterobeltiosis. These hybrids were not suitable for market demands although F1 hybrids including P350 as parental line had high heterosis rate. Oval fruit shaped P350 inbred line as female parent showed good performance and crossed with long fruit shaped P599 inbred line. The resultant F1 hybrid cultivar higher yielding, suitable for production under greenhouse and highly adaptable was registered with the name of BATEM FILIZI. It is recommended that this hybrid can be used in greenhouse production especially in single crop season.

  3. Optimization of high-definition video coding and hybrid fiber-wireless transmission in the 60 GHz band.

    Science.gov (United States)

    Lebedev, Alexander; Pham, Tien Thang; Beltrán, Marta; Yu, Xianbin; Ukhanova, Anna; Llorente, Roberto; Monroy, Idelfonso Tafur; Forchhammer, Søren

    2011-12-12

    The paper addresses the problem of distribution of high-definition video over fiber-wireless networks. The physical layer architecture with the low complexity envelope detection solution is investigated. We present both experimental studies and simulation of high quality high-definition compressed video transmission over 60 GHz fiber-wireless link. Using advanced video coding we satisfy low complexity and low delay constraints, meanwhile preserving the superb video quality after significantly extended wireless distance.

  4. Optimization of high-definition video coding and hybrid fiber-wireless transmission in the 60 GHz band

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Pham, Tien Thang; Beltrán, Marta;

    2011-01-01

    The paper addresses the problem of distribution of highdefinition video over fiber-wireless networks. The physical layer architecture with the low complexity envelope detection solution is investigated. We present both experimental studies and simulation of high quality high-definition compressed...... video transmission over 60 GHz fiberwireless link. Using advanced video coding we satisfy low complexity and low delay constraints, meanwhile preserving the superb video quality after significantly extended wireless distance. © 2011 Optical Society of America....

  5. DEVELOPMENT OF A COMPUTER PROGRAM TO SUPPORT AN EFFICIENT NON-REGRESSION TEST OF A THERMAL-HYDRAULIC SYSTEM CODE

    Directory of Open Access Journals (Sweden)

    JUN YEOB LEE

    2014-10-01

    Full Text Available During the development process of a thermal-hydraulic system code, a non-regression test (NRT must be performed repeatedly in order to prevent software regression. The NRT process, however, is time-consuming and labor-intensive. Thus, automation of this process is an ideal solution. In this study, we have developed a program to support an efficient NRT for the SPACE code and demonstrated its usability. This results in a high degree of efficiency for code development. The program was developed using the Visual Basic for Applications and designed so that it can be easily customized for the NRT of other computer codes.

  6. Development of computer code models for analysis of subassembly voiding in the LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, W [ed.

    1979-12-01

    The research program discussed in this report was started in FY1979 under the combined sponsorship of the US Department of Energy (DOE), General Electric (GE) and Hanford Engineering Development Laboratory (HEDL). The objective of the program is to develop multi-dimensional computer codes which can be used for the analysis of subassembly voiding incoherence under postulated accident conditions in the LMFBR. Two codes are being developed in parallel. The first will use a two fluid (6 equation) model which is more difficult to develop but has the potential for providing a code with the utmost in flexibility and physical consistency for use in the long term. The other will use a mixture (< 6 equation) model which is less general but may be more amenable to interpretation and use of experimental data and therefore, easier to develop for use in the near term. To assure that the models developed are not design dependent, geometries and transient conditions typical of both foreign and US designs are being considered.

  7. A New Hybrid Power Configuration Used In HEV And Development of Its Driving BLDC

    Directory of Open Access Journals (Sweden)

    Yanliang Xu

    2013-07-01

    Full Text Available Hybrid electric vehicle (HEV that has the advantages of high performance, high fuel efficiency, low emissions, and long operating range is focused on nowadays. A new hybrid power configuration used in HEV is presented with different control strategies and HEV performances when equipping different weight of fuel power and battery one. In order to realize the new hybrid power configuration especially in the refitted HEV, fractional-slot concentrated-wingding BLDC with higher rated spinning speed is given and the prototyped one is developed and fabricated which satisfy successfully the requirements of high performance and demission restriction for the refitted HEV.

  8. Study on a new meteorological sampling scheme developed for the OSCAAR code system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinhe; Tomita, Kenichi; Homma, Toshimitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    One important step in Level-3 Probabilistic Safety Assessment is meteorological sequence sampling, on which the previous studies were mainly related to code systems using the straight-line plume model and more efforts are needed for those using the trajectory puff model such as the OSCAAR code system. This report describes the development of a new meteorological sampling scheme for the OSCAAR code system that explicitly considers population distribution. A group of principles set for the development of this new sampling scheme includes completeness, appropriate stratification, optimum allocation, practicability and so on. In this report, discussions are made about the procedures of the new sampling scheme and its application. The calculation results illustrate that although it is quite difficult to optimize stratification of meteorological sequences based on a few environmental parameters the new scheme do gather the most inverse conditions in a single subset of meteorological sequences. The size of this subset may be as small as a few dozens, so that the tail of a complementary cumulative distribution function is possible to remain relatively static in different trials of the probabilistic consequence assessment code. (author)

  9. Development of the thermal behavior analysis code DIRAD and the fuel design procedure for LMFBR

    Science.gov (United States)

    Nakae, N.; Tanaka, K.; Nakajima, H.; Matsumoto, M.

    1992-06-01

    It is very important to increase the fuel linear heat rating for improvement of economy in LMFBR without any degradation in safety. A reduction of the design margin is helpful to achieve the high power operation. The development of a fuel design code and a design procedure is effective on the reduction of the design margin. The thermal behavior analysis code DIRAD has been developed with respect to fuel restructuring and gap conductance models. These models have been calibrated and revised using irradiation data of fresh fuel. It is, therefore, found that the code is applicable for the thermal analysis with fresh fuel. The uncertainties in fuel irradiation condition and fuel fabrication tolerance together with the uncertainty of the code prediction have major contributions to the design margin. In the current fuel design the first two uncertainties independently contribute to temperature increment. Another method which can rationally explain the effect of the uncertainties on the temperature increment is adopted here. Then, the design margin may be rationally reduced.

  10. Automated COBOL code generation for SNAP-I CAI development and maintenance procedures

    Energy Technology Data Exchange (ETDEWEB)

    Buhrmaster, M.A.; Duncan, L.D.; Hume, R.; Huntley, A.F.

    1988-07-01

    In designing and implementing a computer aided instruction (CAI) prototype for the Navy Management System Support Office (NAVMASSO) as part of the Shipboard Nontactical ADP Program (SNAP), Data Systems Engineering Organization (DSEO) personnel developed techniques for automating the production of COBOL source code for CAI applications. This report discusses the techniques applied, which incorporate the use of a database management system (DBMS) to store, access, and manipulate the data necessary for producing COBOL source code automatically. The objective for developing the code generation techniques is to allow for the production of future applications in an efficient and reliable manner. This report covers the standards and conventions defined, database tables created, and the host language interface program used for generating COBOL source files. The approach is responsible for producing 85 percent of an 830,000 line COBOL application, in approximately one year's time. This code generation program generated transaction processing routines to be executed under the DM6TP NAVMASSO distributed processing environment on the Honeywell DPS-6 minicomputers, representing the standard SNAP-I environment.

  11. Development and Verification of a Pilot Code based on Two-fluid Three-field Model

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Bae, S. W.; Lee, Y. J.; Chung, B. D.; Jeong, J. J.; Ha, K. S.; Kang, D. H

    2006-09-15

    In this study, a semi-implicit pilot code is developed for a one-dimensional channel flow as three-fields. The three fields are comprised of a gas, continuous liquid and entrained liquid fields. All the three fields are allowed to have their own velocities. The temperatures of the continuous liquid and the entrained liquid are, however, assumed to be equilibrium. The interphase phenomena include heat and mass transfer, as well as momentum transfer. The fluid/structure interaction, generally, include both heat and momentum transfer. Assuming adiabatic system, only momentum transfer is considered in this study, leaving the wall heat transfer for the future study. Using 10 conceptual problems, the basic pilot code has been verified. The results of the verification are summarized below: It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, bubbly flow, slug/churn turbulent flow, annular-mist flow, and single-phase vapor flow) and transitions of the flow conditions. The pilot code was programmed so that the source terms of the governing equations and numerical solution schemes can be easily tested. The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. It was confirmed that the inlet pressure and velocity boundary conditions work properly. It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. Complete phase depletion which might occur during a phase change was found to adversely affect the code stability. A further study would be required to enhance code capability in this regard.

  12. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene.

    Science.gov (United States)

    Cunha, Karin Soares; Oliveira, Nathalia Silva; Fausto, Anna Karoline; de Souza, Carolina Cruz; Gros, Audrey; Bandres, Thomas; Idrissi, Yamina; Merlio, Jean-Philippe; de Moura Neto, Rodrigo Soares; Silva, Rosane; Geller, Mauro; Cappellen, David

    2016-12-17

    Neurofibromatosis 1 (NF1) is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns) from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11). We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G). Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns) for different types of pathogenic variations, including the deep intronic splicing mutations.

  13. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene

    Science.gov (United States)

    Cunha, Karin Soares; Oliveira, Nathalia Silva; Fausto, Anna Karoline; de Souza, Carolina Cruz; Gros, Audrey; Bandres, Thomas; Idrissi, Yamina; Merlio, Jean-Philippe; de Moura Neto, Rodrigo Soares; Silva, Rosane; Geller, Mauro; Cappellen, David

    2016-01-01

    Neurofibromatosis 1 (NF1) is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns) from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11). We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G). Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns) for different types of pathogenic variations, including the deep intronic splicing mutations. PMID:27999334

  14. Hybridization Capture-Based Next-Generation Sequencing to Evaluate Coding Sequence and Deep Intronic Mutations in the NF1 Gene

    Directory of Open Access Journals (Sweden)

    Karin Soares Cunha

    2016-12-01

    Full Text Available Neurofibromatosis 1 (NF1 is one of the most common genetic disorders and is caused by mutations in the NF1 gene. NF1 gene mutational analysis presents a considerable challenge because of its large size, existence of highly homologous pseudogenes located throughout the human genome, absence of mutational hotspots, and diversity of mutations types, including deep intronic splicing mutations. We aimed to evaluate the use of hybridization capture-based next-generation sequencing to screen coding and noncoding NF1 regions. Hybridization capture-based next-generation sequencing, with genomic DNA as starting material, was used to sequence the whole NF1 gene (exons and introns from 11 unrelated individuals and 1 relative, who all had NF1. All of them met the NF1 clinical diagnostic criteria. We showed a mutation detection rate of 91% (10 out of 11. We identified eight recurrent and two novel mutations, which were all confirmed by Sanger methodology. In the Sanger sequencing confirmation, we also included another three relatives with NF1. Splicing alterations accounted for 50% of the mutations. One of them was caused by a deep intronic mutation (c.1260 + 1604A > G. Frameshift truncation and missense mutations corresponded to 30% and 20% of the pathogenic variants, respectively. In conclusion, we show the use of a simple and fast approach to screen, at once, the entire NF1 gene (exons and introns for different types of pathogenic variations, including the deep intronic splicing mutations.

