WorldWideScience

Sample records for hybrid battery charger

  1. Battery chargers; Chargeurs de batteries

    Energy Technology Data Exchange (ETDEWEB)

    Peutot, Ch. [Lycee Leonard-de-Vinci de Melun, 77 (France)

    2001-05-01

    Two categories of battery chargers exist: external ones and internal ones. In the first category two types are developing today: direct contact chargers for fast and normal charging, and contact-less chargers. The second category is mainly devoted to vehicle applications (automobiles, trains etc..) and must fulfill strict technical-economical criteria (cost, weight, size, vibrations and shocks resistance, service life, power etc..). This article presents todays advance in chargers technology: 1 - general principles (different battery types, charging profiles, multiple chargers); 2 - chargers for low-cost applications (direct chargers, constant voltage chargers, voltage regulated chargers, integrated chargers, applications); 3 - advanced sinusoidal absorption chargers (general scheme, safety constraints, energy conversion structures ('buck', 'boost', 'cuck', 'flyback' switching power supplies), regulation control); 4 - concrete cases: single output and multi-output chargers. (J.S.)

  2. Double Resonant Topology for 72V Battery Charger used in a Hybrid Electric Locomotive - Study and Experimental Validation

    OpenAIRE

    BUTTERBACH, S; DE-BERNARDINIS, A; Lallemand, R; Coquery, G.; JEUNESSE, A; EVAIN, Y; AUBIN, PH

    2010-01-01

    This work deals with the study, adaptation and experimental validation of a 9kW lead-acid battery charger used to feed the 72VDC bus inside the hybrid electric locomotive demonstrator in the frame of the French research project PLATHEE. The topology of the charger is based on a high frequency double resonant series-parallel circuit which allows soft switching, losses minimization, reduction of passive component weight and facilitates system integration. Specific charging and floating modes we...

  3. Integrated Inverter And Battery Charger

    Science.gov (United States)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  4. 46 CFR 111.15-30 - Battery chargers.

    Science.gov (United States)

    2010-10-01

    ... the size and type of battery installation that it serves. Chargers incorporating grounded... 46 Shipping 4 2010-10-01 2010-10-01 false Battery chargers. 111.15-30 Section 111.15-30 Shipping... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-30 Battery chargers...

  5. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  6. Performance of the Lester battery charger in electric vehicles

    Science.gov (United States)

    Vivian, H. C.; Bryant, J. A.

    1984-01-01

    Tests are performed on an improved battery charger. The primary purpose of the testing is to develop test methodologies for battery charger evaluation. Tests are developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests show this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  7. Single-Phase PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers

    Directory of Open Access Journals (Sweden)

    Shakil Ahamed Khan

    2012-06-01

    Full Text Available In this paper, a front end ac–dc power factor correction topology is proposed for plug-in hybrid electric vehicle (PHEV battery charging. The topology can achieve improved power quality, in terms of power factor correction, reduced total harmonic distortion at input ac mains, and precisely regulated dc output. Within this context, this paper introduces a boost converter topology for implementing digital power factor correction based on low cost digital signal controller that operates the converter in continuous conduction mode, thereby significantly reducing input current harmonics. The theoretical analysis of the proposed converter is then developed, while an experimental digital control system is used to implement the new control strategy. A detailed converter operation, analysis and control strategy are presented along with simulation and experimental results for universal ac input voltage (100–240V to 380V dc output at up to 3.0 kW load and a power factor greater than 0.98. Experimental results show the advantages and flexibilities of the new control method for plug-in hybrid electric vehicle (PHEV battery charging application.

  8. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  9. Portable Battery Charger Berbasis Sel Surya

    OpenAIRE

    Budhi Anto; Edy Hamdani; Rizki Abdullah

    2014-01-01

    A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power ...

  10. Isolation of Battery Chargers Integrated Into Printed Circuit Boards

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-21

    Present test procedures developed by the Federal Government (10 CFR Part 430 “Energy Conservation Program for Consumer Products”) to measure the energy consumption of battery chargers provide no method for the isolation of input power for battery chargers that have been integrated into printed circuit boards internal to electronic equipment. This prevents the measurement of Standby and Off Mode energy consumption. As a result, the energy consumption of battery chargers integrated into the printed circuit board cannot be measured.

  11. Lithium Ion Battery (LIB) Charger: Spacesuit Battery Charger Design with 2-Fault Tolerance to Catastrophic Hazards

    Science.gov (United States)

    Darcy, Eric; Davies, Frank

    2009-01-01

    Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.

  12. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    Science.gov (United States)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  13. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  14. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  15. Integral inverter/battery charger for use in electric vehicles

    Science.gov (United States)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  16. 75 FR 56021 - Energy Conservation Standards for Battery Chargers and External Power Supplies: Public Meeting...

    Science.gov (United States)

    2010-09-15

    ..., and preliminary results. II. History of Standards Rulemaking for Battery Chargers and External Power... Part 430 RIN 1904-AB57 Energy Conservation Standards for Battery Chargers and External Power Supplies... establishing energy conservation standards for battery chargers (BCs) and non-Class A EPSs; the...

  17. Review on Electric Vehicle, Battery Charger, Charging Station and Standards

    Directory of Open Access Journals (Sweden)

    Afida Ayob

    2014-01-01

    Full Text Available Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types of charging stations and standards used for charging electric vehicles have been outlined and the impact of electric vehicle charging on utility distribution system is also discussed.

  18. Smart charging management for electric vehicle battery chargers

    OpenAIRE

    Monteiro, Vítor Duarte Fernandes; Pinto, J. G.; Exposto, Bruno Fernandes; Ferreira, João C.; Afonso, João L.

    2014-01-01

    This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger ...

  19. Experimental design and construction of an enhanced solar battery charger

    OpenAIRE

    Faithpraise, Fina; Bassey, Donatus; Charles, Mfon; Osahon, Okoro; Udoh, Monday; Chatwin, Chris

    2016-01-01

    A Solar Battery Charger circuit is designed, built and tested. It acts as a control circuit to monitor and regulate the process of charging several batteries ranging from 4 volts to 12 volts, using a photovoltaic (PV) solar panel as the input source for the battery charging process. The circuit is economical and can be easily constructed from discrete electronic components. The circuit operation is based on matching the solar panel terminal load voltage to the input terminal of the charging c...

  20. Battery charger PP-4126( )/U. Final report, 1 Jul 1971--Jun 1974

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, T.A.

    1975-07-01

    The performance data and design configuration of the PP-4126( )/U Battery Charger are delineated in this final report. Performance of the unit is summarized. Terminal performance and selected aspects of internal performance are considered. The internal system configuration of the battery charger is presented in block form. Functions of internal system blocks are discussed to define their design and behavior. Circuit components used to implement the systems blocks are identified. The PP-4126( )/U Battery Charger is designed to charge 6-, 12-, and 24-V dc batteries at selectable charging rates from 0.1 A dc to 12 A dc. The battery charger operates from MIL-STD-704 dc power sources in the range 22 V dc to 40 V dc. The battery charger structure is a finned housing with a removable cover. The cover contains the input power cable. The battery charger may be operated in any position.

  1. Battery charger PP-4126()/U. Final report, 1 Jul 1969--30 Jul 1970

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, T.A.; Hill, H.W. Jr.

    1971-02-01

    The performance data and design configuration of the PP-4126 ()/U Battery Charger is delineated. Performance of the unit is summarized. Terminal performance and selected aspects of internal performance are considered. The internal system configuration of the battery charger is presented in block form. Functions of individual system blocks are discussed to define their behavior. Circuit components used to implement the system blocks are identified. The PP-4126 ()/U Battery Charger is designed to charge 6, 12, and 24 Vdc batteries at selectable charging rates from 0.1 Adc to 15 Adc. The battery charger operates from both dc and ac power sources. (auth)

  2. Design And Construction Of Microcontroller Based Solar Battery Charger

    Directory of Open Access Journals (Sweden)

    Zar Ni Tun

    2015-08-01

    Full Text Available This research paper describes a microcontroller based battery charger by using solar energy. Solar-powered charging systems are already available in rural as well as urban areas. Solar energy is widely used around the worldwide. This system converts solar energy to electrical energy and stores it in a battery. Photovoltaic panel is used to convert solar energy to electrical energy and stored in a 12V battery. Battery is the main component in solar charging system to store the energy generated from sunlight for various application. This system requires sensor to sense whether the battery is fully charged or not. Microcontroller is the heart of the circuit. Lead-acid batteries are the most commonly used power source for many applications. This system consists of voltage sensing charging controlling and display unit.

  3. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    Science.gov (United States)

    2009-12-01

    SYSTEM DESIGN USING LITHIUM-ION BATTERIES AND ONE CHARGER PER BATTERY by Frank E. Filler December 2009 Thesis Advisor: Alexander L. Julian...Author: Frank E. Filler Approved by: Alexander L. Julian Thesis Advisor Roberto Crisiti Second Reader Jeffrey B. Knorr Chairman...Battery Management System BNC Bayonet Neill -Concelman CC Constant Current CCCV Constant Current Constant Voltage CV Constant Voltage D

  4. Will Your Battery Survive a World With Fast Chargers?

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  5. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  6. 78 FR 18253 - Request for Information on Evaluating New Products for the Battery Chargers and External Power...

    Science.gov (United States)

    2013-03-26

    ... Part 430 RIN 1904-AB57 Request for Information on Evaluating New Products for the Battery Chargers and... energy conservation standard levels for battery chargers if it is determined that new energy conservation... energy conservation standards for classes of battery chargers and external power supplies....

  7. Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV

    Directory of Open Access Journals (Sweden)

    Teresa R. Granados-Luna

    2014-01-01

    Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model.

  8. Battery charger PP-6309()/U. Final report, 1 Jul 1969--30 Jul 1970

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, T.A.; Hill, H.W. Jr.

    1971-01-01

    The performance data and design configuration of the PP-6309 ()/U Battery Charger is delineated. Performance of the unit is summarized and analyzed. Terminal performance and selected aspects of internal performance are considered. The internal system configuration of the Battery Charger is presented in block form. Functions of individual system blocks are discussed to define their behavior. Circuit components used to implement the system blocks are identified. The PP-6309 ()/U Battery Charger is designed to charge 24 Vdc--28 Vdc batteries at adjustable charging rates from 5 Adc--15 Adc. The unit operates from 28 Vdc power sources having the characteristics of MIL-STD-704A. The Battery Charger is housed in a finned rectangular enclosure; the total weight is 26 pounds. (auth)

  9. Low cost RISC implementation of intelligent ultra fast charger for Ni-Cd battery

    Energy Technology Data Exchange (ETDEWEB)

    Petchjatuporn, Panom; Khaehintung, Noppadol [Department of Control and Instrumentation Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Sirisuk, Phaophak; Sunat, Khamron [Department of Computer Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Wicheanchote, Phinyo [Test Engineering Department, Sanmina-SCI Systems Co. Ltd. (Thailand); Kiranon, Wiwat [Department of Telecommunication Engineering, Faculty of Engineering, King Mongkut' s Institue of Technology, Ladkrabang, Bangkok 10520 (Thailand)

    2008-02-15

    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel-cadmium (Ni-Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni-Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger. (author)

  10. An SCR inverter with an integral battery charger for electric vehicles

    Science.gov (United States)

    Thimmeach, D.

    1983-01-01

    The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.

  11. An SCR inverter with an integral battery charger for electric vehicles

    Science.gov (United States)

    Thimmeach, D.

    1983-01-01

    The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.

  12. Erosion of tooth enamel surfaces among battery chargers and automobile mechanics in Ibadan: a comparative study.

    Science.gov (United States)

    Arowojolu, M O

    2001-01-01

    A cross sectional comparative survey was conducted among battery chargers and automobile mechanics in Ibadan to determine the effect of exposure of acid in form of solution or fumes on tooth enamel wear one hundred and five subjects were recruited and examined for erosion. This number comprised 67 automechanics and apprentices and 38 battery chargers and their apprentices. Other groups of automobile workers sharing the workshops were excluded from the study. All respondents aged between 11 and 68 years of age. Verbal informed consent was taken from all the subjects. One thousand and one hundred teeth were examined using the upper and lower central sextants. One hundred and sixty teeth were found to be missing. The teeth examined comprised 712 teeth of automechanics (88.55%) and 388 teeth of battery chargers (85.08%). Out of the 712 teeth of automechanics, only 23 teeth (3.2%) showed evidence of tooth wear whereas in the battery chargers group, 159 teeth out of 388 teeth (41%) had tooth wear. (P charger group also showed a higher percentage of missing teeth, (14.9%) as against 11.44% of the automechanic group (P > 0.05). This study has shown that battery chargers are subjected to occupational hazard of exposure to highly erosive acids and fumes. Prevention through oral health education targeted at this group of subjects and early diagnosis are very important.

  13. Battery charger PP-7286 ( )/U. Final report Jul 76--Jun 77

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Waldstein, S.

    1977-12-01

    The Battery Charger PP-7286 ( )/U was developed to support the Laser Rangefinder MX-9838 ( )/GVS-5, which is powered by a rechargeable nickel/cadmium battery, type BB-516 ( )/U, and other Army equipment using generically similar batteries. The technical characteristics are described in ECOM Development Specification Number EL-CP2128-0001A. The hardware developed consisted of the Battery Charger PP-7286 ( )/U and its Transit Case CY-7670 ( )/U. The Battery Charger operates from prime power of 115 or 230 V (plus or minus 10%) 47 to 63 Hz ac. It provides five independently adjustable charging circuits, each capable of being set to charge at constant current rates from 15 through 700 milliamperes inclusive. A multiple scale meter can be switched to measure current in each of the five channels. The circuits provide constant current into any load from zero volts (short circuit) to 36 volts. A digital timer common to all circuits can be set in tenths of an hour increments from 0.1 to 19.1 hours. Time remaining in the charging cycle is displayed by an incandescent, seven segment, 3 digit display. An internal primary battery provides nonvolatile memory for the charger in the event of power interruption. A sixth position on the meter switch allows the voltage of this battery to be measured.

  14. Replacement of battery in Asco NPP Chargers; Sustitucion de cargadores de baterias en C. N. Asco

    Energy Technology Data Exchange (ETDEWEB)

    Montero Lansanc, J.

    2013-07-01

    The purpose of this paper is to present the project to replace battery chargers at NPP Asco. It describes the reasons for the replacement, the project approach, the development to date and current status of the project, the economics, and some lessons learned during the process.

  15. 77 FR 18477 - Energy Conservation Program: Energy Conservation Standards for Battery Chargers and External...

    Science.gov (United States)

    2012-03-27

    ... March 27, 2012 Part III Department of Energy 10 CFR Part 430 Energy Conservation Program: Energy... 430 RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Battery Chargers and... Conservation Act (EPCA) prescribes energy conservation standards for various consumer products and...

  16. An area and power-efficient analog li-ion battery charger circuit.

    Science.gov (United States)

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  17. Isolated battery charger with unit power factor; Carregador de baterias isolado com fator de potencia unitario

    Energy Technology Data Exchange (ETDEWEB)

    Co, Marcio Almeida

    1993-05-01

    This work presents a single phase, isolated AC/DC converter (Battery Charger) with active power factor correction in a single stage of power processing. the topology studied is the fed-current full-bridge, in boost mode operation, at fixed switching frequency. After a complete design of converter and simulations, the results of a 1.500 W e 50 kHz prototype are shown. a Unit Power Factor and Total Harmonic Distortion less than 5% were obtained. (author)

  18. A new battery charger/discharger converter. [for spacecraft application

    Science.gov (United States)

    Middlebrook, R. D.; Cuk, S.; Behen, W.

    1978-01-01

    A new optimum topology dc-to-dc switching converter is extended to provide bidirectional current flow. The resulting two-quadrant converter can be employed to eliminate the discontinuous current mode in normal unidirectional applications, but is especially suited for spacecraft battery conditioning as a charge-discharge regulator in place of the conventional separate converters. Implementation of the control features and the battery charge current and voltage limits are discussed.

  19. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    Science.gov (United States)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2012-01-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  20. Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-02-28

    External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savings potential for external power adapters and battery chargingsystems through 2025.

  1. Single-Source Multi-Battery Solar Charger: Analysis and Stability Issues

    Directory of Open Access Journals (Sweden)

    Alon Kuperman

    2015-06-01

    Full Text Available In this paper, dynamic analysis of a multi-battery dual mode charger, powered by a single solar array and suitable for lead-acid and lithium-ion cell-based batteries is presented. Each battery is interfaced to the solar array by means of a current-controlled buck power stage, operating either in constant power or constant voltage mode. Operation in former/latter charging mode implies regulating input/output voltage of the converter, which is a non-trivial situation since while feeding different batteries, all the converters share the same input terminals, connected to the solar array. It is revealed that when at least one of the batteries operates in constant power charging mode, open-loop instability occurs whenever converter input voltage is lower than maximum power point voltage of the solar array. Consequently, input voltage regulating controller must be designed to stabilize closed-loop dynamics for the worst case of instability, which is also derived. Moreover, it is shown that the dynamics of the converters operating under output voltage control are perceived as disturbances by input voltage control loop and must be properly rejected. Simple loop shaping design is proposed based on a PI controller, allowing stabilizing the system in case of worst case instability and rejecting output voltage control induced disturbances at the expense of non-constant, operating-point dependent closed-loop damping.

  2. The Photovoltaic Charger Based on Supercapacitor-Lead Acid Battery Hybrid Energy Storage%超级电容-铅酸蓄电池混合储能的太阳能充电器

    Institute of Scientific and Technical Information of China (English)

    林建南; 郭震宁; 刘祖隆

    2011-01-01

    独立型太阳能照明系统存在铅酸蓄电池使用寿命短且弱光条件下系统充电能力不足的缺点,为了改进系统性能,文中设计了基于超级电容-铅酸蓄电池混合储能的太阳能充电器,采用UC3909智能管理芯片实现对铅酸蓄电池具有温度补偿功能的的四阶段充电管理;并利用超级电容器组及升降压转换电路实现弱光充电功能,优化铅酸蓄电池充放电过程,提高系统效率及稳定性。%The stand-alone photovoltaic lighting system has some shortcomings such as lead acid storage battery's short-life and the insufficiency of system charging ability.To improve the system's performance,this paper designs a solar charger based on supercapacit

  3. Design of solar battery charger%太阳电池充电器的设计

    Institute of Scientific and Technical Information of China (English)

    曾翔; 李咏红; 师彦荣

    2011-01-01

    提出了一种太阳电池充电器的设计方案,为用户提供锂电池和镍电池两种充电选择.太阳电池板的输出通过降压开关稳压器LT1777转化成稳定电压为充电模块MAX1501供电.系统整体的控制功能由微处理器PIC16F877A完成.本设计成本低、效率高,有良好的应用前景.%A solar powered battery charger was introduced in this paper, which gave the user the choice of charging either lithium or nickel based batteries. The output of solar panels was converted into a stable voltage to power the charging unit MAX1501 by using the step-down switching regulator LT1777. The control function of the whole system was implemented with the microcontroller PIC16F877A. The design has broad application prospects due to its low cost and high efficiency.

  4. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  5. Optimization of a Fuzzy-Logic-Control-Based Five-Stage Battery Charger Using a Fuzzy-Based Taguchi Method

    Directory of Open Access Journals (Sweden)

    Yeh-Hsiang Ho

    2013-07-01

    Full Text Available Lithium ion (Li-ion batteries have been widely used in various kinds of applications, including consumer electronics, green energy systems and electrical vehicles. Since the charging method has a significant influence on the performance and lifetime of Li-ion batteries, an intelligent charging algorithm which can properly determine the charging current is essential. In this study, a fuzzy-logic-control-based (FLC-based five-stage Li-ion battery charger is proposed. The proposed charger takes the temperature rise and the gradient of temperature rise of battery into account, and adjusts the charging current accordingly. To further improve the performance of the proposed FLC, the fuzzy-based Taguchi method is utilized to determine the optimal output membership functions (MFs. Comparing with the conventional constant current-constant voltage (CC-CV method, the charging time, charging efficiency, average temperature rise and the obtained cycle life of the Li-ion battery are improved by about 58.3%, 1.65%, 26.7% and 59.3%, respectively.

  6. Battery charger for solar cells; Chargeur de batterie pour cellules solaires

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-09-01

    The main drawback of solar energy concerns its availability and its intensity variations due to the changes in the clouds cover. For a maximum availability, a photovoltaic power supplies must be connected to a battery. Such an association requires a particular circuit for the management of the battery charging and of the energy conversion whatever the lighting conditions. This article describes the scheme of such a circuit. (J.S.)

  7. Design of a Charger Without Polarity for Battery Pack%蓄电池共用不分正负极充电器设计

    Institute of Scientific and Technical Information of China (English)

    丁左武

    2011-01-01

    Chargers selling on the market for different voltage electric bikes can't interchange. The charger has been designed, It without polarity for battery pack can be used for +24V, +36V and +48V battery pack in the paper. The paper includes battery terminal positive pole and cathode pole identifying circuit, battery voltage detecting circuit, charger's output voltage regulating circuit and charging state displaying circuit. Through prototype testing, the charger designed can meet the needs.%针对现有的24V、36V和48V电动自行车充电器不能互换使用且充电器正负极必须与蓄电池的正负极相对应的缺点,设计出一种24V、36V和48V蓄电池组共用不分正、负极充电器.文中包括蓄电池正负极识别电路、蓄电池电压数值检测电路、充电器输出电压大小调整电路和不同输出电压状态指示电路.通过样机试验,设计出的充电器能满足使用要求.

  8. 21 CFR 870.3670 - Pacemaker charger.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a rechargeable...

  9. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Stroinski, M.; Giachetti, R. [Multiple Dynamics Corp., Southfield, MI (United States)

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein.

  10. Isolated Wired and Wireless Battery Charger with Integrated Boost Converter for PEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Tolbert, Leon M [ORNL

    2015-01-01

    Integrated charger topologies that have been researched so far are with the dc-dc converters and the charging functionality usually have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. This study features a unique way of combining the wired and wireless charging functionalities with vehicle side boost converter integration and maintaining the isolation to provide the best solution to the plug-in electric vehicle (PEV) users. The new performance of the proposed architecture is presented for wired and wireless charging options at different power levels.

  11. Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve

    Directory of Open Access Journals (Sweden)

    Meng Di Yin

    2016-03-01

    Full Text Available The pulse-based charging method for battery cells has been recognized as a fast and efficient way to overcome the shortcoming of a slow charging time in distributed battery cells, which is regarded as a connection of cells such as the Internet of Things (IoT. The pulse frequency for controlling the battery charge duration is dynamically controlled within a certain range in order to inject the maximum charge current into the battery cells. The optimal frequency is determined in order to minimize battery impedance. The adaptation of the proposed pulse duty and frequency decreases the concentration of the polarization by sensing the runtime characteristics of battery cells so that it guarantees a certain level of safety in charging the distributed battery cells within the operating temperature range of 5–45 °C. The sensed terminal voltage and temperature of battery cells are dynamically monitored while the battery is charging so as to adjust the frequency and duty of the proposed charging pulse method, thereby preventing battery degradation. The evaluation results show that a newly designed charging algorithm for the implemented charger system is about 18.6% faster than the conventional constant-current (CC charging method with the temperature rise within a reasonable range. The implemented charger system, which is based on the proposed dynamic frequency and duty control by considering the cell polarization, charges to about 80% of its maximum capacity in less than 56 min and involves a 13 °C maximum temperature rise without damaging the battery.

  12. A Method for Compensating Customer Voltage Drops due to Nighttime Simultaneous Charging of EVs Utilizing Reactive Power Injection from Battery Chargers

    Science.gov (United States)

    Noda, Taku; Kabasawa, Yuichiro; Fukushima, Kentaro; Nemoto, Koshichi; Uemura, Satoshi

    When we consider the global warming, the reduction of CO2 emission is one of the most important problems which require urgent solutions. One option is to integrate low-CO2-emission generators to the grid as much as possible. Another option is to replace inefficient vehicles based on internal-combustion engines with electric ones (EVs). Due to the latter, we can easily estimate that most consumers will charge EVs' batteries at nighttime. Thus, excessive voltage drops due to the nighttime simultaneous charging are supposed to be a possible future problem. This paper proposes a method for compensating the voltage drops by injecting reactive power from EV battery chargers.

  13. Performance characteristics of a battery charger and state-of-charge indicator

    Science.gov (United States)

    Edwards, D.; Klein, J.

    1984-01-01

    A battery charge/state of charge indicator (BC/SCI) system for electric vehicle use was developed. The original and subsequent objectives for the BC/SCI and the rationale for those objectives are described. The requirements generated from the objectives are listed and a description of the BC/SCI is provided. The power section problem, the tests, and the test results are discussed.

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  15. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  16. Modeling lithium/hybrid-cathode batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gomadam, Parthasarathy M.; Merritt, Don R.; Scott, Erik R.; Schmidt, Craig L.; Skarstad, Paul M. [Medtronic Energy and Component Center, 6700 Shingle Creek Pkwy, Brooklyn Center, MN 55430 (United States); Weidner, John W. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2007-12-06

    This document describes a first-principles-based mathematical model developed to predict the voltage-capacity behavior of batteries having hybrid cathodes comprising a mixture of carbon monofluoride (CF{sub x}) and silver vanadium oxide (SVO). These batteries typically operate at moderate rates of discharge, lasting several years. The model presented here is an accurate tool for design optimization and performance prediction of batteries under current drains that encompass both the application rate and accelerated testing. (author)

  17. Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis

    Science.gov (United States)

    Joos, Stella; Weißhar, Björn; Bessler, Wolfgang G.

    2017-04-01

    Standard photovoltaic battery systems based on AC or DC architectures require power electronics and controllers, including inverters, MPP tracker, and battery charger. Here we investigate an alternative system design based on the parallel connection of a photovoltaic module with battery cells without any intermediate voltage conversion. This approach, for which we use the term passive hybridization, is based on matching the solar cell's and battery cell's respective current/voltage behavior. A battery with flat discharge characteristics can allow to pin the solar cell to its maximum power point (MPP) independently of the external power consumption. At the same time, upon battery full charge, voltage increase will drive the solar cell towards zero current and therefore self-prevent battery overcharge. We present a modeling and simulation analysis of passively hybridizing a 5 kWp PV system with a 5 kWh LFP/graphite lithium-ion battery. Dynamic simulations with 1-min time resolution are carried out for three exemplary summer and winter days using historic weather data and a synthetic single-family household consumer profile. The results demonstrate the feasibility of the system. The passive hybrid allows for high self-sufficiencies of 84.6% in summer and 25.3% in winter, which are only slightly lower than those of a standard system.

  18. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  19. 带电量显示的太阳能充电器设计%Design of Solar Energy Charger with Battery Display

    Institute of Scientific and Technical Information of China (English)

    张阳; 林凡强; 陈虎

    2014-01-01

    本文介绍了带电量显示的太阳能充电器,可实现太阳能充电和直流充电两种充电方式。该设计主要由太阳能电池板、锂电池、充电模块、升压模块、锂电池保护模块和电量显示模块等几个部分组成。把充电器放在一个有阳光的地方,即可以为手持设备提供一个方便的太阳能充电点,使户外充电变得便捷。%The article introduces the design of solar energy charger with battery display which can realize the solar charging and DC charging.The design is mainly composed of solar panels,lithium battery,the charging module,booster,lithium battery protection module and power module display module.If you place the solar panels in somewhere with good sunshine,you can get a convenient solar charging point for hand-held devices,which makes outside charging convenient.

  20. Lithium-Air Batteries with Hybrid Electrolytes.

    Science.gov (United States)

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  1. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term

  2. Design and implementation of Li-Ion battery charger based on LM3S9B92%基于LM3S9892的锂离子电池充电器的设计与实现

    Institute of Scientific and Technical Information of China (English)

    胡林权

    2012-01-01

    设计了一种基于LM3S9892嵌入式微控制器的锂离子电池充电器,并给出了硬件、软件设计。该充电器可以直接以市电作为输入,运用方便。其基本设计理念是根据采集的电池电压和充电电流信息,利用LM3S9892产生适合的PWM信号控制BUCK电源变换器工作,实现充电高效控制。该充电器具有数字化和智能化的特点,便于推广和应用。%One kind of Li-Ion battery charger based on LM3S9B92 is designed in this article, the hardware and software de- sign are illustrated as well. This charger uses commercial power as its input so that it can be utilized conveniently. The basic con- cept of the design is that LM3S9B92 produces the appropriate PWM signals to control the BUCK conventer and achieve charging characteristics highly effective according to the battery voltage and current. This Li-Ion battery charger has digital, intelligent features, so it is easier to be applied and popularized.

  3. Flexible Hybrid Battery/Pseudocapacitor

    Science.gov (United States)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  4. Intelligent uninterruptible power supply system with back-up fuel cell/battery hybrid power source

    Science.gov (United States)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Wang, Hua

    2008-05-01

    This paper presents the development of an intelligent uninterruptible power supply (UPS) system with a hybrid power source that comprises a proton-exchange membrane fuel cell (PEMFC) and a battery. Attention is focused on the architecture of the UPS hybrid system and the data acquisition and control of the PEMFC. Specifically, the hybrid UPS system consists of a low-cost 60-cell 300 W PEMFC stack, a 3-cell lead-acid battery, an active power factor correction ac-dc rectifier, a half-bridge dc-ac inverter, a dc-dc converter, an ac-dc charger and their control units based on a digital signal processor TMS320F240, other integrated circuit chips, and a simple network management protocol adapter. Experimental tests and theoretical studies are conducted. First, the major parameters of the PEMFC are experimentally obtained and evaluated. Then an intelligent control strategy for the PEMFC stack is proposed and implemented. Finally, the performance of the hybrid UPS system is measured and analyzed.

  5. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  6. Frontier battery development for hybrid vehicles.

    Science.gov (United States)

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-04-23

    Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  7. Frontier battery development for hybrid vehicles

    Science.gov (United States)

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  8. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  9. Effects of V2G Reactive Power Compensation on the Component Selection in an EV or PHEV Bidirectional Charger

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2010-01-01

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are becoming a part of the electric grid day by day. Chargers for these vehicles have the ability to make this interaction better for the consumer and for the grid. Vehicle to grid (V2G) power transfer has been under research for more than a decade because of the large energy reserve of an electric vehicle battery and the potential of thousands of these connected to the grid. Rather than discharging the vehicle batteries, reactive power compensation in particular is beneficial for both consumers and for the utility. However, certain adverse effects or requirements of reactive power transfer should be defined before a design stage. To understand the dynamics of this operation, this study investigates the effect of reactive power transfer on the charger system components, especially on the dc-link capacitor and the battery.

  10. Design of Ni-MH battery charger with USB interface based on DS2712%基于DS2712的USB接口镍氢电池充电器设计

    Institute of Scientific and Technical Information of China (English)

    屈宝鹏; 张喜凤; 许燕

    2012-01-01

    随着USB接口的广泛应用,将其作为小功率消费类电子产品的电池充电电源十分便利,而新产品的不断涌现和USB接口标准的不断进步使电池充电器设计面临着新的机遇与挑战.在此回顾了USB接口和镍氢电池的特性,对比了基于线性稳压源和开关电源原理设计的充电器之间的差异,设计了一种以DS2712为充电控制器,使用USB接口作为电源的镍氢电池充电器.在此设计的USB接口镍氢电池充电器经硬件验证,实现了对一节镍氢电池的快速智能充电功能,充电过程稳定可靠.%Along with the wide application of USB interface, which is very convenient to be used as a battery charging power of the low power consumption electronic products, the battery charger design is facing new opportunities and challenges because of the emergence of new products and the progress of the USB interface standards. The characteristics of the USB interface and the Ni-MH batteries are reviewed in this paper. The differenc between the chargers designed on the basis of the principle of the linear regulator and switch power supply was compared. A Ni-MH battery charger with the USB interface as the power supply and DS2712 as the charging controller was designed. The Ni-MH battery charger with USB interface realized the quick smart charging function which was validated by the hardware. Its charging process is stable and reliable.

  11. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Science.gov (United States)

    2010-01-01

    ... disconnect mains power from the device when a battery is removed from a cradle or charging base or, for... Requirements,” append this sentence to the end: “The test equipment must be capable of accounting for crest factor and frequency spectrum in its measurement of the UUT input current.” 4. Test Measurement:...

  12. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing

    Directory of Open Access Journals (Sweden)

    Celso Moraes

    2017-01-01

    Full Text Available Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.

  13. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing.

    Science.gov (United States)

    Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo

    2017-01-10

    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.

  14. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun

    2016-06-06

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.

  15. High Energy Batteries for Hybrid Buses

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing

  16. Hybrid anodes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  17. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density. In order to test the performance of such a system, the experimental validation conducted uses......This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power...... is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...

  18. Buck-Boost/Forward Hybrid Converter for PV Energy Conversion Applications

    OpenAIRE

    2014-01-01

    This paper presents a charger and LED lighting (discharger) hybrid system with a PV array as its power source for electronic sign indicator applications. The charger adopts buck-boost converter which is operated in constant current mode to charge lead-acid battery and with the perturb and observe method to extract maximum power of PV arrays. Their control algorithms are implemented by microcontroller. Moreover, forward converter with active clamp circuit is operated in voltage regulation cond...

  19. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  20. Power supply system for traction batteries

    Energy Technology Data Exchange (ETDEWEB)

    Perkuhn, E. (DETA Akkumulatorenwerk G.m.b.H., Bad Lauterberg (Germany, F.R.))

    1977-12-01

    Battery life is usually shortest in combined systems. The author discusses the causes of battery wear; if the battery is serviced correctly, it is mainly the charging process which is responsible. This process is described and explained. Battery chargers are mentioned where charging voltage and charging current are best adapted to the battery requirements. These battery chargers are also switched off automatically.

  1. Efficient Wireless Charger Deployment for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jehn-Ruey Jiang

    2016-08-01

    Full Text Available A wireless rechargeable sensor network (WRSN consists of sensor nodes that can harvest energy emitted from wireless chargers for refilling their batteries so that the WRSN can operate sustainably. This paper assumes wireless chargers are equipped with directional antennas, and are deployed on grid points of a fixed height to propose two heuristic algorithms solving the following wireless charger deployment optimization (WCDO problem: how to deploy as few as possible chargers to make the WRSN sustainable. Both algorithms model the charging space of chargers as a cone and calculate charging efficiency according power regression expressions complying with the Friis transmission equation. The two algorithms are the greedy cone covering (GCC algorithm and the adaptive cone covering (ACC algorithm. The GCC (respectively, ACC algorithm greedily (respectively, adaptively generates candidate cones to cover as many as possible sensor nodes. Both algorithms then greedily select the fewest number of candidate cones, each of which corresponds to the deployment of a charger, to have approximate solutions to the WCDO problem. We perform experiments, conduct simulations and do analyses for the algorithms to compare them in terms of the time complexity, the number of chargers deployed, and the execution time.

  2. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  3. Nickel-Cadmium Battery Charger.

    Science.gov (United States)

    1981-02-23

    continuity testing. T, . Tempe ratutre control and measurerne it. n. Fiise 4cOntinuity testing. Li U o. Coulometer performance evaluacion . p. Heater...Inc., AFAPf.-Te-72-85, "MaintenruAe,-z Fret, ?atterly Syzem, Model No. EMBCII14C Tiatterv’ Sy ste.ci, Sealed Cell, N’ickel (Cadmium~.1, integral Charge

  4. Hybrid Battery Ultracapacitor System For Human Robotic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a hybrid battery-ultra capacitor storage system that powers human-robotic systems in space missions. Space missions...

  5. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  6. Hybrid battery with bi-directional DC/DC converter

    Directory of Open Access Journals (Sweden)

    DUDRIK Jaroslav

    2010-05-01

    Full Text Available Bi-directional buck-boost DC/DC converterfor hybrid battery is described in this paper. The firstpart of the paper is aimed at concept of hybrid battery;main advance compared to conventional accumulatoris explained there. Control circuit with UC3637 andpower circuit of the converter are described in thesecond part of the paper. Experimental results frommeasuring of converter are mentioned in the last part.

