WorldWideScience

Sample records for hybrid algorithm combining

  1. Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms

    Directory of Open Access Journals (Sweden)

    Віталій Геннадійович Михалько

    2016-07-01

    Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem

  2. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization

    Directory of Open Access Journals (Sweden)

    Ailian Jiang

    2018-03-01

    Full Text Available Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs. This paper investigates the existing ant colony optimization (ACO-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

  3. Application of a hybrid method based on the combination of genetic algorithm and Hopfield neural network for burnable poison placement

    International Nuclear Information System (INIS)

    Khoshahval, F.; Fadaei, A.

    2012-01-01

    Highlights: ► The performance of GA, HNN and combination of them in BPP optimization in PWR core are adequate. ► It seems HNN + GA arrives to better final parameter value in comparison with the two other methods. ► The computation time for HNN + GA is higher than GA and HNN. Thus a trade-off is necessary. - Abstract: In the last decades genetic algorithm (GA) and Hopfield Neural Network (HNN) have attracted considerable attention for the solution of optimization problems. In this paper, a hybrid optimization method based on the combination of the GA and HNN is introduced and applied to the burnable poison placement (BPP) problem to increase the quality of the results. BPP in a nuclear reactor core is a combinatorial and complicated problem. Arrangement and the worth of the burnable poisons (BPs) has an impressive effect on the main control parameters of a nuclear reactor. Improper design and arrangement of the BPs can be dangerous with respect to the nuclear reactor safety. In this paper, increasing BP worth along with minimizing the radial power peaking are considered as objective functions. Three optimization algorithms, genetic algorithm, Hopfield neural network optimization and a hybrid optimization method, are applied to the BPP problem and their efficiencies are compared. The hybrid optimization method gives better result in finding a better BP arrangement.

  4. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    Science.gov (United States)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  5. A hybrid method combining the FDTD and a time domain boundary-integral equation marching-on-in-time algorithm

    Directory of Open Access Journals (Sweden)

    A. Becker

    2003-01-01

    Full Text Available In this paper a hybrid method combining the FDTD/FIT with a Time Domain Boundary-Integral Marching-on-in-Time Algorithm (TD-BIM is presented. Inhomogeneous regions are modelled with the FIT-method, an alternative formulation of the FDTD. Homogeneous regions (which is in the presented numerical example the open space are modelled using a TD-BIM with equivalent electric and magnetic currents flowing on the boundary between the inhomogeneous and the homogeneous regions. The regions are coupled by the tangential magnetic fields just outside the inhomogeneous regions. These fields are calculated by making use of a Mixed Potential Integral Formulation for the magnetic field. The latter consists of equivalent electric and magnetic currents on the boundary plane between the homogeneous and the inhomogeneous region. The magnetic currents result directly from the electric fields of the Yee lattice. Electric currents in the same plane are calculated by making use of the TD-BIM and using the electric field of the Yee lattice as boundary condition. The presented hybrid method only needs the interpolations inherent in FIT and no additional interpolation. A numerical result is compared to a calculation that models both regions with FDTD.

  6. A hybrid algorithm for reliability analysis combining Kriging and subset simulation importance sampling

    International Nuclear Information System (INIS)

    Tong, Cao; Sun, Zhili; Zhao, Qianli; Wang, Qibin; Wang, Shuang

    2015-01-01

    To solve the problem of large computation when failure probability with time-consuming numerical model is calculated, we propose an improved active learning reliability method called AK-SSIS based on AK-IS algorithm. First, an improved iterative stopping criterion in active learning is presented so that iterations decrease dramatically. Second, the proposed method introduces Subset simulation importance sampling (SSIS) into the active learning reliability calculation, and then a learning function suitable for SSIS is proposed. Finally, the efficiency of AK-SSIS is proved by two academic examples from the literature. The results show that AK-SSIS requires fewer calls to the performance function than AK-IS, and the failure probability obtained from AK-SSIS is very robust and accurate. Then this method is applied on a spur gear pair for tooth contact fatigue reliability analysis.

  7. A hybrid algorithm for reliability analysis combining Kriging and subset simulation importance sampling

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Cao; Sun, Zhili; Zhao, Qianli; Wang, Qibin [Northeastern University, Shenyang (China); Wang, Shuang [Jiangxi University of Science and Technology, Ganzhou (China)

    2015-08-15

    To solve the problem of large computation when failure probability with time-consuming numerical model is calculated, we propose an improved active learning reliability method called AK-SSIS based on AK-IS algorithm. First, an improved iterative stopping criterion in active learning is presented so that iterations decrease dramatically. Second, the proposed method introduces Subset simulation importance sampling (SSIS) into the active learning reliability calculation, and then a learning function suitable for SSIS is proposed. Finally, the efficiency of AK-SSIS is proved by two academic examples from the literature. The results show that AK-SSIS requires fewer calls to the performance function than AK-IS, and the failure probability obtained from AK-SSIS is very robust and accurate. Then this method is applied on a spur gear pair for tooth contact fatigue reliability analysis.

  8. Hybrid employment recommendation algorithm based on Spark

    Science.gov (United States)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  9. A Hybrid Algorithm for Optimizing Multi- Modal Functions

    Institute of Scientific and Technical Information of China (English)

    Li Qinghua; Yang Shida; Ruan Youlin

    2006-01-01

    A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.

  10. A hybrid algorithm combining EKF and RLS in synchronous estimation of road grade and vehicle' mass for a hybrid electric bus

    Science.gov (United States)

    Sun, Yong; Li, Liang; Yan, Bingjie; Yang, Chao; Tang, Gongyou

    2016-02-01

    This paper proposes a novel hybrid algorithm for simultaneously estimating the vehicle mass and road grade for hybrid electric bus (HEB). First, the road grade in current step is estimated using extended Kalman filter (EKF) with the initial state including velocity and engine torque. Second, the vehicle mass is estimated twice, one with EKF and the other with recursive least square (RLS) using the estimated road grade. A more accurate value of the estimated mass is acquired by weighting the trade-off between EKF and RLS. Finally, the road grade and vehicle mass thus obtained are used as the initial states for the next step, and two variables could be decoupled from the nonlinear vehicle dynamics by performing the above procedure repeatedly. Simulation results show that in different starting conditions, the proposed algorithm provides higher accuracy and faster convergence speed, compared with the results using EKF or RLS alone.

  11. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using

  12. A Hybrid Approach Based on the Combination of Adaptive Neuro-Fuzzy Inference System and Imperialist Competitive Algorithm: Oil Flow Rate of the Wells Prediction Case Study

    Directory of Open Access Journals (Sweden)

    Shahram Mollaiy Berneti

    2013-04-01

    Full Text Available In this paper, a novel hybrid approach composed of adaptive neuro-fuzzy inference system (ANFIS and imperialist competitive algorithm is proposed. The imperialist competitive algorithm (ICA is used in this methodology to determine the most suitable initial membership functions of the ANFIS. The proposed model combines the global search ability of ICA with local search ability of gradient descent method. To illustrate the suitability and capability of the proposed model, this model is applied to predict oil flow rate of the wells utilizing data set of 31 wells in one of the northern Persian Gulf oil fields of Iran. The data set collected in a three month period for each well from Dec. 2002 to Nov. 2010. For the sake of performance evaluation, the results of the proposed model are compared with the conventional ANFIS model. The results show that the significant improvements are achievable using the proposed model in comparison with the results obtained by conventional ANFIS.

  13. A Hybrid Parallel Preconditioning Algorithm For CFD

    Science.gov (United States)

    Barth,Timothy J.; Tang, Wei-Pai; Kwak, Dochan (Technical Monitor)

    1995-01-01

    A new hybrid preconditioning algorithm will be presented which combines the favorable attributes of incomplete lower-upper (ILU) factorization with the favorable attributes of the approximate inverse method recently advocated by numerous researchers. The quality of the preconditioner is adjustable and can be increased at the cost of additional computation while at the same time the storage required is roughly constant and approximately equal to the storage required for the original matrix. In addition, the preconditioning algorithm suggests an efficient and natural parallel implementation with reduced communication. Sample calculations will be presented for the numerical solution of multi-dimensional advection-diffusion equations. The matrix solver has also been embedded into a Newton algorithm for solving the nonlinear Euler and Navier-Stokes equations governing compressible flow. The full paper will show numerous examples in CFD to demonstrate the efficiency and robustness of the method.

  14. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....

  15. The theory of hybrid stochastic algorithms

    International Nuclear Information System (INIS)

    Duane, S.; Kogut, J.B.

    1986-01-01

    The theory of hybrid stochastic algorithms is developed. A generalized Fokker-Planck equation is derived and is used to prove that the correct equilibrium distribution is generated by the algorithm. Systematic errors following from the discrete time-step used in the numerical implementation of the scheme are computed. Hybrid algorithms which simulate lattice gauge theory with dynamical fermions are presented. They are optimized in computer simulations and their systematic errors and efficiencies are studied. (orig.)

  16. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  17. The theory of hybrid stochastic algorithms

    International Nuclear Information System (INIS)

    Kennedy, A.D.

    1989-01-01

    These lectures introduce the family of Hybrid Stochastic Algorithms for performing Monte Carlo calculations in Quantum Field Theory. After explaining the basic concepts of Monte Carlo integration we discuss the properties of Markov processes and one particularly useful example of them: the Metropolis algorithm. Building upon this framework we consider the Hybrid and Langevin algorithms from the viewpoint that they are approximate versions of the Hybrid Monte Carlo method; and thus we are led to consider Molecular Dynamics using the Leapfrog algorithm. The lectures conclude by reviewing recent progress in these areas, explaining higher-order integration schemes, the asymptotic large-volume behaviour of the various algorithms, and some simple exact results obtained by applying them to free field theory. It is attempted throughout to give simple yet correct proofs of the various results encountered. 38 refs

  18. Fitting PAC spectra with a hybrid algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Alves, M. A., E-mail: mauro@sepn.org [Instituto de Aeronautica e Espaco (Brazil); Carbonari, A. W., E-mail: carbonar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (Brazil)

    2008-01-15

    A hybrid algorithm (HA) that blends features of genetic algorithms (GA) and simulated annealing (SA) was implemented for simultaneous fits of perturbed angular correlation (PAC) spectra. The main characteristic of the HA is the incorporation of a selection criterion based on SA into the basic structure of GA. The results obtained with the HA compare favorably with fits performed with conventional methods.

  19. Hybrid Cryptosystem Using Tiny Encryption Algorithm and LUC Algorithm

    Science.gov (United States)

    Rachmawati, Dian; Sharif, Amer; Jaysilen; Andri Budiman, Mohammad

    2018-01-01

    Security becomes a very important issue in data transmission and there are so many methods to make files more secure. One of that method is cryptography. Cryptography is a method to secure file by writing the hidden code to cover the original file. Therefore, if the people do not involve in cryptography, they cannot decrypt the hidden code to read the original file. There are many methods are used in cryptography, one of that method is hybrid cryptosystem. A hybrid cryptosystem is a method that uses a symmetric algorithm to secure the file and use an asymmetric algorithm to secure the symmetric algorithm key. In this research, TEA algorithm is used as symmetric algorithm and LUC algorithm is used as an asymmetric algorithm. The system is tested by encrypting and decrypting the file by using TEA algorithm and using LUC algorithm to encrypt and decrypt the TEA key. The result of this research is by using TEA Algorithm to encrypt the file, the cipher text form is the character from ASCII (American Standard for Information Interchange) table in the form of hexadecimal numbers and the cipher text size increase by sixteen bytes as the plaintext length is increased by eight characters.

  20. A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM

    Directory of Open Access Journals (Sweden)

    Mário Mestria

    2016-04-01

    Full Text Available ABSTRACT This paper proposes a hybrid heuristic algorithm, based on the metaheuristics Greedy Randomized Adaptive Search Procedure, Iterated Local Search and Variable Neighborhood Descent, to solve the Clustered Traveling Salesman Problem (CTSP. Hybrid Heuristic algorithm uses several variable neighborhood structures combining the intensification (using local search operators and diversification (constructive heuristic and perturbation routine. In the CTSP, the vertices are partitioned into clusters and all vertices of each cluster have to be visited contiguously. The CTSP is -hard since it includes the well-known Traveling Salesman Problem (TSP as a special case. Our hybrid heuristic is compared with three heuristics from the literature and an exact method. Computational experiments are reported for different classes of instances. Experimental results show that the proposed hybrid heuristic obtains competitive results within reasonable computational time.

  1. A Novel Hybrid Firefly Algorithm for Global Optimization.

    Directory of Open Access Journals (Sweden)

    Lina Zhang

    Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.

  2. Hybrid Bee Ant Colony Algorithm for Effective Load Balancing And ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues ... Genetic Algorithm (MO-GA) for dynamic job scheduling that .... Information Networking and Applications Workshops. [7]. M. Dorigo & T.

  3. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    Science.gov (United States)

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  4. Two-phase hybrid cryptography algorithm for wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Rawya Rizk

    2015-12-01

    Full Text Available For achieving security in wireless sensor networks (WSNs, cryptography plays an important role. In this paper, a new security algorithm using combination of both symmetric and asymmetric cryptographic techniques is proposed to provide high security with minimized key maintenance. It guarantees three cryptographic primitives, integrity, confidentiality and authentication. Elliptical Curve Cryptography (ECC and Advanced Encryption Standard (AES are combined to provide encryption. XOR-DUAL RSA algorithm is considered for authentication and Message Digest-5 (MD5 for integrity. The results show that the proposed hybrid algorithm gives better performance in terms of computation time, the size of cipher text, and the energy consumption in WSN. It is also robust against different types of attacks in the case of image encryption.

  5. Resizing Technique-Based Hybrid Genetic Algorithm for Optimal Drift Design of Multistory Steel Frame Buildings

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2014-01-01

    Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

  6. Study on hybrid multi-objective optimization algorithm for inverse treatment planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Song Gang; Wu Yican

    2007-01-01

    Inverse treatment planning for radiation therapy is a multi-objective optimization process. The hybrid multi-objective optimization algorithm is studied by combining the simulated annealing(SA) and genetic algorithm(GA). Test functions are used to analyze the efficiency of algorithms. The hybrid multi-objective optimization SA algorithm, which displacement is based on the evolutionary strategy of GA: crossover and mutation, is implemented in inverse planning of external beam radiation therapy by using two kinds of objective functions, namely the average dose distribution based and the hybrid dose-volume constraints based objective functions. The test calculations demonstrate that excellent converge speed can be achieved. (authors)

  7. Hybrid PET/MR imaging: an algorithm to reduce metal artifacts from dental implants in Dixon-based attenuation map generation using a multiacquisition variable-resonance image combination sequence.

    Science.gov (United States)

    Burger, Irene A; Wurnig, Moritz C; Becker, Anton S; Kenkel, David; Delso, Gaspar; Veit-Haibach, Patrick; Boss, Andreas

    2015-01-01

    It was the aim of this study to implement an algorithm modifying Dixon-based MR imaging datasets for attenuation correction in hybrid PET/MR imaging with a multiacquisition variable resonance image combination (MAVRIC) sequence to reduce metal artifacts. After ethics approval, in 8 oncologic patients with dental implants data were acquired in a trimodality setup with PET/CT and MR imaging. The protocol included a whole-body 3-dimensional dual gradient-echo sequence (Dixon) used for MR imaging-based PET attenuation correction and a high-resolution MAVRIC sequence, applied in the oral area compromised by dental implants. An algorithm was implemented correcting the Dixon-based μ maps using the MAVRIC in areas of Dixon signal voids. The artifact size of the corrected μ maps was compared with the uncorrected MR imaging μ maps. The algorithm was robust in all patients. There was a significant reduction in mean artifact size of 70.5% between uncorrected and corrected μ maps from 697 ± 589 mm(2) to 202 ± 119 mm(2) (P = 0.016). The proposed algorithm could improve MR imaging-based attenuation correction in critical areas, when standard attenuation correction is hampered by metal artifacts, using a MAVRIC. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Successive combination jet algorithm for hadron collisions

    International Nuclear Information System (INIS)

    Ellis, S.D.; Soper, D.E.

    1993-01-01

    Jet finding algorithms, as they are used in e + e- and hadron collisions, are reviewed and compared. It is suggested that a successive combination style algorithm, similar to that used in e + e- physics, might be useful also in hadron collisions, where cone style algorithms have been used previously

  9. Hybrid Firefly Variants Algorithm for Localization Optimization in WSN

    Directory of Open Access Journals (Sweden)

    P. SrideviPonmalar

    2017-01-01

    Full Text Available Localization is one of the key issues in wireless sensor networks. Several algorithms and techniques have been introduced for localization. Localization is a procedural technique of estimating the sensor node location. In this paper, a novel three hybrid algorithms based on firefly is proposed for localization problem. Hybrid Genetic Algorithm-Firefly Localization Algorithm (GA-FFLA, Hybrid Differential Evolution-Firefly Localization Algorithm (DE-FFLA and Hybrid Particle Swarm Optimization -Firefly Localization Algorithm (PSO-FFLA are analyzed, designed and implemented to optimize the localization error. The localization algorithms are compared based on accuracy of estimation of location, time complexity and iterations required to achieve the accuracy. All the algorithms have hundred percent estimation accuracy but with variations in the number of firefliesr requirements, variation in time complexity and number of iteration requirements. Keywords: Localization; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization

  10. An Interactive Personalized Recommendation System Using the Hybrid Algorithm Model

    Directory of Open Access Journals (Sweden)

    Yan Guo

    2017-10-01

    Full Text Available With the rapid development of e-commerce, the contradiction between the disorder of business information and customer demand is increasingly prominent. This study aims to make e-commerce shopping more convenient, and avoid information overload, by an interactive personalized recommendation system using the hybrid algorithm model. The proposed model first uses various recommendation algorithms to get a list of original recommendation results. Combined with the customer’s feedback in an interactive manner, it then establishes the weights of corresponding recommendation algorithms. Finally, the synthetic formula of evidence theory is used to fuse the original results to obtain the final recommendation products. The recommendation performance of the proposed method is compared with that of traditional methods. The results of the experimental study through a Taobao online dress shop clearly show that the proposed method increases the efficiency of data mining in the consumer coverage, the consumer discovery accuracy and the recommendation recall. The hybrid recommendation algorithm complements the advantages of the existing recommendation algorithms in data mining. The interactive assigned-weight method meets consumer demand better and solves the problem of information overload. Meanwhile, our study offers important implications for e-commerce platform providers regarding the design of product recommendation systems.

