WorldWideScience

Sample records for hybrid battery charger

  1. Integrated Inverter And Battery Charger

    Science.gov (United States)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  2. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  3. Ferroresonant flux coupled battery charger

    Science.gov (United States)

    McLyman, Colonel W. T. (Inventor)

    1987-01-01

    A battery charger for incorporation into an electric-powered vehicle is disclosed. The charger includes a ferroresonant voltage-regulating circuit for providing an output voltage proportional to the frequency of an input AC voltage. A high frequency converter converts a DC voltage supplied, for example, from a rectifier connected to a standard AC outlet, to a controlled frequency AC voltage which is supplied to the input of the ferroresonant circuit. The ferroresonant circuit includes an output, a saturable core transformer connected across the output, and a first linear inductor and a capacitor connected in series across the saturable core transformer and tuned to resonate at the third harmonic of the AC voltage from the high frequency converter. The ferroresonant circuit further includes a second linear inductor connected between the input of the ferroresonant circuit and the saturable core transformer. The output voltage from the ferroresonant circuit is rectified and applied across a pair of output terminals adapted to be connected to the battery to be charged. A feedback circuit compares the voltage across the output terminals with a reference voltage and controls the frequency of the AC voltage produced by the high frequency converter to maintain the voltage across the output terminals at a predetermined value. The second linear inductor provides a highly reactive load in the event of a fault across the output terminals to render the charger short-circuit proof.

  4. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  5. Electric charger for an accumulator or battery

    NARCIS (Netherlands)

    Robers, E.W.J.; Molenaar, B.A.M.; Smit, W.; Bech, L.P.; Bouman, C.

    2009-01-01

    The invention relates to an electric charger for an accumulator or a battery or the like, which is adapted for rapid charging during an on-period and comprises for this purpose control means for starting and ending the on-period. The charger is provided with a circuit for converting a supply voltage

  6. Ferroresonant Flux-Coupled Battery Charger

    Science.gov (United States)

    Mclyman, C. W.

    1986-01-01

    Portable battery charger operates at about 20 kHz to take advantage of relatively low weight and low acoustical noise of ferroresonant circuits operating in this frequency range. Charger split into stationary unit connected to powerline and mobile unit connected to battery or other load. Power transferred to mobile unit by magnetic coupling between mating transformer halves. Advantage where sparking at electrical connection might pose explosion hazard or where operator disabled and cannot manipulate plug into wall outlet. Likely applications for charger include wheelchairs and robots.

  7. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  8. Portable Battery Charger Berbasis Sel Surya

    OpenAIRE

    Anto, Budhi; Hamdani, Edy; Abdullah, Rizki

    2014-01-01

    A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power ...

  9. Current sensorless quick charger for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2011-01-01

    An efficient, simple and low cost quick charger based on the double-loop controller is proposed for the charging of lithium-ion (Li-ion) batteries. With positive and negative feedback of the battery voltage, charging profile similar to the constant current and constant voltage (CC-CV) charging strategy can be performed without actually sensing the charging current. The charging time can easily be shortened by raising the level of saturation in the primary voltage control loop. Experimental results are included to demonstrate the effectiveness of the battery charger. The charger could be a low cost and high performance replacement for existing Li-ion battery chargers.

  10. Lithium Ion Battery (LIB) Charger: Spacesuit Battery Charger Design with 2-Fault Tolerance to Catastrophic Hazards

    Science.gov (United States)

    Darcy, Eric; Davies, Frank

    2009-01-01

    Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.

  11. Modifications to Battery chargers and inverters Units

    International Nuclear Information System (INIS)

    Raison, Florent

    2015-01-01

    Over-exceeding the seismic specifications of the nuclear industry has always been the top priority of AEG Power Solutions. Since the Forsmark event, and especially since the Fukushima Daichi accident, utilities have reviewed their specifications. As a consequence, safety related battery chargers and inverters have to withstand higher acceleration levels. Simulation, design and test procedures are key drivers of the battery charger and inverter industry. Forces analysis through simulation is the first step of the product design process. The CAD drawings of our equipment, including the mechanical frame of the cabinet and the internal components, are used for the simulation of vibration. In the frame of 10 Hz, most new specifications show higher values, with higher constraints on our equipment. Our nuclear product range has been adapted to these new requirements. PCBs (Printed Circuit Boards), as key components in charge of the regulation and monitoring of the load, are first separately tested during the design phase, as a specific component. They are subjected to the following tests: Critical load analysis, Thermal imaging, Climatic test, Vibration and shock test. Then the complete equipment will follow a complete test program, including: Type test, EMC test, Seismic test, Aging test. Technology is key in achieving goals in terms of robustness and reliability of battery chargers and inverters. AEG Power Solutions renewed its entire range of products in 2011-2013 and made relevant choices. By updating its complete range of nuclear products, AEG Power Solutions is now offering a new range of solutions to the nuclear industry which minimize the risk of component obsolescence, in case of product replacement on existing nuclear power plants, or of new construction. In order to increase the product reliability and to facilitate the qualification programs of the products, the decision was made to offer 100% analogue technology (Software free). The different regulation and

  12. Design of an onboard battery charger for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Heckford, Simon

    2001-07-01

    This report describes the design of an on-board battery charger for an electric car. There are already various battery charger units on the market. However, these are not specifically designed for this application, and consequently do not provide an ideal solution. Because these products are not specific to one application, and instead opt to cover a variety of briefs, they are not ideal. They also tend to be heavier and more expensive than if the charger was built specifically for one purpose. The main design considerations were that the charger should be compact and lightweight. It was also specified that the design should be able to operate using either the single-phase or three-phase AC supply. Before the design process for the battery charger could commence, it was necessary for the author to get an appreciation of power electronics, since he had no previous experience in the subject. The author focused his attention on areas of the subject most valuable to the project, including becoming familiar with the principle behind battery chargers. Once the required knowledge was obtained, the author could begin designing the charger. The majority of the design was actually undertaken using two software packages called MATLAB and Simulink, whilst also using the knowledge acquired. Regular discussions were had with the project team in order to ensure that the correct methodology was being used and a suitable design was duly developed. Possible further work was identified which could not be carried out within the time constraints of this project.

  13. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  14. Integral inverter/battery charger for use in electric vehicles

    Science.gov (United States)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  15. Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles

    OpenAIRE

    Serrano Guillén, Isabel; Bermejo Fernández, Álvaro

    2013-01-01

    In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to reduce the size and cost of the charger. One solution to achieve this is to include the devices used in the traction circuit in the charger circuit; this is called an integrated motor drive and battery charger. A split-phase PM motor, a motor with double set of windings, gives the opportunity to implement different wind...

  16. A Battery Charger and State of Charge Indicator

    Science.gov (United States)

    Latos, T. S.

    1984-01-01

    A battery charger which has a full wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches, which are programmed to actively shape the input dc line current to be a mirror image of the ac line voltage is discussed. The power circuit operates at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state of charge software programs. The state of charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictate the use of high power NPN Darlington switching transistors. The power circuit topology is a three switch design which utilizes a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.

  17. Detecting and mitigating battery charger and inverter aging

    International Nuclear Information System (INIS)

    Gunther, W.E.; Lewis, R.; Subudhi, M.

    1988-08-01

    This report constitutes the second of the two-phase approach for assessing the safety and operational aspects of battery charger and inverter aging in nuclear power plants. This work, conducted by Brookhaven National Laboratory (BNL) under the auspices of the US NRC Nuclear Plant Aging Research (NPAR) Program, evaluated operating experience data, nuclear power plant maintenance practices, and plant design information to determine the impact of battery charger and inverter aging on safety, and the methods which should be used to detect aging degradation and mitigate its effects. A naturally aged inverter and battery charger were tested at BNL to evaluate the naturally aged condition, the effectiveness of condition monitoring techniques, and the practicality of implementing selected maintenance and monitoring recommendations. Temperature monitoring, component parameter measurements, and the periodic observation of critical circuit waveforms are viable methods for monitoring aging degradation. A maintenance program for battery chargers and inverters is recommended. As described in this report, the maintenance program incorporates inspection, monitoring, testing and repair activities which should be performed to detect and mitigate aging effects, and thereby assure the operational readiness of this important equipment throughout the plant's operating life. 32 refs., 43 figs., 19 tabs

  18. Design And Construction Of Microcontroller Based Solar Battery Charger

    Directory of Open Access Journals (Sweden)

    Zar Ni Tun

    2015-08-01

    Full Text Available This research paper describes a microcontroller based battery charger by using solar energy. Solar-powered charging systems are already available in rural as well as urban areas. Solar energy is widely used around the worldwide. This system converts solar energy to electrical energy and stores it in a battery. Photovoltaic panel is used to convert solar energy to electrical energy and stored in a 12V battery. Battery is the main component in solar charging system to store the energy generated from sunlight for various application. This system requires sensor to sense whether the battery is fully charged or not. Microcontroller is the heart of the circuit. Lead-acid batteries are the most commonly used power source for many applications. This system consists of voltage sensing charging controlling and display unit.

  19. Will Your Battery Survive a World With Fast Chargers?

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  20. Combination field chopper and battery charger

    Science.gov (United States)

    Steigerwald, Robert L.; Crouch, Keith E.; Wilson, James W. A.

    1981-01-01

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  1. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  2. A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

    OpenAIRE

    Kuo-Kuang Chen

    2011-01-01

    The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS) converter with a quasiresonant converter (QRC) was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are compute...

  3. Study on energy consumption of adapters and battery chargers

    International Nuclear Information System (INIS)

    Zijlstra, J.K.; Couvee, J.D.J.

    2001-04-01

    Under the authority of the Dutch Energy Agency 'Novem' industrial design and engineering office NewProducts has performed an inventory study on the energy consumption of adapters and battery chargers. Besides the energy aspects, various aspects of the adapters and chargers have been discussed: The products are classified in categories based on type of the appliance and function of the adapter; The proportions of the Dutch market of adapters and chargers and the players on this market are discussed in brief; The relevant technical background, especially with respect to the energy consumption is discussed. In general there are two types of adapters, linear and switch mode; Product specifications collected from several manufacturers are presented; To fill up the lack of data some measurements have been made of which the results are presented. Together with the product specifications this gives an overview of the performances of adapters and chargers; During the study several ideas and new developments have been found for reducing energy consumption. A remarkable conclusion is that there is no or not much attention from manufacturers or consumers for energy consumption of adapters or no-load power consumption, although there are some initiatives for reduction, e.g. the Code of Conduct on Efficiency of External Power Supplies of the European Union. Lots of linear adapters are still sold and in use, although the efficiency of the switch mode adapters is a lot better. The problem is the higher price. The switch mode adapters are being sold together with sophisticated electronic appliances. Most of the other initiatives and solutions to reduce the no-load energy consumption and improve the efficiency are also technical

  4. Pulse width modulation inverter with battery charger

    Science.gov (United States)

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  5. Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors

    Directory of Open Access Journals (Sweden)

    Vencislav Valchev

    2017-11-01

    Full Text Available The article presents a comparison of advantages and disadvantages of a battery charger circuit with and without the use of DC-link capacitors in it. The specific application requirements, namely ultra-light electric vehicles, are set as lightness, efficiency and robustness of the design. Prove of greater reliability and improvement on maintenance costs without significant decrease in the quality of charging process with the removal of DC-link capacitors in rectifier and boost converter circuits is accomplished. The proposed circuit parameters are analyzed by carried out simulations.

  6. Design of electronic pen pocket dosimeter with wireless battery charger

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.; Abdelkhalek, K.L.

    2009-01-01

    this paper presents the design of pen-thin electronic pocket dosimeter with high accuracy to measure personal accumulated quantities of gamma rays and the strength of the radiation field and display them on the integrated alphanumerical liquid crystal display (LCD). to overcome the need of removing the micro controller from the PCB to reprogram it , we use in circuit serial programming (ICSP) method which enhances the flexibility of the pocket dosimeter design as it reduces costs of field upgrades, reduces time to market, allows easy calibration of our system during manufacturing and allows adding a unique identification code (ID) to each instrument. the design of this device is based on the PIC16F876 micro controller and powered from two AAA size, 250 m Ah rechargeable batteries. recharging of these batteries is done using wireless charger which is the new trend now in charging devices. the design of this charger is based on the principle of magnetic inductive power transfer by sending the power through an air gap between a transmitting circuit in the attached docking station and receiving circuit which is built in the instrument

  7. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  8. Understanding and managing the effects of battery charger and inverter aging

    International Nuclear Information System (INIS)

    Gunther, W.; Aggarwal, S.

    1992-01-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs

  9. Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV

    Directory of Open Access Journals (Sweden)

    Teresa R. Granados-Luna

    2014-01-01

    Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model.

  10. Portable Fuel Cell Battery Charger with Integrated Hydrogen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, Ulf G. [CH-5452 Oberrohrdorf (Switzerland)

    1999-10-01

    A fully self-sufficient portable fuel cell battery charger has been designed, built, operated and is now prepared for commercialisation. The lightweight device is equipped with 24 circular polymer electrolyte cells of an innovative design. Each cell is a complete unit and can be tested prior to stacking. Hydrogen is admitted to the anode chamber from the centre of the cell. Air can reach the cathode by diffusion through a porous metal foam layer placed between cathode and separator plate. Soft seals surround the centre hole of the cells to separate hydrogen from air. Water vapour generated by the electrochemical conversion is released into the atmosphere via the porous metal foam on the cathode. All hydrogen fed to the dead-ended anode chamber is converted to electric power. The device is equipped with a chemical hydrogen generator. The fuel gas is formed by adding small amounts of water to a particular chemical compound which is contained in disposable cartridges. With one such cartridge enough hydrogen can be generated to operate CD-players, radios, recorders or portable computers for some hours, depending on the current drawn by the electronic device. The handy portable battery charger delivers about 10 W at 12 V DC. It is designed to be used in remote areas as autonomous power source for charging batteries used in radios, CD players, cellular telephones, radio transmitters, flash lights or model air planes. The power can also be used directly to provide light, sound or motion. Patents have been filed and partners are sought for commercialisation. (author) 4 figs.

  11. Portable battery-free charger for radiation dosimeters

    International Nuclear Information System (INIS)

    Manning, F.W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter

  12. Portable battery-free charger for radiation dosimeters

    Science.gov (United States)

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  13. Low cost RISC implementation of intelligent ultra fast charger for Ni-Cd battery

    International Nuclear Information System (INIS)

    Petchjatuporn, Panom; Sirisuk, Phaophak; Khaehintung, Noppadol; Sunat, Khamron; Wicheanchote, Phinyo; Kiranon, Wiwat

    2008-01-01

    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel-cadmium (Ni-Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni-Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger

  14. An SCR inverter with an integral battery charger for electric vehicles

    Science.gov (United States)

    Thimmeach, D.

    1983-01-01

    The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.

  15. Low cost RISC implementation of intelligent ultra fast charger for Ni-Cd battery

    Energy Technology Data Exchange (ETDEWEB)

    Petchjatuporn, Panom; Khaehintung, Noppadol [Department of Control and Instrumentation Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Sirisuk, Phaophak; Sunat, Khamron [Department of Computer Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Wicheanchote, Phinyo [Test Engineering Department, Sanmina-SCI Systems Co. Ltd. (Thailand); Kiranon, Wiwat [Department of Telecommunication Engineering, Faculty of Engineering, King Mongkut' s Institue of Technology, Ladkrabang, Bangkok 10520 (Thailand)

    2008-02-15

    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel-cadmium (Ni-Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni-Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger. (author)

  16. A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

    Directory of Open Access Journals (Sweden)

    Kuo-Kuang Chen

    2011-01-01

    Full Text Available The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS converter with a quasiresonant converter (QRC was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are computed by applying the characteristic curve and electric functions derived from the circuit configuration. Experiments were conducted using lead-acid batteries. The optimal parameters of the resonance components were determined using the load characteristic curve diagrams. These values enable the battery charger to turn on and off at zero current, resulting in a reduction of switching losses. The results of the experiments show that when compared with the traditional pulse-width-modulation (PWM converter for a battery charger, the buck converter with a zero- current-switching quasiresonant converter can lower the temperature of the activepower switch.

  17. Battery charger with a capacitor-diode clamped LLC resonant converter

    OpenAIRE

    Tsang, C.; Bingham, C.; Foster, M. P.; Stone, D.; Leech, J.

    2016-01-01

    The paper proposes a novel battery charger through use of\\ud two serially-connected LLC resonant converters. The first\\ud stage utilises a capacitor-diode clamped LLC resonant\\ud converter which allows operation in both constant voltage\\ud (CV) and constant current (CC) modes, as found in most\\ud battery chargers, to be realised, whilst the second stage\\ud provides the necessary gain and line and load regulation. A\\ud design example is included that demonstrates the resulting\\ud converter top...

  18. A High Efficiency Li-Ion Battery LDO-Based Charger for Portable Application

    Directory of Open Access Journals (Sweden)

    Youssef Ziadi

    2015-01-01

    Full Text Available This paper presents a high efficiency Li-ion battery LDO-based charger IC which adopted a three-mode control: trickle constant current, fast constant current, and constant voltage modes. The criteria of the proposed Li-ion battery charger, including high accuracy, high efficiency, and low size area, are of high importance. The simulation results provide the trickle current of 116 mA, maximum charging current of 448 mA, and charging voltage of 4.21 V at the power supply of 4.8–5 V, using 0.18 μm CMOS technology.

  19. 76 FR 31749 - Energy Conservation Program for Certain Consumer Appliances: Test Procedures for Battery Chargers...

    Science.gov (United States)

    2011-06-01

    ... cellular telephones and portable media players such as MP3 players. D. Multiple-Voltage External Power... solid base for performing battery charger testing. (PG&E, Pub. Mtg. Tran., No. 2 at p. 14) PG&E, Delta-Q...

  20. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    Science.gov (United States)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  1. An area and power-efficient analog li-ion battery charger circuit.

    Science.gov (United States)

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  2. Isolated battery charger with unit power factor; Carregador de baterias isolado com fator de potencia unitario

    Energy Technology Data Exchange (ETDEWEB)

    Co, Marcio Almeida

    1993-05-01

    This work presents a single phase, isolated AC/DC converter (Battery Charger) with active power factor correction in a single stage of power processing. the topology studied is the fed-current full-bridge, in boost mode operation, at fixed switching frequency. After a complete design of converter and simulations, the results of a 1.500 W e 50 kHz prototype are shown. a Unit Power Factor and Total Harmonic Distortion less than 5% were obtained. (author)

  3. Fuzzy Control of a Lead Acid Battery Charger

    Directory of Open Access Journals (Sweden)

    A. DAOUD

    2005-03-01

    Full Text Available In this paper, an alternative battery charging control technique based on fuzzy logic for photovoltaic (PV applications is presented. A PV module is connected to a buck type DC/DC power converter and a microcontroller based unit is used to control the lead acid battery charging voltage. The fuzzy control is used due to the simplicity of implementation, robustness and independence from the complex mathematical representation of the battery. The usefulness of this control method is confirmed by experiments.

  4. Li-Po Battery Charger Based on the Constant Current/Voltage Parallel Resonant Converter Operating in ZVS

    Directory of Open Access Journals (Sweden)

    Alberto M. Pernía

    2018-04-01

    Full Text Available Battery requirements for electrical vehicles are continuously becoming more demanding in terms of energy density and reliability. Nowadays, batteries for drones must be able to supply 100 A for 15 min, not to mention the specifications required for batteries in electrical vehicles. These specifications result in more stringent specifications for battery chargers. They are required to be more efficient, flexible, and, as with any another power equipment, to have reduced size and weight. Since the parallel resonant converter can operate as a current source and as a voltage source, this paper presents a battery charger power stage for lithium ion polymer batteries, based on the above topology, operating in zero voltage switching mode, and implementing frequency and duty cycle control.

  5. Photovoltaic High-Frequency Pulse Charger for Lead-Acid Battery under Maximum Power Point Tracking

    Directory of Open Access Journals (Sweden)

    Hung-I. Hsieh

    2013-01-01

    Full Text Available A photovoltaic pulse charger (PV-PC using high-frequency pulse train for charging lead-acid battery (LAB is proposed not only to explore the charging behavior with maximum power point tracking (MPPT but also to delay sulfating crystallization on the electrode pores of the LAB to prolong the battery life, which is achieved due to a brief pulse break between adjacent pulses that refreshes the discharging of LAB. Maximum energy transfer between the PV module and a boost current converter (BCC is modeled to maximize the charging energy for LAB under different solar insolation. A duty control, guided by a power-increment-aided incremental-conductance MPPT (PI-INC MPPT, is implemented to the BCC that operates at maximum power point (MPP against the random insolation. A 250 W PV-PC system for charging a four-in-series LAB (48 Vdc is examined. The charging behavior of the PV-PC system in comparison with that of CC-CV charger is studied. Four scenarios of charging statuses of PV-BC system under different solar insolation changes are investigated and compared with that using INC MPPT.

  6. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Science.gov (United States)

    2010-01-01

    ... Requirements,” append this sentence to the end: “The test equipment must be capable of accounting for crest factor and frequency spectrum in its measurement of the UUT input current.” 4. Test Measurement: (a) Inactive Mode Energy Consumption Measurement. The measurement of the battery charger energy ratio shall...

  7. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies

    International Nuclear Information System (INIS)

    Berg, R.; Stroinski, M.; Giachetti, R.

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein

  8. Implementation of Four-Phase Interleaved Balance Charger for Series-Connected Batteries with Power Factor Correction

    Science.gov (United States)

    Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.

    2017-11-01

    A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.

  9. The voice of the customer: consumers define the ideal battery charger.

    Science.gov (United States)

    Lane, J P; Usiak, D J; Stone, V I; Scherer, M J

    1997-01-01

    The Rehabilitation Engineering Research Center on Technology Evaluation and Transfer is exploring how the users of assistive technology devices define the ideal device. This work is called the Consumer Ideal Product program. The results show what device characteristics are most and least important, indicating where to place the priority on product features and functions from the consumer's perspective. The "voice of the customer" can be used (1) to define the ideal characteristics of a product, (2) to make trade-offs in product design and function improvements based on their relative importance to the consumer, (3) to compare the characteristics of existing products against the characteristics of the ideal product, or (4) to generate a product checklist for consumers to use when making a purchase decision. This paper presents the results of consumers' defining the ideal battery charger. Four focus groups generated the survey's content, then 100 experienced users rated 159 characteristics organized under 11 general evaluation criteria. The consumers placed the highest importance on characteristics from the general evaluation criteria of product reliability, effectiveness, and physical security/safety. The findings should help manufacturers and vendors improve their products and services and help professionals and consumers make informed choices.

  10. Testing of a naturally aged nuclear power plant inverter and battery charger

    International Nuclear Information System (INIS)

    Gunther, W.E.

    1988-09-01

    A naturally aged inverter and battery charger were obtained from the Shippingport facility. This equipment was manufactured in 1974, and was installed at Shippingport in 1975 as part of a major plant modification. Testing was performed on this equipment under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program to evaluate the type and extent of degradation due to aging, and to determine the effectiveness of condition monitoring techniques which could be used to detect aging effects. Steady state testing was conducted over the equipment's entire operating range. Step load changes were also initiated in order to monitor the electrical response. During this testing, component temperatures were monitored and circuit waveforms analyzed. Results indicated that aging had not substantially affected equipment operation. On the other hand, when compared with original acceptance test data, the monitoring techniques employed were sensitive to changes in measurable component and equipment parameters indicating the viability of detecting degradation prior to catastrophic failure. 7 refs., 34 figs., 12 tabs

  11. A High-Gain Reflex-Based Bidirectional DC Charger with Efficient Energy Recycling for Low-Voltage Battery Charging-Discharging Power Control

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2018-03-01

    Full Text Available This study proposes a high-gain reflex-charging-based bidirectional DC charger (RC-BDC to enhance the battery charging efficiency of light electric vehicles (LEV in a DC-microgrid. The proposed charger topology consists of an unregulated level converter (ULC and a two-phase interleaved buck-boost charge-pump converter (IBCPC, which together provide low ripple and high voltage conversion ratio. As the high-gain RC-BDC charges, the LEV’s battery with reflex charging currents, high battery charging efficiency, and prolonged battery life cycles are achieved. This is possible due to the recovering of negative pulse energy of reflex charging currents to reduce charge dissipations within LEV’s batteries. Derivations of the operating principles of the high-gain RC-BDC, analyses of its topology, and the closed-loop control designs were presented. Simulations and experiments were implemented with battery voltage of 48 V and DC-bus voltage of 400 V for a 500 W prototype. The results verify the feasibility of the proposed concept and were compared with the typical constant-current/constant-voltage (CC/CV charger. The comparison shows that the proposed high gain RC-BDC improves battery charging speed and reduces the battery thermal deterioration effect by about 12.7% and 25%, respectively.

  12. 21 CFR 870.3670 - Pacemaker charger.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a rechargeable...

  13. IEEE Std 650-1990: IEEE standard for qualification of Class 1E static battery chargers and inverters for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Methods for qualifying static battery chargers and inverters for Class 1E installations in a mild environment outside containment in nuclear power generating stations are described. The qualification methods set forth employ a combination of type testing and analysis, the latter including a justification of methods, theories, and assumptions used. These procedures meet the requirements of IEEE Std 323-1983, IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations

  14. Integrated motor drive and non-isolated battery charger based on the split-phase PM motors for plug-in vehicles

    Directory of Open Access Journals (Sweden)

    Saeid Haghbin

    2014-06-01

    Full Text Available A novel integrated motor drive and non-isolated battery charger based on a split-phase permanent magnet (PM motor is presented and described for a plug-in vehicle. The motor windings are reconfigured by a relay for the traction and charging operation. In traction mode, the motor is like a normal three-phase motor, whereas in the charging mode, after windings reconnection, the system is a three-phase Boost rectifier. One important challenge to use the motor as three inductors in charger circuit is to have it in standstill during the battery charging. Based on the presented mathematical model of a split-phase PM motor, the zero-torque condition of the motor is explained which led to a proper windings reconnection for the charging. Simulation and experimental results of two separate practical systems are provided to verify the proposed integrated battery charger. Some practical limitations and design recommendations are provided to achieve a more realistic practical system.

  15. Frontier battery development for hybrid vehicles

    OpenAIRE

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-01-01

    Abstract Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used f...

  16. Design and Implementation of Battery Charger with Power Factor Correction Using Sepic Converter and Full-bridge DC-DC Converter

    OpenAIRE

    Efendi, Moh. Zaenal; Windarko, Novie Ayub; Amir, Moh. Faisal

    2013-01-01

    This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulato...

  17. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  18. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  19. Microcontroller driven battery charger

    OpenAIRE

    Michalčík, Bohumil

    2012-01-01

    Prvá časť práce sa zaoberá všeobecnou problematikou impulzných zdrojov a všeobecným nabíjaním batérií ako aj typmi nabíjacích charakteristík. Druhú časť tvorí vlastný návrh mikroprocesorom riadeného impulzného nabíjača. Návrh sa zakladá na dátových listoch výrobcov komponentov nabíjača, ako aj na doporučených zapojeniach týchto prvkov. Elektrická schéma ako aj doska plošných spojov je vytvorená v návrhovom systéme EAGLE 5.11.0 . Nabíjač je navrhnutý na nabíjanie olovených, NiMH, NiCd, LiPol a...

  20. Design and Implementation of Battery Charger with Power Factor Correction using Sepic Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2013-12-01

    Full Text Available This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulator of output voltage and operates at continuous conduction mode. The experimental results show that the power factor of this converter system can be achieved up to 0.96.

  1. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...... a down-sized version of the battery pack used in the Mitsubishi iMiEV, which is subjected to power cycles derived from simulations of the vehicle undergoing multiple New European Drive Cycles (NEDC)....

  2. The design of electric vehicle intelligent charger

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  3. Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis

    Science.gov (United States)

    Joos, Stella; Weißhar, Björn; Bessler, Wolfgang G.

    2017-04-01

    Standard photovoltaic battery systems based on AC or DC architectures require power electronics and controllers, including inverters, MPP tracker, and battery charger. Here we investigate an alternative system design based on the parallel connection of a photovoltaic module with battery cells without any intermediate voltage conversion. This approach, for which we use the term passive hybridization, is based on matching the solar cell's and battery cell's respective current/voltage behavior. A battery with flat discharge characteristics can allow to pin the solar cell to its maximum power point (MPP) independently of the external power consumption. At the same time, upon battery full charge, voltage increase will drive the solar cell towards zero current and therefore self-prevent battery overcharge. We present a modeling and simulation analysis of passively hybridizing a 5 kWp PV system with a 5 kWh LFP/graphite lithium-ion battery. Dynamic simulations with 1-min time resolution are carried out for three exemplary summer and winter days using historic weather data and a synthetic single-family household consumer profile. The results demonstrate the feasibility of the system. The passive hybrid allows for high self-sufficiencies of 84.6% in summer and 25.3% in winter, which are only slightly lower than those of a standard system.

  4. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  5. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term

  6. Flexible Hybrid Battery/Pseudocapacitor

    Science.gov (United States)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  7. Frontier battery development for hybrid vehicles.

    Science.gov (United States)

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-04-23

    Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  8. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  9. Frontier battery development for hybrid vehicles

    Science.gov (United States)

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  10. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    Science.gov (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  11. Alkaline batteries for hybrid and electric vehicles

    Science.gov (United States)

    Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.

  12. Alkaline batteries for hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Haschka, F.; Warthmann, W.; Benczur-Uermoessy, G. [DAUG Deutsche Automobilgesellschaft, Esslingen (Germany)

    1998-03-30

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g. nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries. (orig.)

  13. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  15. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun

    2016-06-06

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.

  16. Hybrid anodes for redox flow batteries

    Science.gov (United States)

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  17. High Energy Batteries for Hybrid Buses

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing

  18. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Michalek, Jeremy J.

    2013-01-01

    Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives. - Highlights: ► We compare cost of PHEV batteries vs. charging infrastructure per gallon of gasoline saved. ► The lowest cost solution is to switch more drivers to low-capacity PHEVs and HEVs. ► If more gasoline savings is needed, batteries offer a better value than chargers. ► Extra batteries and chargers are both more costly per gal than oil premium estimates. ► Current subsidies are misaligned with fuel savings. We discuss alternatives.

  19. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  20. Prussian Blue Mg-Li Hybrid Batteries.

    Science.gov (United States)

    Sun, Xiaoqi; Duffort, Victor; Nazar, Linda F

    2016-08-01

    The major advantage of Mg batteries relies on their promise of employing an Mg metal negative electrode, which offers much higher energy density compared to graphitic carbon. However, the strong coulombic interaction of Mg 2+ ions with anions leads to their sluggish diffusion in the solid state, which along with a high desolvation energy, hinders the development of positive electrode materials. To circumvent this limitation, Mg metal negative electrodes can be used in hybrid systems by coupling an Li + insertion cathode through a dual salt electrolyte. Two "high voltage" Prussian blue analogues (average 2.3 V vs Mg/Mg 2+ ; 3.0 V vs Li/Li + ) are investigated as cathode materials and the influence of structural water is shown. Their electrochemical profiles, presenting two voltage plateaus, are explained based on the two unique Fe bonding environments. Structural water has a beneficial impact on the cell voltage. Capacities of 125 mAh g -1 are obtained at a current density of 10 mA g -1 (≈C/10), while stable performance up to 300 cycles is demonstrated at 200 mA g -1 (≈2C). The hybrid cell design is a step toward building a safe and high density energy storage system.

  1. Double input converters for different voltage sources with isolated charger

    Directory of Open Access Journals (Sweden)

    Chalash Sattayarak

    2014-09-01

    Full Text Available This paper presents the double input converters for different voltage input sources with isolated charger coils. This research aims to increase the performance of the battery charger circuit. In the circuit, there are the different voltage levels of input source. The operating modes of the switch in the circuit use the microcontroller to control the battery charge and to control discharge mode automatically when the input voltage sources are lost from the system. The experimental result of this research shows better performance for charging at any time period of the switch, while the voltage input sources work together. Therefore, this research can use and develop to battery charger for present or future.

  2. Hierarchical control of vehicular fuel cell / battery hybrid powertrain

    OpenAIRE

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Hua, Jianfeng

    2010-01-01

    In a proton exchange membrane (PEM) fuel cell/battery hybrid vehicle, a fuel cell system fulfills the stationary power demand, and a traction battery provides the accelerating power and recycles braking energy. The entire system is coordinated by a distributed control system, incorporating three key strategies: 1) vehicle control, 2) fuel cell control and 3) battery management. They make up a hierarchical control system. This paper introduces a hierarchical control strategy for a fuel cell / ...

  3. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Li, Lain-Jong

    2016-01-01

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we

  4. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    Science.gov (United States)

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  5. Development of battery management systems (BMS) for electric vehicles (EVs) in Malaysia

    OpenAIRE

    Salehen P.M.W.; Su’ait M.S.; Razali H.; Sopian K.

    2017-01-01

    Battery Management Systems (BMS) is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV) systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the...

  6. Lithium-ion batteries for hybrid and electric vehicles; Lithium-Ionen-Batterie-Entwicklung fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Michael; Birke, Peter; Schiemann, Michael; Moerstaedt, Uwe [Continental AG, Berlin (Germany). Geschaeftsbereich HEV

    2009-03-15

    Continental is the first company worldwide to produce lithium-ion batteries for a serial production vehicle (Mercedes S 400 Hybrid). The supplier describes cell and system strategies, as well as safety relevant production details and integration strategies, which determine the application in hybrid and electric vehicles. (orig.)

  7. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  8. Cost-effective energy management for hybrid electric heavy-duty truck including battery aging

    NARCIS (Netherlands)

    Pham, H.T.; Bosch, van den P.P.J.; Kessels, J.T.B.A.; Huisman, R.G.M.

    2013-01-01

    Battery temperature has large impact on battery power capability and battery life time. In Hybrid Electric Heavy-duty trucks (HEVs), the high-voltage battery is normally equipped with an active Battery Thermal Management System (BTMS) guaranteeing a desired battery life time. Since the BTMS can

  9. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    OpenAIRE

    Pan, Liwen; Zhang, Chengning

    2015-01-01

    This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge cir...

  10. Battery requirements and technologies for micro hybrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Karden, Eckhard; Ploumen, Serve; Spijker, Engbert [Ford Forschungszentrum Aachen GmbH (Germany); Kok, Daniel [Ford Dunton Engineering Center, Basildon, Essex (United Kingdom)

    2010-07-01

    Micro hybrids are part of all European carmakers' CO{sub 2} roadmaps and will get high market share, becoming a standard fit for mainstream powertrains. Starting from vehicle level, the paper outlines system requirements and typical technical solutions. A case study demonstrates potential and limitations of regenerative braking in micro hybrid systems. The lead/acid battery dynamic charge acceptance (DCA) is a major limitation for efficient energy recuperation, and hence fuel and CO{sub 2} saving in micro hybrids. Strengths and weaknesses of the lead/acid battery are discussed with respect to both classical automotive as well as the new micro hybrid applications. The latter impose characteristic high demands on the starting - lighting - ignition (SLI) battery or the storage system that is going to replace it, namely extensive shallow cycling at partial state of charge (PSOC) and significantly improved DCA. Delivering these additional functions robustly and reliably at minimum on-cost for high-volume applications is the key challenge that the automotive lead/acid battery industry is currently confronted with. (orig.)