  15. Development of the ITER Advanced Steady State and Hybrid Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel, D. Campbell, T. Casper, Y. Gribov, and J. Snipes

    2010-09-24

    Full discharge simulations are performed to examine the plasma current rampup, flattop and rampdown phases self-consistently with the poloidal field (PF) coils and their limitations, plasma transport evolution, and heating/current drive (H/CD) sources. Steady state scenarios are found that obtain 100% non-inductive current with Ip = 7.3-10.0 MA, βN ~ 2.5 for H98 = 1.6, Q’s range from 3 to 6, n/nGr = 0.75-1.0, and NB, IC, EC, and LH source have been examined. The scenarios remain within CS/PF coil limits by advancing the pre-magnetization by 40 Wb. Hybrid scenarios have been identified with 35-40% non-inductive current for Ip = 12.5 MA, H98 ~ 1.25, with q(0) reaching 1 at or after the end of rampup. The equilibrium operating space for the hybrid shows a large range of scenarios can be accommodated, and access 925-1300 s flattop burn durations.

  16. Recent progress in hybrid mode thermionic converter development

    Science.gov (United States)

    Shimada, K.

    1979-01-01

    Thermionic research has been conducted to investigate a hybrid-mode thermionic converter as a candidate for reducing the barrier index. The hybrid-mode thermionic converter is designed to operate in a combination ignited mode and unignited mode by using a series of parallel grooves in the emitter. The emitter material is molybdenum and the non-grooved land area is thinly coated with rhenium metal. When the emitter is exposed to cesium vapor, as it is during the converter operation, the rhenium-coated land area achieves a lower work function than the grooved molybdenum surface by as much as 0.5 eV. The low work function land area provides a major portion of electron emission, and the high work function grooved area provides cesium ions required for efficient transport of electrons generated in adjacent land areas to the collector. Experimental results obtained from two different converters and a numerical analysis of converter characteristics are presented in this paper.

  17. On the development of LWR fuel analysis code (1). Analysis of the FEMAXI code and proposal of a new model

    Energy Technology Data Exchange (ETDEWEB)

    Lemehov, Sergei; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-01-01

    This report summarizes the review on the modeling features of FEMAXI code and proposal of a new theoretical equation model of clad creep on the basis of irradiation-induced microstructure change. It was pointed out that plutonium build-up in fuel matrix and non-uniform radial power profile at high burn-up affect significantly fuel behavior through the interconnected effects with such phenomena as clad irradiation-induced creep, fission gas release, fuel thermal conductivity degradation, rim porous band formation and associated fuel swelling. Therefore, these combined effects should be properly incorporated into the models of the FEMAXI code so that the code can carry out numerical analysis at the level of accuracy and elaboration that modern experimental data obtained in test reactors have. Also, the proposed new mechanistic clad creep model has a general formalism which allows the model to be flexibly applied for clad behavior analysis under normal operation conditions and power transients as well for Zr-based clad materials by the use of established out-of-pile mechanical properties. The model has been tested against experimental data, while further verification is needed with specific emphasis on power ramps and transients. (author)

  18. Development of RBMK-1500 Model for BDBA Analysis Using RELAP/SCDAPSIM Code

    Science.gov (United States)

    Uspuras, Eugenijus; Kaliatka, Algirdas

    This article discusses the specificity of RBMK (channel type, boiling water, graphite moderated) reactors and problems of Reactor Cooling System modelling employing computer codes. The article presents, how the RELAP/SCDAPSIM code, which is originally designed for modelling of accidents in vessel type reactors, is fit to simulate the phenomena in the RBMK reactor core and RCS in case of Beyond Design Basis Accidents. For this reason, use of two RELAP/SCDAPSIM models is recommended. First model with described complete geometry of RCS is recommended for analysis of initial phase of accident. The calculations results, received using this model, are used as boundary conditions in simplified model for simulation of later phases of severe accidents. The simplified model was tested comparing results of simulation performed using RELAP5 and RELAP/SCDAPSIM codes. As the typical example of BDBA, large break LOCA in reactor cooling system with failure of emergency core cooling system was analyzed. Use of developed models allows to receive behaviour of thermal-hydraulic parameters, temperatures of core components, amount of generated hydrogen due to steam-zirconium reaction. These parameters will be used as input for other special codes, designed for analysis of processes in reactor containment.

  19. Development of full wave code for modeling RF fields in hot non-uniform plasmas

    Science.gov (United States)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.

  20. Development of a perturbation code, PERT-K, for hexagonal core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Kyum; Kim, Sang Ji; Song, Hoon; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    A perturbation code for hexagonal core geometry has been developed based on Nodal Expansion Method. By using relevant output files of DIF3D code, it can calculate the reactivity changes caused by perturbation in composition or/and neutron cross section libraries. The accuracy of PERT-K code has been validated by calculating the reactivity changes due to fuel composition change, the sodium void coefficients, and the sample reactivity worths of BFS-73-1 critical experiments. In the case of 10% reduction in all fuel isotopics at a assembly located in the outer core, PERT-K computation agrees with the direct computation by DIF3D within 60 pcm. The sample reactivity worths of BFS-73-1 critical experiments are predicted with PERT-K code within the experimental error bounds. For 100% sodium void occurrence at the inner core, the maximum difference of reactivity changes between PERT-K and direct DIF3D computations is less than 40 pcm. On the other hand, the same sodium void condition at the outer core leads to a difference of reactivity change greater than 400 pcm. However, as sodium voiding becomes near zero value, the difference becomes less and rapidly falls within the acceptable bound, i.e. 40 pcm. (author). 11 refs., 9 figs., 6 tabs.

  1. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-04-15

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is first step of the whole project, thus focus to the establishment of improvement area. The study was performed by reconsideration of the previous code assessment works and investigation of AECL design analysis tools. In order to identify the thermal hydraulic phenomena for events, the whole system of CANDU plant was divided into main functional systems and subcomponents. Each phenomena was addressed to the each subcomponent. FinaIly improvement areas of model development for auditing tool were established based on the identified phenomena.

  2. Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a second step of the whole project, and focus to the implementation of CANDU models based on the previous study. FORTRAN 90 language have been used for the development of RELAP5.MOD3/CANDU PC version. For the convenience of the previous Workstation users, the FOTRAN 77 version has been coded also and implanted into the original RELAP5 source file. The verification of model implementation has been performed through the simple verification calculations using the CANDU version. 6 refs., 15 figs., 7 tabs. (Author)

  3. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1998-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is first step of the whole project, thus focus to the establishment of improvement area. The study was performed by reconsideration of the previous code assessment works and investigation of AECL design analysis tools. In order to identify the thermal hydraulic phenomena for events, the whole system of CANDU plant was divided into main functional systems and subcomponents. Each phenomena was addressed to the each subcomponent. Finally improvement areas of model development for auditing tool were established based on the identified phenomena. 8 refs., 21 figs., 19 tabs. (Author)

  4. Development of system of computer codes for severe accident analysis and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  5. 采用分布式编码的协作HARQ协议%Collaborative hybrid-ARQ protocol with distributed code

    Institute of Scientific and Technical Information of China (English)

    吴熹; 龙华; 唐嘉麒; 彭永杰

    2015-01-01

    In order to improve the reliability of the cooperative communication system, a new HARQ protocol is pro-posed by combining the distributed code with the averaged diversity combining technology. The collaborative hybrid repeat request system is constructed by distributed Turbo code. In the destination terminal, the retransmission of relay is processed by incremental redundancy technology, and the Chase combining technology is used to process the source infor-mation. Joint soft decision decoding is adopted at the destination terminal. The outage probability and average throughput are deduced. Compared with non-collaborative HARQ protocols, the collaborative HARQ protocol with distributed code can achieve better performance on flat Rayleigh fading channel.%为提高协作通信系统的可靠性,将分布式编码和码合并技术相结合,提出了一种新的混合自动重传协议,构造了基于分布式Turbo码的协作重传系统模型。目的终端分别采用递增冗余和Chase合并技术处理中继节点和信源的重发信息,并进行联合软判决译码。分析了系统的中断概率和平均吞吐量。仿真结果表明,在平坦瑞利衰落信道下,该分布式编码协作HARQ协议较非协作HARQ协议可获得较大的性能改善。

  6. The Development of a Hybrid Underwater Micro Biped Robot

    Directory of Open Access Journals (Sweden)

    S. Guo

    2006-01-01

    Full Text Available There has been a great demand, in the medical field and in industrial applications, for a novel micro biped robot with multiple degrees of freedom that can swim smoothly in water or in aqueous medium. The fish-like micro-robot studied is a type of miniature device that is installed with sensing and actuating elements. This article describes the new structure and motion mechanism of a hybrid type of underwater micro-robot using an ion-conducting polymer film (ICPF actuator, and discusses the swimming and floating characteristics of the micro-robot in water, measured by changing the voltage frequency and the amplitude of the input voltage. Results indicate that the swimming speed of the proposed underwater micro-robot can be controlled by changing the frequency of the input voltage, and the direction (upward or downward can be manipulated by changing the frequency of the electric current applied and the amplitude of the voltage.

  7. The Serpent Monte Carlo Code: Status, Development and Applications in 2013

    Science.gov (United States)

    Leppänen, Jaakko; Pusa, Maria; Viitanen, Tuomas; Valtavirta, Ville; Kaltiaisenaho, Toni

    2014-06-01

    The Serpent Monte Carlo reactor physics burnup calculation code has been developed at VTT Technical Research Centre of Finland since 2004, and is currently used in 100 universities and research organizations around the world. This paper presents the brief history of the project, together with the currently available methods and capabilities and plans for future work. Typical user applications are introduced in the form of a summary review on Serpent-related publications over the past few years.

  8. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Gue; Kwon, Jong Tae [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of); Seo, Young Ho [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)], E-mail: mems@kangwon.ac.kr; Kim, Byeong Hee [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)

    2008-07-31

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 {mu}m were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications.

  9. TNB Experience in Developing Solar Hybrid Station at RPS Kemar, Gerik, Perak Darul Ridzuan

    Science.gov (United States)

    Aziz, K. A.; Shamsudin, K. N.

    2013-06-01

    This paper will discuss on TNB experience in developing Solar Hybrid Station at RPS Kemar, Gerik, Perak. TNB has been approached by KKLW to submit proposal to provide electricity in the rural area namely RPS Kemar. Looking at area and source available, Solar Hybrid System was the best method in order to provide electricity at this area. This area is far from national grid sources. Solar Hybrid System is the best method to produce electrical power using the renewable energy from Solar PV, Battery and Diesel Generator Set. Nowadays, price of petroleum is slightly high due to higher demand from industry. Solar energy is good alternative in this country to practice in order to reduce cost for produce of electrical energy. Generally, Solar will produce energy during daytime and when become cloudy and dark, automatically battery and diesel generator set will recover the system through the hybrid controller system.