  11. A Hybrid Optimization Algorithm for Low RCS Antenna Design

    Directory of Open Access Journals (Sweden)

    W. Shao

    2012-12-01

    Full Text Available In this article, a simple and efficient method is presented to design low radar cross section (RCS patch antennas. This method consists of a hybrid optimization algorithm, which combines a genetic algorithm (GA with tabu search algorithm (TSA, and electromagnetic field solver. The TSA, embedded into the GA frame, defines the acceptable neighborhood region of parameters and screens out the poor-scoring individuals. Thus, the repeats of search are avoided and the amount of time-consuming electromagnetic simulations is largely reduced. Moreover, the whole design procedure is auto-controlled by programming the VBScript language. A slot patch antenna example is provided to verify the accuracy and efficiency of the proposed method.

  12. Traffic sharing algorithms for hybrid mobile networks

    Science.gov (United States)

    Arcand, S.; Murthy, K. M. S.; Hafez, R.

    1995-01-01

    In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.

  13. ENHANCED HYBRID PSO – ACO ALGORITHM FOR GRID SCHEDULING

    Directory of Open Access Journals (Sweden)

    P. Mathiyalagan

    2010-07-01

    Full Text Available Grid computing is a high performance computing environment to solve larger scale computational demands. Grid computing contains resource management, task scheduling, security problems, information management and so on. Task scheduling is a fundamental issue in achieving high performance in grid computing systems. A computational GRID is typically heterogeneous in the sense that it combines clusters of varying sizes, and different clusters typically contains processing elements with different level of performance. In this, heuristic approaches based on particle swarm optimization and ant colony optimization algorithms are adopted for solving task scheduling problems in grid environment. Particle Swarm Optimization (PSO is one of the latest evolutionary optimization techniques by nature. It has the better ability of global searching and has been successfully applied to many areas such as, neural network training etc. Due to the linear decreasing of inertia weight in PSO the convergence rate becomes faster, which leads to the minimal makespan time when used for scheduling. To make the convergence rate faster, the PSO algorithm is improved by modifying the inertia parameter, such that it produces better performance and gives an optimized result. The ACO algorithm is improved by modifying the pheromone updating rule. ACO algorithm is hybridized with PSO algorithm for efficient result and better convergence in PSO algorithm.

  14. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  15. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.

    2014-01-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  16. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    Science.gov (United States)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  17. Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm

    OpenAIRE

    Catterall, S.; Karamov, S.

    2001-01-01

    We describe a Fourier Accelerated Hybrid Monte Carlo algorithm suitable for dynamical fermion simulations of non-gauge models. We test the algorithm in supersymmetric quantum mechanics viewed as a one-dimensional Euclidean lattice field theory. We find dramatic reductions in the autocorrelation time of the algorithm in comparison to standard HMC.

  18. On combining algorithms for deformable image registration

    NARCIS (Netherlands)

    Muenzing, S.E.A.; Ginneken, van B.; Pluim, J.P.W.; Dawant, B.M.

    2012-01-01

    We propose a meta-algorithm for registration improvement by combining deformable image registrations (MetaReg). It is inspired by a well-established method from machine learning, the combination of classifiers. MetaReg consists of two main components: (1) A strategy for composing an improved

  19. Application of Hybrid Optimization Algorithm in the Synthesis of Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    Ezgi Deniz Ülker

    2014-01-01

    Full Text Available The use of hybrid algorithms for solving real-world optimization problems has become popular since their solution quality can be made better than the algorithms that form them by combining their desirable features. The newly proposed hybrid method which is called Hybrid Differential, Particle, and Harmony (HDPH algorithm is different from the other hybrid forms since it uses all features of merged algorithms in order to perform efficiently for a wide variety of problems. In the proposed algorithm the control parameters are randomized which makes its implementation easy and provides a fast response. This paper describes the application of HDPH algorithm to linear antenna array synthesis. The results obtained with the HDPH algorithm are compared with three merged optimization techniques that are used in HDPH. The comparison shows that the performance of the proposed algorithm is comparatively better in both solution quality and robustness. The proposed hybrid algorithm HDPH can be an efficient candidate for real-time optimization problems since it yields reliable performance at all times when it gets executed.

  20. Combined algorithms in nonlinear problems of magnetostatics

    International Nuclear Information System (INIS)

    Gregus, M.; Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1988-01-01

    To solve boundary problems of magnetostatics in unbounded two- and three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method of nonlinear magnetostatic problem without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in non-linear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given too. 14 refs.; 2 figs.; 1 tab

  1. A combinational fast algorithm for image reconstruction

    International Nuclear Information System (INIS)

    Wu Zhongquan

    1987-01-01

    A combinational fast algorithm has been developed in order to increase the speed of reconstruction. First, an interpolation method based on B-spline functions is used in image reconstruction. Next, the influence of the boundary conditions assumed here on the interpolation of filtered projections and on the image reconstruction is discussed. It is shown that this boundary condition has almost no influence on the image in the central region of the image space, because the error of interpolation rapidly decreases by a factor of ten in shifting two pixels from the edge toward the center. In addition, a fast algorithm for computing the detecting angle has been used with the mentioned interpolation algorithm, and the cost for detecting angle computaton is reduced by a factor of two. The implementation results show that in the same subjective and objective fidelity, the computational cost for the interpolation using this algorithm is about one-twelfth of the conventional algorithm

  2. A NEW HYBRID GENETIC ALGORITHM FOR VERTEX COVER PROBLEM

    OpenAIRE

    UĞURLU, Onur

    2015-01-01

    The minimum vertex cover  problem belongs to the  class  of  NP-compl ete  graph  theoretical problems. This paper presents a hybrid genetic algorithm to solve minimum ver tex cover problem. In this paper, it has been shown that when local optimization technique is added t o genetic algorithm to form hybrid genetic algorithm, it gives more quality solution than simple genet ic algorithm. Also, anew mutation operator has been developed especially for minimum verte...

  3. Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm

    African Journals Online (AJOL)

    In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...

  4. A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization

    Directory of Open Access Journals (Sweden)

    Soroor Sarafrazi

    2015-07-01

    Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.

  5. Hybridizing Evolutionary Algorithms with Opportunistic Local Search

    DEFF Research Database (Denmark)

    Gießen, Christian

    2013-01-01

    There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...

  6. Application of Hybrid Genetic Algorithm Routine in Optimizing Food and Bioengineering Processes

    Directory of Open Access Journals (Sweden)

    Jaya Shankar Tumuluru

    2016-11-01

    Full Text Available Optimization is a crucial step in the analysis of experimental results. Deterministic methods only converge on local optimums and require exponentially more time as dimensionality increases. Stochastic algorithms are capable of efficiently searching the domain space; however convergence is not guaranteed. This article demonstrates the novelty of the hybrid genetic algorithm (HGA, which combines both stochastic and deterministic routines for improved optimization results. The new hybrid genetic algorithm developed is applied to the Ackley benchmark function as well as case studies in food, biofuel, and biotechnology processes. For each case study, the hybrid genetic algorithm found a better optimum candidate than reported by the sources. In the case of food processing, the hybrid genetic algorithm improved the anthocyanin yield by 6.44%. Optimization of bio-oil production using HGA resulted in a 5.06% higher yield. In the enzyme production process, HGA predicted a 0.39% higher xylanase yield. Hybridization of the genetic algorithm with a deterministic algorithm resulted in an improved optimum compared to statistical methods.

  7. A hybrid algorithm for instant optimization of beam weights in anatomy-based intensity modulated radiotherapy: a performance evaluation study

    International Nuclear Information System (INIS)

    Vaitheeswaran, Ranganathan; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram

    2011-01-01

    The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) (∼ 2% - 5% improvement) and Homogeneity Index (HI) (∼ 4% - 10% improvement) as compared to GEM and FSA algorithms (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are

  8. Evaluation of models generated via hybrid evolutionary algorithms ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.

  9. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    International Nuclear Information System (INIS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems

  10. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.

  11. A hybrid algorithm for parallel molecular dynamics simulations

    Science.gov (United States)

    Mangiardi, Chris M.; Meyer, R.

    2017-10-01

    This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.

  12. Hybrid Monte Carlo algorithm with fat link fermion actions

    International Nuclear Information System (INIS)

    Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.

    2004-01-01

    The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant clover (FLIC) fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarization is often performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing techniques or fat link actions

  13. Hybrid Modeling KMeans – Genetic Algorithms in the Health Care Data

    Directory of Open Access Journals (Sweden)

    Tessy Badriyah

    2013-06-01

    Full Text Available K-Means is one of the major algorithms widely used in clustering due to its good computational performance. However, K-Means is very sensitive to the initially selected points which randomly selected, and therefore it does not always generate optimum solutions. Genetic algorithm approach can be applied to solve this problem. In this research we examine the potential of applying hybrid GA- KMeans with focus on the area of health care data. We proposed a new technique using hybrid method combining KMeans Clustering and Genetic Algorithms, called the “Hybrid K-Means Genetic Algorithms” (HKGA. HKGA combines the power of Genetic Algorithms and the efficiency of K-Means Clustering. We compare our results with other conventional algorithms and also with other published research as well. Our results demonstrate that the HKGA achieves very good results and in some cases superior to other methods. Keywords: Machine Learning, K-Means, Genetic Algorithms, Hybrid KMeans Genetic Algorithm (HGKA.

  14. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  15. A New Hybrid Algorithm to Solve Winner Determination Problem in Multiunit Double Internet Auction

    Directory of Open Access Journals (Sweden)

    Mourad Ykhlef

    2015-01-01

    Full Text Available Solving winner determination problem in multiunit double auction has become an important E-business task. The main issue in double auction is to improve the reward in order to match the ideal prices and quantity and make the best profit for sellers and buyers according to their bids and predefined quantities. There are many algorithms introduced for solving winner in multiunit double auction. Conventional algorithms can find the optimal solution but they take a long time, particularly when they are applied to large dataset. Nowadays, some evolutionary algorithms, such as particle swarm optimization and genetic algorithm, were proposed and have been applied. In order to improve the speed of evolutionary algorithms convergence, we will propose a new kind of hybrid evolutionary algorithm that combines genetic algorithm (GA with particle swarm optimization (PSO to solve winner determination problem in multiunit double auction; we will refer to this algorithm as AUC-GAPSO.

  16. Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations

    Science.gov (United States)

    Bang, Youngsuk

    hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.

  17. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    Science.gov (United States)

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  18. Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shafqat Ullah Khan

    2016-01-01

    Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

  19. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposal

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2017-11-01

    Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  20. A HYBRID HOPFIELD NEURAL NETWORK AND TABU SEARCH ALGORITHM TO SOLVE ROUTING PROBLEM IN COMMUNICATION NETWORK

    Directory of Open Access Journals (Sweden)

    MANAR Y. KASHMOLA

    2012-06-01

    Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.

  1. A hybrid multiview stereo algorithm for modeling urban scenes.

    Science.gov (United States)

    Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep

    2013-01-01

    We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.

  2. Hybrid Model Based on Genetic Algorithms and SVM Applied to Variable Selection within Fruit Juice Classification

    Directory of Open Access Journals (Sweden)

    C. Fernandez-Lozano

    2013-01-01

    Full Text Available Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM. Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA, the most representative variables for a specific classification problem can be selected.

  3. Hybrid Approach To Steganography System Based On Quantum Encryption And Chaos Algorithms

    Directory of Open Access Journals (Sweden)

    ZAID A. ABOD

    2018-01-01

    Full Text Available A hybrid scheme for secretly embedding image into a dithered multilevel image is presented. This work inputs both a cover image and secret image, which are scrambling and divided into groups to embedded together based on multiple chaos algorithms (Lorenz map, Henon map and Logistic map respectively. Finally, encrypt the embedded images by using one of the quantum cryptography mechanisms, which is quantum one time pad. The experimental results show that the proposed hybrid system successfully embedded images and combine with the quantum cryptography algorithms and gives high efficiency for secure communication.

  4. Hybrid algorithm for rotor angle security assessment in power systems

    Directory of Open Access Journals (Sweden)

    D. Prasad Wadduwage

    2015-08-01

    Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

  5. A new hybrid metaheuristic algorithm for wind farm micrositing

    International Nuclear Information System (INIS)

    Massan, S.U.R.; Wagan, A.I.; Shaikh, M.M.

    2017-01-01

    This work focuses on proposing a new algorithm, referred as HMA (Hybrid Metaheuristic Algorithm) for the solution of the WTO (Wind Turbine Optimization) problem. It is well documented that turbines located behind one another face a power loss due to the obstruction of the wind due to wake loss. It is required to reduce this wake loss by the effective placement of turbines using a new HMA. This HMA is derived from the two basic algorithms i.e. DEA (Differential Evolution Algorithm) and the FA (Firefly Algorithm). The function of optimization is undertaken on the N.O. Jensen model. The blending of DEA and FA into HMA are discussed and the new algorithm HMA is implemented maximize power and minimize the cost in a WTO problem. The results by HMA have been compared with GA (Genetic Algorithm) used in some previous studies. The successfully calculated total power produced and cost per unit turbine for a wind farm by using HMA and its comparison with past approaches using single algorithms have shown that there is a significant advantage of using the HMA as compared to the use of single algorithms. The first time implementation of a new algorithm by blending two single algorithms is a significant step towards learning the behavior of algorithms and their added advantages by using them together. (author)

  6. A New Hybrid Metaheuristic Algorithm for Wind Farm Micrositing

    Directory of Open Access Journals (Sweden)

    SHAFIQ-UR-REHMAN MASSAN

    2017-07-01

    Full Text Available This work focuses on proposing a new algorithm, referred as HMA (Hybrid Metaheuristic Algorithm for the solution of the WTO (Wind Turbine Optimization problem. It is well documented that turbines located behind one another face a power loss due to the obstruction of the wind due to wake loss. It is required to reduce this wake loss by the effective placement of turbines using a new HMA. This HMA is derived from the two basic algorithms i.e. DEA (Differential Evolution Algorithm and the FA (Firefly Algorithm. The function of optimization is undertaken on the N.O. Jensen model. The blending of DEA and FA into HMA are discussed and the new algorithm HMA is implemented maximize power and minimize the cost in a WTO problem. The results by HMA have been compared with GA (Genetic Algorithm used in some previous studies. The successfully calculated total power produced and cost per unit turbine for a wind farm by using HMA and its comparison with past approaches using single algorithms have shown that there is a significant advantage of using the HMA as compared to the use of single algorithms. The first time implementation of a new algorithm by blending two single algorithms is a significant step towards learning the behavior of algorithms and their added advantages by using them together.

  7. A Hybrid Backtracking Search Optimization Algorithm with Differential Evolution

    Directory of Open Access Journals (Sweden)

    Lijin Wang

    2015-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.

  8. Gravity Search Algorithm hybridized Recursive Least Square method for power system harmonic estimation

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2017-06-01

    Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.

  9. Public Transport Route Finding using a Hybrid Genetic Algorithm

    OpenAIRE

    Liviu Adrian COTFAS; Andreea DIOSTEANU

    2011-01-01

    In this paper we present a public transport route finding solution based on a hybrid genetic algorithm. The algorithm uses two heuristics that take into consideration the number of trans-fers and the remaining distance to the destination station in order to improve the convergence speed. The interface of the system uses the latest web technologies to offer both portability and advanced functionality. The approach has been evaluated using the data for the Bucharest public transport network.

  10. The hybrid Monte Carlo Algorithm and the chiral transition

    International Nuclear Information System (INIS)

    Gupta, R.

    1987-01-01

    In this talk the author describes tests of the Hybrid Monte Carlo Algorithm for QCD done in collaboration with Greg Kilcup and Stephen Sharpe. We find that the acceptance in the glubal Metropolis step for Staggered fermions can be tuned and kept large without having to make the step-size prohibitively small. We present results for the finite temperature transition on 4 4 and 4 x 6 3 lattices using this algorithm

  11. Public Transport Route Finding using a Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Liviu Adrian COTFAS

    2011-01-01

    Full Text Available In this paper we present a public transport route finding solution based on a hybrid genetic algorithm. The algorithm uses two heuristics that take into consideration the number of trans-fers and the remaining distance to the destination station in order to improve the convergence speed. The interface of the system uses the latest web technologies to offer both portability and advanced functionality. The approach has been evaluated using the data for the Bucharest public transport network.

  12. A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Daqing Wu

    2012-01-01

    Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.

  13. A new hybrid genetic algorithm for optimizing the single and multivariate objective functions

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluru, Jaya Shankar [Idaho National Laboratory; McCulloch, Richard Chet James [Idaho National Laboratory

    2015-07-01

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the most improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.

  14. A hybrid artificial bee colony algorithm for numerical function optimization

    Science.gov (United States)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  15. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Shan Li

    2014-01-01

    Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  16. Manifold absolute pressure estimation using neural network with hybrid training algorithm.

    Directory of Open Access Journals (Sweden)

    Mohd Taufiq Muslim

    Full Text Available In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM algorithm, Bayesian Regularization (BR algorithm and Particle Swarm Optimization (PSO algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS. The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.

  17. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    Science.gov (United States)

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  18. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    Science.gov (United States)

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  19. Manifold absolute pressure estimation using neural network with hybrid training algorithm.

    Science.gov (United States)

    Muslim, Mohd Taufiq; Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.

  20. ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM

    Directory of Open Access Journals (Sweden)

    D. Amutha Guka

    2012-01-01

    Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.