  11. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    Science.gov (United States)

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  12. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available (SOPAC Miscellaneous Report 406, 2005). The battery bank is cycled frequently, shortening its lifetime. If the inverter fails there is complete loss of power to the load, unless the load can be supplied directly from the diesel generator for emergency purposes....5 Sizing the inverter ............................................................................................... 67 5.6 Sizing the charge Controller ............................................................................... 68 5.7 Sizing...

  13. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles

    DEFF Research Database (Denmark)

    Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo

    2017-01-01

    This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear....... Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs...

  14. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  15. PSO Based PI Controller Design for a Solar Charger System

    OpenAIRE

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously....

  16. Bi-directional charger for swiss2G - Annual report; Bi-directional charger for swiss2G - Jahresbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, M.; Baumann, P.

    2010-11-15

    This short annual report for 2010 for the Swiss Federal Office of Energy (SFOE) takes a look at a bi-directional charger that can be used in intelligent 'Smart Grid' applications. The idea is based on being able to use electric vehicles as a source of electricity to help meet peak demand for mains electricity. The swiss2G project aims to produce an electric car battery-charger that also functions as an inverter to convert the car's DC battery voltage to mains electricity. The project was started in September 2010. The report describes the aims of the project and reports on initial work done in the areas of safety, switching electronics and AC/DC conversion. National and international co-operation is noted and prospects for further work are discussed.

  17. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  18. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    International Nuclear Information System (INIS)

    Walker, Lee Kenneth

    2017-01-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  19. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lee Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  20. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass...

  1. Integrated online energy and battery life management for hybrid long haulage truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.

    2014-01-01

    Battery lifetime management plays an important role for successful commercializing hybrid electric vehicles. This paper aims at integrating the battery lifetime management into the energy management system of a heavy-duty hybrid electric truck. The developed strategy called Integrated Energy

  2. Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach

    Science.gov (United States)

    Fleury, Benoit; Labbe, Julien

    2014-08-01

    The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution.

  3. Simulation of hybrid vehicle propulsion with an advanced battery model

    Energy Technology Data Exchange (ETDEWEB)

    Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)

    2011-07-01

    In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect

  4. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  5. PANANICA quick charger for portable VIR and color camera

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y; Sato, K; Kitani, M

    1978-04-01

    Recently, the use of portable VTR and color camera systems has become popular for producing various news films, documentary films, general TV programs, and VTR commercials. A cylindrical sealed nickel--cadmium rechargeable battery has been used as the system power source, and, therefore, a method of quick charge to keep the battery ready for the next use has been strongly demanded. The usual charge method, however, leaves something to be desired. It cannot give full performance with respect to required capacity, and it damages the battery by overcharge. The PANANICA Quck Charger, which can charge the battery safely and effectively, was developed by using the pulse-charge method, a temperature sensor to control the charge, the charge-stop function to prevent overcharge, exclusive intergrated circuit, etc. (7 figures, 3 tables)

  6. Constant voltage and constant current control implementation for electric vehicles (evs) wireless charger

    Science.gov (United States)

    Tampubolon, Marojahan; Pamungkas, Laskar; Hsieh, Yao Ching; Chiu, Huang Jen

    2018-04-01

    This paper presents the implementation of Constant Voltage (CV) and Constant Current (CC) control for a wireless charger system. A battery charging system needs these control modes to ensure the safety of the battery and the effectiveness of the charging system. Here, the wireless charger system does not employ any post-regulator stage to control the output voltage and output current of the charger. But, it uses a variable frequency control incorporated with a conventional PI control. As a result, the size and the weight of the system are reduced. This paper discusses the brief review of the SS-WPT, control strategy and implementation of the CV and CC control. Experimental hardware with 2kW output power has been performed and tested. The results show that the proposed CV and CC control method works well with the system.

  7. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries

    International Nuclear Information System (INIS)

    Suri, Girish; Onori, Simona

    2016-01-01

    In this paper, a semi-empirical Lithium-iron phosphate-graphite battery aging model is identified over data mimicking actual cycling conditions that a hybrid electric vehicle battery encounters under real driving scenarios. The aging model is then used to construct the severity factor map, used to characterize relative aging of the battery under different operating conditions. This is used as a battery degradation criterion within a multi-objective optimization problem where battery aging minimization is to be achieved along with fuel consumption minimization. The method proposed is general and can be applied to other battery chemistry as well as different vehicular applications. Finally, simulations conducted using a hybrid electric vehicle simulator show how the two modeling tools developed in this paper, i.e., the severity factor map and the aging model, can be effectively used in a multi-objective optimization problem to predict and control battery degradation. - Highlights: • Battery aging model for hybrid electric vehicles using real driving conditions data. • Development of a modeling tool to assess battery degradation for real time optimization. • "3"1P NMR analysis of an enzyme-treated extract showed expected hydrolysis of P forms. • Development of an energy management strategy to minimize battery degradation. • Simulation results from hybrid electric vehicle simulator.

  8. Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Goran Lindbergh

    2011-04-01

    Full Text Available Lifetime testing of batteries for hybrid-electrical vehicles (HEV is usually performed in the lab, either at the cell, module or battery pack level. Complementary field tests of battery packs in vehicles are also often performed. There are, however, difficulties related to field testing of battery-packs. Some examples are cost issues and the complexity of continuously collecting battery performance data, such as capacity fade and impedance increase. In this paper, a novel field test equipment designed primarily for lithium-ion battery cell testing is presented. This equipment is intended to be used on conventional vehicles, not hybrid vehicles, as a cheaper and faster field testing method for batteries, compared to full scale HEV testing. The equipment emulates an HEV environment for the tested battery cell by using real time vehicle sensor information and the existing starter battery as load and source. In addition to the emulated battery cycling, periodical capacity and pulse testing capability are implemented as well. This paper begins with presenting some background information about hybrid electrical vehicles and describing the limitations with today’s HEV battery testing. Furthermore, the functionality of the test equipment is described in detail and, finally, results from verification of the equipment are presented and discussed.

  9. On battery-less autonomous polygeneration microgrids: Investigation of the combined hybrid capacitors/hydrogen alternative

    International Nuclear Information System (INIS)

    Kyriakarakos, George; Piromalis, Dimitrios D.; Arvanitis, Konstantinos G.; Dounis, Anastasios I.; Papadakis, George

    2015-01-01

    Highlights: • A battery-less autonomous polygeneration microgrid is technically feasible. • Laboratory testing of hybrid capacitors. • Investigation of hybrid capacitors utilization along with hydrogen subsystem. - Abstract: The autonomous polygeneration microgrid topology aims to cover holistically the needs in remote areas as far as electrical power, potable water through desalination, fuel for transportation in the form of hydrogen, heating and cooling are concerned. Deep discharge lead acid batteries are mostly used in such systems, associated with specific disadvantages, both technical and environmental. This paper investigated the possibility of replacing the battery bank from a polygeneration microgrid with a hybrid capacitor bank and more intensive utilization of a hydrogen subsystem. Initially commercial hybrid capacitors were tested under laboratory conditions and based on the respective results a case study was performed. The optimized combination of hybrid capacitors and higher hydrogen usage was then investigated through simulations and compared to a polygeneration microgrid featuring deep discharge lead acid batteries. From the results it was clear that it is technically possible to exchange the battery bank with a hybrid capacitor bank and higher hydrogen utilization. From the economic point of view, the current cost of the hybrid capacitors and the hydrogen components is high which leads to higher overall cost in comparison with deep discharge lead acid batteries. Taking into account, though, the decreasing cost prospects and trends of both the hybrid capacitors and the hydrogen components it is expected that this approach will become economically competitive in a few years

  10. Highly efficient and compact bidirectional charger for E-mobility; Hoch effizientes und kompaktes bidirektionales Ladegeraet fuer die Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Bruno; Goeldi, Benriah; Reichert, Stefan; Schoenberger, Stefan [Fraunhofer Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2011-07-01

    The increasing number of battery driven electric vehicles requires a wide range of charging possibilities. The key component for charging the battery is a charger in the car (on-board) or stationary - integrated in a charging station. The charging device connects the high voltage traction battery with the low voltage grid. Different technical approaches and different aspects have to be considered. A basic choice has to be made between an on-board or a stationary charging device and also whether to use a galvanic isolation or not. Within the Fraunhofer joint research project FSEM a transformerless, three-phase charger with highest efficiency and high power density was developed. (orig.)

  11. A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Krupp, Carsten; Baltzer, Sidney; Gnörich, Bruno; Peters, Ralf; Stolten, Detlef

    2016-01-01

    Highlights: • A battery-fuel cell hybrid auxiliary power unit for heavy duty vehicles is reported. • Comparison of direct and indirect hybrids using representative load profiles. • Evaluation based on validated fuel cell system and battery models. • Indirect hybrid with constant fuel cell load yields 29.3% hybrid system efficiency. • Fuel cell should be pre-heated using waste heat from the diesel engine during drive. - Abstract: The idling operation of engines in heavy duty vehicles to cover electricity demand during layovers entails significant fuel consumption and corresponding emissions. Indeed, this mode of operation is highly inefficient and a noteworthy contributor to the transportation sector’s aggregate carbon dioxide emissions. Here, a potential solution to this wasteful practice is outlined in the form of a hybrid battery-fuel cell system for application as an auxiliary power unit for trucks. Drawing on experimentally-validated fuel cell and battery models, several possible hybrid concepts are evaluated and direct and indirect hybrid configurations analyzed using a representative load profile. The results indicate that a direct hybrid configuration is only applicable if the load demand profile does not deviate strongly from the assumed profile. Operation of an indirect hybrid with a constant fuel cell load yields the greatest hybrid system efficiency, at 29.3%, while battery size could be reduced by 87% if the fuel cell is operated at the highest dynamics. Maximum efficiency in truck applications can be achieved by pre-heating the system prior to operation using exhaust heat from the motor, which increased system efficiency from 25.3% to 28.1%, including start-up. These findings confirm that hybrid systems could offer enormous fuel savings and constitute a sizeable step on the path toward energy-efficient and environmentally-friendly heavy duty vehicles that does not necessitate a fuel switch.

  12. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  13. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel...... a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operating window. The second is a non-linear static model, while the third takes into account first......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  14. A frequency domain approach to analyzing passive battery-ultracapacitor hybrids supplying periodic pulsed current loads

    International Nuclear Information System (INIS)

    Kuperman, Alon; Aharon, Ilan; Kara, Avi; Malki, Shalev

    2011-01-01

    Highlights: → Passive battery-ultracapacitor hybrids are examined. → Frequency domain analysis is employed. → The ultracapacitor branch operates as a low-pass filter for the battery. → The battery supplies the average load demand. → Design requirements are discussed. - Abstract: A Fourier-based analysis of passive battery-ultracapacitor hybrid sources is introduced in the manuscript. The approach is first introduced for a general load, and then is followed by a study for a case of periodic pulsed current load. It is shown that the ultracapacitor branch is perceived by the battery as a low-pass filter, which absorbs the majority of the high frequency harmonic current and letting the battery to supply the average load demand in addition to the small part of dynamic current. Design requirements influence on the ultracapacitor capacitance and internal resistance choice are quantitatively discussed. The theory is enforced by simulation and experimental results, showing an excellent agreement.

  15. Hybrid Lithium-ion Capacitor / Lithium-ion Battery System for Extended Performance

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed task will involve the design of a hybrid power system with lithium-ion (li-ion) capacitors (LICs), li-ion batteries and solar cells. The challenge in...

  16. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying; Das, Shyamal K.; Moganty, Surya S.; Archer, Lynden A.

    2012-01-01

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes

  17. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  18. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    Hybrid photovolvaic battery-hydropower microgrids can increase electricity accessibility and availability in remote areas. In those microgrids with grid-connected and islanded modes capabilities, seamless transition between both modes is needed as well. However, the different resources with conve......Hybrid photovolvaic battery-hydropower microgrids can increase electricity accessibility and availability in remote areas. In those microgrids with grid-connected and islanded modes capabilities, seamless transition between both modes is needed as well. However, the different resources...

  19. Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

    Directory of Open Access Journals (Sweden)

    Jorge Nájera

    2017-10-01

    Full Text Available This paper focuses on Hybrid Energy Storage Systems (HESS, consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC, for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries, an EDLC pack, up to two DC-DC converters (depending on the topology, and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia. Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass, using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

  20. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...

  1. Hybrid photovoltaic-diesel-battery systems for remote energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines and battery energy storage are powering isolated mountain lodges, information centres in nature parks, isolated farms or dwellings all over Europe. A total of 300000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaics, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilisation of the electric energy produced by the PV generator. (orig.) 8 refs.

  2. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  3. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.M.

    1992-09-01

    This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH S information on Na/S batteries is provided in the appendices.

  4. Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft

    Science.gov (United States)

    Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae

    2017-06-01

    In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.

  5. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  6. On-line energy and battery thermal management for hybrid electric heavy-duty truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A.

    2013-01-01

    This paper discusses an integrated approach for energy and thermal management to minimize the fuel consumption of a hybrid electric heavy-duty truck. Conventional Energy Management Systems (EMS) operate separately from the Battery Thermal Management System (BTMS) in Hybrid Electric Vehicles (HEVs).

  7. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  8. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Advani, Suresh G.

    2013-01-01

    The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control...... strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical...

  9. Batteries not included

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.

    2001-09-08

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge.

  10. Batteries not included

    International Nuclear Information System (INIS)

    Cooper, M.

    2001-01-01

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge

  11. A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Wen-An Yang

    2016-01-01

    Full Text Available Lithium-ion battery is a core component of many systems such as satellite, spacecraft, and electric vehicles and its failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Remaining useful life (RUL prediction of lithium-ion batteries before the future failure event is extremely crucial for proactive maintenance/safety actions. This study proposes a hybrid prognostic approach that can predict the RUL of degraded lithium-ion batteries using physical laws and data-driven modeling simultaneously. In this hybrid prognostic approach, the relevant vectors obtained with the selective kernel ensemble-based relevance vector machine (RVM learning algorithm are fitted to the physical degradation model, which is then extrapolated to failure threshold for estimating the RUL of the lithium-ion battery of interest. The experimental results indicated that the proposed hybrid prognostic approach can accurately predict the RUL of degraded lithium-ion batteries. Empirical comparisons show that the proposed hybrid prognostic approach using the selective kernel ensemble-based RVM learning algorithm performs better than the hybrid prognostic approaches using the popular learning algorithms of feedforward artificial neural networks (ANNs like the conventional backpropagation (BP algorithm and support vector machines (SVMs. In addition, an investigation is also conducted to identify the effects of RVM learning algorithm on the proposed hybrid prognostic approach.

  12. Efficiency Test Method for Electric Vehicle Chargers

    DEFF Research Database (Denmark)

    Kieldsen, Andreas; Thingvad, Andreas; Martinenas, Sergejus

    2016-01-01

    This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority...... different vehicles. A unified method for testing the efficiency of the charger in EVs, without direct access to the component, is presented. The method is validated through extensive tests of the models Renault Zoe, Nissan LEAF and Peugeot iOn. The results show a loss between 15 % and 40 %, which is far...

  13. Single-Phase Boost Inverter-Based Electric Vehicle Charger With Integrated Vehicle to Grid Reactive Power Compensation

    DEFF Research Database (Denmark)

    Wickramasinghe Abeywardana, Damith Buddika; Acuna, Pablo; Hredzak, Branislav

    2018-01-01

    Vehicle to grid (V2G) reactive power compensation using electric vehicle (EV) onboard chargers helps to ensure grid power quality by achieving unity power factor operation. However, the use of EVs for V2G reactive power compensation increases the second-order harmonic ripple current component...... from the grid, exposes the EV battery to these undesirable ripple current components for a longer period and discharges the battery due to power conversion losses. This paper presents a way to provide V2G reactive power compensation through a boost inverter-based single stage EV charger and a DC...

  14. Hybrid battery/supercapacitor energy storage system for the electric vehicles

    Science.gov (United States)

    Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy

    2018-01-01

    Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.

  15. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  16. Comparative techno-economic analysis of hybrid micro-grid systems utilizing different battery types

    International Nuclear Information System (INIS)

    Ciez, Rebecca E.; Whitacre, J.F.

    2016-01-01

    Highlights: • Comparative analysis of 3 battery chemistries in microgrid storage application. • At discount rates >1%, diesel-only generation still cheapest electricity option. • Optimal battery chemistry highly dependent on discount rate. • For discount rates <4%, lead acid is the cheapest storage options. • High energy density li-ion the cheapest storage option for discount rates >4%. - Abstract: A systems-level lifetime cost-of-use optimization model was applied to a hypothetical hybrid off-grid power system to compare the impacts of different battery technologies. Specifically, a time-step battery degradation model was used to account for unit degradation over a 20-year system lifetime for three different batteries. Variables examined included: battery type, allowed state of charge swing during cycling, number of battery replacements, fractional renewable energy requirements, and applied discount rate. Our analyses show that storage packs with high energy, low cost lithium-ion cells have the potential to compete with a non-renewable solution in some cases. The discount rate also proves to be significant in determining the cost competitiveness of the hybrid systems: at low discount rates, the levelized cost of electricity (LCOE) is only slightly higher than diesel generation, with costs diverging as the discount rate increases. The discount rate also determines which battery technology delivers the lowest cost of electricity: lead acid batteries are favorable at low rates, while high-energy lithium-ion batteries deliver lower cost electricity at higher rates. Similarly, market forces, like fuel or battery price changes, feed-in tariffs, or carbon taxes, required to trigger a switch to a hybrid system vary substantially with the discount rate.

  17. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    Fahad, A.; Ali, S.M.; Bhatti, A.A.; Nasir, M

    2013-01-01

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  18. Battery diagnosis and battery monitoring in hybrid electric vehicles; Batteriediagnostik und Batteriemonitoring in Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, T.; Kowal, J.; Waag, W.; Gerschler, J.B.; Sauer, D.U. [RWTH Aachen (DE). Inst. fuer Stromrichtertechnik und Elektrische Antriebe (ISEA)

    2007-07-01

    Even in conventional passenger cars the load on the batteries is at its limit due to the increasing number of electrical loads. It is therefore of special importance to know the status and the power capability of the battery at any time. To fulfil these requirements it is necessary that the battery diagnostics has a precise current measurement available in addition to the voltage and temperature measurements. Battery diagnosis is most successful of different algorithms are combined and errors from the measurements and the algorithms are taken actively into account. The general structure of battery diagnosis algorithms can be used for lead-acid, lithium-ion and NiMH batteries. However, the complexity is highest for lead-acid batteries. (orig.)

  19. Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell

    Science.gov (United States)

    Jossen, Andreas; Garche, Juergen; Doering, Harry; Goetz, Markus; Knaupp, Werner; Joerissen, Ludwig

    Hybrid systems, based on a lead-acid battery and a proton-exchange membrane fuel cell (PEMFC) give the possibility to combine the advantages of both technologies. The benefits for different applications are discussed and the practical realisation of such systems is shown. Furthermore a numerical model for such a hybrid system is described and results are shown and discussed. The results show that the combination of lead-acid batteries and PEMFC shows advantages in case of applications with high peak power requirements (i.e. electric scooter) and applications where the fuel cell is used as auxiliary power supply to recharge the battery. The high efficiency of fuel cells at partial load operation results in a good fuel economy for recharging of lead-acid batteries with a fuel cell system.

  20. Characteristics and thermal behavior analysis of lithium-ion batteries for application in hybrid locomotives

    Science.gov (United States)

    Chatterjee, Krishnashis

    The locomotive industry accounts for 2.5 % of the total fuel consumption in the US. Thus the necessity for reducing fuel consumption and emissions led to the development of the concept of hybrid locomotive which is dual powered by the diesel engine and electric motors. But the energy dissipated in braking such a locomotive in a year is enough to power over 9100 average US households over the same period of time. Recovering this energy using regenerative braking system and storing it in a electric battery is of great interest among researchers for improving overall efficiency and reducing consumption of fuels. In the present study, LiFePO4 batteries, a type of the state-of-art lithium-ion batteries, have been tested under different environmental and load conditions. Environmental temperatures were varied to analyze their effects on the charging and discharging patterns of the battery by using the CADEX battery analyzer in order to find the temperature range for optimum battery performance. The fluctuations of temperature of the battery surface were monitored along the length of the tests, using Infra-Red imaging and thermocouple probes at different points on the battery surface. Both battery performance characteristics and the variation of the battery surface temperature were also recorded for different load cycles in order to get a comprehensive picture of the heat generation and its effect on the behavior of the battery under different load conditions. Lastly a practical Load Cycle analysis of the battery has been performed which gave a picture of the heat generated by the battery and also the performance characteristics as it is subjected to a practical Load Cycle.

  1. State-of-the-art assessment of electric and hybrid vehicles

    Science.gov (United States)

    1978-01-01

    Data are presented that were obtained from the electric and hybrid vehicles tested, information collected from users of electric vehicles, and data and information on electric and hybrid vehicles obtained on a worldwide basis from manufacturers and available literature. The data given include: (1) information and data base (electric and hybrid vehicle systems descriptions, sources of vehicle data and information, and sources of component data); (2) electric vehicles (theoretical background, electric vehicle track tests, user experience, literature data, and summary of electric vehicle status); (3) electric vehicle components (tires, differentials, transmissions, traction motors, controllers, batteries, battery chargers, and component summary); and (4) hybrid vehicles (types of hybrid vehicles, operating modes, hybrid vehicles components, and hybrid vehicles performance characteristics).

  2. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV...... in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  3. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  5. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  6. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  7. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    -based local grid is supplied. In this case, the PV-battery system will operate as a PQ bus to inject the desired active and reactive powers to local grid, while the hydropower station will act as a slack bus which maintains its voltage amplitude and frequency. An integrated small-signal state-space model......, a hierarchical controller for hybrid PV-battery-hydropower microgrid is proposed in order to achieve the parallel operation of hydropower and PV-battery system with different rates, and to guarantee power sharing performance among PV voltage controlled inverters, while the required power to hydropower...

  8. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.

    Science.gov (United States)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M

    2016-01-28

    A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.

  9. Hybrid unscented particle filter based state-of-charge determination for lead-acid batteries

    International Nuclear Information System (INIS)

    Shen, Yanqing

    2014-01-01

    Accurate prediction of cell SOC (state of charge) is important for the safety and functional capabilities of the battery energy storage application system. This paper presents a hybrid UPF (unscented particle filter) based SOC determination combined model for batteries. To simulate the entire dynamic electrical characteristics of batteries, a novel combined state space model, which takes current as a control input and let SOC and two constructed parameters as state variables, is advanced to represent cell behavior. Besides that, an improved UPF method is used to evaluate cell SOC. Taking lead-acid batteries for example, we apply the established model for test. Results show that the evolved combined state space cell model simulates battery dynamics robustly with high accuracy and the prediction value based on the improved UPF method converges to the real SOC very quickly within the error of±2%. - Highlights: • This paper introduces a hybrid UPF based SOC determination model for batteries. • The evolved model takes SOC and two constructed parameters as state variables. • The combined state space cell model simulates battery dynamics robustly. • NLMS based method is employed to lessen search space and fasten convergence process. • Novel model converges to the real SOC robustly and quickly with fewer particles

  10. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  11. Environmental impact analysis of electric and hybrid vehicle batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-16

    This environmental impact analysis of electric and hybrid vehicle batteries is intended to identify principal environmental impacts resulting directly or indirectly from the development of electric vehicle batteries. Thus, the result of this study could be used to determine the appropriate following step in the U.S. DOE's EIA process. The environmental impacts considered in this document are the incremental impacts generated during the various phases in the battery life cycle. The processes investigated include mining, milling, smelting, and refining of metallic materials for electrode components; manufacturing processes of inorganic chemicals and other materials for electrolytes and other hardware components; battery assembly processes; operation and maintenance of batteries; and recycling and disposal of used batteries. The severity of the incremental impacts is quantified to the extent consistent with the state-of-knowledge. Many of the industrial processes involve proprietary or patent information; thus, in many cases, the associated environmental impacts could not be determined. In addition, most candidate battery systems are still in the development phase. Thus, the manufacturing and recycling processes for most battery systems either have not been developed by industry, or the information is not available. For these cases, the associated environmental impact evaluations could only be qualitative, and the need for further investigations is indicated. 26 figures, 27 tables. (RWR)

  12. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    Science.gov (United States)

    Goli, Pradyumna; Legedza, Stanislav; Dhar, Aditya; Salgado, Ruben; Renteria, Jacqueline; Balandin, Alexander A.

    2014-02-01

    Li-ion batteries are crucial components for progress in mobile communications and transport technologies. However, Li-ion batteries suffer from strong self-heating, which limits their life-time and creates reliability and environmental problems. Here we show that thermal management and the reliability of Li-ion batteries can be drastically improved using hybrid phase change material with graphene fillers. Conventional thermal management of batteries relies on the latent heat stored in the phase change material as its phase changes over a small temperature range, thereby reducing the temperature rise inside the battery. Incorporation of graphene to the hydrocarbon-based phase change material allows one to increase its thermal conductivity by more than two orders of magnitude while preserving its latent heat storage ability. A combination of the sensible and latent heat storage together with the improved heat conduction outside of the battery pack leads to a significant decrease in the temperature rise inside a typical Li-ion battery pack. The described combined heat storage-heat conduction approach can lead to a transformative change in thermal management of Li-ion and other types of batteries.

  13. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  14. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the

  15. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs

    International Nuclear Information System (INIS)

    Lunz, Benedikt; Yan, Zexiong; Gerschler, Jochen Bernhard; Sauer, Dirk Uwe

    2012-01-01

    The profitability of plug-in hybrid electric vehicles (PHEVs) is significantly influenced by battery aging and electricity costs. Therefore a simulation model for PHEVs in the distribution grid is presented which allows to compare the influence of different charging strategies on these costs. The simulation is based on real-world driving behavior and European Energy Exchange (EEX) intraday prices for obtaining representative results. The analysis of comprehensive lithium-ion battery aging tests performed within this study shows that especially high battery states of charge (SOCs) decrease battery lifetime, whereas the cycling of batteries at medium SOCs only has a minor contribution to aging. Charging strategies that take into account the previously mentioned effects are introduced, and the SOC distributions and cycle loads of the vehicle battery are investigated. It can be shown that appropriate charging strategies significantly increase battery lifetime and reduce charging costs at the same time. Possible savings due to lifetime extension of the vehicle battery are approximately two times higher than revenues due to energy trading. The findings of this work indicate that car manufacturers and energy/mobility providers have to make efforts for developing intelligent charging strategies to reduce mobility costs and thus foster the introduction of electric mobility. - Highlights: ► Modeling of PHEVs based on real-world driving behavior and electricity prices. ► Consideration of battery degradation for the calculation of mobility costs. ► Smart charging decreases battery degradation and electricity costs simultaneously. ► Reduction of battery degradation costs is around two times higher than reduction of electricity costs.

  16. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; P. van den Bosch; T. Hofman; Edwin Tazelaar; Y. Shen

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  17. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  18. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...

  19. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  20. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J M

    1992-09-01

    This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

  1. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    Science.gov (United States)

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  2. Lead-acid batteries in micro-hybrid applications. Part II. Test proposal

    Energy Technology Data Exchange (ETDEWEB)

    Schaeck, S.; Stoermer, A.O. [BMW Group, 80788 Muenchen (Germany); Albers, J. [Johnson Controls Power Solutions EMEA, 30419 Hannover (Germany); Weirather-Koestner, D. [ZSW Ulm, 89081 Ulm (Germany); Kabza, H. [Universitaet Ulm, Institut fuer Energiewandlung und -speicherung, 89081 Ulm (Germany)

    2011-02-01

    In the first part of this work selected key parameters for applying lead-acid (LA) batteries in micro-hybrid power systems (MHPS) were investigated. Main results are integrated in an accelerated, comprehensive test proposal presented here. The test proposal aims at a realistic representation of the pSoC operation regime, which is described in Refs. The test is designed to be sensitive with respect to dynamic charge acceptance (DCA) at partially discharged state (critical for regenerative braking) and the internal resistance at high-rate discharge (critical for idling stop applications). First results are presented for up-to-date valve-regulated LA batteries with absorbent glass mat (AGM) separators. The batteries are close to the limits of the first proposal of pass/fail-criteria. Also flooded batteries were tested; the first out of ten units failed already. (author)

  3. Lead-acid batteries in micro-hybrid applications. Part II. Test proposal

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Albers, J.; Weirather-Koestner, D.; Kabza, H.

    In the first part of this work [1] selected key parameters for applying lead-acid (LA) batteries in micro-hybrid power systems (MHPS) were investigated. Main results are integrated in an accelerated, comprehensive test proposal presented here. The test proposal aims at a realistic representation of the pSoC operation regime, which is described in Refs. [1,6]. The test is designed to be sensitive with respect to dynamic charge acceptance (DCA) at partially discharged state (critical for regenerative braking) and the internal resistance at high-rate discharge (critical for idling stop applications). First results are presented for up-to-date valve-regulated LA batteries with absorbent glass mat (AGM) separators. The batteries are close to the limits of the first proposal of pass/fail-criteria. Also flooded batteries were tested; the first out of ten units failed already.

  4. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  5. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  6. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    Science.gov (United States)

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  7. Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector

    International Nuclear Information System (INIS)

    Bianchi, M.; Branchini, L.; Ferrari, C.; Melino, F.

    2014-01-01

    Highlights: • A feasibility study on a stand-alone solar–battery power generation system is carried out. • An in-house developed calculation code able to estimate photovoltaic panels behaviour is described. • The feasibility of replacing grid electricity with hybrid system is examined. • Guidelines for optimal photovoltaic design are given. • Guidelines for optimal storage sizing in terms of batteries number and capacity are given. - Abstract: The penetration of renewable sources into the grid, particularly wind and solar, have been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. The study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. In particular, this paper presents first results for photovoltaic (PV)/battery (B) hybrid configuration. The main objective of this paper is focused on PV/B system, to recommend hybrid system optimal design in terms of PV module number, PV module tilt, number and capacity of batteries to minimize or, if possible, to neglect grid supply. This paper is the early stage of a theoretical and experimental study in which two different hybrid power system configurations will be evaluated and compared: (i) PV/B system and (ii) PV/B/fuel cell (FC) system. The aim of the overall study will be the definition of the

  8. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  9. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  10. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  11. Are you smarter than your charger?

    Energy Technology Data Exchange (ETDEWEB)

    Beauregard-Pontinha, P. [Hydro-Quebec, Montreal, PQ (Canada)

    2010-07-01

    A SMART vehicle is considered smart because it communicates with the electric vehicle prior to and during charging to detect any anomalies that might affect safety or the equipment. This presentation discussed SMART chargers and how they could be used for load shifting, load shedding, ancillary services, and demand response. The presentation also discussed why SMART chargers should be used in order to help optimize grid performance; delay infrastructure investment; reduce stress on the grid; and allow for a more efficient use of resources. For electric vehicle uses, SMART chargers empower users to actively participate in energy conservation and keep the cost of electricity low. They provides information on users habits, thus providing the users with more options and greater control. SMART chargers can be remotely monitored and controlled, and can help users to monitor their energy consumption and carbon footprint. The presentation also discussed a SMART zone demonstration in Quebec composed of the following 4 subprojects: distribution management systems and volt/var optimization implementation; advanced metering infrastructure and load management; renewable energy; and electric vehicle infrastructure. The presentation concluded with a discussion of a new zero-emission vehicle partnership involving Hydro-Quebec and the implementation of a charging infrastructure. figs.

  12. PSO based PI controller design for a solar charger system.

    Science.gov (United States)

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  13. PSO Based PI Controller Design for a Solar Charger System

    Directory of Open Access Journals (Sweden)

    Her-Terng Yau

    2013-01-01

    Full Text Available Due to global energy crisis and severe environmental pollution, the photovoltaic (PV system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs.

  14. Development of micro solar charger with blocking relay; Gyakuryu boshi relay wo oyoshita kogata solar judenki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nanno, I.; Matsushita, Y. Oka, S. [Omron Corp., Kyoto (Japan)

    1997-11-25

    Heavy-current tiny-scale solar charger is tentatively built, equipped with a function of preventing overcharge and countercurrent in case of charging storage batteries using solar cells. Incorporated into this solar charger are a countercurrent prevention relay system, a low loss current detection system, and a MOSFET parallel connection, which allow the solar charger to be designed small in size in the presence of an increase in heat due to circuit loss. In the countercurrent prevention relay system, the countercurrent prevention diode is bypassed by MOSFETs when too large a current is generated. In the low loss current detection system, currents are detected by use of the ON resistance of the MOSFETs for the prevention of overcharge. In the MOSFET parallel connection, MOSFETs are connected in parallel for a decrease in the ON resistance. The tentatively built charger is then subjected to a performance evaluation test outside the building, and the test is carried out by measuring the temperatures of the MOSFETs and the air. As the result, it is found that the temperature of MOSFET junction of the 12A tiny-size solar charger is approximately 42.5 degC at the highest, low enough to clear the requirements. 4 refs., 7 figs., 4 tabs.

  15. Sizing stack and battery of a fuel cell hybrid distribution truck

    OpenAIRE

    Tazelaar, E.; Shen, Y.; Veenhuizen, P.A.; Hofman, T.; Bosch, van den, P.P.J.

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS) is used for determining the control setpoint for the fuel cell and battery system. It closely appr...

  16. Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck Dimensionnement pile et batterie d’un camion hybride à pile à combustible de distribution

    Directory of Open Access Journals (Sweden)

    Tazelaar E.

    2012-08-01

    Full Text Available An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW and battery (kW, kWh sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS is used for determining the control setpoint for the fuel cell and battery system. It closely approximates the global minimum in fuel consumption, set by Dynamic Programming (DP. Using DP the sizing problem can be solved but ECMS can also be implemented real-time. For the considered vehicle and hardware, all three driving cycles result in optimal sizes for the fuel cell stack of approximately three times the average drive power demand. This demonstrates that sizing the fuel cell stack the average or maximum power demand is not necessarily optimal with respect to a minimum fuel consumption. The battery is sized to deliver the difference between specified stack power and the peak power in the total power demand. The sizing of the battery is dominated by its power handling capabilities. Therefore, a higher maximum C-rate leads to a lower battery weight which in turn leads to a lower hydrogen consumption. The energy storage capacity of the battery only becomes an issue for C-rates over 30. Compared to a Range Extender (RE configuration, where the stack size is comparable to the average power demand and the stack is operated on a constant power level, optimal stack and battery sizes with ECMS as EnergyManagement Strategy significantly reduce the fuel consumption. Compared to a RE strategy, ECMS makes much better use of the combined power available from the fuel cell stack and the battery, resulting in a lower fuel consumption but also enabling a lower battery weight which consequently leads to improved payload capabilities. Un camion hybride, utilisant une pile

  17. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), CNRS, Nancy Universite, INPL-ENSEM 2, avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2009-08-01

    This paper proposes a perfect energy source supplied by a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices: battery and supercapacitor, for modern distributed generation system, particularly for future fuel cell vehicle applications. The energy in hybrid system is balanced by the dc bus voltage regulation. A supercapacitor module, as a high dynamic and high power density device, functions for supplying energy to regulate a dc bus voltage. A battery module, as a high energy density device, operates for supplying energy to a supercapacitor bank to keep it charged. A FC, as a slowest dynamic source in this system, functions to supply energy to a battery bank in order to keep it charged. Therefore, there are three voltage control loops: dc bus voltage regulated by a supercapacitor bank, supercapacitor voltage regulated by a battery bank, and battery voltage regulated by a FC. To authenticate the proposed control algorithm, a hardware system in our laboratory is realized by analog circuits and numerical calculation by dSPACE. Experimental results with small-scale devices (a PEMFC: 500-W, 50-A; a battery bank: 68-Ah, 24-V; and a supercapacitor bank: 292-F, 30-V, 500-A) corroborate the excellent control principle during motor drive cycle. (author)

  18. Aqueous hybrid ion batteries - An environmentally friendly alternative for stationary energy storage?

    Science.gov (United States)

    Peters, Jens F.; Weil, Marcel

    2017-10-01

    Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.