  7. Lead-acid batteries in micro-hybrid vehicles

    Science.gov (United States)

    Albers, Joern; Meissner, Eberhard; Shirazi, Sepehr

    More and more vehicles hit the European automotive market, which comprise some type of micro-hybrid functionality to improve fuel efficiency and reduce emissions. Most carmakers already offer at least one of their vehicles with an optional engine start/stop system, while some other models are sold with micro-hybrid functions implemented by default. But these car concepts show a wide variety in detail-the term "micro-hybrid" may mean a completely different functionality in one vehicle model compared to another. Accordingly, also the battery technologies are not the same. There is a wide variety of batteries from standard flooded and enhanced flooded to AGM which all are claimed to be "best choice" for micro-hybrid applications. A technical comparison of micro-hybrid cars available on the European market has been performed. Different classes of cars with different characteristics have been identified. Depending on the scope and characteristics of micro-hybrid functions, as well as on operational strategies implemented by the vehicle makers, the battery operating duties differ significantly between these classes of vehicles. Additional laboratory investigations have been carried out to develop an understanding of effects observed in batteries operated in micro-hybrid vehicles pursuing different strategies, to identify limitations for applications of different battery technologies.

  8. A Robust Hybrid Zn-Battery with Ultralong Cycle Life.

    Science.gov (United States)

    Li, Bing; Quan, Junye; Loh, Adeline; Chai, Jianwei; Chen, Ye; Tan, Chaoliang; Ge, Xiaoming; Hor, T S Andy; Liu, Zhaolin; Zhang, Hua; Zong, Yun

    2017-01-11

    Advanced batteries with long cycle life and capable of harnessing more energies from multiple electrochemical reactions are both fundamentally interesting and practically attractive. Herein, we report a robust hybrid zinc-battery that makes use of transition-metal-based redox reaction (M-O-OH → M-O, M = Ni and Co) and oxygen reduction reaction (ORR) to deliver more electrochemical energies of comparably higher voltage with much longer cycle life. The hybrid battery was constructed using an integrated electrode of NiCo2O4 nanowire arrays grown on carbon-coated nickel foam, coupled with a zinc plate anode in alkaline electrolyte. Benefitted from the M-O/M-O-OH redox reactions and rich ORR active sites in NiCo2O4, the battery has concurrently exhibited high working voltage (by M-O-OH → M-O) and high energy density (by ORR). The good oxygen evolution reaction (OER) activity of the electrode and the reversible M-O ↔ M-O-OH reactions also enabled smooth recharging of the batteries, leading to excellent cycling stabilities. Impressively, the hybrid batteries maintained highly stable charge-discharge voltage profile under various testing conditions, for example, almost no change was observed over 5000 cycles at a current density of 5 mA cm(-2) after some initial stabilization. With merits of higher working voltage, high energy density, and ultralong cycle life, such hybrid batteries promise high potential for practical applications.

  9. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  10. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  11. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  12. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    Science.gov (United States)

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  13. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  14. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2014-01-01

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  15. Hybrid energy storage: the merging of battery and supercapacitor chemistries.

    Science.gov (United States)

    Dubal, D P; Ayyad, O; Ruiz, V; Gómez-Romero, P

    2015-04-07

    The hybrid approach allows for a reinforcing combination of properties of dissimilar components in synergic combinations. From hybrid materials to hybrid devices the approach offers opportunities to tackle much needed improvements in the performance of energy storage devices. This paper reviews the different approaches and scales of hybrids, materials, electrodes and devices striving to advance along the diagonal of Ragone plots, providing enhanced energy and power densities by combining battery and supercapacitor materials and storage mechanisms. Furthermore, some theoretical aspects are considered regarding the possible hybrid combinations and tactics for the fabrication of optimized final devices. All of it aiming at enhancing the electrochemical performance of energy storage systems.

  16. A high-voltage rechargeable magnesium-sodium hybrid battery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yifei; An, Qinyou; Cheng, Yingwen; Liang, Yanliang; Ren, Yang; Sun, Cheng-Jun; Dong, Hui; Tang, Zhongjia; Li, Guosheng; Yao, Yan

    2017-04-01

    Growing global demand of safe and low-cost energy storage technology triggers strong interests in novel battery concepts beyond state-of-art Li-ion batteries. Here we report a high-voltage rechargeable Mg–Na hybrid battery featuring dendrite-free deposition of Mg anode and Na-intercalation cathode as a low-cost and safe alternative to Li-ion batteries for large-scale energy storage. A prototype device using a Na3V2(PO4)3 cathode, a Mg anode, and a Mg–Na dual salt electrolyte exhibits the highest voltage (2.60 V vs. Mg) and best rate performance (86% capacity retention at 10C rate) among reported hybrid batteries. Synchrotron radiation-based X-ray absorption near edge structure (XANES), atomic-pair distribution function (PDF), and high-resolution X-ray diffraction (HRXRD) studies reveal the chemical environment and structural change of Na3V2(PO4)3 cathode during the Na ion insertion/deinsertion process. XANES study shows a clear reversible shift of vanadium K-edge and HRXRD and PDF studies reveal a reversible two-phase transformation and V–O bond length change during cycling. The energy density of the hybrid cell could be further improved by developing electrolytes with a higher salt concentration and wider electrochemical window. This work represents a significant step forward for practical safe and low-cost hybrid batteries.

  17. Hybrid cathode lithium batteries for implantable medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kaimin; Merritt, Donald R.; Howard, William G.; Schmidt, Craig L.; Skarstad, Paul M. [Medtronic Energy and Components Center, 6700 Shingle Creek Parkway, Minneapolis, MN 55430 (United States)

    2006-11-22

    Lithium batteries with hybrid cathodes of Ag{sub 2}V{sub 4}O{sub 11} and CF{sub x} have been developed that combine the best features of both cathode components. They can offer power density and energy density that are competitive with or superior to other developed battery chemistries, along with the stability and reliability needed for implantable medical applications. More than 100,000 have been used in human implants since introduction in 1999. (author)

  18. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    Science.gov (United States)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  19. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Science.gov (United States)

    2012-06-29

    ... for Battery Chargers and External Power Supplies AGENCY: Office of Energy Efficiency and Renewable... proposed rulemaking to establish energy conservation standards for battery chargers and external power... Standards for Battery Chargers and External Power Supplies'') and provide the appropriate docket number...

  20. Hybrid supercapacitor-battery materials for fast electrochemical charge storage.

    Science.gov (United States)

    Vlad, A; Singh, N; Rolland, J; Melinte, S; Ajayan, P M; Gohy, J-F

    2014-03-07

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles--bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents.

  1. Design on Laptop Battery Charger Based on TOP202Y%基于TOP202Y的笔记本电脑电池充电器设计

    Institute of Scientific and Technical Information of China (English)

    孟武胜; 何潇; 杨阳; 李艳

    2013-01-01

    介绍了美国动力公司(Power)于九十年代中期研制推出的三端PWM/MOSFET二合一集成控制器件TOP Switch系列的一种基于TOP202Y的单片开关电源的主要工作性能及原理,将它与TOP Switch相匹配的高频功率变压器在笔记本电池充电器中加以应用,并对其进行了分析总结.%This paper introduces main working performance and principle of single-chip switch power supply of a series of TOP Switch based on TOP202Y,the three end PWM / MOSFET combo integrated control device,which is developed by the United States power company in 1990s.It links it with TOP Switch matching the high frequency power transformer in the laptop battery charger application,and has carried on the analysis and summary.

  2. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles

    DEFF Research Database (Denmark)

    Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo

    2017-01-01

    This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear....... Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs...

  3. The Cycle Performance of a Hybrid Carbon Battery.

    Science.gov (United States)

    Ahn, Sang-Yong; Kim, Sang-Chai; Jung, Ho-Young

    2016-02-01

    The behavior of a hybrid carbon battery is studied by using the Hg/Hg2SO4 reference electrode. The performance is confirmed in the discharge mode and a short-term cycle test. The capacities of the cell were 76.1, 60.3, 40.5, and 31.7 mAh at discharge currents of 150, 300, 600, and 900 mA, respectively. In the short-term cycle test, the capacity of the cell, 52.3 mAh at the first cycle, continuously increased to 66.7 mAh upon the fifth cycle (cut-off voltage 0.5 V in the deep cycle mode), indicating high feasibility of the hybrid carbon battery as a large-capacity energy storage system.

  4. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  5. Control of second-life hybrid battery energy storage system based on modular boost-multilevel buck converter

    OpenAIRE

    Mukherjee, Nilanjan; Strickland, Dani

    2015-01-01

    To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacit...

  6. Recent progress in battery models for hybrid wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; McGowan, J.G.; Baring-Gould, I.; Stein, W. [Univ. of Massachusetts, Amherst, MA (United States)

    1995-12-31

    This paper summarizes the latest University of Massachusetts work on the analytical modeling and experimental testing of battery component models for hybrid power systems. An extension of the Kinetic Battery Model (KiBaM), developed at the University of Massachusetts is presented. The original model was based on a combination of phenomenological and physical considerations. As described in this paper, the modified KiBaM can now model the sharp increase in voltage near the end of charging, and the sharp drop in voltage when the battery is nearly empty. This model may readily be coupled with a DC load or charging source (such as a DC wind turbine or photovoltaic panels) to determine the corresponding DC bus voltage. For example, it is now an integral part of the DC bus section of the University of Massachusetts HYBRID simulation models. The paper describes the development of the extensions to the KiBaM model and the method of determining the constants from test data. On the experimental/applications side, it includes an illustration of how the constants are obtained from representative data (using a specially developed testing apparatus), and an example of how the model can be used.

  7. Bi-directional charger for swiss2G - Annual report; Bi-directional charger for swiss2G - Jahresbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, M.; Baumann, P.

    2010-11-15

    This short annual report for 2010 for the Swiss Federal Office of Energy (SFOE) takes a look at a bi-directional charger that can be used in intelligent 'Smart Grid' applications. The idea is based on being able to use electric vehicles as a source of electricity to help meet peak demand for mains electricity. The swiss2G project aims to produce an electric car battery-charger that also functions as an inverter to convert the car's DC battery voltage to mains electricity. The project was started in September 2010. The report describes the aims of the project and reports on initial work done in the areas of safety, switching electronics and AC/DC conversion. National and international co-operation is noted and prospects for further work are discussed.

  8. Structure improvement and electrochemical studies of bipolar nickel metal hydride batteries for hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    DENG Chao; SHI Peng-fei

    2006-01-01

    Nickel metal hydride battery in bipolar design offers some advantages for its application as a power storage system for electric and hybrid vehicles. This paper deals with the structure design and electrochemical studies of bipolar Ni/MH batteries for hybrid vehicles. An improvement is applied in bipolar battery design,and such bipolar Ni/MH batteries with 5 sub-cells have been assembled and investigated. Testing results show that bipolar batteries with improved structure have better compression tolerance and cycle performance than conventional ones. In addition, the improved bipolar batteries display excellent large current discharge ability and high power density. As simulating working conditions for hybrid vehicles, the batteries show good stability during pulse cycles, which verifies the possibility of being used as a power storage device on hybrid vehicles.

  9. Prospect of MH-Ni Batteries Development

    Institute of Scientific and Technical Information of China (English)

    Xu Shaoping; Xing Zhiqiang; Liang Wanlong; Ma Yijun

    2004-01-01

    The development trend and promising application prospects of high-power MH-Ni battery were reviewed by studying and comparing the current high-power batteries research area.High-power MH-Ni batiery has good performlife with 500 ~ 1000 times, abundant material resource, especially abundant rare earth resource in China, high-rate discharging, rapid charging, good safety as well as no pollution, etc., which is regarded as the most promising storage battery for electric vehicles.The performance of high power MH-Ni battery can be brought into play fully and ensure electric vehicles performance if it is equipped with appropriate chargers, controlling system and electric motors.Facing opportunities and challenges, MH-Ni battery has promising application prospects on hybrid electric automobile, electric bicycle and a variety of small sized electric vehicles by improving its technology constantly and developing market actively.

  10. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  11. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lee Kenneth [Idaho National Laboratory

    2017-03-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  12. A magnesium–sodium hybrid battery with high operating voltage

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Li, Yifei; Liang, Yanliang; Li, Guosheng; Sun, Cheng-Jun; Ren, Yang; Lu, Yuhao; Yao, Yan

    2016-06-10

    We report a high performance magnesium-sodium hybrid battery utilizing a magnesium-sodium dual-salt electrolyte, a magnesium anode, and a Berlin green cathode. The cell delivers an average discharge voltage of 2.2 V and a reversible capacity of 143 mAh g-1. We also demonstrate the cell with an energy density of 135 Wh kg-1 and a high power density of up to 1.67 kW kg-1.

  13. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass....... This does not prevent deep discharges of the battery, which are critical to the lifetime of the battery. In this paper, the ratings of the battery and ultracapacitors are investigated. Comparisons of the system volume, the system mass, and the lifetime of the battery due to the rating of the energy storage...... devices are presented. It is concluded that not only should the energy storage devices of a FCHEV be sized by their power and energy requirements, but the battery lifetime should also be considered. Two energy-management strategies, which sufficiently divide the load power between the fuel cell stack...

  14. Method for Load Sharing and Power Management in a Hybrid PV/Battery Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2016-01-01

    This paper presents a decentralized load sharing and power management method for an islanded microgrid composed of PV units, battery units and hybrid PV/battery units. The proposed method performs all the necessary tasks such as load sharing among the units, battery charging and discharging and PV...

  15. Intrinsic borohydride fuel cell/battery hybrid power sources

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jian; Fang, Bin; Wang, Chunsheng; Currie, Kenneth [Center for Manufacturing Research, Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 (United States)

    2006-10-27

    The electrochemical oxidation behaviors of NaBH{sub 4} on Zn, Zn-MH, and MH (metal-hydride) electrodes were investigated, and an intrinsic direct borohydride fuel cell (DBFC)/battery hybrid power source using MH (or Zn-MH) as the anode and MnO{sub 2} as the cathode was tested. Borohydride cannot be effectively oxidized on Zn electrodes at the Zn oxidation potential because of the poor electrocatalytic ability of Zn for borohydride oxidation and the high overpotential, even though borohydride has the same oxidation potential of Zn in an alkaline solution. The borohydride can be electrochemically oxidized on Ni and MH electrodes through a 4e reaction at a high overpotential. Simply adding borohydride into an alkaline electrolyte of a Zn/air or MH/air battery can greatly increase the capacity, while an intrinsic DBFC/MH(or Zn)-MnO{sub 2} battery can deliver a higher peak power than regular DBFCs. (author)

  16. Design of solar lamp and portable charger system based on Li battery%基于锂电池的太阳能灯与移动电源系统设计

    Institute of Scientific and Technical Information of China (English)

    陶俊豪; 张志鸣; 王殿程

    2014-01-01

    In order to realize the outdoor lighting and USB charging requirements,a design scheme of solar lamps and por-table charger based on lithium batteries is presented in this paper. The overall plan and the detailed design scheme are put for-ward. The circuit design and system testing are completed. The system consists of four modules:solar charging module,USB in-terface charging module,high brightness LED driver module and power supply outputting module through USB interface. In addi-tion to the USB interface charging module using linear power chip,other modules are designed with switching power supply chips so as to reduce the size of the system and improve the efficiency. The system passed the test exam. The actual test results show that the system is working properly,its output is accurate,its circuit reaches the design requirements,and it can be popularized.%为了实现野外照明和USB充电的需求,提出了一种基于锂电池的太阳能灯和移动电源系统的设计方案,分别给出了总体方案和详细设计方案,并完成了系统的电路设计和测试。系统包含四个模块电路:太阳能充电模块、USB接口充电模块、高亮度LED驱动模块以及USB接口供电输出模块,除USB接口充电模块使用线性电源芯片外,其他模块均采用开关电源芯片设计,以提高效率,缩小体积。系统通过了实际的硬件测试,测试结果表明,该系统工作正常、输出准确,达到了设计要求,可以推广使用。

  17. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    OpenAIRE

    Pinto, Claudio; Barreras, Jorge Varela; Castro, Ricardo; Schaltz, Erik; Andreasen, Søren Juhl; Araujo, Rui Esteves

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operatin...

  18. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  19. Simulation of hybrid vehicle propulsion with an advanced battery model

    Energy Technology Data Exchange (ETDEWEB)

    Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)

    2011-07-01

    In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect

  20. Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guang Ya; Træholt, Chresten

    2012-01-01

    An increased research on electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) deals with their flexible use in electric power grids. Several research projects on smart grids and electric mobility are now looking into realistic models representing the behavior of an EV during charging......, including nonlinearities. In this work, modeling, simulation and testing of the demand profile of a battery-EV are conducted. Realistic work conditions for a lithium-ion EV battery and battery charger are considered as the base for the modeling. Simulation results show that EV charging generates different...

  1. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  2. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  3. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects.

    Science.gov (United States)

    Zuo, Wenhua; Li, Ruizhi; Zhou, Cheng; Li, Yuanyuan; Xia, Jianlong; Liu, Jinping

    2017-07-01

    Design and fabrication of electrochemical energy storage systems with both high energy and power densities as well as long cycling life is of great importance. As one of these systems, Battery-supercapacitor hybrid device (BSH) is typically constructed with a high-capacity battery-type electrode and a high-rate capacitive electrode, which has attracted enormous attention due to its potential applications in future electric vehicles, smart electric grids, and even miniaturized electronic/optoelectronic devices, etc. With proper design, BSH will provide unique advantages such as high performance, cheapness, safety, and environmental friendliness. This review first addresses the fundamental scientific principle, structure, and possible classification of BSHs, and then reviews the recent advances on various existing and emerging BSHs such as Li-/Na-ion BSHs, acidic/alkaline BSHs, BSH with redox electrolytes, and BSH with pseudocapacitive electrode, with the focus on materials and electrochemical performances. Furthermore, recent progresses in BSH devices with specific functionalities of flexibility and transparency, etc. will be highlighted. Finally, the future developing trends and directions as well as the challenges will also be discussed; especially, two conceptual BSHs with aqueous high voltage window and integrated 3D electrode/electrolyte architecture will be proposed.

  4. The UltraBattery-A new battery design for a new beginning in hybrid electric vehicle energy storage

    Science.gov (United States)

    Cooper, A.; Furakawa, J.; Lam, L.; Kellaway, M.

    The UltraBattery, developed by CSIRO Energy Technology in Australia, is a hybrid energy storage device which combines an asymmetric super-capacitor and a lead-acid battery in single unit cells. This takes the best from both technologies without the need for extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The initial performance of the prototype UltraBatteries was evaluated according to the US FreedomCAR targets and was shown to meet or exceed these in terms of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist hybrid electric vehicles (HEVs). Other laboratory cycling tests showed a fourfold improvement over previous state-of-the-art lead-acid batteries under the RHOLAB test profile and better life than commercial nickel/metal hydride (NiMH) cells used in a Honda Insight when tested under the EUCAR HEV profile. As a result of this work, a set of twelve 12 V modules was built by The Furukawa Battery Co., Ltd. in Japan and were fitted into a Honda Insight instead of the NiMH battery by Provector Ltd. The battery pack was fitted with full monitoring and control capabilities and the car was tested at Millbrook Proving Ground under a General Motors road test simulation cycle for an initial target of 50 000 miles which was extended to 100 000 miles. This was completed on 15th January 2008 without any battery problems. Furthermore, the whole test was completed without the need for any conditioning or equalisation of the battery pack.

  5. Improved battery charger for electric vehicles

    Science.gov (United States)

    Rippel, W. E.

    1981-01-01

    Polyphase version of single-phase "boost chopper" significantly reduces ripple and electromagnetic interference (EMI). Drive circuit of n-phase boost chopper incorporates n-phase duty-cycle generator; inductor, transistor, and diode compose chopper which can run on single-phase or three-phase alternating current or on direct current. Device retains compactness and power factors approaching unity, while improving efficiency.

  6. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    Directory of Open Access Journals (Sweden)

    Cong Hou

    2014-08-01

    Full Text Available This paper proposes a total cost of ownership (TCO model for battery sizing of plug-in hybrid electric vehicles (PHEVs. The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal battery size for PHEVs in Beijing is 6–8 kWh. Several additional scenarios are also analyzed: (1 10% increase in battery price or discount rate leads to an optimal battery size of 6 kWh, and 10% increase in fuel price shifts the optimal battery size to 8 kWh; (2 the longer and more dispersive daily range distribution in the U.S. increases the optimal battery size to 14 kWh; (3 the subsidy in China results in an optimal battery size of 13 kWh, while that in the U.S. results in 17 kWh, and a fuel savings rate based subsidy policy is innovatively proposed; (4 the optimal battery size with Li4Ti5O12 batteries is 2 kWh, but the TCO of Li4Ti5O12 batteries is higher than that of LiFePO4 batteries.

  7. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.;

    2015-01-01

    Hybrid photovoltaic (PV) -battery-hydropower microgrids can be considered to enhance electricity accessibility and availability in remote areas. However, the coexistence of different renewable energy sources with different inertias and control strategies may affect system stability. In this paper......, a hierarchical controller for hybrid PV-battery-hydropower microgrid is proposed in order to achieve the parallel operation of hydropower and PV-battery system with different rates, and to guarantee power sharing performance among PV voltage controlled inverters, while the required power to hydropower...... is derived to analyze the system stability of the hybrid microgrid. The simulation results show system frequency and voltage stability for a hybrid microgrid demonstration which includes 2 MWp PV installations, a 15.2 MWh battery system, and a 12.8 MVA hydropower plant. Experimental results on a small...

  8. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  9. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  10. MATHEMATICAL MODEL OF HYBRID ELECTRIC VEHICLE HIGH-VOLTAGE BATTERY IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2010-01-01

    Full Text Available The mathematical model of hybrid electric vehicle NiMH high-voltage battery is obtained. This model allows to explore the interaction of vehicle tractive electric drive and high-voltage battery at the electric motive power motion and in the process of recuperation of braking kinetic energy.

  11. OPTIMIZATION BALANCING DEVICES LI-ION BATTERIES FOR HYBRID AND ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    R. P. Sharkovich

    2016-01-01

    Full Text Available The article discusses and proves the feasibility of using the proposed system balancing Li-ion battery consisting of a plurality of series-connected cells, applied to hybrid and electric transportation. The main objective of the system is to increase the performance and operating time of Li-ion batteries.

  12. A Hybrid Spline Metamodel for Photovoltaic/Wind/Battery Energy Systems

    OpenAIRE

    ZAIBI, Malek; LAYADI, Toufik Madani; Champenois, Gérard; ROBOAM, xavier; Sareni, Bruno; Belhadj, Jamel

    2015-01-01

    This paper proposes a metamodel design for a Photovoltaic/Wind/Battery Energy System. The modeling of a hybrid PV/wind generator coupled with two kinds of storage i.e. electric (battery) and hydraulic (tanks) devices is investigated. A metamodel is carried out by hybrid spline interpolation to solve the relationships between several design variables i.e. the design parameters of different subsystems and their associate response variables i.e. system indicators performance. The developed model...

  13. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    OpenAIRE

    Farouk Odeim; Jürgen Roes; Angelika Heinzel

    2015-01-01

    In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, ...

  14. Energy management strategy for a parallel hybrid electric vehicle equipped with a battery/ultra-capacitor hybrid energy storage system

    Institute of Scientific and Technical Information of China (English)

    Jun-yi LIANG; Jian-long ZHANG; Xi ZHANG; Shi-fei YUAN; Cheng-liang YIN

    2013-01-01

    To solve the low power density issue of hybrid electric vehicular batteries,a combination of batteries and ultracapacitors(UCs)could be a solution.The high power density feature of UCs can improve the performance of battery/UC hybrid energy storage systems(HESSs).This paper presents a parallel hybrid electric vehicle(HEV)equipped with an internal combustion engine and an HESS.An advanced energy management strategy(EMS),mainly based on fuzzy logic,is proposed to improve the fuel economy of the HEV and the endurance of the HESS.The EMS is capable of determining the ideal distribution of output power among the internal combustion engine,battery,and UC according to the propelling power or regenerative braking power of the vehicle.To validate the effectiveness of the EMS,numerical simulation and experimental validations are carried out.The results indicate that EMS can effectively control the power sources to work within their respective efficient areas.The battery load can be mitigated and prolonged battery life can be expected.The electrical energy consumption in the HESS is reduced by 3.91%compared with that in the battery only system.Fuel consumption of the HEV is reduced by 24.3% compared with that of the same class conventional vehicles under Economic Commission of Europe driving cycle.

  15. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...... storage devices are presented. It is concluded, that by sufficient rating of the battery or ultracapacitors, an appropriate balance between system volume, mass, efficiency, and battery lifetime is achievable....

  16. Efficiency Test Method for Electric Vehicle Chargers

    DEFF Research Database (Denmark)

    Kieldsen, Andreas; Thingvad, Andreas; Martinenas, Sergejus

    2016-01-01

    This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority a...

  17. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  18. Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft

    Science.gov (United States)

    Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae

    2017-06-01

    In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.

  19. Development of Novel Bipolar Nickel/Metal Hydride Batteries for Hybrid Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    邓超; 史鹏飞; 张森

    2005-01-01

    This paper deals with the design and development of bipolar Ni/MH batteries. After optimizing the parameters of bipolar plates by adjusting electrode thickness and modifying the capacity ratio of two adjacent electrodes of a single cell, some bipolar Ni/MH stacks with a voltage of 6 V were assembled and examined. Electrochemical testing results showed that the bipolar battery has excellent high rate discharge and recharge characteristics, satisfying pulse discharge performance even in a low state of charge (SOC). Moreover, the battery showed good stability during pulse cycles as simulating hybrid electric vehicle working conditions. It would be a promising alternative for power storage system in hybrid electxic vehicles.

  20. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  1. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  2. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  3. 46 CFR 111.15-5 - Battery installation.

    Science.gov (United States)

    2010-10-01

    ... must be as close as possible to the engine or engines. (c) Small batteries. Small size battery... 46 Shipping 4 2010-10-01 2010-10-01 false Battery installation. 111.15-5 Section 111.15-5 Shipping... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-5 Battery...

  4. 46 CFR 111.15-2 - Battery construction.

    Science.gov (United States)

    2010-10-01

    ... that of a similar size lead-acid battery under similar charging condition. (d) Batteries must be... 46 Shipping 4 2010-10-01 2010-10-01 false Battery construction. 111.15-2 Section 111.15-2 Shipping... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-2 Battery...

  5. A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Wen-An Yang

    2016-01-01

    Full Text Available Lithium-ion battery is a core component of many systems such as satellite, spacecraft, and electric vehicles and its failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Remaining useful life (RUL prediction of lithium-ion batteries before the future failure event is extremely crucial for proactive maintenance/safety actions. This study proposes a hybrid prognostic approach that can predict the RUL of degraded lithium-ion batteries using physical laws and data-driven modeling simultaneously. In this hybrid prognostic approach, the relevant vectors obtained with the selective kernel ensemble-based relevance vector machine (RVM learning algorithm are fitted to the physical degradation model, which is then extrapolated to failure threshold for estimating the RUL of the lithium-ion battery of interest. The experimental results indicated that the proposed hybrid prognostic approach can accurately predict the RUL of degraded lithium-ion batteries. Empirical comparisons show that the proposed hybrid prognostic approach using the selective kernel ensemble-based RVM learning algorithm performs better than the hybrid prognostic approaches using the popular learning algorithms of feedforward artificial neural networks (ANNs like the conventional backpropagation (BP algorithm and support vector machines (SVMs. In addition, an investigation is also conducted to identify the effects of RVM learning algorithm on the proposed hybrid prognostic approach.

  6. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System

    Science.gov (United States)

    Chong, Lee Wai; Wong, Yee Wan; Rajkumar, Rajprasad Kumar; Isa, Dino

    2016-11-01

    This paper proposes an optimal control strategy for a standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System to prolong battery lifespan by reducing the dynamic stress and peak current demand of the battery. Unlike the conventional methods which only use either filtration based controller (FBC) or fuzzy logic controller (FLC), the proposed control strategy comprises of a low-pass filter (LPF) and FLC. Firstly, LPF removes the high dynamic components from the battery demand. FLC minimizes the battery peak current demand while constantly considering the state-of-charge of the supercapacitor. Particle swarm optimization (PSO) algorithm optimizes the membership functions of the FLC to achieve optimal battery peak current reduction. The proposed system is compared to the conventional system with battery-only storage and the systems with conventional control strategies (Rule Based Controller and FBC). The proposed system reduces the battery peak current, battery peak power, maximum absolute value of the rate of change of power and average absolute value of the rate of change of power by 16.05%, 15.19%, 77.01%, and 95.59%, respectively as compared to the conventional system with battery-only storage. Moreover, he proposed system increases the level of supercapacitor utilization up to 687.122% in comparison to the conventional control strategies.

  7. Trimode Power Converter optimizes PV, diesel and battery energy sources

    Science.gov (United States)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  8. Development of ultra-battery for hybrid-electric vehicle applications

    Science.gov (United States)

    Lam, L. T.; Louey, R.

    Transport is one of the largest sources of human-induced greenhouse gas emissions and fossil-fuels consumption. This has lead to a growing demand for hybrid-electric vehicles (HEVs) to reduce air pollution and consumption of fossil fuels. CSIRO Energy Technology has developed the ultra-battery, a new technology that will reduce the cost and boost the performance of batteries in HEVs. The ultra-battery is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cell, taking the best from both technologies without the need for extra electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer in discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The ultra-battery has been subjected to a variety of tests. To date, results show that the discharge and charge power of the ultra-battery is ∼50% higher and its cycle-life is at least three times longer than that of the conventional lead-acid counterpart. Furthermore, the ultra-battery is able to be produced as either flooded-electrolyte or valve-regulated designs in the existing lead-acid factory and also able to reconfigure for a variety of applications, such as conventional automobile, power tool, forklift, high-power uninterruptible power supply and remote-area power supply. The prototype ultra-batteries have been constructed and are under laboratory evaluation and field trial. The success of the ultra-battery will obviously make HEVs more affordable and widespread. This, in turn, will reduce greenhouse gas emissions in the urban environment and the consumption of limited supplies of fossil fuels.

  9. High-efficiency electrical charger for nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M., E-mail: malonso@cenim.csic.es [National Centre for Metallurgical Research (CENIM-CSIC) (Spain); Huang, C. H. [Yuanpei University, Department of Environmental Engineering and Health (China)

    2015-08-15

    An electrical charger, based on a point-to-plate DC corona discharge, for the high-efficiency charging of aerosol particles with diameter of a few nanometers, has been designed, constructed, and evaluated. The discharge takes place between a needle and a perforated plate, and the results presented here have shown that this specific design allows reduction of electrostatic losses of charged particles within the charger in comparison with other typical designs. Besides, the small effective volume of the charger leads to a relatively small diffusion loss of particles. As a consequence of the reduced electrostatic and diffusion losses, the extrinsic charging efficiency attainable is higher than in similar devices.

  10. Efficiency Test Method for Electric Vehicle Chargers

    DEFF Research Database (Denmark)

    Kieldsen, Andreas; Thingvad, Andreas; Martinenas, Sergejus

    2016-01-01

    This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority...... different vehicles. A unified method for testing the efficiency of the charger in EVs, without direct access to the component, is presented. The method is validated through extensive tests of the models Renault Zoe, Nissan LEAF and Peugeot iOn. The results show a loss between 15 % and 40 %, which is far...

  11. Characteristics and thermal behavior analysis of lithium-ion batteries for application in hybrid locomotives

    Science.gov (United States)

    Chatterjee, Krishnashis

    The locomotive industry accounts for 2.5 % of the total fuel consumption in the US. Thus the necessity for reducing fuel consumption and emissions led to the development of the concept of hybrid locomotive which is dual powered by the diesel engine and electric motors. But the energy dissipated in braking such a locomotive in a year is enough to power over 9100 average US households over the same period of time. Recovering this energy using regenerative braking system and storing it in a electric battery is of great interest among researchers for improving overall efficiency and reducing consumption of fuels. In the present study, LiFePO4 batteries, a type of the state-of-art lithium-ion batteries, have been tested under different environmental and load conditions. Environmental temperatures were varied to analyze their effects on the charging and discharging patterns of the battery by using the CADEX battery analyzer in order to find the temperature range for optimum battery performance. The fluctuations of temperature of the battery surface were monitored along the length of the tests, using Infra-Red imaging and thermocouple probes at different points on the battery surface. Both battery performance characteristics and the variation of the battery surface temperature were also recorded for different load cycles in order to get a comprehensive picture of the heat generation and its effect on the behavior of the battery under different load conditions. Lastly a practical Load Cycle analysis of the battery has been performed which gave a picture of the heat generated by the battery and also the performance characteristics as it is subjected to a practical Load Cycle.

  12. Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck Dimensionnement pile et batterie d’un camion hybride à pile à combustible de distribution

    OpenAIRE

    Tazelaar E.; Shen Y; Veenhuizen P.A.; Hofman T.; van den Bosch P.P.J.

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS) is used for determining the control setpoint for the fuel cell and battery system. It closely appr...

  13. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Advani, Suresh G.

    2013-01-01

    The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control...... strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical...... choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen...

  14. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2010-02-01

    With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

  16. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    predictive control (MPC)-based algorithm for battery management in a hybrid wind/PV/battery system to suppress the short-term power fluctuation on the ‘minute’ scale. A case study with data collected from a practical hybrid system setup is used to demonstrate the effectiveness of the proposed algorithm......A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...... together with a Monte Carlo simulation-based sensitivity analysis. In addition to illustrating the complementarity between the fluctuations of wind power and PV power, the results prove the proposed MPC algorithm is effective in fluctuation suppression but sensitive to factors such as forecast accuracy...

  17. Compliant glass-polymer hybrid single ion-conducting electrolytes for lithium batteries.

    Science.gov (United States)

    Villaluenga, Irune; Wujcik, Kevin H; Tong, Wei; Devaux, Didier; Wong, Dominica H C; DeSimone, Joseph M; Balsara, Nitash P

    2016-01-05

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10(-4) S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li(+)/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.

  18. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  19. 2011 Honda CR-Z 2982 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Tyler [Intertek Testing Services NA, Phoenix, AZ (United States). Center for Evaluation of Clean Energy Technology (CECET); Wishart, Jeffrey [Intertek Testing Services NA, Phoenix, AZ (United States). Center for Evaluation of Clean Energy Technology (CECET); Shirk, Matthew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  20. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  1. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  2. A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc

    Science.gov (United States)

    Lu, Ke; Song, Bin; Zhang, Jintao; Ma, Houyi

    2016-07-01

    Rechargeable aqueous batteries are very attractive as a promising alternative energy storage system, although their reversible capacity is typically limited. A new rechargeable Na-Zn hybrid aqueous battery with nickel hexacyanoferrate (NiHCF) cathode and the nanostructured zinc anode is fabricated. The rational combination of two materials with mild aqueous electrolyte renders the devices with an average operating voltage close to 1.5 V, higher specific capacity of 76.2 mAh g-1, and a good cycling stability with 81% capacity retention for 1000 cycles. These remarkable features can provide guidance for the development of rechargeable batteries from the naturally abundant electrode materials with neutral aqueous electrolytes.

  3. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Vasquez, Juan Carlos; Guerrero, Josep M.;

    2014-01-01

    analysis is presented based on small signal models of the hybrid PV-HP microgrid, including 2 MWp PV station, 15.2 MWh battery storage system, and 12.8 MVA hydropower plant. Simulation results of the microgrid and experimental results on a scaled-down laboratory prototype verify the effectiveness......Hybrid photovolvaic battery-hydropower microgrids can increase electricity accessibility and availability in remote areas. In those microgrids with grid-connected and islanded modes capabilities, seamless transition between both modes is needed as well. However, the different resources...