  1. Convergence of Hybrid Space Mapping Algorithms

    DEFF Research Database (Denmark)

    Madsen, Kaj; Søndergaard, Jacob

    2004-01-01

    may be poor, or the method may even fail to converge to a stationary point. We consider a convex combination of the space mapping technique with a classical optimization technique. The function to be optimized has the form \\$H \\$\\backslash\\$circ f\\$ where \\$H: \\$\\backslash\\$dR\\^m \\$\\backslash......\\$mapsto \\$\\backslash\\$dR\\$ is convex and \\$f: \\$\\backslash\\$dR\\^n \\$\\backslash\\$mapsto \\$\\backslash\\$dR\\^m\\$ is smooth. Experience indicates that the combined method maintains the initial efficiency of the space mapping technique. We prove that the global convergence property of the classical technique is also...

  2. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    Directory of Open Access Journals (Sweden)

    Laurenzi Ian J

    2009-12-01

    Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.

  3. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    Science.gov (United States)

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  4. A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration

    International Nuclear Information System (INIS)

    Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud

    2012-01-01

    Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.

  5. A Hybrid Genetic Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Sydulu Maheswarapu

    2011-08-01

    Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.

  6. Artificial root foraging optimizer algorithm with hybrid strategies

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-02-01

    Full Text Available In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.

  7. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposaL

    Energy Technology Data Exchange (ETDEWEB)

    Wichapa, Narong; Khokhajaikiat, Porntep

    2017-07-01

    Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  8. Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposaL

    International Nuclear Information System (INIS)

    Wichapa, Narong; Khokhajaikiat, Porntep

    2017-01-01

    Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.

  9. A HYBRID ALGORITHM FOR THE ROBUST GRAPH COLORING PROBLEM

    Directory of Open Access Journals (Sweden)

    Román Anselmo Mora Gutiérrez

    2016-08-01

    Full Text Available A hybridalgorithm which combines mathematical programming techniques (Kruskal’s algorithm and the strategy of maintaining arc consistency to solve constraint satisfaction problem “CSP” and heuristic methods (musical composition method and DSATUR to resolve the robust graph coloring problem (RGCP is proposed in this paper. Experimental result shows that this algorithm is better than the other algorithms presented on the literature.

  10. Multiphase Return Trajectory Optimization Based on Hybrid Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2016-01-01

    Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.

  11. A hybrid reliability algorithm using PSO-optimized Kriging model and adaptive importance sampling

    Science.gov (United States)

    Tong, Cao; Gong, Haili

    2018-03-01

    This paper aims to reduce the computational cost of reliability analysis. A new hybrid algorithm is proposed based on PSO-optimized Kriging model and adaptive importance sampling method. Firstly, the particle swarm optimization algorithm (PSO) is used to optimize the parameters of Kriging model. A typical function is fitted to validate improvement by comparing results of PSO-optimized Kriging model with those of the original Kriging model. Secondly, a hybrid algorithm for reliability analysis combined optimized Kriging model and adaptive importance sampling is proposed. Two cases from literatures are given to validate the efficiency and correctness. The proposed method is proved to be more efficient due to its application of small number of sample points according to comparison results.

  12. Optimization of Antennas using a Hybrid Genetic-Algorithm Space-Mapping Algorithm

    DEFF Research Database (Denmark)

    Pantoja, M.F.; Bretones, A.R.; Meincke, Peter

    2006-01-01

    A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a Genetic Algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...

  13. Hybrid Algorithm of Particle Swarm Optimization and Grey Wolf Optimizer for Improving Convergence Performance

    Directory of Open Access Journals (Sweden)

    Narinder Singh

    2017-01-01

    Full Text Available A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO and Grey Wolf Optimizer (GWO. The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to find the global optimum.

  14. A hybrid heuristic algorithm for the open-pit-mining operational planning problem.

    OpenAIRE

    Souza, Marcone Jamilson Freitas; Coelho, Igor Machado; Ribas, Sabir; Santos, Haroldo Gambini; Merschmann, Luiz Henrique de Campos

    2010-01-01

    This paper deals with the Open-Pit-Mining Operational Planning problem with dynamic truck allocation. The objective is to optimize mineral extraction in the mines by minimizing the number of mining trucks used to meet production goals and quality requirements. According to the literature, this problem is NPhard, so a heuristic strategy is justified. We present a hybrid algorithm that combines characteristics of two metaheuristics: Greedy Randomized Adaptive Search Procedures and General Varia...

  15. A hybrid frame concealment algorithm for H.264/AVC.

    Science.gov (United States)

    Yan, Bo; Gharavi, Hamid

    2010-01-01

    In packet-based video transmissions, packets loss due to channel errors may result in the loss of the whole video frame. Recently, many error concealment algorithms have been proposed in order to combat channel errors; however, most of the existing algorithms can only deal with the loss of macroblocks and are not able to conceal the whole missing frame. In order to resolve this problem, in this paper, we have proposed a new hybrid motion vector extrapolation (HMVE) algorithm to recover the whole missing frame, and it is able to provide more accurate estimation for the motion vectors of the missing frame than other conventional methods. Simulation results show that it is highly effective and significantly outperforms other existing frame recovery methods.

  16. A hybrid Jaya algorithm for reliability-redundancy allocation problems

    Science.gov (United States)

    Ghavidel, Sahand; Azizivahed, Ali; Li, Li

    2018-04-01

    This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.

  17. Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2008-01-01

    The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life

  18. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  19. Virtual machine consolidation enhancement using hybrid regression algorithms

    Directory of Open Access Journals (Sweden)

    Amany Abdelsamea

    2017-11-01

    Full Text Available Cloud computing data centers are growing rapidly in both number and capacity to meet the increasing demands for highly-responsive computing and massive storage. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. The reason for this extremely high energy consumption is not just the quantity of computing resources and the power inefficiency of hardware, but rather lies in the inefficient usage of these resources. VM consolidation involves live migration of VMs hence the capability of transferring a VM between physical servers with a close to zero down time. It is an effective way to improve the utilization of resources and increase energy efficiency in cloud data centers. VM consolidation consists of host overload/underload detection, VM selection and VM placement. Most of the current VM consolidation approaches apply either heuristic-based techniques, such as static utilization thresholds, decision-making based on statistical analysis of historical data; or simply periodic adaptation of the VM allocation. Most of those algorithms rely on CPU utilization only for host overload detection. In this paper we propose using hybrid factors to enhance VM consolidation. Specifically we developed a multiple regression algorithm that uses CPU utilization, memory utilization and bandwidth utilization for host overload detection. The proposed algorithm, Multiple Regression Host Overload Detection (MRHOD, significantly reduces energy consumption while ensuring a high level of adherence to Service Level Agreements (SLA since it gives a real indication of host utilization based on three parameters (CPU, Memory, Bandwidth utilizations instead of one parameter only (CPU utilization. Through simulations we show that our approach reduces power consumption by 6 times compared to single factor algorithms using random workload. Also using PlanetLab workload traces we show that MRHOD improves

  20. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.

  1. Advanced hybrid query tree algorithm based on slotted backoff mechanism in RFID

    Directory of Open Access Journals (Sweden)

    XIE Xiaohui

    2013-12-01

    Full Text Available The merits of performance quality for a RFID system are determined by the effectiveness of tag anti-collision algorithm.Many algorithms for RFID system of tag identification have been proposed,but they all have obvious weaknesses,such as slow speed of identification,unstable and so on.The existing algorithms can be divided into two groups,one is based on ALOHA and another is based on query tree.This article is based on the hybrid query tree algorithm,combined with a slotted backoff mechanism and a specific encoding (Manchester encoding.The number of value“1” in every three consecutive bits of tags is used to determine the tag response time slots,which will greatly reduce the time slot of the collision and improve the recognition efficiency.

  2. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    Science.gov (United States)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  3. Combined heat and power economic dispatch by harmony search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Vasebi, A.; Bathaee, S.M.T. [Power System Research Laboratory, Department of Electrical and Electronic Engineering, K.N.Toosi University of Technology, 322-Mirdamad Avenue West, 19697 Tehran (Iran); Fesanghary, M. [Department of Mechanical Engineering, Amirkabir University of Technology, 424-Hafez Avenue, Tehran (Iran)

    2007-12-15

    The optimal utilization of multiple combined heat and power (CHP) systems is a complicated problem that needs powerful methods to solve. This paper presents a harmony search (HS) algorithm to solve the combined heat and power economic dispatch (CHPED) problem. The HS algorithm is a recently developed meta-heuristic algorithm, and has been very successful in a wide variety of optimization problems. The method is illustrated using a test case taken from the literature as well as a new one proposed by authors. Numerical results reveal that the proposed algorithm can find better solutions when compared to conventional methods and is an efficient search algorithm for CHPED problem. (author)

  4. A Hybrid Genetic Algorithm for the Multiple Crossdocks Problem

    Directory of Open Access Journals (Sweden)

    Zhaowei Miao

    2012-01-01

    Full Text Available We study a multiple crossdocks problem with supplier and customer time windows, where any violation of time windows will incur a penalty cost and the flows through the crossdock are constrained by fixed transportation schedules and crossdock capacities. We prove this problem to be NP-hard in the strong sense and therefore focus on developing efficient heuristics. Based on the problem structure, we propose a hybrid genetic algorithm (HGA integrating greedy technique and variable neighborhood search method to solve the problem. Extensive experiments under different scenarios were conducted, and results show that HGA outperforms CPLEX solver, providing solutions in realistic timescales.

  5. An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm

    Directory of Open Access Journals (Sweden)

    W.H. Ip

    2009-10-01

    Full Text Available The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constraints. The proposed algorithm iteratively constructs a set of solutions by GRASP. Furthermore, with multi-agent techniques, we efficiently identify an optimal roster with minimal constraint violations and fair to employees. Experimental results are included to demonstrate the effectiveness of the proposed algorithm.

  6. ROBUST-HYBRID GENETIC ALGORITHM FOR A FLOW-SHOP SCHEDULING PROBLEM (A Case Study at PT FSCM Manufacturing Indonesia

    Directory of Open Access Journals (Sweden)

    Johan Soewanda

    2007-01-01

    Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm

  7. A Hybrid Chaos-Particle Swarm Optimization Algorithm for the Vehicle Routing Problem with Time Window

    Directory of Open Access Journals (Sweden)

    Qi Hu

    2013-04-01

    Full Text Available State-of-the-art heuristic algorithms to solve the vehicle routing problem with time windows (VRPTW usually present slow speeds during the early iterations and easily fall into local optimal solutions. Focusing on solving the above problems, this paper analyzes the particle encoding and decoding strategy of the particle swarm optimization algorithm, the construction of the vehicle route and the judgment of the local optimal solution. Based on these, a hybrid chaos-particle swarm optimization algorithm (HPSO is proposed to solve VRPTW. The chaos algorithm is employed to re-initialize the particle swarm. An efficient insertion heuristic algorithm is also proposed to build the valid vehicle route in the particle decoding process. A particle swarm premature convergence judgment mechanism is formulated and combined with the chaos algorithm and Gaussian mutation into HPSO when the particle swarm falls into the local convergence. Extensive experiments are carried out to test the parameter settings in the insertion heuristic algorithm and to evaluate that they are corresponding to the data’s real-distribution in the concrete problem. It is also revealed that the HPSO achieves a better performance than the other state-of-the-art algorithms on solving VRPTW.

  8. Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography

    Science.gov (United States)

    Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin

    2010-10-01

    For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.

  9. Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.

    2014-01-01

    Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate operation of the PV hybrid system. • Genetic algorithm was used to optimize the sizes of the hybrid system components. • The costs of the pollutant emissions were considered in the optimization. • It is cost effective to power houses in remote areas with such hybrid systems. - Abstract: A sizing optimization of a hybrid system consisting of photovoltaic (PV) panels, a backup source (microturbine or diesel), and a battery system minimizes the cost of energy production (COE), and a complete design of this optimized system supplying a small community with power in the Palestinian Territories is presented in this paper. A scenario that depends on a standalone PV, and another one that depends on a backup source alone were analyzed in this study. The optimization was achieved via the usage of genetic algorithm. The objective function minimizes the COE while covering the load demand with a specified value for the loss of load probability (LLP). The global warming emissions costs have been taken into account in this optimization analysis. Solar radiation data is firstly analyzed, and the tilt angle of the PV panels is then optimized. It was discovered that powering a small rural community using this hybrid system is cost-effective and extremely beneficial when compared to extending the utility grid to supply these remote areas, or just using conventional sources for this purpose. This hybrid system decreases both operating costs and the emission of pollutants. The hybrid system that realized these optimization purposes is the one constructed from a combination of these sources

  10. Generation of Compliant Mechanisms using Hybrid Genetic Algorithm

    Science.gov (United States)

    Sharma, D.; Deb, K.

    2014-10-01

    Compliant mechanism is a single piece elastic structure which can deform to perform the assigned task. In this work, compliant mechanisms are evolved using a constraint based bi-objective optimization formulation which requires one user defined parameter ( η). This user defined parameter limits a gap between a desired path and an actual path traced by the compliant mechanism. The non-linear and discrete optimization problems are solved using the hybrid Genetic Algorithm (GA) wherein domain specific initialization, two-dimensional crossover operator and repairing techniques are adopted. A bit-wise local search method is used with elitist non-dominated sorting genetic algorithm to further refine the compliant mechanisms. Parallel computations are performed on the master-slave architecture to reduce the computation time. A parametric study is carried out for η value which suggests a range to evolve topologically different compliant mechanisms. The applied and boundary conditions to the compliant mechanisms are considered the variables that are evolved by the hybrid GA. The post-analysis of results unveils that the complaint mechanisms are always supported at unique location that can evolve the non-dominated solutions.

  11. A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Qingyang Zhang

    2015-02-01

    Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.

  12. A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.W.; Ding, C.; Zhu, K.J. [China University of Geoscience, Wuhan (China)

    2011-08-15

    In the open vehicle routing problem (OVRP), the objective is to minimize the number of vehicles and the total distance (or time) traveled. This study primarily focuses on solving an open vehicle routing problem (OVRP) by applying a novel hybrid genetic algorithm and the Tabu search (GA-TS), which combines the GA's parallel computing and global optimization with TS's Tabu search skill and fast local search. Firstly, the proposed algorithm uses natural number coding according to the customer demands and the captivity of the vehicle for globe optimization. Secondly, individuals of population do TS local search with a certain degree of probability, namely, do the local routing optimization of all customer sites belong to one vehicle. The mechanism not only improves the ability of global optimization, but also ensures the speed of operation. The algorithm was used in Zhengzhou Coal Mine and Power Supply Co., Ltd.'s transport vehicle routing optimization.

  13. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  14. Evaluation of hybrids algorithms for mass detection in digitalized mammograms

    International Nuclear Information System (INIS)

    Cordero, Jose; Garzon Reyes, Johnson

    2011-01-01

    The breast cancer remains being a significant public health problem, the early detection of the lesions can increase the success possibilities of the medical treatments. The mammography is an image modality effective to early diagnosis of abnormalities, where the medical image is obtained of the mammary gland with X-rays of low radiation, this allows detect a tumor or circumscribed mass between two to three years before that it was clinically palpable, and is the only method that until now achieved reducing the mortality by breast cancer. In this paper three hybrids algorithms for circumscribed mass detection on digitalized mammograms are evaluated. In the first stage correspond to a review of the enhancement and segmentation techniques used in the processing of the mammographic images. After a shape filtering was applied to the resulting regions. By mean of a Bayesian filter the survivors regions were processed, where the characteristics vector for the classifier was constructed with few measurements. Later, the implemented algorithms were evaluated by ROC curves, where 40 images were taken for the test, 20 normal images and 20 images with circumscribed lesions. Finally, the advantages and disadvantages in the correct detection of a lesion of every algorithm are discussed.

  15. Application of fermionic marginal constraints to hybrid quantum algorithms

    Science.gov (United States)

    Rubin, Nicholas C.; Babbush, Ryan; McClean, Jarrod

    2018-05-01

    Many quantum algorithms, including recently proposed hybrid classical/quantum algorithms, make use of restricted tomography of the quantum state that measures the reduced density matrices, or marginals, of the full state. The most straightforward approach to this algorithmic step estimates each component of the marginal independently without making use of the algebraic and geometric structure of the marginals. Within the field of quantum chemistry, this structure is termed the fermionic n-representability conditions, and is supported by a vast amount of literature on both theoretical and practical results related to their approximations. In this work, we introduce these conditions in the language of quantum computation, and utilize them to develop several techniques to accelerate and improve practical applications for quantum chemistry on quantum computers. As a general result, we demonstrate how these marginals concentrate to diagonal quantities when measured on random quantum states. We also show that one can use fermionic n-representability conditions to reduce the total number of measurements required by more than an order of magnitude for medium sized systems in chemistry. As a practical demonstration, we simulate an efficient restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system in the presence of three distinct one qubit error channels, providing evidence these techniques are useful for pre-fault tolerant quantum chemistry experiments.

  16. Operation management of daily economic dispatch using novel hybrid particle swarm optimization and gravitational search algorithm with hybrid mutation strategy

    Science.gov (United States)

    Wang, Yan; Huang, Song; Ji, Zhicheng

    2017-07-01

    This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.

  17. Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    V. D. Sulimov

    2014-01-01

    Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search

  18. Solving a multi-objective location routing problem for infectious waste disposal using hybrid goal programming and hybrid genetic algorithm

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2018-01-01

    Full Text Available Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-Northeastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP. After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP, namely the HGP model, was tested. Finally, the vehicle routing problem (VRP for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA which hybridizes the push forward insertion heuristic (PFIH, genetic algorithm (GA and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles

  19. An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective Distribution Feeder Reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2009-08-15

    This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)

  20. A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System

    Directory of Open Access Journals (Sweden)

    S. M. Odeh

    2015-01-01

    Full Text Available This paper presents a hybrid algorithm that combines Fuzzy Logic Controller (FLC and Genetic Algorithms (GAs and its application on a traffic signal system. FLCs have been widely used in many applications in diverse areas, such as control system, pattern recognition, signal processing, and forecasting. They are, essentially, rule-based systems, in which the definition of these rules and fuzzy membership functions is generally based on verbally formulated rules that overlap through the parameter space. They have a great influence over the performance of the system. On the other hand, the Genetic Algorithm is a metaheuristic that provides a robust search in complex spaces. In this work, it has been used to adapt the decision rules of FLCs that define an intelligent traffic signal system, obtaining a higher performance than a classical FLC-based control. The simulation results yielded by the hybrid algorithm show an improvement of up to 34% in the performance with respect to a standard traffic signal controller, Conventional Traffic Signal Controller (CTC, and up to 31% in the comparison with a traditional logic controller, FLC.