  19. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  20. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  1. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  2. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  3. Detection and Elimination of a Potential Fire in Engine and Battery Compartments of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Macam S. Dattathreya

    2012-01-01

    Full Text Available This paper presents a novel fuzzy deterministic noncontroller type (FDNCT system and an FDNCT inference algorithm (FIA. The FDNCT uses fuzzy inputs and produces a deterministic non-fuzzy output. The FDNCT is an extension and alternative for the existing fuzzy singleton inference algorithm. The research described in this paper applies FDNCT to build an architecture for an intelligent system to detect and to eliminate potential fires in the engine and battery compartments of a hybrid electric vehicle. The fuzzy inputs consist of sensor data from the engine and battery compartments, namely, temperature, moisture, and voltage and current of the battery. The system synthesizes the data and detects potential fires, takes actions for eliminating the hazard, and notifies the passengers about the potential fire using an audible alarm. This paper also presents the computer simulation results of the comparison between the FIA and singleton inference algorithms for detecting potential fires and determining the actions for eliminating them.

  4. Power Management of Hybrid Power Systems with Li-Fe Batteries and Supercapacitors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Guohui Wang

    2014-05-01

    Full Text Available This paper presents an energy management strategy of a Li-Fe battery and supercapacitor hybrid power system to provide both high power density and energy density for mobile robots with fluctuating workloads. A two-phase power-optimization approach is proposed to exploit the high power density of supercapacitors and the high energy density of Li-Fe batteries. With our strategy, large peak power can be provided for a short time period whenever needed, while low power can be provided for very long time. A set of experiments have been conducted. The experimental results show that our strategy can effectively improve the performance of mobile robots and extend the lifetime of batteries.

  5. The Research of Super Capacitor and Battery Hybrid Energy Storage System with the THIPWM

    Directory of Open Access Journals (Sweden)

    Jianwei Ma

    2014-02-01

    Full Text Available It has to be considered that dynamic performance of Super Capacitor and Battery hybrid energy storage system is poor and the output waveform of AC voltage distorted seriously. The Third Harmonic Injection PWM (THIPWM with the three-level inverter, which has a excellent performance to improve the dynamic performance of the super capacitor and battery, gathers information from ends of the DC output voltage or current and the total current of the DC side to solve the problem of unbalanced neutral line voltage of three-level inverter .It also keeps super capacitor and battery controlled smoothly during the operation, and reduces the final output waveform distortion index. The simulation results verify the practicality and correctness of the three-level inverter topology and its control algorithm.

  6. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids

    Directory of Open Access Journals (Sweden)

    Jing Li

    2012-12-01

    Full Text Available In this paper, we develop a simple algorithm to determine the required number of generating units of wind-turbine generator and photovoltaic array, and the associated storage capacity for stand-alone hybrid microgrid. The algorithm is based on the observation that the state of charge of battery should be periodically invariant. The optimal sizing of hybrid microgrid is given in the sense that the life cycle cost of system is minimized while the given load power demand can be satisfied without load rejection. We also report a case study to show the efficacy of the developed algorithm.

  7. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  8. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jian-Gan; Yang, Ying; Huang, Zheng-Hong; Kang, Feiyu

    2015-01-01

    MnO-carbon hybrid nanofiber composites are fabricated by electrospinning polyimide/manganese acetylacetonate precursor and a subsequent carbonization process. The composition, phase structure and morphology of the composites are characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the composites exhibit good nanofibrous morphology with MnO nanoparticles uniformly encapsulated by carbon nanofibers. The hybrid nanofiber composites are used directly as freestanding anodes for lithium-ion batteries to evaluate their electrochemical properties. It is found that the optimized MnO-carbon nanofiber composite can deliver a high reversible capacity of 663 mAh g −1 , along with excellent cycling stability and good rate capability. The superior performance enables the composites to be promising candidates as an anode alternative for high-performance lithium-ion batteries

  9. Cu_2O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Huang; Dong, Hui; Zhang, Xuan; Xu, Yunlong; Fransaer, Jan

    2016-01-01

    Though MXenes, a new family of 2D transition metal carbides, are generating considerable interests as electrode materials for batteries and supercapacitors, further application is hindered by their low capacities and poor rate capabilities. Here we propose a simple route for the synthesis of Cu_2O particle hybridized titanium carbide Ti_2CT_x (T = O, OH) composites via a solvothermal method. Electrodes containing Cu_2O/MXene were fabricated without carbon black, and tested as anodes for lithium ion batteries. A discharge capacity of 143 mAh g"−"1 was obtained at a discharge current density of 1000 mA g"−"1 and the capacity retention was near 100% after 200 cycles. The hybrid electrodes with open conductive frameworks exhibited significantly improved electrochemical performance, suggesting a new method for preparing MXene-based composites for energy storage application.

  10. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  11. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    Science.gov (United States)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  12. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    Science.gov (United States)

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  13. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    Science.gov (United States)

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    In this study, a novel Li-ion battery pack design including hybrid active–passive thermal management system is presented. The battery pack is suitable for using in hybrid/electric vehicles. Active part of the hybrid thermal management system uses distributed thin ducts, air flow and natural convection as cooling media while the passive part utilizes phase change material/expanded graphite composite (PCM/EG) as cooling/heating component to optimize the thermal performance of the proposed battery pack. High melting enthalpy of PCM/EG composite together with melting of PCM/EG composite at the temperature of 58.9 °C remains the temperature distribution of the battery units in the desired temperature range (below 60 °C). The temperature and voltage distributions in the proposed battery pack design consisting of battery units, distributed thin ducts and PCM/EG composite are calculated by numerical solving of the related partial differential equations. Simulation results obtained by writing M-files code in Matlab environment and plotting the numerical data are presented to validate the theoretical results. A comparison between the thermal and physical characteristics of the proposed battery pack and other latest works is presented that explicitly proves the battery pack performance. - Highlights: • Novel Li-ion battery pack including active and passive thermal management systems. • The battery pack has high thermal performance for ambient temperatures until 55 °C. • Uniform temperature and voltage distributions. • The maximum observed temperature in each battery unit is less than other works. • The maximum temperature dispersion in each battery is less than other works

  15. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  16. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  17. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles

    Science.gov (United States)

    Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe

    2014-07-01

    Lithium-ion battery packs in hybrid and pure electric vehicles are always equipped with a battery management system (BMS). The BMS consists of hardware and software for battery management including, among others, algorithms determining battery states. The continuous determination of battery states during operation is called battery monitoring. In this paper, the methods for monitoring of the battery state of charge, capacity, impedance parameters, available power, state of health, and remaining useful life are reviewed with the focus on elaboration of their strengths and weaknesses for the use in on-line BMS applications. To this end, more than 350 sources including scientific and technical literature are studied and the respective approaches are classified in various groups.

  18. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  19. A hybrid PV-battery/diesel electricity supply on Peucang island: an economic evaluation

    Directory of Open Access Journals (Sweden)

    Matthias Günther

    2016-12-01

    Full Text Available Renewable energy technologies are currently under a dynamic cost development. This case holds especially for solar technology that has reached price levels that were unimaginable until a short time ago. It also holds for battery technologies the application of which is related to the increasing usage of photovoltaic energy converters and the growing interest in electric vehicles. With the decreasing prices more and more possible application cases of renewable energy technologies become economically viable. A case study was done for a location on a small island located on the west tip of Java. The levelized electricity cost of a hybrid electricity supply system composed of a solar generator and battery in combination with the existing diesel generators was compared to the electricity generation cost of the existing system. Two different battery options were taken into account, lead-acid batteries and lithium-ion batteries. The results of this study can give a rough orientation also for other locations with similar characteristics.

  20. Redox flow batteries. Already an alternative storage solution for hybrid PV mini-grids?

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Matthias; Dennenmoser, Martin; Schwunk, Simon; Smolinka, Tom [Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg (Germany); Doetsch, Christian; Berthold, Sascha [Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT), Oberhausen (Germany); Tuebke, Jens; Noack, Jens [Fraunhofer Institute for Chemical Technology (ICT), Karlsruhe (Germany)

    2010-07-01

    Due to the flexible scalability of the power to energy ratio redox flow batteries are a suitable solution for quite a lot of decentralized applications. E.g. the autonomy time of a stand-alone system or mini-grid can be raised by increasing the tank size of the redox flow battery. In this paper the test site ''Rappenecker Hof'' in the black forest is used as an example for simulation based life cycle cost analyses of a vanadium redox flow battery integrated in an autonomous hybrid PV system. Two cases with lead acid batteries are considered as benchmarks for economic viability of the redox flow battery solution in such applications. At the moment a 1 KW / 6 kWh system for decentralized solutions is developed and will be installed in the ''Solarhaus'' in Freiburg. The main results of the cell stack and system design as well as performance data are presented. Furthermore simulation models and the model based development of the ''Smart Redox flow Control'' are described. For the optimized integration of the storage unit in the energy system a communication interface for exchanging data with the supervisory energy management system is introduced. On this basis a SOC forecast according to a given demand profile can be determined. (orig.)

  1. Advanced valve-regulated lead-acid batteries for hybrid vehicle applications

    Science.gov (United States)

    Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Sánchez, A.; Valenciano, J.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. Work presented in this paper deals with the study of different design parameters, manufacturing process and charging conditions of spiral wound valve-regulated lead-acid (VRLA) batteries, in order to improve their reliability and cycle life for hybrid vehicle applications. Test results show that both electrolyte saturation and charge conditions have a strong effect on cycle life at HRPSoC performance, presumably because water loss finally accelerates battery failure, which is linked to irreversible sulphation in the upper part of the negative electrodes. By adding expanded graphite to the negative active mass formulation, increasing the electrolyte saturation degree (>95%) and controlling overcharge during regenerative braking periods (voltage limitation and occasional boosting) it is possible to achieve up to 220,000 cycles at 2.5% DOD, equivalent to 5500 capacity throughput. These results could make lead acid batteries a strong competitor for HEV applications versus other advanced systems such as Ni-MH or Li-ion batteries.

  2. Optimization of an off-grid hybrid PV-wind-diesel-battery system

    Energy Technology Data Exchange (ETDEWEB)

    Merei, Ghada [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); Sauer, Dirk Uwe [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); RWTH Aachen Univ. (Germany). Inst. for Power Generation and Storage Systems (PGS)

    2012-07-01

    The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents the modelling and optimisation of a stand-alone hybrid energy system. The system consists of photovoltaic (PV) panels and a wind turbine as renewable power sources, a diesel generator for back-up power and batteries to store excess energy and to improve the system reliability. For storage the technologies of lithium-ion, lead-acid, vanadium redox-flow or a combination thereof are considered. In order to use different battery technologies at once, a battery management system (BMS) is needed. The presented BMS minimises operation cost while taking into account different battery operating points and ageing mechanisms. The system is modelled and implemented in Matlab/Simulink. As input, the model uses data of the irradiation, wind speed and air temperature measured in ten minute intervals for ten years in Aachen, Germany. The load is assumed to be that of a rural UMTS/GSM base station for telecommunication. For a timeframe of 20 years, the performance is evaluated and the total costs are determined. Using a genetic algorithm, component sizes and settings are then varied and the system re-evaluated to minimise the overall cost. The optimisation results show that using batteries in combination with the renewables is economic and ecologic. However, the best solution is to combine redox-flow batteries with the renewables. In addition, a power supply system consisting only of batteries, PV and wind generators can satisfy the power demand.

  3. Mechanochemically prepared ternary hybrid cathode material for lithium batteries

    International Nuclear Information System (INIS)

    Posudievsky, Oleg Yu; Kozarenko, Olga A.; Dyadyun, Vyacheslav S.; Jorgensen, Scott W.; Spearot, James A.; Koshechko, Vyacheslav G.; Pokhodenko, Vitaly D.

    2013-01-01

    Graphical abstract: The presence of macromolecules of an ion-conducting polymer in the composition of the ternary nanocomposite PPy–PEO/V 2 O 5 promotes interfacial transfer of lithium ions and also facilitates faster transport inside the particles of the nanocomposite. -- Highlights: • Two- and three component nanocomposites are prepared via a solvent-free mechanochemical synthesis. • The nanocomposites retain their capacity above 200 mA h g −1 for at least one hundred cycles. • The presence of PEO promotes interfacial transfer of lithium ions and facilitates faster transport inside the nanocomposite. -- Abstract: Ternary host–guest nanocomposite based on vanadium oxide and two polymers with different types of conductivity (ionic and electronic) – polypyrrole (PPy) and polyethylene oxide (PEO) – is prepared by solventless mechanochemical synthesis. The nanocomposite can be reversibly cycled with a specific capacity of ∼200 mA h g −1 for at least one hundred cycles of full charge–discharge as the active component of the positive electrode of lithium batteries. Electrochemical performance of ternary PPy 0.1 PEO 0.15 V 2 O 5 is compared with two-component analog PPy 0.1 V 2 O 5 . The presence of macromolecules of an ion-conducting polymer in the composition of the ternary nanocomposite PPy 0.1 PEO 0.15 V 2 O 5 promotes interfacial transfer of lithium ions and also facilitates faster transport inside the particles of the nanocomposite

  4. 29 CFR 1917.157 - Battery charging and changing.

    Science.gov (United States)

    2010-07-01

    ... jumper battery is connected to a battery in a vehicle, the ground lead shall connect to ground away from...) Metallic objects shall not be placed on uncovered batteries. (m) When batteries are being charged, the vent caps shall be in place. (n) Chargers shall be turned off when leads are being connected or disconnected...

  5. Fast ion transport at solid-solid interfaces in hybrid battery anodes

    Science.gov (United States)

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2018-04-01

    Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn-Li anodes are shown to be stable at 3 mA cm-2 and 3 mAh cm-2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn-Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.

  6. 3D Hollow Sn@Carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zheng

    2014-01-01

    Full Text Available A 3D hollow Sn@C-graphene hybrid material (HSCG with high capacity and excellent cyclic and rate performance is fabricated by a one-pot assembly method. Due to the fast electron and ion transfer as well as the efficient carbon buffer structure, the hybrid material is promising in high-performance lithium-ion battery.

  7. Implementation of a transcutaneous charger for fully implantable middle ear hearing device.

    Science.gov (United States)

    Lim, H; Yoon, Y; Lee, C; Park, I; Song, B; Cho, J

    2005-01-01

    A transcutaneous charger for the fully implantable middle ear hearing device (F-IMEHD), which can monitor the charging level of battery, has been designed and implemented. In order to recharge the battery of F-IMEHD, the electromagnetic coupling between primary coil at outer body and secondary coil at inner body has been used. Considering the implant condition of the F-IMEHD, the primary coil and the secondary coil have been designed. Using the resonance of LC tank circuit at each coil, transmission efficiency was increased. Since the primary and the secondary coil are magnetically coupled, the current variation of the primary coil is related with the impedance of internal resonant circuit. Using the principle mentioned above, the implanted module could transmit outward the information about charging state of battery or coupling between two coils by the changing internal impedance. As in the demonstrated results of experiment, the implemented charger has supplied the sufficient operating voltage for the implanted battery within about 10 mm distance. And also, it has been confirmed that the implanted module can transmit information outward by control of internal impedance.

  8. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  9. Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Golsorkhi, Mohammad

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units......, the operation of each unit is divided into five states and modified active power-frequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions...... and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid...

  10. Lithium-ion Battery Degradation Assessment and Remaining Useful Life Estimation in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nabil Laayouj

    2016-06-01

    Full Text Available Abstract—Prognostic activity deals with prediction of the remaining useful life (RUL of physical systems based on their actual health state and their usage conditions. RUL estimation gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. In addition, it can be used to improve the characterization of the material proprieties that govern damage propagation for the structure being monitored. RUL can be estimated by using three main approaches, namely model-based, data-driven and hybrid approaches. The prognostics methods used later in this paper are hybrid and data-driven approaches, which employ the Particle Filter in the first one and the autoregressive integrated moving average in the second. The performance of the suggested approaches is evaluated in a comparative study on data collected from lithium-ion battery of hybrid electric vehicle.

  11. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Science.gov (United States)

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia

    International Nuclear Information System (INIS)

    Halabi, Laith M.; Mekhilef, Saad; Olatomiwa, Lanre; Hazelton, James

    2017-01-01

    Highlights: • The performance of two decentralized power stations in Malaysia has been studied. • All possible scenarios of hybrid PV/diesel/battery system have been analyzed. • A comparison with the optimum design was included in this work using HOMER. • Sensitivity analysis showing the impact of main factors on the system was examined. • The advantages/disadvantages of utilizing each scenario are showed and clarified. - Abstract: This study considered two decentralized power stations in Sabah, Malaysia; each contains different combination of photovoltaic (PV), diesel generators, system converters, and storage batteries. The work was built upon previous related site surveys and data collections from each site. Verification of the site data sets, simulation of different operational scenarios, and a comparison with the optimum design were all considered in the work. This includes all possible standalone diesel generators, hybrid PV/diesel/battery, and 100% PV/battery scenarios for the proposed stations. HOMER software has been used in the modeling entire systems. The operational behaviors of different PV penetration levels were analyzed to accurately quantify the impact of PV integration. The performance of these stations was analyzed based on technical, economic and environmental constraints, besides, placing emphasis on comparative cost analysis between different operational scenarios. The results satisfied the load demand with the minimum total net present cost (NPC) and levelized cost of energy (LCOE). Moreover, sensitivity analysis was carried out to represents the effects of changing main parameters, such as; fuel, PV, battery prices, and load demand (load growth) on the system performance. Comparison of all operational behaviors scenarios was carried out to elucidate the advantages/disadvantages of utilizing each scenario. The impact of different PV penetration levels on the system performance and the generation of harmful emissions is also

  13. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  14. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas

    Science.gov (United States)

    Stempien, J. P.; Chan, S. H.

    2017-02-01

    Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.

  15. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  16. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage

    Science.gov (United States)

    Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín

    2017-01-01

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don’t address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests. PMID:28800102

  17. Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline

    Science.gov (United States)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Liu, Jingrong; Lei, Yanhua; Liu, Tao; Dong, Lihua; Yin, Yansheng

    2018-05-01

    Electrochromic (EC) energy storage devices that could realize the multifunctional integration of energy storage and electrochromism have gained much recent attention. Herein, an EC battery based on the hybrid film of W18O49 and polyaniline (PANI) is developed and assembled, which integrates energy storage and EC functions in one device. The W18O49/PANI-EC battery delivers a discharging capacity of 52.96 mA h g-1, which is about two times higher than that of the W18O49-EC battery. Sunlight irradiation could greatly promote the oxidation reactions of both W18O49 and PANI during the charging process of the W18O49/PANI-EC battery, thus effectively accelerating the charging rate. This work provides a green, convenient, environmentally friendly, and cost-free charging strategy for the EC energy systems and could further advance the development of the multifunctional EC devices based on the organic/inorganic composites.

  18. Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Guerrero, Josep M.; Oraee, Hashem

    2016-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method takes into account the available PV power...... and battery conditions of the units to share the load among them and power flow among different phases is performed automatically through three-phase units. Modified active power-frequency droop functions are used according to operating states of each unit and the frequency level is used as trigger...... for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  19. Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling

    Directory of Open Access Journals (Sweden)

    Sina Shojaei

    2017-12-01

    Full Text Available Ambient conditions can have a significant impact on the average and maximum temperature of the battery of electric and plug-in hybrid electric vehicles. Given the sensitivity of the ageing mechanisms of typical battery cells to temperature, a significant variability in battery lifetime has been reported with geographical location. In addition, high battery temperature and the associated cooling requirements can cause poor passenger thermal comfort, while extreme battery temperatures can negatively impact the power output of the battery, limiting the available electric traction torque. Avoiding such issues requires enabling battery cooling even when the vehicle is parked and not plugged in (key-off, but the associated extra energy requirements make applying key-off cooling a non-trivial decision. In this paper, a representative plug-in parallel hybrid electric vehicle model is used to simulate a typical 24-h duty cycle to quantify the impact of hot ambient conditions on three performance attributes of the vehicle: the battery lifetime, passenger thermal comfort and fuel economy. Key-off cooling is defined as an optimal control problem in view of the duty cycle of the vehicle. The problem is then solved using the dynamic programming method. Controlling key-off cooling through this method leads to significant improvements in the battery lifetime, while benefiting the fuel economy and thermal comfort attributes. To further improve the battery lifetime, partial charging of the battery is considered. An algorithm is developed that determines the optimum combination of key-off cooling and the level of battery charge. Simulation results confirm the benefits of the proposed method.

  20. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  1. Minimisation of the LCOE for the hybrid power supply system with the lead-acid battery

    Directory of Open Access Journals (Sweden)

    Kasprzyk Leszek

    2017-01-01

    Full Text Available The paper presents the methodology of minimisation of the unit cost of production of energy generated in the hybrid system compatible with the lead-acid battery, and used to power a load with the known daily load curve. For this purpose, the objective function in the form of the LCOE and the genetic algorithm method were used. Simulation tests for three types of load with set daily load characteristics were performed. By taking advantage of the legal regulations applicable in the territory of Poland, regarding the energy storing in the power system, the optimal structure of the prosumer solar-wind system including the lead-acid battery, which meets the condition of maximum rated power, was established. An assumption was made that the whole solar energy supplied to the load would be generated in the optimised system.

  2. A dynamic simulation tool for the battery-hybrid hydrogen fuel cell vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M. [Hawaii Natural Energy Institute, University of Hawaii, Manoa (United States); Ramaswamy, S.; Cunningham, J.M. [California Univ., Berkeley, CA (United States); Hauer, K.H. [xcellvision, Major-Hirst-Strasse 11, 38422 Wolfsburg (Germany)

    2006-10-15

    This paper describes a dynamic fuel cell vehicle simulation tool for the battery-hybrid direct-hydrogen fuel cell vehicle. The emphasis is on simulation of the hybridized hydrogen fuel cell system within an existing fuel cell vehicle simulation tool. The discussion is focused on the simulation of the sub-systems that are unique to the hybridized direct-hydrogen vehicle, and builds on a previous paper that described a simulation tool for the load-following direct-hydrogen vehicle. The configuration of the general fuel cell vehicle simulation tool has been previously presented in detail, and is only briefly reviewed in the introduction to this paper. Strictly speaking, the results provided in this paper only serve as an example that is valid for the specific fuel cell vehicle design configuration analyzed. Different design choices may lead to different results, depending strongly on the parameters used and choices taken during the detailed design process required for this highly non-linear and n-dimensional system. The primary purpose of this paper is not to provide a dynamic simulation tool that is the ''final word'' for the ''optimal'' hybrid fuel cell vehicle design. The primary purpose is to provide an explanation of a simulation method for analyzing the energetic aspects of a hybrid fuel cell vehicle. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Energy Management Strategy for a Fuel Cell/ Ultracapasitor/ Battery Hybrid System for Portable Applications

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    A proton exchange membrane (PEM) fuel cells (FCs) with ultracapacitor (UC) and battery (BT) hybrid system has fast transient response compare to stand alone FCs. This hybrid system is promising candidates for environmentally friendly alternative energy sources. An energy management system design and control strategy was introduced in this study. The energy management strategy FC/ UC/ BT hybrid system model has been developed and the control strategy was programmed in the LabVIEWTM environment and implemented using National Instrument (NI) devices. The energy management strategy is able to manage the energy flow between the main power source (FCs) and auxiliary sources (UC and BT). To control the hybrid system and achieved proper performance, a controller circuit was developed with the three energy sources aligned in parallel to deliver the requested power. The developed model demonstrates the proportion power from the FC, UC and BT under various load demand. Experimental results demonstrate that FC/ UC/ BT hybrid system operated automatically with the varying load condition. The experimental results are presented; showing that the proposed strategy utilized the characteristic of both energy storage devices thus satisfies the load requirement. (author)

  4. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Jiang, Jiuchun; Sun, Bingxiang; Zhang, Weige; Pecht, Michael

    2016-01-01

    The power capability of lithium-ion batteries affects the safety and reliability of hybrid electric vehicles and the estimate of power by battery management systems provides operating information for drivers. In this paper, lithium ion manganese oxide batteries are studied to illustrate the temperature dependency of power capability and an operating map of power capability is presented. Both parametric and non-parametric models are established in conditions of temperature, state of charge, and cell resistance to estimate the power capability. Six cells were tested and used for model development, training, and validation. Three samples underwent hybrid pulse power characterization tests at varied temperatures and were used for model parameter identification and model training. The other three were used for model validation. By comparison, the mean absolute error of the parametric model is about 29 W, and that of the non-parametric model is around 20 W. The mean relative errors of two models are 0.076 and 0.397, respectively. The parametric model has a higher accuracy in low temperature and state of charge conditions, while the non-parametric model has better estimation result in high temperature and state of charge conditions. Thus, two models can be utilized together to achieve a higher accuracy of power capability estimation. - Highlights: • The temperature dependency of power capability of lithium-ion battery is investigated. • The parametric and non-parametric power capability estimation models are proposed. • An exponential function is put forward to compensate the effects of temperature. • A comparative study on the accuracy of two models using statistical metrics is presented.

  5. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures

    International Nuclear Information System (INIS)

    Jaguemont, J.; Boulon, L.; Dubé, Y.

    2016-01-01

    Highlights: • We present a comprehensive review on lithium ion batteries used in hybrid and electric vehicles under cold temperatures. • The weak performances of lithium-ion batteries in cold weather are explained. • The influence of low temperatures on the aging mechanisms of lithium ion batteries is discussed. • The different uses of thermal strategies in an automotive application are proposed. - Abstract: Because of their numerous advantages, lithium-ion (Li-ion) batteries have recently become a focus of research interest for vehicle applications. Li-ion batteries are suitable for electric vehicles (EVs) and hybrid electric vehicles (HEVs) because of advantages such as their high specific energy, high energy density, and low self-discharge rate in comparison with other secondary batteries. Nevertheless, the commercial availability of Li-ion batteries for vehicle applications has been hindered by issues of safety, cost, charging time, and recycling. One principal limitation of this technology resides in its poor low-temperature performance. Indeed, the effects of low temperature reduce the battery’s available energy and increase its internal impedance. In addition, performance-hampering cell degradation also occurs at low temperatures and throughout the entire life of a Li-ion battery. All of these issues pose major difficulties for cold-climate countries. This paper reviews the effects of cold temperatures on the capacity/power fade of Li-ion battery technology. Extensive attention is paid to the aging mechanisms of Li-ion batteries at cold temperatures. This paper also reviews several battery models found in the literature. Finally, thermal strategies are detailed, along with a discussion of the ideal approach to cold-temperature operation.

  6. Preliminary experimental evaluation of a four wheel motors, batteries plus ultracapacitors and series hybrid powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Rambaldi, Lorenzo [Interuniversity Research Center on Sustainable Development, Sapienza University of Rome, Rome (Italy); Bocci, Enrico [Department of Mechanics and Aeronautics, Sapienza University of Rome, Rome (Italy); Orecchini, Fabio [Guglielmo Marconi University, Rome (Italy)

    2011-02-15

    This paper reports the preliminary experimental evaluation of a four wheel motors series hybrid prototype equipped with an internal combustion engine coupled to a generator and an energy recovery system (batteries plus ultracapacitors). The paper analyses global efficiency (energy dissipated to overcome the dissipative forces on energy dissipated in fuel), autonomy in electric configuration, and the efficiency of the regenerative braking system. The tests were carried out in a test cell equipped with a chassis dynamometer. The tests were performed according to the current regulated procedures. A constant speed test was performed in order to evaluate the autonomy of the vehicle in the electric configuration. The results show that the real tank to wheels efficiency is about 30% for HOST as a series hybrid and 79% for HOST as an electric vehicle. (author)

  7. Optimised operation of an off-grid hybrid wind-diesel-battery system using genetic algorithm

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2016-01-01

    Highlights: • Diesel generator’s operation is optimised in a hybrid wind-diesel-battery system. • Optimisation is performed using wind speed and load demand forecasts. • The objective is to maximise wind energy utilisation with limited battery storage. • Physical modelling approach (Simscape) is used to verify mathematical model. • Sensitivity analyses are performed with synthesised wind and load forecast errors. - Abstract: In an off-grid hybrid wind-diesel-battery system, the diesel generator is often not utilised efficiently, therefore compromising its lifetime. In particular, the general rule of thumb of running the diesel generator at more than 40% of its rated capacity is often unmet. This is due to the variation in power demand and wind speed which needs to be supplied by the diesel generator. In addition, the frequent start-stop of the diesel generator leads to additional mechanical wear and fuel wastage. This research paper proposes a novel control algorithm which optimises the operation of a diesel generator, using genetic algorithm. With a given day-ahead forecast of local renewable energy resource and load demand, it is possible to optimise the operation of a diesel generator, subjected to other pre-defined constraints. Thus, the utilisation of the renewable energy sources to supply electricity can be maximised. Usually, the optimisation studies of a hybrid system are being conducted through simple analytical modelling, coupled with a selected optimisation algorithm to seek the optimised solution. The obtained solution is not verified using a more realistic system model, for instance the physical modelling approach. This often led to the question of the applicability of such optimised operation being used in reality. In order to take a step further, model-based design using Simulink is employed in this research to perform a comparison through a physical modelling approach. The Simulink model has the capability to incorporate the electrical

  8. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  9. The hybrid energy storages based on batteries and ultracapacitors for contact microwelding

    Directory of Open Access Journals (Sweden)

    Bondarenko Yu. V.

    2014-08-01

    Full Text Available Micro resistance welding is an effective way to reliably join small-scale parts. It is widely used in electronics and instrument-making. The important particularities of micro resistance welding are pulse character of energy consumption, non-linear load and special form of current pulses. So, these particularities of welding process cause negative influence on the mains. One of the known ways to avoid it is to use autonomous power supplies for micro resistance welding machines. The important task for building autonomous power supplies is to choose effective energy storages, which have high capacity and small internal resistance, and which are capable to be charged and deliver energy to load very quickly. The solution of this task is seen in using hybrid energy storages, which include accumulators and ultracapacitors. The accumulators are able to provide high energy capacitance and the ultracapacitors are able to provide fast energy delivery. The possibility of application of hybrid energy storages, based on accumulator batteries and ultracapacitors, in micro resistance welding machines is confirmed with computer simulation. Two variants of hybrid energy storages are proposed. These hybrid energy storages have high power and dynamic characteristics, which are sufficient to generate current pulses for welding according to necessary settings.

  10. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    International Nuclear Information System (INIS)

    Ustinov, A; Khayrullina, A; Khmelik, M; Sveshnikova, A; Borzenko, V

    2016-01-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia. (paper)

  11. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  12. US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).

  13. Facile synthesis of graphene oxide @ mesoporous carbon hybrid nanocomposites for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Chen, Wei; Zhou, Chengkun; Lai, Yanqing; Li, Jie

    2014-01-01

    Graphical abstract: - Highlights: • A novel design and synthesis of GO@Meso-C using GO@MOF-5 as precursor. • GO@Meso-C hybrid material as a host material was applied for sulfur cathode. • Electrochemical performances were improved in sulfur cathode using Go@Meso-C. - Abstract: We present a design and synthesis of a hierarchical architecture of graphene oxide @ mesoporous carbon (GO@Meso-C) using graphene oxide @ metal-organic framework hybrid materials (GO@MOF-5) as both the template and precursor. Active sulfur is encapsulated into the GO@Meso-C matrix prepared via carbonize GO@MOF-5 polyhedrons for high performance lithium sulfur battery. The initial and 100th cycle discharge capacity of GO@Meso-C/S sulfur cathode are as high as 1122 mAh g −1 and 820 mAh g −1 at a current rate of 0.2 C. The remarkably high special capacity and capacity retention rate indicate that the GO@Meso-C is a promising host material for the sulfur cathode in the lithium sulfur battery applications

  14. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  15. Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions

    International Nuclear Information System (INIS)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin

    2010-01-01

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO 2 emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO 2 emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO 2 emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO 2 emissions corrected according to this procedure underestimate the true net CO 2 emissions of one HEV by approximately 13% in real-world urban driving. The correct CO 2 emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO 2 emissions should, therefore, be adapted.

  16. Effects of automobile battery wastes on physicochemical properties ...

    African Journals Online (AJOL)

    Difference in soil qualities has been noticeable in many soils due to anthropogenic sources, especially of automobile battery wastes. This study examines the effects of automobile battery wastes on the physicochemical properties of the soil. Soil samples for this study were collected in triplicates from three battery chargers' ...

  17. Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles

    International Nuclear Information System (INIS)

    Capasso, Clemente; Veneri, Ottorino

    2014-01-01

    Highlights: • Performance analysis for lithium storage technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries. • Actual capacity of lithium technologies analyzed almost close to their nominal capacity also for high discharging current. • The charging efficiency for Li[NiCoMn]O 2 positively affects the regenerative breaking and fast recharging operations. • The analyzed battery packs follow dynamic power requirements on performed road driving cycles. • Experimental results demonstrate driving range is much higher when battery packs are based on lithium technology. - Abstract: This paper deals with an experimental evaluation regarding the real performance of lithium based energy storage systems for automotive applications. In particular real working operations of different lithium based storage system technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries, are compared in this work from the point of view of their application in supplying full electric and hybrid vehicles, taking as a reference the well-known behavior of lead acid batteries. For this purpose, the experimental tests carried out in laboratory are firstly performed on single storage modules in stationary conditions. In this case the related results are obtained by means of a bidirectional cycle tester based on the IGBT technology, and consent to evaluate, compare and contrast charge/discharge characteristics and efficiency at constant values of current/voltage/power for each storage technology analyzed. Then, lithium battery packs are tested in supplying a 1.8 kW electric power train using a laboratory test bench, based on a 48 V DC bus and specifically configured to simulate working operations of electric vehicles on the road. For this other experimentation the test bench is equipped with an electric brake and acquisition/control system, able to represent in laboratory the real vehicle conditions and road characteristics on predefined driving cycles at different slopes. The obtained

  18. Modeling and Control of a DC-grid Hybrid Power System with Battery and Variable Speed Diesel Generators

    OpenAIRE

    Syverud, Tron Hansen

    2016-01-01

    Hybrid electric power systems (HPS) have successfully been integrated in the road-traffic industry due to enhanced efficiency and environmental benefits. Recently this concept has been implemented in the marine sector. In this master thesis, the construction of a DC hybrid power system for a marine vessel is outlined in detail. The HPS is developed in Matlbat/Simulink and comprises two set of diesel generators with variable speed, six-pulse diode bridges, a battery bank, bidire...

  19. Performance of U.S. hybrid distributed energy systems: Solar photovoltaic, battery and combined heat and power

    International Nuclear Information System (INIS)

    Shah, Kunal K.; Mundada, Aishwarya S.; Pearce, J.M.