  10. Development of human reliability analysis methodology and its computer code during low power/shutdown operation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Huh, Chang Wook; Kim, Ju Yeul; Kim Do Hyung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Seoul (Korea, Republic of); Jae, Moo Sung [Hansung University, Seoul (Korea, Republic of)

    1997-07-01

    The objective of this study is to develop the appropriate procedure that can evaluate the human error in LP/S(lower power/shutdown) and the computer code that calculate the human error probabilities(HEPs) using this framework. The assessment of applicability of the typical HRA methodologies to LP/S is conducted and a new HRA procedure, SEPLOT (Systematic Evaluation Procedure for LP/S Operation Tasks) which presents the characteristics of LP/S is developed by selection and categorization of human actions by reviewing present studies. This procedure is applied to evaluate the LOOP(Loss of Off-site Power) sequence and the HEPs obtained by using SEPLOT are used to quantitative evaluation of the core uncovery frequency. In this evaluation one of the dynamic reliability computer codes, DYLAM-3 which has the advantages against the ET/FT is used. The SEPLOT developed in this study can give the basis and arrangement as to the human error evaluation technique. And this procedure can make it possible to assess the dynamic aspects of accidents leading to core uncovery applying the HEPs obtained by using the SEPLOT as input data to DYLAM-3 code, Eventually, it is expected that the results of this study will contribute to improve safety in LP/S and reduce uncertainties in risk. 57 refs. 17 tabs., 33 figs. (author)

  11. Development of a Field-Aligned Integrated Conductivity Model Using the SAMI2 Open Source Code

    Science.gov (United States)

    Hildebrandt, Kyle; Gearheart, Michael; West, Keith

    2003-03-01

    The SAMI2 open source code is a middle and low latitude ionspheric model developed by the Naval Research Lab for the dual purposes of research and education. At the time of this writing the source code has no component for the integrated magnetic field-aligned conductivity. The dependence of human activities on conditions in the space environment, such as communications, has grown and will continue to do so. With this growth comes higher financial stakes, as changes in the space environment have greater economic impact. In order to minimize the adverse effects of these changes, predictive models are being developed. Among the geophysical parameters that affect communications is the conductivity in the ionosphere. As part of the commitment of Texas A & M Univeristy-Commerce to build a strong undergraduate research program, a team consisting of two students and a faculty mentor are developing a model of the integrated field-aligned conductivity using the SAMI2 code. The current status of the research and preliminary results are presented as well as a summary of future work.

  12. Early embryo and larval development of inviable intergeneric hybrids derived from Crassostrea angulata and Saccostrea cucullata

    Science.gov (United States)

    Su, Jiaqi; Wang, Zhaoping; Zhang, Yuehuan; Yan, Xiwu; Li, Qiongzhen; Yu, Ruihai

    2016-06-01

    To detect the intergeneric hybridization between the oyster Crassostrea angulata and Saccostrea cucullata coexisting along the southern coast of China, reciprocal crosses were conducted between the two species. Barriers for sperm recognizing, binding, penetrating the egg, and forming the pronucleus were detected by fluorescence staining. From the results, although fertilization success was observed in hybrid crosses, the overall fertilization rate was lower than that of intraspecific crosses. A large number of hybrid larvae died at 6-8 d after hatching, and those survived could not complete metamorphosis. C. angulata ♀× S. cucullata ♂ larvae had a growth rate similar to that of the maternal species, whereas S. cucullata ♀ × C. angulata ♂ larvae grew the slowest among all crosses. Molecular genetics analysis revealed that hybrid progeny were amphimixis hybrids. This study demonstrated that hybrid embryos generated by crossing C. angulata and S. cucullata could develop normally to the larval state, but could not complete metamorphosis and then develop to the spat stage. Thus, there is a post-reproductive isolation between C. angulata and S. cucullata.

  13. Development of the SPIKE code for analysis of the sodium-water reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Park, Jin Ho; Choi, Jong Hyeun; Kim, Tae Joon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-08-01

    In the secondary loop of liquid metal reactors, including SG, water leak into sodium causes the sudden increase of pressure by the H{sub 2} and heat generated from reaction. At few miliseconds after leak, a sharp and short-lived increase of pressure is generated and its propagation depends on the acoustic constraint characteristics of secondary loop. As increasing leak amount of water, another pressure increase is caused by H{sub 2} and its transients depends on the resistance of pressure opening system, such as rupture disc. For prediction of the transients of initial spike pressure, a code of SPIKE was developed. The code was based on the following simplifications and assumptions: combination of total and half release of H{sub 2} rate, spherical shape of H{sub 2} bubble, compressible and Newtonian fluid for sodium. The program was built in FOTRAN language and consisted of 5 modules. Several sample calculations were performed to test the code and to determine the scale down factor of experimental facilities for experimental verification of the code: parameter study of the variables in chemical reaction model, comparison study with results calculated by superposition methods for simple piping structures, comparison study with results calculated by previous researchers, and calculation for KALIMER models of various size. With these calculation results, the generally predicted phenomena of sodium water reaction can be explained and the calculated ones by SPIKE code were well agreed with the previous study. And the scale down factor can be determined. (author). 88 refs., 99 figs., 39 tabs.

  14. Hybrid-Electric Aircraft TOGW Development Tool with Empirically-Based Airframe and Physics-Based Hybrid Propulsion System Component Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development. This Phase I SBIR proposal creates a...

  15. Highly conserved non-coding sequences are associated with vertebrate development.

    Directory of Open Access Journals (Sweden)

    Adam Woolfe

    2005-01-01

    Full Text Available In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH, in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development

  16. Development of PIRT and Assessment Matrix for Verification and Validation of Sodium Fire Analysis Codes

    Science.gov (United States)

    Ohno, Shuji; Ohshima, Hiroyuki; Tajima, Yuji; Ohki, Hiroshi

    Thermodynamic consequence in liquid sodium leak and fire accident is one of the important issues to be evaluated when considering the safety aspect of fast reactor plant building. The authors are therefore initiating systematic verification and validation (V&V) activity to assure and demonstrate the reliability of numerical simulation tool for sodium fire analysis. The V&V activity is in progress with the main focuses on already developed sodium fire analysis codes SPHINCS and AQUA-SF. The events to be evaluated are hypothetical sodium spray, pool, or combined fire accidents followed by thermodynamic behaviors postulated in a plant building. The present paper describes that the ‘Phenomena Identification and Ranking Table (PIRT)’ is developed at first for clarifying the important validation points in the sodium fire analysis codes, and that an ‘Assessment Matrix’ is proposed which summarizes both separate effect tests and integral effect tests for validating the computational models or whole code for important phenomena. Furthermore, the paper shows a practical validation with a separate effect test in which the spray droplet combustion model of SPHINCS and AQUA-SF predicts the burned amount of a falling sodium droplet with the error mostly less than 30%.

  17. Development of a Computational Framework on Fluid-Solid Mixture Flow Simulations for the COMPASS Code

    Science.gov (United States)

    Zhang, Shuai; Morita, Koji; Shirakawa, Noriyuki; Yamamoto, Yuichi

    The COMPASS code is designed based on the moving particle semi-implicit method to simulate various complex mesoscale phenomena relevant to core disruptive accidents of sodium-cooled fast reactors. In this study, a computational framework for fluid-solid mixture flow simulations was developed for the COMPASS code. The passively moving solid model was used to simulate hydrodynamic interactions between fluid and solids. Mechanical interactions between solids were modeled by the distinct element method. A multi-time-step algorithm was introduced to couple these two calculations. The proposed computational framework for fluid-solid mixture flow simulations was verified by the comparison between experimental and numerical studies on the water-dam break with multiple solid rods.

  18. Development of the CFD analysis methodology for PCCS using CFX code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Oh; Hwang, Young Dong; Kim, Young In; Bae, Yoon Young [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-05-01

    This study is to develop heat transfer analysis of in AP600 type PCCS. The heat and mass transfer phenomena was analysized by CFX4.1 code for the simplified geometry. In calculation of film flow, height function model seems to be appropriate, since the shape of film is flat along the surface of steel containment and the motion of free surface does not include complicated motion of free surface such as free surface folding and merging. Based on the models, the thermal hydraulic phenomena which include free surface flow, turbulent and natural circulation in two separated domain were calculated by the CFX4.1 code. Reviewing the results in qualitative aspect, the trends of the variables shows reasonable results but the quantitatives of the variables should be compared with the experimental for actual applications since appropriate data are not available at present. (author). 19 refs., 14 figs., 2 tabs.

  19. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  20. OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development

    Science.gov (United States)

    Romano, Paul K.; Horelik, Nicholas E.; Herman, Bryan R.; Nelson, Adam G.; Forget, Benoit; Smith, Kord

    2014-06-01

    This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes.

  1. Development and Verification of Tritium Analyses Code for a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2009-09-01

    A tritium permeation analyses code (TPAC) has been developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in the VHTR systems including integrated hydrogen production systems. A MATLAB SIMULINK software package was used for development of the code. The TPAC is based on the mass balance equations of tritium-containing species and a various form of hydrogen (i.e., HT, H2, HTO, HTSO4, and TI) coupled with a variety of tritium source, sink, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of HT and H2 through pipes, vessels, and heat exchangers were importantly considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems including both high-temperature electrolysis and sulfur-iodine process. The TPAC has unlimited flexibility for the system configurations, and provides easy drag-and-drops for making models by adopting a graphical user interface. Verification of the code has been performed by comparisons with the analytical solutions and the experimental data based on the Peach Bottom reactor design. The preliminary results calculated with a former tritium analyses code, THYTAN which was developed in Japan and adopted by Japan Atomic Energy Agency were also compared with the TPAC solutions. This report contains descriptions of the basic tritium pathways, theory, simple user guide, verifications, sensitivity studies, sample cases, and code tutorials. Tritium behaviors in a very high temperature reactor/high temperature steam electrolysis system have been analyzed by the TPAC based on the reference indirect parallel configuration proposed by Oh et al. (2007). This analysis showed that only 0.4% of tritium released from the core is transferred to the product hydrogen

  2. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    Science.gov (United States)

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants.

  3. Radial transport dynamics studies of SMBI with a newly developed TPSMBI code

    Science.gov (United States)

    Wang, Ya-Hui; Guo, Wen-Feng; Wang, Zhan-Hui; Ren, Qi-Long; Sun, Ai-Ping; Xu, Min; Wang, Ai-Ke; Xiang, Nong

    2016-10-01

    In tokamak plasma fueling, supersonic molecule beam injection (SMBI) with a higher fueling efficiency and a deeper penetration depth than the traditional gas puffing method has been developed and widely applied to many tokamak devices. It is crucial to study the transport dynamics of SMBI to improve its fueling efficiency, especially in the high confinement regime. A new one-dimensional (1D) code of TPSMBI has also been developed recently based on a six-field SMBI model in cylindrical coordinate. It couples plasma density and heat radial transport equations together with neutral density transport equations for both molecules and atoms and momentum radial transport equations for molecules. The dominant particle collisional interactions between plasmas and neutrals, such as molecule dissociation, atom ionization and charge-exchange effects, are included in the model. The code is verified to be correct with analytical solutions and also benchmarked well with the trans-neut module of BOUT++ code. Time-dependent radial transport dynamics and mean profile evolution are studied during SMBI with the TPSMBI code in both slab and cylindrical coordinates. Along the SMBI path, plasma density increases due to particle fuelling, while plasma temperature decreases due to heat cooling. Being different from slab coordinate, the curvature effect leads to larger front densities of molecule and atom during SMBI in cylindrical coordinate simulation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575055, 11375053, and 11475219) and the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB111005, 2014GB108004, and 2015GB110001).

  4. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...

  5. Recent Advances in Development of Herbicide Resistant Transgenic Hybrid Rice in China

    Institute of Scientific and Technical Information of China (English)

    XIAO Guo-ying

    2009-01-01

    In addition to weed control in direct seeding field of hybrid rice, herbicide resistance genes were used by Chinese scientists to increase and identify the purity of hybrid seeds, and to realize the mechanization of hybrid seed production. The elite restorer lines, such as Minghui 63, R752, T461, R402, D68 and E32 were transformed directly with herbicide resistance genes, in which D68 and E32 are restorer lines of two-line system and the others are of three-line system. Because almost all of important restorer lines are indica varieties and are recalcitrant in transformation, many herbicide resistant near-isogenic restorer lines were developed by sexual hybridization of indica and japonica varieties and backcross with indica restorer lines later, such as Ce 64, Minghui 63, Teqing, Milyang 46, R402 and 9311, in which 9311 is a restorer line of two-line system. The elite photoperiod-sensitive/thermo-sensitive genic male sterile lines, such as Pei'ai 64S, P88S, 4008S and 7001S, were transformed with herbicide resistance genes. A few herbicide resistant male sterile lines were developed through sexual hybridization and subsequently systemic selection, such as Bar1259S, Bar2172S, 05Z221A and 05Z227A. With the employment of herbicide resistant male sterile lines or herbicide resistant restorer lines, a few herbicide resistant hybrid rice combinations were developed, such as Xiang 125S/Bar 68-1 and Pei'ai 64S/Bar 9311. Based on herbicide resistance, the research was marching on to investigate the parental lines of hybrid rice with insect resistance, drought tolerance, etc.