  1. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.

    2016-01-01

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  2. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    Directory of Open Access Journals (Sweden)

    P. Amudha

    2015-01-01

    Full Text Available Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC with Enhanced Particle Swarm Optimization (EPSO to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup’99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  3. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lazzús, Juan A., E-mail: jlazzus@dfuls.cl; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-11

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  4. Optimal Solution for VLSI Physical Design Automation Using Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    I. Hameem Shanavas

    2014-01-01

    Full Text Available In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.

  5. An enhanced DWBA algorithm in hybrid WDM/TDM EPON networks with heterogeneous propagation delays

    Science.gov (United States)

    Li, Chengjun; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng

    2011-12-01

    An enhanced dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM PON is proposed and experimentally demonstrated. In addition to the fairness of bandwidth allocation, this algorithm also considers the varying propagation delays between ONUs and OLT. The simulation based on MATLAB indicates that the improved algorithm has a better performance compared with some other algorithms.

  6. A hybrid nested partitions algorithm for banking facility location problems

    KAUST Repository

    Xia, Li

    2010-07-01

    The facility location problem has been studied in many industries including banking network, chain stores, and wireless network. Maximal covering location problem (MCLP) is a general model for this type of problems. Motivated by a real-world banking facility optimization project, we propose an enhanced MCLP model which captures the important features of this practical problem, namely, varied costs and revenues, multitype facilities, and flexible coverage functions. To solve this practical problem, we apply an existing hybrid nested partitions algorithm to the large-scale situation. We further use heuristic-based extensions to generate feasible solutions more efficiently. In addition, the upper bound of this problem is introduced to study the quality of solutions. Numerical results demonstrate the effectiveness and efficiency of our approach. © 2010 IEEE.

  7. Incoherent beam combining based on the momentum SPGD algorithm

    Science.gov (United States)

    Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng

    2018-05-01

    Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.

  8. A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis

    International Nuclear Information System (INIS)

    Zhang, Chunwei; Cui, Guomin; Peng, Fuyu

    2016-01-01

    Highlights: • The chaotic ant swarm algorithm is proposed to avoid trapping into a local optimum. • The organization variables update strategy makes full use of advantages of the chaotic search. • The structure evolution strategy is developed to handle integer variables optimization. • Overall three cases taken form the literatures are investigated with better optima. - Abstract: The heat exchanger networks synthesis (HENS) still remains an open problem due to its combinatorial nature, which can easily result in suboptimal design and unacceptable calculation effort. In this paper, a novel hybrid chaotic ant swarm algorithm is proposed. The presented algorithm, which consists of a combination of chaotic ant swarm (CAS) algorithm, structure evolution strategy, local optimization strategy and organization variables update strategy, can simultaneously optimize continuous variables and integer variables. The CAS algorithm chaotically searches and generates new solutions in the given space, and subsequently the structure evolution strategy evolves the structures represented by the solutions and limits the search space. Furthermore, the local optimizing strategy and the organization variables update strategy are introduced to enhance the performance of the algorithm. The study of three different cases, found in the literature, revealed special search abilities in both structure space and continuous variable space.

  9. An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows

    KAUST Repository

    Liang, Tengfei

    2013-01-01

    Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.

  10. Genetic algorithm and neural network hybrid approach for job-shop scheduling

    OpenAIRE

    Zhao, Kai; Yang, Shengxiang; Wang, Dingwei

    1998-01-01

    Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...

  11. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  12. Hybrid algorithm of ensemble transform and importance sampling for assimilation of non-Gaussian observations

    Directory of Open Access Journals (Sweden)

    Shin'ya Nakano

    2014-05-01

    Full Text Available A hybrid algorithm that combines the ensemble transform Kalman filter (ETKF and the importance sampling approach is proposed. Since the ETKF assumes a linear Gaussian observation model, the estimate obtained by the ETKF can be biased in cases with nonlinear or non-Gaussian observations. The particle filter (PF is based on the importance sampling technique, and is applicable to problems with nonlinear or non-Gaussian observations. However, the PF usually requires an unrealistically large sample size in order to achieve a good estimation, and thus it is computationally prohibitive. In the proposed hybrid algorithm, we obtain a proposal distribution similar to the posterior distribution by using the ETKF. A large number of samples are then drawn from the proposal distribution, and these samples are weighted to approximate the posterior distribution according to the importance sampling principle. Since the importance sampling provides an estimate of the probability density function (PDF without assuming linearity or Gaussianity, we can resolve the bias due to the nonlinear or non-Gaussian observations. Finally, in the next forecast step, we reduce the sample size to achieve computational efficiency based on the Gaussian assumption, while we use a relatively large number of samples in the importance sampling in order to consider the non-Gaussian features of the posterior PDF. The use of the ETKF is also beneficial in terms of the computational simplicity of generating a number of random samples from the proposal distribution and in weighting each of the samples. The proposed algorithm is not necessarily effective in case that the ensemble is located distant from the true state. However, monitoring the effective sample size and tuning the factor for covariance inflation could resolve this problem. In this paper, the proposed hybrid algorithm is introduced and its performance is evaluated through experiments with non-Gaussian observations.

  13. Combining PCI and CABG: the role of hybrid revascularization.

    Science.gov (United States)

    Green, Kelly D; Lynch, Donald R; Chen, Tyffany P; Zhao, David

    2013-04-01

    Hybrid coronary revascularization combines the benefits of both percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) in the treatment of multivessel coronary artery disease (CAD) by combining the benefits of the LIMA-to-LAD graft and drug eluting stent (DES) to non-LAD regions. Through this approach, a patient receives the long-term benefit of the LIMA graft and avoids the morbidity of a full sternotomy and saphenous vein grafts. Available data related to outcomes following hybrid revascularization is limited to small studies. In this review we seek to provide an overview of hybrid revascularization in the era of modern drug eluting stent technology, discuss appropriate patient selection, and comment on future trial design. Additionally, we review the recent literature pertaining to the hybrid approach.

  14. A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Mimoun YOUNES

    2012-08-01

    Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.

  15. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  16. Identification of chaotic systems by neural network with hybrid learning algorithm

    International Nuclear Information System (INIS)

    Pan, S.-T.; Lai, C.-C.

    2008-01-01

    Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods

  17. Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media

    Science.gov (United States)

    Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.

    2017-09-01

    It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.

  18. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  19. An Enhanced Hybrid Social Based Routing Algorithm for MANET-DTN

    Directory of Open Access Journals (Sweden)

    Martin Matis

    2016-01-01

    Full Text Available A new routing algorithm for mobile ad hoc networks is proposed in this paper: an Enhanced Hybrid Social Based Routing (HSBR algorithm for MANET-DTN as optimal solution for well-connected multihop mobile networks (MANET and/or worse connected MANET with small density of the nodes and/or due to mobility fragmented MANET into two or more subnetworks or islands. This proposed HSBR algorithm is fully decentralized combining main features of both Dynamic Source Routing (DSR and Social Based Opportunistic Routing (SBOR algorithms. The proposed scheme is simulated and evaluated by replaying real life traces which exhibit this highly dynamic topology. Evaluation of new proposed HSBR algorithm was made by comparison with DSR and SBOR. All methods were simulated with different levels of velocity. The results show that HSBR has the highest success of packet delivery, but with higher delay in comparison with DSR, and much lower in comparison with SBOR. Simulation results indicate that HSBR approach can be applicable in networks, where MANET or DTN solutions are separately useless or ineffective. This method provides delivery of the message in every possible situation in areas without infrastructure and can be used as backup method for disaster situation when infrastructure is destroyed.

  20. A dynamic global and local combined particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jiao Bin; Lian Zhigang; Chen Qunxian

    2009-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.

  1. Combined Simulated Annealing Algorithm for the Discrete Facility Location Problem

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2012-01-01

    Full Text Available The combined simulated annealing (CSA algorithm was developed for the discrete facility location problem (DFLP in the paper. The method is a two-layer algorithm, in which the external subalgorithm optimizes the decision of the facility location decision while the internal subalgorithm optimizes the decision of the allocation of customer's demand under the determined location decision. The performance of the CSA is tested by 30 instances with different sizes. The computational results show that CSA works much better than the previous algorithm on DFLP and offers a new reasonable alternative solution method to it.

  2. Hybrid classifiers methods of data, knowledge, and classifier combination

    CERN Document Server

    Wozniak, Michal

    2014-01-01

    This book delivers a definite and compact knowledge on how hybridization can help improving the quality of computer classification systems. In order to make readers clearly realize the knowledge of hybridization, this book primarily focuses on introducing the different levels of hybridization and illuminating what problems we will face with as dealing with such projects. In the first instance the data and knowledge incorporated in hybridization were the action points, and then a still growing up area of classifier systems known as combined classifiers was considered. This book comprises the aforementioned state-of-the-art topics and the latest research results of the author and his team from Department of Systems and Computer Networks, Wroclaw University of Technology, including as classifier based on feature space splitting, one-class classification, imbalance data, and data stream classification.

  3. Comparative Transcriptional Profiling of Three Super-Hybrid Rice Combinations

    Directory of Open Access Journals (Sweden)

    Yonggang Peng

    2014-03-01

    Full Text Available Utilization of heterosis has significantly increased rice yields. However, its mechanism remains unclear. In this study, comparative transcriptional profiles of three super-hybrid rice combinations, LY2163, LY2186 and LYP9, at the flowering and filling stages, were created using rice whole-genome oligonucleotide microarray. The LY2163, LY2186 and LYP9 hybrids yielded 1193, 1630 and 1046 differentially expressed genes (DGs, accounting for 3.2%, 4.4% and 2.8% of the total number of genes (36,926, respectively, after using the z-test (p < 0.01. Functional category analysis showed that the DGs in each hybrid combination were mainly classified into the carbohydrate metabolism and energy metabolism categories. Further analysis of the metabolic pathways showed that DGs were significantly enriched in the carbon fixation pathway (p < 0.01 for all three combinations. Over 80% of the DGs were located in rice quantitative trait loci (QTLs of the Gramene database, of which more than 90% were located in the yield related QTLs in all three combinations, which suggested that there was a correlation between DGs and rice heterosis. Pathway Studio analysis showed the presence of DGs in the circadian regulatory network of all three hybrid combinations, which suggested that the circadian clock had a role in rice heterosis. Our results provide information that can help to elucidate the molecular mechanism underlying rice heterosis.

  4. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    Science.gov (United States)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  5. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    Science.gov (United States)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  6. A HYBRID HEURISTIC ALGORITHM FOR SOLVING THE RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP

    Directory of Open Access Journals (Sweden)

    Juan Carlos Rivera

    Full Text Available The Resource Constrained Project Scheduling Problem (RCPSP is a problem of great interest for the scientific community because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently, combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP, Scatter Search and Justification. The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480 instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other researchers at international level, where a prominent place is obtained, according to Chen (2011.

  7. Combining Performance and Flexibility for RMS with a Hybrid Architecture

    NARCIS (Netherlands)

    Dennis Koole; Arjan Groenewegen; Daniël Telgen; Patrick Wit; Leo van Moergestel; Arjan van Zanten; John-Jules Meyer; Ing. Erik Puik; Dick van der Steen; Pascal Muller

    2013-01-01

    Author supplied Combining Performance and Flexibility for RMS with a Hybrid Architecture Dani¨el Telgen 12? , Leo van Moergestel 1 , Erik Puik 1 , Pascal Muller 1 , Arjan Groenewegen 1 , Dick van der Steen 1 , Dennis Koole 1 , Patrick de Wit 1 , Arjen van Zanten 1 , and John-Jules

  8. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  9. Hybrid SOA-SQP algorithm for dynamic economic dispatch with valve-point effects

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramani, S.; Swarup, K.S. [Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2010-12-15

    This paper proposes a hybrid technique combining a new heuristic algorithm named seeker optimization algorithm (SOA) and sequential quadratic programming (SQP) method for solving dynamic economic dispatch problem with valve-point effects. The SOA is based on the concept of simulating the act of human searching, where the search direction is based on the empirical gradient (EG) by evaluating the response to the position changes and the step length is based on uncertainty reasoning by using a simple fuzzy rule. In this paper, SOA is used as a base level search, which can give a good direction to the optimal global region and SQP as a local search to fine tune the solution obtained from SOA. Thus SQP guides SOA to find optimal or near optimal solution in the complex search space. Two test systems i.e., 5 unit with losses and 10 unit without losses, have been taken to validate the efficiency of the proposed hybrid method. Simulation results clearly show that the proposed method outperforms the existing method in terms of solution quality. (author)

  10. A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles

    Directory of Open Access Journals (Sweden)

    Ricardo Soto

    2015-01-01

    Full Text Available The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n2 × n2 grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n2. Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods.

  11. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics - Monte Carlo Canonical Propagation Algorithm.

    Science.gov (United States)

    Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît

    2016-04-12

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.

  12. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    Science.gov (United States)

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  13. Hybrid fur rendering: combining volumetric fur with explicit hair strands

    DEFF Research Database (Denmark)

    Andersen, Tobias Grønbeck; Falster, Viggo; Frisvad, Jeppe Revall

    2016-01-01

    Hair is typically modeled and rendered using either explicitly defined hair strand geometry or a volume texture of hair densities. Taken each on their own, these two hair representations have difficulties in the case of animal fur as it consists of very dense and thin undercoat hairs in combination...... with coarse guard hairs. Explicit hair strand geometry is not well-suited for the undercoat hairs, while volume textures are not well-suited for the guard hairs. To efficiently model and render both guard hairs and undercoat hairs, we present a hybrid technique that combines rasterization of explicitly...... defined guard hairs with ray marching of a prismatic shell volume with dynamic resolution. The latter is the key to practical combination of the two techniques, and it also enables a high degree of detail in the undercoat. We demonstrate that our hybrid technique creates a more detailed and soft fur...

  14. A New Hybrid Whale Optimizer Algorithm with Mean Strategy of Grey Wolf Optimizer for Global Optimization

    Directory of Open Access Journals (Sweden)

    Narinder Singh

    2018-03-01

    Full Text Available The quest for an efficient nature-inspired optimization technique has continued over the last few decades. In this paper, a hybrid nature-inspired optimization technique has been proposed. The hybrid algorithm has been constructed using Mean Grey Wolf Optimizer (MGWO and Whale Optimizer Algorithm (WOA. We have utilized the spiral equation of Whale Optimizer Algorithm for two procedures in the Hybrid Approach GWO (HAGWO algorithm: (i firstly, we used the spiral equation in Grey Wolf Optimizer algorithm for balance between the exploitation and the exploration process in the new hybrid approach; and (ii secondly, we also applied this equation in the whole population in order to refrain from the premature convergence and trapping in local minima. The feasibility and effectiveness of the hybrid algorithm have been tested by solving some standard benchmarks, XOR, Baloon, Iris, Breast Cancer, Welded Beam Design, Pressure Vessel Design problems and comparing the results with those obtained through other metaheuristics. The solutions prove that the newly existing hybrid variant has higher stronger stability, faster convergence rate and computational accuracy than other nature-inspired metaheuristics on the maximum number of problems and can successfully resolve the function of constrained nonlinear optimization in reality.

  15. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zheng, E-mail: 19994035@sina.com [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Wang, Jun; Zhou, Bihua [National Defense Key Laboratory on Lightning Protection and Electromagnetic Camouflage, PLA University of Science and Technology, Nanjing 210007 (China); Zhou, Shudao [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  16. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    International Nuclear Information System (INIS)

    Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2014-01-01

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm

  17. Applications of hybrid genetic algorithms in seismic tomography

    Science.gov (United States)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet T.; Papazachos, Constantinos

    2011-11-01

    Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem equations, adopting an iterative procedure which typically employs partial derivatives in order to optimize the starting (initial) model by minimizing a misfit (penalty) function. Unfortunately, especially for highly non-linear cases, the final model strongly depends on the initial model, hence it is prone to solution-entrapment in local minima of the misfit function, while the derivative calculation is often computationally inefficient and creates instabilities when numerical approximations are used. An alternative is to employ global techniques which do not rely on partial derivatives, are independent of the misfit form and are computationally robust. Such methods employ pseudo-randomly generated models (sampling an appropriately selected section of the model space) which are assessed in terms of their data-fit. A typical example is the class of methods known as genetic algorithms (GA), which achieves the aforementioned approximation through model representation and manipulations, and has attracted the attention of the earth sciences community during the last decade, with several applications already presented for several geophysical problems. In this paper, we examine the efficiency of the combination of the typical regularized least-squares and genetic methods for a typical seismic tomography problem. The proposed approach combines a local (LOM) and a global (GOM) optimization method, in an attempt to overcome the limitations of each individual approach, such as local minima and slow convergence, respectively. The potential of both optimization methods is tested and compared, both independently and jointly, using the several test models and synthetic refraction travel-time date sets

  18. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    Science.gov (United States)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  19. Combining ability of tomato lines in saladette-type hybrids

    Directory of Open Access Journals (Sweden)

    Marcela Carvalho Andrade

    2014-09-01

    Full Text Available Given the growing importance of the saladette fresh tomato market in Brazil, the objective of this paper was to assess the combining abilities of lines potentially useful as parents of hybridsin this class. The experiment consisted of28 genotypes, 18 hybrids from a partial diallel crossobtained from crossing two groups of tomato lines (Group I, with 9 parents, and Group II, with 2 parents, 8 F1 experimental hybrids, and 2 commercial checks. Traits evaluated were total yield, mean fruit mass, fruit shelf life, shape and percentsoluble solids. Additive genetic effects were generally more important than non-additive effects for all traits evaluated. The TOM-542 and TOM-734 lines, from group I, and the TOM-720 line, from group II, presented high general combining ability (GCA estimates for most of the traits of importance for saladette tomatoes, and were therefore considered suitable parents of hybrids of this class. Higher fruit shelf life of TOM-723 as a parental line compared with TOM-720 (Group II, was mainly attributed to the presence in the former of the norA allele, which controls longer fruit shelf life. F1 hybrids (TOM-542 x TOM-720, (TOM-580 x TOM-720, (TOM-734 x TOM-720, and (TOM-727 x TOM-720 showed good performance and fruit quality and thus constitute possible commercial varieties.