  4. Rechargeable Mg battery cathode TiS3 with d-p orbital hybridized electronic structures

    Science.gov (United States)

    Taniguchi, Kouji; Gu, Yunpeng; Katsura, Yukari; Yoshino, Takafumi; Takagi, Hidenori

    2016-01-01

    Rechargeable performance is realized in Mg batteries using a TiS3 cathode without the nanometer-scale downsizing of electrode particles. The specific capacity is about 80 mAh/g for the first 50 cycles at room temperature. This observed specific capacity is comparable to that of the prototype cathode for Mg batteries. First-principles calculation indicates that TiS3 is a semiconductor with d-p orbital hybridized electronic structures around the Fermi level. The reversible electrode performance is likely assisted by the delocalized electronic distribution over metal-ligand units through d-p orbital hybridization.

  5. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.

    Science.gov (United States)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M

    2016-01-28

    A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.

  6. Toward the design of high voltage magnesium–lithium hybrid batteries using dual-salt electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yingwen; Choi, Daiwon; Han, Kee Sung; Mueller, Karl T.; Zhang, Ji-Guang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2016-02-26

    We report a design of high voltage magnesium-lithium (Mg-Li) hybrid batteries through rational controls of the electrolyte chemistry, electrode materials and cell architectures. Prototype devices with LiFePO4 and LiMn2O4 cathodes exhibit voltages higher than 2.5 V (vs. Mg) and a high specific energy density of 246 Wh/kg under conditions that are amenable for practical applications. The successful demonstrations reported here could be a significant step forward for practical hybrid batteries.

  7. Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery

    Science.gov (United States)

    Baek, Seung-Wook; Honma, Itaru; Kim, Jedeok; Rangappa, Dinesh

    2017-03-01

    Solidified lithium conducting hybrid electrolyte is designed and processed to realize the large scale and flexible solid state Li battery satisfying energy capability and safety issue. This paper presents a solidified inorganic-organic hybrid electrolyte to obtain commercially-acceptable ionic conductivity and a stable electrochemical window to prevent electrolyte decomposition in Li ion batteries. Li3PO4 coated with solidified [Li][EMI][TFSI] ionic liquid is developed as hybrid electrolyte material. The material has high electrochemical stability on a high-voltage cathode and metallic anode, and the solid electrolyte has high ionic conductivity. This Li3PO4-[Li][EMI][TFSI] hybrid electrolyte has the advantages of long-term operation, safety and flexibility, so it may be suitable for use in high-voltage cathodes and Li anode.

  8. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  9. Environmental impact analysis of electric and hybrid vehicle batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-16

    This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

  10. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the

  11. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids

    OpenAIRE

    Jing Li; Wei Wei; Ji Xiang

    2012-01-01

    In this paper, we develop a simple algorithm to determine the required number of generating units of wind-turbine generator and photovoltaic array, and the associated storage capacity for stand-alone hybrid microgrid. The algorithm is based on the observation that the state of charge of battery should be periodically invariant. The optimal sizing of hybrid microgrid is given in the sense that the life cycle cost of system is minimized while the given load power demand can be satisfied without...

  12. Optimal sizing of battery storage for stand-alone hybrid (photo-voltaic + diesel) power systems

    Science.gov (United States)

    Shaahid, S. M.; Elhadidy, M. A.

    2005-09-01

    An important element of hybrid photo- voltaic(PV) + diesel sytem is battery storage. Size of battery storage plays a role in optimum operation of the hybrid system. Emphasis needs to be placed on this issue. In this perspective, hourly solar radiation data, for the period 1986 93 recorded at Dhahran, Saudi Arabia, have been analyzed to investigate the optimum size of battery storage capacity for hybrid (PV + diesel) power systems. Various sizing configurations have been simulated. The monthly average daily values of solar global radiation range from 3.61 to 7.96kWh/m2. As a case study, hybrid systems considered in the present analysis consist of 225m2 PV array area (panels/modules) supplemented with battery storage unit and diesel backup generators (to meet the load requirements of a typical residential building with annual electrical energy demand of 35,200kWh). The monthly average energy generated from the aforementioned hybrid system for different scenarios has been presented. More importantly, the study explores the influence of variation of battery storage capacity on hybrid power generation. The results exhibit a trade-off between size of the storage capacity and diesel power to be generated to cope with annual load distribution. Concurrently, the energy to be generated from the diesel generator and the number of operational hours of the diesel system to meet the load demand have been also addressed.The study shows that for optimum operation of diesel system, storage capacity equivalent to 12 18h of maximum monthly average hourly demand need to be used. It has been found that in the absence of battery bank, ˜58% of the load needs to be provided by the diesel system. However, use of 12h of battery storage (autonomy) reduces diesel energy generation by ˜49% and the number of hours of operation of the diesel system get reduced by about ˜82%. The findings of this study can be employed as a tool for sizing of battery storage for PV/diesel systems for other

  13. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Tazelaar, Edwin; Shen, Y.; Veenhuizen, Bram; Hofman, T.; Bosch, P. van den

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  14. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available is required for optimising the sizing and operational strategy of the PV-diesel-battery hybrid system than is required for single-source systems. Various models are available on the market and in research groups but the challenge is to customise these to suit...

  15. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module constru

  16. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module constru

  17. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Y. Shen; P. van den Bosch; Edwin Tazelaar; Bram Veenhuizen; T. Hofman

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  18. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  19. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Mourad, S.; Saakes, M.; Kluiters, C.E.; Schmal, D.; Have, P. ten

    1998-01-01

    A 80V bipolar lead-acid battery was constructed and tested using Hybrid Electric Vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7kW, equal to 1/5 of the total power profile required for the HEV studied, were run succesfully. Model calculations showed that the constructed 80V module,

  20. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  1. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    Science.gov (United States)

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  2. Fuzzy Energy Management for a Catenary-Battery-Ultracapacitor based Hybrid Tramway

    Science.gov (United States)

    Jibin, Yang; Jiye, Zhang; Pengyun, Song

    2017-05-01

    In this paper, an energy management strategy (EMS) based on fuzzy logic control for a catenary-battery-ultracapacitor powered hybrid modern tramway was presented. The fuzzy logic controller for the catenary zone and catenary-less zone was respectively designed by analyzing the structure and working mode of the hybrid system, then an energy management strategy based on double fuzzy logic control was proposed to enhance the fuel economy. The hybrid modern tramway simulation model was developed based on MATLAB/Simulink environment. The simulation results show that the proposed EMS can satisfy the demand of dynamic performance of the tramway and achieve the power distribution reasonably between the each power source.

  3. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  4. Advanced on-board electric vehicle charger. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-31

    The design and development of an on-board charger power module for use in electric vehicles is described. The module operates at 20KHz in a series resonant, half bridge configuration. Circuit design trade-offs, module performance, and solutions to the problems of acoustic noise, maintaining high power factor, circuit protection and operating reliability are discussed. The power module operates from a single phase, 240 V, 50/60 Hz utility line. Average power factor is 0.90; efficiency at maximum power output is 86%. The module is rated to charge a bank consisting of 20 Exide EV-106 batteries (60 cells) to an end voltage of 2.42 V/cell. Physically, the module weighs less than 17 Kg. Projected manufacturing cost at the thousand unit level is $394.00 (1978 dollars).

  5. Analysis and modelling of the use of a nickel/metal hydride battery in the Autarkic Hybrid; Analyse und Modellierung des Einsatzes einer Nickel/Metallhydrid-Batterie im Autarken Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Angloher, J.; Wagner, U.

    1999-07-01

    The optimal operation of traction batteries in hybrid drive concepts requires a battery analysis and modelling in order to prepare the vehicle integration of the battery. In order to use a Ni/MH battery in the Autarkic Hybrid a battery management was set-up in the frame of the special research field 365, whose development depends on the measuring-technical analysis of the energetic battery performance and on a new method to determine the load condition. The contribution describes how neuronal networks can be used by extending conventional methods in order to better determine the actual load condition of the battery. (orig.) [German] Der optimale Betrieb von Traktionsbatterien in hybriden Antriebskonzepten erfordert die vorherige Batterieanalyse und -modellierung, um die Fahrzeugintegration der Batterie vorzubereiten. Fuer den Einsatz einer Ni/MH-Batterie im Autarken Hybrid wurde im Rahmen des Sonderforschungsbereichs 365 ein Batteriemanagement aufgebaut, dessen Entwicklung auf der messtechnischen Analyse des energetischen Batterieverhaltens und einem neuen Verfahren der Ladezustandsbestimmung basiert. Der Beitrag beschreibt, wie in Erweiterung herkoemmlicher Methoden neuronale Netze verwendet werden koennen, um den aktuellen Ladezustand der Batterie praeziser zu bestimmen. (orig.)

  6. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J

    1992-11-01

    This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

  7. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  8. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  9. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  10. Development of micro solar charger with blocking relay; Gyakuryu boshi relay wo oyoshita kogata solar judenki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nanno, I.; Matsushita, Y. Oka, S. [Omron Corp., Kyoto (Japan)

    1997-11-25

    Heavy-current tiny-scale solar charger is tentatively built, equipped with a function of preventing overcharge and countercurrent in case of charging storage batteries using solar cells. Incorporated into this solar charger are a countercurrent prevention relay system, a low loss current detection system, and a MOSFET parallel connection, which allow the solar charger to be designed small in size in the presence of an increase in heat due to circuit loss. In the countercurrent prevention relay system, the countercurrent prevention diode is bypassed by MOSFETs when too large a current is generated. In the low loss current detection system, currents are detected by use of the ON resistance of the MOSFETs for the prevention of overcharge. In the MOSFET parallel connection, MOSFETs are connected in parallel for a decrease in the ON resistance. The tentatively built charger is then subjected to a performance evaluation test outside the building, and the test is carried out by measuring the temperatures of the MOSFETs and the air. As the result, it is found that the temperature of MOSFET junction of the 12A tiny-size solar charger is approximately 42.5 degC at the highest, low enough to clear the requirements. 4 refs., 7 figs., 4 tabs.

  11. Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck Dimensionnement pile et batterie d’un camion hybride à pile à combustible de distribution

    Directory of Open Access Journals (Sweden)

    Tazelaar E.

    2012-08-01

    Full Text Available An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW and battery (kW, kWh sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS is used for determining the control setpoint for the fuel cell and battery system. It closely approximates the global minimum in fuel consumption, set by Dynamic Programming (DP. Using DP the sizing problem can be solved but ECMS can also be implemented real-time. For the considered vehicle and hardware, all three driving cycles result in optimal sizes for the fuel cell stack of approximately three times the average drive power demand. This demonstrates that sizing the fuel cell stack the average or maximum power demand is not necessarily optimal with respect to a minimum fuel consumption. The battery is sized to deliver the difference between specified stack power and the peak power in the total power demand. The sizing of the battery is dominated by its power handling capabilities. Therefore, a higher maximum C-rate leads to a lower battery weight which in turn leads to a lower hydrogen consumption. The energy storage capacity of the battery only becomes an issue for C-rates over 30. Compared to a Range Extender (RE configuration, where the stack size is comparable to the average power demand and the stack is operated on a constant power level, optimal stack and battery sizes with ECMS as EnergyManagement Strategy significantly reduce the fuel consumption. Compared to a RE strategy, ECMS makes much better use of the combined power available from the fuel cell stack and the battery, resulting in a lower fuel consumption but also enabling a lower battery weight which consequently leads to improved payload capabilities. Un camion hybride, utilisant une pile

  12. REopt Improves the Operations of Alcatraz's Solar PV-Battery-Diesel Hybrid System

    Energy Technology Data Exchange (ETDEWEB)

    Olis, Daniel R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Walker, H. A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Geet, Otto D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This poster identifies operations improvement strategies for a photovoltaic (PV)-battery-diesel hybrid system at the National Park Service's Alcatraz Island using NREL's REopt analysis tool. The current 'cycle charging' strategy results in significant curtailing of energy production from the PV array, requiring excessive diesel use, while also incurring high wear on batteries without benefit of improved efficiency. A simple 'load following' strategy results in near optimal operating cost reduction.

  13. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  14. Aqueous hybrid ion batteries - An environmentally friendly alternative for stationary energy storage?

    Science.gov (United States)

    Peters, Jens F.; Weil, Marcel

    2017-10-01

    Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.

  15. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  16. PSO based PI controller design for a solar charger system.

    Science.gov (United States)

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  17. PSO Based PI Controller Design for a Solar Charger System

    Directory of Open Access Journals (Sweden)

    Her-Terng Yau

    2013-01-01

    Full Text Available Due to global energy crisis and severe environmental pollution, the photovoltaic (PV system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs.

  18. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  19. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    OpenAIRE

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01

    This report discusses the development of advanced batteries for plug-in hybrid electric vehicle (PHEV) applications. We discuss the basic design concepts of PHEVs, compare three sets of influential technical goals, and explain the inherent trade-offs in PHEV battery design. We then discuss the current state of several battery chemistries, including nickel-metal hydride (NiMH) and lithium-ion (Li-Ion), comparing their abilities to meet PHEV goals, and potential trajectories for further improve...

  20. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra-capacitors...

  1. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  2. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  3. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  4. Power Management of Hybrid Power Systems with Li-Fe Batteries and Supercapacitors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Guohui Wang

    2014-05-01

    Full Text Available This paper presents an energy management strategy of a Li-Fe battery and supercapacitor hybrid power system to provide both high power density and energy density for mobile robots with fluctuating workloads. A two-phase power-optimization approach is proposed to exploit the high power density of supercapacitors and the high energy density of Li-Fe batteries. With our strategy, large peak power can be provided for a short time period whenever needed, while low power can be provided for very long time. A set of experiments have been conducted. The experimental results show that our strategy can effectively improve the performance of mobile robots and extend the lifetime of batteries.

  5. Membrane-less hybrid flow battery based on low-cost elements

    Science.gov (United States)

    Leung, P. K.; Martin, T.; Shah, A. A.; Mohamed, M. R.; Anderson, M. A.; Palma, J.

    2017-02-01

    The capital cost of conventional redox flow batteries is relatively high (>USD 200/kWh) due to the use of expensive active materials and ion-exchange membranes. This paper presents a membrane-less hybrid organic-inorganic flow battery based on the low-cost elements zinc (92.7% with the use of carbon felt electrodes. In the presence of a fully oxidized active species close to its solubility limit, dissolution of the deposited anode is relatively slow (<2.37 g h-1 cm-2) with an equivalent corrosion current density of <1.9 mA cm-2. In a parallel plate flow configuration, the resulting battery was charge-discharge cycled at 30 mA cm-2 with average coulombic and energy efficiencies of c.a. 71.8 and c.a. 42.0% over 20 cycles, respectively.

  6. Detection and Elimination of a Potential Fire in Engine and Battery Compartments of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Macam S. Dattathreya

    2012-01-01

    Full Text Available This paper presents a novel fuzzy deterministic noncontroller type (FDNCT system and an FDNCT inference algorithm (FIA. The FDNCT uses fuzzy inputs and produces a deterministic non-fuzzy output. The FDNCT is an extension and alternative for the existing fuzzy singleton inference algorithm. The research described in this paper applies FDNCT to build an architecture for an intelligent system to detect and to eliminate potential fires in the engine and battery compartments of a hybrid electric vehicle. The fuzzy inputs consist of sensor data from the engine and battery compartments, namely, temperature, moisture, and voltage and current of the battery. The system synthesizes the data and detects potential fires, takes actions for eliminating the hazard, and notifies the passengers about the potential fire using an audible alarm. This paper also presents the computer simulation results of the comparison between the FIA and singleton inference algorithms for detecting potential fires and determining the actions for eliminating them.

  7. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    OpenAIRE

    Yuanbin Yu; Dongdong Zhang; Haitao Min; Yi Tang; Tao Zhu(GCAP-CASPER, Physics Department, Baylor University, One Bear Place, # 97316, Waco, TX 76798-7316, U.S.A.)

    2016-01-01

    This paper presents a new method for battery degradation estimation using a power-energy (PE) function in a battery/ultracapacitor hybrid energy storage system (HESS), and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC) coupled directly with DC-link is adopted for a hybrid electric city bus (HECB). In the purpose of presenting the quantitative relationship between s...

  8. Different energy management strategies of Hybrid Energy Storage System (HESS) using batteries and supercapacitors for vehicular applications

    OpenAIRE

    ALLEGRE, Anne-Laure; Trigui, Rochdi; Bouscayrol, Alain

    2010-01-01

    The energy storage is a key issue for traction applications like Electric Vehicles (EVs) or Hybrid Electric Vehicles (HEVs). Indeed, it needs a higher power and energy density, a right size, a long lifetime and a low cost. A Hybrid Energy Storage System (HESS) using batteries and supercapacitors seems to be an appropriate device to fulfill these constraints. The objective of the paper is to propose different energy management strategies of HESS using batteries and supercapacitors. Four elabor...

  9. Different energy management strategies of Hybrid Energy Storage System (HESS) using batteries and supercapacitors for vehicular applications

    OpenAIRE

    ALLEGRE, Anne-Laure; TRIGUI, Rochdi; Bouscayrol, Alain

    2010-01-01

    The energy storage is a key issue for traction applications like Electric Vehicles (EVs) or Hybrid Electric Vehicles (HEVs). Indeed, it needs a higher power and energy density, a right size, a long lifetime and a low cost. A Hybrid Energy Storage System (HESS) using batteries and supercapacitors seems to be an appropriate device to fulfill these constraints. The objective of the paper is to propose different energy management strategies of HESS using batteries and supercapacitors. Four elabor...

  10. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  11. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  12. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids

    Directory of Open Access Journals (Sweden)

    Jing Li

    2012-12-01

    Full Text Available In this paper, we develop a simple algorithm to determine the required number of generating units of wind-turbine generator and photovoltaic array, and the associated storage capacity for stand-alone hybrid microgrid. The algorithm is based on the observation that the state of charge of battery should be periodically invariant. The optimal sizing of hybrid microgrid is given in the sense that the life cycle cost of system is minimized while the given load power demand can be satisfied without load rejection. We also report a case study to show the efficacy of the developed algorithm.

  13. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  14. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    Science.gov (United States)

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  15. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    Science.gov (United States)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  16. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    Science.gov (United States)

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ENERGY MANAGEMENT OF WIND/PV AND BATTERY HYBRID SYSTEM

    OpenAIRE

    M. F. Almi; M. Arrouf; H.Belmili; S. Boulouma; Bendib, B

    2014-01-01

    This paper deals with power control of a wind and solar hybrid generation system for interconnection operation with electric distribution system. Power control strategy is to extract the maximum energy available from varying condition of wind speed and solar irradiance while maintaining power quality at a satisfactory level. In order to capture the maximum power, variable speed control is employed for wind turbine and maximum power point tracking is applied for photovoltaic system. The grid i...

  18. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase Islanded Microgrid Consisting of Hybrid Source PV/Battery Units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV...... and battery units, and power flow among different phases is performed automatically through three-phase units. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid, the operation...... in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  19. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  20. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  1. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  2. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    Science.gov (United States)

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  3. A hybrid PV-battery/diesel electricity supply on Peucang island: an economic evaluation

    Directory of Open Access Journals (Sweden)

    Matthias Günther

    2016-12-01

    Full Text Available Renewable energy technologies are currently under a dynamic cost development. This case holds especially for solar technology that has reached price levels that were unimaginable until a short time ago. It also holds for battery technologies the application of which is related to the increasing usage of photovoltaic energy converters and the growing interest in electric vehicles. With the decreasing prices more and more possible application cases of renewable energy technologies become economically viable. A case study was done for a location on a small island located on the west tip of Java. The levelized electricity cost of a hybrid electricity supply system composed of a solar generator and battery in combination with the existing diesel generators was compared to the electricity generation cost of the existing system. Two different battery options were taken into account, lead-acid batteries and lithium-ion batteries. The results of this study can give a rough orientation also for other locations with similar characteristics.

  4. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Xiangguo; Xi, Jingyu; Wu, Zenghua [Laboratory of Advanced Power Sources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhao, Yongtao; Qiu, Xinping [Laboratory of Advanced Power Sources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Organic Optoelectronics and Molecular, Tsinghua University, Beijing 100084 (China); Chen, Liquan [Laboratory of Advanced Power Sources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2009-04-15

    In our previous work, Nafion/SiO{sub 2} hybrid membrane was prepared via in situ sol-gel method and used for the vanadium redox flow battery (VRB) system. The VRB with modified Nafion membrane has shown great advantages over that of the VRB with Nafion membrane. In this work, a novel Nafion/organically modified silicate (ORMOSIL) hybrids membrane was prepared via in situ sol-gel reactions for mixtures of tetraethoxysilane (TEOS) and diethoxydimethylsilane (DEDMS). The primary properties of Nafion/ORMOSIL hybrids membrane were measured and compared with Nafion and Nafion/SiO{sub 2} hybrid membrane. The permeability of vanadium ions through the Nafion/ORMOSIL hybrids membrane was measured using an UV-vis spectrophotometer. The results indicate that the hybrids membrane has a dramatic reduction in crossover of vanadium ions compared with Nafion membrane. Fourier transform infrared spectra (FT-IR) analysis of the hybrids membrane reveals that the ORMOSIL phase is well formed within hybrids membrane. Cell tests identify that the VRB with Nafion/ORMOSIL hybrids membrane presents a higher coulombic efficiency (CE) and energy efficiency (EE) compared with that of the VRB with Nafion and Nafion/SiO{sub 2} hybrid membrane. The highest EE of the VRB with Nafion/ORMOSIL hybrids membrane is 87.4% at 20 mA cm{sup -2}, while the EE of VRB with Nafion and the EE of VRB with Nafion/SiO{sub 2} hybrid membrane are only 73.8% and 79.9% at the same current density. The CE and EE of VRB with Nafion/ORMOSIL hybrids membrane is nearly no decay after cycling more than 100 times (60 mA cm{sup -2}), which proves the Nafion/ORMOSIL hybrids membrane possesses high chemical stability during long charge-discharge process under strong acid solutions. The self-discharge rate of the VRB with Nafion/ORMOSIL hybrids membrane is the slowest among the VRB with Nafion, Nafion/SiO{sub 2} and Nafion/ORMOSIL membrane, which further proves the excellent vanadium ions blocking characteristic of the prepared

  5. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  6. Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Golsorkhi, Mohammad;

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units...... and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid......, the operation of each unit is divided into five states and modified active power-frequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions...

  7. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.

    Science.gov (United States)

    Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei; Li, Lu; Pei, Songfeng; Gentle, Ian Ross; Li, Feng; Cheng, Hui-Ming

    2013-06-25

    Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.

  8. Microwave exfoliated graphene oxide/TiO2 nanowire hybrid for high performance lithium ion battery

    Science.gov (United States)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Islam, Md Tariqul; Karim, Hasanul; Ramabadran, Navaneet; Noveron, Juan C.; Lin, Yirong

    2015-09-01

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO2 nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode-electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge-discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  9. A Carbon-Sulfur Hybrid with Pomegranate-like Structure for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Shi, Yanting; Lv, Wei; Niu, Shuzhang; He, Yanbing; Zhou, Guangmin; Chen, Guohua; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2016-05-01

    A carbon-sulfur hybrid with pomegranate-like core-shell structure, which demonstrates a high rate performance and relatively high cyclic stability, is obtained through carbonization of a carbon precursor in the presence of a sulfur precursor (FeS2 ) and a following oxidation of FeS2 to sulfur by HNO3 . Such a structure effectively protects the sulfur and leaves enough buffer space after Fe(3+) removal and, at the same time, has an interconnected conductive network. The capacity of the obtained hybrid is 450 mA h g(-1) under the current density of 5 C. This work provides a simple strategy to design and prepare various high-performance carbon-sulfur hybrids for lithium-sulfur batteries.

  10. High electrochemical properties of graphene nanoribbons-hybridized manganese dioxide as cathode material for lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiangyue; Fan, Zihan; Lin, Cunli; Jia, Lina; Lin, Baiwei; Wang, Jiaqi; Hu, Xiaolin, E-mail: linamethyst@fzu.edu.cn; Zhuang, Naifeng, E-mail: nfzhuang@fzu.edu.cn [Fuzhou University, College of Chemistry (China)

    2015-02-15

    Manganese dioxide crystallite and its composite hybridized with graphene nanoribbons (GNRs) are prepared by hydrothermal method. The effects of reaction temperature and time, surfactant, and reducing Mn resource are discussed. As the cathode material for Li battery, γ-MnO{sub 2} nanowire/nanorod hybridizing with (GNRs) (γ-MnO{sub 2}/GNRs) shows a higher discharge specific capacity than it covering with carbon nanotubes or graphene sheets. In addition, the discharge specific capacity of γ-MnO{sub 2}/GNRs is much higher than those of pure β-MnO{sub 2} and compact β-MnO{sub 2}/GNRs. The effects of crystal size, morphology, and GNR hybrid on the discharge specific capacity are discussed.

  11. Lithium-ion Battery Degradation Assessment and Remaining Useful Life Estimation in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nabil Laayouj

    2016-06-01

    Full Text Available Abstract—Prognostic activity deals with prediction of the remaining useful life (RUL of physical systems based on their actual health state and their usage conditions. RUL estimation gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. In addition, it can be used to improve the characterization of the material proprieties that govern damage propagation for the structure being monitored. RUL can be estimated by using three main approaches, namely model-based, data-driven and hybrid approaches. The prognostics methods used later in this paper are hybrid and data-driven approaches, which employ the Particle Filter in the first one and the autoregressive integrated moving average in the second. The performance of the suggested approaches is evaluated in a comparative study on data collected from lithium-ion battery of hybrid electric vehicle.

  12. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Science.gov (United States)

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

  13. Tungsten disulfide-multiwalled carbon nanotube hybrid anode for lithium-ion battery.

    Science.gov (United States)

    Kartick, B; Srivastava, Suneel Kumar; Mahanty, Sourindra

    2014-05-01

    The present work is focused on the preparation of tungsten disulfide-multiwalled carbon nanotube (WS2-MWCNT) hybrids by simple dry grinding of WS2 and MWCNT in different proportion by weight (1:3, 1:1, 3:1). The as prepared hybrids have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and Raman analyses. XRD results indicated complete exfoliation of MWCNT among WS2 particles in WS2-MWCNT (3:1) and (1:1) hybrids. FESEM images showed the formation of a 3-D network in WS2-MWCNT (1:1) hybrid with uniform dispersion of MWCNT being evident from HRTEM images. Raman analysis also suggested significant interaction between WS2 and MWCNT. WS2-MWCNT (1:1) hybrid, when used as anode material in lithium ion battery, exhibited a high initial charge capacity (483 mA h g(-1)) and an improved cycling stability with over 80% retention of the first cycle capacity after 20 cycles compared to only 40% capacity retention in pristine WS2. Such enhanced electrochemical performance of WS2-MWCNT (1:1) hybrid has been attributed to synergistic effect of WS2 and MWCNT.

  14. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Hu, Shi; Yi, Ran; Tang, Duihai; Walter, Timothy; Regula, Michael; Choi, Daiwon; Li, Xiaolin; Manivannan, Ayyakkannu; Wang, Donghai

    2014-11-12

    Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost and natural abundance of sodium. Here, we report a novel phosphorus/graphene nanosheet hybrid as a high performance anode for sodium-ion batteries through facile ball milling of red phosphorus and graphene stacks. The graphene stacks are mechanically exfoliated to nanosheets that chemically bond with the surfaces of phosphorus particles. This chemical bonding can facilitate robust and intimate contact between phosphorus and graphene nanosheets, and the graphene at the particle surfaces can help maintain electrical contact and stabilize the solid electrolyte interphase upon the large volume change of phosphorus during cycling. As a result, the phosphorus/graphene nanosheet hybrid nanostructured anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700 mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially be applied to other phosphorus-based alloy anode materials for sodium-ion batteries.

  15. A New Topology and Control Strategy for a Hybrid Battery-Ultracapacitor Energy Storage System

    Directory of Open Access Journals (Sweden)

    Changle Xiang

    2014-04-01

    Full Text Available This study investigates a new hybrid energy storage system (HESS, which consists of a battery bank and an ultra-capacitor (UC bank, and a control strategy for this system. The proposed topology uses a bi-directional DC-DC converter with a lower power rating than those used in the traditional HESS topology. The proposed HESS has four operating modes, and the proposed control strategy chooses the appropriate operating mode and regulates the distribution of power between the battery bank and the UC bank. Additionally, the control system prevents surges during mode switching and ensures that both the battery bank and the bi-directional DC-DC converter operate within their power limits. The proposed HESS is used to improve the performance of an existing power-split hybrid electric vehicle (HEV. A method for calculating the parameters of the proposed HESS is presented. A simulation model of the proposed HESS and control strategy was developed, and a scaled-down experimental platform was constructed. The results of the simulations and the experiments provide strong evidence for the feasibility of the proposed topology and the control strategy. The performance of the HESS is not influenced by the power limits of the bi-directional DC-DC converter.

  16. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas

    Science.gov (United States)

    Stempien, J. P.; Chan, S. H.

    2017-02-01

    Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.

  17. Control strategy of hybrid fuel cell/battery distributed generation system for grid-connected operation

    Institute of Scientific and Technical Information of China (English)

    Masoud Aliakbar GOLKAR; Amin HAJIZADEH

    2009-01-01

    This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant,battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.

  18. ESTIMATION METHOD ON THE BATTERY STATE OF CHARGE FOR HYBRID ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    QIANG Jiaxi; AO Guoqiang; YANG Lin

    2008-01-01

    A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.

  19. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage

    Science.gov (United States)

    Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín

    2017-01-01

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don’t address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests. PMID:28800102

  20. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  1. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.

    Science.gov (United States)

    Yi, Jin; Zhou, Haoshen

    2016-09-08

    In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application.

  2. TiS2-MWCNT hybrid as high performance anode in lithium-ion battery

    Science.gov (United States)

    Kartick, B.; Srivastava, Suneel Kumar; Mahanty, Sourindra

    2013-09-01

    The present work reports the preparation of hybrids by simple dry grinding of titanium sulfide (TiS2) and multi-walled carbon nanotubes (MWCNTs) in different weight ratio and their characterization. X-ray diffraction and Raman studies indicated the presence of interaction between the TiS2 and MWCNT. Field emission scanning electron microscopy and high resolution transmission electron microscopy showed the formation of three-dimensional architecture and co-dispersion in TiS2-MWCNT (1:1) hybrid. X-ray photoelectron spectroscopy also confirmed the presence of TiS2 and MWCNT in the prepared hybrid. Thermogravimetric analysis indicated an increase in thermal stability with higher MWCNT content. The results of the electrochemical analyses indicated that TiS2-MWCNT (1:1) hybrid exhibited an enhanced performance as lithium-ion battery anode. The initial specific capacity was found to be ≈450 mAh g-1 with 80 % retention in capacity after 50 discharge-charge cycles. These values are significantly higher compared to those for TiS2, MWCNT or other TiS2-MWCNT hybrids. Such improved performance is attributed to the presence of a synergistic effect between TiS2 and MWCNT.

  3. A Rule Based Energy Management System of Experimental Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Qiao Zhang

    2016-01-01

    Full Text Available In this paper, a simple and efficient rule based energy management system for battery and supercapacitor hybrid energy storage system (HESS used in electric vehicles is presented. The objective of the proposed energy management system is to focus on exploiting the supercapacitor characteristics and on increasing the battery lifetime and system efficiency. The role of the energy management system is to yield battery reference current, which is subsequently used by the controller of the DC/DC converter. First, a current controller is designed to realize load current distribution between battery and supercapacitor. Then a voltage controller is designed to ensure the supercapacitor SOC to fluctuate within a preset reasonable variation range. Finally, a commercial experimental platform is developed to verify the proposed control strategy. In addition, the energy efficiency and the cost analysis of the hybrid system are carried out based on the experimental results to explore the most cost-effective tradeoff.

  4. Optimal Power Scheduling for a Grid-Connected Hybrid PV-Wind-Battery Microgrid System

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Savaghebi, Mehdi

    2016-01-01

    In this paper, a lineal mathematical model is proposed to schedule optimally the power references of the distributed energy resources in a grid-connected hybrid PVwind-battery microgrid. The optimization of the short term scheduling problem is addressed through a mixed-integer linear programming...... mathematical model, wherein the cost of energy purchased from the main grid is minimized and profits for selling energy generated by photovoltaic arrays are maximized by considering both physical constraints and requirements for a feasible deployment in the real system. The optimization model is tested...

  5. Battery Test Manual For 12 Volt Start/Stop Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Belt, Jeffrey R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This manual was prepared by and for the United Stated Advanced Battery Consortium (USABC) Electrochemical Energy Storage Team. It is based on the targets established for 12 Volt Start/Stop energy storage development and is similar (with some important changes) to an earlier manual for the former FreedomCAR program. The specific procedures were developed primarily to characterize the performance of energy storage devices relative to the USABC requirements. However, it is anticipated that these procedures will have some utility for characterizing 12 Volt Start/Stop hybrid energy storage device behavior in general.

  6. Battery buses and light hybrid buses in modern town traffic. Batteriebusse und Leichthybridbusse im modernen Stadtverkehr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R. (Neoplan Gottlob Anwaerter GmbH und Co., Stuttgart (Germany))

    1993-01-01

    Apart from the manufacture of standardised line buses, Neoplan has been intensively concerned with the development of ultra-light vehicle bodies. The individual technical steps have been tested and brought from the experimental stage to readiness for mass-production by four different types of application and 10 experimental vehicles which are used in genuine daily use in traffic concerns. 1. Battery changing technique; 2. Diesel-electric power transmission and developing a wheel motor drive; 3. Diesel-electric power transmission with multiple energy supply (hybrid system). (orig./BWI)

  7. A Wind Power and Load Prediction Based Frequency Control Approach for Wind-Diesel-Battery Hybrid Power System

    OpenAIRE

    Chao Peng; Zhenzhen Zhang; Jia Wu

    2015-01-01

    A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery hybrid power system (WDBHPS). To maintain the frequency stability by wind power and diesel generation as much as possible, a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy ...

  8. Modeling, control and experimental testing of a supercapacitor/battery hybrid system : passive and semi-active topologies

    OpenAIRE

    Seim, Lars Hagvaag

    2012-01-01

    Supercapacitors possess unique properties that can complement other energy storage technologies in hybrid electric energy systems. Due to its performance characteristics - such as fast charge and discharge capability, high power density and high recycleability - a supercapacitor can relieve the battery of narrow and repeated transient charging and discharging, ensuring longer battery life, enabling higher system peak power performance and improve system efficiency. An equivalent super...

  9. 3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries.

    Science.gov (United States)

    Hu, Guangjian; Xu, Chuan; Sun, Zhenhua; Wang, Shaogang; Cheng, Hui-Ming; Li, Feng; Ren, Wencai

    2016-02-24

    A 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical network is synthesized to achieve high sulfur loading and content simultaneously, which solves the "double low" issues of Li-S batteries. The obtained Li-S cathodes show a high areal capacity two times larger than that of commercial lithium-ion batteries, and a good cycling performance comparable to those at low sulfur loading.

  10. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    OpenAIRE

    REDELBACH Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emissions (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. Th...

  11. Ambient Temperature Hybrid Polymer Electrolyte Based on Pvk + Pvdf-Hfp for Lithium Batteries

    Science.gov (United States)

    Michael, M. S.; Prabaharan, S. R. S.

    2002-12-01

    Proposed herein is a new ambient temperature Li+ conducting PVDF-HFP-co-polymer based hybrid polymer electrolyte with polyvinyl carbozole (PVK) as additive. The addition of the latter provides high ambient temperature electrolytic conductivity (σi) 0.7 × 10-3S/cm with an ionic transference number of 0.6, besides providing the thermoplastic flexibility to the whole matrix. The membrane is found to exhibit a wide electrochemical potential window, >4.5V against Li/Li+. When prepared properly, the membrane is dry and free standing, yet totally suitable for lithium polymer rechargeable batteries. This paper presents the preparation, microstructure and electrochemical characteristics of this new hybrid polymeric membrane. Finally, the dry polymeric electrolyte membrane has been employed in a lithium polymer cell against LT-LiCo0.8Ni0.2O2 as positive electrode and its interfacial behavior and electrochemical cycling results are presented.