    2015-01-01

    Highlights: • Simulated PV + battery + CHP hybrid systems deployed in three U.S. regions. • Used hybrid optimization model for electric renewable pro microgrid analysis. • Limited size of each sub-module to singe family house size. • Results show that the electricity generated meets residential load demand. • Hybrid systems are technically viable in hot, moderate and cold climates in U.S. - Abstract: Until recently, the relatively high levelized cost of electricity from solar photovoltaic (PV) technology limited deployment; however, recent cost reductions, combined with various financial incentives and innovative financing techniques, have made PV fully competitive with conventional sources in many American regions. In addition, the costs of electrical storage have also declined enough to make PV + battery systems potentially economically viable for a mass-scale off-grid low-emission transition. However, many regions in the U.S. (e.g. Northern areas) cannot have off-grid PV systems without prohibitively large battery systems. Small-scale combined heat and power (CHP) systems provide a potential solution for off-grid power backup of residential-scale PV + battery arrays, while also minimizing emissions from conventional sources. Thus, an opportunity is now available to maximize the use of solar energy and gain the improved efficiencies possible with CHPs to deploy PV + battery + CHP systems throughout the U.S. The aim of this study is to determine the technical viability of such systems by simulating PV + battery + CHP hybrid systems deployed in three representative regions in the U.S., using the Hybrid Optimization Model for Electric Renewable (HOMER) Pro Microgrid Analysis tool. The results show that the electricity generated by each component of the hybrid system can be coupled to fulfill the residential load demand. A sensitivity analysis of these hybrid off grid systems is carried out as a function capacity factor of both the PV and CHP units. The

  20. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  1. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    International Nuclear Information System (INIS)

    Redelbach, Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements

  2. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang; Cui, Li-Feng; Yang, Yuan; Sanchez Casalongue, Hernan; Robinson, Joshua Tucker; Liang, Yongye; Cui, Yi; Dai, Hongjie

    2010-01-01

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free

  3. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    International Nuclear Information System (INIS)

    Fernandez, Luis M.; Garcia, Pablo; Garcia, Carlos Andres; Jurado, Francisco

    2011-01-01

    Research highlights: → Hybrid electric power system for a real surface tramway. → Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. → New control strategy for the energy management of the tramway. → Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  4. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  5. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98...... by two the converter input-to-output voltage gain. This allows covering the conditions when the fuel cell stack operates in the activation region (maximum output voltage) and increases the degrees of freedom for converter optimization. The transition between operating modes is studied because represents...

  6. High Voltage Homemade Capacitor Charger for Plasma Focus System

    International Nuclear Information System (INIS)

    Abdul Halim Baijan; Azaman Ahmad; Rokiah Mohd Sabri; Siti Aiasah Hashim; Mohd Rizal Md Chulan; Wah, L.K.; Azhar Ahmad; Rosli Che Ros; Mohd Faiz Mohd Zin

    2015-01-01

    A high voltage capacitor charger has been designed and built to replace a high voltage charger type General Atomics CCDs Power Supply which was damaged. The fabrication design was using materials which were easily available in the local market. Among the main components of the high-voltage charger is a transformer for neon lights, variable transformer rated 0 - 240 V 1 KVA, and 240 V transformer isolator. The results of experiments that have been conducted shows that a homemade capacitor charger was able to charge high voltage capacitors up to the required voltage of which was 12 kV. However the time taken for charging is quite long, up to more than 6 minutes. (author)

  7. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects

    International Nuclear Information System (INIS)

    Pollet, Bruno G.; Staffell, Iain; Shang, Jin Lei

    2012-01-01

    Decarbonising transport is proving to be one of today's major challenges for the global automotive industry due to many factors such as the increase in greenhouse gas and particulate emissions affecting not only the climate but also humans, the increase in pollution, rapid oil depletion, issues with energy security and dependency from foreign sources and population growth. For more than a century, our society has been dependent upon oil, and major breakthroughs in low- and ultra-low carbon technologies and vehicles are urgently required. This review paper highlights the current status of hybrid, battery and fuel cell electric vehicles from an electrochemical and market point of view. The review paper also discusses the advantages and disadvantages of using each technology in the automotive industry and the impact of these technologies on consumers.

  8. Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany

    International Nuclear Information System (INIS)

    Ernst, Christian-Simon; Hackbarth, Andre; Madlener, Reinhard; Lunz, Benedikt; Uwe Sauer, Dirk; Eckstein, Lutz

    2011-01-01

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortization time of a PHEV also depends on the recharging strategy (once a day, once a night, after each trip), the battery size, and the battery costs. We find that PHEVs with a 4 kWh battery and at current lithium-ion battery prices reach the break-even point after about 6 years (5 years when using the lower night-time electricity tariffs). With higher battery capacities the amortization time becomes significantly longer. Even for the small battery size and assuming the EU-15 electricity mix, a PHEV is found to emit only around 60% of the CO 2 emissions of a comparable conventional car. Thus, with the PHEV concept a cost-effective introduction of electric mobility and reduction of greenhouse gas emissions per vehicle can be reached. - Highlights: → Total cost of ownership of a PHEV and a conventional car are compared for the average German car user.→ PHEVs with a 4 kWh battery reach the break-even after 5-6 years at current Li-Ion battery prices.→ Even with a small battery, PHEVs emit about 40% less CO 2 emissions than the average conventional car.

  9. Integration of plug-in hybrid cars for the encouragement of intelligent power distribution structures; Integration von Plug-in-Hybrid Cars zur Foerderung intelligenter Verteilnetzstrukturen. Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.; Rigassi, R.

    2007-11-15

    This preliminary study for the Swiss Federal Office of Energy (SFOE) takes a look at how plug-in hybrid cars could be used to support the electricity supply in Switzerland. This study explains to what extent hybrid cars would be in a position to provide the services needed to regulate the Swiss electricity mains. Core elements of the concept known as 'Vehicle to Grid' (V2G) are presented. The requirements placed on the cars' equipment, including reversible battery chargers and communication equipment, are reviewed. Mains regulation systems are discussed, as are battery storage and the potential advantages offered by such a system. Challenges and hindrances to implementation are examined and initial feasibility studies are analysed. Questions still to be addressed are noted. A comprehensive appendix rounds off the report.

  10. Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries

    Directory of Open Access Journals (Sweden)

    Xiao Zhu

    2017-11-01

    Full Text Available Novel carbon materials, carbon nanotubes (CNTs and porous graphene (PG, were exploited and used as conductive additives to improve the rate performance of LiMn2O4 cathode for the rechargeable aqueous Zn/LiMn2O4 battery, namely the rechargeable hybrid aqueous battery (ReHAB. Thanks to the long-range conductivity and stable conductive network provided by CNTs, the rate and cycling performances of LiMn2O4 cathode in ReHAB are highly improved—up to about 100 mAh·g−1 capacity is observed at 10 C (1 C = 120 mAh·g−1. Except for CNTs, porous graphene (PG with a high surface area, an abundant porous structure, and an excellent electrical conductivity facilitates the transportation of Li ions and electrons, which can also obviously enhance the rate capability of the ReHAB. This is important because the ReHAB could be charged/discharged in a few minutes, and this leads to potential application of the ReHAB in automobile industry.

  11. CoS/CNTs hybrid structure for improved performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huijun; Ma, Jingjing; Liu, Sheng; Nie, Longying; Chai, Yaqin; Yang, Xia, E-mail: xiayang2@swu.edu.cn; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn

    2016-08-15

    Cobalt sulfide (CoS) has a high theoretical capacity as an anode materials for lithium ion batteries (LIBs), however it suffers from poor cyclability and weak retention. Therefore, a lot of efforts have been devoted to overcome these defects. In this work, cobalt sulfide/carbon nanotubes (CoS/CNTs) nanocomposites were prepared by a simple and effective solvothermal method. The nanocomposites were constructed by CoS nanoparticles coated on the carbon nanotubes and the electrochemical performances of the CoS/CNTs nanocomposites were investigated as anode materials for LIBs. The results showed that the materials had superior cycle stability and kept a high discharge capacity of 780 mAh g{sup −1} after 50 cycles at the current density of 100 mA g{sup −1}. The excellent electrochemical performances are due to the good combination of the hybrid structure and better electron transportation originated from CNTs. The CoS/CNTs nanocomposites with excellent rate capabilities and super capabilities could be promising anode material for lithium ion battery. - Highlights: • CoS/CNTs nanocomposites were prepared by a simple and effective solvothermal method. • Compared with pristine CoS, CoS/CNTs nanocomposites had superior cycle stability. • CoS/CNTs nanocomposites kept a high discharge capacity of 780 mAh g{sup −1} after 50 cycles at 100 mA g{sup −1}.

  12. A wind-PV-battery hybrid power system at Sitakunda in Bangladesh

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Ghosh, Himangshu Ranjan

    2009-01-01

    The measured wind data of Local Government Engineering Department (LGED) for 2006 at 30 m height shows a good prospect for wind energy extraction at the site. For a few months and hours the speed is below the cut in speeds of the available turbines in the market. The predicted solar radiation data from directly related measured cloud cover and sunshine duration data of Bangladesh Meteorological Department (BMD) for 1992-2003 indicates that a reliable power system can be developed over the year if the solar energy technology is merged with the wind energy technologies for this site. This research work has studied on optimization of a wind-photovoltaic-battery hybrid system and its performance for a typical community load. The assessment shows that least cost of energy (COE) is about USD 0.363/kWh for a community using 169 kWh/day with 61 kW peak and having minimum amount of access or unused energy. Moreover, compared to the existing fossil fuel-based electricity supply, such an environment friendly system can mitigate about 25 t CO 2 /yr. The analysis also indicates that wind-PV-battery is economically viable as a replacement for conventional grid energy supply for a community at a minimum distance of about 17 km from grid.

  13. A rechargeable Na–CO 2 /O 2 battery enabled by stable nanoparticle hybrid electrolytes

    KAUST Repository

    Xu, Shaomao

    2014-09-10

    © the Partner Organisations 2014. We report on rechargeable batteries that use metallic sodium as the anode, a mixture of CO2 and O2 as the active material in the cathode, and an organic-inorganic hybrid liquid as electrolyte. The batteries are attractive among energy storage technologies because they provide a mechanism for simultaneously capturing CO2 emissions while generating electrical energy. Through in and ex situ chemical analysis of the cathode we show that NaHCO3 is the principal discharge product, and that its relative instability permits cell recharging. By means of differential electrochemical mass spectrometry (DEMS) based on 12C and 13C we further show that addition of as little as 10% of 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone)imide ionic liquid tethered to SiO2 nanoparticles extends the high-voltage stability of the electrolyte by at least 1 V, allowing recharge of the Na-CO2/O2 cells. This journal is

  14. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  15. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-01-01

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi 0.8 Co 0.2 O 2 cathode and DEC-EC-LiPF 6 electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF 6 salt in the electrolyte at elevated temperature

  16. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  17. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Moura, Scott J.; Fathy, Hosam K.; Stein, Jeffrey L.; Callaway, Duncan S.

    2010-01-01

    Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)

  18. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Marongiu, Andrea; Sauer, Dirk Uwe

    2015-05-01

    This work provides an overview of available methods and algorithms for on-board capacity estimation of lithium-ion batteries. An accurate state estimation for battery management systems in electric vehicles and hybrid electric vehicles is becoming more essential due to the increasing attention paid to safety and lifetime issues. Different approaches for the estimation of State-of-Charge, State-of-Health and State-of-Function are discussed and analyzed by many authors and researchers in the past. On-board estimation of capacity in large lithium-ion battery packs is definitely one of the most crucial challenges of battery monitoring in the aforementioned vehicles. This is mostly due to high dynamic operation and conditions far from those used in laboratory environments as well as the large variation in aging behavior of each cell in the battery pack. Accurate capacity estimation allows an accurate driving range prediction and accurate calculation of a battery's maximum energy storage capability in a vehicle. At the same time it acts as an indicator for battery State-of-Health and Remaining Useful Lifetime estimation.

  19. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  20. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  1. Application of solar chargers to prospection instruments

    International Nuclear Information System (INIS)

    Caille, G.

    1960-01-01

    The use of conventional batteries has certain disadvantages, and for this reason high-voltage batteries have been gradually replaced in all prospection instruments by transistor supply systems, using less cumbersome sources of energy. All the same low voltages are still necessary, and in hot or damp countries the use of these batteries leads to consumptions out of all proportion to the services rendered. This is why the use of solar energy possesses real advantages. After a brief review of the basic ideas on semiconductors, this article describes a selenium solar battery which was developed by the Westinghouse brakes and signals society. (author) [fr

  2. Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery

    Science.gov (United States)

    Suh, Dong Hoon; Park, Sul Ki; Nakhanivej, Puritut; Kim, Youngsik; Hwang, Soo Min; Park, Ho Seok

    2017-12-01

    The design of cost-effective and highly active catalysts is a critical challenge. Inspired by the strong points of stability and conductivity of carbon nanotubes (CNTs), high catalytic activity of Co nanoparticles, and rapid ion diffusion and large accessible area of three-dimensional (3D) graphene, we demonstrate a novel strategy to construct a hierarchical hybrid structure consisting of Co/CoOx nanoparticles-incorporated CNT branches onto the 3D reduced graphene oxide (rGO) architecture. The surface-modified 3D rGO by steam activation process has a large surface area and abundant defect sites, which serve as active sites to uniformly grow Co/CoOx nanoparticles. Furthermore, the CNTs preserve their performance stably by encapsulating Co nanoparticles, while the uniformly decorated Co/CoOx nanoparticles exhibit superior electrocatalytic activity toward oxygen evolution/reduction reaction due to highly exposed active sites. Employing the hybrid particle electrocatalyst, the seawater battery operates stably at 0.01 mA cm-2 during 50 cycles, owing to the good electrocatalytic ability.

  3. PV power system using hybrid converter for LED indictor applications

    International Nuclear Information System (INIS)

    Tseng, Sheng-Yu; Wang, Hung-Yuan; Chen, Chien-Chih

    2013-01-01

    Highlights: • This paper presents a LED indictor driving circuit with a PV arrays as its power source. • The perturb-and-observe method is adopted to extract the maximum power of PV arrays. • The proposed circuit structure has a less component counts and higher conversion efficiency. • A prototype of LED indictor driving circuit has been implemented to verify its feasibility. • The proposed hybrid converter is suitable for LED inductor applications. - Abstract: This paper presents a LED indictor driving circuit with a PV arrays as its power source. The LED indictor driving circuit includes battery charger and discharger (LED driving circuit). In this research, buck converter is used as a charger, and forward converter with active clamp circuit is adopted as a discharger to drive the LED indictor. Their circuit structures use switch integration technique to simplify them and to form the proposed hybrid converter, which has a less component counts, lighter weight, smaller size, and higher conversion efficiency. Moreover, the proposed hybrid converter uses a perturb-and-observe method to extract the maximum power from PV arrays. Finally, a prototype of an LED indictor driving circuit with output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the LED inductor applications

  4. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  5. Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Shuankui; Zuo, Shiyong; Wu, Zhiguo; Liu, Ying; Zhuo, Renfu; Feng, Juanjuan; Yan, De; Wang, Jun; Yan, Pengxun

    2014-01-01

    A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. It is found that the SnS NSs/MWCNTs hybrid exhibits a large reversible capacity of 620mAhg −1 at a current of 100mAg −1 as an anode material for lithium-ion batteries, which is better than SnS NPs/MWCNTs. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li + ions diffusion and large electrode-electrolyte contact area for high Li + ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries

  6. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  7. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    Science.gov (United States)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  8. Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-01-01

    The operating temperatures of lithium ion battery packs in electrical vehicles and hybrid electrical vehicles need to be maintained in an optimum range for better performance and longer battery life. This paper proposes a new battery pack cooling system that utilizes the low saturation temperature of the fuel in ammonia based future hybrid electric vehicles. In the proposed cooling system, the batteries are partially submerged in to the liquid ammonia, and the liquid ammonia cools the battery by absorbing the heat and evaporating and the ammonia vapor cools the part of the battery not covered by liquid ammonia. The relationships between the performance of the battery cooling system and the maximum temperature (and the temperature distribution) in the battery are investigated for practical applications. The effect of the length of the battery that is submerged in to the liquid ammonia on the thermal performance of battery is studied and evaluated. The present results show that the proposed ammonia based cooling system offers a unique opportunity to maintain the operating temperature of the battery in an optimum range for consecutive charging and discharging phases at a high rate of 7.5C.

  9. Optimal Isolation Control of Three-Port Active Converters as a Combined Charger for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhixiang Ling

    2016-09-01

    Full Text Available The three-port converter has three H-bridge ports that can interface with three different energy sources and offers the advantages of flexible power transmission, galvanic isolation ability and high power density. The three-port full-bridge converter can be used in electric vehicles as a combined charger that consists of a battery charger and a DC-DC converter. Power transfer occurs between two ports while the third port is isolated, i.e., the average power is zero. The purpose of this paper is to apply an optimal phase shift strategy in isolation control and provide a detailed comparison between traditional phase shift control and optimal phase shift control under the proposed isolation control scheme, including comparison of the zero-voltage-switching range and the root mean square current for the two methods. Based on this analysis, the optimal parameters are selected. The results of simulations and experiments are given to verify the advantages of dual-phase-shift control in isolation control.

  10. Analysis, operation and maintenance of a fuel cell/battery series-hybrid bus for urban transit applications

    Energy Technology Data Exchange (ETDEWEB)

    Bubna, Piyush; Brunner, Doug; Gangloff, John J. Jr.; Advani, Suresh G.; Prasad, Ajay K. (Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 United States)

    2010-06-15

    The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions. (author)

  11. Analysis, operation and maintenance of a fuel cell/battery series-hybrid bus for urban transit applications

    Science.gov (United States)

    Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.

    The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.

  12. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    Science.gov (United States)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  13. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    OpenAIRE

    Fathima, Hina; Palanisamy, K.

    2015-01-01

    Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The ...

  14. A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery

    International Nuclear Information System (INIS)

    Chang, Yang; Fang, Huajing; Zhang, Yong

    2017-01-01

    Highlights: •The proposed prognostic method can make full use of historical information. •The method of obtaining historical error data is discussed in detail. •Comparative experiments based on data-driven and model-based methods are performed. •Battery working with different discharging currents is considered. -- Abstract: The lithium-ion battery has become the main power source of many electronic devices, it is necessary to know its state-of-health and remaining useful life to ensure the reliability of electronic device. In this paper, a novel hybrid method with the thought of error-correction is proposed to predict the remaining useful life of lithium-ion battery, which fuses the algorithms of unscented Kalman filter, complete ensemble empirical mode decomposition (CEEMD) and relevance vector machine. Firstly, the unscented Kalman filter algorithm is adopted to obtain a prognostic result based on an estimated model and produce a raw error series. Secondly, a new error series is constructed by analyzing the decomposition results of the raw error series obtained by CEEMD method. Finally, the new error series is utilized by relevance vector machine regression model to predict the prognostic error which is adopted to correct the prognostic result obtained by unscented Kalman filter. Remaining useful life prediction experiments for batteries with different rated capacities and discharging currents are performed to show the high reliability of the proposed hybrid method.

  15. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • A feasibility study of a hybrid solar–wind–battery system is carried out. • Techno-economic evaluation is conducted for this proposed system. • Thousands of cases are simulated to achieve an optimal system configuration. • The performance of the proposed system is analyzed in detail. • A sensitivity analysis on its load and renewable energy resource is performed. - Abstract: This paper presents a detailed feasibility study and techno-economic evaluation of a standalone hybrid solar–wind system with battery energy storage for a remote island. The solar radiation and wind data on this island in 2009 was recorded for this study. The HOMER software was employed to do the simulations and perform the techno-economic evaluation. Thousands of cases have been carried out to achieve an optimal autonomous system configuration, in terms of system net present cost (NPC) and cost of energy (COE). A detailed analysis, description and expected performance of the proposed system were presented. Moreover, the effects of the PV panel sizing, wind turbine sizing and battery bank capacity on the system’s reliability and economic performance were examined. Finally, a sensitivity analysis on its load consumption and renewable energy resource was performed to evaluate the robustness of economic analysis and identify which variable has the greatest impact on the results. The results demonstrate the techno-economic feasibility of implementing the solar–wind–battery system to supply power to this island

  16. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2010-01-01

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  17. Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter

    Science.gov (United States)

    Wang, Yujie; Zhang, Xu; Liu, Chang; Pan, Rui; Chen, Zonghai

    2018-06-01

    The power capability and maximum charge and discharge energy are key indicators for energy management systems, which can help the energy storage devices work in a suitable area and prevent them from over-charging and over-discharging. In this work, a model based power and energy assessment approach is proposed for the lithium-ion battery and supercapacitor hybrid system. The model framework of the lithium-ion battery and supercapacitor hybrid system is developed based on the equivalent circuit model, and the model parameters are identified by regression method. Explicit analyses of the power capability and maximum charge and discharge energy prediction with multiple constraints are elaborated. Subsequently, the extended Kalman filter is employed for on-board power capability and maximum charge and discharge energy prediction to overcome estimation error caused by system disturbance and sensor noise. The charge and discharge power capability, and the maximum charge and discharge energy are quantitatively assessed under both the dynamic stress test and the urban dynamometer driving schedule. The maximum charge and discharge energy prediction of the lithium-ion battery and supercapacitor hybrid system with different time scales are explored and discussed.

  18. Silver/carbon nanotube hybrids: A novel conductive network for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou, Fangdong; Qiu, Kehui; Peng, Gongchang; Xia, Li

    2015-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Ag composite cathodes are synthesized by a thermal decomposition method and multi-walled carbon nanotubes are uniformly introduced into the composites through ball mixing. A composite electrically conductive network consisting of CNTs and Ag is obtained to improve the conductivity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material. By comparing with the pure LiNi 1/3 Co 1/3 Mn 1/3 O 2 and cathode modified by CNTs or Ag, the as-obtained LiNi 1/3 Co 1/3 Mn 1/3 O 2 –CNT/Ag electrode exhibits the best rate capability (120.6 mAh/g at 5C) and cycle performance (134.2 mAh/g at 1C with a capacity retention of 94.4% over 100 cycles). With the construction of 3D spatial conductive network, the novel hybrid CNT/Ag demonstrates itself a promising strategy to improve Li storage performance for lithium ion batteries

  19. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  20. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  1. Batteries

    Directory of Open Access Journals (Sweden)

    Yang Lijuan

    2016-01-01

    Full Text Available Fe3O4/carbon microspheres (Fe3O4/C were prepared by a facile hydrothermal reaction using cellulose and ferric trichloride as precursors. The resultant composite spheres have been investigated as anode materials for the lithium-ion batteries, and they show high capacity and good cycle stability (830mAhg−1 at a current density of 0.1C up to 70 cycles, as well as enhanced rate capability. The excellent electrochemical performance is attributed to the high structural stability and high rate of ionic/electronic conduction arising from the porous character and the synergetic effect of the carbon coated Fe3O4 structure and conductive carbon coating.

  2. Charger 1: A New Facility for Z-Pinch Research

    Science.gov (United States)

    Taylor, Brian; Cassibry, Jason; Cortez, Ross; Doughty, Glen; Adams, Robert; DeCicco, Anthony

    2017-01-01

    Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.

  3. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  5. Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand

    DEFF Research Database (Denmark)

    Kohsri, Sompol; Meechai, Apichart; Prapainainar, Chaiwat

    2018-01-01

    , in this study a customized hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar PV system along with rechargeable batteries, the syngas generator can......Due to the irregular nature of solar resource, solar photovoltaic (PV) system alone cannot satisfy load on a 24/7 demand basis, especially with increasing regional population in developing countries such as Thailand. A hybrid solar PV/biomass based along with battery storage system has been drawing....... Furthermore, the generator has to be always synchronized during the commissioning time. Battery state of charge (SOC) in percent (%) connecting with syngas is greater than solar PV and the charging time appears significantly shorter than that one. All possible combinations between an innovation and existing...

  6. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  7. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  8. Battery monitoring in Mexican hybrid power systems; Monitoreo de las baterias en sistemas de potencia hibridos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. Roberto; Agredano, Jaime [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    Hybrid power systems for an autonomous power supply are based on different renewable and fossil energy sources. They are considered as a good option for the power supply of remote areas. In these systems an energy storage is a vital necessity and very often this storage will consist of batteries which are generally connected in series and parallel arrays, or both. In Mexico as in other countries, the most extensively use batteries used for this application are the stationary and electric car type deep cycle batteries. However the experience with them in these systems is generally not very good. One way to overcome this problem is to maintain a regular monitoring of installing monitoring equipment, in order to make preventive actions before a developing fault can have serious consequences and in this manner increase the practical lifetime of the batteries. Unfortunately, battery monitoring is not easy task because most of the hybrid power systems are installed in remote areas which makes it difficult and expensive. In Mexico it has been not possible to maintain a regular monitoring of all hybrid power systems installed, due to the high cost of this work and the lack of founds. The hybrid power systems installed in the state of Quintana Roo are the only systems that have been continuously monitored since their installation. This paper gives an overview of the hybrid power systems installed in Mexico, focusing in the battery banks, the way they are being monitored, the main parameters used to detect possible premature problems and the method used to evaluate the battery bank conditions. Finally some results from the battery banks monitoring activities are presented. [Espanol] Los sistemas de potencia hibridos para un suministro autonomo de energia a regiones remotas, estan basados en diferentes fuentes de energia fosiles y renovables. Estos son considerados como una buena opcion para el suministro de energia a areas remotas. En estos sistemas es una necesidad vital el

  9. Battery monitoring in Mexican hybrid power systems; Monitoreo de las baterias en sistemas de potencia hibridos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J Roberto; Agredano, Jaime [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Hybrid power systems for an autonomous power supply are based on different renewable and fossil energy sources. They are considered as a good option for the power supply of remote areas. In these systems an energy storage is a vital necessity and very often this storage will consist of batteries which are generally connected in series and parallel arrays, or both. In Mexico as in other countries, the most extensively use batteries used for this application are the stationary and electric car type deep cycle batteries. However the experience with them in these systems is generally not very good. One way to overcome this problem is to maintain a regular monitoring of installing monitoring equipment, in order to make preventive actions before a developing fault can have serious consequences and in this manner increase the practical lifetime of the batteries. Unfortunately, battery monitoring is not easy task because most of the hybrid power systems are installed in remote areas which makes it difficult and expensive. In Mexico it has been not possible to maintain a regular monitoring of all hybrid power systems installed, due to the high cost of this work and the lack of founds. The hybrid power systems installed in the state of Quintana Roo are the only systems that have been continuously monitored since their installation. This paper gives an overview of the hybrid power systems installed in Mexico, focusing in the battery banks, the way they are being monitored, the main parameters used to detect possible premature problems and the method used to evaluate the battery bank conditions. Finally some results from the battery banks monitoring activities are presented. [Espanol] Los sistemas de potencia hibridos para un suministro autonomo de energia a regiones remotas, estan basados en diferentes fuentes de energia fosiles y renovables. Estos son considerados como una buena opcion para el suministro de energia a areas remotas. En estos sistemas es una necesidad vital el

  10. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application

    International Nuclear Information System (INIS)

    Tang, Yong; Yuan, Wei; Pan, Minqiang; Wan, Zhenping

    2011-01-01

    A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead-acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC-DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.

  11. Design, Operation, Control, and Economics of a Photovoltaic/Fuel Cell/Battery Hybrid Renewable Energy System for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Zachary S. Whiteman

    2015-06-01

    Full Text Available Meeting rapidly growing global energy demand—without producing greenhouse gases or further diminishing the availability of non-renewable resources—requires the development of affordable low-emission renewable energy systems. Here, we develop a hybrid renewable energy system (HRES for automotive applications—specifically, a roof-installed photovoltaic (PV array combined with a PEM fuel cell/NiCd battery bus currently operating shuttle routes on the University of Delaware campus. The system’s overall operating objectives—meeting the total power demand of the bus and maintaining the desired state of charge (SOC of the NiCd battery—are achieved with appropriately designed controllers: a logic-based “algebraic controller” and a standard PI controller. The design, implementation, and performance of the hybrid system are demonstrated via simulation of real shuttle runs under various operating conditions. The results show that both control strategies perform equally well in enabling the HRES to meet its objectives under typical operating conditions, and under sudden cloud cover conditions; however, at consistently high bus speeds, battery SOC maintenance is better, and the system consumes less hydrogen, with PI control. An economic analysis of the PV investment necessary to realize the HRES design objectives indicates a return on investment of approximately 30% (a slight, but nonetheless positive, ~$550 profit over the bus lifetime in Newark, DE, establishing the economic viability of the proposed addition of a PV array to the existing University of Delaware fuel cell/battery bus.

  12. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang

    2010-10-13

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn3O4 nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn 3O4 nanoparticles grown atop. The Mn3O 4/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials. © 2010 American Chemical Society.

  13. Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island

    International Nuclear Information System (INIS)

    Diaf, S.; Belhamel, M.; Haddadi, M.; Louche, A.

    2008-01-01

    The sizing and techno-economical optimization of a stand-alone hybrid photovoltaic/wind system (HPWS) with battery storage is presented in this paper. The main objective of the present study is to find the optimum size of system, able to fulfill the energy requirements of a given load distribution, for three sites located at Corsica island and to analyze the impact of different parameters on the system size. The methodology used provides a useful and simple approach for sizing and analyzing an HPWS. In the proposed stand-alone system, a new concept such as the supply of wind power via a uninterruptible power supply (UPS) is introduced and therefore the energy produced by the wind generator can be sent directly to the load. In this context, an optimization sizing model is developed. It consists of three submodels; system components submodels, technical submodel based on the loss of power supply probability (LPSP) and the economical submodel based on the levelized cost of energy (LCE). Applying the developed model, a set of configurations meeting the desired LPSP are obtained. The configuration with the lowest LCE gives the optimal one. Analyzing the optimal system configurations used to satisfy the requirements of typical residential home (3 kWh/day), a significant reduction in system size is observed as the available renewable potential increases leading to a considerable decrease in LCE (case of Cape corse site). The 2 days storage capacity is found to be the best for the optimal configuration with the lowest LCE. On the other hand, for low energy requirements, the LCE is found relatively high and decreases sharply with the increase in load. However, for low LPSP values, the LCE is found to rise sharply for a little increase in LPSP

  14. Development of battery management systems (BMS for electric vehicles (EVs in Malaysia

    Directory of Open Access Journals (Sweden)

    Salehen P.M.W.

    2017-01-01

    Full Text Available Battery Management Systems (BMS is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the numbers will keep rising as numbers of registered car increase close up to 1 million yearly; double the amounts in the last two decades. The uncertainty of a battery’s performance poses a challenge to predict the extended range of EVs, which need BMS implementation of optimization of optimum power management. Hence, using MATLAB/SIMULINK software is one of the potential methods of BMS optimization with power generated by Hybrid Energy Storage system of lithium-ion battery. Therefore, this paper address through reviewing previous literatures initially focuses on the BMS optimization for EVs (car in Malaysia as prognostic technology model improvement on performance management of EVs.

  15. Buck-Boost/Forward Hybrid Converter for PV Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2014-01-01

    Full Text Available This paper presents a charger and LED lighting (discharger hybrid system with a PV array as its power source for electronic sign indicator applications. The charger adopts buck-boost converter which is operated in constant current mode to charge lead-acid battery and with the perturb and observe method to extract maximum power of PV arrays. Their control algorithms are implemented by microcontroller. Moreover, forward converter with active clamp circuit is operated in voltage regulation condition to drive LED for electronic sign applications. To simplify the circuit structure of the proposed hybrid converter, switches of two converters are integrated with the switch integration technique. With this approach, the proposed hybrid converter has several merits, which are less component counts, lighter weight, smaller size, and higher conversion efficiency. Finally, a prototype of LED driving system under output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the electronic sign indicator applications.

  16. Active-charging based powertrain control in series hybrid electric vehicles for efficiency improvement and battery lifetime extension

    Science.gov (United States)

    Zhang, Xi; Mi, Chris Chunting; Yin, Chengliang

    2014-01-01

    This paper presents a powertrain control strategy for a series hybrid electric vehicle (SHEV) based on the integrated design of an active charging scenario and fixed-boundary-layer sliding mode controllers (FBLSMCs). An optimized charging curve for the battery is predetermined rather than subject to engine output and vehicle power demand, which is a total inverse of normal SHEV powertrain control process. This is aimed to remove surge and high-frequency charge current, keep the battery staying in a high state-of-charge (SOC) region and avoid persistently-high charge power, which are positive factors to battery lifetime extension. Then two robust chattering-free FBLSMCs are designed to locate the engine operation in the optimal efficiency area. One is in charge of engine speed control, and the other is for engine/generator torque control. Consequently, not only fuel economy is improved but also battery life expectancy could be extended. Finally, simulation and experimental results confirm the validity and application feasibility of the proposed strategy.

  17. Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.

    Science.gov (United States)

    Qi, Xingguo; Liu, Lilu; Song, Ningning; Gao, Fei; Yang, Kai; Lu, Yaxiang; Yang, Haitao; Hu, Yong-Sheng; Cheng, Zhao-Hua; Chen, Liquan

    2017-11-22

    Rechargeable sodium-ion batteries have drawn increasing attention as candidates for the post lithium-ion batteries in large-scale energy storage systems. Layered oxides are the most promising cathode materials and their pure phases (e.g., P2, O3) have been widely investigated. Here we report a series of cathode materials with O3/P2 hybrid phase for sodium-ion batteries, which possesses advantages of both P2 and O3 structures. The designed material, Na 0.78 Ni 0.2 Fe 0.38 Mn 0.42 O 2 , can deliver a capacity of 86 mAh g -1 with great rate capability and cycling performance. 66% capacity is still maintained when the current rate reaches as high as 10C, and the capacity retention is 90% after 1500 cycles. Moreover, in situ XRD was performed to examine the structure change during electrochemical testing in different voltage ranges, and the results demonstrate 4 V as the optimized upper voltage limit, with which smaller polarization, better structural stability, and better cycling performance are achieved. The results obtained here provide new insights in designing cathode materials with optimal structure and improved performance for sodium-ion batteries.

  18. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  19. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    Science.gov (United States)

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-09-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design.

  20. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    International Nuclear Information System (INIS)

    Offer, G.J.; Contestabile, M.; Howey, D.A.; Clague, R.; Brandon, N.P.

    2011-01-01

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: → Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. → The optimum size for a PHEV battery is between 5 and 15 kWh. → Current behaviour decreases percentage electric only miles for larger vehicles. → Low carbon electricity favours larger battery sizes as long as carbon is priced. → Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  1. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J., E-mail: gregory.offer@imperial.ac.u [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Howey, D.A. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom); Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom)

    2011-04-15

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: {yields} Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. {yields} The optimum size for a PHEV battery is between 5 and 15 kWh. {yields} Current behaviour decreases percentage electric only miles for larger vehicles. {yields} Low carbon electricity favours larger battery sizes as long as carbon is priced. {yields} Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  2. Modelling and design optimization of low speed fuel cell - battery hybrid electric vehicles. Paper no. IGEC-1-125

    International Nuclear Information System (INIS)

    Guenther, M.; Dong, Z.