  20. Application of Matrix Pencil Algorithm to Mobile Robot Localization Using Hybrid DOA/TOA Estimation

    Directory of Open Access Journals (Sweden)

    Lan Anh Trinh

    2012-12-01

    Full Text Available Localization plays an important role in robotics for the tasks of monitoring, tracking and controlling a robot. Much effort has been made to address robot localization problems in recent years. However, despite many proposed solutions and thorough consideration, in terms of developing a low-cost and fast processing method for multiple-source signals, the robot localization problem is still a challenge. In this paper, we propose a solution for robot localization with regards to these concerns. In order to locate the position of a robot, both the coordinate and the orientation of a robot are necessary. We develop a localization method using the Matrix Pencil (MP algorithm for hybrid detection of direction of arrival (DOA and time of arrival (TOA. TOA of the signal is estimated for computing the distance between the mobile robot and a base station (BS. Based on the distance and the estimated DOA, we can estimate the mobile robot's position. The characteristics of the algorithm are examined through analysing simulated experiments and the results demonstrate the advantages of our method over previous works in dealing with the above challenges. The method is constructed based on the low-cost infrastructure of radio frequency devices; the DOA/TOA estimation is performed with just single value decomposition for fast processing. Finally, the MP algorithm combined with tracking using a Kalman filter allows our proposed method to locate the positions of multiple source signals.

  1. A hybrid algorithm for stochastic single-source capacitated facility location problem with service level requirements

    Directory of Open Access Journals (Sweden)

    Hosseinali Salemi

    2016-04-01

    Full Text Available Facility location models are observed in many diverse areas such as communication networks, transportation, and distribution systems planning. They play significant role in supply chain and operations management and are one of the main well-known topics in strategic agenda of contemporary manufacturing and service companies accompanied by long-lasting effects. We define a new approach for solving stochastic single source capacitated facility location problem (SSSCFLP. Customers with stochastic demand are assigned to set of capacitated facilities that are selected to serve them. It is demonstrated that problem can be transformed to deterministic Single Source Capacitated Facility Location Problem (SSCFLP for Poisson demand distribution. A hybrid algorithm which combines Lagrangian heuristic with adjusted mixture of Ant colony and Genetic optimization is proposed to find lower and upper bounds for this problem. Computational results of various instances with distinct properties indicate that proposed solving approach is efficient.

  2. A hybrid algorithm for selecting head-related transfer function based on similarity of anthropometric structures

    Science.gov (United States)

    Zeng, Xiang-Yang; Wang, Shu-Guang; Gao, Li-Ping

    2010-09-01

    As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.

  3. A Hybrid Algorithm for Solving the Economic Lot and Delivery Scheduling Problem in the Common Cycle Case

    DEFF Research Database (Denmark)

    Ju, Suquan; Clausen, Jens

    2004-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit. This incl......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit....... This includes the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid...

  4. An adaptive tensor voting algorithm combined with texture spectrum

    Science.gov (United States)

    Wang, Gang; Su, Qing-tang; Lü, Gao-huan; Zhang, Xiao-feng; Liu, Yu-huan; He, An-zhi

    2015-01-01

    An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.

  5. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  6. Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    R. V. V. Krishna

    2016-10-01

    Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.

  7. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids

    Directory of Open Access Journals (Sweden)

    Jing Li

    2012-12-01

    Full Text Available In this paper, we develop a simple algorithm to determine the required number of generating units of wind-turbine generator and photovoltaic array, and the associated storage capacity for stand-alone hybrid microgrid. The algorithm is based on the observation that the state of charge of battery should be periodically invariant. The optimal sizing of hybrid microgrid is given in the sense that the life cycle cost of system is minimized while the given load power demand can be satisfied without load rejection. We also report a case study to show the efficacy of the developed algorithm.

  8. Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang

    2017-09-01

    Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.

  9. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm

    Science.gov (United States)

    Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-01-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443

  10. Comparison Of Hybrid Sorting Algorithms Implemented On Different Parallel Hardware Platforms

    Directory of Open Access Journals (Sweden)

    Dominik Zurek

    2013-01-01

    Full Text Available Sorting is a common problem in computer science. There are lot of well-known sorting algorithms created for sequential execution on a single processor. Recently, hardware platforms enable to create wide parallel algorithms. We have standard processors consist of multiple cores and hardware accelerators like GPU. The graphic cards with their parallel architecture give new possibility to speed up many algorithms. In this paper we describe results of implementation of a few different sorting algorithms on GPU cards and multicore processors. Then hybrid algorithm will be presented which consists of parts executed on both platforms, standard CPU and GPU.

  11. Combined Intelligent Control (CIC an Intelligent Decision Making Algorithm

    Directory of Open Access Journals (Sweden)

    Moteaal Asadi Shirzi

    2007-03-01

    Full Text Available The focus of this research is to introduce the concept of combined intelligent control (CIC as an effective architecture for decision-making and control of intelligent agents and multi-robot sets. Basically, the CIC is a combination of various architectures and methods from fields such as artificial intelligence, Distributed Artificial Intelligence (DAI, control and biological computing. Although any intelligent architecture may be very effective for some specific applications, it could be less for others. Therefore, CIC combines and arranges them in a way that the strengths of any approach cover the weaknesses of others. In this paper first, we introduce some intelligent architectures from a new aspect. Afterward, we offer the CIC by combining them. CIC has been executed in a multi-agent set. In this set, robots must cooperate to perform some various tasks in a complex and nondeterministic environment with a low sensory feedback and relationship. In order to investigate, improve, and correct the combined intelligent control method, simulation software has been designed which will be presented and considered. To show the ability of the CIC algorithm as a distributed architecture, a central algorithm is designed and compared with the CIC.

  12. A Hybrid Genetic Wind Driven Heuristic Optimization Algorithm for Demand Side Management in Smart Grid

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2017-03-01

    Full Text Available In recent years, demand side management (DSM techniques have been designed for residential, industrial and commercial sectors. These techniques are very effective in flattening the load profile of customers in grid area networks. In this paper, a heuristic algorithms-based energy management controller is designed for a residential area in a smart grid. In essence, five heuristic algorithms (the genetic algorithm (GA, the binary particle swarm optimization (BPSO algorithm, the bacterial foraging optimization algorithm (BFOA, the wind-driven optimization (WDO algorithm and our proposed hybrid genetic wind-driven (GWD algorithm are evaluated. These algorithms are used for scheduling residential loads between peak hours (PHs and off-peak hours (OPHs in a real-time pricing (RTP environment while maximizing user comfort (UC and minimizing both electricity cost and the peak to average ratio (PAR. Moreover, these algorithms are tested in two scenarios: (i scheduling the load of a single home and (ii scheduling the load of multiple homes. Simulation results show that our proposed hybrid GWD algorithm performs better than the other heuristic algorithms in terms of the selected performance metrics.

  13. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

    KAUST Repository

    Mehbodniya, Abolfazl

    2010-07-01

    One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.

  14. HYBRID CHRIPTOGRAPHY STREAM CIPHER AND RSA ALGORITHM WITH DIGITAL SIGNATURE AS A KEY

    Directory of Open Access Journals (Sweden)

    Grace Lamudur Arta Sihombing

    2017-03-01

    Full Text Available Confidentiality of data is very important in communication. Many cyber crimes that exploit security holes for entry and manipulation. To ensure the security and confidentiality of the data, required a certain technique to encrypt data or information called cryptography. It is one of the components that can not be ignored in building security. And this research aimed to analyze the hybrid cryptography with symmetric key by using a stream cipher algorithm and asymmetric key by using RSA (Rivest Shamir Adleman algorithm. The advantages of hybrid cryptography is the speed in processing data using a symmetric algorithm and easy transfer of key using asymmetric algorithm. This can increase the speed of transaction processing data. Stream Cipher Algorithm using the image digital signature as a keys, that will be secured by the RSA algorithm. So, the key for encryption and decryption are different. Blum Blum Shub methods used to generate keys for the value p, q on the RSA algorithm. It will be very difficult for a cryptanalyst to break the key. Analysis of hybrid cryptography stream cipher and RSA algorithms with digital signatures as a key, indicates that the size of the encrypted file is equal to the size of the plaintext, not to be larger or smaller so that the time required for encryption and decryption process is relatively fast.

  15. A flocking algorithm for multi-agent systems with connectivity preservation under hybrid metric-topological interactions.

    Science.gov (United States)

    He, Chenlong; Feng, Zuren; Ren, Zhigang

    2018-01-01

    In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.

  16. A flocking algorithm for multi-agent systems with connectivity preservation under hybrid metric-topological interactions.

    Directory of Open Access Journals (Sweden)

    Chenlong He

    Full Text Available In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.

  17. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional

  18. A new hybrid imperialist competitive algorithm on data clustering

    Indian Academy of Sciences (India)

    Modified imperialist competitive algorithm; simulated annealing; ... Clustering is one of the unsupervised learning branches where a set of patterns, usually vectors ..... machine classification is based on design, operation, and/or purpose.

  19. A hybrid multi-objective evolutionary algorithm approach for ...

    Indian Academy of Sciences (India)

    V K MANUPATI

    for handling sequence- and machine-dependent set-up times ... algorithm has been compared to that of multi-objective particle swarm optimization (MOPSO) and conventional ..... position and cognitive learning factor are considered for.

  20. Hybrid and dependent task scheduling algorithm for on-board system software

    Institute of Scientific and Technical Information of China (English)

    魏振华; 洪炳熔; 乔永强; 蔡则苏; 彭俊杰

    2003-01-01

    In order to solve the hybrid and dependent task scheduling and critical source allocation problems, atask scheduling algorithm has been developed by first presenting the tasks, and then describing the hybrid anddependent scheduling algorithm and deriving the predictable schedulability condition. The performance of thisagorithm was evaluated through simulation, and it is concluded from the evaluation results that the hybrid taskscheduling subalgorithm based on the comparison factor can be used to solve the problem of aperiodic task beingblocked by periodic task in the traditional operating system for a very long time, which results in poor schedu-ling predictability; and the resource allocation subalgorithm based on schedulability analysis can be used tosolve the problems of critical section conflict, ceiling blocking and priority inversion; and the scheduling algo-rithm is nearest optimal when the abortable critical section is 0.6.

  1. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  2. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  3. Active Noise Control Using Modified FsLMS and Hybrid PSOFF Algorithm

    Directory of Open Access Journals (Sweden)

    Ranjan Walia

    2018-04-01

    Full Text Available Active noise control is an efficient technique for noise cancellation of the system, which has been defined in this paper with the aid of Modified Filtered-s Least Mean Square (MFsLMS algorithm. The Hybrid Particle Swarm Optimization and Firefly (HPSOFF algorithm are used to identify the stability factor of the MFsLMS algorithm. The computational difficulty of the modified algorithm is reduced when compared with the original Filtered-s Least Mean Square (FsLMS algorithm. The noise sources are removed from the signal and it is compared with the existing FsLMS algorithm. The performance of the system is established with the normalized mean square error for two different types of noises. The proposed method has also been compared with the existing algorithms for the same purposes.

  4. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  5. Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.

    Science.gov (United States)

    Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania

    2015-01-01

    This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.

  6. Strong Convergence of Hybrid Algorithm for Asymptotically Nonexpansive Mappings in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    Juguo Su

    2012-01-01

    Full Text Available The hybrid algorithms for constructing fixed points of nonlinear mappings have been studied extensively in recent years. The advantage of this methods is that one can prove strong convergence theorems while the traditional iteration methods just have weak convergence. In this paper, we propose two types of hybrid algorithm to find a common fixed point of a finite family of asymptotically nonexpansive mappings in Hilbert spaces. One is cyclic Mann's iteration scheme, and the other is cyclic Halpern's iteration scheme. We prove the strong convergence theorems for both iteration schemes.

  7. An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm

    OpenAIRE

    Cho, Vincent; Wu, Gene Pak Kit; Ip, W.H.

    2009-01-01

    The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP) for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constrain...

  8. Face recognition: database acquisition, hybrid algorithms, and human studies

    Science.gov (United States)

    Gutta, Srinivas; Huang, Jeffrey R.; Singh, Dig; Wechsler, Harry

    1997-02-01

    One of the most important technologies absent in traditional and emerging frontiers of computing is the management of visual information. Faces are accessible `windows' into the mechanisms that govern our emotional and social lives. The corresponding face recognition tasks considered herein include: (1) Surveillance, (2) CBIR, and (3) CBIR subject to correct ID (`match') displaying specific facial landmarks such as wearing glasses. We developed robust matching (`classification') and retrieval schemes based on hybrid classifiers and showed their feasibility using the FERET database. The hybrid classifier architecture consist of an ensemble of connectionist networks--radial basis functions-- and decision trees. The specific characteristics of our hybrid architecture include (a) query by consensus as provided by ensembles of networks for coping with the inherent variability of the image formation and data acquisition process, and (b) flexible and adaptive thresholds as opposed to ad hoc and hard thresholds. Experimental results, proving the feasibility of our approach, yield (i) 96% accuracy, using cross validation (CV), for surveillance on a data base consisting of 904 images (ii) 97% accuracy for CBIR tasks, on a database of 1084 images, and (iii) 93% accuracy, using CV, for CBIR subject to correct ID match tasks on a data base of 200 images.

  9. Two new algorithms to combine kriging with stochastic modelling

    Science.gov (United States)

    Venema, Victor; Lindau, Ralf; Varnai, Tamas; Simmer, Clemens

    2010-05-01

    Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated driven by such a kriged field. Stochastic modelling aims at reproducing the statistical structure of the data in space and time. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. While stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. This requires the use of so-called constrained stochastic models. Because radiative transfer through clouds is a highly nonlinear process, it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately. In addition, the correlations within the cloud field are important, especially because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. Up to now, however, we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually

  10. A new hybrid-FBP inversion algorithm with inverse distance backprojection weight for CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhadhan, A.V.; Rajgopal, Kasi

    2011-07-01

    This paper presents a new hybrid filtered backprojection (FBP) algorithm for fan-beam and cone-beam scan. The hybrid reconstruction kernel is the sum of the ramp and Hilbert filters. We modify the redundancy weighting function to reduce the inverse square distance weighting in the backprojection to inverse distance weight. The modified weight also eliminates the derivative associated with the Hilbert filter kernel. Thus, the proposed reconstruction algorithm has the advantages of the inverse distance weight in the backprojection. We evaluate the performance of the new algorithm in terms of the magnitude level and uniformity in noise for the fan-beam geometry. The computer simulations show that the spatial resolution is nearly identical to the standard fan-beam ramp filtered algorithm while the noise is spatially uniform and the noise variance is reduced. (orig.)

  11. Hybrid Genetic Algorithm with Multiparents Crossover for Job Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Noor Hasnah Moin

    2015-01-01

    Full Text Available The job shop scheduling problem (JSSP is one of the well-known hard combinatorial scheduling problems. This paper proposes a hybrid genetic algorithm with multiparents crossover for JSSP. The multiparents crossover operator known as extended precedence preservative crossover (EPPX is able to recombine more than two parents to generate a single new offspring distinguished from common crossover operators that recombine only two parents. This algorithm also embeds a schedule generation procedure to generate full-active schedule that satisfies precedence constraints in order to reduce the search space. Once a schedule is obtained, a neighborhood search is applied to exploit the search space for better solutions and to enhance the GA. This hybrid genetic algorithm is simulated on a set of benchmarks from the literatures and the results are compared with other approaches to ensure the sustainability of this algorithm in solving JSSP. The results suggest that the implementation of multiparents crossover produces competitive results.

  12. An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM

    Science.gov (United States)

    Wang, Juan

    2018-03-01

    The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.

  13. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lian, Jijian; He, Longjun; Ma, Bin; Peng, Wenxiang; Li, Huokun

    2013-01-01

    Research on optimal sensor placement (OSP) has become very important due to the need to obtain effective testing results with limited testing resources in health monitoring. In this study, a new methodology is proposed to select the best sensor locations for large structures. First, a novel fitness function derived from the nearest neighbour index is proposed to overcome the drawbacks of the effective independence method for OSP for large structures. This method maximizes the contribution of each sensor to modal observability and simultaneously avoids the redundancy of information between the selected degrees of freedom. A hybrid algorithm combining the improved discrete particle swarm optimization (DPSO) with the clonal selection algorithm is then implemented to optimize the proposed fitness function effectively. Finally, the proposed method is applied to an arch dam for performance verification. The results show that the proposed hybrid swarm intelligence algorithm outperforms a genetic algorithm with decimal two-dimension array encoding and DPSO in the capability of global optimization. The new fitness function is advantageous in terms of sensor distribution and ensuring a well-conditioned information matrix and orthogonality of modes, indicating that this method may be used to provide guidance for OSP in various large structures. (paper)

  14. Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm

    Science.gov (United States)

    2009-03-10

    xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences

  15. Image Denoising Algorithm Combined with SGK Dictionary Learning and Principal Component Analysis Noise Estimation

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    2018-01-01

    Full Text Available SGK (sequential generalization of K-means dictionary learning denoising algorithm has the characteristics of fast denoising speed and excellent denoising performance. However, the noise standard deviation must be known in advance when using SGK algorithm to process the image. This paper presents a denoising algorithm combined with SGK dictionary learning and the principal component analysis (PCA noise estimation. At first, the noise standard deviation of the image is estimated by using the PCA noise estimation algorithm. And then it is used for SGK dictionary learning algorithm. Experimental results show the following: (1 The SGK algorithm has the best denoising performance compared with the other three dictionary learning algorithms. (2 The SGK algorithm combined with PCA is superior to the SGK algorithm combined with other noise estimation algorithms. (3 Compared with the original SGK algorithm, the proposed algorithm has higher PSNR and better denoising performance.