  6. Sharing code

    OpenAIRE

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.

  7. An experiment to assess the cost-benefits of code inspections in large scale software development

    Science.gov (United States)

    Porter, A.; Siy, H.; Toman, C. A.; Votta, L. G.

    1994-01-01

    This experiment (currently in progress) is designed to measure costs and benefits of different code inspection methods. It is being performed with a real development team writing software for a commercial product. The dependent variables for each code unit's inspection are the elapsed time and the number of defects detected. We manipulate the method of inspection by randomly assigning reviewers, varying the number of reviewers and the number of teams, and, when using more than one team, randomly assigning author repair and non-repair of detected defects between code inspections. After collecting and analyzing the first 17 percent of the data, we have discovered several interesting facts about reviewers, about the defects recorded during reviewer preparation and during the inspection collection meeting, and about the repairs that are eventually made. (1) Only 17 percent of the defects that reviewers record in their preparations are true defects that are later repaired. (2) Defects recorded at the inspection meetings fall into three categories: 18 percent false positives requiring no author repair, 57 percent soft maintenance where the author makes changes only for readability or code standard enforcement, and 25 percent true defects requiring repair. (3) The median elapsed calendar time for code inspections is 10 working days - 8 working days before the collection meeting and 2 after. (4) In the collection meetings, 31 percent of the defects discovered by reviewers during preparation are suppressed. (5) Finally, 33 percent of the true defects recorded are discovered at the collection meetings and not during any reviewer's preparation. The results to date suggest that inspections with two sessions (two different teams) of two reviewers per session (2sX2p) are the most effective. These two-session inspections may be performed with author repair or with no author repair between the two sessions. We are finding that the two-session, two-person with repair (2sX2p

  8. Development of thermal hydraulic models for the reliable regulatory auditing code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-04-15

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out.

  9. An isentropic and sigma coordinate hybrid numerical model - Model development and some initial tests. [for atmospheric simulations

    Science.gov (United States)

    Uccellini, L. W.; Johnson, D. R.; Schlesinger, R. E.

    1979-01-01

    A solution is presented for matching boundary conditions across the interface of an isentropic and sigma coordinate hybrid model. A hybrid model based on the flux form of the primitive equations is developed which allows direct vertical exchange between the model domains, satisfies conservation principles with respect to transport processes, and maintains a smooth transition across the interface without need for artificial adjustment or parameterization schemes. The initial hybrid model simulations of a jet streak propagating in a zonal channel are used to test the feasibility of the hybrid model approach. High efficiency of the hybrid model is demonstrated.

  10. A mono-dimensional nuclear fuel performance analysis code, PUMA, development from a coupled approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, J. S.; Lee, B. O.; Lee, C. B. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon, 305-353 (Korea, Republic of); Yacout, A. M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2013-07-01

    Multidimensional-multi-physical phenomena in nuclear fuels are treated as a set of mono-dimensional-coupled problems which encompass heat, displacement, fuel constituent redistribution, and fission gas release. Rather than uncoupling these coupled equations as in conventional fuel performance analysis codes, efforts are put into to obtain fully coupled solutions by relying on the recent advances of numerical analysis. Through this approach, a new SFR metal fuel performance analysis code, called PUMA (Performance of Uranium Metal fuel rod Analysis code) is under development. Although coupling between temperature and fuel constituent was made easily, the coupling between the mechanical equilibrium equation and a set of stiff kinetics equations for fission gas release is accomplished by introducing one-level Newton scheme through backward differentiation formula. Displacement equations from 1D finite element formulation of the mechanical equilibrium equation are solved simultaneously with stress equation, creep equation, swelling equation, and FGR equations. Calculations was made successfully such that the swelling and the hydrostatic pressure are interrelated each other. (authors)

  11. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development

    Science.gov (United States)

    Anderson, Kelly M.; Anderson, Douglas M.; McAnally, John R.; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    HAND2 is an ancestral regulator of heart development and one of four transcription factors that control the reprogramming of fibroblasts into cardiomyocytes1–4. Deletion of Hand2 in mice results in right ventricle hypoplasia and embryonic lethality1,5. Hand2 expression is tightly regulated by upstream enhancers6,7 that reside within a super-enhancer delineated by histone H3 acetyl Lys27 (H3K27ac) modifications8. Here we show that transcription of a Hand2-associated long non-coding RNA, which we named upperhand (Uph), is required to maintain the super-enhancer signature and elongation of RNA polymerase II through the Hand2 enhancer locus. Blockade of Uph transcription, but not knockdown of the mature transcript, abolished Hand2 expression, causing right ventricular hypoplasia and embryonic lethality in mice. Given the substantial number of uncharacterized promoter-associated long non-coding RNAs encoded by the mammalian genome9, the Uph–Hand2 regulatory partnership offers a mechanism by which divergent non-coding transcription can establish a permissive chromatin environment. PMID:27783597

  12. Development of a Beam-Beam Simulation Code for e+e- Colliders

    CERN Document Server

    Zhang, Yuan

    2005-01-01

    BEPC will be upgraded into BEPCII, and the luminosity will be about 100 times higher. We developed a three dimensional strong-strong PIC code to study the beam-beam effects in BEPCII. The transportation through the arc is the same as that in Hirata's weak-strong code. The beam-beam force is computed directly by solving the Poisson equation using the FACR method, and the boundary potential is computed by circular convolution. The finite bunch length effect is included by longitudinal slices. An interpolation scheme is used to reduce the required slice number in simulations. The standard message passing interface (MPI) is used to parallelize the code. The computing time increases linearly with (n+1), where n is the slice number. The calculated luminosity of BEPCII at the design operating point is less than the design value. The best area in the tune space is near (0.505,0.57) according to the survey, where the degradation of luminosity can be improved.

  13. Development Of Sputtering Models For Fluids-Based Plasma Simulation Codes

    Science.gov (United States)

    Veitzer, Seth; Beckwith, Kristian; Stoltz, Peter

    2015-09-01

    Rf-driven plasma devices such as ion sources and plasma processing devices for many industrial and research applications benefit from detailed numerical modeling. Simulation of these devices using explicit PIC codes is difficult due to inherent separations of time and spatial scales. One alternative type of model is fluid-based codes coupled with electromagnetics, that are applicable to modeling higher-density plasmas in the time domain, but can relax time step requirements. To accurately model plasma-surface processes, such as physical sputtering and secondary electron emission, kinetic particle models have been developed, where particles are emitted from a material surface due to plasma ion bombardment. In fluid models plasma properties are defined on a cell-by-cell basis, and distributions for individual particle properties are assumed. This adds a complexity to surface process modeling, which we describe here. We describe the implementation of sputtering models into the hydrodynamic plasma simulation code USim, as well as methods to improve the accuracy of fluids-based simulation of plasmas-surface interactions by better modeling of heat fluxes. This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences Award #DE-SC0009585.

  14. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  15. Development of simulation code for MOX dissolution using silver-mediated electrochemical method (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution using silver-mediated electrochemical method will be employed for the preparation of plutonium nitrate solution in the criticality safety experiments in the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). A simulation code for the MOX dissolution has been developed for the operating support. The present report describes the outline of the simulation code, a comparison with the experimental data and a parameter study on the MOX dissolution. The principle of this code is based on the Zundelevich's model for PuO{sub 2} dissolution using Ag(II). The influence of nitrous acid on the material balance of Ag(II) is taken into consideration and the surface area of MOX powder is evaluated by particle size distribution in this model. The comparison with experimental data was carried out to confirm the validity of this model. It was confirmed that the behavior of MOX dissolution could adequately be simulated using an appropriate MOX dissolution rate constant. It was found from the result of parameter studies that MOX particle size was major governing factor on the dissolution rate. (author)

  16. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development.

    Science.gov (United States)

    Anderson, Kelly M; Anderson, Douglas M; McAnally, John R; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N

    2016-11-17

    HAND2 is an ancestral regulator of heart development and one of four transcription factors that control the reprogramming of fibroblasts into cardiomyocytes. Deletion of Hand2 in mice results in right ventricle hypoplasia and embryonic lethality. Hand2 expression is tightly regulated by upstream enhancers that reside within a super-enhancer delineated by histone H3 acetyl Lys27 (H3K27ac) modifications. Here we show that transcription of a Hand2-associated long non-coding RNA, which we named upperhand (Uph), is required to maintain the super-enhancer signature and elongation of RNA polymerase II through the Hand2 enhancer locus. Blockade of Uph transcription, but not knockdown of the mature transcript, abolished Hand2 expression, causing right ventricular hypoplasia and embryonic lethality in mice. Given the substantial number of uncharacterized promoter-associated long non-coding RNAs encoded by the mammalian genome, the Uph-Hand2 regulatory partnership offers a mechanism by which divergent non-coding transcription can establish a permissive chromatin environment.

  17. An Analysis of the Efficiency of Existing Kanji Indexes and Development of a Coding-based Index

    Directory of Open Access Journals (Sweden)

    Galina N. VOROBEVA

    2012-12-01

    Full Text Available Considering the problems faced by learners of Japanese from non-kanji background, the present paper discusses the characteristics of 15 existing kanji dictionary indexes. In order to compare the relative efficiency of these indexes, the concept of selectivity is defined, and the selectivity coefficient of the kanji indexes is computed and compared. Furthermore, new indexes developed by the present authors and based on an alphabetical code, a symbol code, a semantic code, and a radical and stroke number code are presented and their use and efficiency are explained.

  18. Development and verification of NRC`s single-rod fuel performance codes FRAPCON-3 AND FRAPTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, C.E.; Cunningham, M.E.; Lanning, D.D. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    The FRAPCON and FRAP-T code series, developed in the 1970s and early 1980s, are used by the US Nuclear Regulatory Commission (NRC) to predict fuel performance during steady-state and transient power conditions, respectively. Both code series are now being updated by Pacific Northwest National Laboratory to improve their predictive capabilities at high burnup levels. The newest versions of the codes are called FRAPCON-3 and FRAPTRAN. The updates to fuel property and behavior models are focusing on providing best estimate predictions under steady-state and fast transient power conditions up to extended fuel burnups (> 55 GWd/MTU). Both codes will be assessed against a data base independent of the data base used for code benchmarking and an estimate of code predictive uncertainties will be made based on comparisons to the benchmark and independent data bases.