    2005-01-01

    A push for electric vehicles has occurred in the past several decades due to various concerns about air pollution and the contribution of emissions to global climate change. Although electric cars and buses have been the focus of much of electric vehicle development, smaller vehicles are used extensively for transportation and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell - battery electric vehicle through MATLAB Simulink. The modelling and simulation provide valuable feedback to the design optimization of the fuel cell power system. A sampling based optimization algorithm was used to explore the viability and options of a low cost design for urban use. (author)

  3. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles

    International Nuclear Information System (INIS)

    Shiau, Ching-Shin Norman; Samaras, Constantine; Hauffe, Richard; Michalek, Jeremy J.

    2009-01-01

    Plug-in hybrid electric vehicle (PHEV) technology is receiving attention as an approach to reducing US dependency on foreign oil and greenhouse gas (GHG) emissions from the transportation sector. PHEVs require large batteries for energy storage, which affect vehicle cost, weight, and performance. We construct PHEV simulation models to account for the effects of additional batteries on fuel consumption, cost, and GHG emissions over a range of charging frequencies (distance traveled between charges). We find that when charged frequently, every 20 miles or less, using average US electricity, small-capacity PHEVs are less expensive and release fewer GHGs than hybrid electric vehicles (HEVs) or conventional vehicles. For moderate charging intervals of 20-100 miles, PHEVs release fewer GHGs, but HEVs have lower lifetime costs. High fuel prices, low-cost batteries, or high carbon taxes combined with low-carbon electricity generation would make small-capacity PHEVs cost competitive for a wide range of drivers. In contrast, increased battery specific energy or carbon taxes without decarbonization of the electricity grid would have limited impact. Large-capacity PHEVs sized for 40 or more miles of electric-only travel do not offer the lowest lifetime cost in any scenario, although they could minimize GHG emissions for some drivers and provide potential to shift air pollutant emissions away from population centers. The tradeoffs identified in this analysis can provide a space for vehicle manufacturers, policymakers, and the public to identify optimal decisions for PHEV design, policy and use. Given the alignment of economic, environmental, and national security objectives, policies aimed at putting PHEVs on the road will likely be most effective if they focus on adoption of small-capacity PHEVs by urban drivers who can charge frequently.

  4. On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin K.; Junginger, Martin; Perujo, Adolfo; Bonnel, Pierre; Grootveld, Geert van

    2012-01-01

    Hybrid-electric vehicles (HEVs) and battery-electric vehicles (BEVs) are currently more expensive than conventional passenger cars but may become cheaper due to technological learning. Here, we obtain insight into the prospects of future price decline by establishing ex-post learning rates for HEVs and ex-ante price forecasts for HEVs and BEVs. Since 1997, HEVs have shown a robust decline in their price and price differential at learning rates of 7±2% and 23±5%, respectively. By 2010, HEVs were only 31±22 € 2010 kW −1 more expensive than conventional cars. Mass-produced BEVs are currently introduced into the market at prices of 479±171 € 2010 kW −1 , which is 285±213 € 2010 kW −1 and 316±209 € 2010 kW −1 more expensive than HEVs and conventional cars. Our forecast suggests that price breakeven with these vehicles may only be achieved by 2026 and 2032, when 50 and 80 million BEVs, respectively, would have been produced worldwide. We estimate that BEVs may require until then global learning investments of 100–150 billion € which is less than the global subsidies for fossil fuel consumption paid in 2009. These findings suggest that HEVs, including plug-in HEVs, could become the dominant vehicle technology in the next two decades, while BEVs may require long-term policy support. - Highlights: ► Learning rates for hybrid-electric and battery-electric vehicles. ► Prices and price differentials of hybrid-electric vehicles show a robust decline. ► Battery-electric vehicles may require policy support for decades.

  5. Portable 25W hybrid fuel cell system

    International Nuclear Information System (INIS)

    Green, K.; Slee, R.; Tilley, J.

    2003-01-01

    Increased operating periods for portable electrical equipment are driving the development of battery and fuel cell technologies. Fuel cell systems promise greater endurance than battery based systems, and this paper describes the research into, and design of, a hybrid lithium-ion battery / fuel cell power source. The device is primarily aimed at military applications such as powering army radio sets and the UK MoD's Integrated Soldier Technology (IST) programme, but would be equally suitable as a power source for civilian applications such as camcorders, battery chargers etc. The air-breathing fuel cell comprises low cost, robust components, and a single cell is capable of developing >0.5W cm -2 . This power rating, however, is reduced in a stack where heat rejection becomes a critical issue. The stack design lends itself to facile manufacture, and the stack can be assembled in minutes by simply stacking the components into place. The remainder of the system includes two lithium-ion battery packs which provide start-up and shutdown power, and enable a silent-operating mode, during which the fuel cell is powered down, to be selected. The intelligent, electronic control, based upon an embedded RISC microprocessor, ensures safe operation and the recharge of the batteries. The overall system is capable of delivering 25W continuous power at an operating voltage of 12V dc. Preliminary testing results are reported. Advantages of this system include a relatively high gravimetric power density, load-following operation and the confidence of a high performance battery as an emergency backup. (author)

  6. The economics of using plug-in hybrid electric vehicle battery packs for grid storage

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Whitacre, J.F.; Apt, Jay

    2010-01-01

    We examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. Ancillary services such as frequency regulation are not considered here because only a small number of vehicles will saturate that market. Hourly electricity prices in three U.S. cities were used to arrive at daily profit values, while the economic losses associated with battery degradation were calculated based on data collected from A123 Systems LiFePO 4 /Graphite cells tested under combined driving and off-vehicle electricity utilization. For a 16 kWh (57.6 MJ) vehicle battery pack, the maximum annual profit with perfect market information and no battery degradation cost ranged from ∝US$140 to $250 in the three cities. If the measured battery degradation is applied, however, the maximum annual profit (if battery pack replacement costs fall to $5000 for a 16 kWh battery) decreases to ∝10-120. It appears unlikely that these profits alone will provide sufficient incentive to the vehicle owner to use the battery pack for electricity storage and later off-vehicle use. We also estimate grid net social welfare benefits from avoiding the construction and use of peaking generators that may accrue to the owner, finding that these are similar in magnitude to the energy arbitrage profit. (author)

  7. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  8. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  9. Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Majidi, Majid; Zare, Kazem

    2017-01-01

    Highlights: • Optimum performance of PV/battery/fuel cell/grid hybrid system under load uncertainty. • Employing information gap decision theory (IGDT) to model the load uncertainty. • Robustness and opportunity functions of IGDT are modeled for risk-averse and risk-taker. • Robust strategy of hybrid system's operation obtained from robustness function. • Opportunistic strategy of hybrid system's operation obtained from opportunity function. - Abstract: Nowadays with the speed that electrical loads are growing, system operators are challenged to manage the sources they use to supply loads which means that that besides upstream grid as the main sources of electric power, they can utilize renewable and non-renewable energy sources to meet the energy demand. In the proposed paper, a photovoltaic (PV)/fuel cell/battery hybrid system along with upstream grid has been utilized to supply two different types of loads: electrical load and thermal load. Operators should have to consider load uncertainty to manage the strategies they employ to supply load. In other words, operators have to evaluate how load variation would affect their energy procurement strategies. Therefore, information gap decision theory (IGDT) technique has been proposed to model the uncertainty of electrical load. Utilizing IGDT approach, robustness and opportunity functions are achieved which can be used by system operator to take the appropriate strategy. The uncertainty modeling of load enables operator to make appropriate decisions to optimize the system’s operation against possible changes in load. A case study has been simulated to validate the effects of proposed technique.

  10. Impact of Fast Charging on Life of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  11. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  12. Lead-acid batteries for micro- and mild-hybrid applications

    Science.gov (United States)

    Valenciano, J.; Fernández, M.; Trinidad, F.; Sanz, L.

    Car manufactures have announced the launch in coming months of vehicles with reduced emissions due to the introduction of new functions like stop-start and regenerative braking. Initial performance request of automotive lead-acid batteries are becoming more and more demanding and, in addition to this, cycle life with new accelerated ageing profiles are being proposed in order to determine the influence of the new functions on the expected battery life. This paper will show how different lead-acid battery technologies comply with these new demands, from an improved version of the conventional flooded SLI battery to the high performance of spiral wound valve-regulated lead-acid (VRLA) battery. Different approaches have been studied for improving conventional flooded batteries, i.e., either by the addition of new additives for reducing electrolyte stratification or by optimisation of the battery design to extend cycling life in partial state of charge conditions. With respect to VRLA technology, two different battery designs have been compared. Spiral wound design combines excellent power capability and cycle life under different depth of discharge (DoD) cycling conditions, but flat plate design outperform the latter in energy density due to better utilization of the space available in a prismatic enclosure. This latter design is more adequate for high end class vehicles with high electrical energy demand, whereas spiral wound is better suited for high power/long life demand of commercial vehicle. High temperature behaviour (75 °C) is rather poor for both designs due to water loss, and then VRLA batteries should preferably be located out of the engine compartment.

  13. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  14. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    Science.gov (United States)

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Prospect of wind-PV-battery hybrid power system as an alternative to grid extension in Bangladesh

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Ghosh, Himangshu Ranjan

    2010-01-01

    A pre-feasibility of wind-PV-battery hybrid system has been performed for a small community in the east-southern part of Bangladesh. Solar radiation resources have been assessed from other meteorological parameters like sunshine duration and cloud cover as measured radiation data were not available at the site. The predicted monthly averaged daily global radiation over Chittagong is 4.36 kWh/m 2 /day. Measured wind speed at the site varies from 3 m/s to 5 m/s. For few months and hours the speed is below the cut in speeds of the available turbines in market. The hybrid system analysis has showed that for a small community consuming 53,317 kWh/year the cost energy is 0.47USD/kWh with 10% annual capacity of shortage and produces 89,151 kWh/year in which 53% electricity comes from wind and the remaining from solar energy. The sensitivity analysis showed that the hybrid system for the community is compatible with the 8 km-12 km grid extension depending on small variation of solar radiation and wind speed over the district whereas the proposed site is more away from the upper limit. Such a hybrid system will reduce about 25 tCO 2 /yr green house gases (GHG) emission in the local atmosphere.

  16. Performance Analysis of Solar-Wind-Diesel-Battery Hybrid Energy System for KLIA Sepang Station of Malaysia

    Science.gov (United States)

    Shezan, S. K. A.; Saidur, R.; Hossain, A.; Chong, W. T.; Kibria, M. A.

    2015-09-01

    A large number of populations of the world live in rural or remote areas those are geographically isolated. Power supply and uninterrupted fuel transportation to produce electrical power for these remote areas poses a great challenge. Using renewable energy in hybrid energy system might be a pathway to solve this problem. Malaysia is a large hilly land with the gift of renewable energy resources. There is a good chance to utilize these renewable resources to produce electrical power and to limit the dependency on the fossil fuel as well as reduce the carbon emissions. In this perspective, a research is carried out to analyze the performance of a solar-wind-diesel-battery hybrid energy system for a remote area named “KLIA Sepang station” in the state of Selangor, Malaysia. In this study, a 56 kW hybrid energy system has been proposed that is capable to support more than 50 households and 6 shops in that area. Real time field data of solar radiation and wind speed is used for the simulation and optimization of operations using “Homer” renewable energy software. The proposed system can reduce CO2 emission by about 16 tons per year compared to diesel generator only. In the same time the Cost of energy (COE) of the optimized system is USD 5.126/kWh.The proposed hybrid energy system might be applicable for other parts of the world where the climate conditions are similar.

  17. Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Jing, Yu; Ortiz-Quiles, Edwin O.; Cabrera, Carlos R.; Chen, Zhongfang; Zhou, Zhen

    2014-01-01

    Highlights: • Layer-by-layer MoS 2 /rGO hybrids were prepared by rGO involved lithiation-exfoliation method. • This hybrid exhibited enhanced electrochemical performances due to the existence of rGO. • The roles of rGO in different charging/discharging processes were interpreted by computations. - Abstract: Two-dimensional MoS 2 shows great potential for effective Li storage due to its good thermal and chemical stability, high theoretical capacity, and experimental accessibility. However, the poor electrical conductivity and the restacking tendency significantly restrict its applications to lithium ion batteries (LIBs). To overcome these problems, we introduced reduced graphene oxides (rGO) to the intercalation-exfoliation preparation process of few-layered MoS 2 and obtained layer-by-layer MoS 2 /rGO hybrids. With the addition of rGO, the restacking of MoS 2 layers was apparently inhibited, and MoS 2 with 1 ∼ 3 layers was obtained in the composite. Due to the positive role of rGO, MoS 2 /rGO hybrids exhibited highly enhanced cyclic stability and high-rate performances as LIB anodes in comparison with bare MoS 2 layers or bulk MoS 2 . Moreover, the experimental results were well interpreted through density functional theory computations

  18. Hybrid wind–photovoltaic–diesel–battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2015-01-01

    Highlights: • Methods of sizing a hybrid wind–photovoltaic–diesel–battery system is described. • The hybrid system components are modelled using empirical data. • Twenty years lifecycle cost of the hybrid system is considered. • The trade-offs between battery storage capacity and diesel fuel usage is studied. • A hybrid system sizing tool has been developed as a graphical user interface (GUI). - Abstract: The concept of off-grid hybrid wind energy system is financially attractive and more reliable than stand-alone power systems since it is based on more than one electricity generation source. One of the most expensive components in a stand-alone wind-power system is the energy storage system as very often it is oversized to increase system autonomy. In this work, we consider a hybrid system which consists of wind turbines, photovoltaic panels, diesel generator and battery storage. One of the main challenges experienced by project managers is the sizing of components for different sites. This challenge is due to the variability of the renewable energy resource and the load demand for different sites. This paper introduces a sizing model that has been developed and implemented as a graphical user interface, which predicts the optimum configuration of a hybrid system. In particular, this paper focuses on seeking the optimal size of the batteries and the diesel generator usage. Both of these components are seen to be trade-offs from each other. The model simulates real time operation of the hybrid system, using the annual measured hourly wind speed and solar irradiation. The benefit of using time series approach is that it reflects a more realistic situation; here, the peaks and troughs of the renewable energy resource are a central part of the sizing model. Finally, load sensitivity and hybrid system performance analysis are demonstrated.

  19. Fast sol-gel synthesis of LiFePO{sub 4}/C for high power lithium-ion batteries for hybrid electric vehicle application

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina [University of Bologna, Department of Metal Science, Electrochemistry and Chemical Techniques, Via San Donato 15, 40127 Bologna (Italy)

    2009-12-01

    LiFePO{sub 4}/C of high purity grade was successfully synthesized by microwave accelerated sol-gel synthesis and showed excellent electrochemical performance in terms of specific capacity and stability. This cathode material was characterized in battery configuration with a graphite counter electrode by USABC-DOE tests for power-assist hybrid electric vehicle. It yielded a non-conventional Ragone plot that represents complexity of battery functioning in power-assist HEV and shows that the pulse power capability and available energy of such a battery surpasses the DOE goal for such an application. (author)

  20. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  1. Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life.

    Science.gov (United States)

    Hu, Ping; Yan, Mengyu; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Li, Jiantao; Zhou, Liang; Li, Zhaohuai; Chen, Lineng; Mai, Liqiang

    2017-12-13

    Aqueous zinc-ion batteries attract increasing attention due to their low cost, high safety, and potential application in stationary energy storage. However, the simultaneous realization of high cycling stability and high energy density remains a major challenge. To tackle the above-mentioned challenge, we develop a novel Zn/V 2 O 5 rechargeable aqueous hybrid-ion battery system by using porous V 2 O 5 as the cathode and metallic zinc as the anode. The V 2 O 5 cathode delivers a high discharge capacity of 238 mAh g -1 at 50 mA g -1 . 80% of the initial discharge capacity can be retained after 2000 cycles at a high current density of 2000 mA g -1 . Meanwhile, the application of a "water-in-salt" electrolyte results in the increase of discharge platform from 0.6 to 1.0 V. This work provides an effective strategy to simultaneously enhance the energy density and cycling stability of aqueous zinc ion-based batteries.

  2. Towards a Friendly Energy Management Strategy for Hybrid Electric Vehicles with Respect to Pollution, Battery and Drivability

    Directory of Open Access Journals (Sweden)

    Guillaume Colin

    2014-09-01

    Full Text Available The paper proposes a generic methodology to incorporate constraints (pollutant emission, battery health, drivability into on-line energy management strategies (EMSs for hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs. The integration of each constraint into the EMS, made with the Pontryagin maximum principle, shows a tradeoff between the fuel consumption and the constraint introduced. As state dynamics come into play (catalyst temperature, battery cell temperature, etc., the optimization problem becomes more complex. Simulation results are presented to highlight the contribution of this generic strategy, including constraints compared to the standard approach. These results show that it is possible to find an energy management strategy that takes into account an increasing number of constraints (drivability, pollution, aging, environment, etc.. However, taking these constraints into account increases fuel consumption (the existence of a trade-off curve. This trade-off can be sometimes difficult to find, and the tools developed in this paper should help to find an acceptable solution quickly

  3. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles

    International Nuclear Information System (INIS)

    Mierlo, J. van; Maggetto, G.; Lataire, Ph.

    2006-01-01

    The hydrogen era is foreseen following the European research programme in a time horizon of 2020-2040. But there will be clearly a choice to be made between an electron economy (direct use of the produced electricity) and the so called 'hydrogen economy' which leads to the introduction of an intermediate hydrogen production, transport and distribution process before the final use in an electrical process. This paper considers only passenger car and delivery vans applications. In this field a big time gap is to be filled between the situation today, the occurrence of oil shortage in a quite short future and this time horizon 2020-2040. Today's intermediate solutions are clearly based on hybrid electric vehicles and battery electric vehicles. The performances of these solutions are putting a lot of questions on the necessity of a hydrogen economy for future transportation. The paper discusses performances of hybrid electric vehicles and battery electric vehicles in comparison of the future hydrogen fuel cell based systems which are now in R and D phase and a very beginning of field demonstration

  4. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  5. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    Science.gov (United States)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  6. Development and application of an actively controlled hybrid proton exchange membrane fuel cell - Lithium-ion battery laboratory test-bed based on off-the-shelf components

    Energy Technology Data Exchange (ETDEWEB)

    Yufit, V.; Brandon, N.P. [Dept. Earth Science and Engineering, Imperial College, London SW7 2AZ (United Kingdom)

    2011-01-15

    The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system. (author)

  7. Rechargeable Battery Auto-Cycler Requiring Lower Power and Dissipating Reduced Waste Heat

    Science.gov (United States)

    Hanson, Thomas David (Inventor)

    2018-01-01

    A battery charger system includes a power supply and a switch connected to the power supply wherein the switch has a first switch half and a second switch half. First and second batteries are selectively connected to the power supply via the switch. The first and second switch halves are moved between a plurality of operational positions to fully charge the first battery, discharge the first battery into the second battery, discharge the second battery into the first battery, and fully charge the second battery.

  8. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeck, S.; Stoermer, A.O.; Hockgeiger, E. [BMW Group, Powertrain Development, Energy Storage, Hufelandstrasse 4, 80788 Muenchen (Germany)

    2009-05-01

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 C and at 3 C battery temperature. (author)

  9. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  10. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier

    DEFF Research Database (Denmark)

    Zaja, Mario; Oprea, Matei-lon; Suárez, Carlos Gómez

    2014-01-01

    for battery charging. Alternatively, charging could be done using the motor windings as grid side inductors and controlling the inverter to operate as an active boost rectifier. The challenge in this approach is the unequal phase inductances which depend on the rotor position. Another problem appears when...... an integrated charger control algorithm to charge the battery through a permanent magnet synchronous machine (PMSM) windings....

  12. Facile Preparation of Graphene/SnO₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries.

    Science.gov (United States)

    Li, Zhe-Fei; Liu, Qi; Liu, Yadong; Yang, Fan; Xin, Le; Zhou, Yun; Zhang, Hangyu; Stanciu, Lia; Xie, Jian

    2015-12-16

    SnO2 has been considered as one of the most promising anode materials for Li-ion batteries due to its theoretical ability to store up to 8.4 Li(+). However, it suffers from poor rate performance and short cycle life due to the low intrinsic electrical conductivity and particle pulverization caused by the large volume change upon lithiation/delithiation. Here, we report a facile synthesis of graphene/SnO2 xerogel hybrids as anode materials using epoxide-initiated gelation method. The synthesized hybrid materials (19% graphene/SnO2 xerogel) exhibit excellent electrochemical performance: high specific capacity, stable cyclability, and good rate capability. Even cycled at a high current density of 1 A/g for 300 cycles, the hybrid electrode can still deliver a specific capacity of about 380 mAh/g, corresponding to more than 60% capacity retention. The incorporation of graphene sheets provides fast electron transfer between the interfaces of the graphene nanosheets and the SnO2 and a short lithium ion diffusion path. The porous structure of graphene/xerogel and the strong interaction between SnO2 and graphene can effectively accommodate the volume change and tightly confine the formed Li2O and Sn nanoparticles, thus preventing the irreversible capacity degradation.

  13. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    International Nuclear Information System (INIS)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-01-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  14. Analytical solution to energy management guaranteeing battery life for hybrid trucks

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; van den Bosch, P.P.J.; Huisman, R.G.M.

    2016-01-01

    This paper considers a parallel hybrid electric truck where the tractive force delivered to the wheels can be provided by a conventional internal combustion engine (ICE) and/or a motor generator (MG). This hybrid truck is equipped with a clutch system that is capable of decoupling the ICE and the MG

  15. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; Y. Shen; P.P.J. van den Bosch; Edwin Tazelaar; T. Hofman

    2012-01-01

    Fuel cell hybrid vehicles are believed to provide a solution to cut down emissions in the long term. They provide local zero-emission propulsion and when the hydrogen as fuel is derived from renewable energy sources, fuel cell hybrids enable well-to-wheel zero-emission transportation,

  16. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  17. Optimal Sizing and Control Strategy of renewable hybrid systems PV-Diesel Generator-Battery: application to the case of Djanet city of Algeria

    Directory of Open Access Journals (Sweden)

    Adel Yahiaoui

    2017-05-01

    Full Text Available A method for optimal sizing of hybrid system consisting of a Photovoltaic (PV panel, diesel generator, Battery banks and load is considered in this paper. To this end a novel approach is proposed. More precisely a methodology for the design and simulation of the behavior of Hybrid system PV-Diesel-Battery banks to electrify an isolated rural site in southern Algeria Illizi (Djanet. This methodology is based on the concept of the loss power supply probability. Sizing and simulation are performed using MATLAB. The technique developed in this study is to determine the number of photovoltaic panels, diesel generators and batteries needed to cover the energy deficit and respond to the growing rural resident energy demand. The obtained results demonstrate the superior capabilities of this proposed method.

  18. Power and Energy Management with Battery Storage for a Hybrid Residential PV-Wind System – A Case Study for Denmark

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Zaharof, Andreea; Iov, Florin

    2018-01-01

    The energy generation paradigm is shifting from centralized fossil-fuel-based generation to distributed-based renewable generation. Thus, hybrid residential energy systems based on wind turbines, PV panels and/or micro-turbines are gaining more and more terrain. Nevertheless, such a system needs...... to be coupled with an energy storage solution, most often a battery, in order to mitigate its power generation variability and to ensure a stable and reliable operation. In this work, two power and energy management strategies for a hybrid residential PV-wind system with battery energy storage were evaluated....... Simple but customized performance models for PV modules and a small wind turbine have been developed; furthermore the models have been parameterized based on real-life time-series for irradiance and wind speed, characteristic for a site in Denmark. The stress to which the battery was subjected, while...

  19. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available A solar-based power supply system, such as a photovoltaic (PV)-diesel-battery system, is a particularly attractive option for decentralised power supply in southern Africa where solar radiation is ubiquitous in most countries. Such systems can make...

  20. Effect of hybrid system battery performance on determining CO{sub 2} emissions of hybrid electric vehicles in real-world conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Internal Combustion Engines, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2010-11-15

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO{sub 2} emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO{sub 2} emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO{sub 2} emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO{sub 2} emissions corrected according to this procedure underestimate the true net CO{sub 2} emissions of one HEV by approximately 13% in real-world urban driving. The correct CO{sub 2} emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO{sub 2} emissions should, therefore, be adapted. (author)

  1. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  2. Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Toçoğlu, Ubeyd, E-mail: utocoglu@sakarya.edu.tr; Hatipoğlu, Gizem; Alaf, Miraç; Kayış, Fuat; Akbulut, Hatem

    2016-12-15

    Graphical abstract: Silicon/graphene/MWCNT hybrid composite anodes were produced via RF magnetron sputtering technique. CR2016 type coin cells were assembled for electrochemical characterization of anodes. Electrochemical characterizations of anodes were conducted via galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy techniques. - Highlights: • Silicon/graphene/MWCNT hybrid negative lithium ion battery anodes were produced via magnetron sputtering. • Structural and electrochemical characterizations of composite anodes were conducted comprehensively. • The capacity values exhibited by composite anodes were found to be almost more than two times compared to thin film anodes after 100 cycles. - Abstract: In this study it was aimed to enhance cycling performance of silicon lithium ion battery anodes via producing flexible Silicon/Graphene/MWCNT composite structures. The volumetric expansions, which are the primary obstacle that hinders the practical usage of silicon anodes, were tried to suppress using flexible graphene/MWCNT paper substrates. Moreover to achieve lightweight and high electrical conductive anodes, the advantage of graphene was aimed to be exploited. Silicon/graphene/MWCNT flexible composite anodes were produced via radio frequency (RF) magnetron sputtering technique. Graphene/MWCNT papers were produced with vacuum filtration technique as substrate for sputtering process. At coating process of papers constant sputtering power was applied. Phase analysis was conducted with X-ray diffraction (XRD) technique and Raman spectroscopy. Field emission scanning electron microscopy (FESEM). Cyclic voltammetry (CV) tests were carried out to reveal reversible reactions between silicon and lithium. Galvanostatic charge/discharge technique was employed to determine the cyclic performance of anodes. Electrochemical impedance spectroscopy technique was used to understand the relation between cyclic performance and

  3. Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering

    International Nuclear Information System (INIS)

    Toçoğlu, Ubeyd; Hatipoğlu, Gizem; Alaf, Miraç; Kayış, Fuat; Akbulut, Hatem

    2016-01-01

    Graphical abstract: Silicon/graphene/MWCNT hybrid composite anodes were produced via RF magnetron sputtering technique. CR2016 type coin cells were assembled for electrochemical characterization of anodes. Electrochemical characterizations of anodes were conducted via galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy techniques. - Highlights: • Silicon/graphene/MWCNT hybrid negative lithium ion battery anodes were produced via magnetron sputtering. • Structural and electrochemical characterizations of composite anodes were conducted comprehensively. • The capacity values exhibited by composite anodes were found to be almost more than two times compared to thin film anodes after 100 cycles. - Abstract: In this study it was aimed to enhance cycling performance of silicon lithium ion battery anodes via producing flexible Silicon/Graphene/MWCNT composite structures. The volumetric expansions, which are the primary obstacle that hinders the practical usage of silicon anodes, were tried to suppress using flexible graphene/MWCNT paper substrates. Moreover to achieve lightweight and high electrical conductive anodes, the advantage of graphene was aimed to be exploited. Silicon/graphene/MWCNT flexible composite anodes were produced via radio frequency (RF) magnetron sputtering technique. Graphene/MWCNT papers were produced with vacuum filtration technique as substrate for sputtering process. At coating process of papers constant sputtering power was applied. Phase analysis was conducted with X-ray diffraction (XRD) technique and Raman spectroscopy. Field emission scanning electron microscopy (FESEM). Cyclic voltammetry (CV) tests were carried out to reveal reversible reactions between silicon and lithium. Galvanostatic charge/discharge technique was employed to determine the cyclic performance of anodes. Electrochemical impedance spectroscopy technique was used to understand the relation between cyclic performance and

  4. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    Science.gov (United States)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  5. Contribution to the optimal design of an hybrid parallel power-train: choice of a battery model; Contribution a la conception optimale d'une motorisation hybride parallele. Choix d'un modele d'accumulateur

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, E.

    2004-09-15

    This work deals with the dynamical and energetic modeling of a 42 V NiMH battery, the model of which is taking into account into a control law for an hybrid electrical vehicle. Using an inventory of the electrochemical phenomena, an equivalent electrical scheme has been established. In this model, diffusion phenomena were represented using non integer derivatives. This tool leads to a very good approximation of diffusion phenomena, nevertheless such a pure mathematical approach did not allow to represent energetic losses inside the battery. Consequently, a second model, made of a series of electric circuits has been proposed to represent energetic transfers. This second model has been used in the determination of a control law which warrants an autonomous management of electrical energy embedded in a parallel hybrid electrical vehicle, and to prevent deep discharge of the battery. (author)

  6. Energy Management of a Hybrid AC–DC Micro-Grid Based on a Battery Testing System

    Directory of Open Access Journals (Sweden)

    Bo Long

    2015-02-01

    Full Text Available Energy Recovery Battery Testing Systems (ERBTS plays an important role in battery manufacture. The conventional ERBTS configuration contains a fundamental transformer, and a bidirectional Direct Current (DC–DC and Alternating Current (AC–DC converter. All ERBTS are connected in parallel, thus constituting a special and complicated AC micro-grid system. Aiming at addressing their low energy recovery efficiency, complex grid-connected control algorithm issues for islanded detection, and complicated power circuit topology issues, a hierarchical DC-link voltage hybrid AC–DC micro-grid that contains composite energy storing devices is proposed. Moreover, an energy management optimal scheme for the proposed scheme is put forward. The system configuration of the proposed scheme is described in detail. Compared to the conventional scheme, the proposed scheme has the merits of simplified power circuit topology, no need for phase synchronous control, and much higher energy recovery efficiency and reliability. The validity and effectiveness of the proposed technique is verified through numerous experimental results.

  7. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    Science.gov (United States)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  8. Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter

    International Nuclear Information System (INIS)

    Vasebi, A.; Bathaee, S.M.T.; Partovibakhsh, M.

    2008-01-01

    This paper describes and introduces a new nonlinear predictor and a novel battery model for estimating the state of charge (SoC) of lead-acid batteries for hybrid electric vehicles (HEV). Many problems occur for a traditional SoC indicator, such as offset, drift and long term state divergence, therefore this paper proposes a technique based on the extended Kalman filter (EKF) in order to overcome these problems. The underlying dynamic behavior of each cell is modeled using two capacitors (bulk and surface) and three resistors (terminal, surface and end). The SoC is determined from the voltage present on the bulk capacitor. In this new model, the value of the surface capacitor is constant, whereas the value of the bulk capacitor is not. Although the structure of the model, with two constant capacitors, has been previously reported for lithium-ion cells, this model can also be valid and reliable for lead-acid cells when used in conjunction with an EKF to estimate SoC (with a little variation). Measurements using real-time road data are used to compare the performance of conventional internal resistance (R int ) based methods for estimating SoC with those predicted from the proposed state estimation schemes. The results show that the proposed method is superior to the more traditional techniques, with accuracy in estimating the SoC within 3%

  9. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  10. Identification and modelling of Lithium ion battery

    International Nuclear Information System (INIS)

    Tsang, K.M.; Sun, L.; Chan, W.L.

    2010-01-01

    A universal battery model for the charging process has been identified for Lithium ion battery working at constant temperature. Mathematical models are fitted to different collected charging profiles using the least squares algorithm. With the removal of the component which is related to the DC resistance of the battery, a universal model can be fitted to predict profiles of different charging rates after time scaling. Experimental results are included to demonstrate the goodness of fit of the model at different charging rates and for batteries of different capacities. Comparison with standard electrical-circuit model is also presented. With the proposed model, it is possible to derive more effective way to monitor the status of Lithium ion batteries, and to develop a universal quick charger for different capacities of batteries to result with a more effective usage of Lithium ion batteries.

  11. A fast 30 kV 5 kHz repetition rate resonant capacitor charger

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Huiskamp, T.; van Heesch, E.J.M.; Pemen, A.J.M.

    2016-01-01

    A novel circuit topology of a fast 30 kV resonant capacitor charger is presented in this paper. The charger is designed for high repetition rate spark gap based pulsed power modulators. A spark gap can fire spontaneously (pre-firing) during charging of a capacitor bank due to poor dielectric

  12. Optimal stochastic short-term thermal and electrical operation of fuel cell/photovoltaic/battery/grid hybrid energy system in the presence of demand response program

    International Nuclear Information System (INIS)

    Majidi, Majid; Nojavan, Sayyad; Zare, Kazem

    2017-01-01

    Highlights: • On-grid photovoltaic/battery/fuel cell system is considered as hybrid system. • Thermal and electrical operation of hybrid energy system is studied. • Hybrid energy system is used to reduce dependency on upstream grid for load serving. • Demand response program is proposed to manage the electrical load. • Demand response program is proposed to reduce hybrid energy system’s operation cost. - Abstract: In this paper, cost-efficient operation problem of photovoltaic/battery/fuel cell hybrid energy system has been evaluated in the presence of demand response program. Each load curve has off-peak, mid and peak time periods in which the energy prices are different. Demand response program transfers some amount of load from peak periods to other periods to flatten the load curve and minimize total cost. So, the main goal is to meet the energy demand and propose a cost-efficient approach to minimize system’s total cost including system’s electrical cost and thermal cost and the revenue from exporting power to the upstream grid. A battery has been utilized as an electrical energy storage system and a heat storage tank is used as a thermal energy storage system to save energy in off-peak and mid-peak hours and then supply load in peak hours which leads to reduction of cost. The proposed cost-efficient operation problem of photovoltaic/battery/fuel cell hybrid energy system is modeled by a mixed-integer linear program and solved by General algebraic modeling system optimization software under CPLEX solver. Two case studies are investigated to show the effects of demand response program on reduction of total cost.

  13. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead acid batteries

    Science.gov (United States)

    Rowlette, J. J.

    1981-01-01

    Charge efficiencies were determined by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state of charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  14. Fuel cell/back-up battery hybrid energy conversion systems: Dynamic modeling and harmonic considerations

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2015-01-01

    Highlights: • Novel technique to completely eliminate the harmful harmonics of fuel cell system. • Presenting a novel high accurate detailed electrochemical dynamic model of fuel cells. • Back-up battery system to compensate the slow dynamic response of fuel cell system. • Exact analysis of real electrochemical reactions occurring inside fuel cells. - Abstract: In this study, a novel dynamic model of fuel cells is presented. High accurate static and dynamic responses of the proposed model are experimentally validated by comparing simulated results with real experimental data. The obtained model together with theoretical results shows that a fuel cell or a fuel cell stack has very slow dynamic response, so that, it cannot adapt itself to the fast variations in load demand. It is shown that for adapting well a fuel cell stack to the load demand, the stack should be equipped with a proposed back-up battery system which compensates the slow dynamic response of the stack by providing a bidirectional path to transmit/absorb the extra instant power. It is proved that the conventional switching waveforms used in the converters of the stacks and back-up systems produce an enormous amount of harmful harmonics. Then, a novel technique is proposed to completely eliminate main harmful harmonics. It is worthwhile to note that all the other techniques only reduce the harmful harmonics. Simulated results verify that the back-up battery system together with applying the proposed technique provide a fast dynamic response for the fuel cell/back-up battery system, and also completely eliminate the main harmful harmonics

  15. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelažanskas, Linas; Baranauskas, Audrius; Gamage, Kelum A.A.; Ažubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  16. Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs for Enhancing the Resiliency of Hybrid Microgrids

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-02-01

    Full Text Available The resiliency of power systems can be enhanced during emergency situations by using microgrids, due to their capability to supply local loads. However, precise prediction of disturbance events is very difficult rather the occurrence probability can be expressed as, high, medium, or low, etc. Therefore, a fuzzy logic-based battery energy storage system (BESS operation controller is proposed in this study. In addition to BESS state-of-charge and market price signals, event occurrence probability is taken as crisp input for the BESS operation controller. After assessing the membership levels of all the three inputs, BESS operation controller decides the operation mode (subservient or resilient of BESS units. In subservient mode, BESS is fully controlled by an energy management system (EMS while in the case of resilient mode, the EMS follows the commands of the BESS operation controller for scheduling BESS units. Therefore, the proposed hybrid microgrid model can operate in normal, resilient, and emergency modes with the respective objective functions and scheduling horizons. Due to the consideration of resilient mode, load curtailment can be reduced during emergency operation periods. Numerical simulations have demonstrated the effectiveness of the proposed strategy for enhancing the resiliency of hybrid microgrids.