  16. A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks

    Science.gov (United States)

    Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207

  17. Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing

    Directory of Open Access Journals (Sweden)

    Kumar Deepak

    2015-12-01

    Full Text Available Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE, Non Dominated Sorting Genetic Algorithm (NSGA II and Simulated Annealing (SA. It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.

  18. Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.

    Science.gov (United States)

    Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio

    2018-02-21

    Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.

  19. Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data

    Science.gov (United States)

    Pakmanesh, Parvaneh; Goudarzi, Alireza; Kourki, Meisam

    2018-06-01

    Getting information of seismic data depends on deconvolution as an important processing step; it provides the reflectivity series by signal compression. This compression can be obtained by removing the wavelet effects on the traces. The recently blind deconvolution has provided reliable performance for sparse signal recovery. In this study, two deconvolution methods have been implemented to the seismic data; the convolution of these methods provides a robust spiking deconvolution approach. This hybrid deconvolution is applied using the sparse deconvolution (MM algorithm) and the Smoothed-One-Over-Two algorithm (SOOT) in a chain. The MM algorithm is based on the minimization of the cost function defined by standards l1 and l2. After applying the two algorithms to the seismic data, the SOOT algorithm provided well-compressed data with a higher resolution than the MM algorithm. The SOOT algorithm requires initial values to be applied for real data, such as the wavelet coefficients and reflectivity series that can be achieved through the MM algorithm. The computational cost of the hybrid method is high, and it is necessary to be implemented on post-stack or pre-stack seismic data of complex structure regions.

  20. A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models.

    Science.gov (United States)

    Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Liu, Xiaohui

    2012-01-01

    In this paper, a hybrid extended Kalman filter (EKF) and switching particle swarm optimization (SPSO) algorithm is proposed for jointly estimating both the parameters and states of the lateral flow immunoassay model through available short time-series measurement. Our proposed method generalizes the well-known EKF algorithm by imposing physical constraints on the system states. Note that the state constraints are encountered very often in practice that give rise to considerable difficulties in system analysis and design. The main purpose of this paper is to handle the dynamic modeling problem with state constraints by combining the extended Kalman filtering and constrained optimization algorithms via the maximization probability method. More specifically, a recently developed SPSO algorithm is used to cope with the constrained optimization problem by converting it into an unconstrained optimization one through adding a penalty term to the objective function. The proposed algorithm is then employed to simultaneously identify the parameters and states of a lateral flow immunoassay model. It is shown that the proposed algorithm gives much improved performance over the traditional EKF method.

  1. Logic hybrid simulation-optimization algorithm for distillation design

    OpenAIRE

    Caballero Suárez, José Antonio

    2014-01-01

    In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues relat...

  2. Algorithm of constructing hybrid effective modules for elastic isotropic composites

    Science.gov (United States)

    Svetashkov, A. A.; Miciński, J.; Kupriyanov, N. A.; Barashkov, V. N.; Lushnikov, A. V.

    2017-02-01

    The algorithm of constructing of new effective elastic characteristics of two-component composites based on the superposition of the models of Reiss and Voigt, Hashin and Strikman, as well as models of the geometric average for effective modules. These effective characteristics are inside forks Voigt and Reiss. Additionally, the calculations of the stress-strain state of composite structures with new effective characteristics give more accurate prediction than classical models do.

  3. A comprehensive performance analysis of EEMD-BLMS and DWT-NN hybrid algorithms for ECG denoising

    DEFF Research Database (Denmark)

    Kærgaard, Kevin; Jensen, Søren Hjøllund; Puthusserypady, Sadasivan

    2016-01-01

    Electrocardiogram (ECG) is a widely used non-invasive method to study the rhythmic activity of theheart. These signals, however, are often obscured by artifacts/noises from various sources and mini-mization of these artifacts is of paramount importance for detecting anomalies. This paper presents...... athorough analysis of the performance of two hybrid signal processing schemes ((i) Ensemble EmpiricalMode Decomposition (EEMD) based method in conjunction with the Block Least Mean Square (BLMS)adaptive algorithm (EEMD-BLMS), and (ii) Discrete Wavelet Transform (DWT) combined with the Neu-ral Network (NN...

  4. A Hybrid Genetic-Algorithm Space-Mapping Tool for the Optimization of Antennas

    DEFF Research Database (Denmark)

    Pantoja, Mario Fernández; Meincke, Peter; Bretones, Amelia Rubio

    2007-01-01

    A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a genetic algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...

  5. A hybrid Genetic and Simulated Annealing Algorithm for Chordal Ring implementation in large-scale networks

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2011-01-01

    The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology of the...

  6. Accelerating staggered-fermion dynamics with the rational hybrid Monte Carlo algorithm

    International Nuclear Information System (INIS)

    Clark, M. A.; Kennedy, A. D.

    2007-01-01

    Improved staggered-fermion formulations are a popular choice for lattice QCD calculations. Historically, the algorithm used for such calculations has been the inexact R algorithm, which has systematic errors that only vanish as the square of the integration step size. We describe how the exact rational hybrid Monte Carlo (RHMC) algorithm may be used in this context, and show that for parameters corresponding to current state-of-the-art computations it leads to a factor of approximately seven decrease in cost as well as having no step-size errors

  7. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.

    Science.gov (United States)

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.

  8. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm

    Science.gov (United States)

    Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung

    2018-04-01

    Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.

  9. A MODIFIED GIFFLER AND THOMPSON ALGORITHM COMBINED WITH DYNAMIC SLACK TIME FOR SOLVING DYNAMIC SCHEDULE PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tanti Octavia

    2003-01-01

    Full Text Available A Modified Giffler and Thompson algorithm combined with dynamic slack time is used to allocate machines resources in dynamic nature. It was compared with a Real Time Order Promising (RTP algorithm. The performance of modified Giffler and Thompson and RTP algorithms are measured by mean tardiness. The result shows that modified Giffler and Thompson algorithm combined with dynamic slack time provides significantly better result compared with RTP algorithm in terms of mean tardiness.

  10. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

  11. Multisensors Cooperative Detection Task Scheduling Algorithm Based on Hybrid Task Decomposition and MBPSO

    Directory of Open Access Journals (Sweden)

    Changyun Liu

    2017-01-01

    Full Text Available A multisensor scheduling algorithm based on the hybrid task decomposition and modified binary particle swarm optimization (MBPSO is proposed. Firstly, aiming at the complex relationship between sensor resources and tasks, a hybrid task decomposition method is presented, and the resource scheduling problem is decomposed into subtasks; then the sensor resource scheduling problem is changed into the match problem of sensors and subtasks. Secondly, the resource match optimization model based on the sensor resources and tasks is established, which considers several factors, such as the target priority, detecting benefit, handover times, and resource load. Finally, MBPSO algorithm is proposed to solve the match optimization model effectively, which is based on the improved updating means of particle’s velocity and position through the doubt factor and modified Sigmoid function. The experimental results show that the proposed algorithm is better in terms of convergence velocity, searching capability, solution accuracy, and efficiency.

  12. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    Science.gov (United States)

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  13. A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Yongquan Dong

    2018-04-01

    Full Text Available Providing accurate electric load forecasting results plays a crucial role in daily energy management of the power supply system. Due to superior forecasting performance, the hybridizing support vector regression (SVR model with evolutionary algorithms has received attention and deserves to continue being explored widely. The cuckoo search (CS algorithm has the potential to contribute more satisfactory electric load forecasting results. However, the original CS algorithm suffers from its inherent drawbacks, such as parameters that require accurate setting, loss of population diversity, and easy trapping in local optima (i.e., premature convergence. Therefore, proposing some critical improvement mechanisms and employing an improved CS algorithm to determine suitable parameter combinations for an SVR model is essential. This paper proposes the SVR with chaotic cuckoo search (SVRCCS model based on using a tent chaotic mapping function to enrich the cuckoo search space and diversify the population to avoid trapping in local optima. In addition, to deal with the cyclic nature of electric loads, a seasonal mechanism is combined with the SVRCCS model, namely giving a seasonal SVR with chaotic cuckoo search (SSVRCCS model, to produce more accurate forecasting performances. The numerical results, tested by using the datasets from the National Electricity Market (NEM, Queensland, Australia and the New York Independent System Operator (NYISO, NY, USA, show that the proposed SSVRCCS model outperforms other alternative models.

  14. Creation of operation algorithms for combined operation of anti-lock braking system (ABS) and electric machine included in the combined power plant

    Science.gov (United States)

    Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.

    2018-02-01

    The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.

  15. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-01-01

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives

  16. An Interval Type-2 Fuzzy System with a Species-Based Hybrid Algorithm for Nonlinear System Control Design

    Directory of Open Access Journals (Sweden)

    Chung-Ta Li

    2014-01-01

    Full Text Available We propose a species-based hybrid of the electromagnetism-like mechanism (EM and back-propagation algorithms (SEMBP for an interval type-2 fuzzy neural system with asymmetric membership functions (AIT2FNS design. The interval type-2 asymmetric fuzzy membership functions (IT2 AFMFs and the TSK-type consequent part are adopted to implement the network structure in AIT2FNS. In addition, the type reduction procedure is integrated into an adaptive network structure to reduce computational complexity. Hence, the AIT2FNS can enhance the approximation accuracy effectively by using less fuzzy rules. The AIT2FNS is trained by the SEMBP algorithm, which contains the steps of uniform initialization, species determination, local search, total force calculation, movement, and evaluation. It combines the advantages of EM and back-propagation (BP algorithms to attain a faster convergence and a lower computational complexity. The proposed SEMBP algorithm adopts the uniform method (which evenly scatters solution agents over the feasible solution region and the species technique to improve the algorithm’s ability to find the global optimum. Finally, two illustrative examples of nonlinear systems control are presented to demonstrate the performance and the effectiveness of the proposed AIT2FNS with the SEMBP algorithm.

  17. A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering

    Directory of Open Access Journals (Sweden)

    Li Ma

    2015-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.

  18. A hybrid genetic algorithm and linear regression for prediction of NOx emission in power generation plant

    International Nuclear Information System (INIS)

    Bunyamin, Muhammad Afif; Yap, Keem Siah; Aziz, Nur Liyana Afiqah Abdul; Tiong, Sheih Kiong; Wong, Shen Yuong; Kamal, Md Fauzan

    2013-01-01

    This paper presents a new approach of gas emission estimation in power generation plant using a hybrid Genetic Algorithm (GA) and Linear Regression (LR) (denoted as GA-LR). The LR is one of the approaches that model the relationship between an output dependant variable, y, with one or more explanatory variables or inputs which denoted as x. It is able to estimate unknown model parameters from inputs data. On the other hand, GA is used to search for the optimal solution until specific criteria is met causing termination. These results include providing good solutions as compared to one optimal solution for complex problems. Thus, GA is widely used as feature selection. By combining the LR and GA (GA-LR), this new technique is able to select the most important input features as well as giving more accurate prediction by minimizing the prediction errors. This new technique is able to produce more consistent of gas emission estimation, which may help in reducing population to the environment. In this paper, the study's interest is focused on nitrous oxides (NOx) prediction. The results of the experiment are encouraging.

  19. Optimal Allocation of Power-Electronic Interfaced Wind Turbines Using a Genetic Algorithm - Monte Carlo Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe

    2010-01-01

    determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....

  20. The HSBQ Algorithm with Triple-play Services for Broadband Hybrid Satellite Constellation Communication System

    Directory of Open Access Journals (Sweden)

    Anupon Boriboon

    2016-07-01

    Full Text Available The HSBQ algorithm is the one of active queue management algorithms, which orders to avoid high packet loss rates and control stable stream queue. That is the problem of calculation of the drop probability for both queue length stability and bandwidth fairness. This paper proposes the HSBQ, which drop the packets before the queues overflow at the gateways, so that the end nodes can respond to the congestion before queue overflow. This algorithm uses the change of the average queue length to adjust the amount by which the mark (or drop probability is changed. Moreover it adjusts the queue weight, which is used to estimate the average queue length, based on the rate. The results show that HSBQ algorithm could maintain control stable stream queue better than group of congestion metric without flow information algorithm as the rate of hybrid satellite network changing dramatically, as well as the presented empiric evidences demonstrate that the use of HSBQ algorithm offers a better quality of service than the traditionally queue control mechanisms used in hybrid satellite network.

  1. Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Ahmad M. Manasrah

    2018-01-01

    Full Text Available Cloud computing environment provides several on-demand services and resource sharing for clients. Business processes are managed using the workflow technology over the cloud, which represents one of the challenges in using the resources in an efficient manner due to the dependencies between the tasks. In this paper, a Hybrid GA-PSO algorithm is proposed to allocate tasks to the resources efficiently. The Hybrid GA-PSO algorithm aims to reduce the makespan and the cost and balance the load of the dependent tasks over the heterogonous resources in cloud computing environments. The experiment results show that the GA-PSO algorithm decreases the total execution time of the workflow tasks, in comparison with GA, PSO, HSGA, WSGA, and MTCT algorithms. Furthermore, it reduces the execution cost. In addition, it improves the load balancing of the workflow application over the available resources. Finally, the obtained results also proved that the proposed algorithm converges to optimal solutions faster and with higher quality compared to other algorithms.

  2. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm

    International Nuclear Information System (INIS)

    Sun, Zhe; Wang, Ning; Bi, Yunrui; Srinivasan, Dipti

    2015-01-01

    In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. - Highlights: • We propose a hybrid adaptive differential evolution algorithm (HADE). • The search efficiency is enhanced in low and high dimension search space. • The effectiveness is confirmed by testing benchmark functions. • The identification of the PEMFC model is conducted by adopting HADE.

  3. New MPPT algorithm for PV applications based on hybrid dynamical approach

    KAUST Repository

    Elmetennani, Shahrazed

    2016-10-24

    This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.

  4. New MPPT algorithm for PV applications based on hybrid dynamical approach

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Djemai, M.; Tadjine, M.

    2016-01-01

    This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.

  5. A Design of a Hybrid Non-Linear Control Algorithm

    Directory of Open Access Journals (Sweden)

    Farinaz Behrooz

    2017-11-01

    Full Text Available One of the high energy consuming devices in the buildings is the air-conditioning system. Designing a proper controller to consider the thermal comfort and simultaneously control the energy usage of the device will impact on the system energy efficiency and its performance. The aim of this study was to design a Multiple-Input and Multiple-Output (MIMO, non-linear, and intelligent controller on direct expansion air-conditioning system The control algorithm uses the Fuzzy Cognitive Map method as a main controller and the Generalized Predictive Control method is used for assigning the initial weights of the main controller. The results of the proposed controller shows that the controller was successfully designed and works in set point tracking and under disturbance rejection tests. The obtained results of the Generalized Predictive Control-Fuzzy Cognitive Map controller are compared with the previous MIMO Linear Quadratic Gaussian control design on the same direct expansion air-conditioning system under the same conditions. The comparative results indicate energy savings would be achieved with the proposed controller with long-term usage. Energy efficiency and thermal comfort conditions are achieved by the proposed controller.

  6. A hybrid algorithm for solving inverse problems in elasticity

    Directory of Open Access Journals (Sweden)

    Barabasz Barbara

    2014-12-01

    Full Text Available The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.

  7. Rational hybrid Monte Carlo algorithm for theories with unknown spectral bounds

    International Nuclear Information System (INIS)

    Kogut, J. B.; Sinclair, D. K.

    2006-01-01

    The Rational Hybrid Monte Carlo (RHMC) algorithm extends the Hybrid Monte Carlo algorithm for lattice QCD simulations to situations involving fractional powers of the determinant of the quadratic Dirac operator. This avoids the updating increment (dt) dependence of observables which plagues the Hybrid Molecular-dynamics (HMD) method. The RHMC algorithm uses rational approximations to fractional powers of the quadratic Dirac operator. Such approximations are only available when positive upper and lower bounds to the operator's spectrum are known. We apply the RHMC algorithm to simulations of 2 theories for which a positive lower spectral bound is unknown: lattice QCD with staggered quarks at finite isospin chemical potential and lattice QCD with massless staggered quarks and chiral 4-fermion interactions (χQCD). A choice of lower bound is made in each case, and the properties of the RHMC simulations these define are studied. Justification of our choices of lower bounds is made by comparing measurements with those from HMD simulations, and by comparing different choices of lower bounds

  8. Application of hybrid artificial fish swarm algorithm based on similar fragments in VRP

    Science.gov (United States)

    Che, Jinnuo; Zhou, Kang; Zhang, Xueyu; Tong, Xin; Hou, Lingyun; Jia, Shiyu; Zhen, Yiting

    2018-03-01

    Focused on the issue that the decrease of convergence speed and the precision of calculation at the end of the process in Artificial Fish Swarm Algorithm(AFSA) and instability of results, a hybrid AFSA based on similar fragments is proposed. Traditional AFSA enjoys a lot of obvious advantages in solving complex optimization problems like Vehicle Routing Problem(VRP). AFSA have a few limitations such as low convergence speed, low precision and instability of results. In this paper, two improvements are introduced. On the one hand, change the definition of the distance for artificial fish, as well as increase vision field of artificial fish, and the problem of speed and precision can be improved when solving VRP. On the other hand, mix artificial bee colony algorithm(ABC) into AFSA - initialize the population of artificial fish by the ABC, and it solves the problem of instability of results in some extend. The experiment results demonstrate that the optimal solution of the hybrid AFSA is easier to approach the optimal solution of the standard database than the other two algorithms. In conclusion, the hybrid algorithm can effectively solve the problem that instability of results and decrease of convergence speed and the precision of calculation at the end of the process.