  12. A Highly Accurate Li-Ion Battery Charger Based on Digital Controlled Source%基于数字受控源的高精度锂电池组储能方案

    Institute of Scientific and Technical Information of China (English)

    严伟; 刘豫章; 康琦

    2011-01-01

    提出了一种基于数字受控源,由纯硬件实现控制算法的锂电池组储能方案。该方案能够同时检测锂电池组中各单体电池的状态,并通过稳定且高精度的数控电信号输出,为锂电池组提供最佳的储能模式,解决了传统充电器控制方式中相对粗糙的信号采集与控制所造成的电池寿命缩短的问题,并消除了充电过程中电池爆裂等安全方面的隐患。在一些不稳定的可再生能源供给的采集与存储等应用场所,这种可靠、精确且通用性强的锂电池组的储能管理方案得以实施,可为锂电池供电系统发挥出最优性能提供保障。%A highly accurate Li-ion battery charging approach based on digitally controlled source by hardware was proposed. To avoid a reduced working life and a potential blast in conventional charging systems with less accurate signal-sample and control, it can synchronously detect the instant charging-states of each single cell in the whole series combinations with more stable and accurate, digitally controlled outputs. In some turbulent energy supplies from the reproducible source, the stable, accurate and universal charging system could be utilized to gain maximized efficiency of charging with minimum defaults.

  13. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  14. Evaluation of electrode materials for all-copper hybrid flow batteries

    Science.gov (United States)

    Leung, Puiki; Palma, Jesus; Garcia-Quismondo, Enrique; Sanz, Laura; Mohamed, M. R.; Anderson, Marc

    2016-04-01

    This work evaluates a number of two- and three-dimensional electrodes for the reactions of an all-copper hybrid flow battery. Half- and full-cell experiments are conducted by minimizing the crossover effect of the copper(II) species. The battery incorporates a Nafion® cation exchange membrane and the negative electrolyte is maintained at the monovalent (colourless) state by the incorporating copper turnings in the electrolyte reservoir. Under such conditions, the half-cell coulombic efficiencies of the negative electrode reactions are all higher than 90% regardless of electrode materials and the state-of-charge (SOC). With charge-discharge cycling the half-cell from a 0% SOC, the coulombic efficiencies of the positive electrode reactions are lower than 76% with the planar carbon electrode, which further decrease in shorter charge-discharge cycles. Polarization and half-cell charge-discharge experiments suggest that the high-surface-area electrodes effectively reduce the overpotentials and improve the coulombic efficiencies of both electrode reactions. When copper fibres and carbon felt are used as the negative and positive electrodes, the average coulombic and voltage efficiencies of an all-copper flow battery are as high as c.a. 99% and c.a. 60% at 50 mA cm-2 for 35 cycles.

  15. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  16. The hybrid energy storages based on batteries and ultracapacitors for contact microwelding

    Directory of Open Access Journals (Sweden)

    Bondarenko Yu. V.

    2014-08-01

    Full Text Available Micro resistance welding is an effective way to reliably join small-scale parts. It is widely used in electronics and instrument-making. The important particularities of micro resistance welding are pulse character of energy consumption, non-linear load and special form of current pulses. So, these particularities of welding process cause negative influence on the mains. One of the known ways to avoid it is to use autonomous power supplies for micro resistance welding machines. The important task for building autonomous power supplies is to choose effective energy storages, which have high capacity and small internal resistance, and which are capable to be charged and deliver energy to load very quickly. The solution of this task is seen in using hybrid energy storages, which include accumulators and ultracapacitors. The accumulators are able to provide high energy capacitance and the ultracapacitors are able to provide fast energy delivery. The possibility of application of hybrid energy storages, based on accumulator batteries and ultracapacitors, in micro resistance welding machines is confirmed with computer simulation. Two variants of hybrid energy storages are proposed. These hybrid energy storages have high power and dynamic characteristics, which are sufficient to generate current pulses for welding according to necessary settings.

  17. Towards safer sodium-ion batteries via organic solvent/ionic liquid based hybrid electrolytes

    Science.gov (United States)

    Monti, Damien; Ponrouch, Alexandre; Palacín, M. Rosa; Johansson, Patrik

    2016-08-01

    Hybrid electrolytes aimed at application in sodium-ion batteries (SIB) consisting of an organic solvent mixture (EC:PC) and different ionic liquids (ILs); EMImTFSI, BMImTFSI, and Pyr13TFSI, and with the NaTFSI salt providing the Na+ charge carriers have here been extensively studied. The physico-chemical and electrochemical characterisation includes ionic conductivity, viscosity, density, cation coordination and solvation, various safety measures, and electrochemical stability window (ESW). Hybrid electrolytes with 10-50% of IL content were found to have ionic conductivities on par with comparable organic solvent based electrolytes, but with highly enhanced safety properties. A systematic Raman spectroscopy study of the cation coordination and solvation before and after electrolyte safety tests by ignition suggest that IL cations and TFSI remain stable when ignited while organic solvents are consumed. Finally, the solid electrolyte interphase (SEI) formed when using hybrid electrolytes has both better mechanical and electrochemical stability than the SEI derived from pure IL based electrolytes. For a half-cell with a hard carbon (HC) electrode and a hybrid electrolyte with a composition of 0.8 m NaTFSI in EC0.45:PC0.45:Pyr13TFSI0.10 encouraging results were obtained for IL based electrolytes - ca. 182 mAhg-1 at C/10 over 40 cycles.

  18. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  19. Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles

    Science.gov (United States)

    Martel, François; Kelouwani, Sousso; Dubé, Yves; Agbossou, Kodjo

    2015-01-01

    This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

  20. Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System.

    Science.gov (United States)

    Winsberg, Jan; Janoschka, Tobias; Morgenstern, Sabine; Hagemann, Tino; Muench, Simon; Hauffman, Guillaume; Gohy, Jean-François; Hager, Martin D; Schubert, Ulrich S

    2016-03-16

    The combination of a polymer-based 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) catholyte and a zinc anode, together with a cost-efficient size-exclusion membrane, builds a new type of semi-organic, "green," hybrid-flow battery, which features a high potential range of up to 2 V, high efficiencies, and a long life time.

  1. One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes.

    Science.gov (United States)

    Wang, Bin; Li, Xianglong; Luo, Bin; Jia, Yuying; Zhi, Linjie

    2013-02-21

    A unique silicon-based anode for lithium ion batteries is developed via the facile hybridization of one-dimensional silicon nanowires and two-dimensional graphene sheets. The resulting paper-like film holds advantages highly desirable for not only accommodating the volume change of silicon, but also facilitating the fast transport of electron and lithium ions.

  2. Evaluation of Proactive, Reactive and Hybrid Ad hoc Routing Protocol for various Battery models in VANET using Qualnet

    CERN Document Server

    Sharma, Manish

    2012-01-01

    In VANET high speed is the real characteristics which leads frequent breakdown, interference etc. In this paper we studied various Ad hoc routing protocols, Reactive, Proactive & Hybrid, taking into consideration various VANET parameters like speed, altitude etc in real traffic scenario and evaluated them for various battery models for energy conservation.. The AODV and DYMO (Reactive), OLSR (Proactive) and ZRP (hybrid) protocols are compared for battery models Duracell AA(MX- 1500),Duracell AAA(MN-2400),Duracell AAA(MX-2400), Duracell C-MN(MN-1400),Panasonic AA standard using Qualnet as a Simulation tool. Since Energy conservation is main focus area nowadays. Hence performance of the protocols with various battery models counts and helps to make a right selection. Varying parameters of VANET shows that in the real traffic scenarios proactive protocol performs more efficiently for energy conservation.

  3. Integration of plug-in hybrid cars for the encouragement of intelligent power distribution structures; Integration von Plug-in-Hybrid Cars zur Foerderung intelligenter Verteilnetzstrukturen. Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.; Rigassi, R.

    2007-11-15

    This preliminary study for the Swiss Federal Office of Energy (SFOE) takes a look at how plug-in hybrid cars could be used to support the electricity supply in Switzerland. This study explains to what extent hybrid cars would be in a position to provide the services needed to regulate the Swiss electricity mains. Core elements of the concept known as 'Vehicle to Grid' (V2G) are presented. The requirements placed on the cars' equipment, including reversible battery chargers and communication equipment, are reviewed. Mains regulation systems are discussed, as are battery storage and the potential advantages offered by such a system. Challenges and hindrances to implementation are examined and initial feasibility studies are analysed. Questions still to be addressed are noted. A comprehensive appendix rounds off the report.

  4. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  5. All-SiC Inductively Coupled Charger with Integrated Plug-in and Boost Functionalities for PEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL; Tolbert, Leon M [ORNL

    2016-01-01

    So far, vehicular power electronics integration is limited to the integration of on-board battery chargers (OBC) into the traction drive system and sometimes to the accessory dc/dc converters in plug-in electric vehicles (PEV). These integration approaches do not provide isolation from the grid although it is an important feature that is required for user interface systems that have grid connections. This is therefore a major limitation that needs to be addressed along with the integrated functionality. Furthermore, there is no previous study that proposes the integration of wireless charger with the other on-board components. This study features a unique way of combining the wired and wireless charging functionalities with vehicle side boost converter integration and maintaining the isolation to provide the best solution to the plug-in electric vehicle users. The new topology is additionally compared with commercially available OBC systems from manufacturers.

  6. Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Christian-Simon, E-mail: ernst@ika.rwth-aachen.de [Institute for Automotive Engineering (ika), RWTH Aachen University, Steinbachstrasse 7, 52074 Aachen (Germany); Hackbarth, Andre; Madlener, Reinhard [Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics/E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany); Lunz, Benedikt; Uwe Sauer, Dirk [Institute for Power Generation and Storage Systems (PGS), E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany); Eckstein, Lutz [Institute for Automotive Engineering (ika), RWTH Aachen University, Steinbachstrasse 7, 52074 Aachen (Germany)

    2011-10-15

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortization time of a PHEV also depends on the recharging strategy (once a day, once a night, after each trip), the battery size, and the battery costs. We find that PHEVs with a 4 kWh battery and at current lithium-ion battery prices reach the break-even point after about 6 years (5 years when using the lower night-time electricity tariffs). With higher battery capacities the amortization time becomes significantly longer. Even for the small battery size and assuming the EU-15 electricity mix, a PHEV is found to emit only around 60% of the CO{sub 2} emissions of a comparable conventional car. Thus, with the PHEV concept a cost-effective introduction of electric mobility and reduction of greenhouse gas emissions per vehicle can be reached. - Highlights: > Total cost of ownership of a PHEV and a conventional car are compared for the average German car user. > PHEVs with a 4 kWh battery reach the break-even after 5-6 years at current Li-Ion battery prices.> Even with a small battery, PHEVs emit about 40% less CO{sub 2} emissions than the average conventional car.

  7. Design of a Battery Intermediate Storage System for Rep-Rated Pulsed Power Loads

    Science.gov (United States)

    2013-04-01

    Abstract—The U.S. Naval Research Laboratory (NRL) is developing a battery-powered, rep-rate charger for a 60-kJ capacitor bank . The capacitor ...developing a rapid charger for a 60-kJ capacitor bank capable of charging a 4800- µF capacitor to 5-kV in roughly five seconds. This system needs to...U.S. Naval Research Laboratory (NRL) is developing a battery-powered, rep-rate charger for a 60-kJ capacitor bank . The capacitor will be charged with

  8. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  9. Feasibility study and techno-economic analysis of an SOFC/battery hybrid system for vehicle applications

    Science.gov (United States)

    Aguiar, P.; Brett, D. J. L.; Brandon, N. P.

    A feasibility study and techno-economic analysis for a hybrid power system intended for vehicular traction applications has been performed. The hybrid consists of an intermediate temperature solid oxide fuel cell (IT-SOFC) operating at 500-800 °C and a sodium-nickel chloride (ZEBRA) battery operating at 300 °C. Such a hybrid system has the benefits of extended range and fuel flexibility (due to the IT-SOFC), high power output and rapid response time (due to the battery). The above hybrid has been compared to a fuel cell-only, a battery-only and an ICE vehicle. It is shown that the capital cost associated with a fuel cell-only vehicle is still much higher than that of any other power source option and that a battery-only option would potentially encounter weight and volume limitations, particularly for long drive times. It is concluded that increasing drive time per day decreases substantially the payback time in relation to an ICE vehicle running on gasoline and thus that the hybrid vehicle is an economically attractive option for commercial vehicles with long drive times. In the case where the battery has reached volume production prices at £70 kWh -1 and current fuel duty values remain unchanged then a payback time gasoline equivalent fuel economy of 25.1 km L -1, almost twice that of a gasoline fuelled ICE vehicle of the same size, and CO 2 emissions of 71.6 g km -1, well below any new technology target set so far. It is therefore recommended that a SOFC/ZEBRA demonstration be built to further explore its viability.

  10. Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.

    Science.gov (United States)

    Goyal, Anubha; Reddy, Arava L M; Ajayan, Pulickel M

    2011-06-20

    This study demonstrates the formation of a flexible and free-standing carbon nanotube-copper oxide-poly(vinylidene fluoride) (CNT-Cu(2) O-PVDF) nanocomposite and its application as an electrode-separator material for Li-ion batteries. Binder-free hybrid electrodes are obtained by conformally coating CNTs with Cu(2) O via electrodeposition and then embedding the resulting architecture into a porous poly(vinylidene fluoride-hexafluoropropylene) PVDF-HFP-SiO(2) polymer electrolyte membrane. The synergistic presence of high-capacity transition metal oxides and conductive CNTs results in twice the reversible areal capacity of 2.3 mAh cm(-2) as compared to 1.2 mAh cm(-2) for pure CNTs.

  11. Superstructured Carbon Nanotube/Porous Silicon Hybrid Materials for Lithium-Ion Battery Anodes

    Science.gov (United States)

    Lee, Jun-Ki; Kang, Shin-Hyun; Choi, Sung-Min

    2015-03-01

    High energy Li-ion batteries (LIBs) are in great demand for electronics, electric-vehicles, and grid-scale energy storage. To further increase the energy and power densities of LIBs, Si anodes have been intensively explored due to their high capacity, and high abundance compared with traditional carbon anodes. However, the poor cycle-life caused by large volume expansion during charge/discharge process has been an impediment to its applications. Recently, superstructured Si materials were received attentions to solve above mentioned problem in excellent mechanical properties, large surface area, and fast Li and electron transportation aspects, but applying superstructures to anode is in early stage yet. Here, we synthesized superstructured carbon nanotubes (CNTs)/porous Si hybrid materials and its particular electrochemical properties will be presented. Department of Nuclear and Quantum Engineering

  12. Construction of Hybrid Supercapacitor-Batteries with dual-scale shelled architecture.

    Science.gov (United States)

    Qian, Zhongyu; Peng, Tao; Wang, Jun; Qu, Liangti

    2014-07-01

    Pseudocapacitors bridge the gap between supercapacitors and batteries. Controllable microstructures grown on substrates have achieved success with regard to energy storage. However, traditional designs have only focused on the surface of scaffolds, which results in high specific capacitance values for the electroactive material rather than the electrodes. Inspired by slurry-casting, a dual-scale shell-structured NiCo2 O4 on nickel foam was assembled by using a simple and flexible solution-based strategy. First, NiCo2 O4 nanosheets covering the Ni foam skeleton surface loosely (the sample is denoted as 'pasted') is obtained by a solution-grown and 'dip-and-dry' process (in a cobalt-nickel hydroxide solution) followed by annealing. Secondly, the NiCo2 O4 nanosheets are filled in the pores of the Ni scaffold (the obtained material is denoted as 'tailored') through chemical bath deposition process followed by annealing. The capacitance per weight of electroactive materials is not outstanding (1029 F g(-1) at 10 mA cm(-2) ), but is competitive with regard to area (3.23 F cm(-2) at 10 mA cm(-2) ). However, features in the cycling performance imply that the electrode exhibits a hybrid supercapacitor-battery behavior and that thermodynamic hysteresis promotes the 'breaking' and 'fusing' behavior of the material. The overall design highlights a new pathway to step out from surface to space.

  13. Optimization of Performance Characteristics of Hybrid Wind Photovoltaic System with Battery Storage

    Directory of Open Access Journals (Sweden)

    C. Kathirvel

    2014-03-01

    Full Text Available This study concentrates on the Design and Implementation of a multi source hybrid Wind-Photovoltaic stand alone system with proposed energy management strategy. The method of investigation concerned with the definition of the system topology, interconnection of the various sources with maximum energy transfer, optimum control and energy management in order to maintain the DC bus voltage into a fixed value. An Energy management strategy was proposed using the Fuzzy logic controller such that enhancement in the performance of the system and optimization can be done. The Fuzzy logic controller takes the input from Solar (irradiation, Wind (speed, Power demand and the battery voltage which controls the respective subsystem and formulates into different operational modes of energy management. The role of Fuzzy threshold controller is to adjust continuously the threshold value for optimal performance based on expected wind, solar conditions, battery voltage and power demand. It is shown that when the fuzzy logic controller is used, the proposed DC bus voltage regulation strategy with different modes of operation have fast response and efficient operation which leads to a reduced operating cost.

  14. A rechargeable Na–CO 2 /O 2 battery enabled by stable nanoparticle hybrid electrolytes

    KAUST Repository

    Xu, Shaomao

    2014-09-10

    © the Partner Organisations 2014. We report on rechargeable batteries that use metallic sodium as the anode, a mixture of CO2 and O2 as the active material in the cathode, and an organic-inorganic hybrid liquid as electrolyte. The batteries are attractive among energy storage technologies because they provide a mechanism for simultaneously capturing CO2 emissions while generating electrical energy. Through in and ex situ chemical analysis of the cathode we show that NaHCO3 is the principal discharge product, and that its relative instability permits cell recharging. By means of differential electrochemical mass spectrometry (DEMS) based on 12C and 13C we further show that addition of as little as 10% of 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone)imide ionic liquid tethered to SiO2 nanoparticles extends the high-voltage stability of the electrolyte by at least 1 V, allowing recharge of the Na-CO2/O2 cells. This journal is

  15. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  16. Prospects of Wind-Diesel Generator-Battery Hybrid Power System: A Feasibility Study in Algeria

    Directory of Open Access Journals (Sweden)

    Djohra Saheb-Koussa

    2013-01-01

    Full Text Available The present work analyses the feasibility of a wind-diesel generator-battery hybrid system. The wind energy resource data are collected from the weather station at the Renewable Energy Development Center of Bouzareah in Algeria. The recorded values vary from 5.5 m/s to 7 m/s at 25 m. The hybrid system analysis has shown that for a household consuming 1,270 kWh/yr, the cost of energy is 1.205 USD/kWh and produces 2,493 kWh/yr in which 93% of electricity comes from wind energy. From this study, it is clear that the optimized hybrid system is more cost effective compared to the diesel generator system alone where the NPC and COE are equal, respectively, to 19,561 USD and 1.205 USD/kWh and 47,932 USD and 2.952 USD/kWh. The sensitivity analysis predicts that the grid extension distance varies from 1.25 to 1.85 km depending on wind speed and fuel price which indicate a positive result to implement a stand-alone hybrid power system as an alternative to grid extension. In addition to the feasibility of this system, it can reduce the emission of the CO2, SO2, and NOx, respectively, from 4758 to 147, from 9.45 to 0.294, and from 105 to 3.23 kg/yr. Investments in autonomous renewable energy systems should be considered particularly in remote areas. They can be financed in the framework of the National Energy Action Plan of Algeria.

  17. 关于 AGM-GEL 混用的讨论%Discussion about AGM/GEL hybrid battery

    Institute of Scientific and Technical Information of China (English)

    赵剑曦; 岳斌; 孙小祥

    2015-01-01

    The results in references about AGM/GEL hybrid battery were analyzed and the hybridization mechanism was concluded. No overlapping effect of their superiorities but the effect of gel was found when AGM and GEL technology was hybridized. The importance of the special separator using in GEL battery was emphasized and the further improvement for this separator was suggested.%本文分析了 AGM和 GEL混用的文献结果,总结了二者混用的机理观点,认为它们并不能出现优势叠加的效果,可能仅是 GEL的表现.强调了在引入 GEL后专用隔板的重要性,并提出这种隔板研发的方向.

  18. In Situ Carbonized Cellulose-Based Hybrid Film as Flexible Paper Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2016-01-20

    Flexible free-standing carbonized cellulose-based hybrid film is integrately designed and served both as paper anode and as lightweight current collector for lithium-ion batteries. The well-supported heterogeneous nanoarchitecture is constructed from Li4Ti5O12 (LTO), carbonized cellulose nanofiber (C-CNF) and carbon nanotubes (CNTs) using by a pressured extrusion papermaking method followed by in situ carbonization under argon atmospheres. The in situ carbonization of CNF/CNT hybrid film immobilized with uniform-dispersed LTO results in a dramatic improvement in the electrical conductivity and specific surface area, so that the carbonized paper anode exhibits extraordinary rate and cycling performance compared to the paper anode without carbonization. The flexible, lightweight, single-layer cellulose-based hybrid films after carbonization can be utilized as promising electrode materials for high-performance, low-cost, and environmentally friendly lithium-ion batteries.

  19. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  20. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan;

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98.2 %. Th...

  1. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98.2 %. Th...

  2. PSO based PI controller design for a solar charger system

    National Research Council Canada - National Science Library

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    ...) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT...

  3. Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery.

    Science.gov (United States)

    Lee, Dong Un; Fu, Jing; Park, Moon Gyu; Liu, Hao; Ghorbani Kashkooli, Ali; Chen, Zhongwei

    2016-03-09

    Herein, a proof-of-concept of novel hybrid rechargeable battery based on electrochemical reactions of both nickel-zinc and zinc-air batteries is demonstrated using NiO/Ni(OH)2 nanoflakes self-assembled into mesoporous spheres as the active electrode material. The hybrid battery operates on two sets of fundamentally different battery reactions combined at the cell level, unlike in other hybrid systems where batteries of different reactions are simply connected through an external circuitry. As a result of combining nickel-zinc and zinc-air reactions, the hybrid battery demonstrates both remarkably high power density (volumetric, 14 000 W L(-1); gravimetric, 2700 W kg(-1)) and energy density of 980 W h kg(-1), significantly outperforming the performances of a conventional zinc-air battery. Furthermore, the hybrid battery demonstrates excellent charge rate capability up to 10 times faster than the rate of discharge without any capacity and voltage degradations, which makes it highly suited for large-scale applications such as electric vehicle propulsion and smart-grid energy storage.

  4. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  5. Ternary Hybrid Material for High-Performance Lithium-Sulfur Battery.

    Science.gov (United States)

    Fan, Qi; Liu, Wen; Weng, Zhe; Sun, Yueming; Wang, Hailiang

    2015-10-14

    The rechargeable lithium-sulfur battery is a promising option for energy storage applications because of its low cost and high energy density. The electrochemical performance of the sulfur cathode, however, is substantially compromised because of fast capacity decay caused by polysulfide dissolution/shuttling and low specific capacity caused by the poor electrical conductivities of the active materials. Herein we demonstrate a novel strategy to address these two problems by designing and synthesizing a carbon nanotube (CNT)/NiFe2O4-S ternary hybrid material structure. In this unique material architecture, each component synergistically serves a specific purpose: The porous CNT network provides fast electron conduction paths and structural stability. The NiFe2O4 nanosheets afford strong binding sites for trapping polysulfide intermediates. The fine S nanoparticles well-distributed on the CNT/NiFe2O4 scaffold facilitate fast Li(+) storage and release for energy delivery. The hybrid material exhibits balanced high performance with respect to specific capacity, rate capability, and cycling stability with outstandingly high Coulombic efficiency. Reversible specific capacities of 1350 and 900 mAh g(-1) are achieved at rates of 0.1 and 1 C respectively, together with an unprecedented cycling stability of ∼0.009% capacity decay per cycle over more than 500 cycles.

  6. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery

    Science.gov (United States)

    Zhang, Hui; Qiao, Hang; Wang, Haiyan; Zhou, Nan; Chen, Jiajie; Tang, Yougen; Li, Jingsha; Huang, Chenghuan

    2014-08-01

    High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a promising catalyst for high power metal/air battery.High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a

  7. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  8. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    Science.gov (United States)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  9. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    Science.gov (United States)

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  10. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.

    Science.gov (United States)

    Huie, Matthew M; DiLeo, Roberta A; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-10

    Batteries are multicomponent systems where the theoretical voltage and stoichiometric electron transfer are defined by the electrochemically active anode and cathode materials. While the electrolyte may not be considered in stoichiometric electron-transfer calculations, it can be a critical factor determining the deliverable energy content of a battery, depending also on the use conditions. The development of ionic liquid (IL)-based electrolytes has been a research area of recent reports by other researchers, due, in part, to opportunities for an expanded high-voltage operating window and improved safety through the reduction of flammable solvent content. The study reported here encompasses a systematic investigation of the physical properties of IL-based hybrid electrolytes including quantitative characterization of the electrolyte-separator interface via contact-angle measurements. An inverse trend in the conductivity and wetting properties was observed for a series of IL-based electrolyte candidates. Test-cell measurements were undertaken to evaluate the electrolyte performance in the presence of functioning anode and cathode materials, where several promising IL-based hybrid electrolytes with performance comparable to that of conventional carbonate electrolytes were identified. The study revealed that the contact angle influenced the performance more significantly than the conductivity because the cells containing IL-tetrafluoroborate-based electrolytes with higher conductivity but poorer wetting showed significantly decreased performance relative to the cells containing IL-bis(trifluoromethanesulfonyl)imide electrolytes with lower conductivity but improved wetting properties. This work contributes to the development of new IL battery-based electrolyte systems with the potential to improve the deliverable energy content as well as safety of lithium-ion battery systems.

  11. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    Science.gov (United States)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  12. Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices

    Science.gov (United States)

    Jung, Hoeguk; Wang, Haifeng; Hu, Tingshu

    2014-12-01

    This paper considers some control design problems in a power system driven by battery/supercapacitor hybrid energy storage devices. The currents in the battery and the supercapacitor are actively controlled by two bidirectional buck-boost converters. Two control objectives are addressed in this paper: one is to achieve robust tracking of two reference variables, the battery current and the load voltage, the other is to achieve smooth transition of these variables during load switch. Based on the state-space averaged model we newly developed, the control design problems are converted into numerically efficient optimization problems with linear matrix inequality (LMI) constraints. An experimental system is constructed to validate the control design methods.

  13. A bi-directional DC/DC converter for hybrid wind generator/battery system with state machine control

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C.C.; Liao, Y.C. [National Yunlin Univ. of Science and Technology, Yunlin, Taiwan (China). Dept. of Electrical Engineering

    2008-07-01

    A bi-directional DC to DC converter used in a hybrid wind generator/lead-acid battery power system was presented. A state machine control strategy was used to control both the system power flow and load distribution. It was also used to increase the power capacity of the system. The battery was also charged or discharged through the bi-directional DC to DC converter. Multi-stage current charging control of the batteries was accomplished by adjusting the duty cycle of the power converter. This also improved the charging efficiency by the maximum power point tracking algorithm. It was concluded that the proposed control method can be readily extended to other renewable energy conversion systems. 6 refs., 13 figs.

  14. Development and analysis of a lithium carbon monofluoride battery-lithium ion capacitor hybrid system for high pulse-power applications

    Science.gov (United States)

    Smith, Patricia H.; Sepe, Raymond B.; Waterman, Kyle G.; Myron, L. Jeff

    2016-09-01

    Although Li/CFx and Li/CFxMnO2 have two of the highest energy densities of all commercial lithium primary batteries known to date, they are typically current-limited and therefore are not used in high-power applications. In this work, a Li/CFxMnO2 battery (BA-5790) was hybridized with a 1000 F lithium ion capacitor to allow its use for portable electronic devices requiring 100 W 1-min pulses. An intelligent, power-management board was developed for managing the energy flow between the components. The hybrid architecture was shown to maintain the battery current to a level that minimized energy loss and thermal stress. The performance of the Li/CFxMnO2 hybrid was compared to the standard Li/SO2 battery (BA-5590). The hybrid was shown to deliver the same number of 100 W pulse cycles as two BA-5590 batteries, resulting in a weight savings of 30% and a volumetric reduction of 20%. For devices requiring 8 h of operational time or less, a 5-cell Li/CFxMnO2 hybrid was found to be a lighter (55%) and smaller (45%) power source than the existing two BA-5590 battery option, and a lighter (42%) and smaller (27%) option than 1½ BA-5790 batteries alone. At higher power requirements (>100 W), further weight and size improvements can be expected.

  15. Single-Switch Equalization Charger Using Multiple Stacked Buck-Boost Converters for Series-Connected Energy-Storage Modules

    Science.gov (United States)

    Uno, Masatoshi; Tanaka, Koji

    Series connections of energy-storage modules such as electric double-layer capacitors (EDLCs) and lithium-ion batteries result in voltage imbalance because of the nonuniform properties of individual modules. Conventional voltage equalizers based on traditional dc-dc converters require numerous switches and/or transformers, and therefore, their costs and complexity tend to increase. This paper proposes a novel single-switch equalization charger using multiple stacked buck-boost converters. The single-switch operation not only reduces the circuit complexity but also contributes to increasing the reliability. The fundamental operating principles and design procedures of key components are presented in detail. An experimental charge test using a 25W prototype of the proposed equalization charger was performed for four series-connected EDLC modules whose initial voltages were intentionally imbalanced. Experimental results demonstrated that the proposed equalization charger could charge the series-connected modules preferentially in the order of increasing module voltage and that all the modules could be charged up to a uniform voltage level.

  16. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  17. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries.

    Science.gov (United States)

    Song, Weixin; Ji, Xiaobo; Pan, Chengchi; Zhu, Yirong; Chen, Qiyuan; Banks, Craig E

    2013-09-14

    A NASICON-structure Na3V2(PO4)3 cathode material prepared by carbothermal reduction method is employed in a hybrid-ion battery with Li-involved electrolyte and anode. The ion-transportation mechanism is firstly investigated in this complicated system for an open three-dimensional framework Na3V2(PO4)3. Ion-exchange is greatly influenced by the standing time, for example, the 1 hour battery presents a specific capacity of 128 mA h g(-1) while the 24 hour battery exhibits a value of 148 mA h g(-1) with improved rate and cycling performances over existing literature reported Li-ion batteries. In the hybrid-ion system, an ion-exchange process likely takes place between the two Na(2) sites in the rhombohedral structure. NaLi2V2(PO4)3 could be produced by ion-transportation since the Na(+) in the Na(1) site is stationary and the three Na(2) sites could be used to accommodate the incoming alkali ions; Li(x)Na(y)V2(PO4)3 would come out when the vacant site in Na(2) was occupied depending on the applied voltage range. The reported methodology and power characteristics are greater than those previously reported.

  18. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    OpenAIRE

    Hina Fathima; K. Palanisamy

    2015-01-01

    Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The ...

  19. Graphene/sulfur hybrid nanosheets from a space-confined "sauna" reaction for high-performance lithium-sulfur batteries.

    Science.gov (United States)

    Fei, Linfeng; Li, Xiaogang; Bi, Wentuan; Zhuo, Zhiwen; Wei, Wenfei; Sun, Li; Lu, Wei; Wu, Xiaojun; Xie, Keyu; Wu, Changzheng; Chan, Helen L W; Wang, Yu

    2015-10-21

    A space-confined "sauna" reaction system is introduced for the simultaneous reduction and functionalization of graphene oxide to unique graphene-sulfur hybrid nanosheets, in which thin layers of amorphous sulfur are tightly anchored on the graphene sheet via strong chemical bonding. Upon being used as the cathode material in lithium-sulfur batteries, the as-synthesized composite shows an excellent electrochemical performance.

  20. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Shafiqur; Al-Hadhrami, Luai M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 767, Dhahran-31261 (Saudi Arabia)

    2010-12-15

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  1. Effect of battery state of charge on fuel use and pollutant emissions of a full hybrid electric light duty vehicle

    Science.gov (United States)

    Duarte, G. O.; Varella, R. A.; Gonçalves, G. A.; Farias, T. L.

    2014-01-01

    This research work focuses on evaluating the effect of battery state of charge (SOC) in the fuel consumption and gaseous pollutant emissions of a Toyota Prius Full Hybrid Electric Vehicle, using the Vehicle Specific Power Methodology. Information on SOC, speed and engine management was obtained from the OBD interface, with additional data collected from a 5 gas analyzer and GPS receiver with barometric altimeter. Compared with average results, 40-50% battery SOC presented higher fuel consumption (57%), as well as higher CO2 (56%), CO (27%) and NOx (55.6%) emissions. For battery SOC between 50 and 60%, fuel consumption and CO2 were 9.7% higher, CO was 1.6% lower and NOx was 20.7% lower than average. For battery SOC between 60 and 70%, fuel consumption was 3.4% lower, CO2 was 3.6% lower, CO was 6.9% higher and NOx was 24.4% higher than average. For battery SOC between 70 and 80%, fuel consumption was 39.9% lower, CO2 was 38% lower, CO was 33.9% lower and NOx was 61.4% lower than average. The effect of engine OFF periods was analyzed for CO and NOx emissions. For OFF periods higher than 30 s, increases of 63% and 73% respectively were observed.

  2. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  3. Evaluation of the Plug-in Hybrid Electric Vehicle Considering Learning Curve on Battery and Power Generation Best Mix

    Science.gov (United States)

    Shinoda, Yukio; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    Plug-in Hybrid Electric Vehicle (PHEV) is one of the technologies to reduce amount of CO2 emissions in transport section. This paper presents one of the scenarios that shows how widely used the PHEVs will be in the future. And this paper also presents how amount of CO2 will be reduced by the introduction of PHEVs, and whether there are any serious effects on power supply system in those scenarios. PHEV can run with both gasoline and electricity. Therefore we evaluate CO2 emissions not only from gasoline consumption but also from electricity consumption. To consider a distribution of daily-trip-distance is important for evaluating the economical merit and CO2 emissions by introducing of PHEV. Also, the battery cost in the future is very important for making a PHEV's growth scenario. The growth of the number of PHEV makes battery cost lower. Then, we formulate the total model that combines passenger car sector and power supply sector with considering a distribution of daily-trip-distance and Learning Curve on battery costs. We use the iteration method to consider a Learning Curve that is non- linear. Therefore we set battery cost only in the first year of the simulation. Battery costs in the later year are calculated in the model. We focus on the 25-year time frame from 2010 in Japan, with divided in 5 terms (1st∼5th). And that model selects the most economical composition of car type and power sources.

  4. A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR

    Science.gov (United States)

    Peng, Xiao; Shuhai, Quan; Changjun, Xie

    2017-02-01

    The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.

  5. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  6. Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway

    Science.gov (United States)

    Li, Qi; Chen, Weirong; Liu, Zhixiang; Li, Ming; Ma, Lei

    2015-04-01

    A hybrid powertrain configuration based on a proton exchange membrane (PEMFC), a battery and a supercapacitor (SC) is designed without grid connection for the LF-LRV tramway. In order to avoid rapid changes of power demand and achieve high efficiency without degrading the mechanism performance, a power sharing strategy based on a combination of fuzzy logic control (FLC) and Haar wavelet transform (Haar-WT) is proposed for an energy management system of the hybrid tramway. The results demonstrate that the proposed energy management system is able to ensure the major positive portion of the low frequency components of power demand can be deals with the PEMFC. The battery can help provide a portion of the positive low frequency components of power demand to reduce the PEMFC burden while the SC bank can supply all the high frequency components which could damage the PEMFC membrane. Therefore, the energy management system of high-power hybrid tramway is able to guarantee a safe operating condition with transient free for the PEMFC and extend the lifetime of each power source. Finally, the comparisons with other control strategies verify that the proposed energy management system can achieve better energy efficiency of the overall hybrid tramway.