  19. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  20. Development of a tritium transport analysis code for the LMFBR system

    Energy Technology Data Exchange (ETDEWEB)

    Iizawa, Katsuyuki; Torii, Tatsuo [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, Tsuruga, Fukui (Japan)

    2001-03-01

    A tritium transport analysis code for the LMFBR system, TTT code, has been developed and validated using data from a power rising test conducted at Monju in 1995. The behavior of tritium during future long-term full power operation of Monju has been estimated. The TTT code was created from the tritium and hydrogen transport model devised by R. Kumar and ANL. Actual data from some plants has been used to improve the code. In this study, we used data from Monju to increase the accuracy of the calculated to measured ratio, the C/E ratio. As a result of the study, we were able to: 1. show that the calculated tritium concentration distribution and the change in the primary and secondary sodium, steam and water correlated sufficiently closely with the measured, C/E ratio of 1.1; 2. propose a transport model between sodium and the cover gas system taking into account the mechanisms affecting the partial pressure difference and the isotopic exchange of H and H3; 3. examine the considerable effect of the hydrogen source within the sodium cooling system of Monju on tritium behavior and clarify the characteristics at the initial stage of plant; 4. estimate the tritium transport and distribution for the long-term full power operation of Monju. The tritium release from the core will be 7,400 TBq during 30 years of operation. The primary and secondary cold trap will capture 99% of this and 1% or less will be released to the environment as gaseous radioactive waste from stack and its drainage water from SG; and 5. compare the best fitted tritium source rates from cores in Phenix and Monju and estimate the major release from Monju's helium bond closed type control rods. (author)

  1. Status of the Development of an Embedded Transport Treatment of Control Rods and of Radial Flux Expansion in Cylindrical Nodal Diffusion Codes

    Energy Technology Data Exchange (ETDEWEB)

    Frederick N. Gleicher II; Abderrafi M. Ougouag

    2009-09-01

    A new diffusion-transport hybrid nodal method in R-Z is presented that can effectively treat non-multiplying zones in pebble bed reactors. The new method seamlessly combines the analytic coarse mesh finite difference (CMFD) diffusion formulation and a transport theory based response matrix formulation while retaining the properties and structure of the CMFD diffusion solver. The resulting combined formulation is utilized in selected non-multiplying nodes to capture angular effects on the flux. Test results indicate that the method has been implemented correctly into the CYNOD reactor kinetics code. This document also presents a status report on the development of a better source approximation for the Green’s function nodal solution in the radial direction of cylindrical geometry. The basic theory has been developed, including obtaining polynomials that are orthonormal over the domain of integration and the derivation of approximately half of the required matrix elements (single and double integrals in the source expansions).

  2. Open Source Physics: Code and Curriculum Material for Teachers, Authors, and Developers

    Science.gov (United States)

    Christian, Wolfgang

    2004-03-01

    The continued use of procedural languages in education is due in part to the lack of up-to-date curricular materials that combine science topics with an object-oriented programming framework. Although there are many resources for teaching computational physics, few are object-oriented. What is needed by the broader science education community is not another computational physics, numerical analysis, or Java programming book (although such books are essential for discipline-specific practitioners), but a synthesis of curriculum development, computational physics, computer science, and physics education that will be useful for scientists and students wishing to write their own simulations and develop their own curricular material. The Open Source Physics (OSP) project was established to meet this need. OSP is an NSF-funded curriculum development project that is developing and distributing a code library, programs, and examples of computer-based interactive curricular material. In this talk, we will describe this library, demonstrate its use, and report on its adoption by curriculum authors. The Open Source Physics code library, documentation, and sample curricular material can be downloaded from http://www.opensourcephysics.org/. Partial funding for this work was obtained through NSF grant DUE-0126439.

  3. Development of the component models for the KALIMER safety analysis code SSC-K

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-05-01

    The SSC-K code is intended to simulate system responses to operational transients or accidents of the pool-type KALIMER (Korea Advanced Liquid Metal Reactor). As a part of the SSC-K development task, some primary component models have been developed and generalized correlations were recommended based on the technical review. Plant modules for the PSDRS, EMP were developed based on the analytical models. The IHX model of SSC-L was modified to take into account the thermo-hydraulic characteristics of pool. Correlations used for piping and in-core assemblies were reviewed and user options were provided for SSC-K. The merged version of SSC-K with PSDRE program was proved out to be valid by test run of ULOHS. The developed component models will be implemented into the SSC-K code and options will be provided for user to select proper correlations for friction factor and heat transfer coefficients. 30 refs., 31 figs., 9 tabs. (Author)

  4. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-03-15

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model if existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA analysis. There are three main area of model development, i.e. moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version.

  5. Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA Analysis. There are three main area of model development, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version. 15 refs., 37 figs., 8 tabs. (Author)

  6. Development of an Unstructured Mesh Code for Flows About Complete Vehicles

    Science.gov (United States)

    Peraire, Jaime; Gupta, K. K. (Technical Monitor)

    2001-01-01

    This report describes the research work undertaken at the Massachusetts Institute of Technology, under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of flow simulations about complete vehicle configurations. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the code which incorporates real gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoelastic system developed at NASA Dryden. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. We show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although this initial results were encouraging it became apparent that in order to develop a fully functional capability for viscous flows, several advances in solution accuracy, robustness and efficiency were required. In this grant we set out to investigate some novel methodologies that could lead to the

  7. Status of development of gamma-ray detector response function code or GAMDRF.

    Science.gov (United States)

    Li, Fusheng; Han, Xiaogang

    2012-07-01

    The need for an accurate representation of the detector response functions (DRFs) for sodium iodide (NaI), bismuth germinate (BGO), etc., arises in the oilwell logging business, especially important for spectral logging tools such as a geochemical logging tool. While Monte Carlo models predict the photon spectra incidents on these detectors, the DRFs are used to generate the pulse-height spectra. A Monte Carlo-based γ-ray detector response function code (GAMDRF) was developed to meet the requirements based on complete photon physics.

  8. Multicore and Accelerator Development for a Leadership-Class Stellar Astrophysics Code

    Energy Technology Data Exchange (ETDEWEB)

    Messer, Bronson [ORNL; Harris, James A [ORNL; Parete-Koon, Suzanne T [ORNL; Chertkow, Merek A [ORNL

    2013-01-01

    We describe recent development work on the core-collapse supernova code CHIMERA. CHIMERA has consumed more than 100 million cpu-hours on Oak Ridge Leadership Computing Facility (OLCF) platforms in the past 3 years, ranking it among the most important applications at the OLCF. Most of the work described has been focused on exploiting the multicore nature of the current platform (Jaguar) via, e.g., multithreading using OpenMP. In addition, we have begun a major effort to marshal the computational power of GPUs with CHIMERA. The impending upgrade of Jaguar to Titan a 20+ PF machine with an NVIDIA GPU on many nodes makes this work essential.

  9. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    Energy Technology Data Exchange (ETDEWEB)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  10. RMRP is a non-coding RNA essential for early murine development.

    Directory of Open Access Journals (Sweden)

    Joseph Rosenbluh

    Full Text Available RMRP is a non-coding RNA that is ubiquitously expressed in both humans and mice. RMRP mutations that lead to decreased RMRP levels are found in the pleiotropic syndrome Cartilage Hair Hypoplasia. To assess the effects of deleting RMRP, we engineered a targeting vector that contains loxP sequences flanking RMRP and created hemizygous mice harboring this engineered allele (RMRP conditional. We found that insertion of this cassette suppressed RMRP expression, and we failed to obtain viable mice homozygous for the RMRP conditional allele. Furthermore, we were unable to obtain viable homozygous RMRP null mice, indicating that RMRP is essential for early embryonic development.

  11. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Vincent, E-mail: vincent-jp.dubois@cea.fr; Pineau, Nicolas [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-01-07

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  12. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    Energy Technology Data Exchange (ETDEWEB)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  13. Child human model development: a hybrid validation approach

    NARCIS (Netherlands)

    Forbes, P.A.; Rooij, L. van; Rodarius, C.; Crandall, J.

    2008-01-01

    The current study presents a development and validation approach of a child human body model that will help understand child impact injuries and improve the biofidelity of child anthropometric test devices. Due to the lack of fundamental child biomechanical data needed to fully develop such models a

  14. Child human model development: a hybrid validation approach

    NARCIS (Netherlands)

    Forbes, P.A.; Rooij, L. van; Rodarius, C.; Crandall, J.

    2008-01-01

    The current study presents a development and validation approach of a child human body model that will help understand child impact injuries and improve the biofidelity of child anthropometric test devices. Due to the lack of fundamental child biomechanical data needed to fully develop such models a

  15. A PROPOSED HYBRID AGILE FRAMEWORK MODEL FOR MOBILE APPLICATIONS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Ammar Khader Almasri

    2016-03-01

    Full Text Available With the increasing in mobile application systems and a high competition between companies, that led to increase in the number of mobile application projects. Mobile software development is a group of process for creating software for mobile devices with limited resources like small screen, low-power. The development of mobile applications is a big challenging because of rapidly changing business requirements and technical constraints for mobile systems. So, developers faced the challenge of a dynamic environment and the Changing of mobile application requirements. Moreover, Mobile applications should adapt appropriate software development methods that act in response efficiently to these challenges. However, at the moment, there is limited knowledge about the suitability of different software practices for the development of mobile applications. According to many researchers ,Agile methodologies was found to be most suitable for mobile development projects as they are short time, require flexibility, reduces waste and time to market. Finally, in this research we are looking for a suitable process model that conforms to the requirement of mobile application, we are going to investigate agile development methods to find a way, making the development of mobile application easy and compatible with mobile device features.

  16. Development of base isolation device complied with the ultimate strength design code in Japan

    Science.gov (United States)

    Nishimura, Isao; Suzuki, Satoshi

    2016-04-01

    This paper reports the scheme of a research project funded by the Ministry of Land Infrastructure Transport and Tourism (MLIT) from the fiscal year of 2012 to 2014 under the title of "Development of base isolation device complied with the ultimate strength design code." The theoretical prediction tells us a new approach to develop a highly stable laminated rubber bearing that has a constant buckling load even under large lateral displacement. Relatively high shear stiffness makes it more stable and the height of the bearing should be longer than its diameter. They are the newly discovered theoretical buckling stability criteria from the previous studies conducted by the author's research team. The experimental studies in this project show the compatibility with the theoretical prediction and highly linear loaddisplacement relationship under large deformation. The performance of the newly developed device satisfies the requirement of the ultimate strength design code, if the ground condition of the target building is normally solid enough to prevent liquefaction. The theoretically predicted buckling stability of the laminated rubber bearings has been experimentally verified by the specimens of this project.

  17. On the Performance Analysis of Hybrid ARQ With Incremental Redundancy and With Code Combining Over Free-Space Optical Channels With Pointing Errors

    KAUST Repository

    Zedini, Emna

    2014-07-16

    In this paper, we investigate the performance of hybrid automatic repeat request (HARQ) with incremental redundancy (IR) and with code combining (CC) from an information-theoretic perspective over a point-to-point free-space optical (FSO) system. First, we introduce new closed-form expressions for the probability density function, the cumulative distribution function, the moment generating function, and the moments of an FSO link modeled by the Gamma fading channel subject to pointing errors and using intensity modulation with direct detection technique at the receiver. Based on these formulas, we derive exact results for the average bit error rate and the capacity in terms of Meijer\\'s G functions. Moreover, we present asymptotic expressions by utilizing the Meijer\\'s G function expansion and using the moments method, too, for the ergodic capacity approximations. Then, we provide novel analytical expressions for the outage probability, the average number of transmissions, and the average transmission rate for HARQ with IR, assuming a maximum number of rounds for the HARQ protocol. Besides, we offer asymptotic expressions for these results in terms of simple elementary functions. Additionally, we compare the performance of HARQ with IR and HARQ with CC. Our analysis demonstrates that HARQ with IR outperforms HARQ with CC.