  9. An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Lihong Guo

    2013-01-01

    Full Text Available A hybrid metaheuristic approach by hybridizing harmony search (HS and firefly algorithm (FA, namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.

  10. A new hybrid optimization algorithm CRO-DE for optimal coordination of overcurrent relays in complex power systems

    Directory of Open Access Journals (Sweden)

    Mohamed Zellagui

    2017-09-01

    Full Text Available The paper presents a new hybrid global optimization algorithm based on Chemical Reaction based Optimization (CRO and Di¤erential evolution (DE algorithm for nonlinear constrained optimization problems. This approach proposed for the optimal coordination and setting relays of directional overcurrent relays in complex power systems. In protection coordination problem, the objective function to be minimized is the sum of the operating time of all main relays. The optimization problem is subject to a number of constraints which are mainly focused on the operation of the backup relay, which should operate if a primary relay fails to respond to the fault near to it, Time Dial Setting (TDS, Plug Setting (PS and the minimum operating time of a relay. The hybrid global proposed optimization algorithm aims to minimize the total operating time of each protection relay. Two systems are used as case study to check the effeciency of the optimization algorithm which are IEEE 4-bus and IEEE 6-bus models. Results are obtained and presented for CRO and DE and hybrid CRO-DE algorithms. The obtained results for the studied cases are compared with those results obtained when using other optimization algorithms which are Teaching Learning-Based Optimization (TLBO, Chaotic Differential Evolution Algorithm (CDEA and Modiffied Differential Evolution Algorithm (MDEA, and Hybrid optimization algorithms (PSO-DE, IA-PSO, and BFOA-PSO. From analysing the obtained results, it has been concluded that hybrid CRO-DO algorithm provides the most optimum solution with the best convergence rate.

  11. A Hybrid Multiobjective Discrete Particle Swarm Optimization Algorithm for a SLA-Aware Service Composition Problem

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2014-01-01

    Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.

  12. Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors

    International Nuclear Information System (INIS)

    Aoki, S.; Burkhalter, R.; Ishikawa, K-I.; Tominaga, S.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Tsutsui, N.; Yamada, N.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Ukawa, A.; Yoshie, T.; Onogi, T.

    2002-01-01

    We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors. The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a new method is developed. Investigating the property of our PHMC algorithm in the N f =2 QCD case, we find that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (16 3 x48) with intermediate quark masses (m PS /m V ∼0.7-0.8). We test our odd-flavor algorithm through extensive simulations of two-flavor QCD treated as an N f =1+1 system, and comparing the results with those of the established algorithms for N f =2 QCD. These tests establish that our PHMC algorithm works on a moderately large lattice size with intermediate quark masses (16 3 x48,m PS /m V ∼0.7-0.8). Finally we experiment with the (2+1)-flavor QCD simulation on small lattices (4 3 x8 and 8 3 x16), and confirm the agreement of our results with those obtained with the R algorithm and extrapolated to a zero molecular dynamics step size

  13. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Junbing Huang

    2018-01-01

    Full Text Available Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to be addressed. In this study, a new energy demand forecasting framework is presented at first. On the basis of historical annual data of electricity usage over the period of 1985–2015, the coefficients of linear and quadratic forms of the AI-based model are optimized by combining an adaptive genetic algorithm and a cointegration analysis shown as an example. Prediction results of the proposed model indicate that the annual growth rate of electricity demand in China will slow down. However, China will continue to demand about 13 trillion kilowatt hours in 2030 because of population growth, economic growth, and urbanization. In addition, the model has greater accuracy and reliability compared with other single optimization methods.

  14. Optimized combination model and algorithm of parking guidance information configuration

    Directory of Open Access Journals (Sweden)

    Tian Ye

    2011-01-01

    Full Text Available Abstract Operators of parking guidance and information (PGI systems often have difficulty in providing the best car park availability information to drivers in periods of high demand. A new PGI configuration model based on the optimized combination method was proposed by analyzing of parking choice behavior. This article first describes a parking choice behavioral model incorporating drivers perceptions of waiting times at car parks based on PGI signs. This model was used to predict the influence of PGI signs on the overall performance of the traffic system. Then relationships were developed for estimating the arrival rates at car parks based on driver characteristics, car park attributes as well as the car park availability information displayed on PGI signs. A mathematical program was formulated to determine the optimal display PGI sign configuration to minimize total travel time. A genetic algorithm was used to identify solutions that significantly reduced queue lengths and total travel time compared with existing practices. These procedures were applied to an existing PGI system operating in Deqing Town and Xiuning City. Significant reductions in total travel time of parking vehicles with PGI being configured. This would reduce traffic congestion and lead to various environmental benefits.

  15. Hybrid Optimization Algorithm of Particle Swarm Optimization and Cuckoo Search for Preventive Maintenance Period Optimization

    Directory of Open Access Journals (Sweden)

    Jianwen Guo

    2016-01-01

    Full Text Available All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO and cuckoo search (CS algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test functions show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search. Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to solve the PMPOM problem.

  16. Hybrid iterative phase retrieval algorithm based on fusion of intensity information in three defocused planes.

    Science.gov (United States)

    Zeng, Fa; Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan

    2007-10-01

    Study of phase retrieval technology is quite meaningful, for its wide applications related to many domains, such as adaptive optics, detection of laser quality, precise measurement of optical surface, and so on. Here a hybrid iterative phase retrieval algorithm is proposed, based on fusion of the intensity information in three defocused planes. First the conjugate gradient algorithm is adapted to achieve a coarse solution of phase distribution in the input plane; then the iterative angular spectrum method is applied in succession for better retrieval result. This algorithm is still applicable even when the exact shape and size of the aperture in the input plane are unknown. Moreover, this algorithm always exhibits good convergence, i.e., the retrieved results are insensitive to the chosen positions of the three defocused planes and the initial guess of complex amplitude in the input plane, which has been proved by both simulations and further experiments.

  17. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Su, Zhongyue; Wang, Jianzhou; Lu, Haiyan; Zhao, Ge

    2014-01-01

    Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily

  18. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  19. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

    Science.gov (United States)

    Huson, Daniel H; Linz, Simone

    2018-01-01

    A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

  20. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    Science.gov (United States)

    Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong

    2015-01-01

    Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  1. A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle

    Science.gov (United States)

    Wang, Aimeng; Guo, Jiayu

    2017-12-01

    A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.

  2. CLASSIFICATION OF NEURAL NETWORK FOR TECHNICAL CONDITION OF TURBOFAN ENGINES BASED ON HYBRID ALGORITHM

    Directory of Open Access Journals (Sweden)

    Valentin Potapov

    2016-12-01

    Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.

  3. Hybrid cryptosystem for image file using elgamal and double playfair cipher algorithm

    Science.gov (United States)

    Hardi, S. M.; Tarigan, J. T.; Safrina, N.

    2018-03-01

    In this paper, we present an implementation of an image file encryption using hybrid cryptography. We chose ElGamal algorithm to perform asymmetric encryption and Double Playfair for the symmetric encryption. Our objective is to show that these algorithms are capable to encrypt an image file with an acceptable running time and encrypted file size while maintaining the level of security. The application was built using C# programming language and ran as a stand alone desktop application under Windows Operating System. Our test shows that the system is capable to encrypt an image with a resolution of 500×500 to a size of 976 kilobytes with an acceptable running time.

  4. Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2014-01-01

    The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model

  5. An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to Solve the Split Delivery Vehicle Routing Problem

    Science.gov (United States)

    2015-01-01

    solution approach that combines heuristic search and integer programming. Boudia et al. (2007) solved an SDVRP instance using a memetic algorithm with...Boudia, M., Prins, C., Reghioui, M., 2007. An effective memetic algorithm with population management for the split delivery vehicle routing problem

  6. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  7. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources

    International Nuclear Information System (INIS)

    Kefayat, M.; Lashkar Ara, A.; Nabavi Niaki, S.A.

    2015-01-01

    Highlights: • A probabilistic optimization framework incorporated with uncertainty is proposed. • A hybrid optimization approach combining ACO and ABC algorithms is proposed. • The problem is to deal with technical, environmental and economical aspects. • A fuzzy interactive approach is incorporated to solve the multi-objective problem. • Several strategies are implemented to compare with literature methods. - Abstract: In this paper, a hybrid configuration of ant colony optimization (ACO) with artificial bee colony (ABC) algorithm called hybrid ACO–ABC algorithm is presented for optimal location and sizing of distributed energy resources (DERs) (i.e., gas turbine, fuel cell, and wind energy) on distribution systems. The proposed algorithm is a combined strategy based on the discrete (location optimization) and continuous (size optimization) structures to achieve advantages of the global and local search ability of ABC and ACO algorithms, respectively. Also, in the proposed algorithm, a multi-objective ABC is used to produce a set of non-dominated solutions which store in the external archive. The objectives consist of minimizing power losses, total emissions produced by substation and resources, total electrical energy cost, and improving the voltage stability. In order to investigate the impact of the uncertainty in the output of the wind energy and load demands, a probabilistic load flow is necessary. In this study, an efficient point estimate method (PEM) is employed to solve the optimization problem in a stochastic environment. The proposed algorithm is tested on the IEEE 33- and 69-bus distribution systems. The results demonstrate the potential and effectiveness of the proposed algorithm in comparison with those of other evolutionary optimization methods

  8. Revision of an automated microseismic location algorithm for DAS - 3C geophone hybrid array

    Science.gov (United States)

    Mizuno, T.; LeCalvez, J.; Raymer, D.

    2017-12-01

    Application of distributed acoustic sensing (DAS) has been studied in several areas in seismology. One of the areas is microseismic reservoir monitoring (e.g., Molteni et al., 2017, First Break). Considering the present limitations of DAS, which include relatively low signal-to-noise ratio (SNR) and no 3C polarization measurements, a DAS - 3C geophone hybrid array is a practical option when using a single monitoring well. Considering the large volume of data from distributed sensing, microseismic event detection and location using a source scanning type algorithm is a reasonable choice, especially for real-time monitoring. The algorithm must handle both strain rate along the borehole axis for DAS and particle velocity for 3C geophones. Only a small quantity of large SNR events will be detected throughout a large aperture encompassing the hybrid array; therefore, the aperture is to be optimized dynamically to eliminate noisy channels for a majority of events. For such hybrid array, coalescence microseismic mapping (CMM) (Drew et al., 2005, SPE) was revised. CMM forms a likelihood function of location of event and its origin time. At each receiver, a time function of event arrival likelihood is inferred using an SNR function, and it is migrated to time and space to determine hypocenter and origin time likelihood. This algorithm was revised to dynamically optimize such a hybrid array by identifying receivers where a microseismic signal is possibly detected and using only those receivers to compute the likelihood function. Currently, peak SNR is used to select receivers. To prevent false results due to small aperture, a minimum aperture threshold is employed. The algorithm refines location likelihood using 3C geophone polarization. We tested this algorithm using a ray-based synthetic dataset. Leaney (2014, PhD thesis, UBC) is used to compute particle velocity at receivers. Strain rate along the borehole axis is computed from particle velocity as DAS microseismic

  9. On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation

    International Nuclear Information System (INIS)

    Xu, Meng; Droguett, Enrique López; Lins, Isis Didier; Chagas Moura, Márcio das

    2017-01-01

    The q-Weibull model is based on the Tsallis non-extensive entropy and is able to model various behaviors of the hazard rate function, including bathtub curves, by using a single set of parameters. Despite its flexibility, the q-Weibull has not been widely used in reliability applications partly because of the complicated parameters estimation. In this work, the parameters of the q-Weibull are estimated by the maximum likelihood (ML) method. Due to the intricate system of nonlinear equations, derivative-based optimization methods may fail to converge. Thus, the heuristic optimization method of artificial bee colony (ABC) is used instead. To deal with the slow convergence of ABC, it is proposed an adaptive hybrid ABC (AHABC) algorithm that dynamically combines Nelder-Mead simplex search method with ABC for the ML estimation of the q-Weibull parameters. Interval estimates for the q-Weibull parameters, including confidence intervals based on the ML asymptotic theory and on bootstrap methods, are also developed. The AHABC is validated via numerical experiments involving the q-Weibull ML for reliability applications and results show that it produces faster and more accurate convergence when compared to ABC and similar approaches. The estimation procedure is applied to real reliability failure data characterized by a bathtub-shaped hazard rate. - Highlights: • Development of an Adaptive Hybrid ABC (AHABC) algorithm for q-Weibull distribution. • AHABC combines local Nelder-Mead simplex method with ABC to enhance local search. • AHABC efficiently finds the optimal solution for the q-Weibull ML problem. • AHABC outperforms ABC and self-adaptive hybrid ABC in accuracy and convergence speed. • Useful model for reliability data with non-monotonic hazard rate.

  10. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.

    Science.gov (United States)

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-05-09

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability.

  11. Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm.

    Science.gov (United States)

    Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian

    2016-01-01

    With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.

  12. Trust Based Algorithm for Candidate Node Selection in Hybrid MANET-DTN

    Directory of Open Access Journals (Sweden)

    Jan Papaj

    2014-01-01

    Full Text Available The hybrid MANET - DTN is a mobile network that enables transport of the data between groups of the disconnected mobile nodes. The network provides benefits of the Mobile Ad-Hoc Networks (MANET and Delay Tolerant Network (DTN. The main problem of the MANET occurs if the communication path is broken or disconnected for some short time period. On the other side, DTN allows sending data in the disconnected environment with respect to higher tolerance to delay. Hybrid MANET - DTN provides optimal solution for emergency situation in order to transport information. Moreover, the security is the critical factor because the data are transported by mobile devices. In this paper, we investigate the issue of secure candidate node selection for transportation of the data in a disconnected environment for hybrid MANET- DTN. To achieve the secure selection of the reliable mobile nodes, the trust algorithm is introduced. The algorithm enables select reliable nodes based on collecting routing information. This algorithm is implemented to the simulator OPNET modeler.

  13. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qingguo Zhang

    2017-01-01

    Full Text Available Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches.

  14. PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization

    Science.gov (United States)

    Chen, Shuangqing; Wei, Lixin; Guan, Bing

    2018-01-01

    Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036

  15. An Efficient ABC_DE_Based Hybrid Algorithm for Protein–Ligand Docking

    Directory of Open Access Journals (Sweden)

    Boxin Guan

    2018-04-01

    Full Text Available Protein–ligand docking is a process of searching for the optimal binding conformation between the receptor and the ligand. Automated docking plays an important role in drug design, and an efficient search algorithm is needed to tackle the docking problem. To tackle the protein–ligand docking problem more efficiently, An ABC_DE_based hybrid algorithm (ADHDOCK, integrating artificial bee colony (ABC algorithm and differential evolution (DE algorithm, is proposed in the article. ADHDOCK applies an adaptive population partition (APP mechanism to reasonably allocate the computational resources of the population in each iteration process, which helps the novel method make better use of the advantages of ABC and DE. The experiment tested fifty protein–ligand docking problems to compare the performance of ADHDOCK, ABC, DE, Lamarckian genetic algorithm (LGA, running history information guided genetic algorithm (HIGA, and swarm optimization for highly flexible protein–ligand docking (SODOCK. The results clearly exhibit the capability of ADHDOCK toward finding the lowest energy and the smallest root-mean-square deviation (RMSD on most of the protein–ligand docking problems with respect to the other five algorithms.

  16. A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures

    Science.gov (United States)

    Kaveh, A.; Ilchi Ghazaan, M.

    2018-02-01

    In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.

  17. Hybrid particle swarm optimization algorithm and its application in nuclear engineering

    International Nuclear Information System (INIS)

    Liu, C.Y.; Yan, C.Q.; Wang, J.J.

    2014-01-01

    Highlights: • We propose a hybrid particle swarm optimization algorithm (HPSO). • Modified Nelder–Mead simplex search method is applied in HPSO. • The algorithm has a high search precision and rapidly calculation speed. • HPSO can be used in the nuclear engineering optimization design problems. - Abstract: A hybrid particle swarm optimization algorithm with a feasibility-based rule for solving constrained optimization problems has been developed in this research. Firstly, the global optimal solution zone can be obtained through particle swarm optimization process, and then the refined search of the global optimal solution will be achieved through the modified Nelder–Mead simplex algorithm. Simulations based on two well-studied benchmark problems demonstrate the proposed algorithm will be an efficient alternative to solving constrained optimization problems. The vertical electrical heating pressurizer is one of the key components in reactor coolant system. The mathematical model of pressurizer has been established in steady state. The optimization design of pressurizer weight has been carried out through HPSO algorithm. The results show the pressurizer weight can be reduced by 16.92%. The thermal efficiencies of conventional PWR nuclear power plants are about 31–35% so far, which are much lower than fossil fueled plants based in a steam cycle as PWR. The thermal equilibrium mathematic model for nuclear power plant secondary loop has been established. An optimization case study has been conducted to improve the efficiency of the nuclear power plant with the proposed algorithm. The results show the thermal efficiency is improved by 0.5%

  18. Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm

    Science.gov (United States)

    Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad

    2016-04-01

    Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.

  19. Structure and weights optimisation of a modified Elman network emotion classifier using hybrid computational intelligence algorithms: a comparative study

    Science.gov (United States)

    Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood

    2015-10-01

    Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.