  7. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-09-12

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g(-1) and attractive rate performance (220 mAh g(-1) ) under the current density of up to 2 A g(-1) . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  9. Development of battery management systems (BMS for electric vehicles (EVs in Malaysia

    Directory of Open Access Journals (Sweden)

    Salehen P.M.W.

    2017-01-01

    Full Text Available Battery Management Systems (BMS is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the numbers will keep rising as numbers of registered car increase close up to 1 million yearly; double the amounts in the last two decades. The uncertainty of a battery’s performance poses a challenge to predict the extended range of EVs, which need BMS implementation of optimization of optimum power management. Hence, using MATLAB/SIMULINK software is one of the potential methods of BMS optimization with power generated by Hybrid Energy Storage system of lithium-ion battery. Therefore, this paper address through reviewing previous literatures initially focuses on the BMS optimization for EVs (car in Malaysia as prognostic technology model improvement on performance management of EVs.

  10. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  11. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  12. 磷酸铁锂电池与铅酸蓄电池混合系统研究%Studies of Hybrid Energy System of Lithium Iron Phosphate Battery and Lead-acid Battery

    Institute of Scientific and Technical Information of China (English)

    袁好; 衣守忠; 王先友

    2016-01-01

    By utilizing the differences of the charging and discharging characteristics between lithium iron phosphate batteries and lead-acid batteries,a new parallel hybrid power battery system with lithium iron phosphate batteries and lead-acid batteries and new charge/discharge system are developed.When charging, the lead-acid batteries attain the priority,so that lead-acid batteries can avoid to be charged less.When dis-charging,lithium iron phosphate batteries discharge with priority,while the lead-acid batteries are on the contrary,so lead-acid batteries can work in a state of shallow cycle,which can prolong the service life of the lead-acid batteries in the hybrid system.The hybrid battery system can effectively combine the advantages of both lithium iron phosphate batteries and lead-acid batteries,such as excellent discharge rate perform-ance,long cycle life and low cost et al,which make the system suitable for the application in the field of power batteries.%利用磷酸铁锂电池与铅酸蓄电池不同的充放电特点,开发了基于磷酸铁锂电池与铅酸蓄电池并联的混合动力电源系统,并设计了新型充放电制度。充电时铅酸蓄电池优先充电,使其免于欠充电;放电时磷酸铁锂电池电优先放电,铅酸蓄电池后放电,使铅酸蓄电池处于浅循环。这种充放电制度可以明显延长混合系统中铅酸蓄电池使用寿命,并且混合动力电源系统同时具有磷酸铁锂电池倍率性能优、循环寿命长及铅酸蓄电池价格低廉等特点,在动力电池领域有巨大的应用前景。

  13. Adaptive Passivity-Based Control of PEM Fuel Cell/Battery Hybrid Power Source for Stand-Alone Applications

    Directory of Open Access Journals (Sweden)

    KALANTAR, A.

    2010-11-01

    Full Text Available In this paper, a DC hybrid power source composed of PEM fuel cell as main source, Li-ion battery storage as transient power source and their power electronic interfacing is modelled based on Euler-Lagrange framework. Subsequently, adaptive passivity-based controllers are synthesized using the energy shaping and damping injection technique. Local asymptotic stability is insured as well. In addition, the power management system is designed in order to manage power flow between components. Evaluation of the proposed system and simulation of the hybrid system are accomplished using MATLAB/Simulink. Afterwards, linear PI controllers are provided for the purpose of comparison with proposed controllers responses. The results show that the outputs of hybrid system based on adaptive passivity-based controllers have a good tracking response, low overshoot, short settling time and zero steady-state error. The comparison of results demonstrates the robustness of the proposed controllers for reference DC voltage and resistive load changes.

  14. Battery monitoring in Mexican hybrid power systems; Monitoreo de las baterias en sistemas de potencia hibridos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. Roberto; Agredano, Jaime [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    Hybrid power systems for an autonomous power supply are based on different renewable and fossil energy sources. They are considered as a good option for the power supply of remote areas. In these systems an energy storage is a vital necessity and very often this storage will consist of batteries which are generally connected in series and parallel arrays, or both. In Mexico as in other countries, the most extensively use batteries used for this application are the stationary and electric car type deep cycle batteries. However the experience with them in these systems is generally not very good. One way to overcome this problem is to maintain a regular monitoring of installing monitoring equipment, in order to make preventive actions before a developing fault can have serious consequences and in this manner increase the practical lifetime of the batteries. Unfortunately, battery monitoring is not easy task because most of the hybrid power systems are installed in remote areas which makes it difficult and expensive. In Mexico it has been not possible to maintain a regular monitoring of all hybrid power systems installed, due to the high cost of this work and the lack of founds. The hybrid power systems installed in the state of Quintana Roo are the only systems that have been continuously monitored since their installation. This paper gives an overview of the hybrid power systems installed in Mexico, focusing in the battery banks, the way they are being monitored, the main parameters used to detect possible premature problems and the method used to evaluate the battery bank conditions. Finally some results from the battery banks monitoring activities are presented. [Espanol] Los sistemas de potencia hibridos para un suministro autonomo de energia a regiones remotas, estan basados en diferentes fuentes de energia fosiles y renovables. Estos son considerados como una buena opcion para el suministro de energia a areas remotas. En estos sistemas es una necesidad vital el

  15. Buck-Boost/Forward Hybrid Converter for PV Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2014-01-01

    Full Text Available This paper presents a charger and LED lighting (discharger hybrid system with a PV array as its power source for electronic sign indicator applications. The charger adopts buck-boost converter which is operated in constant current mode to charge lead-acid battery and with the perturb and observe method to extract maximum power of PV arrays. Their control algorithms are implemented by microcontroller. Moreover, forward converter with active clamp circuit is operated in voltage regulation condition to drive LED for electronic sign applications. To simplify the circuit structure of the proposed hybrid converter, switches of two converters are integrated with the switch integration technique. With this approach, the proposed hybrid converter has several merits, which are less component counts, lighter weight, smaller size, and higher conversion efficiency. Finally, a prototype of LED driving system under output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the electronic sign indicator applications.

  16. Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery

    Science.gov (United States)

    Cao, Li; Kong, Lei; Kong, Lingqian; Zhang, Xingxiang; Shi, Haifeng

    2015-12-01

    Hybrid membranes (SPI/ZGO) composed of sulfonated polyimide (SPI) and zwitterionic polymer-functionalized graphene oxide (ZGO) are fabricated via a solution-casting method for vanadium redox flow battery (VRB). Successful preparation of ZGO fillers and SPI/ZGO hybrid membranes are demonstrated by FT-IR, XPS and SEM, indicating that ZGO fillers is homogeneously dispersed into SPI matrix. Through controlling the interfacial interaction between SPI matrix and ZGO fillers, the physicochemical properties, e.g., vanadium ion barrier and proton transport pathway, of hybrid membranes are tuned via the zwitterionic acid-base interaction in the hybrid membrane, showing a high ion selectivity and good stability with the incorporated ZGO fillers. SPI/ZGO-4 hybrid membrane proves a higher cell efficiencies (CE: 92-98%, EE: 65-79%) than commercial Nafion 117 membrane (CE: 89-94%, EE: 59-70%) for VRB application at 30-80 mA cm-2. The assembled VRB with SPI/ZGO-4 membrane presents a stable cycling charge-discharge performance over 280 times, which demonstrates its excellent chemical stability under the strong acidic and oxidizing conditions. SPI/ZGO hybrid membranes show a brilliant perspective for VRB application.

  17. Design, Operation, Control, and Economics of a Photovoltaic/Fuel Cell/Battery Hybrid Renewable Energy System for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Zachary S. Whiteman

    2015-06-01

    Full Text Available Meeting rapidly growing global energy demand—without producing greenhouse gases or further diminishing the availability of non-renewable resources—requires the development of affordable low-emission renewable energy systems. Here, we develop a hybrid renewable energy system (HRES for automotive applications—specifically, a roof-installed photovoltaic (PV array combined with a PEM fuel cell/NiCd battery bus currently operating shuttle routes on the University of Delaware campus. The system’s overall operating objectives—meeting the total power demand of the bus and maintaining the desired state of charge (SOC of the NiCd battery—are achieved with appropriately designed controllers: a logic-based “algebraic controller” and a standard PI controller. The design, implementation, and performance of the hybrid system are demonstrated via simulation of real shuttle runs under various operating conditions. The results show that both control strategies perform equally well in enabling the HRES to meet its objectives under typical operating conditions, and under sudden cloud cover conditions; however, at consistently high bus speeds, battery SOC maintenance is better, and the system consumes less hydrogen, with PI control. An economic analysis of the PV investment necessary to realize the HRES design objectives indicates a return on investment of approximately 30% (a slight, but nonetheless positive, ~$550 profit over the bus lifetime in Newark, DE, establishing the economic viability of the proposed addition of a PV array to the existing University of Delaware fuel cell/battery bus.

  18. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang

    2010-10-13

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn3O4 nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn 3O4 nanoparticles grown atop. The Mn3O 4/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials. © 2010 American Chemical Society.

  19. Vertically Aligned Two-Dimensional Graphene-Metal Hydroxide Hybrid Arrays for Li-O2 Batteries.

    Science.gov (United States)

    Zhu, Jixin; Metzger, Michael; Antonietti, Markus; Fellinger, Tim-Patrick

    2016-10-05

    Lithium oxygen batteries (LOBs) are a very promising upcoming technology which, however, still suffers from low lifespan and dramatic capacities fading. Solid discharge products increase the contact resistance and block the electrochemically active electrodes. The resulting high oxidative potentials and formation of Li2CO3 due to electrolyte and carbon electrode decomposition at the positive electrode lead to irreversible deactivation of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) sites. Here we demonstrate a facile strategy for the scalable production of a new electrode structure constituted of vertically aligned carbon nanosheets and metal hydroxide (M(OH)x@CNS) hybrid arrays, integrating both favorable ORR and OER active materials to construct bifunctional catalysts for LOBs. Excellent lithium-oxygen battery properties with high specific capacity of 5403 mAh g(-1) and 12123 mAh g(-1) referenced to the carbon and M(OH)x weight, respectively, long cyclability, and low charge potentials are achieved in the resulting M(OH)x@CNS cathode architecture. The properties are explained by improved O2/ion transport properties and spatially limited precipitation of Li2O2 nanoparticles inside interstitial cavities resulting in high reversibility. The strategy of creating ORR and OER bifunctional catalysts in a single conductive hybrid component may pave the way to new cathode architectures for metal air batteries.

  20. Capacity optimization of battery-generator hybrid power system: Toward minimizing maintenance cost in expeditionary basecamp/operational energy applications

    Science.gov (United States)

    Onwuanumkpe, Jude C.

    Low and transient load condition are known to have deleterious impact on the efficiency and health of diesel generators (DGs). Extensive operation under such loads reduces fuel consumption and energy conversion efficiency, and contribute to diesel engine degradation, damage, or catastrophic failure. Non-ideal loads are prevalent in expeditionary base camps that support contingency operations in austere environments or remote locations where grid electricity is either non-existent or inaccessible. The impact of such loads on DGs exacerbates already overburdened basecamp energy logistics requirements. There is a need, therefore, to eliminate or prevent the occurrence of non-ideal loads. Although advances in diesel engine technologies have improved their performance, DGs remain vulnerable to the consequences of non-ideal loads and inherent inefficiencies of combustion. The mechanisms through which DGs respond to and mitigate non-ideal loads are also mechanically stressful and energy-intensive. Thus, this research investigated the idea of using batteries to prevent DGs from encountering non-ideal loads, as a way to reduce basecamp energy logistics requirements. Using a simple semi-empirical approach, the study modeled and simulated a battery-DG hybrid system under various load conditions. The simulation allowed for synthesis of design space in which specified battery and generator capacity can achieve optimal savings in fuel consumption and maintenance cost. Results show that a right-sized battery-diesel generator system allows for more than 50% cost savings relative to a standalone generator.

  1. SiC@Si core-shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries

    Science.gov (United States)

    Wang, Wei; Wang, Yewu; Gu, Lin; Lu, Ren; Qian, Haolei; Peng, Xinsheng; Sha, Jian

    2015-10-01

    Silicon has been considered as one of the most promising anode materials for the next generation lithium-ion battery due to its high theoretical capacity, but large volume changes during the electrochemical cycling limit its commercial application. In this study, we report the synthesis of silicon carbide @ silicon core-shell nanowires on carbon paper and their application in lithium-ion batteries. The hybrid nano-structures are fabricated via a two-step chemical vapor deposition method and directly used as the working electrode without any additional binder, exhibiting high specific capacity, high coulombic efficiency and good cycling stability. After 50 cycles, the discharge capacities still remain 2837 and 1809 mAh g-1 at the rates of 0.1C and 0.5C, respectively. Furthermore, we also study the influence of the growth time of SiC NWs and the thickness of Si film on the lithium-ion batteries' performance, and propose the possible method to further improve the battery performance.

  2. Amorphous Bimetallic Oxide-Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries.

    Science.gov (United States)

    Wei, Li; Karahan, H Enis; Zhai, Shengli; Liu, Hongwei; Chen, Xuncai; Zhou, Zheng; Lei, Yaojie; Liu, Zongwen; Chen, Yuan

    2017-10-01

    Metal oxides of earth-abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy-conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three-stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N-doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe0.5 Co0.5 Ox is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec(-1) and an overpotential of 257 mV for 10 mA cm(-2) and superior ORR activity with a large limiting current density of -5.25 mA cm(-2) at 0.6 V. A fabricated Zn-air battery delivers a specific capacity of 756 mA h gZn(-1) (corresponding to an energy density of 904 W h kgZn(-1) ), a peak power density of 86 mW cm(-2) and can be cycled over 120 h at 10 mA cm(-2) . Other two amorphous bimetallic, Ni0.4 Fe0.6 Ox and Ni0.33 Co0.67 Ox , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impact of Fast Charging on Life of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  4. A Wind Power and Load Prediction Based Frequency Control Approach for Wind-Diesel-Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Chao Peng

    2015-01-01

    Full Text Available A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery hybrid power system (WDBHPS. To maintain the frequency stability by wind power and diesel generation as much as possible, a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy storage system real-time control module is designed based on ADRC (active disturbance rejection control. The simulation experiment results demonstrate that the proposed approach has a better disturbance rejection ability and frequency control performance compared with the traditional droop control approach.

  5. Hierarchical nitrogen-doped porous graphene/reduced fluorographene/sulfur hybrids for high-performance lithium-sulfur batteries.

    Science.gov (United States)

    Liu, Zhixuan; Li, Jie; Xiang, Jingwei; Cheng, Shuai; Wu, Hao; Zhang, Na; Yuan, Lixia; Zhang, Wenfeng; Xie, Jia; Huang, Yunhui; Chang, Haixin

    2017-01-18

    It is a great challenge to obtain high performance cathodes with a high sulfur loading and good cycle performance due to the dissolution of intermediate lithium polysulfides in lithium-sulfur batteries. Herein, we report a novel hierarchical hybrid composed of nitrogen-doped porous graphene (NG), reduced fluorographene or graphene fluoride (RFG), and sulfur as a composite cathode in the Li-S batteries. In comparison with sulfur composites based on only either nitrogen-doped porous graphene or pure reduced fluorographene, the hierarchical hybrid of RFG, NG, and sulfur (NG-RFG/S) shows a better reversible capacity and rate capability performance due to a better confinement effect of lithium polysulfides and sulfur. The NG-RFG/S cathode with ∼63.2% S content exhibits a high discharge capacity of 1120 mA h g(-1) and retains 632 mA h g(-1) after 100 cycles at 0.1C. At the higher rate of 0.5C, the cell still maintains a discharge capacity of about 300 mA h g(-1) after 800 cycles, which reveals the great potential of this hybrid cathode for long-cycle-life, high energy density storage applications.

  6. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    Science.gov (United States)

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-01-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design. PMID:27677326

  7. γ-Fe₂O₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage.

    Science.gov (United States)

    Tian, Lei-Lei; Zhang, Ming-Jian; Wu, Chao; Wei, Yi; Zheng, Jia-Xin; Lin, Ling-Piao; Lu, Jun; Amine, Khalil; Zhuang, Quan-Chao; Pan, Feng

    2015-12-02

    Maghemite (γ-Fe2O3) nanocrystalline microspheres (MNMs) self-assembled with 52 nm nanocrystals bridged with FeOOH around grain boundaries were formed by solvothermal reaction and thermal oxidation. The unique architecture endows the MNMs with the lithium storage behavior of a hybrid battery-supercapacitor electrode: initial charge capacity of 1060 mAh g(-1) at the 100 mA g(-1) rate, stable cyclic capacity of 1077.9 mAh g(-1) at the same rate after 140 cycles, and rate capability of 538.8 mAh g(-1) at 2400 mA g(-1). This outstanding performance was attributed to the nanocrystal superiority, which shortens the Li(+) diffusion paths. The mechanism of this hybrid anode material was investigated with experimental measurements and structural analysis. The results indicate that at the first discharge, the MNM nanocrystal microsphere, whose structure can buffer the volume change that occurs during lithiation/delithiation, goes through four stages: Li(+) insertion in cation vacancies, spinel-to-rocksalt transformation, Li(+) intercalation of Li(1.75+x)Fe2O3 nanocrystals, and interfacial Li storage around nanocrystal boundaries. Only the latter two stages were reversible at and after the second charging/discharging cycle, exhibiting the hybrid behavior of a battery-supercapacitor with superior lithium storage.

  8. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries

    Science.gov (United States)

    Yanilmaz, Meltem; Lu, Yao; Zhu, Jiadeng; Zhang, Xiangwu

    2016-05-01

    Silica/polyacrylonitrile (SiO2/PAN) hybrid nanofiber membranes were fabricated by using sol-gel and electrospinning techniques and their electrochemical performance was evaluated for use as separators in lithium-ion batteries. The aim of this study was to design high-performance separator membranes with enhanced electrochemical performance and good thermal stability compared to microporous polyolefin membranes. In this study, SiO2 nanoparticle content up to 27 wt% was achieved in the membranes by using sol-gel technique. It was found that SiO2/PAN hybrid nanofiber membranes had superior electrochemical performance with good thermal stability due to their high SiO2 content and large porosity. Compared with commercial microporous polyolefin membranes, SiO2/PAN hybrid nanofiber membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN hybrid nanofiber membranes with different SiO2 contents (0, 16, 19 and 27 wt%) were also assembled into lithium/lithium iron phosphate cells, and high cell capacities and good cycling performance were demonstrated at room temperature. In addition, cells using SiO2/PAN hybrid nanofiber membranes with high SiO2 contents showed superior C-rate performance compared to those with low SiO2 contents and commercial microporous polyolefin membrane.

  9. Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery

    Science.gov (United States)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-07-01

    Hybrid membranes of sulfonated poly(ether ether ketone) (SPEEK) and mesoporous silica SBA-15 are prepared with various mass ratios for vanadium redox flow battery (VRB) application and investigated in detail. The hybrid membranes are dense and homogeneous with no visible hole as the SEM and EDX images shown. With the increasing of SBA-15 mass ratio, the physicochemical property, VO2+ permeability, mechanical property and thermal stability of hybrid membranes exhibit good trends, which can be attributed to the interaction between SPEEK and SBA-15. The hybrid membrane with 20 wt.% SBA-15 (termed as S/SBA-15 20) shows the VRB single cell performance of CE 96.3% and EE 88.1% at 60 mA cm-2 due to its good balance of proton conductivity and VO2+ permeability, while Nafion 117 membrane shows the cell performance of CE 92.2% and EE 81.0%. Besides, the S/SBA-15 20 membrane shows stable cell performance of highly stable efficiency and slower discharge capacity decline during 120 cycles at 60 mA cm-2. Therefore, the SPEEK/SBA-15 hybrid membranes with optimized mass ratio and excellent VRB performance can be achieved, exhibiting good potential usage in VRB systems.

  10. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  11. Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: a novel all-carbon hybrid electrocatalyst for metal/air batteries

    Science.gov (United States)

    Wang, Mengran; Fang, Zhao; Zhang, Kai; Fang, Jing; Qin, Furong; Zhang, Zhian; Li, Jie; Liu, Yexiang; Lai, Yanqing

    2016-06-01

    Primary zinc/air batteries could be the next generation of energy storage devices because of their high power density and high safety. Graphene quantum dots nested in the graphene hydrogel have been proposed as excellent all-carbon hybrid oxygen reduction reaction (ORR) catalysts, indicative of their great potential in primary zinc/air batteries.Primary zinc/air batteries could be the next generation of energy storage devices because of their high power density and high safety. Graphene quantum dots nested in the graphene hydrogel have been proposed as excellent all-carbon hybrid oxygen reduction reaction (ORR) catalysts, indicative of their great potential in primary zinc/air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02622b

  12. Battery Sizing for Serial Plug-in Hybrid Vehicles: A Model-Based Economic Analysis for Germany

    OpenAIRE

    Ernst, Christian-Simon; Hackbarth, André; Madlener, Reinhard; Lunz, Benedikt; Sauer, Dirk Uwe; Eckstein, Lutz

    2010-01-01

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the pure electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortiz...

  13. Lead-acid batteries for micro- and mild-hybrid applications

    Science.gov (United States)

    Valenciano, J.; Fernández, M.; Trinidad, F.; Sanz, L.

    Car manufactures have announced the launch in coming months of vehicles with reduced emissions due to the introduction of new functions like stop-start and regenerative braking. Initial performance request of automotive lead-acid batteries are becoming more and more demanding and, in addition to this, cycle life with new accelerated ageing profiles are being proposed in order to determine the influence of the new functions on the expected battery life. This paper will show how different lead-acid battery technologies comply with these new demands, from an improved version of the conventional flooded SLI battery to the high performance of spiral wound valve-regulated lead-acid (VRLA) battery. Different approaches have been studied for improving conventional flooded batteries, i.e., either by the addition of new additives for reducing electrolyte stratification or by optimisation of the battery design to extend cycling life in partial state of charge conditions. With respect to VRLA technology, two different battery designs have been compared. Spiral wound design combines excellent power capability and cycle life under different depth of discharge (DoD) cycling conditions, but flat plate design outperform the latter in energy density due to better utilization of the space available in a prismatic enclosure. This latter design is more adequate for high end class vehicles with high electrical energy demand, whereas spiral wound is better suited for high power/long life demand of commercial vehicle. High temperature behaviour (75 °C) is rather poor for both designs due to water loss, and then VRLA batteries should preferably be located out of the engine compartment.

  14. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  15. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    Science.gov (United States)

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity.

  16. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  17. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    OpenAIRE

    Weiqiang Dong; Yanjun Li; Ji Xiang

    2016-01-01

    A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV)/wind turbine (WT)/battery (B)/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH)) for reliable and economic supply. Two...

  18. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  19. A mild route to mesoporous Mo2C-C hybrid nanospheres for high performance lithium-ion batteries

    Science.gov (United States)

    Gao, Qing; Zhao, Xinyu; Xiao, Ying; Zhao, Di; Cao, Minhua

    2014-05-01

    In this work, we have developed a mild route to fabricate typically mesoporous Mo2C-C hybrid nanospheres based on a solvothermal synthesis and reduction-carbonization process. This work opens a low-temperature route to synthesize valuable carbides. The resultant Mo2C-C hybrid, for the first time, is used as an anode material in lithium ion batteries (LIBs). Compared with bulk Mo2C, the Mo2C-C hybrid exhibits much better electrochemical performance. Remarkably, the hybrid electrode can deliver a specific capacity of over 670 mA h g-1 after 50 cycles at 100 mA g-1, which is much higher than that of the bulk material (113 mA h g-1). Even cycled at a high current density of 1000 mA g-1, high capacities of around 400-470 mA h g-1 can still be retained for the Mo2C-C hybrid. It might benefit from the synergistic effect of the nanohybridization, effectively relieving the volume change during the repeated lithium insertion-extraction reactions and maintaining the integrity of the electrical connections. It is expected that the present synthesis strategy for the Mo2C-C hybrid can be extended to other nanostructured carbides with good energy storage performance.In this work, we have developed a mild route to fabricate typically mesoporous Mo2C-C hybrid nanospheres based on a solvothermal synthesis and reduction-carbonization process. This work opens a low-temperature route to synthesize valuable carbides. The resultant Mo2C-C hybrid, for the first time, is used as an anode material in lithium ion batteries (LIBs). Compared with bulk Mo2C, the Mo2C-C hybrid exhibits much better electrochemical performance. Remarkably, the hybrid electrode can deliver a specific capacity of over 670 mA h g-1 after 50 cycles at 100 mA g-1, which is much higher than that of the bulk material (113 mA h g-1). Even cycled at a high current density of 1000 mA g-1, high capacities of around 400-470 mA h g-1 can still be retained for the Mo2C-C hybrid. It might benefit from the synergistic effect of

  20. Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities

    Science.gov (United States)

    Jeevarajan, Judith

    2013-01-01

    With the need for long periods of extravehicular activities (EVAs) on the Moon or Mars or a near-asteroid, the need for long-performance batteries has increased significantly. The energy requirements for the EVA suit, as well as surface systems such as rovers, have increased significantly due to the number of applications they need to power at the same time. However, even with the best state-of-the-art Li-ion batteries, it is not possible to power the suit or the rovers for the extended period of performance. Carrying a charging system along with the batteries makes it cumbersome and requires a self-contained power source for the charging system that is usually not possible. An innovative method to charge and use the Li-ion batteries for long periods seems to be necessary and hence, with the advent of the Li-ion supercapacitors, a method has been developed to extend the performance period of the Li-ion power system for future exploration applications. The Li-ion supercapacitors have a working voltage range of 3.8 to 2.5 V, and are different from a traditional supercapacitor that typically has a working voltage of 1 V. The innovation is to use this Li-ion supercapacitor to charge Liion battery systems on an as-needed basis. The supercapacitors are charged using solar arrays and have battery systems of low capacity in parallel to be able to charge any one battery system while they provide power to the application. Supercapacitors can safely take up fast charge since the electrochemical process involved is still based on charge separation rather than the intercalation process seen in Li-ion batteries, thus preventing lithium metal deposition on the anodes. The lack of intercalation and eliminating wear of the supercapacitors allows for them to be charged and discharged safely for a few tens of thousands of cycles. The Li-ion supercapacitors can be charged from the solar cells during the day during an extended EVA. The Liion battery used can be half the capacity

  1. Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system.

    Science.gov (United States)

    Choi, Hong Soo; Kim, TaeHoon; Im, Ji Hyuk; Park, Chong Rae

    2011-10-07

    Hyper-networked Li(4)Ti(5)O(12)/carbon hybrid nanofiber sheets that contain both a faradaically rechargeable battery-type component, namely Li(4)Ti(5)O(12), and a non-faradaically rechargeable supercapacitor-type component, namely N-enriched carbon, are prepared by electrospinning and their dual function as a negative electrode of lithium-ion batteries (LIBs) and a capacitor is tested for a new class of hybrid energy storage (denoted BatCap). An aqueous solution composed of polyvinylpyrrolidone, lithium hydroxide, titanium(IV) bis(ammonium-lactato)dihydroxide and ammonium persulfate is electrospun to obtain hyper-networked nanofiber sheets. Next, the sheets are exposed to pyrrole monomer vapor to prepare the polypyrrole-coated nanofiber sheets (PPy-HNS). The hyper-networked Li(4)Ti(5)O(12)/N-enriched carbon hybrid nanofiber sheets (LTO/C-HNS) are then obtained by a stepwise heat treatment of the PPy-HNS. The LTO/C-HNS deliver a specific capacity of 135 mAh g(-1) at 4000 mA g(-1) as a negative electrode for LIBs. In addition, potentiodynamic experiments are performed using a full cell with activated carbon (AC) as the positive electrode and LTO/C-HNS as the negative electrode to estimate the capacitance properties. This new asymmetric electrode system exhibits a high energy density of 91 W kg(-1) and 22 W kg(-1) at power densities of 50 W kg(-1) and 4000 W kg(-1), respectively, which are superior to the values observed for the AC [symbol: see text] AC symmetric electrode system.

  2. Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system

    Science.gov (United States)

    Choi, Hong Soo; Kim, TaeHoon; Im, Ji Hyuk; Park, Chong Rae

    2011-10-01

    Hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets that contain both a faradaically rechargeable battery-type component, namely Li4Ti5O12, and a non-faradaically rechargeable supercapacitor-type component, namely N-enriched carbon, are prepared by electrospinning and their dual function as a negative electrode of lithium-ion batteries (LIBs) and a capacitor is tested for a new class of hybrid energy storage (denoted BatCap). An aqueous solution composed of polyvinylpyrrolidone, lithium hydroxide, titanium(IV) bis(ammonium-lactato)dihydroxide and ammonium persulfate is electrospun to obtain hyper-networked nanofiber sheets. Next, the sheets are exposed to pyrrole monomer vapor to prepare the polypyrrole-coated nanofiber sheets (PPy-HNS). The hyper-networked Li4Ti5O12/N-enriched carbon hybrid nanofiber sheets (LTO/C-HNS) are then obtained by a stepwise heat treatment of the PPy-HNS. The LTO/C-HNS deliver a specific capacity of 135 mAh g - 1 at 4000 mA g - 1 as a negative electrode for LIBs. In addition, potentiodynamic experiments are performed using a full cell with activated carbon (AC) as the positive electrode and LTO/C-HNS as the negative electrode to estimate the capacitance properties. This new asymmetric electrode system exhibits a high energy density of 91 W kg - 1 and 22 W kg - 1 at power densities of 50 W kg - 1 and 4000 W kg - 1, respectively, which are superior to the values observed for the {AC} \\parallel {AC} symmetric electrode system.

  3. Performance Analysis of Solar-Wind-Diesel-Battery Hybrid Energy System for KLIA Sepang Station of Malaysia

    Science.gov (United States)

    Shezan, S. K. A.; Saidur, R.; Hossain, A.; Chong, W. T.; Kibria, M. A.

    2015-09-01

    A large number of populations of the world live in rural or remote areas those are geographically isolated. Power supply and uninterrupted fuel transportation to produce electrical power for these remote areas poses a great challenge. Using renewable energy in hybrid energy system might be a pathway to solve this problem. Malaysia is a large hilly land with the gift of renewable energy resources. There is a good chance to utilize these renewable resources to produce electrical power and to limit the dependency on the fossil fuel as well as reduce the carbon emissions. In this perspective, a research is carried out to analyze the performance of a solar-wind-diesel-battery hybrid energy system for a remote area named “KLIA Sepang station” in the state of Selangor, Malaysia. In this study, a 56 kW hybrid energy system has been proposed that is capable to support more than 50 households and 6 shops in that area. Real time field data of solar radiation and wind speed is used for the simulation and optimization of operations using “Homer” renewable energy software. The proposed system can reduce CO2 emission by about 16 tons per year compared to diesel generator only. In the same time the Cost of energy (COE) of the optimized system is USD 5.126/kWh.The proposed hybrid energy system might be applicable for other parts of the world where the climate conditions are similar.

  4. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rowlette, J.J.

    1981-01-15

    Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  5. Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity.

    Science.gov (United States)

    Jiang, Lianfu; Lin, Binghui; Li, Xiaoming; Song, Xiufeng; Xia, Hui; Li, Liang; Zeng, Haibo

    2016-02-03

    Monolayer MoS2 nanosheets (NSs) are promising anode materials for lithium-ion batteries because all redox reactions take place at the surface without lithium-ion diffusion limit. However, the expanded band gap of monolayer MoS2 NSs (∼1.8 eV) compared to their bulk counterparts (∼1.2 eV) and restacking tendency due to the van der Waals forces result in poor electron transfer and loss of the structure advantage. Here, a facile approach is developed to fabricate the MoS2-graphene aerogels comprising controlled three-dimensional (3D) porous architectures constructed by interconnected monolayer MoS2-graphene hybrid NSs. The robust 3D architectures combining with the monolayer feature of the hybrid NSs not only prevent the MoS2 and graphene NSs from restacking, but also enable fast electrode kinetics due to the surface reaction mechanism and highly conductive graphene matrix. As a consequence, the 3D porous monolayer MoS2-graphene composite aerogels exhibit a large reversible capacity up to 1200 mAh g(-1) as well as outstanding cycling stability and rate performance, making them promising as advanced anode materials for lithium-ion batteries.

  6. Towards a Friendly Energy Management Strategy for Hybrid Electric Vehicles with Respect to Pollution, Battery and Drivability

    Directory of Open Access Journals (Sweden)

    Guillaume Colin

    2014-09-01

    Full Text Available The paper proposes a generic methodology to incorporate constraints (pollutant emission, battery health, drivability into on-line energy management strategies (EMSs for hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs. The integration of each constraint into the EMS, made with the Pontryagin maximum principle, shows a tradeoff between the fuel consumption and the constraint introduced. As state dynamics come into play (catalyst temperature, battery cell temperature, etc., the optimization problem becomes more complex. Simulation results are presented to highlight the contribution of this generic strategy, including constraints compared to the standard approach. These results show that it is possible to find an energy management strategy that takes into account an increasing number of constraints (drivability, pollution, aging, environment, etc.. However, taking these constraints into account increases fuel consumption (the existence of a trade-off curve. This trade-off can be sometimes difficult to find, and the tools developed in this paper should help to find an acceptable solution quickly

  7. Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries

    Science.gov (United States)

    Hou, Chao; Lang, Xing-You; Han, Gao-Feng; Li, Ying-Qi; Zhao, Lei; Wen, Zi; Zhu, Yong-Fu; Zhao, Ming; Li, Jian-Chen; Lian, Jian-She; Jiang, Qing

    2013-01-01

    Nanoarchitectured electroactive materials can boost rates of Li insertion/extraction, showing genuine potential to increase power output of Li-ion batteries. However, electrodes assembled with low-dimensional nanostructured transition metal oxides by conventional approach suffer from dramatic reductions in energy capacities owing to sluggish ion and electron transport kinetics. Here we report that flexible bulk electrodes, made of three-dimensional bicontinuous nanoporous Cu/MnO2 hybrid and seamlessly integrated with Cu solid current collector, substantially optimizes Li storage behavior of the constituent MnO2. As a result of the unique integration of solid/nanoporous hybrid architecture that simultaneously enhances the electron transport of MnO2, facilitates fast ion diffusion and accommodates large volume changes on Li insertion/extraction of MnO2, the supported MnO2 exhibits a stable capacity of as high as ~1100 mA h g−1 for 1000 cycles, and ultrahigh charge/discharge rates. It makes the environmentally friendly and low-cost electrode as a promising anode for high-performance Li-ion battery applications. PMID:24096928

  8. Design and Implementation of a Multi-function Charger Based on Microcontroller%基于单片机的多功能充电器的设计与实现

    Institute of Scientific and Technical Information of China (English)

    赵璞

    2012-01-01

    This project mainly based on single chip multi-function charger to address the fast charging of different battery.ATmega8 in-depth studies on the use of his performance, the design completely implemented the latest technology designed battery charger, sealed lead-acid battery can (SLA), and nickel-cadmium batteries (NiCd) fast charge without modification of hardware, to focus on a single hardware platform to achieve a complete charger product line. Just switch the button you can manually choose a different algo- rithm to realize the different battery charging, and through the LCD clearly see the charge status. Greatly increased the integrated charger, charging reduced cost, convenient and quick.%本课题主要研究基于单片机的多功能充电器,解决对不同电池的快速充电。通过对ATmega8的深入研究,利用它的高性能,设计完全实现了电池充电器设计的功能。本设计可以通过按键切换,对的密封铅酸电池(SLA)和镍镉电池(NiCd)进行充电,并通过LCD清楚地看到其充电状态。同时利用放大电路和Atmega8本身的AD转换器显示对电池电压和电流的实时测量,以较好的控制充电过程,保护电池。

  9. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    Science.gov (United States)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  10. Dispatching of Wind/Battery Energy Storage Hybrid Systems Using Inner Point Method-Based Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Deyou Yang

    2016-08-01

    Full Text Available The application of large scale energy storage makes wind farms more dispatchable, which lowers operating risks to the grid from interconnected large scale wind farms. In order to make full use of the flexibility and controllability of energy storage to improve the schedulability of wind farms, this paper presents a rolling and dispatching control strategy with a battery energy storage system (BESS based on model predictive control (MPC. The proposed control scheme firstly plans expected output, i.e., dispatching order, of a wind/battery energy storage hybrid system based on the predicted output of the wind farm, then calculates the order in the predictive horizon with the receding horizon optimization and the limitations of energy storage such as state of charge and depth of charge/discharge to maintain the combination of active output of the wind farm and the BESS to track dispatching order at the extreme. The paper shows and analyses the effectiveness of the proposed strategy with different sizes of capacity of the BESS based on the actual output of a certain actual wind farm in the northeast of China. The results show that the proposed strategy that controls the BESS could improve the schedulability of the wind farm and maintain smooth output of wind/battery energy storage hybrid system while tracking the dispatching orders. When the capacity of the BESS is 20% or the rated capacity of the wind farm, the mean dispatching error is only 0.153% of the rated capacity of the wind farm.