  18. Developement of Hybrid Photo-detectors for the Hyper-Kamiokande Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Seiko [Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto-city, Kyoto (Japan); Nishimura, Yasuhiro; Nakayama, Shoei; Kametani, Isao; Shiozawa, Masato; Suzuki, Yoichiro; Sekiya, Hiroyuki; Nakahata, Masayuki; Hayato, Yoshinari; Haga, Yuto; Miura, Makoto [ICRR, Kashiwanoha 5-1-5, Kashiwa-sity, Chiba (Japan); Ichikawa, Atsuko; Ikeda, Motoyasu; Nakaya, Tsuyoshi; Minamino, Akihiro; Tateishi, Keiji [Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto-city, Kyoto (Japan); Aihara, Hiroaki; Suda, Yusuke; Yokoyama, Masashi [University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo (Japan); Omura, Takayuki [Hamamatsu K.K., Sunayama-cho, 325-6, Naka-ku, Hamamatsu-city, Shizuoka (Japan); and others

    2014-08-15

    We are developing a hybrid photo detector (HPD) for the Hyper-Kamiokande Project. Eight-inch HPDs were prepared to evaluate their performance. Based on the results from these measurements, HPDs achieve a better performance such as single photon separation than conventional PMTs. A verification study lasting a few years in a water tank is planned in 2013 to check their feasibility.

  19. Development of Hybrid Courses Utilizing Modules as an Objective in ATE Projects

    Science.gov (United States)

    Payne, James E.; Murphy, Richard M.; Payne, Linda L.

    2017-01-01

    Orangeburg-Calhoun Technical College (OCtech) has been awarded two National Science Foundation Advanced Technological Education (NSF-ATE) grants since 2011 that have the development of module-based hybrid courses in Engineering Technology and Mechatronics as objectives. In this article, the advantages and challenges associated with module-based…

  20. Hybrid ECMO for a patient in respiratory failure developing cardiac insufficiency.

    Science.gov (United States)

    Youdle, Jemma; Penn, Sarah; Maunz, Olaf; Simon, Andre

    2016-04-01

    A 45-year-old patient in lung failure treated with veno-venous extracorporeal membrane oxygenation (VV ECMO) developed subsequent right heart failure and required cardiac support.We present a method of upgrading a VV ECMO to a hybrid system for simultaneous support for respiratory and cardiac failure.

  1. Hybrid Rice Resistant to Bacterial Leaf Blight Developed By Marker Assisted Selection

    Institute of Scientific and Technical Information of China (English)

    CAO; Li-yong; ZHUANG; Jie-yun; YUAN; Shou-jiang; ZHAN; Xiao-deng; ZHENG; Kang-le; CHENG; Shi-hua

    2003-01-01

    Through recurrént backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and R1176 carrying Xa-21 , a gene having broad-spectrum resistance to rice bacterial leaf blight, were selected. By crossing the two lines to CMS line Zhong 9A, two new hybrid rice combinations, Zhongyou 6 and Zhongyou 1176 were developed. The hybrids showed high resistance to diseases, good grain quality and high yielding potential in national and provincial adaptability and yield trials.

  2. Development of Novel Bipolar Nickel/Metal Hydride Batteries for Hybrid Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    邓超; 史鹏飞; 张森

    2005-01-01

    This paper deals with the design and development of bipolar Ni/MH batteries. After optimizing the parameters of bipolar plates by adjusting electrode thickness and modifying the capacity ratio of two adjacent electrodes of a single cell, some bipolar Ni/MH stacks with a voltage of 6 V were assembled and examined. Electrochemical testing results showed that the bipolar battery has excellent high rate discharge and recharge characteristics, satisfying pulse discharge performance even in a low state of charge (SOC). Moreover, the battery showed good stability during pulse cycles as simulating hybrid electric vehicle working conditions. It would be a promising alternative for power storage system in hybrid electxic vehicles.

  3. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site.

  4. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M.; Sendra, Jose Ramón; Lechuga, Laura M.

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  5. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  6. Development of a GPU Compatible Version of the Fast Radiation Code RRTMG

    Science.gov (United States)

    Iacono, M. J.; Mlawer, E. J.; Berthiaume, D.; Cady-Pereira, K. E.; Suarez, M.; Oreopoulos, L.; Lee, D.

    2012-12-01

    The absorption of solar radiation and emission/absorption of thermal radiation are crucial components of the physics that drive Earth's climate and weather. Therefore, accurate radiative transfer calculations are necessary for realistic climate and weather simulations. Efficient radiation codes have been developed for this purpose, but their accuracy requirements still necessitate that as much as 30% of the computational time of a GCM is spent computing radiative fluxes and heating rates. The overall computational expense constitutes a limitation on a GCM's predictive ability if it becomes an impediment to adding new physics to or increasing the spatial and/or vertical resolution of the model. The emergence of Graphics Processing Unit (GPU) technology, which will allow the parallel computation of multiple independent radiative calculations in a GCM, will lead to a fundamental change in the competition between accuracy and speed. Processing time previously consumed by radiative transfer will now be available for the modeling of other processes, such as physics parameterizations, without any sacrifice in the accuracy of the radiative transfer. Furthermore, fast radiation calculations can be performed much more frequently and will allow the modeling of radiative effects of rapid changes in the atmosphere. The fast radiation code RRTMG, developed at Atmospheric and Environmental Research (AER), is utilized operationally in many dynamical models throughout the world. We will present the results from the first stage of an effort to create a version of the RRTMG radiation code designed to run efficiently in a GPU environment. This effort will focus on the RRTMG implementation in GEOS-5. RRTMG has an internal pseudo-spectral vector of length of order 100 that, when combined with the much greater length of the global horizontal grid vector from which the radiation code is called in GEOS-5, makes RRTMG/GEOS-5 particularly suited to achieving a significant speed improvement

  7. Development of hybrid frequency couplers for non-inductive current drive in a tokamak; Developpement de coupleurs a la frequence hybride pour la generation non inductive du courant dans un tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Berio, St.

    1996-11-04

    Used at its first time as an heating method in order to reach the temperature requisite for the fusion of a thermonuclear plasma, the hybrid waves has shown that they were the more efficient method for non-inductive current drive in a tokamak. The size and the objectives of a next machine such as ITER lead of the design of new antennae (in process of realisation on Tore Supra) made of oversized waveguides. This new concept of antenna will be more simple, more robust and will be able to transmit the same if not much power than the present antennae. This thesis contribute to the development of a new code called ALOHA (for `Advanced LOwer Hybrid Antenna`) which, at the end, will be able to give the characteristics and the behaviours of this new oversized antennae in front of a tokamak plasma. This thesis is also a first step in the interpretation of some experimental data concerning the measurement of coupling, absorption and current drive of the actual hybrid wave launched by a grill with rectangular waveguides. Moreover, this thesis lay some foundations of the study of these new antennae in front of a non-parallel confinement magnetic field and/or in front of poloidal inhomogeneities of plasma. (author). 53 refs.

  8. Development of a computer code for dynamic analysis of the primary circuit of advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Jussie Soares da; Lira, Carlos A.B.O.; Magalhaes, Mardson A. de Sa, E-mail: cabol@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Currently, advanced reactors are being developed, seeking for enhanced safety, better performance and low environmental impacts. Reactor designs must follow several steps and numerous tests before a conceptual project could be certified. In this sense, computational tools become indispensable in the preparation of such projects. Thus, this study aimed at the development of a computational tool for thermal-hydraulic analysis by coupling two computer codes to evaluate the influence of transients caused by pressure variations and flow surges in the region of the primary circuit of IRIS reactor between the core and the pressurizer. For the simulation, it was used a situation of 'insurge', characterized by the entry of water in the pressurizer, due to the expansion of the refrigerant in the primary circuit. This expansion was represented by a pressure disturbance in step form, through the block 'step' of SIMULINK, thus enabling the transient startup. The results showed that the dynamic tool, obtained through the coupling of the codes, generated very satisfactory responses within model limitations, preserving the most important phenomena in the process. (author)

  9. Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, M. K.; Lee, W. J. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-03-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a fourth step of the whole project, applying the RELAP5/MOD3/CANDU+ version for the real CANDU plant LOCA Analysis and D2O leakage incident. There are three main models under investigation, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs, especially when CANDU LOCA is tested. Also, for Wolsung unit 1 D2O leakage incident analysis, the plant behavior is predicted with the newly developed version for the first 1000 seconds after onset of the incident, with the main interest aiming for system pressure, level control system, and thermal hydraulic transient behavior of the secondary system. The model applied for this particular application includes heat transfer model of nuclear fuel assembly, decay heat model, and MOV (Motor Operated Valve) model. Finally, the code maintenance work, mainly correcting the known errors, is presented. 12 refs., 26 figs., 3 tabs. (Author)

  10. Predictive coding accelerates word recognition and learning in the early stages of language development.

    Science.gov (United States)

    Ylinen, Sari; Bosseler, Alexis; Junttila, Katja; Huotilainen, Minna

    2016-10-16

    The ability to predict future events in the environment and learn from them is a fundamental component of adaptive behavior across species. Here we propose that inferring predictions facilitates speech processing and word learning in the early stages of language development. Twelve- and 24-month olds' electrophysiological brain responses to heard syllables are faster and more robust when the preceding word context predicts the ending of a familiar word. For unfamiliar, novel word forms, however, word-expectancy violation generates a prediction error response, the strength of which significantly correlates with children's vocabulary scores at 12 months. These results suggest that predictive coding may accelerate word recognition and support early learning of novel words, including not only the learning of heard word forms but also their mapping to meanings. Prediction error may mediate learning via attention, since infants' attention allocation to the entire learning situation in natural environments could account for the link between prediction error and the understanding of word meanings. On the whole, the present results on predictive coding support the view that principles of brain function reported across domains in humans and non-human animals apply to language and its development in the infant brain. A video abstract of this article can be viewed at: http://hy.fi/unitube/video/e1cbb495-41d8-462e-8660-0864a1abd02c. [Correction added on 27 January 2017, after first online publication: The video abstract link was added.]. © 2016 John Wiley & Sons Ltd.

  11. Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian

    2017-02-01

    The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functional characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.

  12. Development of Capacitors for Power Electronics in Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    The purpose of this CRADA is to develop a fabrication process to reduce the manufacturing cost for a very compact, high temperature, film-on-foil high energy-density PLZT (Pb-La-Zr- Ti-O) capacitor. Motivation for this CRADA is derived from the DOE’s Office of Vehicle Technologies (OVT) program, which seeks to advance technologies to improve vehicle fuel efficiency in the mid-term and facilitate the transition to electric drive vehicles over the longterm. The objective of Argonne’s work is to develop and characterize high-performance capacitors on base-metal foils. The PLZT film-on-foil prepared using a spin-coating technique

  13. Powertrain instrumentation and test systems development, hybridization, electrification

    CERN Document Server

    Paulweber, Michael

    2016-01-01

    The book deals with the increasingly complex test systems for powertrain components and systems giving an overview of the diverse types of test beds for all components of an advanced powertrain focusing on specific topics such as instrumentation, control, simulation, hardware-in-the-loop, automation or test facility management. This book is intended for powertrain (component) development engineers, test bed planners, test bed operators and beginners.