  17. Application of DC-AC Hybrid Grid and Solar Photovoltaic Generation with Battery Storage Using Smart Grid

    Directory of Open Access Journals (Sweden)

    Shoaib Rauf

    2017-01-01

    Full Text Available Smart grid for the past few years has been the prime focus of research in power systems. The aim is to eliminate load shedding and problematic blackout conditions, further offering cheap and continuous supply of electricity for both large and small consumers. Another benefit is to integrate renewable energy resources with existing dump grid in more efficient and cost-effective manner. In past few years, growing demand for sustainable energy increases the consumption of solar PV. Since generation from solar PV is in DC and most of the appliances at home could be operated on DC, AC-DC hybrid distribution system with energy management system is proposed in this paper. EMS helps to shift or control the auxiliary load and compel the users to operate specific load at certain time slots. These techniques further help to manage the excessive load during peak and off peak hours. It demonstrates the practical implementation of DC-AC network with integration of solar PV and battery storage with existing infrastructure. The results show a remarkable improvement using hybrid AC-DC framework in terms of reliability and efficiency. All this functioning together enhances the overall efficiency; hence, a secure, economical, reliable, and intelligent system leads to a smart grid.

  18. Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips

    International Nuclear Information System (INIS)

    Arslan, Okan; Yıldız, Barış; Ekin Karaşan, Oya

    2014-01-01

    In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance. - Highlights: • We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips. • We analyze the impacts of battery, driver and road network characteristics on the costs. • We provide critical managerial insights to shape the investment decisions about PHEVs. • Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs. • Negative effect of intolerance on cost may be overcome by battery capacity expansion

  19. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 4, In-vehicle safety

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J.

    1992-11-01

    This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

  20. A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions

    Directory of Open Access Journals (Sweden)

    Lan-Rong Dung

    2016-01-01

    Full Text Available A new battery simulator based on a hybrid model is proposed in this paper for dynamic discharging behavior and runtime predictions in existing electronic simulation environments, e.g., PSIM, so it can help power circuit designers to develop and optimize their battery-powered electronic systems. The hybrid battery model combines a diffusion model and a switching overpotential model, which automatically switches overpotential resistance mode or overpotential voltage mode to accurately describe the voltage difference between battery electro-motive force (EMF and terminal voltage. Therefore, this simulator can simply run in an electronic simulation software with less computational efforts and estimate battery performances by further considering nonlinear capacity effects. A linear extrapolation technique is adopted for extracting model parameters from constant current discharging tests, so the EMF hysteresis problem is avoided. For model validation, experiments and simulations in MATLAB and PSIM environments are conducted with six different profiles, including constant loads, an interrupted load, increasing and decreasing loads and a varying load. The results confirm the usefulness and accuracy of the proposed simulator. The behavior and runtime prediction errors can be as low as 3.1% and 1.2%, respectively.

  1. Evaluation of hybrid neutralization/biosorption process for zinc ions removal from automotive battery effluent by dolomite and fish scales.

    Science.gov (United States)

    Ribeiro, C; Scheufele, F B; Alves, H J; Kroumov, A D; Espinoza-Quiñones, F R; Módenes, A N; Borba, C E

    2018-02-26

    This work focused in the evaluation of Oreochromis niloticus fish scales (FS) as biosorbent material in the removal of Zn from a synthetic effluent based on automotive battery industry effluent and, further, a hybrid neutralization/biosorption process, aiming at a high-quality treated effluent, by a cooperative use of dolomite and FS. For this, a physicochemical and morphological characterization (i.e. SEM-EDX, FTIR, XRD, and TXRF) was performed, which helped to clarify a great heterogeneity of active sites (phosphate, carbonate, amide, and hydroxyl) on the biosorbent; also the inorganic constituents (apatites) leaching from the FS was identified. Biosorption results pointed out to a pH-dependent process due to changes in the functional group's anionic character (i.e. electrostatic interactions), where an initial pH = 3 favored the Zn uptake. Kinetic and equilibrium studies confirmed the heterogeneous surface and cooperative sorption, wherein experimental data were described by Generalized Elovich kinetic model and the favorable isotherm profile by Langmuir-Freundlich isotherm ([Formula: see text] = 15.38 mg g -1 and [Formula: see text]). Speciation diagram of Zn species along with the leached species demonstrated that, for the studied pH range, the biosorption was the most likely phenomena rather than precipitation. Finally, the hybrid neutralization/biosorption process showed great potential since both the Zn concentration levels and the pH reached the legislation standards (C Zn  = 4 mg L -1 ; pH = 5). Hence, based on the characterization and biosorption results, a comprehensive evaluation of the involved mechanisms in such complex system helped to verify the prospective of FS biosorbent for the Zn treatment from solution, in both individual and hybrid processes.

  2. VALVE TURBO-ALTERNATOR AS ADDITIONAL HYBRID CAR DEVICE FOR THE HIGH-VOLTAGE BATTERY CHARGE

    Directory of Open Access Journals (Sweden)

    S. Kolesnikov

    2009-01-01

    Full Text Available The description of the hybrid car, its drive components and method of the solution of the problem with moving period of the car on electric pulling by means of valve turbo-alternator is given in this article.

  3. On-chip remote charger model using plasmonic island circuit

    Directory of Open Access Journals (Sweden)

    J. Ali

    2018-06-01

    Full Text Available We propose the remote charger model using the light fidelity (LiFi transmission and integrate microring resonator circuit. It consists of the stacked layers of silicon-graphene-gold materials known as a plasmonic island placed at the center of the modified add-drop filter. The input light power from the remote LiFi can enter into the island via a silicon waveguide. The optimized input power is obtained by the coupled micro-lens on the silicon surface. The induced electron mobility generated in the gold layer by the interfacing layer between silicon-graphene. This is the reversed interaction of the whispering gallery mode light power of the microring system, in which the generated power is fed back into the microring circuit. The electron mobility is the required output and obtained at the device ports and characterized for the remote current source applications. The obtained calculation results have shown that the output current of ∼2.5 × 10−11 AW−1, with the gold height of 1.0 µm and the input power of 5.0 W is obtained at the output port, which is shown the potential application for a short range free pace remote charger.

  4. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  5. H∞ robust control of load frequency in diesel-battery hybrid electric propulsion ship

    Directory of Open Access Journals (Sweden)

    LI Hongyue

    2017-05-01

    Full Text Available Considering the load frequency fluctuation in the shipboard integrated power system caused by such stochastic uncertainty as wind, wave and current, the battery is adopted here to compensate for the difference between diesel generator output power and ship demand power, and the secondary frequency control is used for the diesel generator to guarantee the power balance in the shipboard integrated power system and suppress the frequency fluctuation. The load frequency control problem is modeled as a state space equation, the robust controller is designed by selecting the appropriate sensitivity function and complementary sensitivity function based on the H∞ mixed sensitivity principle, and the controller is solved by the linear matrix inequality(LMIapproach. The amplitude frequency characteristics denote the reasonability of the designed controller and the design requirement is satisfied by the impact of the impulse signal. The simulation results show that, compared with the classical PI controller, the controller designed by the H∞ robust method can significantly suppress frequency fluctuation under stochastic uncertainty, and improve the power variation of the diesel generator, battery and state of charge(SOC. The robust stability and robust performance of the power system are also advanced.

  6. The development of an all copper hybrid redox flow battery using deep eutectic solvents

    International Nuclear Information System (INIS)

    Lloyd, David; Vainikka, Tuomas; Kontturi, Kyösti

    2013-01-01

    Highlights: • A novel redox flow battery based on a deep eutectic solvent is reported. • Favourable kinetics of the positive electrode reaction are shown. • The cell potential is 0.7 V. • Coulombic and energy efficiency are 95% and 62% respectively. • A separator based on jellifying the electrolyte using polyvinyl alcohol is reported. -- Abstract: The performance of a redox flow battery based on chlorocuprates dissolved in an ionic liquid analogue is reported at 50 °C. The kinetics of the positive electrode reaction at a graphite electrode are favourable with a heterogeneous rate constant, k 0 , of 9.5 × 10 −4 cm s −1 . Coulombic efficiency was typically 94% and independent of current density. The small cell potential of 0.75 V and slow mass transport result in energy efficiencies of only 52% and 62% at current densities of 10 and 7.5 mA/cm 2 respectively. The successful development of a separator by jellifying the electrolyte using polyvinyl alcohol is reported

  7. Architectural innovation foresight of thermoelectric generator charger integrated portable power supply for portable consumer electronic device in metropolitan market: The case study of Thailand

    Science.gov (United States)

    Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.

    2012-06-01

    In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for

  8. Systems of lithium ion battery for hybrid vehicles and electric vehicles. More safe, more durable and more efficient; Lithium-Ionen Batteriesysteme fuer Hybrid- und Elektrofahrzeuge. Sicherer, langlebiger und leistungsfaehiger

    Energy Technology Data Exchange (ETDEWEB)

    Grotendorst, Joerg [Continental, Nuernberg (Germany). Business Unit Hybrid Electric Vehicle; Birke, Peter; Schiemann, Michael [Continental, Berlin (Germany). Battery Technology; Keller, Michael [Continental, Berlin (Germany). Battery Systems

    2008-07-01

    The recent progress in the development of more efficiently and simultaneously more safe batteries completely opens up new solution methods in the energy storage with hybrid vehicles and electrical vehicles. In particular, lithium ion batteries have covered leaps of development being held to be not possible till to now on the way to automotive-suited energy storages. In the recent years, Continental AG (Hannover, Federal Republic of Germany) successfully has developed lithium ion energy storages to serial production and produces these energy storages at the location Germany.

  9. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ghosh, Arnab; Manjunatha, Revanasiddappa; Kumar, Rajat; Mitra, Sagar

    2016-12-14

    Lithium-sulfur batteries mostly suffer from the low utilization of sulfur, poor cycle life, and low rate performances. The prime factors that affect the performance are enormous volume change of the electrode, soluble intermediate product formation, poor electronic and ionic conductivity of S, and end discharge products (i.e., Li 2 S 2 and Li 2 S). The attractive way to mitigate these challenges underlying in the fabrication of a sulfur nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic as well as electronic conductivity leading to a mechanically robust and mixed conductive (ionic and electronic conductive) sulfur electrode. Herein, we report a novel bottom-up approach to synthesize a unique freestanding, flexible cathode scaffold made of porous reduced graphene oxide, nanosized sulfur, and Mn 3 O 4 nanoparticles, and all are three-dimensionally interconnected to each other by hybrid polyaniline/sodium alginate (PANI-SA) matrix to serve individual purposes. A capacity of 1098 mAh g -1 is achieved against lithium after 200 cycles at a current rate of 2 A g -1 with 97.6% of initial capacity at a same current rate, suggesting the extreme stability and cycling performance of such electrode. Interestingly, with the higher current density of 5 A g -1 , the composite electrode exhibited an initial capacity of 1015 mA h g -1 and retained 71% of the original capacity after 500 cycles. The in situ Raman study confirms the polysulfide absorption capability of Mn 3 O 4 . This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance lithium-sulfur batteries and a strategy that can be used to develop flexible large power storage devices.

  10. Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator

    International Nuclear Information System (INIS)

    Wang, Yujie; Liu, Chang; Pan, Rui; Chen, Zonghai

    2017-01-01

    The modeling and state-of-charge estimation of the batteries and ultracapacitors are crucial to the battery/ultracapacitor hybrid energy storage system. In recent years, the model based state estimators are welcomed widely, since they can adjust the gain according to the error between the model predictions and measurements timely. In most of the existing algorithms, the model parameters are either configured by theoretical values or identified off-line without adaption. But in fact, the model parameters always change continuously with loading wave or self-aging, and the lack of adaption will reduce the estimation accuracy significantly. To overcome this drawback, a novel co-estimator is proposed to estimate the model parameters and state-of-charge simultaneously. The extended Kalman filter is employed for parameter updating. To reduce the convergence time, the recursive least square algorithm and the off-line identification method are used to provide initial values with small deviation. The unscented Kalman filter is employed for the state-of-charge estimation. Because the unscented Kalman filter takes not only the measurement uncertainties but also the process uncertainties into account, it is robust to the noise. Experiments are executed to explore the robustness, stability and precision of the proposed method. - Highlights: • A co-estimator is proposed to estimate the model parameters and state-of-charge. • The extended Kalman filter is used for model parameter adaption. • The unscented Kalman filter is designed for state estimation with strong robust. • The dynamic profiles are employed to verify the proposed co-estimator.

  11. Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle

    Science.gov (United States)

    Grützke, Martin; Kraft, Vadim; Hoffmann, Björn; Klamor, Sebastian; Diekmann, Jan; Kwade, Arno; Winter, Martin; Nowak, Sascha

    2015-01-01

    The electrolyte of a used lithium-ion battery from a hybrid electric vehicle (HEV) was investigated. The liquid electrolyte was collected through the pressure valve of these 5 Ah cells. It consists of (29.8 ± 0.2) wt.% dimethyl carbonate (DMC), (21.7 ± 0.1) wt.% ethyl methyl carbonate (EMC), (30.3 ± 0.3) wt.% ethylene carbonate (EC) and (2.2 ± 0.1) wt.% cyclohexyl benzene (CHB) which were identified with GC-MS and quantified with GC-FID. Li+ (1.29 ± 0.04) mol L-1 and PF6- were determined with IC as the main ionic species in the solution. Furthermore, BF4- was clearly identified with IC-ESI-MS, IC-ICP-MS and 11B NMR and quantified to a concentration of (120.8 ± 8.3) mg L-1 with ICP-OES. The presence of POF3 (detected with GC-MS), F-, PO2F2-, HPO3F- and H2PO4- (determined with IC-ESI-MS) can be attributed to the reaction of the conducting salt LiPF6 via PF5 with traces of water. HPO3F- and H2PO4- could only be observed in cells which were opened in a laboratory hood under exposure of air humidity. This experiment was done to simulate escaping electrolyte from an HEV battery pack. Furthermore, several alkyl phosphates (identified with GC-MS and IC-ESI-MS) are present in the solution due to further reaction of the different fluorinated phosphates with organic carbonates.

  12. Effect of extreme temperatures on battery charging and performance of electric vehicles

    Science.gov (United States)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a ;base; load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  13. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  14. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  15. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  16. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    International Nuclear Information System (INIS)

    Miller, John; Sibley Lewis, B.; Wohlgemuth, John

    1999-01-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs

  17. Hybrid, plug-in hybrid, or electric—What do car buyers want?

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-01-01

    We use a survey to compare consumers’ stated interest in conventional gasoline (CV), hybrid (HEV), plug-in hybrid (PHEV) and pure electric vehicles (EV) of varying designs and prices. Data are from 508 households representing new vehicle buyers in San Diego County, California in 2011. The mixed-mode survey collected information about access to residential recharge infrastructure, three days of driving patterns, and desired vehicle designs and motivations via design games. Across the higher and lower price scenarios, a majority of consumers designed and selected some form of PHEV for their next new vehicle, smaller numbers designed an HEV or a conventional vehicle, and only a few percent designed an EV. Of those who did not design an EV, the most frequent concerns with EVs were limited range, charger availability, and higher vehicle purchase prices. Positive interest in HEVs, PHEVs and EVs was associated with vehicle images of intelligence, responsibility, and support of the environment and nation (United States). The distribution of vehicle designs suggests that cheaper, smaller battery PHEVs may achieve more short-term market success than larger battery PHEVs or EV. New car buyers’ present interests align with less expensive first steps in a transition to electric-drive vehicles. - Highlights: • We assess consumer interest in various electric-drive vehicle designs. • Web-based design games completed by 508 households from San Diego, California. • Plug-in hybrids are most popular, followed by hybrids and conventional vehicles. • Only a few percent opted for a pure electric vehicle. • Electric-drive associated with intelligence, responsibility, and environment

  18. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building

    International Nuclear Information System (INIS)

    Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.

    2016-01-01

    Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO_2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO_2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO_2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO_2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO_2 emission and dump energy respectively when compared to a single big Diesel generator scenario.

  19. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    Science.gov (United States)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  20. A Novel High-Power Battery-Pseudocapacitor Hybrid Based on Fast Lithium Reactions in Silicon Anode and Titanium Dioxide Cathode Coated on Vertically Aligned Carbon Nanofibers

    International Nuclear Information System (INIS)

    Klankowski, Steven A.; Pandey, Gaind P.; Malek, Gary A.; Wu, Judy; Rojeski, Ronald A.; Li, Jun

    2015-01-01

    Highlights: • A unique battery-supercapacitor hybrid has been demonstrated. • Both Si anode and TiO_2 cathode are fabricated in the form of nanocolumnar shells coated on VACNFs. • Hybrid cells achieve stable charge-discharge cycles in the supercapacitor power regime. - Abstract: An electrochemical cell representing a battery-supercapacitor hybrid is demonstrated with a Si anode and a TiO_2 cathode based on Lithium chemistry. Both materials are fabricated as coaxial shells with an oblique nanocolumnar structure anchored on vertical aligned carbon nanofiber arrays. The Li"+ ion transport and electrical connection is greatly enhanced with such nanoporous core-shell architectures, leading to optimal Li storage properties. The full theoretical capacity of the shell materials has been obtained at normal C-rates (C/1 to C/2) for Si (∼3,000 to 3500 mA h g"−"1) and TiO_2 (∼170 mA h g"−"1) half-cells, respectively, with excellent cycling stability. More importantly, much higher rates (up to 4.7C_S_i for Si and 76C_T_i_O_2 for TiO_2) can be applied at relatively small capacity loss, approaching the properties of supercapacitors. The charge-discharge profiles show battery-supercapacitor hybrid features, which are attributed to the short Li"+ diffusion path across the solid materials and the large pseudocapacitive contribution from fast surface reactions. A full cell containing similar volume of Si and TiO_2 shows a high specific energy (103 W h kg"−"1) at low current rates, comparable to a decent battery, and a remarkable specific power (56,000 W kg"−"1) at high current rates, matching the state-of-the-art supercapacitors.

  1. Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency

    OpenAIRE

    Francoise Nemry; Guillaume Leduc; Almudena Muñoz

    2009-01-01

    This technical note is a first contribution from IPTS to a JRC more integrated assessment of future penetration pathways of new vehicles technologies in the EU27 market and of their impacts on energy security, GHG emissions and on the economy. The present report focuses on battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). It provides a general overview of the current state of the research and development about the concerned technologies and builds some first estim...

  2. Nickel-cadmium battery system for electric vehicles

    Science.gov (United States)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  3. Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Liu, Yanguo; Yu, Yanlong; Ahmad, Mashkoor; Nan, Ding; Zhu, Jing

    2014-01-01

    Graphical abstract: - Highlights: • The mesoporous Co 3 O 4 nanosheets-3D graphene networks have been found to display better LIB performance as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. • Electrochemical impedance spectroscopy shows that the addition of 3DGN largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. • The large specific surface area and porous nature of the Co 3 O 4 nanosheets are very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. - Abstract: Mesoporous Co 3 O 4 nanosheets-3D graphene networks (3DGN) hybrid materials have been synthesized by combining chemical vapor deposition (CVD) and hydrothermal method and investigated as anode materials for Li-ion batteries (LIBs). Microscopic characterizations have been performed to confirm the 3DGN and mesoporous Co 3 O 4 nanostructures. The specific surface area and pore size of the hybrid structures have been found ∼ 34.5 m 2 g −1 and ∼ 3.8 nm respectively. It has been found that the Co 3 O 4 /3DGNs composite displays better LIB performance with enhanced reversible capacity, good cyclic performance and rate capability as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. Electrochemical impedance spectroscopy (EIS) results show that the addition of 3DGN not only preserves high conductivity of the composite electrode, but also largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. The improved electrochemical performance is considered due to the addition of 3DGNs which prevent the cracking of electrode. In addition, the large specific surface area and porous nature of the Co 3 O 4 nanosheets are also very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. Therefore, this combination can be considered to be an attractive candidate as an anode material for LIBs

  4. Nitrogen doped graphene - Silver nanowire hybrids: An excellent anode material for lithium ion batteries

    Science.gov (United States)

    Nair, Anju K.; Elizabeth, Indu; S, Gopukumar; Thomas, Sabu; M. S, Kala; Kalarikkal, Nandakumar

    2018-01-01

    We present an in-situ polyol assisted synthesis approach for the preparation of silver nanowires (AgNW) over the nitrogen doped graphene (NG) sheets and has been tested as a viable LIBs anode material for the first time. The use of NG serves as nucleation sites, thereby facilitating the growth of AgNWs. The specific material design of the as-prepared NG-AgNW hybrids involves some advantages, including a continuous AgNW-graphene conducting network. Since AgNWs are electrically conductive, it provides an electrical contact with NG sheets which can effectively help the charge transport process and limit the variations in volume during the lithiation/de-lithiation processes. Apart from this, the insertion of metallic Ag nanowires into a percolated NG network increases the interlayer distance of NG sheets and prevent its restacking. Moreover, the more porous nature of the hybrid structure accommodating the large volume changes of AgNWs. As an anode material for LIBs, the NG-AgNW hybrid displays a remarkable initial discharge capacity of 1215 mAh g-1 and attains a stable capacity of 724 mAh g-1 at a current density of 100 mA g-1 after 50 cycles. The electrode exhibits a stable reversible capacity of 714, 634, 550 and 464 mA h g-1 at 0.1, 0.2, 0.5, 1 Ag-1 respectively. The reversible capacity (710 mAh g-1) at 0.1 Ag-1 is recovered after the cycling at various current densities confirming outstanding rate performance of the material. In addition, the coulombic efficiency, the NG-AgNW anode retains nearly 99% after the second cycle, further indicating its excellent reversibility. The hybrid material exhibits better cycling stability, greater rate capability, capacity retention and superior reversible capacity than that of bare AgNW and NG sheets. Our smart design will pave way for the development of efficient electrode materials for high capacity and long cycle life LIBs.

  5. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, C J

    1992-09-01

    This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

  6. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P.

    2010-01-01

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  7. Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries

    Directory of Open Access Journals (Sweden)

    Jiye Zhan

    2016-06-01

    Full Text Available Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer interconnected hollow composite spheres with diameters of ∼350 nm as well as thin walls of ∼20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g−1 at 2 A g−1, and stable high-rate cycling life (70 mAh g−1 after 12,500 cycles at 2 A g−1. The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.

  8. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J.; Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ (United Kingdom); Howey, D. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom)

    2010-01-15

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV. (author)

  9. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.

    Science.gov (United States)

    Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker

    2018-04-25

    Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  11. Hybrid polyacrylamide/carbon coating on sulfur cathode for advanced lithium sulfur battery

    International Nuclear Information System (INIS)

    Li, Tao; Yuan, Yan; Hong, Bo; Cao, Huawei; Zhang, Kai; Lai, Yanqing; Liu, Yexiang; Huang, Zixin

    2017-01-01

    Commercialized conductive slurry consisting of polyacrylamide (PAM) and two kinds of carbon black was coated on the surface of sulfur cathode. The hybrid PAM/C coating not only physically blocks but also chemically anchors polysulfides within the cathode, confining their out-diffusion and shuttle. Besides, the flexible and highly-conductive coating layer buffers volume change of the cathode during discharge-charge process and reduces charge transfer resistance. A specific capacity of as high as ∼900 mAh g −1 after 300 cycles is demonstrated for the PAM/C coated cathode, which is a significant improvement of reversible capacity and cycle capability compared to uncoated or conventional PVDF/C coated cathode.

  12. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  13. Pseudocapacitive Behaviors of Li2FeTiO4/C Hybrid Porous Nanotubes for Novel Lithium-Ion Battery Anodes with Superior Performances.

    Science.gov (United States)

    Tang, Yakun; Liu, Lang; Zhao, Hongyang; Zhang, Yue; Kong, Ling Bing; Gao, Shasha; Li, Xiaohui; Wang, Lei; Jia, Dianzeng

    2018-06-20

    Hybrid nanotubes of cation disordered rock salt structured Li 2 FeTiO 4 nanoparticles embedded in porous CNTs were developed. Such unique hybrids with continuous 3D electron transportation paths and isolated small particles have been shown to be an ideal architecture that brought out enhanced electrochemical performances. Meanwhile, they exhibited improved extrinsic capacitive characteristics. In addition, we demonstrate a successful example to use cathode active material as anode for lithium-ion batteries (LIBs). More importantly, our hybrids had much superior electrochemical performances than most of the reported Li 4 Ti 5 O 12 -based nanocomposites. Therefore, it is concluded that Li 2 FeTiO 4 can be a prospective anode material for LIBs.

  14. Hybrid Materials Polypyrrole-heteropolytungstate Electrosynthesis of Electrodes for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Cheng, S. A.

    2000-06-01

    Full Text Available Polypyrroles doped with heterpolytungstate anion [PW12O40]3- was electrogenerated from acetonitrile solutions. It is found that the productivity of the consumed charge to produce the hybrids always keeps at high constant value of about 1.9 x 10-3 mg mC-1, whatever the studied conditions including different potentials, different concentrations of pyrrole, different concentrations of PW12O40 3- or different temperatures. The hybrid material coats the electrode as a compact, adherent, conducting and dark-blue film. The specific charges of the materials initially increase as the polymer weight increases keeping a constant value for greater weight than 0.15 mg cm-2. Consecutive charge-discharge promotes a fast initial loss of material by solubility, the specific charge of the insoluble part increases until 90 mA h g-1. Both evolution of the cyclic voltammograms and UV-vis spectroscopies indicate the presence of macroanion in solution after cycling.

    Los polipirroles dopados con anión heteropoliwolframato [PW12O40]3- (materiales híbridos han sido electrogenerados desde disoluciones de acetonitrilo. Se ha visto que la productividad de la carga consumida para producir los híbridos siempre se mantiene a valores constantes elevados alrededor de 1.9 x 10-3 mg mC-1, cualquiera que sea la condición estudiada de síntesis: diferentes potenciales, diferentes concentraciones de pirrol, diferentes concentraciones de PW12O40 3- o diferentes temperaturas. El material híbrido recubre el electrodo en forma de film azul marino, compacto, adherente y conductor. Las cargas específicas almacenadas en los materiales inicialmente aumentan a medida que el peso del polímero aumenta, manteniendo un valor constante a partir de pesos mayores que 0.15 mg cm-2. La voltamperometría cíclica y la espectroscopía UV-vis indican la presencia de un intercambio de iones entre el macroión del film y el ClO4 -1 de la solución durante los procesos de oxidaci

  15. An Insight into the Convenience and Efficiency of the Freeze-Drying Route to Construct 3D Graphene-Based Hybrids for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Ding, Caihua; Zhao, Yongjie; Yan, Dong; Zhao, Yuzhen; Zhou, Heping; Li, Jingbo; Jin, Haibo

    2016-01-01

    Constructing hybrids of transition metal oxides with different kinds of carbon based materials has attracted a lot of attention recently. However, scalable synthesis of homogeneous hybrids with active controllable of microstructure remains great challenge. Here, we proposed a convenient and efficient strategy named freeze-drying process for scalable production of 3D NiO/graphene hybrids. With a controllable procedure, NiO microflowers and graphene layers could preserve uniform configuration from fully mixed solvent to final hybrids materials. The mechanical stability and electrical conductivity of NiO microflowers was increased by graphene. NiO microflowers as spacers intercalated into graphene layers and effectively prevented it from aggregation or restacking, leading to a high specific surface area in hybrids. The NiO/graphene exhibited enhanced cycle stability and rate performance when evaluated as an anode for lithium ion batteries. It rendered high specific capacities about 1000 mA h g −1 after 70 cycles, and 770 mA h g −1 after 100 cycles at 300 mA g −1 . Excellent electrochemical properties were probably ascribed to the synergistic effect of NiO microflowers and graphene layers, as a result of smart structure design by a freeze-drying route. This strategy with merits of rational construction and scalable production could establish new aspects for diverse hybrid towards industrialization.

  16. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  17. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  18. Effets du vieillisement de la batterie Li-ion sur les performances d'un vehicule recreatif hybride branchable a trois roues

    Science.gov (United States)

    Nadeau, Jonathan

    La prediction de l'evolution du vieillissement de la batterie lithium-ion est source d'un grand defi, dans les applications liees aux vehicules electriques et hybrides. Sa meconnaissance est un risque considerable compromettant la viabilite d'un tel systeme. Invoquant les couts substantiels de la densite d'energie, liee a la degradation considerable des performances de la batterie au cours de sa duree de vie, il devient important d'en tenir compte des le processus de conception. La dependance de la strategie de controle du vehicule aux parametres de la batterie justifie aussi la necessite d'une telle prediction. Il est connu que le vieillissement, sensible aux facteurs tels que le courant, la temperature et la profondeur de decharge, a un impact considerable sur la perte de capacite de la batterie ainsi que sur l'augmentation de la resistance interne. Le premier est directement lie a l'autonomie electrique du vehicule, alors que le second mene a une surchauffe de la batterie, a une augmentation des pertes en puissance qui se manifeste par une diminution de la tension de bus. A cet egard, implique dans la conception d'un vehicule recreatif hybride branchable a trois roues, le Centre de Technologies Avancees s'interesse a l'etude du vieillissement de la batterie Li-ion pour une telle application. Pour ce faire, au contraire de la plupart des estimations empiriques de la duree de vie, basees sur des profils de decharge a courant constant, un profil de courant plus approprie pour l'application donnee, base sur un cycle de vitesse representatif de la conduite d'une motocyclette, a ete utilise. Par le biais d'un simulateur complet du vehicule, le cycle de courant a ete extrait du cycle de vitesse. Ainsi, les travaux menes impliquent l'analyse experimentale de la decharge cyclique de quatre cellules LiFePO 4. Pendant plus de 1400 cycles, un banc d'essai complet a permis l'acquisition de la capacite, de la resistance interne, du courant, de la tension ainsi que de la

  19. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  20. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    Science.gov (United States)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  1. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Science.gov (United States)

    2012-06-29

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Battery Chargers and External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW...

  2. Quick charge battery

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  3. γ-Fe 2 O 3 Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei-Lei; Zhang, Ming-Jian; Wu, Chao; Wei, Yi; Zheng, Jia-Xin; Lin, Ling-Piao; Lu, Jun; Amine, Khalil; Zhuang, Quan-Chao; Pan, Feng

    2015-12-02

    Maghemite (γ-Fe2O3) nanocrystalline microspheres (MNMs) self-assembled with 52 nm nanocrystals bridged with FeOOH around grain boundaries were formed by solvothermal reaction and thermal oxidation. The unique architecture endows the MNMs with the lithium storage behavior of a hybrid battery-supercapacitor electrode: initial charge capacity of 1060 mAh g–1 at the 100 mA g–1 rate, stable cyclic capacity of 1077.9 mAh g–1 at the same rate after 140 cycles, and rate capability of 538.8 mAh g–1 at 2400 mA g–1. This outstanding performance was attributed to the nanocrystal superiority, which shortens the Li+ diffusion paths. The mechanism of this hybrid anode material was investigated with experimental measurements and structural analysis. The results indicate that at the first discharge, the MNM nanocrystal microsphere, whose structure can buffer the volume change that occurs during lithiation/delithiation, goes through four stages: Li+ insertion in cation vacancies, spinel-to-rocksalt transformation, Li+ intercalation of Li1.75+xFe2O3 nanocrystals, and interfacial Li storage around nanocrystal boundaries. Only the latter two stages were reversible at and after the second charging/discharging cycle, exhibiting the hybrid behavior of a battery-supercapacitor with superior lithium storage.

  4. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries

    Science.gov (United States)

    Chen, Shaojie; Wang, Junye; Zhang, Zhihua; Wu, Linbin; Yao, Lili; Wei, Zhenyao; Deng, Yonghong; Xie, Dongjiu; Yao, Xiayin; Xu, Xiaoxiong

    2018-05-01

    Nano-sized fillers in a polymer matrix with good distribution can play a positive role in improving polymer electrolytes in the aspects of ionic conductivity, mechanical property and electrochemical performance of Li-ion cells. Herein, polyethylene oxide (PEO)/Li3PS4 hybrid polymer electrolyte is prepared via a new in-situ approach. The ionic conductivities of the novel hybrid electrolytes with variable proportions are measured, and the optimal electrolyte of PEO-2%vol Li3PS4 presents a considerable ionic conductivity of 8.01 × 10-4 S cm-1 at 60 °C and an electrochemical window up to 5.1 V. The tests of DSC and EDXS reveal that the Li3PS4 nanoparticles with better distribution, as active fillers scattering in the PEO, exhibit a positive effect on the transference of lithium ion and electrochemical interfacial stabilities. Finally, the assembled solid-state LiFePO4/Li battery presents a decent cycling performance (80.9% retention rate after 325 cycles at 60 °C) and excellent rate capacities with 153, 143, 139 and 127 mAh g-1 at the discharging rate of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C. It is fully proved that it is an advanced strategy to preparing the new organic/inorganic hybrid electrolytes for lithium-ion batteries applications.

  5. MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhang, Hui; Wang, Yunsong; Zhao, Wenqi; Zou, Mingchu; Chen, Yijun; Yang, Liusi; Xu, Lu; Wu, Huaisheng; Cao, Anyuan

    2017-11-01

    Metal-organic frameworks (MOFs) have many promising applications in energy and environmental areas such as gas separation, catalysis, supercapacitors, and batteries; the key toward those applications is controlled pyrolysis which can tailor the porous structure, improve electrical conductivity, and expose metal ions in MOFs. Here, we present a systematic study on the structural evolution of zeolitic imidazolate frameworks hybridized on carbon nanotubes (CNTs) during the carbonization process. We show that a number of typical products can be obtained, depending on the annealing time, including (1) CNTs wrapped by relatively thick carbon layers, (2) CNTs grafted by ZnO nanoparticles which are covered by thin nitrogen-doped carbon layers, and (3) CNTs grafted by aggregated ZnO nanoparticles. We also investigated the electrochemical properties of those hybrid structures as freestanding membrane electrodes for lithium ion batteries, and the second one (CNT-supported ZnO covered by N-doped carbon) shows the best performance with a high specific capacity (850 mA h/g at a current density of 100 mA/g) and excellent cycling stability. Our results indicate that tailoring and optimizing the MOF-CNT hybrid structure is essential for developing high-performance energy storage systems.