  11. The design of the smartphone charger based on MCU%基于单片机的智能手机充电器的设计

    Institute of Scientific and Technical Information of China (English)

    王涛; 屈高龙; 殷蘖均; 汪楚; 杨富琴

    2014-01-01

    随着手机技术的持续快速发展,如何对智能手机电池进行安全有效地充电,已经成为了一个重要的课题。单片机技术在工业控制领域有着广泛的应用,利用它的处理控制能力可以实现充电器的智能化。本设计主要根据手机充电器现状,在传统的手机充电器基础上,使用AT89C58单片机来实现手机锂电池充电器方面的应用,充电控制部分由MAX1898芯片完成。该充电器能够实现电池的预充、快充、定时充电、充电需时提醒、充电后自动断电、充满提醒、LED灯提示、电路安全保护、温度控制、应急发电等功能。%With therapid development of mobile technology,how to be safe and effective for smartphone battery charging,has become an important issue.SCM technology has a wide field of industrial control applications.the ability to control the use of its processing can achieve intelligent charger.The design is mainly based on the status quo of mobile phone charger and cell phone charger in the traditional,to implement applications using mobile phone battery charger aspects based on AT89C58 microcontroller,the charge control by the MAX1898 chip.The battery charger is able to achieve a pre-charge,fast charging, regular charging,reminders for charging,automatic power-off and alert after charging,tips of LED lights, safety circuit protection,control for temperature,emergency power and other functions.

  12. The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications

    Science.gov (United States)

    Fernández, M.; Valenciano, J.; Trinidad, F.; Muñoz, N.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. This paper updates work carried out to develop spiral wound valve-regulated batteries for vehicles with different hybridisation degrees, ranging from stop-start to mild hybrid applications. In order to develop a battery that can withstand the hard operating conditions that the work at High Rate Partial-State-of-Charge (HRPSoC) implies, it is necessary to modify the negative AM formulation by using special, additives like carbon and graphite that reduce lead sulphate accumulation during HRPSoC cycling within in the negative plate. Several batches of negative active material (NAM) with the addition of graphites of different types, as well as combinations of graphite and activated carbons, have been made on 6 V 24 Ah Spiral wound modules. Electrical results show a dramatic increase of the charge acceptance at different SoC's that for some combinations approach 200%. On the other hand, on cycle life according to EUCAR Power Assist cycling, values in the range 200,000-220,000 cycles have been obtain in most part of the batch. This represents a capacity turnover of 5000-5500 times the nominal capacity. The paper is divided into three parts. The first part is devoted to identify the cause of failure of the negative plate on Power Assist Cycle Life, that turned to be the development of high amounts of lead sulphate and its accumulation on the surface of the plate. The second part covers the addition of carbon and graphite of low SSA to NAM and finally the third part is dedicated to the test of additions of medium/high SSA carbon to NAM with the specific objective of trying to implement the supercapacitor effect inside the battery.

  13. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  14. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation.

  15. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  16. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  17. Using A Battery Storage Wind / PV Hybrid Power Supply System Based Stand-Alone PSO To Determine The Most Appropriate.

    Directory of Open Access Journals (Sweden)

    Amam Hossain Bagdadee

    2014-08-01

    Full Text Available Wind / PV hybrid power systems, completed in time and geography, both economical and reliable than PV or wind turbine, but the hybrid system wind / PV to increase capacity. Installation of experience with traditional power design and optimization of design and operation cannot be seen with. To solve the problem in a comprehensive objective function to present the objective function of the solar wind. And reliability of the storage cells can be calculated with an investment of erosion format system resources, including the number of solar cells and batteries, but the type and amount of solar wind to change. As well as to improve not only to make the results more accurate investment costs and reliability cost of conversion optimization problems several optimization problems today.Improved optimization algorithms, PSO are used to solve nonlinear hybrid analysis is any integer optimization problem on the basis of PSO algorithm standard techniques then there is the first step convergence factor is applied to improve the detection performance of both migration are used to improve the ability of the algorithm to find the best in the whole world.

  18. Charge and bilateral discharge of battery in hybrid vehicles with ability of reactive power compensation with technology V2G

    Directory of Open Access Journals (Sweden)

    Sajad Davtalab

    2016-09-01

    Full Text Available Posing V2G theory for hybrid vehicles can create opportunities on the operation of the grid, and can even put it in row of renewable energy sources. One of the needs in the operation of power systems on which is special attention is voltage control and reactive power of grid. Hybrid cars with V2G capability can be utilized for this work and is the subject of this article.An appropriate control method for reactive power control of grid by using V2G is suggested in this article. Reactive powers, dc-link voltage and reactive power in the suggested control method are independent and can be controlled separately. Section of battery and transducer of hybrid vehicle with V2G capability have been simulated and the suggested controller has been applied to it in order to evaluate the suggested control method. The results achieved from the simulation show that reactive power injected into the grid or received from it can be controlled independent of its reactive power with appropriate transient state.

  19. Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications

    Science.gov (United States)

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-01

    In this study, graphene–selenium hybrid microballs (G–SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G–SeHMs thus prepared is investigated for use as cathode material in applications of lithium–selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g‑1 at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g‑1 after 100 cycles at 0.1 C 84.5% retention) and high rate capability (specific capacity of 301 mA h g‑1 at 5 C). These electrochemical properties are attributed to the fact that the G–SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  20. Competition between insertion of Li+ and Mg2+: An example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries

    Science.gov (United States)

    Meng, Yuan; Wang, Dashuai; Wei, Yingjin; Zhu, Kai; Zhao, Yingying; Bian, Xiaofei; Du, Fei; Liu, Bingbing; Gao, Yu; Chen, Gang

    2017-04-01

    Titanium dioxide bronze (TiO2-B) nanowires were prepared by the hydrothermal method and used as the positive electrode for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries. First-principles calculations showed that the diffusion barrier for Mg2+ (0.6 eV) in the TiO2-B lattice was more than twice of that for Li+ (0.3 eV). Electrochemical impedance spectroscopy showed that the charge transfer resistance of TiO2-B in the Mg2+ ion electrolyte was much larger than that in the Li+/Mg2+ hybrid electrolyte. For these reasons, the Mg rechargeable battery showed a small discharge capacity of 35 mAh g-1 resulting from an electrochemical double-layer capacitive process. In comparison, the TiO2-B nanowires exhibited a large capacity (242 mAh g-1 at the 20 mA g-1 current density), high rate capability (114 mAh g-1 at 1 A g-1), and excellent cycle stability in the Li+/Mg2+ hybrid-ion battery. The dominant reaction occurred in the TiO2-B electrode was intercalation of Li+ ions, of which about 74% of the total capacity was attributed to Li+ pseudo-capacitance.

  1. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; P.P.J. van den Bosch; Y. Shen; T. Hofman; Edwin Tazelaar

    2012-01-01

    Fuel cell hybrid vehicles are believed to provide a solution to cut down emissions in the long term. They provide local zero-emission propulsion and when the hydrogen as fuel is derived from renewable energy sources, fuel cell hybrids enable well-to-wheel zero-emission transportation,

  2. Online management of lithium-ion battery based on time-triggered controller area network for fuel-cell hybrid vehicle applications

    Science.gov (United States)

    Li, Xiangjun; Li, Jianqiu; Xu, Liangfei; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Lin, Chengtao

    This paper introduces a state of charge (SOC) estimation algorithm that was implemented for an automotive lithium-ion battery system used in fuel-cell hybrid vehicles (FCHVs). The proposed online control strategy for the lithium-ion battery, based on the Ah current integration method and time-triggered controller area network (TTCAN), incorporates a signal filter and adaptive modifying concepts to estimate the Li 2MnO 4 battery SOC in a timely manner. To verify the effectiveness of the proposed control algorithm, road test experimentation was conducted with an FCHV using the proposed SOC estimation algorithm. It was confirmed that the control technique can be used to effectively manage the lithium-ion battery and conveniently estimate the SOC.

  3. Online management of lithium-ion battery based on time-triggered controller area network for fuel-cell hybrid vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangjun; Li, Jianqiu; Xu, Liangfei; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Lin, Chengtao [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    This paper introduces a state of charge (SOC) estimation algorithm that was implemented for an automotive lithium-ion battery system used in fuel-cell hybrid vehicles (FCHVs). The proposed online control strategy for the lithium-ion battery, based on the Ah current integration method and time-triggered controller area network (TTCAN), incorporates a signal filter and adaptive modifying concepts to estimate the Li{sub 2}MnO{sub 4} battery SOC in a timely manner. To verify the effectiveness of the proposed control algorithm, road test experimentation was conducted with an FCHV using the proposed SOC estimation algorithm. It was confirmed that the control technique can be used to effectively manage the lithium-ion battery and conveniently estimate the SOC. (author)

  4. Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries.

    Science.gov (United States)

    Li, Changyi; Ward, Ashleigh L; Doris, Sean E; Pascal, Tod A; Prendergast, David; Helms, Brett A

    2015-09-09

    Redox flow batteries (RFBs) present unique opportunities for multi-hour electrochemical energy storage (EES) at low cost. Too often, the barrier for implementing them in large-scale EES is the unfettered migration of redox active species across the membrane, which shortens battery life and reduces Coulombic efficiency. To advance RFBs for reliable EES, a new paradigm for controlling membrane transport selectivity is needed. We show here that size- and ion-selective transport can be achieved using membranes fabricated from polymers of intrinsic microporosity (PIMs). As a proof-of-concept demonstration, a first-generation PIM membrane dramatically reduced polysulfide crossover (and shuttling at the anode) in lithium-sulfur batteries, even when sulfur cathodes were prepared as flowable energy-dense fluids. The design of our membrane platform was informed by molecular dynamics simulations of the solvated structures of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) vs lithiated polysulfides (Li2Sx, where x = 8, 6, and 4) in glyme-based electrolytes of different oligomer length. These simulations suggested polymer films with pore dimensions less than 1.2-1.7 nm might incur the desired ion-selectivity. Indeed, the polysulfide blocking ability of the PIM-1 membrane (∼0.8 nm pores) was improved 500-fold over mesoporous Celgard separators (∼17 nm pores). As a result, significantly improved battery performance was demonstrated, even in the absence of LiNO3 anode-protecting additives.

  5. Battery. Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Thiem, U.; Thielen, C.

    1992-03-19

    The invention concerns a battery consisting of at least one battery trough, which surrounds individual cells and has a lower inlet opening to connect to a pressurized pipe for a gaseous cooling medium; in its inside it has a lower distribution device for the cooling medium connected to the inlet opening and connected guide ducts taken through the internal space, and at least one upper outlet opening for the cooling medium. To achieve a better cooling system, it is proposed that the battery trough should surround several trough modules, which consist of a module container, whose floor has floor openings flush with the flow ducts between the individual cells and that the distribution device should have vertical separating bars, to the top edge of which the floor of the module container concerned is sealed.

  6. Application of simplified model for the analysis of a novel battery used in General Motors' Precept hybrid electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Verbrugge, M.W. [General Motors Corp., Troy, MI (United States). Advanced Technology Vehicles

    2000-07-01

    The challenges facing the integration of a battery module into an electric vehicle (EV) was discussed and some simple approaches to address these challenges were proposed. The cost of EV batteries inhibits large-scale commercialization. Other challenges include the current, potential and state of charge (SOC) as well as the thermal system requirements and design. One solution is to develop hybrid electric vehicles (HEV) which would mean the battery size could be significantly reduced because the engine would supply most of the needed energy to power the vehicle. The author suggested a simple mathematical method to analyze HEV batteries and conduct trade-offs in order to optimize a car's energy storage, high voltage and thermal systems. A newly developed HEV nickel-metal hydride battery system which is found in General Motors' Precept HEV was used to test the approach. The analysis is partly based on understanding how the past charges and discharges influence the apparent hysteresis characterizing the SOC versus open-circuit potential relationship. The method does not address the temperature deviations with the battery pack. The difference between liquid and air cooling was also determined. It is hoped that battery suppliers will adopt this method to speed the advancement of this sector of development. refs., tabs., figs.

  7. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability

    Science.gov (United States)

    Liu, Huan; Jia, Mengqiu; Cao, Bin; Chen, Renjie; Lv, Xinying; Tang, Renjie; Wu, Feng; Xu, Bin

    2016-07-01

    Nitrogen-doped carbon/graphene (NCG) hybrid materials were prepared by an in-situ polymerization and followed pyrolysis for sodium-ion batteries. The NCG has a large interlayer distance (0.360 nm) and a high nitrogen content of 7.54 at%, resulting in a high reversible sodium storage capacity of 336 mAh g-1 at 30 mA g-1. The NCG shows a sandwich-like structure, i.e. nitrogen-doped carbon nanosheets closely coated on both sides of graphene. The carbon nanosheets shorten the ion diffusion distance, while the sandwiched graphene with high electronic conductivity guarantees fast electron transport, making the NCG exhibit excellent rate capability (94 mAh g-1 at 5 A g-1). It also exhibits good cycle stability with a capacity retention of 89% after 200 cycles at 50 mA g-1.

  8. A novel coordinated control strategy considering power smoothing for a hybrid photovoltaic/battery energy storage system

    Institute of Scientific and Technical Information of China (English)

    DAUD Muhamad Zalani; MOHAMED Azah; HANNAN M A

    2016-01-01

    This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage (PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.

  9. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  10. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  11. Contribution to the optimal design of an hybrid parallel power-train: choice of a battery model; Contribution a la conception optimale d'une motorisation hybride parallele. Choix d'un modele d'accumulateur

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, E.

    2004-09-15

    This work deals with the dynamical and energetic modeling of a 42 V NiMH battery, the model of which is taking into account into a control law for an hybrid electrical vehicle. Using an inventory of the electrochemical phenomena, an equivalent electrical scheme has been established. In this model, diffusion phenomena were represented using non integer derivatives. This tool leads to a very good approximation of diffusion phenomena, nevertheless such a pure mathematical approach did not allow to represent energetic losses inside the battery. Consequently, a second model, made of a series of electric circuits has been proposed to represent energetic transfers. This second model has been used in the determination of a control law which warrants an autonomous management of electrical energy embedded in a parallel hybrid electrical vehicle, and to prevent deep discharge of the battery. (author)

  12. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

  13. Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries

    Science.gov (United States)

    Xie, Jing; Yang, Juan; Zhou, Xiangyang; Zou, Youlan; Tang, Jingjing; Wang, Songcan; Chen, Feng

    2014-05-01

    A three-dimensional hybrid nanostructure incorporating the merits of the MWCNTs webs (MWCNTs-W) and the reduced graphene oxide (RGO) is designed to improve the high-rate cycling performance of the lithium-sulfur batteries. Owing to the excellent Li+ ion and electronic transport properties of the MWCNTs-W and the RGO, this unique structure can provide a three-dimensional conductive network and promote rapid charge-transfer reaction at the cathode. Furthermore, because of the rough surface and porous structure of the MWCNTs after activation with KOH, and the special adsorption ability of the RGO, the soluble polysulfide intermediates can be effectively trapped in the cathode. Therefore, when evaluating the electrochemical properties of the RGO@MWCNTs-W/S composite as the cathode material for lithium-sulfur batteries, it exhibits an excellent cyclical stability and high rate performance. In particular, even at an ultrahigh rate (5 C), a discharge capacity as high as 620 mAh g-1 is still retained for the RGO@MWCNTs-W/S composite with 68.93 wt% sulfur after 200 cycles, and the average coulombic efficiency is 96%.

  14. Energy Management of a Hybrid AC–DC Micro-Grid Based on a Battery Testing System

    Directory of Open Access Journals (Sweden)

    Bo Long

    2015-02-01

    Full Text Available Energy Recovery Battery Testing Systems (ERBTS plays an important role in battery manufacture. The conventional ERBTS configuration contains a fundamental transformer, and a bidirectional Direct Current (DC–DC and Alternating Current (AC–DC converter. All ERBTS are connected in parallel, thus constituting a special and complicated AC micro-grid system. Aiming at addressing their low energy recovery efficiency, complex grid-connected control algorithm issues for islanded detection, and complicated power circuit topology issues, a hierarchical DC-link voltage hybrid AC–DC micro-grid that contains composite energy storing devices is proposed. Moreover, an energy management optimal scheme for the proposed scheme is put forward. The system configuration of the proposed scheme is described in detail. Compared to the conventional scheme, the proposed scheme has the merits of simplified power circuit topology, no need for phase synchronous control, and much higher energy recovery efficiency and reliability. The validity and effectiveness of the proposed technique is verified through numerous experimental results.

  15. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  16. Composite Organic Radical - Inorganic Hybrid Cathode for Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qian; Cosimbescu, Lelia; Koech, Phillip K.; Choi, Daiwon; Lemmon, John P.

    2013-07-01

    A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.

  17. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead acid batteries

    Science.gov (United States)

    Rowlette, J. J.

    1981-01-01

    Charge efficiencies were determined by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state of charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  18. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 4, In-vehicle safety

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J.

    1992-11-01

    This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

  19. A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions

    Directory of Open Access Journals (Sweden)

    Lan-Rong Dung

    2016-01-01

    Full Text Available A new battery simulator based on a hybrid model is proposed in this paper for dynamic discharging behavior and runtime predictions in existing electronic simulation environments, e.g., PSIM, so it can help power circuit designers to develop and optimize their battery-powered electronic systems. The hybrid battery model combines a diffusion model and a switching overpotential model, which automatically switches overpotential resistance mode or overpotential voltage mode to accurately describe the voltage difference between battery electro-motive force (EMF and terminal voltage. Therefore, this simulator can simply run in an electronic simulation software with less computational efforts and estimate battery performances by further considering nonlinear capacity effects. A linear extrapolation technique is adopted for extracting model parameters from constant current discharging tests, so the EMF hysteresis problem is avoided. For model validation, experiments and simulations in MATLAB and PSIM environments are conducted with six different profiles, including constant loads, an interrupted load, increasing and decreasing loads and a varying load. The results confirm the usefulness and accuracy of the proposed simulator. The behavior and runtime prediction errors can be as low as 3.1% and 1.2%, respectively.

  20. Impact of real world driving pattern and all-electric range on battery sizing and cost of plug-in hybrid electric two-wheeler

    Science.gov (United States)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Varman, K. Sri Raja; Arjunan, T. V.

    2011-03-01

    This study addresses the impact of an actual drive pattern on the sizing and cost of a battery pack for a plug-in hybrid electric two-wheeler. To estimate the daily average travel distance in fixing the all-electric range of two wheelers, a study conducted in Coimbatore city is presented. A MATLAB simulation model developed for estimating the energy and power requirements in an all-electric strategy using an Indian driving cycle (IDC) and a real-world driving pattern are discussed. The simulation results reveal the impact of the real-world driving pattern on energy consumption and also the influence of all-electric range in sizing the battery pack. To validate the results, a plug-in hybrid electric two-wheeler developed by modifying a standard two-wheeler has been tested on the road with the help of the IDC simulator kit. An annual battery cost comparison shows that nickel-metal-hydride batteries are more economical and suitable for in plug-in hybrid electric two-wheelers.

  1. Paintable battery.

    Science.gov (United States)

    Singh, Neelam; Galande, Charudatta; Miranda, Andrea; Mathkar, Akshay; Gao, Wei; Reddy, Arava Leela Mohana; Vlad, Alexandru; Ajayan, Pulickel M

    2012-01-01

    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials such as metals, glass, glazed ceramics and flexible polymer substrates. We also demonstrate the possibility of interconnected modular spray painted battery units to be coupled to energy conversion devices such as solar cells, with possibilities of building standalone energy capture-storage hybrid devices in different configurations.

  2. DC Smart Grid Connected with Fuel Charging Station and AC Load by Hybrid MLI

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-07-01

    Full Text Available This paper presents the Solar (photo voltaic power Plant and Windmill plant with DC Smart Grid connected with an DC Fuel Charging Station For Electric Vehicle (EV, Plug in Hybrid Electric Vehicle (PHEV and converted to AC load for Consumer single or Three phase ac load by means of Hybrid Multilevel Inverter (MLI. Solar Energy which store energy in lithium-ion battery and connected to Smart Grid .Wind Energy which get stored in Lithium-ion battery that Fixed DC Voltage connected with DC Smart Grid. Smart Grid which are Connected with DC Fuel Charging Station in Ring Topology with a certain distance for charging of Electric Vehicle (EV and Plug-in Hybrid Electric Vehicle with On-Board (Integrated Charger for faster charging of EV. In Power demand for Consumer the DC load from smart grid converted into an ac load by Hybrid Multilevel Inverter. In Consumers Place the small wind mill and PV panel are installed that energy can be used for consumers load at peak time or power Shutdown .Other than the power shutdown or peak time in the consumers place, stored DC Energy can be fed to Smart Grid. A major development in distribution automation is deployment of smart meters as a gateway between the utility and customer. With such capabilities the smart meter becomes not only a point of measurement of consumed kWh but also a controller capable of bidirectional communications with both the customer and utility.

  3. Hybrid phosphorene/graphene nanocomposite as an anode material for Na-ion batteries: a first-principles study

    Science.gov (United States)

    Wang, Linxia; Jiang, Zhiqiang; Li, Wei; Gu, Xiao; Huang, Li

    2017-04-01

    The potential application of the hybrid phosphorene/graphene (P/G) composites as an anode material in Na-ion batteries (NIBs) has been explored based on first-principles calculations. The calculated elastic constants reveal that the P/G has an ultrahigh stiffness, which can effectively suppress the undesirable structural deformation during the sodiation and desodiation cycles. Na atoms can strongly bind with the phosphorene single-layer (SP), double-layer (DP), and their composites with graphene (SP/G, DP/G, G/DP/G), and can even cause a sliding between the layers when the DP/G accommodate more Na atoms. The migration of Na in P/G is anisotropic with the minimum energy path along the zigzag channel. The low diffusion barriers of only about several tens of meV ensure the high mobility of Na within the layers, and thus lead to rapid charge/discharge capacity of P/G. The electronic structures show that the hybrid P/G becomes metallic with the Na incorporation, which contributes to the good electric conductivity in P/G. We further demonstrate that the average open circuit voltage (OCV) of DP/G is 0.53 V, which is comparable to other anode materials. These results suggest that P/G composites hold great potential to be a good anode material in NIBs.

  4. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film.

    Science.gov (United States)

    Liu, Jilei; Chen, Minghua; Zhang, Lili; Jiang, Jian; Yan, Jiaxu; Huang, Yizhong; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2014-12-10

    The development of portable and wearable electronics has promoted increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features. Here, a new type of flexible Ni/Fe cell is designed and fabricated by employing Ni(OH)2 nanosheets and porous Fe2O3 nanorods grown on lightweight graphene foam (GF)/carbon nanotubes (CNTs) hybrid films as electrodes. The assembled f-Ni/Fe cells are able to deliver high energy/power densities (100.7 Wh/kg at 287 W/kg and 70.9 Wh/kg at 1.4 kW/kg, based on the total mass of active materials) and outstanding cycling stabilities (retention 89.1% after 1000 charge/discharge cycles). Benefiting from the use of ultralight and thin GF/CNTs hybrid films as current collectors, our f-Ni/Fe cell can exhibit a volumetric energy density of 16.6 Wh/l (based on the total volume of full cell), which is comparable to that of thin film battery and better than that of typical commercial supercapacitors. Moreover, the f-Ni/Fe cells can retain the electrochemical performance with repeated bendings. These features endow our f-Ni/Fe cells a highly promising candidate for next generation flexible energy storage systems.

  5. Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs for Enhancing the Resiliency of Hybrid Microgrids

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-02-01

    Full Text Available The resiliency of power systems can be enhanced during emergency situations by using microgrids, due to their capability to supply local loads. However, precise prediction of disturbance events is very difficult rather the occurrence probability can be expressed as, high, medium, or low, etc. Therefore, a fuzzy logic-based battery energy storage system (BESS operation controller is proposed in this study. In addition to BESS state-of-charge and market price signals, event occurrence probability is taken as crisp input for the BESS operation controller. After assessing the membership levels of all the three inputs, BESS operation controller decides the operation mode (subservient or resilient of BESS units. In subservient mode, BESS is fully controlled by an energy management system (EMS while in the case of resilient mode, the EMS follows the commands of the BESS operation controller for scheduling BESS units. Therefore, the proposed hybrid microgrid model can operate in normal, resilient, and emergency modes with the respective objective functions and scheduling horizons. Due to the consideration of resilient mode, load curtailment can be reduced during emergency operation periods. Numerical simulations have demonstrated the effectiveness of the proposed strategy for enhancing the resiliency of hybrid microgrids.

  6. Effect of extreme temperatures on battery charging and performance of electric vehicles

    Science.gov (United States)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a "base" load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  7. Single stage grid converters for battery energy storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy...... storage systems (BESS) which can interface mediumvoltage batteries to the grid. Converter topologies comparison is performed in terms of efficiency, common mode voltage and redundancy for a 6kV series connected medium voltage batteries with a nominal power of 5MVA to act as a battery charger/discharger....

  8. Enhanced Wettability and Thermal Stability of a Novel Polyethylene Terephthalate-Based Poly(Vinylidene Fluoride) Nanofiber Hybrid Membrane for the Separator of Lithium-Ion Batteries.

    Science.gov (United States)

    Zhu, Chunhong; Nagaishi, Tomoki; Shi, Jian; Lee, Hoik; Wong, Pok Yin; Sui, Jianhua; Hyodo, Kenji; Kim, Ick Soo

    2017-08-09

    In this study, a novel membrane for the separator in a lithium-ion (Li-ion) battery was proposed via a mechanically pressed process with a poly(vinylidene fluoride) (PVDF) nanofiber subject and polyethylene terephthalate (PET) microfiber support. Important physical properties, such as surface morphology, wettability, and heat stability were considered for the PET-reinforced PVDF nanofiber (PRPN) hybrid separator. Images of scanning electron microscopy (SEM) showed that the PRPN hybrid separator had a homogeneous pore size and high porosity. It can wet out in battery electrolytes completely and quickly, satisfying wettability requirements. Moreover, the electrolyte uptake was higher than that of dry-laid and wet-laid nonwovens. For heat stability, no shrink occurred even when the heating temperature reached 135 °C, demonstrating thermal and dimensional stability. Moreover, differential scanning calorimetry (DSC) showed that the PRPN hybrid separator possessed a shutdown temperature of 131 °C, which is the same as conventional separators. Also, the meltdown temperature reached 252 °C, which is higher than the shutdown temperature, and thus can protect against internal cell shorts. The proposed PRPN hybrid separator is a strong candidate material for utilization in Li-ion batteries.

  9. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  10. Optimization of unipolar magnetic couplers for EV wireless power chargers

    Science.gov (United States)

    Zeng, H.; Liu, Z. Z.; Chen, H. X.; Zhou, B.; Hei, T.

    2016-08-01

    In order to improve the coupling coefficient of EV wireless power chargers, it's important to optimize the magnetic couplers. To improve the coupling coefficient, the relationship between coupling coefficient and efficiency is derived, and the expression of coupling coefficient based on magnetic circuit is deduced, which provide the basis for optimizing the couplers. By 3D FEM simulation, the optimal core structure and coils are designed for unipolar circular couplers. Experiments are designed to verify the correctness of the optimization results, and compared with previous coupler, the transmission efficiency is improved and weight is reduced.

  11. DC Fast Charger Usage in the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Salisbury, Shawn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smart, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This document will describe the use of a number of Direct Current Fast Charging Stations throughout Washington and Oregon as a part of of the West Coast Electric Highway. It will detail the usage frequency and location of the charging stations INL has data from. It will also include aggregated data from hundreds of privately owned vehicles that were enrolled in the EV Project regarding driving distance when using one of the West Coast Electric Highway fast chargers. This document is a white paper that will be published on the INL AVTA website.

  12. Architectural innovation foresight of thermoelectric generator charger integrated portable power supply for portable consumer electronic device in metropolitan market: The case study of Thailand

    Science.gov (United States)

    Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.

    2012-06-01

    In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for

  13. VALVE TURBO-ALTERNATOR AS ADDITIONAL HYBRID CAR DEVICE FOR THE HIGH-VOLTAGE BATTERY CHARGE

    Directory of Open Access Journals (Sweden)

    S. Kolesnikov

    2009-01-01

    Full Text Available The description of the hybrid car, its drive components and method of the solution of the problem with moving period of the car on electric pulling by means of valve turbo-alternator is given in this article.

  14. Optimal vehicle control strategy of a fuel cell/battery hybrid city bus

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liangfei; Li, Jianqiu; Hua, Jianfeng; Li, Xiangjun; Ouyang, Minggao [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    In this article, an optimal vehicle control strategy based on a time-triggered controller area network (TTCAN) system for a polymer electrolyte membrane (PEM) fuel cell/nickel-metal hydride (Ni-MH) battery powered city bus is presented. Aiming at improving the fuel economy of the city bus, the control strategy comprises an equivalent consumption minimization strategy (ECMS) and a braking energy regeneration strategy (BERS). On the basis of the introduction of a battery equivalent hydrogen consumption model incorporating a charge-sustaining coefficient, an analytical solution to the equivalent consumption minimization problem is given. The proposed strategy has been applied in several city buses for the Beijing Olympic Games of 2008. Results of the ''China city bus typical cycle'' testing show that, the ECMS and the BERS lowered hydrogen consumption by 2.5% and 15.3% respectively, compared with a rule-based strategy. The BERS contributes much more than the ECMS to the fuel economy, because the fuel cell system does not leave much room for the optimal algorithm in improving the efficiency. (author)

  15. A Study of Fuel Economy Improvement in a Plug-in Hybrid Electric Vehicle using Engine on/off and Battery Charging Power Control Based on Driver Characteristics

    Directory of Open Access Journals (Sweden)

    Seulgi Lee

    2015-09-01

    Full Text Available In this study, driving data for various types of drivers are collected using a VIDE (virtual integrated driving environment, and a driver model is developed. To represent the driver tendencies quantitatively, the DDA (degree of driver aggression is proposed based on fuzzy logic. DDA has a 0-1 value; the closer the DDA is to one, the more aggressive the driver. Using the DDA, an engine on/off and battery charging power control algorithm are developed to improve the fuel economy of a power-split-type plug-in hybrid electric vehicle. The engine on/off control reduces the frequent engine on/off caused by aggressive driving, whereas the battery charging power control maintains the battery state of charge (SOC by operating the engine according to the DDA. It is found that the proposed control algorithm improves fuel economy by 17.3% compared to the existing control for an aggressive driver.

  16. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage

    Science.gov (United States)

    Li, Guolong; Yang, Ze; Jiang, Yan; Zhang, Wuxing; Huang, Yunhui

    2016-03-01

    A hybrid aqueous rechargeable battery with Na3V2(PO4)3 as cathode and metal Zn as anode has been proposed. Na3V2(PO4)3 is co-incorporated by carbon and reduced graphene oxide. The battery delivers a capacity of 92 mAh g-1 at a current density of 50 mA g-1 with a high and flat operating voltage of 1.42 V. It exhibits a capacity of 60 mAh g-1 at a high current density of 2000 mA g-1, indicative of excellent rate capability. Such inexpensive and safe battery shows an energy density as high as 112 Wh kg-1, demonstrating that it is potential for future application in large-scale energy storage.

  17. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ghosh, Arnab; Manjunatha, Revanasiddappa; Kumar, Rajat; Mitra, Sagar

    2016-12-14

    Lithium-sulfur batteries mostly suffer from the low utilization of sulfur, poor cycle life, and low rate performances. The prime factors that affect the performance are enormous volume change of the electrode, soluble intermediate product formation, poor electronic and ionic conductivity of S, and end discharge products (i.e., Li2S2 and Li2S). The attractive way to mitigate these challenges underlying in the fabrication of a sulfur nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic as well as electronic conductivity leading to a mechanically robust and mixed conductive (ionic and electronic conductive) sulfur electrode. Herein, we report a novel bottom-up approach to synthesize a unique freestanding, flexible cathode scaffold made of porous reduced graphene oxide, nanosized sulfur, and Mn3O4 nanoparticles, and all are three-dimensionally interconnected to each other by hybrid polyaniline/sodium alginate (PANI-SA) matrix to serve individual purposes. A capacity of 1098 mAh g(-1) is achieved against lithium after 200 cycles at a current rate of 2 A g(-1) with 97.6% of initial capacity at a same current rate, suggesting the extreme stability and cycling performance of such electrode. Interestingly, with the higher current density of 5 A g(-1), the composite electrode exhibited an initial capacity of 1015 mA h g(-1) and retained 71% of the original capacity after 500 cycles. The in situ Raman study confirms the polysulfide absorption capability of Mn3O4. This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance lithium-sulfur batteries and a strategy that can be used to develop flexible large power storage devices.

  18. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process

    Science.gov (United States)

    Huang, Yanfang; Han, Guihong; Liu, Jiongtian; Chai, Wencui; Wang, Wenjuan; Yang, Shuzhen; Su, Shengpeng

    2016-09-01

    The recovering of valuable metals in spent lithium-ion battery cathodes brings about economic and environmental benefits. A stepwise leaching-flotation-precipitation process is adopted to separate and recover Li/Fe/Mn from the mixed types of cathode materials (hybrid wastes of LiFePO4 and LiMn2O4). The optimal operating conditions for the stepwise recovery process are determined and analyzed by factorial design, thermodynamics calculation, XRD and SEM characterization in this study. First, Li/Fe/Mn ions are released from the cathode using HCl assisted with H2O2 in the acid leaching step. The leachability of metals follows the series Li > Fe > Mn in the acidic environment. Then Fe3+ ions are selectively floated and recovered as FeCl3 from the leachate in the flotation step. Finally, Mn2+/Mn3+ and Li+ ions are sequentially precipitated and separated as MnO2/Mn2O3 and Li3PO4 using saturated KMnO4 solution and hot saturated Na3PO4 solution, respectively. Under the optimized and advisable conditions, the total recovery of Li, Fe and Mn is respectively 80.93 ± 0.16%, 85.40 ± 0.12% and 81.02 ± 0.08%. The purity for lithium, ferrum and manganese compounds is respectively 99.32 ± 0.07%, 97.91 ± 0.05% and 98.73 ± 0.05%. This stepwise process could provide an alternative way for the effective separation and recovery of metal values from spent Li-ion battery cathodes in industry.

  19. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  20. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    Science.gov (United States)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  1. Estimation Method of State-of-Charge For Lithium-ion Battery Used in Hybrid Electric Vehicles Based on Variable Structure Extended Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    SUN Yong; MA Zilin; TANG Gongyou; CHEN Zheng; ZHANG Nong

    2016-01-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5%to 10%comparing with the range of 20%to 30%using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  2. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  3. Preparation and Characterization of a Hybrid Solid Polymer Electrolyte Consisting of Poly(Ethyleneoxide) and Poly(Acrylonitrile) for Polymer-Battery Application

    OpenAIRE

    Nookala, Munichandraiah; Scanlon, Lawrence G; Marsh, Richard A

    1997-01-01

    For application in an ambient temperature solid state lithium battery a highly dimensionally-stable polymer electrolyte based on polyethyleneoxide (PEO) suffers from low ionic conductivity, whereas a highly conducting gel electrolyte based on polyacrylonitrile (PAN) suffers from low dimensional stability. In order to overcome these problems, a hybrid solid polymer electrolyte (HSPE) was prepared using PEO, PAN, propylene carbonate (PC), ethylene carbonate (EC) and lithium perchlorate. The HSP...