  14. Development of accident management technology and computer codes -A study for nuclear safety improvement-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Kyu; Jae, Moo Sung; Jo, Young Gyun; Park, Rae Jun; Kim, Jae Hwan; Ha, Jae Ju; Kang, Dae Il; Choi, Sun Young; Kim, Si Hwan [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    We have surveyed new technologies and research results for the accident management of nuclear power plants. And, based on the concept of using the existing plant capabilities for accident management, both in-vessel and ex-vessel strategies were identified and analyzed. When assessing accident management strategies, their effectiveness, adverse effects, and their feasibility must be considered. We have developed a framework for assessing the strategies with these factors in mind. We have applied the developed framework to assessing the strategies, including the likelihood that the operator correctly diagnoses the situation and successfully implements the strategies. Finally, the cavity flooding strategy was assessed by applying it to the station blackout sequence, which have been identified as one of the major contributors to risk at the reference plant. The thermohydraulic analyses with sensitivity calculations have been performed using MAAP 4 computer code. (Author).

  15. Development of a friendly interface for ORIGEN 2.1 code using MatLab software

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Joao Paulo [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Fortini, Maria A.; Pereira, Claubia; Costa, Antonella L., E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: antonella@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq) (Brazil)

    2011-07-01

    In an event of accidental liberation of radioactive material to the environment from a nuclear power plant, decisions must be taken quickly to supply the need of mitigating actions. Thus, it is important a fast, clear and safe access to all information about the source term. This work describes the initiative to develop a graphic interface to output data for ORIGEN 2.1 code, intending a friendly and secure approach with the output data and other important parameters for an analysis in emergency case, known the historic of operation of a nuclear power plant type PWR. By using the software MATLAB it is possible to develop an output routine with graphic presentation to some necessary data for an emergency analysis. The interface output must be able of fix up the ORIGEN conventional tables in graphics. In advance, preliminary results will be presented. (author)

  16. A Development of Hybrid Drug Information System Using Image Recognition

    Directory of Open Access Journals (Sweden)

    HwaMin Lee

    2015-04-01

    Full Text Available In order to prevent drug abuse or misuse cases and avoid over-prescriptions, it is necessary for medicine taker to be provided with detailed information about the medicine. In this paper, we propose a drug information system and develop an application to provide information through drug image recognition using a smartphone. We designed a contents-based drug image search algorithm using the color, shape and imprint of drug. Our convenient application can provide users with detailed information about drugs and prevent drug misuse.

  17. Development of orthogonal 2-dimensional numerical code TFC2D for fluid flow with various turbulence models and numerical schemes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yeop; In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    The development of orthogonal 2-dimensional numerical code is made. The present code contains 9 kinds of turbulence models that are widely used. They include a standard k-{epsilon} model and 8 kinds of low Reynolds number ones. They also include 6 kinds of numerical schemes including 5 kinds of low order schemes and 1 kind of high order scheme such as QUICK. To verify the present numerical code, pipe flow, channel flow and expansion pipe flow are solved by this code with various options of turbulence models and numerical schemes and the calculated outputs are compared to experimental data. Furthermore, the discretization error that originates from the use of standard k-{epsilon} turbulence model with wall function is much more diminished by introducing a new grid system than a conventional one in the present code. 23 refs., 58 figs., 6 tabs. (Author)

  18. The Development of the SNARC Effect: Evidence for Early Verbal Coding

    Science.gov (United States)

    Imbo, Ineke; De Brauwer, Jolien; Fias, Wim; Gevers, Wim

    2012-01-01

    In a recent study, Gevers and colleagues (2010, "Journal of Experimental Psychology: General," Vol. 139, pp. 180-190) showed that the SNARC (spatial numerical association of response codes) effect in adults results not only from spatial coding of magnitude (e.g., mental number line hypothesis) but also from verbal coding. Because children are…

  19. Development and Evaluation of a Hybrid Dynamical-Statistical Downscaling Method

    Science.gov (United States)

    Walton, Daniel Burton

    Regional climate change studies usually rely on downscaling of global climate model (GCM) output in order to resolve important fine-scale features and processes that govern local climate. Previous efforts have used one of two techniques: (1) dynamical downscaling, in which a regional climate model is forced at the boundaries by GCM output, or (2) statistical downscaling, which employs historical empirical relationships to go from coarse to fine resolution. Studies using these methods have been criticized because they either dynamical downscaled only a few GCMs, or used statistical downscaling on an ensemble of GCMs, but missed important dynamical effects in the climate change signal. This study describes the development and evaluation of a hybrid dynamical-statstical downscaling method that utilizes aspects of both dynamical and statistical downscaling to address these concerns. The first step of the hybrid method is to use dynamical downscaling to understand the most important physical processes that contribute to the climate change signal in the region of interest. Then a statistical model is built based on the patterns and relationships identified from dynamical downscaling. This statistical model can be used to downscale an entire ensemble of GCMs quickly and efficiently. The hybrid method is first applied to a domain covering Los Angeles Region to generate projections of temperature change between the 2041-2060 and 1981-2000 periods for 32 CMIP5 GCMs. The hybrid method is also applied to a larger region covering all of California and the adjacent ocean. The hybrid method works well in both areas, primarily because a single feature, the land-sea contrast in the warming, controls the overwhelming majority of the spatial detail. Finally, the dynamically downscaled temperature change patterns are compared to those produced by two commonly-used statistical methods, BCSD and BCCA. Results show that dynamical downscaling recovers important spatial features that the

  20. Development of a multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3 and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    A multi-dimensional realistic thermal-hydraulic system analysis code, MARS version 1.3 has been developed. Main purpose of MARS 1.3 development is to have the realistic analysis capability of transient two-phase thermal-hydraulics of Pressurized Water Reactors (PWRs) especially during Large Break Loss of Coolant Accidents (LBLOCAs) where the multi-dimensional phenomena domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, three-dimensional (3D) reactor vessel analysis code, and RELAP5/MOD3.2.1.2, one-dimensional (1D) reactor system analysis code., Developmental requirements for MARS are chosen not only to best utilize the existing capability of the codes but also to have the enhanced capability in code maintenance, user accessibility, user friendliness, code portability, code readability, and code flexibility. For the maintenance of existing codes capability and the enhancement of code maintenance capability, user accessibility and user friendliness, MARS has been unified to be a single code consisting of 1D module (RELAP5) and 3D module (COBRA-TF). This is realized by implicitly integrating the system pressure matrix equations of hydrodynamic models and solving them simultaneously, by modifying the 1D/3D calculation sequence operable under a single Central Processor Unit (CPU) and by unifying the input structure and the light water property routines of both modules. In addition, the code structure of 1D module is completely restructured using the modular data structure of standard FORTRAN 90, which greatly improves the code maintenance capability, readability and portability. For the code flexibility, a dynamic memory management scheme is applied in both modules. MARS 1.3 now runs on PC/Windows and HP/UNIX platforms having a single CPU, and users have the options to select the 3D module to model the 3D thermal-hydraulics in the reactor vessel or other

  1. Preliminary Development of Thermal Power Calculation Code H-Power for a Supercritical Water Reactor

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2014-01-01

    Full Text Available SCWR (Supercritical Water Reactor is one of the promising Generation IV nuclear systems, which has higher thermal power efficiency than current pressurized water reactor. It is necessary to perform the thermal equilibrium and thermal power calculation for the conceptual design and further monitoring and calibration of the SCWR. One visual software named H-Power was developed to calculate thermal power and its uncertainty of SCWR, in which the advanced IAPWS-IF97 industrial formulation was used to calculate the thermodynamic properties of water and steam. The ISO-5167-4: 2003 standard was incorporated in the code as the basis of orifice plate to compute the flow rate. New heat balance model and uncertainty estimate have also been included in the code. In order to validate H-Power, an assessment was carried out by using data published by US and Qinshan Phase II. The results showed that H-Power was able to estimate the thermal power of SCWR.

  2. Development of Momentum Conserving Monte Carlo Simulation Code for ECCD Study in Helical Plasmas

    Directory of Open Access Journals (Sweden)

    Murakami S.

    2015-01-01

    Full Text Available Parallel momentum conserving collision model is developed for GNET code, in which a linearized drift kinetic equation is solved in the five dimensional phase-space to study the electron cyclotron current drive (ECCD in helical plasmas. In order to conserve the parallel momentum, we introduce a field particle collision term in addition to the test particle collision term. Two types of the field particle collision term are considered. One is the high speed limit model, where the momentum conserving term does not depend on the velocity of the background plasma and can be expressed in a simple form. The other is the velocity dependent model, which is derived from the Fokker–Planck collision term directly. In the velocity dependent model the field particle operator can be expressed using Legendre polynominals and, introducing the Rosenbluth potential, we derive the field particle term for each Legendre polynominals. In the GNET code, we introduce an iterative process to implement the momentum conserving collision operator. The high speed limit model is applied to the ECCD simulation of the heliotron-J plasma. The simulation results show a good conservation of the momentum with the iterative scheme.

  3. Development of Momentum Conserving Monte Carlo Simulation Code for ECCD Study in Helical Plasmas

    Science.gov (United States)

    Murakami, S.; Hasegawa, S.; Moriya, Y.

    2015-03-01

    Parallel momentum conserving collision model is developed for GNET code, in which a linearized drift kinetic equation is solved in the five dimensional phase-space to study the electron cyclotron current drive (ECCD) in helical plasmas. In order to conserve the parallel momentum, we introduce a field particle collision term in addition to the test particle collision term. Two types of the field particle collision term are considered. One is the high speed limit model, where the momentum conserving term does not depend on the velocity of the background plasma and can be expressed in a simple form. The other is the velocity dependent model, which is derived from the Fokker-Planck collision term directly. In the velocity dependent model the field particle operator can be expressed using Legendre polynominals and, introducing the Rosenbluth potential, we derive the field particle term for each Legendre polynominals. In the GNET code, we introduce an iterative process to implement the momentum conserving collision operator. The high speed limit model is applied to the ECCD simulation of the heliotron-J plasma. The simulation results show a good conservation of the momentum with the iterative scheme.

  4. Application of the S3M and Mcnpx Codes in Particle Detector Development

    Science.gov (United States)

    Pavlovič, Márius; Sedlačková, Katarína; Šagátová, Andrea; Strašík, Ivan

    2014-02-01

    Semiconductor detectors can be used to detect neutrons if they are covered by a conversion layer. Some neutrons transfer their kinetic energy to hydrogen via elastic nuclear scattering in the conversion layer, and protons are produced as recoils. These protons enter the sensitive volume of the detector and are detected. In the process of detector development, Monte Carlo computer codes are necessary to simulate the detection process. This paper presents the main features of the S3M code (SRIM Supporting Software Modules) and shows its application potential. Examples are given for the neutron detectors with a conversion layer and for CVD (Chemical Vapor Deposition) diamond detectors for beam-condition monitors at the LHC (Large Hadron Collider). Special attention is paid to the S3M statistical modules that can be of interest also for other application areas like beam transport, accelerators, ion therapy, etc. The results are generated by MCNPX (Monte Carlo N-Particle eXtended) simulations used to optimize the thickness of the HDPE (high density polyethylene) conversion layer.

  5. Developing energy forecasting model using hybrid artificial intelligence method

    Institute of Scientific and Technical Information of China (English)

    Shahram Mollaiy-Berneti

    2015-01-01

    An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation (BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand (gross domestic product (GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand (population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.

  6. Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets

    Science.gov (United States)

    Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph

    Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.