  6. One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane.

    Science.gov (United States)

    Chang, Zhenjun; Henkensmeier, Dirk; Chen, Ruiyong

    2017-08-24

    By using a one-step epoxide ring-opening reaction between 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4-hydroxy-TEMPO) and glycidyltrimethylammonium cation (GTMA + ), we synthesized a cation-grafted TEMPO (g + -TEMPO) and studied its electrochemical performance against a Zn 2+ /Zn anode in a hybrid redox flow battery. To conduct Cl - counter anions, a crosslinked methylated polybenzimidazole (PBI) membrane was prepared and placed between the catholyte and anolyte. Compared to 4-hydroxy-TEMPO, the positively charged g + - TEMPO exhibits enhanced reaction kinetics. Moreover, flow battery tests with g + -TEMPO show improved Coulombic, voltage, and energy efficiencies and cycling stability over 140 cycles. Crossover of active species through the membrane was not detected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine

    International Nuclear Information System (INIS)

    Chia, Yen Yee; Lee, Lam Hong; Shafiabady, Niusha; Isa, Dino

    2015-01-01

    Highlights: • A novel energy management system (EMS) for supercapacitor-battery hybrid energy storage system is implemented. • It is a load predictive EMS which is implemented using Support Vector Machine (SVM). • An optimum SVM load prediction model is obtained, which yields 100% accuracy in 0.004866 s of training time. • The implemented load predictive EMS is compared with the conventional sequential programming control. • This methodology reduces the number of power electronics used and prolong battery lifespan. - Abstract: This paper presents the use of a Support Vector Machine load predictive energy management system to control the energy flow between a solar energy source, a supercapacitor-battery hybrid energy storage combination and the load. The supercapacitor-battery hybrid energy storage system is deployed in a solar energy system to improve the reliability of delivered power. The combination of batteries and supercapacitors makes use of complementary characteristic that allow the overlapping of a battery’s high energy density with a supercapacitors’ high power density. This hybrid system produces a straightforward benefit over either individual system, by taking advantage of each characteristic. When the supercapacitor caters for the instantaneous peak power which prolongs the battery lifespan, it also minimizes the system cost and ensures a greener system by reducing the number of batteries. The resulting performance is highly dependent on the energy controls implemented in the system to exploit the strengths of the energy storage devices and minimize its weaknesses. It is crucial to use energy from the supercapacitor and therefore minimize jeopardizing the power system reliability especially when there is a sudden peak power demand. This study has been divided into two stages. The first stage is to obtain the optimum SVM load prediction model, and the second stage carries out the performance comparison of the proposed SVM-load predictive

  8. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  9. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions

    International Nuclear Information System (INIS)

    Baneshi, Mehdi; Hadianfard, Farhad

    2016-01-01

    Highlights: • A hybrid electricity generation system for a large electricity consumer was studied. • The PV and wind electricity potentials under given climate conditions were evaluated. • Technical, economical, and environmental issues of different systems were discussed. • The optimum configuration of components was obtained. • The impacts of governmental incentives on economic viability of systems were examined. - Abstract: This paper aims to study the techno-economical parameters of a hybrid diesel/PV/wind/battery power generation system for a non-residential large electricity consumer in the south of Iran. As a case study, the feasibility of running a hybrid system to meet a non-residential community’s load demand of 9911 kWh daily average and 725 kW peak load demand was investigated. HOMER Pro software was used to model the operation of the system and to identify the appropriate configuration of it based on comparative technical, economical, and environmental analysis. Both stand alone and grid connected systems were modeled. The impacts of annual load growth and governmental energy policies such as providing low interest loan to renewable energy projects, carbon tax, and modifying the grid electricity price on viability of the system were discussed. Results show that for off-grid systems the cost of electricity (COE) and the renewable fraction of 9.3–12.6 ₵/kWh and 0–43.9%, respectively, are achieved with photovoltaic (PV) panel, wind turbine, and battery sizes of 0–1000 kW, 0–600 kW, and 1300 kWh, respectively. For on grid systems without battery storage the range of COE and renewable fraction are 5.7–8.4 ₵/kWh and 0–53%, respectively, for the same sizes of PV panel and wind turbine.

  10. Model checking and evaluating QoS of batteries in MPSoC dataflow applications via hybrid automata (extended version)

    NARCIS (Netherlands)

    Ahmad, W.; Jongerden, M.R.; Stoelinga, Mariëlle Ida Antoinette; van de Pol, Jan Cornelis

    2016-01-01

    System lifetime is always a major design impediment for battery-powered mobile embedded systems such as, cell phones and satellites. The increasing gap between energy demand of portable devices and their battery capacities is further limiting durability of mobile devices. For example, energy-hungry

  11. Model checking and evaluating QoS of batteries in MPSoC dataflow applications via hybrid automata

    NARCIS (Netherlands)

    Ahmad, W.; Jongerden, M.R.; Stoelinga, Mariëlle Ida Antoinette; van de Pol, Jan Cornelis

    2016-01-01

    System lifetime is a major design constraint for battery-powered mobile embedded systems. The increasing gap between the energy demand of portable devices and their battery capacities is further limiting durability of mobile devices. Thus, the guarantees over Quality of Service (QoS) of

  12. Constant DC-Capacitor Voltage-Control-Based Harmonics Compensation Strategy of Smart Charger for Electric Vehicles in Single-Phase Three-Wire Distribution Feeders

    Directory of Open Access Journals (Sweden)

    Fuka Ikeda

    2017-06-01

    Full Text Available This paper discusses harmonic current compensation of the constant DC-capacitor voltage-control (CDCVC-based strategy of smart chargers for electric vehicles (EVs in single-phase three-wire distribution feeders (SPTWDFs under nonlinear load conditions. The basic principle of the CDCVC-based harmonics compensation strategy under nonlinear load conditions is discussed in detail. The instantaneous power flowing into the three-leg pulse-width modulated (PWM rectifier, which performs as a smart charger, shows that the CDCVC-based strategy achieves balanced and sinusoidal source currents with a unity power factor. The CDCVC-based harmonics compensation strategy does not require any calculation blocks of fundamental reactive, unbalanced active, and harmonic currents. Thus, the authors propose a simplified algorithm to compensate for reactive, unbalanced active, and harmonic currents. A digital computer simulation is implemented to confirm the validity and high practicability of the CDCVC-based harmonics compensation strategy using PSIM software. Simulation results demonstrate that balanced and sinusoidal source currents with a unity power factor in SPTWDFs are obtained on the secondary side of the pole-mounted distribution transformer (PMDT during both the battery-charging and discharging operations in EVs, compensating for the reactive, unbalanced active, and harmonic currents.

  13. Progress in aqueous rechargeable batteries

    OpenAIRE

    Jilei Liu; Chaohe Xu; Zhen Chen; Shibing Ni; Ze Xiang Shen

    2018-01-01

    Over the past decades, a series of aqueous rechargeable batteries (ARBs) were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+) batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. B...

  14. A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid

    International Nuclear Information System (INIS)

    Pavković, Danijel; Lobrović, Mihael; Hrgetić, Mario; Komljenović, Ante

    2016-01-01

    Highlights: • Battery/ultracapacitor storage is considered for a direct-current microgrid. • Microgrid voltage cascade control system with load compensator is designed. • Current references are allocated so that ultracapacitor takes on transient loads. • Adaptive Kalman filter-based estimator is used for indirect load compensation. • Control strategy has been verified on a downscaled hardware-in-the-loop setup. - Abstract: A control system design based on an actively-controlled battery/ultracapacitor hybrid energy storage system suitable for direct current microgrid energy management purposes is presented in this paper. The proposed cascade control system arrangement is based on the superimposed proportional–integral voltage controller designed according to Damping Optimum criterion and a zero-pole canceling feed-forward load compensator aimed at voltage excursion suppression under variable load conditions. The superimposed controller commands the inner battery and ultracapacitor current control loops through a dynamic current reference distribution scheme, wherein the ultracapacitor takes on the highly-dynamic (transient) current demands, and the battery covers for steady-state loads. In order to avoid deep discharges of the ultracapacitor module, it is equipped with an auxiliary state-of-charge controller. Finally, for those applications where load is not measured, an adaptive Kalman filter-based load compensator is proposed and tested. The presented control strategy has been implemented on the low-cost industrial controller unit, and its effectiveness has been verified by means of simulations and experiments for the cases of abrupt load changes and quasi-stochastic load profiles using a downscaled battery/ultracapacitor hardware-in-the-loop experimental setup.

  15. Use of rechargeable nickel-cadmium batteries for portable radiation monitors

    International Nuclear Information System (INIS)

    Zaman, M.Q.

    1987-08-01

    An effort was taken to assess the chargers available at the local market and the use of rechargeable batteries in the portable radiation monitors. This report is a very brief description of the study and observations. In order to have fair and justified conclusions regarding the use of Ni-Cd battery in portable instruments, many criterions have to be considered which takes very long observations under some specified conditions. This report is a combination of previous experimental results by scientists, data supplied by the manufacturers and short time observations in Seibersdorf Laboratory. The report has three parts (a) comparison of the ordinary battery with the rechargeables (b) selection of a suitable charger and (c) probability of application of the Ni-Cd battery in portable dosimeters

  16. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    Science.gov (United States)

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  17. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    Science.gov (United States)

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the T g and T m are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO 4 /15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g -1 @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g -1 @0.2 C at 30 °C after 150 cycles).

  18. Unipolar charging of nanoparticles by the Surface-discharge Microplasma Aerosol Charger (SMAC)

    International Nuclear Information System (INIS)

    Kwon, Soon-Bark; Sakurai, Hiromu; Seto, Takafumi

    2007-01-01

    In this paper, we report the development of a novel unipolar charger for nanoparticles, a system that achieves low particle loss and high charging efficiency without the use of sheath air. The efficient unipolar charging of the system is realized mainly by the surface-discharge microplasma unit, a device previously applied with good success to the neutralization or charging of submicron particles [Kwon et al., 2005, Aerosol Sci. Technol., 39, 987-1001; 2006, J. Aerosol Sci., 37, 483-499]. The unipolar charger generates unipolar ions using the surface discharge of a single electrode with a DC pulse supply. This marks an advance from our previous method of generating bipolar ions with the use of dual electrodes in earlier studies. We evaluated the efficiency of the penetration (or loss) and charging of nanoparticles in the size range of 3-15 nm, then compared the charging efficiencies measured with those predicted by diffusion charging theory. More than 90% of inlet nanoparticles penetrated the charger (less than 10% of the particle were lost) without the use of sheath air. Other chargers have only realized this high penetration efficiency by relying on sheath air flow. Moreover, the measured charging efficiencies agreed well with those predicted by diffusion charging theory and were somewhat higher and more size-dependent than the charging efficiencies of other nanoparticle chargers

  19. Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran

    International Nuclear Information System (INIS)

    Tahani, Mojtaba; Babayan, Narek; Pouyaei, Arman

    2015-01-01

    Highlights: • The utilization of an optimized Hybrid PV/Wind/Battery system has been studied. • The proposed system has been studied for a building in Tehran. • A novel hybrid optimization method, namely FPA/SA has been proposed. • The impact of inclined part of the roof on wind velocity is studied by CFD. • LPSP and Payback time were considered as objective functions in this study. - Abstract: Renewable energy hybrid systems are a promising technology toward sustainable and clean development. Due to stochastic behavior of renewable energy sources, optimization of their convertors has great importance for increasing system’s reliability and efficiency and also in order to decrease the costs. In this research study, it was aimed to study the utilization of an optimized hybrid PV/Wind/Battery system for a three story building, with an inclined surface on the edge of its roof, located in Tehran, capital of Iran. For this purpose, a new evolutionary based optimization technique, namely hybrid FPA/SA algorithm was developed, in order to maximize system’s reliability and minimize system’s costs. The new algorithm combines the approaches which are utilized in Flower Pollination Algorithm (FPA) and Simulated Annealing (SA) algorithm. The developed algorithm was validated using popular benchmark functions. Moreover the influence of PV panels tilt angle (which is equal to the slope of inclined part of the roof) is studied on the wind speed by using computational fluid dynamics (CFD) simulation. The outputs of CFD simulations are utilized as inputs for modeling wind turbine performance. The Loss of Power Supply Probability (LPSP) and Payback time are considered as objective functions, and PV panel tilt angle, number of PV panels and number of batteries are selected as decision variables. The results showed that if the tilt angle for PV panels is set equal to 30° and the number of PV panels is selected equal to 11 the fastest payback time which is 12 years and

  20. Surface decoration with MnO{sub 2} nanoplatelets on graphene/TiO{sub 2} (B) hybrids for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinlu, E-mail: lixinlu@cqu.edu.cn; Zhang, Yonglai; Zhong, Qineng; Li, Tongtao; Li, Hongyi; Huang, Jiamu

    2014-09-15

    Graphical abstract: - Highlights: • The surface of graphene/TiO{sub 2} (B) hybrids is decorated by ultrathin MnO{sub 2} nanoplatelets. • MnO{sub 2}@graphene/TiO{sub 2} (B) composites exhibit high specific surface area of 283.9 m{sup 2} g{sup −1}. • The reversible capacity of graphene/TiO{sub 2} (B) hybrids is greatly improved by surface decoration with low content of MnO{sub 2}. - Abstract: Hierarchically ultrathin MnO{sub 2} nanoplatelets are decorated on the surface of graphene-based TiO{sub 2} (B) hybrids by a facile water-bath reaction to fabricate MnO{sub 2}@graphene/TiO{sub 2} (B) composites. The multi-component composites show high specific surface area of 283.9 m{sup 2} g{sup −1}, facilitating the electrochemical reactions with solvented lithium ions in the enlarged interface area. The reversible capacity of the composites remains 243 mA h g{sup −1} after 150 cycles, with capacity retention of 83.5%. In comparison with graphene/TiO{sub 2} (B) hybrids, the MnO{sub 2}@graphene/TiO{sub 2} (B) composites perform better rate capability, suggesting that surface decoration with MnO{sub 2} nanoplatelets can be a promising strategy to enhance the electrochemical performance of anode materials for lithium ion batteries.

  1. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.

    Science.gov (United States)

    Ha, Sung Hoon; Lee, Yun Jung

    2015-01-26

    Core-shell carbon-coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high-power lithium-ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon-coated LiFePO4 -rGO (LFP/C-rGO) hybrids were ascribed to three factors: 1) In-situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4 , 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C-rGO hybrids with LFP/C-rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li(+) ion and electron transport for high power applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  4. Development, modeling and research of the system of automatic control and equalization of the charge state of a battery pack of a hybrid engine of a vehicle

    Science.gov (United States)

    Bakhmutov, S.; Sizov, Y.; Kim, M.

    2018-02-01

    The article is devoted to the topical problem of developing effective means of monitoring and leveling the charge state of batteries in a power unit of hybrid and electric cars. A system for automatic control and equalization of the charge state of a battery pack of a combined power plant, the originality of which is protected by the Russian Federation patent, is developed and described. A distinctive feature of the device is the possibility of using it both in conditions of charging (power consumption) and in operating conditions (energy recovery). The device is characterized by high reliability, simplicity of the circuit-making solution, low self-consumption and low cost. To test the efficiency of the proposed device, its computer simulation and experimental research were carried out. As a result of multi factorial experiment, a regression equation has been obtained which makes it possible to judge the high efficiency of detecting the degree of inhomogeneity of controlled batteries with respect to the parameters of an equivalent replacement circuit: voltage, internal resistance and capacitance in the magnitude of the obtained coefficients of influence of each of these factors, and also take into account the effects of their pair interactions.

  5. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte

    Science.gov (United States)

    Wu, Xianwen; Li, Yehua; Xiang, Yanhong; Liu, Zhixiong; He, Zeqiang; Wu, Xianming; Li, Youji; Xiong, Lizhi; Li, Chuanchang; Chen, Jian

    2016-12-01

    There is a broad application prospect for smart grid about aqueous rechargeable sodium-ion battery. In order to improve its electrochemical performance, a hybrid cationic aqueous-based rechargeable battery system based on the nanostructural Na0.44MnO2 and metallic zinc foil as the positive and negative electrodes respectively is built up. Nano rod-like Na0.44MnO2 is synthesized by sol-gel method followed by calcination at 850 °C for 9 h, and various characterization techniques including the X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to investigate the structure and morphology of the as-prepared material. The cyclic voltammetry, galvanostatic charge-discharge and self-discharge measurements are performed at the same time. The results show that the battery delivers a very high initial discharge capacity of 186.2 mAh g-1 at 0.2 C-rate in the range of 0.5-2.0 V, and it exhibits a discharge capacity of 113.3 mAh g-1 at high current density of 4 C-rate, indicative of excellent rate capability.

  6. Flexible Lithium-Ion Fiber Battery by the Regular Stacking of Two-Dimensional Titanium Oxide Nanosheets Hybridized with Reduced Graphene Oxide.

    Science.gov (United States)

    Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia

    2017-06-14

    Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.

  7. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Weiqiang Dong

    2016-09-01

    Full Text Available A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV/wind turbine (WT/battery (B/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP have been addressed for sizing HS-BH from a more comprehensive perspective, considering the basic demand of load, the profit from hydrogen, which is produced by HS-BH, and an effective energy storage strategy. An improved ant colony optimization (ACO algorithm has been presented to solve the sizing problem of HS-BH. Finally, a simulation experiment has been done to demonstrate the developed results, in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang, China.

  8. Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries

    Science.gov (United States)

    Dong, Xiaowan; Zhang, Yadi; Ding, Bing; Hao, Xiaodong; Dou, Hui; Zhang, Xiaogang

    2018-06-01

    Multifarious layered materials have received extensive concern in the field of energy storage due to their distinctive two-dimensional (2D) structure. However, the natural tendency to be re-superimposed and the inherent disadvantages of a single 2D material significantly limit their performance. In this work, the delaminated Ti3C2Tx (d-Ti3C2Tx)/cobalt-aluminum layered double hydroxide (Ti3C2Tx/CoAl-LDH) composites are prepared by layer-by-layer self-assembly driven by electrostatic interaction. The alternate Ti3C2Tx and CoAl-LDH layers prevent each other from restacking and the obtained Ti3C2Tx/CoAl-LDH heterostructure combine the advantages of high electron conductivity of Ti3C2Tx and high electrochemical activity of CoAl-LDH, thus effectively improving the electrochemical reactivity of electrode materials and accelerating the kinetics of Faraday reaction. As a consequence, as a cathode for alkaline hybrid battery, the Ti3C2Tx/CoAl-LDH electrode exhibits a high specific capacity of 106 mAh g-1 at a current density of 0.5 A g-1 and excellent rate capability (78% at 10 A g-1), with an excellent cycling stability of 90% retention after 5000 cycles at 4 A g-1. This work provides an alternative route to design advanced 2D electrode materials, thus exploiting their full potentials for alkaline hybrid batteries.

  9. Low wireless power transfer using inductive coupling for mobile phone charger

    International Nuclear Information System (INIS)

    Fareq, M; Fitra, M; Irwanto, M; Hasan, Syafruddin; Arinal, M

    2014-01-01

    A wireless power transfer (WPT) using inductive coupling for mobile phone charger is studied. The project is offer to study and fabricate WPT using inductive coupling for mobile phone charger that will give more information about distance is effect for WPT performance and WPT is not much influenced by the presence of hands, books and types of plastics. The components used to build wireless power transfer can be divided into 3 parts components, the transceiver for power transmission, the inductive coils in this case as the antenna, receiver and the rectifier which act convert AC to DC. Experiments have been conducted and the wireless power transfer using inductive coupling is suitable to be implemented for mobile phone charger.

  10. Nanoparticle electrostatic loss within corona needle charger during particle-charging process

    International Nuclear Information System (INIS)

    Huang Chenghsiung; Alonso, Manuel

    2011-01-01

    A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.

  11. QMX3.3 module-based on-board vehicle charger

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S. [Delta-Q Technologies, Burnaby, BC (Canada)

    2010-07-01

    Delta-Q is a tier one supplier to industrial electric vehicle manufacturers offering in-house product design and development as well as sales, marketing and customer service. This presentation discussed on-board chargers for use in electric vehicles. Electric vehicle chargers are needed due to their lower cost, lack of time for generational change, and long lifetime and safety requirements. The presentation discussed universal on-board charger requirements as well as final design requirements. Other topics that were addressed included common control; QMX prototypes; steps from prototype to production; and Delta-Q and tier one partnering. It was concluded that there is a complicated array of diverse requirements with multiple stakeholders and standards. figs.

  12. A Novel Type of Battery-Supercapacitor Hybrid Device with Highly Switchable Dual Performances Based on a Carbon Skeleton/Mg2Ni Free-Standing Hydrogen Storage Electrode.

    Science.gov (United States)

    Li, Na; Du, Yi; Feng, Qing-Ping; Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2017-12-27

    The sharp proliferation of high power electronics and electrical vehicles has promoted growing demands for power sources with both high energy and power densities. Under these circumstances, battery-supercapacitor hybrid devices are attracting considerable attention as they combine the advantages of both batteries and supercapacitors. Here, a novel type of hybrid device based on a carbon skeleton/Mg 2 Ni free-standing electrode without the traditional nickel foam current collector is reported, which has been designed and fabricated through a dispersing-freeze-drying method by employing reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) as a hybrid skeleton. As a result, the Mg 2 Ni alloy is able to deliver a high discharge capacity of 644 mAh g -1 and, more importantly, a high cycling stability with a retention of over 78% after 50 charge/discharge cycles have been achieved, which exceeds almost all the results ever reported on the Mg 2 Ni alloy. Simultaneously, the electrode could also exhibit excellent supercapacitor performances including high specific capacities (296 F g -1 ) and outstanding cycling stability (100% retention after 100 cycles). Moreover, the hybrid device can switch between battery and supercapacitor modes immediately as needed during application. These features make the C skeleton/alloy electrode a highly promising candidate for battery-supercapacitor hybrid devices with high power/energy density and favorable cycling stability.

  13. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector.

    Science.gov (United States)

    Zhao, Yu; Hong, Misun; Bonnet Mercier, Nadège; Yu, Guihua; Choi, Hee Cheul; Byon, Hye Ryung

    2014-02-12

    A lithium-iodine (Li-I2) cell using the triiodide/iodide (I3(-)/I(-)) redox couple in an aqueous cathode has superior gravimetric and volumetric energy densities (∼ 330 W h kg(-1) and ∼ 650 W h L(-1), respectively, from saturated I2 in an aqueous cathode) to the reported aqueous Li-ion batteries and aqueous cathode-type batteries, which provides an opportunity to construct cost-effective and high-performance energy storage. To apply this I3(-)/I(-) aqueous cathode for a portable and compact 3.5 V battery, unlike for grid-scale storage as general target of redox flow batteries, we use a three-dimensional and millimeter thick carbon nanotube current collector for the I3(-)/I(-) redox reaction, which can shorten the diffusion length of the redox couple and provide rapid electron transport. These endeavors allow the Li-I2 battery to enlarge its specific capacity, cycling retention, and maintain a stable potential, thereby demonstrating a promising candidate for an environmentally benign and reusable portable battery.

  14. Overview of the requirements and implementations of bidirectional isolated AC-DC converters for automotive battery charging applications

    NARCIS (Netherlands)

    Sfakianakis, G.; Everts, J.; Lomonova, E.A.

    2015-01-01

    This paper is divided into three main parts. In the first part, i.e. Section II, a general outline of the system level aspects regarding battery chargers (power converters) for plug-in electric vehicles (PEVs) is given. Thereby, the different charging modes of the converters, the corresponding power

  15. Gestion de l'énergie d'un système hybride pile à combustible/batterie basée sur la commande optimale

    Directory of Open Access Journals (Sweden)

    M. N. SID

    2015-03-01

    Full Text Available Ce papier traite de l'optimisation de gestion de l'énergie électrique dans un véhicule hybride (pile à combustible/batterie, afin de minimiser autant que possible la consommation de l'hydrogène avec le maintien de l'état de charge de la batterie. Premièrement, on présente les sources d'énergies utilisées dans cette étude, la modélisation du système hybride, le choix de type des convertisseurs d'électronique de puissance utilisés et le dimensionnement de ces éléments.Deuxièmement on traite le problème d'optimisation sous contraintes basée sur le principe du minimum de Pontriaguine en introduisant la fonction Hamiltonienne de la commande optimale.Cette stratégie a été évaluée dans un environnement de simulation sous Matlab/Simulink utilisant quatre cycles de conduite standards.Une étude comparative en terme de consommation d'hydrogène a été faite avec deux autres stratégies la première dite thermostat qui est une stratégie très simple basée sur les contraintes imposées par les sources, la seconde approche consiste à utiliser un filtre passe-bas à la sortie de la puissance demandée afin de respecter les contraintes en dynamique sur la source principale. La stratégie traitée présente une bonne amélioration de la consommation d'hydrogène en adoptant une bonne stratégie de gestion de l'énergie électrique dans le système hybride.

  16. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    Science.gov (United States)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  17. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  18. 77 FR 18477 - Energy Conservation Program: Energy Conservation Standards for Battery Chargers and External...

    Science.gov (United States)

    2012-03-27

    .... Summary of the Proposed Rule A. Benefits and Costs to Consumers B. Impact on Manufacturers C. National.... Discount Rates 12. Benefits From Effects of Standards on Energy Prices H. Consumer Subgroup Analysis I... Impact Analysis a. Significance of Energy Savings b. Net Present Value of Consumer Costs and Benefits c...

  19. 75 FR 16957 - Energy Conservation Program: Test Procedures for Battery Chargers and External Power Supplies

    Science.gov (United States)

    2010-04-02

    ... power. For example, a household wall socket supplies alternating current (AC), which varies in amplitude... cellular telephones and portable media players that frequently receive power and data from a personal...

  20. 75 FR 56021 - Energy Conservation Standards for Battery Chargers and External Power Supplies: Public Meeting...

    Science.gov (United States)

    2010-09-15

    ... energy savings (NES) and the net present value (NPV) of total consumer costs and savings expected to... and puts the LCC in present-value terms. The PBP is the number of years needed to recover the increase...) national impact analysis (NIA). The preliminary TSD presents the methodology and results of each of these...

  1. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  2. Evaluating the Degradation Mechanism and State of Health of LiFePO4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-01-01

    Full Text Available Accurate determination of the performance and precise prediction of the state of health (SOH of lithium-ion batteries are necessary to ensure reliability and efficiency in real-world application. However, most SOH offline studies were based on dynamic stress tests, which only reflect the universal rule of degradation, but are not necessarily applicable for real-world applications. This paper presents an experimental evaluation of two different operations of real-world plug-in hybrid electric vehicles with LiFePO4 batteries as energy-storage systems. First, the LiFePO4 batteries were subjected to a set of comparative experimental tests that consider the effects of charge depleting (CD and charge sustaining (CS operations. Then, different voltage analysis along with the close-to-equilibrium open circle voltage was utilized to evaluate the performance of the batteries in life cycles. Finally, a qualitative relationship between the external factors (the percentage of time of CD/CS operations during the entire driving range and the degradation mechanism was built with the help of the proposed methods. Results indicated that the external factors affect the degree of the batteries degradation, but not up to the point when the capacity fading stage occurs. This relationship contributes to the foundation for plug-in hybrid electric vehicles’ (PHEVs’ energy management strategy or battery management system control strategy.

  3. Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion battery by the hybrid of nitrogen and sulfur co-doped graphene quantum dots

    International Nuclear Information System (INIS)

    Ruiyi, Li; Yuanyuan, Jiang; Xiaoyan, Zhou; Zaijun, Li; Zhiguo, Gu; Guangli, Wang; Junkang, Liu

    2015-01-01

    Graphical abstract: The study reported a facile synthesis of Li4Ti5O12/nitrogen and sulfur co-doped graphene quantum dots (LTO/N,S-GQDs). The unique architecture and the introduction of N,S-GQDs create both ultrafast electron transfer and electrolyte transport. The as-prepared LTO/N,S-GQDs anode provides prominent advantage of specific capacity, high-rate performance and cycle stability. - Highlights: • We reported a new lithium titanate/nitrogen and sulfur co-doped graphene quantum dots hybrid • The synthesis creates a crystalline interconnected porous framework composed of nanoscale LTO • The unique architecture achieves to maximize the rate performance and enhance the power density • Introduction of N,S-GQDs greatly enhances the electron transfer and the storage lithium capacity • The hybrid anode provides an excellent electrochemical performance for lithium-ion batteries - ABSTRACT: The paper reported a facile synthesis of lithium titanate/nitrogen and sulfur co-doped graphene quantum dots(LTO/N,S-GQDs). Tetrabutyl titanate was dissolved in tertbutanol and heated to refluxing state by microwave irradiation. Then, lithium acetate was added into the mixed solution to produce LTO precursor. The precursor was hybridized with N,S-GQDs in ethanol. Followed by drying and thermal annealing at 500 °C in Ar/H_2 to obtain LTO/N,S-GQDs. The synthesis creates fully crystalline interconnected porous framework composed of nanoscale LTO crystals. The unique architecture achieves to maximize the high-rate performance and enhance the power density. More importantly, the introduction of N,S-GQDs don't almost influence on the electrolyte transport, but greatly improve the electron transfer and the storage lithium capacity. The LTO/N,S-GQDs anode exhibits remarkably enhanced electrochemical performance for lithium ion battery. The specific discharge capacity is 254.2 mAh g"−"1 at 0.1C and 126.5 mAh g"−"1 at 10C. The capacity remains 96.9% at least after 2000 cycles

  4. Rapid prototyping of solar-powered, battery-operated, atmospheric-pressure, sugar-cube size microplasma on hybrid, 3D chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer

    Science.gov (United States)

    Zhang, X.; Karanassios, V.

    2012-06-01

    A solar-powered, battery-operated, atmospheric-pressure, self-igniting microplasma the size of a sugar-cube developed on a hybrid, 3d-chip is described. Rapid prototyping of the 3d-chip; some fundamental aspects and a brief characterization of its background spectral emission using a portable, fiber-optic spectrometer are discussed.

  5. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    Science.gov (United States)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  6. The coordination of research and innovation activities relative to an emergent technology: the case of batteries for electric and hybrid vehicles; La coordination des activites de recherche et d'innovation dans les phases d'emergence: le cas des batteries pour vehicules electriques et hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Larrue, Ph.

    2000-05-23

    In this thesis, we try to provide elements of a non-deterministic view of the coordination of research activities in the phase of emergence. Firstly, we try to identify the variables that determinate the strength and the characteristics of the imperative of coordination in this very preliminary period of an innovation process. Secondly, we try to evaluate the institutional arrangements that can effectively sustain the coordination of the activities of the various interdependent actors more or less involved in the innovation process. The basic idea of the thesis is that technological innovations do not originate as isolated according to a hypothetical underlying 'nature of the technology', especially when they are controversial and subject to great uncertainties as is the case with regard to batteries for Electric and hybrid Vehicles (EVs). Innovations appear to be generated by means of the interactions of a number of organizations belonging to different 'spheres' (different industries, scientific disciplines, public institutions, etc.). In order to validate a new area of opportunity which is still very uncertain at this preliminary stage, the competences and interests of these different organizations must be coordinated. Because of the complex mix of economic and technological barriers faced by the actors taking part in this innovation process, the area of batteries for electric and hybrid vehicles is the 'perfect laboratory' to investigate the institutional arrangements that can sustain the coordination of research and innovation activities relating to an emerging technology. The empirical and theoretical investigations are mainly focused on pre-competitive research consortia such as the United-States Advanced Battery Consortium (USABC). This case study is conducted through in-depth interviews with key-actors of the area of batteries and electric vehicles. We also use the results of an on-line experts opinions survey we performed

  7. The coordination of research and innovation activities relative to an emergent technology: the case of batteries for electric and hybrid vehicles; La coordination des activites de recherche et d'innovation dans les phases d'emergence: le cas des batteries pour vehicules electriques et hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Larrue, Ph

    2000-05-23

    In this thesis, we try to provide elements of a non-deterministic view of the coordination of research activities in the phase of emergence. Firstly, we try to identify the variables that determinate the strength and the characteristics of the imperative of coordination in this very preliminary period of an innovation process. Secondly, we try to evaluate the institutional arrangements that can effectively sustain the coordination of the activities of the various interdependent actors more or less involved in the innovation process. The basic idea of the thesis is that technological innovations do not originate as isolated according to a hypothetical underlying 'nature of the technology', especially when they are controversial and subject to great uncertainties as is the case with regard to batteries for Electric and hybrid Vehicles (EVs). Innovations appear to be generated by means of the interactions of a number of organizations belonging to different 'spheres' (different industries, scientific disciplines, public institutions, etc.). In order to validate a new area of opportunity which is still very uncertain at this preliminary stage, the competences and interests of these different organizations must be coordinated. Because of the complex mix of economic and technological barriers faced by the actors taking part in this innovation process, the area of batteries for electric and hybrid vehicles is the 'perfect laboratory' to investigate the institutional arrangements that can sustain the coordination of research and innovation activities relating to an emerging technology. The empirical and theoretical investigations are mainly focused on pre-competitive research consortia such as the United-States Advanced Battery Consortium (USABC). This case study is conducted through in-depth interviews with key-actors of the area of batteries and electric vehicles. We also use the results of an on-line experts opinions survey we performed. (author)

  8. State of health detection for Lithium ion batteries in photovoltaic system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2013-01-01

    Highlights: ► DC resistances of batteries. ► Fuzzy logic inference. ► SOH detection for battery. - Abstract: In many photovoltaic systems, rechargeable batteries are required to even out irregularities in solar irradiation. However, the health conditions of the batteries are crucial for the reliability of the overall system. In this paper, the equivalent DC resistances of Lithium ion battery cells of various health conditions during charging under different temperatures have been collected and the relationships between equivalent DC resistance, health condition and working temperature have been identified. The equivalent DC resistance can easily be obtained during the charging period of a battery by switching off the charging current periodically for a very short duration of time. A simple and effective battery charger with state of health (SOH) detection for Lithium ion battery cell has been developed based on the identified equivalent DC resistance. Experimental results are included to demonstrate the effectiveness of the proposed SOH determination scheme.

  9. Simulation and Performance Analysis of Lithium Battery Bank Mounted on the Hybrid Power System for Mobile Public Health Center

    Science.gov (United States)

    Busono, Pratondo; Kartini, Evvy

    2013-07-01

    Mobile medical clinic has been proposed to serve homeless people, people in the disaster area or in the remote area where no health service exist. At that site, a number of essential services such as primary health care, general health screening, medical treatment and emergency/rescue operations are required. Such services usually requires on board electrical equipments such as refrigerators, komputer, power tools and medical equipments. To supply such electrical equipments, it needs extra auxiliary power sources, in addition of standard automotive power supply. The auxiliary power source specifically design to supply non automotive load which may have similar configuration, but usually uses high power alternator rated and larger deep cycle on board battery bank. This study covers the modeling and dynamic simulation of auxiliary power source/battery to supply the medical equipment and other electrical equipments on board. It consists a variable speed diesel generator set, photovoltaic (PV) generator mounted on the roof of the car, a rechargable battery bank. As an initial step in the system design, a simulation study was performed. The simulation is conducted in the system level. Simulation results shows that dynamical behaviour by means of current density, voltage and power plot over a chosen time range, and functional behaviour such as charging and discharging characteristic of the battery bank can be obtained.