  4. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  5. Development of a Electrically Inspired Low Emission Microcontroller Based Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    M. Habib Ullah

    2012-01-01

    Full Text Available Problem statement: Recently, influx of research afford is being concentrated in automobile engineering to develop low emission hybrid electric vehicle to reduce the greenhouse gases such as hydro-carbons, carbon monoxide, carbon dioxide, produces from the vehicle. Approach: Hybrid Electric Vehicles (HEVs powered by electric machines and an Internal Combustion Engine (ICE are a promising mean of reducing emissions and fuel consumption without compromising vehicle functionality and driving performances. Reduction of emission is a significant issue to save the environment from pollution that cause of many diseases in urban areas is almost entirely due to transport using fossil fuel. Although zero emission transport has not been developed and used practically yet. Results: This study introduce a control mechanism for alternative hybrid electric vehicle combination of electric motor and gasoline engine that reduce the use of fossil fuel without compromising the overall car performance. Conclusion: In this study, a microcontroller based control mechanism of HEV is introduced which consists of battery, voltage indicator, DC motor controller and battery charger."

  6. Integration of a vanadium-redox-flow-battery into a hybrid renewable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, L.; Grahn, J.; Kluge, A.; Boggasch, E.; Kuehl, L. [Ostfalia Univ. of Applied Science, Wolfenbuettel (Germany). Inst. of Energy Optimized Systems EOS

    2012-07-01

    Today's renewable energy systems, like wind turbines or solar power plants, are depending on weather conditions (windy or sunny days). In order to compensate these fluctuations of energy production it is necessary to store produced energy by using one of several options which are available at this time. The planned substitution of nuclear power issues a challenge to Germany and its energy-politics. This paper deals with the efforts of Ostfalia University of Applied Sciences to alleviate a part of the most important problem of this century. Ostfalia's compares of different energy storages will give a help to develop efficient energy management strategies for hybrid systems.

  7. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Science.gov (United States)

    Walkowiak, Mariusz; Zalewska, Aldona; Jesionowski, Teofil; Waszak, Daniel; Czajka, Bogdan

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica.

  8. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Walkowiak, Mariusz; Waszak, Daniel; Czajka, Bogdan [Central Laboratory of Batteries and Cells, ul. Forteczna 12, 61-362 Poznan (Poland); Zalewska, Aldona [Warsaw University of Technology, Department of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Jesionowski, Teofil [Poznan University of Technology, Institute of Chemical Technology and Engineering, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland)

    2006-09-13

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica. (author)

  9. Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries

    Institute of Scientific and Technical Information of China (English)

    Jiye Zhan; Xinhui Xia n; Yu Zhong; Xiuli Wang; Jiangping Tu n

    2016-01-01

    Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer inter-connected hollow composite spheres with diameters of ∼350 nm as well as thin walls of ∼20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g?1 at 2 A g?1), and stable high-rate cycling life (70 mAh g?1 after 12,500 cycles at 2 A g?1). The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.

  10. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  11. Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery

    Science.gov (United States)

    Wei, Guanjie; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-05-01

    To improve the electrochemical activity of polyacrylonitrile (PAN)-based electrospun carbon nanofibers (ECNFs) toward vanadium redox couples, the multi-wall carbon nanotubes (CNTs) and Bi-based compound as electrocatalyst have been embedded in the ECNFs to make composite electrode, respectively. The morphology and electrochemical properties of pristine ECNFs, CNTs/ECNFs and Bi/ECNFs have been characterized. Among the three kinds of electrodes, the CNTs/ECNFs show best electrochemical activity toward VO2+/VO2+ redox couple, while the Bi/ECNFs present the best electrochemical activity toward V2+/V3+ redox couple. Furthermore, the high overpotential of hydrogen evolution on Bi/ECNFs makes the side-reaction suppressed. Because of the large property difference between the two composite electrodes, the CNTs/ECNFs and Bi/ECNFs are designed to act as positive and negative electrode for vanadium redox flow battery (VRFB), respectively. It not only does improve the kinetics of two electrode reactions at the same time, but also reduce the kinetics difference between them. Due to the application of asymmetric electrodes, performance of the cell is improved greatly.

  12. Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte

    Science.gov (United States)

    Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun

    2017-02-01

    A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.

  13. Vinylidenefluoride-hexafluoropropylene copolymers as hybrid electrolyte components for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arcella, V.; Sanguineti, A. [Ausimont, Bollate (Italy); Quartarone, E.; Mustarelli, P. [Consiglio Nazionale delle Ricerche, Pavia (Italy). Centro di Studio per la Termodinamica ed Elettrochimica dei Sistemi Salini Fusi e Solidi; Pavia Univ. (Italy). Dept. of Physical Chemistry

    1999-09-01

    Hybrid polymer electrolytes based on P(VdF-HFP) copolymers exhibit high ionic conductivity and fair mechanical performances. Two preparation methods are tested in order to optimise the properties of P(VdF-4.5 mol% HFP)-based matrices, activated by different concentrations of a 1.5 M solution of LiN(CF{sub 3}SO{sub 2}){sub 2} in an EC/PC mixture: (1) the extraction/absorption procedure; (2) the conventional solvent casting. Conductivity values exceeding 10{sup -4} {omega}{sup -1} cm{sup -1} are found in samples containing 60 wt.% of electrolye solution. In general, the films obtained by casting show a lower conductivity than the samples prepared by the extraction/absorption method, and such a difference decreases when the electrolyte fraction increases. (orig.)

  14. Lithium ion solvation by ethylene carbonates in lithium-ion battery electrolytes, revisited by density functional theory with the hybrid solvation model and free energy correction in solution.

    Science.gov (United States)

    Cui, Wei; Lansac, Yves; Lee, Hochun; Hong, Seung-Tae; Jang, Yun Hee

    2016-09-14

    Complex formation between lithium (Li(+)) ions and electrolyte molecules would affect the ionic conductivity through the electrolyte in lithium-ion batteries (LIBs). We hence revisit the solvation number of Li(+) in the most commonly used ethylene carbonate (EC) electrolyte. The solvation number n of Li(+)(EC)n in the first solvation shell of Li(+) is estimated on the basis of the free energy calculated by the density functional theory combined with a hybrid solvation model where the explicit solvation shell of Li(+) is immersed in a free volume of an implicit bulk solvent. This new hybrid solvation (implicit and explicit) model predicts the most probable solvation number (n = 4) and solvation free energy (-91.3 kcal mol(-1)) of Li(+) in a good agreement with those predicted by calculations employing simpler solvation models (either implicit or explicit). The desolvation (n = 2) of Li(0)(EC)n upon reduction near anodes is also well described with this new hybrid model.

  15. Novel assembly and electrochemical properties of anatase TiO2-graphene aerogel 3D hybrids as lithium-ion battery anodes

    Science.gov (United States)

    Zhang, Jingjie; Zhou, Yizhuo; Zheng, Guangping; Huang, Qiuying; Zheng, Xiucheng; Liu, Pu; Zhang, Jianmin; Guan, Xinxin

    2016-10-01

    TiO2-graphene aerogel (TiO2-GA) 3D hybrids were directly assembled via a one-pot hydrothermal process followed by freeze-drying without using any structure-directing agent. The hybrids with a hierarchical structure exhibited large surface area (SBET = 283.6 m2 g-1) and high pore volume (Vp = 0.278 cm3 g-1), in which the ultradispersed TiO2 nanoparticles were in a single crystal phase of anatase. When used as the anodes for lithium ion battery, the TiO2-GA hybrids exhibited higher reversible capacity, more stable cycling performance and better rate-capability than TiO2 ascribed to the unique 3D nanoporous structure and the synergistic interaction of GA and TiO2.

  16. Ministry of Information Industry Regulation: Mobile charger Interfaces must be Unified

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Recently, the Ministry of Information Industry (MII) printed and distributed the Notification on the Implementation of the Technical Requirements and Testing Method for Mobile Charger and Interface by Mobile Network Connection and Detection.

  17. Hybrid Materials Polypyrrole-heteropolytungstate Electrosynthesis of Electrodes for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Cheng, S. A.

    2000-06-01

    Full Text Available Polypyrroles doped with heterpolytungstate anion [PW12O40]3- was electrogenerated from acetonitrile solutions. It is found that the productivity of the consumed charge to produce the hybrids always keeps at high constant value of about 1.9 x 10-3 mg mC-1, whatever the studied conditions including different potentials, different concentrations of pyrrole, different concentrations of PW12O40 3- or different temperatures. The hybrid material coats the electrode as a compact, adherent, conducting and dark-blue film. The specific charges of the materials initially increase as the polymer weight increases keeping a constant value for greater weight than 0.15 mg cm-2. Consecutive charge-discharge promotes a fast initial loss of material by solubility, the specific charge of the insoluble part increases until 90 mA h g-1. Both evolution of the cyclic voltammograms and UV-vis spectroscopies indicate the presence of macroanion in solution after cycling.

    Los polipirroles dopados con anión heteropoliwolframato [PW12O40]3- (materiales híbridos han sido electrogenerados desde disoluciones de acetonitrilo. Se ha visto que la productividad de la carga consumida para producir los híbridos siempre se mantiene a valores constantes elevados alrededor de 1.9 x 10-3 mg mC-1, cualquiera que sea la condición estudiada de síntesis: diferentes potenciales, diferentes concentraciones de pirrol, diferentes concentraciones de PW12O40 3- o diferentes temperaturas. El material híbrido recubre el electrodo en forma de film azul marino, compacto, adherente y conductor. Las cargas específicas almacenadas en los materiales inicialmente aumentan a medida que el peso del polímero aumenta, manteniendo un valor constante a partir de pesos mayores que 0.15 mg cm-2. La voltamperometría cíclica y la espectroscopía UV-vis indican la presencia de un intercambio de iones entre el macroión del film y el ClO4 -1 de la solución durante los procesos de oxidaci

  18. Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization

    OpenAIRE

    Jiangang Liu; Zhiwu Huang; Jing Wang; Jun Peng; Weirong Liu

    2014-01-01

    We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentica...

  19. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  20. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  1. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    Science.gov (United States)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  2. Management of Power Consumption in Hybrid PV-Battery System in Rapid Variation of Temperature and Irradiance

    Directory of Open Access Journals (Sweden)

    Hadi Nabizadeh

    2013-11-01

    Full Text Available In this paper, load voltage stabilization system in PV system is presented. Considering that the solar array output power varies with temperature and radiation; so to stabilizing the voltage, feeding load and battery simultaneously, aboost converter is used to transfer extra power into the battery. Thus in the maximum power point tracking system, both power consumption and saving by the load and battery are done.

  3. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Xia; Sun, Pingping; Qin, Jinwen; Wang, Jianqiang; Xiao, Ying; Cao, Minhua

    2016-05-01

    Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an anode material for lithium-ion batteries in terms of specific capacity, cycling stability and long-cycle life. It presents stable cycling performance with a high reversible capacity up to 1028 mA h g-1 at a current density of 100 mA g-1 after 100 cycles. By ex situ XRD, HRTEM, SAED and XPS analyses, the 3D porous MoP@C hybrid was found to follow the Li-intercalation reaction mechanism (MoP + xLi+ + e- LixMoP), which was further confirmed by ab initio calculations based on density functional theory.Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an

  4. A Novel Ion-exchange Method for the Synthesis of Nano-SnO/micro-C Hybrid Structure as High Capacity Anode Material in Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    Zhi Tan; Zhenhua Sun; Qi Guo; Haihua Wang; Dangsheng Su

    2013-01-01

    A novel and simple ion-exchange method was developed for the synthesis of nano-SnO/micro-C hybrid structure.The structure of the as prepared nano-SnO/micro-C was directly revealed by scanning electron microscopy (SEM)and transmission electron microscopy (TEM).SnO particles with the size about 25 nm were well confined in amorphous carbon microparticles.Carbon matrix in micrometer scale not only acts as a protective buffer for the SnO nanoparticles during the battery cycling processes,but also avoids the shortcomings of nanostructures,such as low tap density and potential safety threats.Electrochemical behaviors of the nano-SnO/micro-C were tested as anode material in lithium ion batteries.The initial reversible capacity is 508 mA h g-1,and the reversible capacity after 60 cycles is 511 mA h g-1,indicating good capacity retention ability.

  5. Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor

    Science.gov (United States)

    Zhang, Xi; Mi, Chris Chunting; Masrur, Abul; Daniszewski, David

    A wavelet-transform-based strategy is proposed for the power management of hybrid electric vehicles (HEV) with multiple on-board energy sources and energy storage systems including a battery, a fuel cell, and an ultra-capacitor. The proposed wavelet-transform algorithm is capable of identifying the high-frequency transient and real time power demand of the HEV, and allocating power components with different frequency contents to corresponding sources to achieve an optimal power management control algorithm. By using the wavelet decomposition algorithm, a proper combination can be achieved with a properly sized ultra-capacitor dealing with the chaotic high-frequency components of the total power demand, while the fuel cell and battery deal with the low and medium frequency power demand. Thus the system efficiency and life expectancy can be greatly extended. Simulation and experimental results validated the effectiveness of wavelet-transform-based power management algorithm.

  6. A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Bangrun; Wen, Zhaoyin; Jin, Jun; Hong, Xiaoheng; Zhang, Sanpei; Rui, Kun

    2017-02-01

    Germanium is considered as a promising anode material for lithium ion batteries (LIBs) due to its high-capacity. However, owing to the huge volume variation during cycling, the batteries based on germanium anodes usually show poor cyclability and inferior rate capability. Herein, we demonstrated a novel strategy to uniformly anchor the core-shell structured germanium@carbon (Ge@C) on the reduced graphene oxide (rGO) nanosheets by the strong adhesion of dopamine. In the resulting Ge@C/rGO hybrid, the amorphous carbon layer and rGO nanosheets can effectively reduce the agglomeration of germanium and provide buffer matrix for the volume change in electrochemical lithium reactions. When used as anode materials for LIBs, Ge@C/rGO hybrids deliver a reversible capacity of 1074.4 mA h g-1 at 2C after 600 cycles (with capacity retention of 96.5%) and high rate capability of 436 mA h g-1 at 20C after 200 cycles. The encouraging electrochemical performance clearly demonstrates that Ge@C/rGO hybrids could be a potential anode material with high capacity, excellent rate capability, and good cycling stability for LIBs.

  7. 基于燃料电池的无人飞机混合动力系统设计%Fuel cell battery hybrid system for UAV

    Institute of Scientific and Technical Information of China (English)

    王珂; 陈维荣; 李奇; 赵振元

    2013-01-01

    A fuel cell battery hybrid system for UAV was designed based on the characteristic of fuel cell and UAV; diode and DC/DC was used to control the out put of battery. The scheme of the hybrid system was discussed first and then the design of both hardware and software was presented in this paper. Finally, through the experimental test, the hybrid system was proved successfully, which could not only make the fuel cell working safely but also fulfill the demand of the UAV.%在分析了燃料电池的特性及无人机要求的基础上,设计了一套应用于燃料电池无人飞机的混合动力系统,并利用二极管和DC/DC末端电压的调整来实现锂电池的投入和切出.讨论了混合系统的方案,给出了系统的软硬件设计.最后通过实验测试,验证了该系统达到设计要求,既能保证燃料电池的安全长寿,又可满足无人机的功率需求.

  8. Facile scalable synthesis of Co{sub 3}O{sub 4}/carbon nanotube hybrids as superior anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhiguo; Xu, Weiwei [Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Huang, Tao [Department of Chemistry, Fudan University, Shanghai 210024 (China); Li, Maolin; Wang, Wanren; Liu, Yanping; Mao, Chaochao; Meng, Fanli; Wang, Mengjiao [Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Cheng, Minghai [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Yu, Aishui [Department of Chemistry, Fudan University, Shanghai 210024 (China); Guo, Xiaohui, E-mail: guoxh2009@nwu.edu.cn [Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China)

    2013-10-15

    Graphical abstract: Co{sub 3}O{sub 4}/MWCNT hybrids were synthesized via strong ultra-sonication assisted shaking processes. The resultant samples as anode electrode display enhanced cycling performance and rate capability compared with pure Co{sub 3}O{sub 4} particle. - Highlights: • Co{sub 3}O{sub 4}/MWCNT hybrids were synthesized via ultra-sonication assisted shaking process. • The resulting Co{sub 3}O{sub 4} nanoparticles are highly dispersed onto MWCNT network backbone. • Co{sub 3}O{sub 4}/MWCNT hybrid displays highly enhanced lithium storage properties. • The present synthetic approach is facile, controllable, and scalable. - Abstract: In this report, Co{sub 3}O{sub 4}/multiple-wall carbon nanotube (MWCNT) hybrid materials were synthesized via strong ultrasonication-assisted shaking and magnetic stirring processes. The prepared samples were well characterized by utilizing powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy techniques. Results indicated that the resulting Co{sub 3}O{sub 4} nanoparticles were highly dispersed in the MWCNT network backbone and further form Co{sub 3}O{sub 4}/MWCNT hybrid materials. The obtained Co{sub 3}O{sub 4}/MWCNT hybrids can be employed as anode electrode in Lithium-ion batteries and deliver as high as discharge capacity of 1250 mA h g{sup −1} at a current density of 0.2 C, additionally, 81% of the discharge capacity for sample 2 with 20 wt.% MWCNT loading could be retained after 70 cycles, which could be associated with the specific hybrid structure of the electrode as well as the addition of MWCNT. Most importantly, the present synthetic approach is facile, controllable, and scalable, which allowing it more easily adapted to prepare other hybrid materials with specific architectures.

  9. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.

    Science.gov (United States)

    Chen, Ailian; Li, Caixia; Tang, Rui; Yin, Longwei; Qi, Yongxin

    2013-08-28

    A novel hybrid of MoO2-ordered mesoporous carbon (MoO2-OMC) was prepared through a two-step solvothermal chemical reaction route. The electrochemical performances of the mesoporous MoO2-OMC hybrids were examined using galvanostatical charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques. The MoO2-OMC hybrid exhibits significantly improved electrochemical performance of high reversible capacity, high-rate capability, and excellent cycling performance as an anode electrode material for Li ion batteries. It is revealed that the MoO2-OMC hybrid could deliver the first discharge capacity of 1641.8 mA h g(-1) with an initial Coulombic efficiency of 63.6%, and a reversible capacity as high as 1049.1 mA h g(-1) even after 50 cycles at a current density of 100 mA g(-1), much higher than the theoretical capacity of MoO2 (838 mA h g(-1)) and OMC materials. The MoO2-OMC hybrid demonstrates an excellent high rate capability with capacity of ∼600 mA h g(-1) even at a charge current density of 1600 mA g(-1) after 50 cycles, which is approximately 11.1 times higher than that of the OMC (54 mA h g(-1)) materials. The improved rate capability and reversible capacity of the MoO2-OMC hybrid are attributed to a synergistic reaction between the MoO2 nanoparticles and mesoporous OMC matrices. It is noted that the electrochemical performance of the MoO2-OMC hybrid is evidently much better than the previous MoO2-based hybrids.

  10. Design of Intelligent Accumulator Charger for Wind Power System%小型风电系统蓄电池智能充电器的设计

    Institute of Scientific and Technical Information of China (English)

    肖成; 闫晓金

    2012-01-01

    With an in-depth analysis of the conventional battery charging method and technical requirements of lead-acid battery in small wind power system, a three-stage intelligent charger oriented based on SG3525A was designed. Its main circuit was the push- pull isolation convert structure and the charge strategy was the three-stage approach of constant current, constant voltage and trickle charge to achieve the different stages of battery charging requirements. The experiment results showed that the charger could adapt to a wide range voltage of charging requests and achieve real-time monitoring charge state and status display besides protecting over-volt- age and over-current.%在深入分析了小型风力发电系统对蓄电池的充电要求和蓄电池常规充电方式的基础上,设计了基于ATmega16和SG3525A的四段式智能充电器,其主电路采用推挽隔离变换结构,充电策略采用激活、恒流、恒压、涓流的四段式充电方法,实现了蓄电池在不同阶段下的充电要求。实验结果表明,该充电器能够适应风机宽范围的充电要求,而且可实现充电状态的实时监控和状态显示,并具有过压、过流保护功能。

  11. Model checking and evaluating QoS of batteries in MPSoC dataflow applications via hybrid automata (extended version)

    NARCIS (Netherlands)

    Ahmad, W.; Jongerden, M.R.; Stoelinga, Mariëlle Ida Antoinette; van de Pol, Jan Cornelis

    2016-01-01

    System lifetime is always a major design impediment for battery-powered mobile embedded systems such as, cell phones and satellites. The increasing gap between energy demand of portable devices and their battery capacities is further limiting durability of mobile devices. For example, energy-hungry

  12. Model checking and evaluating QoS of batteries in MPSoC dataflow applications via hybrid automata

    NARCIS (Netherlands)

    Ahmad, Waheed; Jongerden, Marijn; Stoelinga, Mariëlle; Pol, van de Jaco

    2016-01-01

    System lifetime is a major design constraint for attery-powered mobile embedded systems. The increasing gap between the energy demand of portable devices and their battery capacities is further limiting durability of mobile devices. Thus, the guarantees over Quality of Service (QoS) of battery-const

  13. Model checking and evaluating QoS of batteries in MPSoC dataflow applications via hybrid automata (extended version)

    NARCIS (Netherlands)

    Ahmad, Waheed; Jongerden, Marijn; Stoelinga, Mariëlle; Pol, van de Jaco

    2016-01-01

    System lifetime is always a major design impediment for battery-powered mobile embedded systems such as, cell phones and satellites. The increasing gap between energy demand of portable devices and their battery capacities is further limiting durability of mobile devices. For example, energy-hungry

  14. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    2014-01-01

    Full Text Available Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV- wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  15. A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system

    Science.gov (United States)

    Erdinc, O.; Vural, B.; Uzunoglu, M.

    Due to increasing concerns on environmental pollution and depleting fossil fuels, fuel cell (FC) vehicle technology has received considerable attention as an alternative to the conventional vehicular systems. However, a FC system combined with an energy storage system (ESS) can display a preferable performance for vehicle propulsion. As the additional ESS can fulfill the transient power demand fluctuations, the fuel cell can be downsized to fit the average power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. This study focuses on a vehicular system powered by a fuel cell and equipped with two secondary energy storage devices: battery and ultra-capacitor (UC). However, an advanced energy management strategy is quite necessary to split the power demand of a vehicle in a suitable way for the on-board power sources in order to maximize the performance while promoting the fuel economy and endurance of hybrid system components. In this study, a wavelet and fuzzy logic based energy management strategy is proposed for the developed hybrid vehicular system. Wavelet transform has great capability for analyzing signals consisting of instantaneous changes like a hybrid electric vehicle (HEV) power demand. Besides, fuzzy logic has a quite suitable structure for the control of hybrid systems. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB ®, Simulink ® and SimPowerSystems ® environments.

  16. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  17. Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode.

    Science.gov (United States)

    Yang, Yang; Huang, Jingxin; Zeng, Jing; Xiong, Jian; Zhao, Jinbao

    2017-09-07

    Co3O4 is emerging as a promising anode candidate for lithium ion batteries (LIBs) with high theoretical capacity (890 mAh g-1), but suffers from poor electrochemical cycling stability resulting from the inferior intrinsic electronic conductivity and large volume changes during electrochemical cycling. Here, a new electrophoretic deposition Co3O4/graphene (EPD Co3O4/G) hybrid electrode is developed to improve the electrochemical performance. Through EPD, Co3O4 nanocubes can be homogeneously embedded between graphene sheets to form a sandwich-like structure. Owing to the excellent flexibility of graphene and a large number of voids in this sandwich-like structure, the structural integrity and unobstructed conductive network can be maintained during cycling. Moreover, the electrode kinetics has been proved to be a fast surface-controlled lithium storage process. As a result, the Co3O4/G hybrid electrode exhibits high specific capacity and excellent electrochemical cycling performance. The Co3O4/G hybrid electrode was also further studied by in-situ electrochemical XRD to understand the relationship of its structure and performance: (1) the observed LixCo3O4 indicates an intermediate of possible small volume change in the first discharging, (2) the theoretical capacity achievement of the Co3O4 in hybrid electrode was evidenced, (3) the correlation between the electrochemical performance and the structural evolution of the Co3O4/G hybrid electrode was discussed detailedly.

  18. Graphene encapsulated Fe3O4 nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material

    DEFF Research Database (Denmark)

    Huang, Wei; Xiao, Xinxin; Engelbrekt, Christian

    2017-01-01

    The discovery of new anode materials and engineering their fine structures are the core elements in the development of new-generation lithium ion batteries (LIBs). To this end, we herein report a novel nanostructured composite consisting of approximately 75% Fe3O4 nanorods and 25% reduced graphene...... oxide (rGO). Microscopy and spectroscopy analyses have identified that the Fe3O4 nanorods are wrapped (or encapsulated) by the rGO nanosheets via covalent bonding, which further self-assemble into a mesoporous hybrid composite networked by the graphene matrix. The composite has an average pore size...

  19. Efficient Synthesis of Graphene Nanoscrolls for Fabricating Sulfur-Loaded Cathode and Flexible Hybrid Interlayer toward High-Performance Li-S Batteries.

    Science.gov (United States)

    Guo, Yi; Zhao, Gang; Wu, Naiteng; Zhang, Yun; Xiang, Mingwu; Wang, Bo; Liu, Heng; Wu, Hao

    2016-12-21

    A modified lyophilization approach is developed and used for highly efficient transformation of 2D graphene oxide sheet into 1D graphene nanoscroll (GNS) with high topological transforming efficiency (∼94%). Because of the unique open tubular structure and large specific surface area (545 m(2) g(-1)), GNS is utilized for the first time as a porous cathode scaffold for encapsulating sulfur with a high loading (81 wt %), and also as a conductive skeleton for assembling MnO2 nanowires into a flexible free-standing hybrid interlayer, both enabling high-rate and long-life Li-S battery.

  20. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries

    Science.gov (United States)

    Youn, Duck Hyun; Jo, Changshin; Kim, Jae Young; Lee, Jinwoo; Lee, Jae Sung

    2015-11-01

    An ultrafast and simple strategy to synthesize metal sulfides (MoS2 and WS2) anchored on reduced graphene oxide (RGO) composites is reported as anode materials for lithium ion batteries (LIBs). Metal sulfide nanocrystals with homogeneous dispersion onto conducting RGO sheets are obtained in only 45 s by hybrid microwave annealing (HMA) method. The synthesized materials, especially MoS2/RGO composite, exhibit a high Li capacity, an excellent rate capability, and a stable cycling performance, comparable to the reported best MS2/carbon composite electrodes. The results highlight the effectiveness of HMA method to fabricate the metal sulfide/RGO composites with excellent electric properties.

  1. Caractérisation de l'usage des batteries Lithium-ion dans les véhicules électriques et hybrides. Application à l'étude du vieillissement et de la fiabilité

    OpenAIRE

    Devie, Arnaud

    2012-01-01

    Lithium-ion batteries are being used as energy storage systems in recent electric and hybrid elec-tric vehicles coming to market. Current cycle-life estimation techniques show evidence of discre-pancy between laboratory results and real-world results. This work is aimed at characterizing actual battery usage in electrified transportation applica-tions. Factors such as temperature, State Of Charge, Depth Of Discharge, current and voltage have to be carefully considered for accurate cycle-life ...

  2. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    Science.gov (United States)

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the Tg and Tm are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO4/15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g(-1) @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g(-1) @0.2 C at 30 °C after 150 cycles).

  3. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte

    Science.gov (United States)

    Wu, Xianwen; Li, Yehua; Xiang, Yanhong; Liu, Zhixiong; He, Zeqiang; Wu, Xianming; Li, Youji; Xiong, Lizhi; Li, Chuanchang; Chen, Jian

    2016-12-01

    There is a broad application prospect for smart grid about aqueous rechargeable sodium-ion battery. In order to improve its electrochemical performance, a hybrid cationic aqueous-based rechargeable battery system based on the nanostructural Na0.44MnO2 and metallic zinc foil as the positive and negative electrodes respectively is built up. Nano rod-like Na0.44MnO2 is synthesized by sol-gel method followed by calcination at 850 °C for 9 h, and various characterization techniques including the X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to investigate the structure and morphology of the as-prepared material. The cyclic voltammetry, galvanostatic charge-discharge and self-discharge measurements are performed at the same time. The results show that the battery delivers a very high initial discharge capacity of 186.2 mAh g-1 at 0.2 C-rate in the range of 0.5-2.0 V, and it exhibits a discharge capacity of 113.3 mAh g-1 at high current density of 4 C-rate, indicative of excellent rate capability.

  4. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  5. Design of Experimental Platform for Wind/Solar/Battery Hybrid Power System%风光储发电系统实验平台设计

    Institute of Scientific and Technical Information of China (English)

    李凯; 邹见效; 郑宏

    2012-01-01

    An experimental platform about wind/solar/battery hybrid power system with 1KW is designed in this paper.It consists of wind turbine,solar panel,wind/solar controller,battery,converter and AC-load.Some important experiments could be implemented on this platform,such as the tracking of maximum power point of wind power and solar power,charge and discharge management of battery,the output waveform of converter,and so on.This experimental platform shows many advantages in visualization and pertinence,which is very suitable for some designable experiments.%设计开发了一套1kW的风光储发电系统实验平台。该平台由风力发电机、太阳能电池板、风光互补控制器、蓄电池、单相逆变器和交流负载组成,实验平台可以实现风能和太阳能的最大功率跟踪、蓄电池的充放电管理、逆变的波形控制等功能。该实验平台直观形象,针对性强,适合开展多种开放设计性实验。

  6. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  7. General synthesis of transition metal oxides hollow nanospheres/nitrogen-doped graphene hybrids via metal-ammine complex chemistry for high performance lithium ion batteries.

    Science.gov (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2017-08-30

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, in synthesizing hollow transition metal oxides (Co3O4, NiO, CuO-Cu2O and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high performance lithium ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co2+, Ni2+, Cu2+, or Zn2+)-ammine complex ions. Moreover, the hollowing process is well correlated with complexing capacity between metal ions and NH3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co2+, Ni2+, Cu2+, and Zn2+ ions, and no hollow structures formed for weak and/or non-complex Mn2+ and Fe3+ ions. Simultaneously, this novel strategy can also achieve the directly doping of nitrogen atoms into graphene framework. When used as anodic materials, the electrochemical performance of two typical hollow Co3O4 or NiO/nitrogen-doped graphene hybrids are evaluated. It is demonstrated that these unique nanostructed hybrids, in contrast with the bare counterparts, solid transition metal oxides/nitrogen-doped graphene hybrids, perform the significantly improved specific capacity, superior rate capability and excellent capacity retention. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.

    Science.gov (United States)

    Ha, Sung Hoon; Lee, Yun Jung

    2015-01-26

    Core-shell carbon-coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high-power lithium-ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon-coated LiFePO4 -rGO (LFP/C-rGO) hybrids were ascribed to three factors: 1) In-situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4 , 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C-rGO hybrids with LFP/C-rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li(+) ion and electron transport for high power applications.

  9. Surface decoration with MnO{sub 2} nanoplatelets on graphene/TiO{sub 2} (B) hybrids for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinlu, E-mail: lixinlu@cqu.edu.cn; Zhang, Yonglai; Zhong, Qineng; Li, Tongtao; Li, Hongyi; Huang, Jiamu

    2014-09-15

    Graphical abstract: - Highlights: • The surface of graphene/TiO{sub 2} (B) hybrids is decorated by ultrathin MnO{sub 2} nanoplatelets. • MnO{sub 2}@graphene/TiO{sub 2} (B) composites exhibit high specific surface area of 283.9 m{sup 2} g{sup −1}. • The reversible capacity of graphene/TiO{sub 2} (B) hybrids is greatly improved by surface decoration with low content of MnO{sub 2}. - Abstract: Hierarchically ultrathin MnO{sub 2} nanoplatelets are decorated on the surface of graphene-based TiO{sub 2} (B) hybrids by a facile water-bath reaction to fabricate MnO{sub 2}@graphene/TiO{sub 2} (B) composites. The multi-component composites show high specific surface area of 283.9 m{sup 2} g{sup −1}, facilitating the electrochemical reactions with solvented lithium ions in the enlarged interface area. The reversible capacity of the composites remains 243 mA h g{sup −1} after 150 cycles, with capacity retention of 83.5%. In comparison with graphene/TiO{sub 2} (B) hybrids, the MnO{sub 2}@graphene/TiO{sub 2} (B) composites perform better rate capability, suggesting that surface decoration with MnO{sub 2} nanoplatelets can be a promising strategy to enhance the electrochemical performance of anode materials for lithium ion batteries.

  10. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Weiqiang Dong

    2016-09-01

    Full Text Available A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV/wind turbine (WT/battery (B/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP have been addressed for sizing HS-BH from a more comprehensive perspective, considering the basic demand of load, the profit from hydrogen, which is produced by HS-BH, and an effective energy storage strategy. An improved ant colony optimization (ACO algorithm has been presented to solve the sizing problem of HS-BH. Finally, a simulation experiment has been done to demonstrate the developed results, in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang, China.

  11. Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries.

    Science.gov (United States)

    Balach, Juan; Singh, Harish K; Gomoll, Selina; Jaumann, Tony; Klose, Markus; Oswald, Steffen; Richter, Manuel; Eckert, Jürgen; Giebeler, Lars

    2016-06-15

    Because of the outstanding high theoretical specific energy density of 2600 Wh kg(-1), the lithium-sulfur (Li-S) battery is regarded as a promising candidate for post lithium-ion battery systems eligible to meet the forthcoming market requirements. However, its commercialization on large scale is thwarted by fast capacity fading caused by the Achilles' heel of Li-S systems: the polysulfide shuttle. Here, we merge the physical features of carbon-coated separators and the unique chemical properties of N and S codoped mesoporous carbon to create a functional hybrid separator with superior polysulfide affinity and electrochemical benefits. DFT calculations revealed that carbon materials with N and S codoping possess a strong binding energy to high-order polysulfide species, which is essential to keep the active material in the cathode side. As a result of the synergistic effect of N, S dual-doping, an advanced Li-S cell with high specific capacity and ultralow capacity degradation of 0.041% per cycle is achieved. Pushing our simple-designed and scalable cathode to a highly increased sulfur loading of 5.4 mg cm(-2), the Li-S cell with the functional hybrid separator can deliver a remarkable areal capacity of 5.9 mAh cm(-2), which is highly favorable for practical applications.

  12. Hierarchical MoO2/Mo2C/C Hybrid Nanowires as High-Rate and Long-Life Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Yang, Lichun; Li, Xiang; Ouyang, Yunpeng; Gao, Qingsheng; Ouyang, Liuzhang; Hu, Renzong; Liu, Jun; Zhu, Min

    2016-08-10

    Hierarchical MoO2/Mo2C/C hybrid nanowires (MoO2/Mo2C/C HNWs) have been fabricated through facile calcination of Mo3O10(C6H5NH3)2·2H2O nanowires which serve as both precursors and self-templates. In the MoO2/Mo2C/C HNWs, nanoparticles dispersed in the nanowires are beneficial for Li(+) transportation due to the decreased diffusion paths. Moreover, hybridization with Mo2C and carbon facilitates the electron transfer and increases the structural stability without sacrifice of capacity. As anode materials for lithium-ion batteries, the MoO2/Mo2C/C HNWs exhibit a reversible capacity of 950 mA h g(-1) after 320 cycles at a current density of 200 mA g(-1). Even when cycled at 2000 mA g(-1), they maintained a reversible capacity of 602 mA h g(-1) after 500 cycles. By incorporation of Mo2C and C with MoO2, the MoO2/Mo2C/C HNWs show high-rate capability and long cycle life and can be a promising candidate for lithium-ion battery anodes.