  7. Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Lei Shen

    2011-12-01

    Full Text Available Quantum dots (QDs are nanometer-sized semiconductor particles with tunable fluorescent optical property that can be adjusted by their chemical composition, size, or shape. In the past 10 years, they have been demonstrated as a powerful fluorescence tool for biological and biomedical applications, such as diagnostics, biosensing and biolabeling. QDs with high fluorescence quantum yield and optical stability are usually synthesized in organic solvents. In aqueous solution, however, their metallic toxicity, non-dissolubility and photo-luminescence instability prevent the direct utility of QDs in biological media. Polymers are widely used to cover and coat QDs for fabricating biocompatible QDs. Such hybrid materials can provide solubility and robust colloidal and optical stability in water. At the same time, polymers can carry ionic or reactive functional groups for incorporation into the end-use application of QDs, such as receptor targeting and cell attachment. This review provides an overview of the recent development of methods for generating biocompatible polymer/QDs hybrid materials with desirable properties. Polymers with different architectures, such as homo- and co-polymer, hyperbranched polymer, and polymeric nanogel, have been used to anchor and protect QDs. The resulted biocompatible polymer/QDs hybrid materials show successful applications in the fields of bioimaging and biosensing. While considerable progress has been made in the design of biocompatible polymer/QDs materials, the research challenges and future developments in this area should affect the technologies of biomaterials and biosensors and result in even better biocompatible polymer/QDs hybrid materials.

  8. Development of Intelligent Suits for Disuse Atrophy of Musculoskeletal System Using Hybrid Exercise Method

    Science.gov (United States)

    Shiba, Naoto; Yoshimitsu, Kazuhiro; Matsugaki, Tohru; Narita, Arata; Maeda, Takashi; Inada, Tomohisa; Tagawa, Yoshihiko; Numada, Kiyoshi; Nishi, Tetsuya

    We developedHybrid exercise’ method that was designed to maintain the musculoskeletal system by using electrically stimulated antagonist muscles to resist volitional contraction of agonist muscles. This approach also produces a minimum of inertial reaction forces and has the advantage that it may minimize the need for external stabilization that is currently necessary during exercise in a weightlessness environment. The purpose of this study was to develop the intelligent suits with virtual reality (VR) system that had function of preventing disuse atrophy of musculoskeletal system using hybrid exercise system. Installing of the hybrid exercise system to the subject became easy by the intelligent suits. VR system realized the sense of sight by computer graphics animation synchronized with subjects' motion, and sense of force induced by electrical stimulation. By using VR system, the management of the exercise accomplishment degree was enabled easily because the device could record the exercise history. Intelligent suits with VR hybrid exercise system might become one of the useful countermeasures for the disuse musculoskeletal system in the space.

  9. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  10. Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System

    Science.gov (United States)

    Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher

    2001-01-01

    The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.

  11. Development of a Hybrid Magnetic Resonance and Ultrasound Imaging System

    Directory of Open Access Journals (Sweden)

    Victoria Sherwood

    2014-01-01

    Full Text Available A system which allows magnetic resonance (MR and ultrasound (US image data to be acquired simultaneously has been developed. B-mode and Doppler US were performed inside the bore of a clinical 1.5 T MRI scanner using a clinical 1–4 MHz US transducer with an 8-metre cable. Susceptibility artefacts and RF noise were introduced into MR images by the US imaging system. RF noise was minimised by using aluminium foil to shield the transducer. A study of MR and B-mode US image signal-to-noise ratio (SNR as a function of transducer-phantom separation was performed using a gel phantom. This revealed that a 4 cm separation between the phantom surface and the transducer was sufficient to minimise the effect of the susceptibility artefact in MR images. MR-US imaging was demonstrated in vivo with the aid of a 2 mm VeroWhite 3D-printed spherical target placed over the thigh muscle of a rat. The target allowed single-point registration of MR and US images in the axial plane to be performed. The system was subsequently demonstrated as a tool for the targeting and visualisation of high intensity focused ultrasound exposure in the rat thigh muscle.

  12. Development of Hybrid and Monolithic Silicon Micropattern Detectors

    CERN Multimedia

    Beker, H; Snoeys, W; Campbell, M; Lemeilleur, F; Ropotar, I

    2002-01-01

    %RD-19 \\\\ \\\\ In a collaborative effort between particle physics institutes and microelectronics industry we are undertaking the development of true 2-dimensional semiconductor particle detectors with on-chip signal processing and information extraction: the so-called micropattern detector. This detector is able to cope in a robust way with high multiplicity events at high rates, while allowing for a longer detector lifetime under irradiation and a thinner sensitive depletion region. Therefore, it will be ideally suited for the complicated events in the LHC p-p collider experiments. Following a $^{\\prime}$stepping stone$^{\\prime}$ approach several telescopes of pixel planes, totalling now 600 cm$^{2}$ with \\(>\\)~1~M elements have been used in the WA97, NA50 and NA57 lead ion experiments. This new technology has facilitated the tracking considerably (see Fig.1). Not only Si but also GaAs and possibly diamond matrices can be connected to the readout matrix. Tests with GaAs pixel detectors with the RD-19 readout ...

  13. Further development of the computer code ATHLET-CD; Weiterentwicklung des Rechenprogramms ATHLET-CD. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Sebastian; Austregesilo, Henrique; Bals, Christine; Band, Sebastian; Hollands, Thorsten; Koellein, Carsten; Lovasz, Liviusz; Pandazis, Peter; Schubert, Johann-Dietrich; Sonnenkalb, Martin

    2016-10-15

    In the framework of the reactor safety research program sponsored by the German Federal Ministry for Economic Affairs and Energy (BMWi), the computer code system ATHLET/ATHLET-CD has been further developed as an analysis tool for the simulation of accidents in nuclear power plants with pressurized and boiling water reactors as well as for the evaluation of accident management procedures. The main objective was to provide a mechanistic analysis tool for best estimate calculations of transients, accidents, and severe accidents with core degradation in light water reactors. With the continued development, the capability of the code system has been largely improved, allowing best estimate calculations of design and beyond design base accidents, and the simulation of advanced core degradation with enhanced model extent in a reasonable calculation time. ATHLET comprises inter alia a 6-equation model, models for the simulation of non-condensable gases and tracking of boron concentration, as well as additional component and process models for the complete system simulation. Among numerous model improvements, the code application has been extended to super critical pressures. The mechanistic description of the dynamic development of flow regimes on the basis of a transport equation for the interface area has been further developed. This ATHLET version is completely integrated in ATHLET-CD. ATHLET-CD further comprises dedicated models for the simulation of fuel and control assembly degradation for both pressurized and boiling water reactors, debris bed with melting in the core region, as well as fission product and aerosol release and transport in the cooling system, inclusive of decay of nuclide inventories and of chemical reactions in the gas phase. The continued development also concerned the modelling of absorber material release, of melting, melt relocation and freezing, and the interaction with the wall of the reactor pressure vessel. The following models were newly

  14. Developed Hybrid Model for Propylene Polymerisation at Optimum Reaction Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-02-01

    Full Text Available A statistical model combined with CFD (computational fluid dynamic method was used to explain the detailed phenomena of the process parameters, and a series of experiments were carried out for propylene polymerisation by varying the feed gas composition, reaction initiation temperature, and system pressure, in a fluidised bed catalytic reactor. The propylene polymerisation rate per pass was considered the response to the analysis. Response surface methodology (RSM, with a full factorial central composite experimental design, was applied to develop the model. In this study, analysis of variance (ANOVA indicated an acceptable value for the coefficient of determination and a suitable estimation of a second-order regression model. For better justification, results were also described through a three-dimensional (3D response surface and a related two-dimensional (2D contour plot. These 3D and 2D response analyses provided significant and easy to understand findings on the effect of all the considered process variables on expected findings. To diagnose the model adequacy, the mathematical relationship between the process variables and the extent of polymer conversion was established through the combination of CFD with statistical tools. All the tests showed that the model is an excellent fit with the experimental validation. The maximum extent of polymer conversion per pass was 5.98% at the set time period and with consistent catalyst and co-catalyst feed rates. The optimum conditions for maximum polymerisation was found at reaction temperature (RT 75 °C, system pressure (SP 25 bar, and 75% monomer concentration (MC. The hydrogen percentage was kept fixed at all times. The coefficient of correlation for reaction temperature, system pressure, and monomer concentration ratio, was found to be 0.932. Thus, the experimental results and model predicted values were a reliable fit at optimum process conditions. Detailed and adaptable CFD results were capable

  15. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  16. Development of Hybrid Models for a Vapor-Phase Fungi Bioreactor

    Directory of Open Access Journals (Sweden)

    Giorgia Spigno

    2015-01-01

    Full Text Available This study is aimed at the development of a model for an experimental vapour-phase fungi bioreactor, which could be derived in a simple way using the available measurements of a pilot-plant reactor, without the development of ad hoc experiments for the evaluation of fungi kinetics and the estimation of parameters related to biofilm characteristics. The proposed approach is based on hybrid models, obtained by the connection of the mass balance equation (used in traditional phenomenological models with a feedforward neural network (used in black-box modelling, and the proper use of statistical tools for the model assessment and system understanding. Two different hybrid models were developed and compared by proper performance indexes, and their capability to predict the biological complex phenomena was demonstrated and compared to that of a first-principle model.

  17. Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei

    2007-01-01

    A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".

  18. Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution.

    Science.gov (United States)

    Briggs, James A; Wolvetang, Ernst J; Mattick, John S; Rinn, John L; Barry, Guy

    2015-12-02

    Only relatively recently has it become clear that mammalian genomes encode tens of thousands of long non-coding RNAs (lncRNAs). A striking 40% of these are expressed specifically in the brain, where they show precisely regulated temporal and spatial expression patterns. This begs the question, what is the functional role of these many lncRNA transcripts in the brain? Here we canvass a growing number of mechanistic studies that have elucidated central roles for lncRNAs in the regulation of nervous system development and function. We also survey studies indicating that neurological and psychiatric disorders may ensue when these mechanisms break down. Finally, we synthesize these insights with evidence from comparative genomics to argue that lncRNAs may have played important roles in brain evolution, by virtue of their abundant sequence innovation in mammals and plausible mechanistic connections to the adaptive processes that occurred recently in the primate and human lineages.

  19. Development of computer code SAFFRON for evaluating breached pin performance in FBR's

    Energy Technology Data Exchange (ETDEWEB)

    Ukai, Shigeharu; Shikakura, Sakae (Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center); Sano, Yuji; Takita, Masami

    1994-07-01

    In order to evaluate the breached pin behavior in FBR, the breached pin performance analysis code SAFFRON was developed. Based on the results of run-beyond-cladding-breach test in FBR-II as a collaborative program between PNC and U.S.DOE, the following behaviors were taken into consideration; fuel sodium reaction product (FSRP) formation, resultant fuel expansion, breach extension of cladding and release of delayed neutron precursors into the coolant. Using 3-dimensional elastic analyses by finite element method, breached pin diameter increase is adequately predicted with the reduced Young's modulus of the breached fuel. The delayed neutron signal response in on-line diagnosis was evaluated in relation to the growth of FSRP and breached area enlargement. (author).

  20. New Paradigms for Developing Peta-scalable Codes Workshop - May 3-4, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Michael Levine

    2005-04-30

    On May 3 & 4, 2004, sixty-two of North America's finest computational scientists gathered in Pittsburgh, Pennsylvania to discuss the future of high-performance computing. Sponsored by the National Science Foundation, the Department of Energy, the Department of Defense and the Hewlett-Packard Corporation, New Methods for Developing Peta-scalable Codes introduced the tools and techniques that will be required to efficiently exploit the next generation of supercomputers. This workshop provided an opportunity for computational scientists to consider parallel programming methods other than the currently prevalent one in which they explicitly and directly manage all parallelism via MPI. Specifically, the question is how best to program the upcoming generation of computer systems that will use massive parallelism and complex memory hierarchies to reach from the terascale into the petascale regime over the next five years. The presentations, by leading computer scientists, focused on languages, runtimes and libraries, tool collections and I/O methods.