  10. Preparation of PPy-Coated MnO2 Hybrid Micromaterials and Their Improved Cyclic Performance as Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Feng, Lili; Zhang, Yinyin; Wang, Rui; Zhang, Yanli; Bai, Wei; Ji, Siping; Xuan, Zhewen; Yang, Jianhua; Zheng, Ziguang; Guan, Hongjin

    2017-09-02

    MnO 2 @PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO 2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO 2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the formation of PPy shell. Galvanostatic cell cycling and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical performance as anode for lithium-ion batteries. The results show that after formation of MnO 2 @PPy core-shell micromaterials, the cyclic performance as anode for lithium-ion batteries is improved. Fifty microliters of PPy-coated caddice-clew-like MnO 2 has the best cyclic performances as has 620 mAh g -1 discharge specific capacities after 300 cycles. As a comparison, the discharge specific capacity of bare MnO 2 materials falls to below 200 mAh g -1 after 10 cycles. The improved lithium-storage cyclic stability of the MnO 2 @PPy samples attributes to the core-shell hybrid structure which can buffer the structural expansion and contraction of MnO 2 caused by the repeated embedding and disengagement of Li ions and can prevent the pulverization of MnO 2 . This experiment provides an effective way to mitigate the problem of capacity fading of the transition metal oxide materials as anode materials for (lithium-ion batteries) LIBs.

  11. Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system

    Science.gov (United States)

    Mahendran, Venmathi; Ramabadran, Ramaprabha

    2016-11-01

    Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.

  12. Anisotropic Mg Electrodeposition and Alloying with Ag-based Anodes from Non-Coordinating Mixed-Metal Borohydride Electrolytes for Mg Hybrid Batteries

    International Nuclear Information System (INIS)

    Wetzel, David J.; Malone, Marvin A.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2017-01-01

    A highly anisotropic electrodeposition was observed using the hybrid battery electrolyte Mg(BH 4 ) 2 with LiBH 4 in diglyme. At low overpotentials high aspect ratio platelet morphologies are observed with a strong fiber texture composed of a {10-10} and a {11-20} component, the first evidence of behavior of this kind in magnesium battery electrolytes. At high overpotentials the deposit aspect ratio is indistinguishable but the texture is shown to be primarily composed of a {11-20} fiber texture. The kinetic parameters relative to the relevant crystallographic faces are extracted from electron microscopy images and compared with the observed bulk rate extracted from the electrochemical data. The use of polycrystalline Ag foil substrates with little preferred orientation at the surface allowed highly polycrystalline nucleation at lower overpotentials than that of platinum, likely due to Ag alloying with Mg. Characterization using focused ion beam (FIB) cross-sections with Auger Electron Spectroscopy (AES) elemental analysis confirm that the deposits are primarily Mg although Mg‐Ag alloys of various compositions were observed. It is proposed that the orientation at slow rates of growth is due to the underlying kinetics of adatom diffusion on Mg and that higher rates diminish the phenomenon due to decreased time for adatom diffusion and instead are governed by the rates of adatom formation or more specifically the adatom vacancy formation on the different low-index planes of Mg.

  13. Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors.

    Science.gov (United States)

    Zhang, Fan; Tang, Yongbing; Liu, Hui; Ji, Hongyi; Jiang, Chunlei; Zhang, Jing; Zhang, Xiaolong; Lee, Chun-Sing

    2016-02-01

    Hybrid supercapacitors (HSCs) with lithium-ion battery-type anodes and electric double layer capacitor-type cathodes are attracting extensive attention and under wide investigation because of their combined merits of both high power and energy density. However, the performance of most HSCs is limited by low kinetics of the battery-type anode which cannot match the fast kinetics of the capacitor-type cathode. In this study, we have synthesized a three-dimensional (3D) porous composite with uniformly incorporated MoS2 flocculent nanostructure onto 3D graphene via a facile solution-processed method as an anode for high-performance HSCs. This composite shows significantly enhanced electrochemical performance due to the synergistic effects of the conductive graphene sheets and the interconnected porous structure, which exhibits a high rate capability of 688 mAh/g even at a high current density of 8 A/g and a stable cycling performance (997 mAh/g after 700 cycles at 2 A/g). Furthermore, by using this composite as the anode for HSCs, the HSC shows a high energy density of 156 Wh/kg at 197 W/kg, which also remains at 97 Wh/kg even at a high power density of 8314 W/kg with a stable cycling life, among the best results of the reported HSCs thus far.

  14. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  15. Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

  16. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher

    2011-01-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices. © 2011 The Royal Society of Chemistry.

  17. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    Science.gov (United States)

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  18. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Doucette, Reed T.; McCulloch, Malcolm D. [Department of Engineering Science, University of Oxford, Thom Building, Parks Road, Oxford, OX1 3PJ (United Kingdom)

    2011-02-01

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors. (author)

  19. Real-Time Implementation of an Extended Kalman Filter and a PI Observer for State Estimation of Rechargeable Li-Ion Batteries in Hybrid Electric Vehicle Applications—A Case Study

    Directory of Open Access Journals (Sweden)

    Roxana-Elena Tudoroiu

    2018-04-01

    Full Text Available The Li-Ion battery state-of-charge estimation is an essential task in a continuous dynamic automotive industry for large-scale and successful marketing of hybrid electric vehicles. Also, the state-of-charge of any rechargeable battery, regardless of its chemistry, is an essential condition parameter for battery management systems of hybrid electric vehicles. In this study, we share from our accumulated experience in the control system applications field some preliminary results, especially in modeling, control and state estimation techniques. We investigate the design and effectiveness of two state-of-charge estimators, namely an extended Kalman filter and a proportional integral observer, implemented in a real-time MATLAB environment for a particular Li-Ion battery. Definitely, the aim of this work is to find the most suitable estimator in terms of estimation accuracy and robustness to changes in initial conditions (i.e., the initial guess value of battery state-of-charge and changes in process and measurement noise levels. By a rigorous performance analysis of MATLAB simulation results, the potential estimator choice is revealed. The performance comparison can be done visually on similar graphs if the information gathered provides a good insight, otherwise, it can be done statistically based on the calculus of statistic errors, in terms of root mean square error, mean absolute error and mean square error.

  20. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  1. Critical Resources for Emerging Battery Technologies for Hybrid and Electric Vehicles. Proceedings of the International Conference “ISWA World Solid Waste Congress”, 17th - 19th September 2012, Florence, Italy

    DEFF Research Database (Denmark)

    Habib, Komal; Nyander, Nils Christian; Wenzel, Henrik

    2012-01-01

    such as photovoltaics, wind turbines, electric and hybrid cars are, however, in turn dependent on other non- renewable resources such as metals which may become scarce in the future. The concept of ‘critical resources’ is in this context is an expression of how limited or constrained the supply of a resource......-manganese spinel Titanate (LMO – T)) for electric cars in a proposed scenario of 2050, in which a scale of 100 % global conversion of passenger cars to battery cars is modeled. Potential resource supply constraints for these emerging battery technologies in electric cars have been analyzed and assessed...

  2. NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery

    Science.gov (United States)

    Battery Technology News Release: NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery increasingly demanding needs of any battery application. These lithium-ion batteries feature a hybrid solid further customized lithium-ion battery materials for high performance devices by utilizing our patented

  3. Hybrid of Co(3)Sn(2)@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode.

    Science.gov (United States)

    Mahmood, Nasir; Zhang, Chenzhen; Liu, Fei; Zhu, Jinghan; Hou, Yanglong

    2013-11-26

    A facile strategy was designed for the fabrication of hybrid of Co3Sn2@Co nanoparticles (NPs) and nitrogen-doped graphene (NG) sheets through a hydrothermal synthesis, followed by annealing process. Core-shell architecture of Co3Sn2@Co pin on NG is designed for the dual encapsulation of Co3Sn2 with adaptable ensembles of Co and NG to address the structural and interfacial stability concerns facing tin-based anodes. In the resulted unique architecture of Co3Sn2@Co-NG hybrid, the sealed cobalt cover prevents the direct exposer of Sn with electrolyte because of encapsulated structure and keeps the structural and interfacial integrity of Co3Sn2. However, the elastically strong, flexible and conductive NG overcoat accommodates the volume changes and therefore brings the structural and electrical stabilization of Co3Sn2@Co NPs. As a result, Co3Sn2@Co-NG hybrid exhibits extraordinary reversible capacity of 1615 mAh/g at 250 mA/g after 100 cycles with excellent capacity retention of 102%. The hybrid bears superior rate capability with reversible capacity of 793.9 mAh/g at 2500 mA/g and Coulombic efficiency nearly 100%.

  4. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  5. Design and Implementation of the Battery Energy Storage System in DC Micro-Grid Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Chih Chang

    2018-06-01

    Full Text Available The design and implementation of the battery energy storage system in DC micro-grid systems is demonstrated in this paper. The battery energy storage system (BESS is an important part of a DC micro-grid because renewable energy generation sources are fluctuating. The BESS can provide energy while the renewable energy is absent in the DC micro-grid. The circuit topology of the proposed BESS will be introduced. The design of the voltage controller and the current controller for the battery charger/discharger are also illustrated. Finally, experimental results are provided to validate the performance of the BESS.

  6. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    Science.gov (United States)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  7. Piezoelectric, Solar and Thermal Energy Harvesting for Hybrid Low-Power Generator Systems With Thin-Film Batteries

    Science.gov (United States)

    2012-01-01

    are approximately 93 mm × 25 mm × 1.5 mm (while the region with the battery layers has slightly different thickness as compared to that with the piezo ...temperature difference between the sink and the ambient for the maximum power transfer). Having chosen the heat sink, resistor sweep measurements are...of resistors in each curve). range from 5.0 to 40.7 ◦C. The term average is used for the T values because the temperature difference across the

  8. Thermally fabricated MoS{sub 2}-graphene hybrids as high performance anode in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.K., E-mail: sunil111954@yahoo.co.uk [Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 (India); Kartick, B. [Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 (India); Choudhury, S. [Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF Dresden), Hohe Strasse 6, 01069, Dresden (Germany); Stamm, M. [Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF Dresden), Hohe Strasse 6, 01069, Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymer Materials, 01062, Dresden (Germany)

    2016-11-01

    MoS{sub 2}-reduced graphene oxide (MoS{sub 2}-rGO: where rGO = 0, 1, 3, 5, 7 and 10 wt%) hybrids have been fabricated using (NH{sub 4}){sub 2}MoS{sub 4} and graphite oxide as single source precursors of MoS{sub 2} and thermally exfoliated reduced graphene oxide respectively. These individual precursors were initially subjected to grinding for 30 min followed by heating at 1200 °C for 15 min and characterized. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) confirmed co-dispersion of MoS{sub 2} on thermally exfoliated graphite oxide. Electrochemical studies of these hybrids as anode materials showed that MoS{sub 2}-rGO (7 wt%) exhibited superior reversible capacity, cycling stability, enhanced rate performance (780 mAhg{sup −1}) and rate capability (880 mAhg{sup −1}) over pristine MoS{sub 2} and other hybrids. - Highlights: • MoS{sub 2}-graphene hybrids are synthesized by high temperature from individual precursors. • These hybrids have been used as anode material in LIB. • MoS{sub 2}-graphene (7 wt%) exhibited superior reversible capacity and cycling stability. • It showed high rate performance (780 mA h g{sup −1}) and rate capability (880 mA h g{sup −1}). • Enhanced performance at lower graphene makes it most attractive anode material in LIB.

  9. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  10. Preparation and characterization of hybrid Nafion/silica and Nafion/silica/PTA membranes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Glibin, V.; Pupkevich, V.; Svirko, L.; Karamanev, D. [Western Ontario Univ., London, ON (Canada). Dept. of Biochemical and Chemical Engineering

    2008-07-01

    Redox flow batteries are both efficient and cost-effective. However, the long-term stability of most ion-exchange membranes is limited as a result of the high oxidation rates of ions with high redox potentials. A method of synthesizing multi-component Nafion-silica and Nafion-silica-PTA membranes was presented in this study, which also investigated the electrochemical and ion transport properties of the membranes. Membranes were cast from dimethylformamide (DMFA) solution. The iron ion diffusion kinetics of the Nafion-silica and Nafion-silica PTA membranes were studied by dialysis. Results of the investigation demonstrated that the introduction of silica and phosphotungstic acid (PTA) into the Nafion membrane composition resulted in a significant decrease of ion transfer through the membrane. The addition of PTA also increased membrane permeability to ferric ions. The low iron diffusion coefficient and high ionic conductivity of the Nafion-silica membrane makes it a promising material for use in redox flow batteries. 4 refs., 1 tab., 1 fig.

  11. Possible fire hazard caused by mismatching electrical chargers with the incorrect device within the operating room.

    LENUS (Irish Health Repository)

    Hargrove, Martin

    2012-02-03

    It has come to our attention that numerous devices that need charging adaptors during cardiopulmonary bypass (CPB) have similar charging sockets but different voltage requirements. This has caused one of our devices in the operating theater to overheat and completely shut down when connected to an incorrect higher-voltage charger. The possibility of fire, device destruction, or patient harm in such circumstances is of serious concern.

  12. Qualification test on class 1E charger and inverter in nuclear power plant

    International Nuclear Information System (INIS)

    Li Mingcheng; Lin Jian; Fu Mingxing; Xu Benfu; Ma Peifeng

    2014-01-01

    The qualification approach for class lE electrical equipment was introduced, based on IEC, IEEE and RCC-E standards and technical documents. Combined with a lot of practical experience, the qualification scheme for class lE charger and inverter was developed. The component evaluation, performance and stress test, EMC test, seismic test and software qualification for the equipment were analyzed in detail. (authors)

  13. Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2014-01-01

    Full Text Available We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentical nonlinear charging system model into the first-order integrator. Then, a general saturation function is introduced to design the cooperative current-sharing control law which can guarantee the boundedness of the proposed control. The cooperative stability of the closed-loop system under fixed and dynamic communication topologies is rigorously proved with the aid of Lyapunov function and LaSalle invariant principle. Simulation using a multicharging test system further illustrates that the output currents of parallel chargers are balanced using the proposed control.

  14. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-09-01

    Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Variables of interest included combinations of model drug (albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1-5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1% w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs.

  15. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce-de-Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    Highlights: → Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. → Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. → Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery. - Abstract: Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn 2+ ions was 7.5 x 10 -6 cm 2 s -1 . The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn 2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 x 10 -3 mol dm -3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm -2 .

  16. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery

    International Nuclear Information System (INIS)

    Dong, Hai-Yong; He, Yan-Bing; Li, Baohua; Zhang, Chen; Liu, Ming; Su, Fangyuan; Lv, Wei; Kang, Feiyu; Yang, Quan-Hong

    2014-01-01

    A novel Li 4 Ti 5 O 12 (LTO) electrode with a hierarchical carbon-based conducting network has been developed for high rate lithium ion battery. The unique network is constructed by graphene sheets (GS) that are not only dispersed among (inter-) but also inside (intra-) LTO particles, together with a thin carbon layer wrapping around the LTO particles. The intraparticle GS promotes the electron transfer inside LTO particles while the interparticle GS together with carbon coating bridges the particles guaranteeing fast electron transfer among LTO particles, which construct a highway throughout the whole electrode sheet. Quantitatively, only a trace amount of GS (∼ 0.4 wt%) synergistic with carbon coating (∼0.8 wt%) contributes to a more effective conducting network in the produced LTO electrode and as a result much better performance as compared to the LTO case with similar carbon coating but free of GS. Due to the effectiveness of the conducting network, even with a tap density as high as ∼1.0 g cm −3 , the novel LTO possesses both excellent rate performance and cycling behaviors. The capacity of 123.5 mA h g −1 is obtained at a charge/discharge rate as high as 30 C and a very high capacity of 144.8 mAh g −1 is maintained even after 100 cycles at 10 C. Due to such a low fraction of carbon and a high tape density, the novel LTO electrode has a great practical application value in both the power and energy storage lithium ion batteries

  18. A novel control and physical realization of a clean hybrid hydrogen fuel-cell/battery low-power personal electric vehicle

    Science.gov (United States)

    Watkins, Andrew N.

    With the rapid continuation of global warming, high concentrations of pollutants, and foreign oil conflicts, the green energy push has now begun to manifest into great advancements in renewable or clean energies. Fuel-cells have a promising future for mobile power such as the automotive industry, distributed generation, and portable auxiliary power supplies. The type of fuel-cell that has the most focus today is the hydrogen Proton Exchange Membrane (PEM) fuel-cell. It is widely accepted that a fuel-cell cannot effectively supply a dynamic load on its own. In order to correct this drawback and make the fuel-cell system useful for all occasions, a hybrid FC/storage device system needs to be implemented. In this type of system, a balance is created between the high-energy fuel-cell and the high-power storage devices. In this thesis, a hybrid fuel-cell system topology favorable for use in a "personal" electric vehicle such as a scooter is proposed. This topology consists of a fuel-cell connected directly to the batteries and load via a DC link converter. The converter is used to manage the flow of power within the system. In order to have this flow of power to be stable and within operational limits of the devices, a novel adaptive control algorithm implementing six transfer functions based on six major operating conditions is developed. The development of the adaptive algorithm and the implementation of hardware tests were carried out by Matlab/Simulink and dSPACE. The results of the tests showed that the control algorithm was successful at regulating power flow as well as facilitating DC link stability and accuracy at the major operating points.

  19. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery.

    Science.gov (United States)

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-09-20

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm(-2). At 1.0 V of cell voltage, a current density of 324 mA cm(-2) is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm(-2), and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.

  20. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B. (Bogdan); Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  1. Lithium-ion Battery Charge Methodologies Observed with Portable Electronic Equipment

    Science.gov (United States)

    Jeevarajan, Judith

    2009-01-01

    Commercial lithium-ion batteries in portable electronic equipment has been used by NASA for space applications since 1999. First battery that was certified for flight and flown for Shuttle use was the Canon BP 927 (2.7 Ah) battery pack. Since then, numerous portable equipment with li-ion batteries have been certified and flown and remain on-orbit for crew usage. Laptops (two generations with third one being worked on now) Camcorder Camera PDA 2 versions (second one being li-ion polymer cells) Satellite Phone Due to expense and time, certified batteries are used with different equipment with the help of adapters or by working with the manufacturer of the equipment to build the appropriate battery compartment and connector. Certified and dedicated chargers are available on Shuttle and on the ISS for safe charging.

  2. An electric vehicle propulsion system's impact on battery performance: An overview

    Science.gov (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  3. Controllable synthesis of cobalt oxide nanoflakes on three-dimensional porous cobalt networks as high-performance cathode for alkaline hybrid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua, E-mail: chenminghuahrb@126.com [Key Laboratory of Engineering Dielectric and Applications, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Jiawei; Qi, Meili; Yin, Jinghua; Chen, Qingguo [Key Laboratory of Engineering Dielectric and Applications, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China)

    2016-02-15

    Highlights: • Construct self-supported porous Co networks. • Porous Co/CoO composite films show high capacity and good cycling life. • Porous conductive metal network is favorable for fast ion/electron transfer. - Abstract: Herein we report porous three-dimensional cobalt networks supported CoO nanoflakes by the combination of successive electro-deposition methods. The electrodeposited Co networks have average large pores of ∼5 μm and all the branches are composed of interconnected nanoparticles. CoO nanoflakes with thickness of ∼15 nm are uniformly coated on the Co networks forming self-supported Co/CoO composite films. The as-prepared Co/CoO composite films possess combined properties of porous structure and strong mechanical stability. As cathode for alkaline hybrid batteries, the Co/CoO composite films exhibit good electrochemical performances with high capacity of 83.5 mAh g{sup −1} at 1 A g{sup −1} and stable high-rate cycling life (65 mAh g{sup −1} at 10 A g{sup −1} after 15,000 cycles). The hierarchical porous architecture provides positive roles in the enhancement of electrochemical properties, including fast electronic transportation path, short diffusion of ions and high contact area between the active material and the electrolyte.

  4. Electrocatalytic activity of lithium polysulfides adsorbed into porous TiO2 coated MWCNTs hybrid structure for lithium-sulfur batteries

    Science.gov (United States)

    He, Xiulin; Hou, Huijie; Yuan, Xiqing; Huang, Long; Hu, Jingping; Liu, Bingchuan; Xu, Jingyi; Xie, Jia; Yang, Jiakuan; Liang, Sha; Wu, Xu

    2017-01-01

    Lithium-sulfur batteries have attracted great attention because of their high energy density, environmental friendliness, natural abundance and intrinsically low cost of sulfur. However, their commercial applications are greatly hindered by rapid capacity decay due to poor conductivity of electrode, fast dissolution of the intermediate polysulfides into the electrolyte, and the volume expansion of sulfur. Herein, we report a novel composite MWCNTs@TiO2-S nanostructure by grafting TiO2 onto the surface of MWCNTs, followed by incorporating sulfur into the composite. The inner MWCNTs improved the mechanical strength and conductivity of the electrode and the outer TiO2 provided the adsorption sites to immobilize polysulfides due to bonding interaction between TiO2 and polysulfides. The MWCNTs@TiO2-S composite with a mass ratio of 50% (MWCNTs in MWCNTs@TiO2) exhibited the highest electrochemistry performance among all compositing ratios of MWCNTs/TiO2. The performance improvement might be attributed to the downward shift of the apparent Fermi level to a more positive potential and electron rich space region at the interface of MWCNTs-TiO2 that facilitates the reduction of lithium polysulfide at a higher potential. Such a novel hybrid structure can be applicable for electrode design in other energy storage applications. PMID:28098167

  5. Community renewable energy in Panama: a sustainability assessment of the “Boca de Lura” PV-Wind-Battery hybrid power system

    Directory of Open Access Journals (Sweden)

    Madriz-Vargas Rolando

    2017-01-01

    Full Text Available This paper presents a case study of a community renewable energy project implemented in the community of “Boca de Lura” located in rural Panama. This is a 2.17 kW stand-alone PV-Wind-Battery hybrid power system supplying energy to a local school also serving as a community facility. A novel sustainability assessment framework is used to examine the Boca de Lura experience and future perspectives for the power system and the project as a whole. The main challenges for Boca de Lura are discussed and recommendations to overcome some of the obstacles encountered are provided. Findings suggest that, even though the project was successfully implemented, its long-term operation is jeopardized due to non-technical aspects rather than technical ones. A potential solution is upgrading the stand-alone system into a minigrid; however, more studies and external advice are required to understand the implications for Boca de Lura, local institutions and possible national and international sponsors.

  6. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    Science.gov (United States)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  7. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries

    International Nuclear Information System (INIS)

    Kurc, Beata

    2014-01-01

    Highlights: • Paper describes properties of gel electrolyte based on PAN with TMS and TiO 2 -SiO 2 . • The TiO 2 -SiO 2 oxide composite was precipitated in the emulsion system and used as the fillers. • The capacity of the graphite anode depends on the current rate and the amount of TiO 2 -SiO 2 . • For PE3 electrolyte was obtained practical capacity more than 90% of the theoretical capacity. - Abstract: This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO 2 -SiO 2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on polyacrylonitrile (PAN) membranes. The powders and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells

  8. Preparation and electrochemical characterization of size controlled SnO2-RuO2 composite powder for monolithic hybrid battery

    International Nuclear Information System (INIS)

    Jeon, Young-Ah; No, Kwang-Soo; Choi, Sun Hee; Ahn, Jae pyong; Yoon, Young Soo

    2004-01-01

    Tin oxide (SnO 2 ) powders with a particle size of ∼20 nm were synthesized by a gas condensation method. Ruthenium oxide was loaded by an incipient-wetness method, in which an aqueous solution of RuCl 3 was added to the manufactured SnO 2 powder in an amount that was just sufficient to wet completely the powder. And then, the resulting solution was obtained after freeze-drying to synthesis the smallest particle. The as-synthesized SnO 2 powder with 1.5 wt.% ruthenium oxide (RuO 2 ) exhibited well-developed facets and had a very uniform particle size. The first discharge capacity was lower than comparing to commercial powder because of forming the second phase, but showed good cyclability. A maximum specific electrode capacitance of ∼20 F/g and a maximum specific power of ∼80 W/kg were achieved by manufactured SnO 2 with 1.5 wt.% RuO 2 . This result indicated that the synthesized SnO 2 -RuO 2 composite powder of nano-size scale is candidate for use in fabricating monolithic hybrid batteries using suitable electrolyte as well

  9. Meso-pores carbon nano-tubes (CNTs) tissues-perfluorocarbons (PFCs) hybrid air-electrodes for Li-O2 battery

    Science.gov (United States)

    Balaish, Moran; Ein-Eli, Yair

    2018-03-01

    Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.

  10. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia

    2017-05-10

    Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g -1 over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g -1 over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.

  11. Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application

    International Nuclear Information System (INIS)

    Yang, Zunxian; Meng, Qing; Yan, Wenhuan; Lv, Jun; Guo, Zaiping; Yu, Xuebin; Chen, Zhixin; Guo, Tailiang; Zeng, Rong

    2015-01-01

    Uniform Sn/C hybrid core/shell nanocomposites were synthesized by a combination of electrospinning and subsequent thermal treatment in a reducing atmosphere. The particular three-dimensional architecture, consisting of a Sn@C nanoparticle core and porous hollow carbon nanofiber shell, is characterized by many micro/nanochannels, enhanced mechanical support from the three-dimensional hollow carbon shell, and the abundant porous carbon matrix. The as-prepared Sn/C core/shell nanomaterials exhibit excellent electrochemical performance. They display a reversible capacity of 546.7 mAhg −1 up to 100 cycles at the current density of 40 mAg −1 and good rate capability of 181.8 mAhg −1 at 4000 mAg −1 . These results indicate that the composite could be a promising anode candidate for lithium ion batteries. - Highlights: • Sn/C core/shell composites were synthesized by an electrospinning, a hydrothermal process, and further thermal treatment. • The best-performing 3D composite consists of a Sn@C nanoparticle core and porous hollow carbon nanofiber shell. • The Sn/C composite electrode exhibit excellent Li ion storage capacity and cycling stability

  12. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  13. CuCo_2O_4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications

    International Nuclear Information System (INIS)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2017-01-01

    Graphical abstract: The Ni- foam supported CuCo_2O_4 flowers exhibits a high specific capacity with superior long term cyclic stability. - Highlights: • This paper reports the hydrothermal preparation of CuCo_2O_4 flowers on Ni-foam. • The CuCo_2O_4 flowers exhibits maximum specific capacity of 645.1C g"−"1. • After 2000 cycles, 109% of the initial specific capacity was retained. - Abstract: The battery type CuCo_2O_4 electrode was evaluated as a positive electrode material for its hybrid supercapacitor applications. CuCo_2O_4 flowers were prepared on Ni-foam through a simple hydrothermal process and post calcination treatment. The structure and morphology of the CuCo_2O_4 flowers/Ni-foam was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy. FESEM clearly revealed the flower-like morphology, which was composed of large number of petals. The length and width of the petals ranged from approximately 5–8 μm and approximately 50–150 nm, respectively. The CuCo_2O_4 flowers/Ni-foam electrode was employed for electrochemical characterization for hybrid supercapacitor applications. The specific capacity of the CuCo_2O_4 flower-like electrode was 692.4C g"−"1 (192.3 mA h g"−"1) at a scan rate of 5 mV s"−"1. The flower-like CuCo_2O_4 electrode exhibited a maximum specific capacity of 645.1C g"−"1 (179.2 mA h g"−"1) at a specific current of 1 A g"−"1 and good long term cyclic stability. The high specific capacity, good cyclic stability, and low internal and charge transfer resistance of the CuCo_2O_4 flowers/Ni-foam electrode confirmed the suitability of the prepared material as a positive electrode for hybrid supercapacitor applications.

  14. Three-Dimensional Modeling of the Thermal Behavior of a Lithium-Ion Battery Module for Hybrid Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Jaeshin Yi

    2014-11-01

    Full Text Available This paper reports a modeling methodology to predict the effects of operating conditions on the thermal behavior of a lithium-ion battery (LIB module. The potential and current density distributions on the electrodes of an LIB cell are predicted as a function of discharge time based on the principle of charge conservation. By using the modeling results of the potential and current density distributions of the LIB cell, the non-uniform distribution of the heat generation rate in a single LIB cell within the module is calculated. Based on the heat generation rate in the single LIB cell determined as a function of the position on the electrode and time, a three-dimensional thermal modeling of an LIB module is performed to calculate the three-dimensional velocity, pressure, and temperature distributions within the LIB module as a function of time at various operating conditions. Thermal modeling of an LIB module is validated by the comparison between the experimental measurements and the modeling results. The effect of the cooling condition of the LIB module on the temperature rise of the LIB cells within the module and the uniformity of the distribution of the cell temperatures are analyzed quantitatively based on the modeling results.

  15. Assessment of lithium-ion capacitor for using in battery electric vehicle and hybrid electric vehicle applications

    International Nuclear Information System (INIS)

    Omar, N.; Daowd, M.; Hegazy, O.; Al Sakka, M.; Coosemans, Th.; Van den Bossche, P.; Van Mierlo, J.

    2012-01-01

    capabilities, several approaches have been investigated based on the EDLC and battery methodologies. The results reveal that the power density according to EDLC method is about 1200 W/kg with a pulse efficiency of 90%. However, the W/kg based on the battery method during 2 s pulse is about 500 W/kg. Furthermore, a life cycle test has been done based on the load profile as reported in the forthcoming ISO 12405-2 standard. The preliminary results figure out that the life cycle of the lithium-ion capacitors is decreased with 3.4% till 1400 cycles. Then forward, the capacity reduction is stabilized until 4000 cycles.

  16. An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery

    International Nuclear Information System (INIS)

    Nikiforidis, Georgios; Berlouis, Léonard; Hall, David; Hodgson, David

    2014-01-01

    Highlights: •Elevated temperatures favoured the Ce 3+/4+ reaction on the Pt, Pt–Ir and carbon substrates. •j o increased with temperature over the range 25 °C to 60 °C for all substrates. •Non-porous carbon substrates showed higher reversibility on the Ce 3+/4+ reaction. •Surface degradation of the carbon electrodes occurred due to the high positive potentials. •The Pt–Ir coatings gave the largest j o at 60 °C and appear best suited for use as the positive electrode in the Zn–Ce RFB. -- Abstract: In this study, the electrochemical behaviour of the Ce 3+/4+ redox couple in methanesulfonic acid medium on various electrode substrates was investigated as a function of temperature. Carbon composite electrodes as well as platinum and platinum iridium coated electrodes were studied for their suitability in carrying out the Ce 3+/4+ redox reaction. Cyclic voltammetry in 0.8 mol dm −3 cerium and 4.5 mol dm −3 methanesulfonic acid solution showed that elevated temperatures favoured the Ce 3+ /Ce 4+ reaction on the various platinum and platinum–iridium coated substrates as well as on carbon composite surfaces. The latter electrodes showed better kinetics than the metal coatings but deteriorated badly under the high positive potentials required for the cerium reaction. The exchange current density (j o ), obtained through Tafel extrapolation, polarisation resistance and electrochemical impedance spectroscopy measurements, increased with temperature over the range 25 °C to 60 °C. The Pt–Ir coatings gave the largest j o at 60 °C and appear best suited for use as the positive electrode in the Zn–Ce redox flow battery

  17. A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: ε-constraint method and fuzzy satisfying approach

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Majidi, Majid; Najafi-Ghalelou, Afshin; Ghahramani, Mehrdad; Zare, Kazem

    2017-01-01

    Highlights: • Cost-emission performance of PV/battery/fuel cell hybrid energy system is studied. • Multi-objective optimization model for cost-emission performance is proposed. • ε-constraint method is proposed to produce Pareto solutions of multi-objective model. • Fuzzy satisfying approach selected the best optimal solution from Pareto solutions. • Demand response program is proposed to reduce both cost and emission. - Abstract: Optimal operation of hybrid energy systems is a big challenge in power systems. Nowadays, in addition to the optimum performance of energy systems, their pollution issue has been a hot topic between researchers. In this paper, a multi-objective model is proposed for economic and environmental operation of a battery/fuel cell/photovoltaic (PV) hybrid energy system in the presence of demand response program (DRP). In the proposed paper, the first objective function is minimization of total cost of hybrid energy system. The second objective function is minimization of total CO_2 emission which is in conflict with the first objective function. So, a multi-objective optimization model is presented to model the hybrid system’s optimal and environmental performance problem with considering DRP. The proposed multi-objective model is solved by ε-constraint method and then fuzzy satisfying technique is employed to select the best possible solution. Also, positive effects of DRP on the economic and environmental performance of hybrid system are analyzed. A mixed-integer linear program is used to simulate the proposed model and the obtained results are compared with weighted sum approach to show the effectiveness of proposed method.

  18. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Control strategy of an autonomous desalination unit fed by PV-Wind hybrid system without battery storage

    Directory of Open Access Journals (Sweden)

    M. Turki

    2008-06-01

    Full Text Available This paper presents a novel approach to economic dispatch problems with valve point effects and multiple fuel options using a hybrid evolutionary programming method. Determination of global optimum solution for the practical economic dispatch problem having non smooth cost functions is difficult by using conventional mathematical approaches. Hence several evolutionary algorithm methods were proposed to solve this problem. In this paper, EP-LMO (Evolutionary Programming with Levenberg-Marquardt Optimization technique is proposed to solve economic dispatch problems with valve point effects and multiple fuel options. The EP-LMO is developed in such a way that a simple evolutionary programming (EP is applied as a base level search to find the direction of the optimal global region. And Levenberg-Marquardt Optimization (LMO method is used as a fine tuning to determine the optimal solution. To illustrate the efficiency and effectiveness of the proposed approach, two bench mark problems are considered. First test problem considers multiple fuel options and next problem addresses both valve-point effects and multi-fuel options. To validate the obtained results, the proposed method is compared with the results of conventional numerical methods, Modified Hop-field Neural network, Evolutionary Programming approaches, Modified PSO, Improved PSO and Improved Genetic Algorithm with multiplier updating (IGA_MUmethod.

  20. Smart Battery Thermal Management for PHEV Efficiency Une gestion avancée de la thermique de la batterie basse tension de traction pour optimiser l’efficacité d’un véhicule hybride électrique rechargeable

    Directory of Open Access Journals (Sweden)

    Lefebvre L.

    2013-03-01

    Full Text Available A smart battery thermal management is crucial for vehicle performances and battery lifetime targets achievements when electric and plug-in hybrid electric vehicles are concerned. The thermal system needs to be designed and tuned in accordance and compromises with powertrain and vehicle requirements, battery pack architecture, environmental constraints, costs, weight, etc., in a process that will be described in the first part of this paper. Among the portfolio of battery thermal management technologies, these items will be illustrated by two examples: thermal management by cabin air and by refrigerant in a direct cooling, enlightening a decision process. A simplified battery thermo-electric simulation model, which the second part of our work focuses on, has been built, first for both thermal and energetic balance dimensioning of the battery thermal management system. Examples are given on these two perspectives. That simplified simulation model has also identified some promising thermal management strategies for improving vehicle efficiency and performances and battery lifetime. That is the task of the last part of this paper. Battery heating has shown opportunities for improving energy and power availability at cold conditions and, thus, electric drive availability and autonomy. Post-cooling the battery at the end of a journey and its pre-conditioning before the following journey, not only improve vehicle efficiency, electric drive availability and autonomy, but also enhance battery lifetime and compromises with cabin thermal comfort. Others promising strategies optimizing the relation between vehicle performances and battery lifetime are still under investigations. L’atteinte des performances et des prestations requises d’un véhicule électrique ou hybride électrique rechargeable nécessite un thermomanagement intelligent de la batterie basse tension de traction. Ce thermomanagement est incontournable pour respecter dans le même temps