  13. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.

    Science.gov (United States)

    Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan

    2015-04-01

    Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.

  14. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.

    Science.gov (United States)

    Zhao, Meng-Qiang; Liu, Xiao-Fei; Zhang, Qiang; Tian, Gui-Li; Huang, Jia-Qi; Zhu, Wancheng; Wei, Fei

    2012-12-21

    The theoretically proposed graphene/single-walled carbon nanotube (G/SWCNT) hybrids by placing SWCNTs among graphene planes through covalent C-C bonding are expected to have extraordinary physical properties and promising engineering applications. However, the G/CNT hybrids that have been fabricated differ greatly from the proposed G/SWCNT hybrids because either the covalent C-C bonding is not well constructed or only multiwalled CNTs/carbon nanofibers rather than SWCNTs are available in the hybrids. Herein, a novel G/SWCNT hybrid was successfully fabricated by a facile catalytic growth on layered double hydroxide (LDH) at a high temperature over 950 °C. The thermally stable Fe nanoparticles and the uniform structure of the calcined LDH flakes are essential for the simultaneously catalytic deposition of SWCNTs and graphene. The SWCNTs and the CVD-grown graphene, as well as the robust connection between the SWCNTs and graphene, facilitated the construction of a high electrical conductive pathway. The internal spaces between the two stacked graphene layers and among SWCNTs offer room for sulfur storage. Therefore, the as obtained G/SWCNT-S cathode exhibited excellent performance in Li-S batteries with a capacity as high as 650 mAh g(-1) after 100 cycles even at a high current rate of 5 C. Such a novel G/SWCNT hybrid can serve not only as a prototype to shed light on the chemical principle of G/CNT synthesis but also as a platform for their further applications in the area of nanocomposites, heterogeneous catalysis, drug delivery, electrochemical energy storage, and so on.

  15. PSO Based PI Controller Design for a Solar Charger System

    National Research Council Canada - National Science Library

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    ...) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously...

  16. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    Science.gov (United States)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  17. Low wireless power transfer using Inductive Coupling for mobile phone charger

    Science.gov (United States)

    Fareq, M.; Fitra, M.; Irwanto, M.; Hasan, Syafruddin; Arinal, M.

    2014-04-01

    A wireless power transfer (WPT) using inductive coupling for mobile phone charger is studied. The project is offer to study and fabricate WPT using inductive coupling for mobile phone charger that will give more information about distance is effect for WPT performance and WPT is not much influenced by the presence of hands, books and types of plastics. The components used to build wireless power transfer can be divided into 3 parts components, the transceiver for power transmission, the inductive coils in this case as the antenna, receiver and the rectifier which act convert AC to DC. Experiments have been conducted and the wireless power transfer using inductive coupling is suitable to be implemented for mobile phone charger.

  18. Gestion de l'énergie d'un système hybride pile à combustible/batterie basée sur la commande optimale

    Directory of Open Access Journals (Sweden)

    M. N. SID

    2015-03-01

    Full Text Available Ce papier traite de l'optimisation de gestion de l'énergie électrique dans un véhicule hybride (pile à combustible/batterie, afin de minimiser autant que possible la consommation de l'hydrogène avec le maintien de l'état de charge de la batterie. Premièrement, on présente les sources d'énergies utilisées dans cette étude, la modélisation du système hybride, le choix de type des convertisseurs d'électronique de puissance utilisés et le dimensionnement de ces éléments.Deuxièmement on traite le problème d'optimisation sous contraintes basée sur le principe du minimum de Pontriaguine en introduisant la fonction Hamiltonienne de la commande optimale.Cette stratégie a été évaluée dans un environnement de simulation sous Matlab/Simulink utilisant quatre cycles de conduite standards.Une étude comparative en terme de consommation d'hydrogène a été faite avec deux autres stratégies la première dite thermostat qui est une stratégie très simple basée sur les contraintes imposées par les sources, la seconde approche consiste à utiliser un filtre passe-bas à la sortie de la puissance demandée afin de respecter les contraintes en dynamique sur la source principale. La stratégie traitée présente une bonne amélioration de la consommation d'hydrogène en adoptant une bonne stratégie de gestion de l'énergie électrique dans le système hybride.

  19. Design and Implementation of Battery Management System for Electric Bicycle

    OpenAIRE

    Mohd Rashid Muhammad Ikram; Anak Johnny Osman James Ranggi

    2017-01-01

    Today the electric vehicle (EV) has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optim...

  20. Evaluating the Degradation Mechanism and State of Health of LiFePO4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-01-01

    Full Text Available Accurate determination of the performance and precise prediction of the state of health (SOH of lithium-ion batteries are necessary to ensure reliability and efficiency in real-world application. However, most SOH offline studies were based on dynamic stress tests, which only reflect the universal rule of degradation, but are not necessarily applicable for real-world applications. This paper presents an experimental evaluation of two different operations of real-world plug-in hybrid electric vehicles with LiFePO4 batteries as energy-storage systems. First, the LiFePO4 batteries were subjected to a set of comparative experimental tests that consider the effects of charge depleting (CD and charge sustaining (CS operations. Then, different voltage analysis along with the close-to-equilibrium open circle voltage was utilized to evaluate the performance of the batteries in life cycles. Finally, a qualitative relationship between the external factors (the percentage of time of CD/CS operations during the entire driving range and the degradation mechanism was built with the help of the proposed methods. Results indicated that the external factors affect the degree of the batteries degradation, but not up to the point when the capacity fading stage occurs. This relationship contributes to the foundation for plug-in hybrid electric vehicles’ (PHEVs’ energy management strategy or battery management system control strategy.

  1. 混合动力轿车电池包液冷系统设计%A Hybrid Car Battery Thermal Management of Liquid Cooling System Design

    Institute of Scientific and Technical Information of China (English)

    赵久志; 宋军; 张宝鑫; 王诗铭; 武文杰

    2016-01-01

    高效的热管理系统对控制电池组工作温度范围,提升续驶里程及改善安全性起到至关重要的作用。本文提出了一种混合动力轿车电池液冷方案,基于整车开发需求,明确热管理系统性能目标及制冷与加热部件开启阀值。利用三维计算流体动力学数值计算建立整个液冷板模型,通过数值分析获取液冷板内速度与压力等关键参数分布,最后对电池液冷系统进行了试验测试。结果表明,该液冷系统设计方案能够满足该混合动力轿车的行驶要求,传热效率高,能够有效控制温差,保证电池包工作处在最优温度范围内。%Efficient thermal management system has a crucial rule in controlling the temperature range of the battery pack, enhancing miles and improving safety. This paper describes the liquid cooling system design of hybrid vehicles, based on the demand of vehicle development, it makes the target of thermal management system and the heating and cooling part opening threshold clear. CFD simulation software is used to build the liquid cooling plate simulation model.Using CFD simulation software establish the battery pack simulation model , Through this method, the key parameters such as the speed and pressure of the liquid cooling plate,then we test the battery cooling system.Results show that the liquid cooling system can meet the requirements of the hybrid car, high heat transfer efficiency, can effectively control the temperature to ensure battery work in the optimal range.

  2. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  3. One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries

    Science.gov (United States)

    Niu, Shuzhang; Lv, Wei; Zhang, Chen; Shi, Yanting; Zhao, Jianfeng; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2015-11-01

    A graphene/carbon nanotube (CNT)/sulfur (denoted GCS) hybrid with interconnected structure is prepared through a one-pot self-assembly approach initiated by L-ascorbic acid reduction under a mild condition. In such a solution-based assembly process, the formation of an interconnected graphene/CNT conductive network is accompanied by the uniform loading of sulfur, whose fraction is as high as of 70 wt%. The as-prepared GCS hybrid delivers an initial capacity of 1008 mAh g-1 at 0.3C and maintains 704 mAh g-1 after 100 cycles. Remarkably, at a high rate of 1.0C, the cathode shows an excellent cyclic performance with a capacity of 657 mAh g-1 after 450 ycles and the capacity decay is only 0.04% per cycle. Moreover, the superior rate performance of GCS hybrid is attributed to the conductive network formed by interconnected graphene sheets and CNT, which supply an unimpeded and continuous path for electron and Li ion transfer and accommodate the volume variation of sulfur during charge/discharge cycling. In addition, the residual functional groups on GCS can retain intimate contact of the conducting matrix with sulfur and effectively confine the diffusion of polysulfides. This study gives an eco-friendly and highly effective solution-based approach for carbon-sulfur electrode for lithium-sulfur battery.

  4. Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries

    Science.gov (United States)

    Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-04-01

    A novel one-dimensional nanohybrid comprised of conductive graphitic carbon (GC)-coated hollow FeSe2 nanospheres decorating reduced graphene oxide (rGO) nanofiber (hollow nanosphere FeSe2@GC-rGO) was designed as an efficient anode material for sodium ion batteries and synthesized by introducing the nanoscale Kirkendall effect into the electrospinning method. The electrospun nanofibers transformed into hollow nanosphere FeSe2@GC-rGO hybrid nanofibers through a Fe@GC-rGO intermediate. The discharge capacities of the bare FeSe2 nanofibers, nanorod FeSe2-rGO-amorphous carbon (AC) hybrid nanofibers, and hollow nanosphere FeSe2@GC-rGO hyrbid nanofibers at a current density of 1 A g-1 for the 150th cycle were 63, 302, and 412 mA h g-1, respectively, and their corresponding capacity retentions measured from the 2nd cycle were 11, 73, and 82%, respectively. The hollow nanosphere FeSe2@GC-rGO hybrid nanofibers delivered a high discharge capacity of 352 mA h g-1 even at an extremely high current density of 10 A g-1. The enhanced electrochemical properties of the hollow nanosphere FeSe2@GC-rGO composite nanofibers arose from the synergetic effects of the FeSe2 hollow morphology and highly conductive rGO matrix.

  5. Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction

    Science.gov (United States)

    Zhang, Mengmeng; Li, Rong; Chang, Xiaoxuan; Xue, Chao; Gou, Xinglong

    2015-09-01

    A new single-source precursor has been developed from the hydrothermal reaction of graphite oxide (GO), melamine resin (MR) monomers, and CoCl2 to prepare a sandwich-like hybrid of ultrathin nitrogen-doped graphene (NG) sheets and porous Co3O4 nanospheres (Co3O4/NG). This unique structure endows the Co3O4/NG hybrid with large surface area and enhanced electrochemical performances as both anode material for Li-ion batteries and electrocatalyst for oxygen reduction reaction (ORR). As an anode material, it exhibits high reversible capacity, excellent cycling stability and rate performance (1236 and 489 mAh g-1 over 200 cycles at 0.1C and 2C, respectively; 371 mAh g-1 at 5C). As an ORR electrocatalyst, it shows superior catalytic activity and high selectivity for the four-electron reduction pathway compared to the bare Co3O4 and NG alone. Moreover, the Co3O4/NG hybrid is insensitive to methanol, and is much more stable than Pt/C catalyst over long term operation.

  6. Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery

    Science.gov (United States)

    Zhu, Xiao; Wu, Xianwen; Doan, The Nam Long; Tian, Ye; Zhao, Hongbin; Chen, P.

    2016-09-01

    Highly flexible LiMn2O4/carbon nanotube (CNT) electrodes are developed and used as a high power cathode for the Rechargeable Hybrid Aqueous Battery (ReHAB). LiMn2O4 particles are entangled into CNT networks, forming a self-supported free-standing hybrid films. Such hybrid films can be used as electrodes of ARLB without using any additional binders. The binder-free LiMn2O4/CNT electrode exhibits good mechanical properties, high conductivity, and effective charge transport. High-rate capability and high cycling stability are obtained. Typically, the LiMn2O4/CNT electrode achieves a discharge capacity of 72 mAh g-1 at the large-current of 20 C (1 C = 120 mAh g-1), and exhibits good cycling performance and high reversibility: Coulombic efficiency of almost 100% over 300 charge-discharge cycles at 4 C. By reducing the weight, and improving the large-current rate capability simultaneously, the LiMn2O4/CNT electrode can highly enhance the energy/power density of ARLB and hold potential to be used in ultrathin, lightweight electronic devices.

  7. The coordination of research and innovation activities relative to an emergent technology: the case of batteries for electric and hybrid vehicles; La coordination des activites de recherche et d'innovation dans les phases d'emergence: le cas des batteries pour vehicules electriques et hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Larrue, Ph.

    2000-05-23

    In this thesis, we try to provide elements of a non-deterministic view of the coordination of research activities in the phase of emergence. Firstly, we try to identify the variables that determinate the strength and the characteristics of the imperative of coordination in this very preliminary period of an innovation process. Secondly, we try to evaluate the institutional arrangements that can effectively sustain the coordination of the activities of the various interdependent actors more or less involved in the innovation process. The basic idea of the thesis is that technological innovations do not originate as isolated according to a hypothetical underlying 'nature of the technology', especially when they are controversial and subject to great uncertainties as is the case with regard to batteries for Electric and hybrid Vehicles (EVs). Innovations appear to be generated by means of the interactions of a number of organizations belonging to different 'spheres' (different industries, scientific disciplines, public institutions, etc.). In order to validate a new area of opportunity which is still very uncertain at this preliminary stage, the competences and interests of these different organizations must be coordinated. Because of the complex mix of economic and technological barriers faced by the actors taking part in this innovation process, the area of batteries for electric and hybrid vehicles is the 'perfect laboratory' to investigate the institutional arrangements that can sustain the coordination of research and innovation activities relating to an emerging technology. The empirical and theoretical investigations are mainly focused on pre-competitive research consortia such as the United-States Advanced Battery Consortium (USABC). This case study is conducted through in-depth interviews with key-actors of the area of batteries and electric vehicles. We also use the results of an on-line experts opinions survey we performed

  8. Preparation and electrochemical performance of hyper-networked Li{sub 4}Ti{sub 5}O{sub 12}/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Soo; Kim, TaeHoon; Im, Ji Hyuk; Park, Chong Rae, E-mail: crpark@snu.ac.kr [Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2011-10-07

    Hyper-networked Li{sub 4}Ti{sub 5}O{sub 12}/carbon hybrid nanofiber sheets that contain both a faradaically rechargeable battery-type component, namely Li{sub 4}Ti{sub 5}O{sub 12}, and a non-faradaically rechargeable supercapacitor-type component, namely N-enriched carbon, are prepared by electrospinning and their dual function as a negative electrode of lithium-ion batteries (LIBs) and a capacitor is tested for a new class of hybrid energy storage (denoted BatCap). An aqueous solution composed of polyvinylpyrrolidone, lithium hydroxide, titanium(IV) bis(ammonium-lactato)dihydroxide and ammonium persulfate is electrospun to obtain hyper-networked nanofiber sheets. Next, the sheets are exposed to pyrrole monomer vapor to prepare the polypyrrole-coated nanofiber sheets (PPy-HNS). The hyper-networked Li{sub 4}Ti{sub 5}O{sub 12}/N-enriched carbon hybrid nanofiber sheets (LTO/C-HNS) are then obtained by a stepwise heat treatment of the PPy-HNS. The LTO/C-HNS deliver a specific capacity of 135 mAh g{sup -1} at 4000 mA g{sup -1} as a negative electrode for LIBs. In addition, potentiodynamic experiments are performed using a full cell with activated carbon (AC) as the positive electrode and LTO/C-HNS as the negative electrode to estimate the capacitance properties. This new asymmetric electrode system exhibits a high energy density of 91 W kg{sup -1} and 22 W kg{sup -1} at power densities of 50 W kg{sup -1} and 4000 W kg{sup -1}, respectively, which are superior to the values observed for the AC||AC symmetric electrode system.

  9. Design of portable outdoor charger%便携式野外充电器的设计

    Institute of Scientific and Technical Information of China (English)

    郭海军; 胡绍朋; 刘俊栋; 聂黎明; 陈炜峰

    2012-01-01

    为了解决手机电源突发断电,满足手机随时随地进行充电的目的,设计了一种太阳能及手摇式多功能手机充电器.使用太阳能电池板,经电路进行直流电压变换后给手机电池充电.手摇发电机产生波动较大的电压后,利用电压变换电路将输入电压整流、滤波、稳压后,得到稳定的充电电压.对220 V工频交流电进行整流、滤波、稳压后得到充电电压.后经充电管理电路给电池充电,充电完成后自动停止.该设计具有适用于旅行中野外使用的特点.%In order to solve the problem that the power supply of mobile phones interrupts suddenly, and meet the need that the mobile phone can get charged anytime and anywhere, a multifunction charger with solar panels or hand-cranked generator is designed. Its basic principles are as follows: the current produced by solar panels is converted to DC by voltage transformation circuit, and then charges mobile phones, and the hand-cranked generator generates a fluctuating current which flows through rectifier, filter, regulator and voltage conversion circuit to realize the voltage conversion from 220 V industrial frequency AC to a proper voltage. It can charge the batteries of mobile phones controlled by charging control circuit. The charging action stops automatically when the battery is full. It is especially useful when people are travelling or outdoor.

  10. Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading

    Science.gov (United States)

    Lu, Songtao; Chen, Yan; Wu, Xiaohong; Wang, Zhida; Li, Yang

    2014-04-01

    In this communication, we introduce the concept of three dimensional (3D) battery electrodes to enhance the capacity per footprint area for lithium-sulfur battery. In such a battery, 3D electrode of sulfur embedded into porous graphene sponges (S-GS) was directly used as the cathode with large areal mass loading of sulfur (12 mg cm-2), approximately 6-12 times larger than that of most reports. The graphene sponges (GS) worked as a framework that can provide high electronic conductive network, abilities to absorb the polysulfides intermediate, and meanwhile mechanical support to accommodate the volume changes during charge and discharge. As a result, the S-GS electrode with 80 wt.% sulfur can deliver an extremely high areal specific capacitance of 6.0 mAh cm-2 of the 11th cycle, and maintain 4.2 mAh cm-2 after 300 charge-discharge cycles at a rate of 0.1C, representing an extremely low decay rate (0.08% per cycle after 300 cycles), which could be the highest areal specific capacity with comparable cycle stability among the rechargeable Li/S batteries reported ever.

  11. Simulation and Performance Analysis of Lithium Battery Bank Mounted on the Hybrid Power System for Mobile Public Health Center

    Science.gov (United States)

    Busono, Pratondo; Kartini, Evvy

    2013-07-01

    Mobile medical clinic has been proposed to serve homeless people, people in the disaster area or in the remote area where no health service exist. At that site, a number of essential services such as primary health care, general health screening, medical treatment and emergency/rescue operations are required. Such services usually requires on board electrical equipments such as refrigerators, komputer, power tools and medical equipments. To supply such electrical equipments, it needs extra auxiliary power sources, in addition of standard automotive power supply. The auxiliary power source specifically design to supply non automotive load which may have similar configuration, but usually uses high power alternator rated and larger deep cycle on board battery bank. This study covers the modeling and dynamic simulation of auxiliary power source/battery to supply the medical equipment and other electrical equipments on board. It consists a variable speed diesel generator set, photovoltaic (PV) generator mounted on the roof of the car, a rechargable battery bank. As an initial step in the system design, a simulation study was performed. The simulation is conducted in the system level. Simulation results shows that dynamical behaviour by means of current density, voltage and power plot over a chosen time range, and functional behaviour such as charging and discharging characteristic of the battery bank can be obtained.

  12. Long-term assessment of economic plug-in hybrid electric vehicle battery lifetime degradation management through near optimal fuel cell load sharing

    Science.gov (United States)

    Martel, François; Dubé, Yves; Kelouwani, Sousso; Jaguemont, Joris; Agbossou, Kodjo

    2016-06-01

    This work evaluates the performance of a plug-in hybrid electric vehicle (PHEV) energy management process that relies on the active management of the degradation of its energy carriers - in this scenario, a lithium-ion battery pack and a polymer electrolyte membrane fuel cell (PEMFC) - to produce a near economically-optimal vehicle operating profile over its entire useful lifetime. This solution is obtained through experimentally-supported PHEV models exploited by an optimal discrete dynamic programming (DDP) algorithm designed to efficiently process vehicle usage cycles over an extended timescale. Our results demonstrate the economic and component lifetime gains afforded by our strategy when compared with alternative rule-based PHEV energy management benchmarks.

  13. Wavelet-Transform-Based Power Management of Hybrid Vehicles with Multiple On-board Energy Sources Including Fuel Cell, Battery and Ultracapacitor

    Science.gov (United States)

    2008-09-12

    parameters are shown in Table II, which are based on experimental data from a 18650 lithium battery Page 13 of 20 cell. The nominal voltage of this battery...To obtain the sufficient current outputting ability, we place forty 18650 lithium battery cells in parallel. Additionally the nominal capacity of an... 18650 lithium battery cell is 1.4Ah, and the reference current for battery modeling is set to 1.4A. So the nominal power of the battery stack is

  14. Preparation of PPy-Coated MnO2 Hybrid Micromaterials and Their Improved Cyclic Performance as Anode for Lithium-Ion Batteries

    Science.gov (United States)

    Feng, Lili; Zhang, Yinyin; Wang, Rui; Zhang, Yanli; Bai, Wei; Ji, Siping; Xuan, Zhewen; Yang, Jianhua; Zheng, Ziguang; Guan, Hongjin

    2017-09-01

    MnO2@PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the formation of PPy shell. Galvanostatic cell cycling and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical performance as anode for lithium-ion batteries. The results show that after formation of MnO2@PPy core-shell micromaterials, the cyclic performance as anode for lithium-ion batteries is improved. Fifty microliters of PPy-coated caddice-clew-like MnO2 has the best cyclic performances as has 620 mAh g-1 discharge specific capacities after 300 cycles. As a comparison, the discharge specific capacity of bare MnO2 materials falls to below 200 mAh g-1 after 10 cycles. The improved lithium-storage cyclic stability of the MnO2@PPy samples attributes to the core-shell hybrid structure which can buffer the structural expansion and contraction of MnO2 caused by the repeated embedding and disengagement of Li ions and can prevent the pulverization of MnO2. This experiment provides an effective way to mitigate the problem of capacity fading of the transition metal oxide materials as anode materials for (lithium-ion batteries) LIBs.

  15. 75 FR 16957 - Energy Conservation Program: Test Procedures for Battery Chargers and External Power Supplies

    Science.gov (United States)

    2010-04-02

    ... Economy. For referencing purposes, throughout this notice, comments submitted from these groups will be..., San Diego Gas and Electric Company, American Council for an Energy-Efficient Economy, Appliance... collaborative process between energy efficiency advocates and industry experts, including multiple meetings and...

  16. A Survey of Power Source Options for a Compact Battery Charger for Soldier Applications

    Science.gov (United States)

    2008-12-01

    The Stirling engine was invented in 1816 and has, in the past, been developed for refrigeration, heat pumps, and more recently, space applications...using radioisotopes. The Stirling is defined as a closed-cycle regenerative heat engine with a gaseous working fluid. “Closed-cycle” means the working...piston. “Regenerative” refers to the use of an internal heat exchanger called a regenerator , which increases the engine’s thermal efficiency. Because

  17. Investigation of Tantalum Wet Slug Capacitor Failures in the Apollo Telescope Mount Charger Battery Regulator Modules

    Science.gov (United States)

    Williams, J. F.; Wiedeman, D. H.

    1973-01-01

    This investigation describes the capacitor failures and to identify the cause of the failure mechanism. Early failures were thought to have happened because of age and/or abuse since the failed capacitors were dated 1967. It is shown that all 1967 capacitors were replaced with 1972 capacitors.

  18. 76 FR 31749 - Energy Conservation Program for Certain Consumer Appliances: Test Procedures for Battery Chargers...

    Science.gov (United States)

    2011-06-01

    ... devices that (1) communicate with their loads through USB and other protocols (e.g. I2C and TCP/IP),\\3\\ (2... electricity from a power source, usually from a wall outlet, and convert it into a form that can be used.... Generalized Test Protocol for Calculating the Energy Efficiency of Internal Ac-Dc Power Supplies, Rev....

  19. Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

  20. Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system

    Science.gov (United States)

    Mahendran, Venmathi; Ramabadran, Ramaprabha

    2016-11-01

    Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.

  1. Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries.

    Science.gov (United States)

    Sun, Dan; Tang, Yougen; Ye, Delai; Yan, Jun; Zhou, Haoshen; Wang, Haiyan

    2017-02-15

    Morphology controllable fabrication of electrode materials is of great significance but is still a major challenge for constructing advanced Li ion batteries. Herein, we propose a novel space constraint assembly approach to tune the morphology of Mn(terephthalic acid) (PTA)-MOF, in which benzonic acid was employed as a modulator to adjust the available MOF assembly directions. As a result, Mn(PTA)-MOFs with microquadrangulars, microflakes, and spindle-like microrods morphologies have been achieved. MnO/C hybrids with preserved morphologies were further obtained by self-sacrificial and thermal transformation of Mn(PTA)-MOFs. As anodes for Li ion batteries, these morphologies showed great influence on the electrochemical properties. Owing to the abundant porous structure and unique architecture, the MnO/C spindle-like microrods demonstrated superior electrochemical properties with a high reversible capacity of 1165 mAh g(-1) at 0.3 A g(-1), excellent rate capability of 580 mAh g(-1) at 3 A g(-1), and no considerable capacity loss after 200 cycles at 1 A g(-1). This strategy could be extended to engineering the morphology of other MOF-derived functional materials in various structure-dependent applications.

  2. A Novel Method of Remote Battery Back-up for A DMS Sub-station

    Directory of Open Access Journals (Sweden)

    Suba Srinivasan

    2014-12-01

    Full Text Available This study presents a remote battery backup for Distribution Management System substation. It elucidates the importance of the battery at the substation and the necessity of the automation at the substation. By achieving this we can remotely check the health of the battery from Back Control Center. It also enlightens the affects of the unavailability of power supply and how the charger gets activated and gives supply to the motors connected to the isolators and also acts as auxiliary supply to the Field Remote Terminal Unit until the station comes online.

  3. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    Science.gov (United States)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  4. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  5. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  6. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    Science.gov (United States)

    Doucette, Reed T.; McCulloch, Malcolm D.

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors.

  7. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery

    Science.gov (United States)

    Mao, Xufeng; Shi, Liyi; Zhang, Haijiao; Wang, Zhuyi; Zhu, Jiefang; Qiu, Zhengfu; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2017-02-01

    Low Li+ ion transference number is one fatal defect of the liquid LiPF6 electrolyte for Li-metal anode based batteries. This work aims to improve Li+ ion transference number and ionic conductivity polyethylene (PE) separators. By a simple dip-coating method, the water-borne nanosized molecular sieve with 3D porous structure (ZSM-5) can be coated on PE separators. Especially, the Li+ ion transference number is greatly enhanced from 0.28 to 0.44, which should be attributed to the specific pore structure and channel environment of ZSM-5 as well as the interaction between ZSM-5 and electrolyte. Compared with the pristine PE separator, the ionic conductivity of modified separators is remarkably improved from 0.30 to 0.54 mS cm-1. As results, the C-rate capability and cycling stability are both improved. The Li-metal battery using the ZSM-5-modified PE separator keeps 94.2% capacity after 100 cycles. In contrast, the discharge capacity retention of the battery using pristine PE is only 74.7%.

  8. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  9. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  10. MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance

    Science.gov (United States)

    Mai, Y. J.; Zhang, D.; Qiao, Y. Q.; Gu, C. D.; Wang, X. L.; Tu, J. P.

    2012-10-01

    Relatively small hysteresis in voltage, appropriate electromotive force and low average delithiation voltage make MnO, among many transition metal oxides. MnO/reduced graphene oxide sheet (MnO/RGOS) hybrid is synthesized by a two-step electrode design consisting of liquid phase deposition of MnCO3 nanoparticles on the surface of graphene oxide sheets followed by heat treatment in flowing nitrogen. As an anode for Li-ion batteries, the MnO/RGOS hybrid electrode shows a reversible capacity of 665.5 mA h g-1 after 50 cycles at a current density of 100 mA g-1 and delivers 454.2 mA h g-1 at a rate of 400 mA g-1, which is obviously better than that of bare MnO electrode. Those reasons for such enhanced electrochemical properties are investigated by galvanostatic intermittent titration technique (GITT) as well as electrochemical impedance spectroscopy (EIS). The probable origins, in the term of thermodynamic and kinetic factors, for the marked hysteresis in voltage observed between charge and discharge are also discussed.

  11. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher

    2011-01-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices. © 2011 The Royal Society of Chemistry.

  12. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    Science.gov (United States)

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  13. Critical Resources for Emerging Battery Technologies for Hybrid and Electric Vehicles. Proceedings of the International Conference “ISWA World Solid Waste Congress”, 17th - 19th September 2012, Florence, Italy

    DEFF Research Database (Denmark)

    Habib, Komal; Nyander, Nils Christian; Wenzel, Henrik

    2012-01-01

    such as photovoltaics, wind turbines, electric and hybrid cars are, however, in turn dependent on other non- renewable resources such as metals which may become scarce in the future. The concept of ‘critical resources’ is in this context is an expression of how limited or constrained the supply of a resource......-manganese spinel Titanate (LMO – T)) for electric cars in a proposed scenario of 2050, in which a scale of 100 % global conversion of passenger cars to battery cars is modeled. Potential resource supply constraints for these emerging battery technologies in electric cars have been analyzed and assessed...

  14. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  15. Phase Tuning of Nanostructured Gallium Oxide via Hybridization with Reduced Graphene Oxide for Superior Anode Performance in Li-Ion Battery: An Experimental and Theoretical Study.

    Science.gov (United States)

    Patil, Sharad B; Kim, In Young; Gunjakar, Jayavant L; Oh, Seung Mi; Eom, Taedaehyeong; Kim, Hyungjun; Hwang, Seong-Ju

    2015-08-26

    The crystal phase of nanostructured metal oxide can be effectively controlled by the hybridization of gallium oxide with reduced graphene oxide (rGO) at variable concentrations. The change of the ratio of Ga2O3/rGO is quite effective in tailoring the crystal structure and morphology of nanostructured gallium oxide hybridized with rGO. This is the first example of the phase control of metal oxide through a change of the content of rGO hybridized. The calculations based on density functional theory (DFT) clearly demonstrate that the different surface formation energy and Ga local symmetry of Ga2O3 phases are responsible for the phase transition induced by the change of rGO content. The resulting Ga2O3-rGO nanocomposites show promising electrode performance for lithium ion batteries. The intermediate Li-Ga alloy phases formed during the electrochemical cycling are identified with the DFT calculations. Among the present Ga2O3-rGO nanocomposites, the material with mixed α-Ga2O3/β-Ga2O3/γ-Ga2O3 phase can deliver the largest discharge capacity with the best cyclability and rate characteristics, highlighting the importance of the control of Ga2O3/rGO ratio in optimizing the electrode activity of the composite materials. The present study underscores the usefulness of the phase-control of nanostructured metal oxides achieved by the change of rGO content in exploring novel functional nanocomposite materials.

  16. Lithium-ion Battery Charge Methodologies Observed with Portable Electronic Equipment

    Science.gov (United States)

    Jeevarajan, Judith

    2009-01-01

    Commercial lithium-ion batteries in portable electronic equipment has been used by NASA for space applications since 1999. First battery that was certified for flight and flown for Shuttle use was the Canon BP 927 (2.7 Ah) battery pack. Since then, numerous portable equipment with li-ion batteries have been certified and flown and remain on-orbit for crew usage. Laptops (two generations with third one being worked on now) Camcorder Camera PDA 2 versions (second one being li-ion polymer cells) Satellite Phone Due to expense and time, certified batteries are used with different equipment with the help of adapters or by working with the manufacturer of the equipment to build the appropriate battery compartment and connector. Certified and dedicated chargers are available on Shuttle and on the ISS for safe charging.

  17. Preparation and characterization of hybrid Nafion/silica and Nafion/silica/PTA membranes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Glibin, V.; Pupkevich, V.; Svirko, L.; Karamanev, D. [Western Ontario Univ., London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2008-07-01

    Redox flow batteries are both efficient and cost-effective. However, the long-term stability of most ion-exchange membranes is limited as a result of the high oxidation rates of ions with high redox potentials. A method of synthesizing multi-component Nafion-silica and Nafion-silica-PTA membranes was presented in this study, which also investigated the electrochemical and ion transport properties of the membranes. Membranes were cast from dimethylformamide (DMFA) solution. The iron ion diffusion kinetics of the Nafion-silica and Nafion-silica PTA membranes were studied by dialysis. Results of the investigation demonstrated that the introduction of silica and phosphotungstic acid (PTA) into the Nafion membrane composition resulted in a significant decrease of ion transfer through the membrane. The addition of PTA also increased membrane permeability to ferric ions. The low iron diffusion coefficient and high ionic conductivity of the Nafion-silica membrane makes it a promising material for use in redox flow batteries. 4 refs., 1 tab., 1 fig.

  18. 混合储能超级电容与蓄电池能量分配策略研究%Energy Allocation Strategy of Super Capacitor and Storage Battery Based on Hybrid Energy Storage

    Institute of Scientific and Technical Information of China (English)

    曹华锋; 白迪; 赵志刚

    2016-01-01

    According to the hybrid energy storage capacity of micro grid, a dynamic control strategy for the DC⁃DC converter is pro⁃posed. This strategy can prevent the battery from the depth of discharge, reduce the battery charge and discharge frequency, extend the battery life. The effectiveness of the proposed strategy is verified by simulation.%针对超级电容与蓄电池的混合储能,提出了一种电池端DC-DC变换器动态控制策略。该策略可以防止电池出现深度放电,降低蓄电池的充放电频率,延长电池使用寿命,并通过仿真验证了其有效性。

  19. 纯电动汽车双能量源技术分析∗%Analysis on Battery-Ultra-Capacitor Hybrid Energy Source of Blade Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    邢峰

    2016-01-01

    针对蓄电池-超级电容双能量源存储系统的技术问题,对纯电动汽车双能量源系统的基本结构、功能、工作特性和能量分配原理进行了分析。详细阐述了纯电动汽车应用双能量源的必要性,双能量源系统所能完成的基本功用,蓄电池、超级电容、DC/DC转换器的工作特性及双能量源系统的能量分配原理,并指出双能量源管理技术的研究重点在于高效利用车载能量及回收制动能量。%In view of the problem of battery-ultra-capacitor hybrid energy source of blade electric vehicles, the basic struc-ture, function, working characteristics and energy distribution principle of the dual-energy source system are analyzed in this paper. The necessity of dual-energy source in blade electric vehicles is elaborated, the basic function of dual-energy source system, the working characteristics of battery, ultra-capacitor and DC/DC converter, and the principle of energy distribution of dual-energy source system are also introduced. And then, it is pointed out that the dual-energy source management tech-nology focuses on the efficient use of on-board energy and braking energy recovery.

  20. Development of direct methanol fuel cells for the applications in mining and tunnelling. Automation and power conditioning of a fuel cell-battery hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Kulakarni, Sreekantha Rao

    2012-07-01

    appropriate option for applications in underground mining and tunneling. The specific advantages of DMFCs are simple structure, higher energy density of the fuel (i.e. methanol), low operating temperature, lower weight, clean and quiet operation. Methanol is in liquid form so it is easy to transport and store. Moreover, methanol is a renewable fuel that can be produced from biomass. This doctoral research work focused on the construction of a DMFC stack of 30 W electrical power and the testing of the fuel cell stack in underground mining for the applications discussed above. Not only the stack itself, but also the automated system for the fuel cell and battery hybrid system was developed. For automation of the system, a micro-controller monitoring system was developed, which uses sensors for voltage, current, temperature, methanol concentration and liquid level. Development and testing of the methanol concentration sensor was considered as the heart of the research work. Last but not least, the power conditioning of the fuel cell stack as well as the battery charging techniques developed were also part of the research work.