  20. Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms

    Science.gov (United States)

    Arabzadeh, Vida; Niaki, S. T. A.; Arabzadeh, Vahid

    2017-10-01

    One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven methods for cost estimation based on the application of artificial neural network (ANN) and regression models. The learning algorithms of the ANN are the Levenberg-Marquardt and the Bayesian regulated. Moreover, regression models are hybridized with a genetic algorithm to obtain better estimates of the coefficients. The methods are applied in a real case, where the input parameters of the models are assigned based on the key issues involved in a spherical tank construction. The results reveal that while a high correlation between the estimated cost and the real cost exists; both ANNs could perform better than the hybridized regression models. In addition, the ANN with the Levenberg-Marquardt learning algorithm (LMNN) obtains a better estimation than the ANN with the Bayesian-regulated learning algorithm (BRNN). The correlation between real data and estimated values is over 90%, while the mean square error is achieved around 0.4. The proposed LMNN model can be effective to reduce uncertainty and complexity in the early stages of the construction project.

  1. A Hybrid Feature Subset Selection Algorithm for Analysis of High Correlation Proteomic Data

    Science.gov (United States)

    Kordy, Hussain Montazery; Baygi, Mohammad Hossein Miran; Moradi, Mohammad Hassan

    2012-01-01

    Pathological changes within an organ can be reflected as proteomic patterns in biological fluids such as plasma, serum, and urine. The surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) has been used to generate proteomic profiles from biological fluids. Mass spectrometry yields redundant noisy data that the most data points are irrelevant features for differentiating between cancer and normal cases. In this paper, we have proposed a hybrid feature subset selection algorithm based on maximum-discrimination and minimum-correlation coupled with peak scoring criteria. Our algorithm has been applied to two independent SELDI-TOF MS datasets of ovarian cancer obtained from the NCI-FDA clinical proteomics databank. The proposed algorithm has used to extract a set of proteins as potential biomarkers in each dataset. We applied the linear discriminate analysis to identify the important biomarkers. The selected biomarkers have been able to successfully diagnose the ovarian cancer patients from the noncancer control group with an accuracy of 100%, a sensitivity of 100%, and a specificity of 100% in the two datasets. The hybrid algorithm has the advantage that increases reproducibility of selected biomarkers and able to find a small set of proteins with high discrimination power. PMID:23717808

  2. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

    Directory of Open Access Journals (Sweden)

    Aydin Azizi

    2017-01-01

    Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

  3. Competitive Supply Chain Network Design Considering Marketing Strategies: A Hybrid Metaheuristic Algorithm

    Directory of Open Access Journals (Sweden)

    Ali Akbar Hasani

    2016-11-01

    Full Text Available In this paper, a comprehensive model is proposed to design a network for multi-period, multi-echelon, and multi-product inventory controlled the supply chain. Various marketing strategies and guerrilla marketing approaches are considered in the design process under the static competition condition. The goal of the proposed model is to efficiently respond to the customers’ demands in the presence of the pre-existing competitors and the price inelasticity of demands. The proposed optimization model considers multiple objectives that incorporate both market share and total profit of the considered supply chain network, simultaneously. To tackle the proposed multi-objective mixed-integer nonlinear programming model, an efficient hybrid meta-heuristic algorithm is developed that incorporates a Taguchi-based non-dominated sorting genetic algorithm-II and a particle swarm optimization. A variable neighborhood decomposition search is applied to enhance a local search process of the proposed hybrid solution algorithm. Computational results illustrate that the proposed model and solution algorithm are notably efficient in dealing with the competitive pressure by adopting the proper marketing strategies.

  4. Advanced reconstruction algorithms for electron tomography: From comparison to combination

    Energy Technology Data Exchange (ETDEWEB)

    Goris, B. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Roelandts, T. [Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Batenburg, K.J. [Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); Heidari Mezerji, H. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bals, S., E-mail: sara.bals@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-04-15

    In this work, the simultaneous iterative reconstruction technique (SIRT), the total variation minimization (TVM) reconstruction technique and the discrete algebraic reconstruction technique (DART) for electron tomography are compared and the advantages and disadvantages are discussed. Furthermore, we describe how the result of a three dimensional (3D) reconstruction based on TVM can provide objective information that is needed as the input for a DART reconstruction. This approach results in a tomographic reconstruction of which the segmentation is carried out in an objective manner. - Highlights: ► A comparative study between different reconstruction algorithms for tomography is performed. ► Reconstruction algorithms that uses prior knowledge about the specimen have a superior result. ► One reconstruction algorithm can provide the prior knowledge for a second algorithm.

  5. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm

    DEFF Research Database (Denmark)

    Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar

    2017-01-01

    India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...

  6. Generation Expansion Planning in pool market: A hybrid modified game theory and improved genetic algorithm

    International Nuclear Information System (INIS)

    Shayanfar, H.A.; Lahiji, A. Saliminia; Aghaei, J.; Rabiee, A.

    2009-01-01

    Unlike the traditional policy, Generation Expansion Planning (GEP) problem in competitive framework is complicated. In the new policy, each Generation Company (GENCO) decides to invest in such a way that obtains as much profit as possible. This paper presents a new hybrid algorithm to determine GEP in a Pool market. The proposed algorithm is divided in two programming levels: master and slave. In the master level a Modified Game Theory (MGT) is proposed to evaluate the contrast of GENCOs by the Independent System Operator (ISO). In the slave level, an Improved Genetic Algorithm (IGA) method is used to find the best solution of each GENCO for decision-making of investment. The validity of the proposed method is examined in the case study including three GENCOs with multi-type of power plants. The results show that the presented method is both satisfactory and consistent with expectation. (author)

  7. A Hybrid Genetic Algorithm to Minimize Total Tardiness for Unrelated Parallel Machine Scheduling with Precedence Constraints

    Directory of Open Access Journals (Sweden)

    Chunfeng Liu

    2013-01-01

    Full Text Available The paper presents a novel hybrid genetic algorithm (HGA for a deterministic scheduling problem where multiple jobs with arbitrary precedence constraints are processed on multiple unrelated parallel machines. The objective is to minimize total tardiness, since delays of the jobs may lead to punishment cost or cancellation of orders by the clients in many situations. A priority rule-based heuristic algorithm, which schedules a prior job on a prior machine according to the priority rule at each iteration, is suggested and embedded to the HGA for initial feasible schedules that can be improved in further stages. Computational experiments are conducted to show that the proposed HGA performs well with respect to accuracy and efficiency of solution for small-sized problems and gets better results than the conventional genetic algorithm within the same runtime for large-sized problems.

  8. Trajectory generation algorithm for smooth movement of a hybrid-type robot Rocker-Pillar

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Min; Choi, Dong Kyu; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hwa Soo [Dept. of Mechanical System Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2016-11-15

    While traveling on rough terrain, smooth movement of a mobile robot plays an important role in carrying out the given tasks successfully. This paper describes the trajectory generation algorithm for smooth movement of hybrid-type mobile robot Rocker-Pillar by adjusting the angular velocity of its caterpillar as well as each wheel velocity in such a manner to minimize a proper index for smoothness. To this end, a new Smoothness index (SI) is first suggested to evaluate the smoothness of movement of Rocker-Pillar. Then, the trajectory generation algorithm is proposed to reduce the undesired oscillations of its Center of mass (CoM). The experiment are performed to examine the movement of Rocker-Pillar climbing up the step whose height is twice larger than its wheel radius. It is verified that the resulting SI is improved by more than 40 % so that the movement of Rocker-Pillar becomes much smoother by the proposed trajectory algorithm.

  9. Hybrid Discrete Differential Evolution Algorithm for Lot Splitting with Capacity Constraints in Flexible Job Scheduling

    Directory of Open Access Journals (Sweden)

    Xinli Xu

    2013-01-01

    Full Text Available A two-level batch chromosome coding scheme is proposed to solve the lot splitting problem with equipment capacity constraints in flexible job shop scheduling, which includes a lot splitting chromosome and a lot scheduling chromosome. To balance global search and local exploration of the differential evolution algorithm, a hybrid discrete differential evolution algorithm (HDDE is presented, in which the local strategy with dynamic random searching based on the critical path and a random mutation operator is developed. The performance of HDDE was experimented with 14 benchmark problems and the practical dye vat scheduling problem. The simulation results showed that the proposed algorithm has the strong global search capability and can effectively solve the practical lot splitting problems with equipment capacity constraints.

  10. Hybridization of Strength Pareto Multiobjective Optimization with Modified Cuckoo Search Algorithm for Rectangular Array.

    Science.gov (United States)

    Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah

    2017-04-20

    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.

  11. A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem

    Directory of Open Access Journals (Sweden)

    Jian Gao

    2011-08-01

    Full Text Available Distributed Permutation Flowshop Scheduling Problem (DPFSP is a newly proposed scheduling problem, which is a generalization of classical permutation flow shop scheduling problem. The DPFSP is NP-hard in general. It is in the early stages of studies on algorithms for solving this problem. In this paper, we propose a GA-based algorithm, denoted by GA_LS, for solving this problem with objective to minimize the maximum completion time. In the proposed GA_LS, crossover and mutation operators are designed to make it suitable for the representation of DPFSP solutions, where the set of partial job sequences is employed. Furthermore, GA_LS utilizes an efficient local search method to explore neighboring solutions. The local search method uses three proposed rules that move jobs within a factory or between two factories. Intensive experiments on the benchmark instances, extended from Taillard instances, are carried out. The results indicate that the proposed hybrid genetic algorithm can obtain better solutions than all the existing algorithms for the DPFSP, since it obtains better relative percentage deviation and differences of the results are also statistically significant. It is also seen that best-known solutions for most instances are updated by our algorithm. Moreover, we also show the efficiency of the GA_LS by comparing with similar genetic algorithms with the existing local search methods.

  12. A hybrid search algorithm for swarm robots searching in an unknown environment.

    Science.gov (United States)

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  13. Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm

    International Nuclear Information System (INIS)

    Wang, Jianzhou; Jiang, He; Wu, Yujie; Dong, Yao

    2015-01-01

    Due to energy crisis and environmental problems, it is very urgent to find alternative energy sources nowadays. Solar energy, as one of the great potential clean energies, has widely attracted the attention of researchers. In this paper, an optimized hybrid method by CS (Cuckoo Search) on the basis of the OP-ELM (Optimally Pruned Extreme Learning Machine), called CS-OP-ELM, is developed to forecast clear sky and real sky global horizontal radiation. First, MRSR (Multiresponse Sparse Regression) and LOO-CV (leave-one-out cross-validation) can be applied to rank neurons and prune the possibly meaningless neurons of the FFNN (Feed Forward Neural Network), respectively. Then, Direct strategy and Direct-Recursive strategy based on OP-ELM are introduced to build a hybrid model. Furthermore, CS (Cuckoo Search) optimized algorithm is employed to determine the proper weight coefficients. In order to verify the effectiveness of the developed method, hourly solar radiation data from six sites of the United States has been collected, and methods like ARMA (Autoregression moving average), BP (Back Propagation) neural network and OP-ELM can be compared with CS-OP-ELM. Experimental results show the optimized hybrid method CS-OP-ELM has the best forecasting performance. - Highlights: • An optimized hybrid method called CS-OP-ELM is proposed to forecast solar radiation. • CS-OP-ELM adopts multiple variables dataset as input variables. • Direct and Direct-Recursive strategy are introduced to build a hybrid model. • CS (Cuckoo Search) algorithm is used to determine the optimal weight coefficients. • The proposed method has the best performance compared with other methods

  14. An optimal control-based algorithm for hybrid electric vehicle using preview route information

    NARCIS (Netherlands)

    Ngo, D.V.; Hofman, T.; Steinbuch, M.; Serrarens, A.F.A.

    2010-01-01

    Control strategies for Hybrid Electric Vehicles (HEVs) are generally aimed at optimally choosing the power distribution between the internal combustion engine and the electric motor in order to minimize the fuel consumption and/or emissions. Using vehicle navigation systems in combination with

  15. Solving a Closed-Loop Location-Inventory-Routing Problem with Mixed Quality Defects Returns in E-Commerce by Hybrid Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Shuai Deng

    2016-01-01

    Full Text Available This paper presents a closed-loop location-inventory-routing problem model considering both quality defect returns and nondefect returns in e-commerce supply chain system. The objective is to minimize the total cost produced in both forward and reverse logistics networks. We propose a combined optimization algorithm named hybrid ant colony optimization algorithm (HACO to address this model that is an NP-hard problem. Our experimental results show that the proposed HACO is considerably efficient and effective in solving this model.

  16. Target-type probability combining algorithms for multisensor tracking

    Science.gov (United States)

    Wigren, Torbjorn

    2001-08-01

    Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.

  17. A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.

    Science.gov (United States)

    Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen

    2012-01-01

    Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.

  18. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    Science.gov (United States)

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant

  19. Study on Multi-stage Logistics System Design Problem with Inventory Considering Demand Change by Hybrid Genetic Algorithm

    Science.gov (United States)

    Inoue, Hisaki; Gen, Mitsuo

    The logistics model used in this study is 3-stage model employed by an automobile company, which aims to solve traffic problems at a total minimum cost. Recently, research on the metaheuristics method has advanced as an approximate means for solving optimization problems like this model. These problems can be solved using various methods such as the genetic algorithm (GA), simulated annealing, and tabu search. GA is superior in robustness and adjustability toward a change in the structure of these problems. However, GA has a disadvantage in that it has a slightly inefficient search performance because it carries out a multi-point search. A hybrid GA that combines another method is attracting considerable attention since it can compensate for a fault to a partial solution that early convergence gives a bad influence on a result. In this study, we propose a novel hybrid random key-based GA(h-rkGA) that combines local search and parameter tuning of crossover rate and mutation rate; h-rkGA is an improved version of the random key-based GA (rk-GA). We attempted comparative experiments with spanning tree-based GA, priority based GA and random key-based GA. Further, we attempted comparative experiments with “h-GA by only local search” and “h-GA by only parameter tuning”. We reported the effectiveness of the proposed method on the basis of the results of these experiments.

  20. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Yang

    Full Text Available Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  1. Clustering and Genetic Algorithm Based Hybrid Flowshop Scheduling with Multiple Operations

    Directory of Open Access Journals (Sweden)

    Yingfeng Zhang

    2014-01-01

    Full Text Available This research is motivated by a flowshop scheduling problem of our collaborative manufacturing company for aeronautic products. The heat-treatment stage (HTS and precision forging stage (PFS of the case are selected as a two-stage hybrid flowshop system. In HTS, there are four parallel machines and each machine can process a batch of jobs simultaneously. In PFS, there are two machines. Each machine can install any module of the four modules for processing the workpeices with different sizes. The problem is characterized by many constraints, such as batching operation, blocking environment, and setup time and working time limitations of modules, and so forth. In order to deal with the above special characteristics, the clustering and genetic algorithm is used to calculate the good solution for the two-stage hybrid flowshop problem. The clustering is used to group the jobs according to the processing ranges of the different modules of PFS. The genetic algorithm is used to schedule the optimal sequence of the grouped jobs for the HTS and PFS. Finally, a case study is used to demonstrate the efficiency and effectiveness of the designed genetic algorithm.

  2. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  3. Optimal planning approaches with multiple impulses for rendezvous based on hybrid genetic algorithm and control method

    Directory of Open Access Journals (Sweden)

    JingRui Zhang

    2015-03-01

    Full Text Available In this article, we focus on safe and effective completion of a rendezvous and docking task by looking at planning approaches and control with fuel-optimal rendezvous for a target spacecraft running on a near-circular reference orbit. A variety of existent practical path constraints are considered, including the constraints of field of view, impulses, and passive safety. A rendezvous approach is calculated by using a hybrid genetic algorithm with those constraints. Furthermore, a control method of trajectory tracking is adopted to overcome the external disturbances. Based on Clohessy–Wiltshire equations, we first construct the mathematical model of optimal planning approaches of multiple impulses with path constraints. Second, we introduce the principle of hybrid genetic algorithm with both stronger global searching ability and local searching ability. We additionally explain the application of this algorithm in the problem of trajectory planning. Then, we give three-impulse simulation examples to acquire an optimal rendezvous trajectory with the path constraints presented in this article. The effectiveness and applicability of the tracking control method are verified with the optimal trajectory above as control objective through the numerical simulation.

  4. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  5. A hybrid artificial bee colony algorithm and pattern search method for inversion of particle size distribution from spectral extinction data

    Science.gov (United States)

    Wang, Li; Li, Feng; Xing, Jian

    2017-10-01

    In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.

  6. Design optimization of single mixed refrigerant LNG process using a hybrid modified coordinate descent algorithm

    Science.gov (United States)

    Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong

    2018-01-01

    Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.

  7. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.

    Directory of Open Access Journals (Sweden)

    Chun-Liang Lee

    Full Text Available The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.

  8. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  9. Single and combined fault diagnosis of reciprocating compressor valves using a hybrid deep belief network

    NARCIS (Netherlands)

    Tran, Van Tung; Thobiani, Faisal Al; Tinga, Tiedo; Ball, Andrew David; Niu, Gang

    2017-01-01

    In this paper, a hybrid deep belief network is proposed to diagnose single and combined faults of suction and discharge valves in a reciprocating compressor. This hybrid integrates the deep belief network structured by multiple stacked restricted Boltzmann machines for pre-training and simplified

  10. Hybrid Fusion for Biometrics: Combining Score-level and Decision-level Fusion

    NARCIS (Netherlands)

    Tao, Q.; Veldhuis, Raymond N.J.

    2008-01-01

    A general framework of fusion at decision level, which works on ROCs instead of matching scores, is investigated. Under this framework, we further propose a hybrid fusion method, which combines the score-level and decision-level fusions, taking advantage of both fusion modes. The hybrid fusion

  11. Application of a Hybrid Method Combining Grey Model and Back Propagation Artificial Neural Networks to Forecast Hepatitis B in China

    Directory of Open Access Journals (Sweden)

    Ruijing Gan

    2015-01-01

    Full Text Available Accurate incidence forecasting of infectious disease provides potentially valuable insights in its own right. It is critical for early prevention and may contribute to health services management and syndrome surveillance. This study investigates the use of a hybrid algorithm combining grey model (GM and back propagation artificial neural networks (BP-ANN to forecast hepatitis B in China based on the yearly numbers of hepatitis B and to evaluate the method’s feasibility. The results showed that the proposal method has advantages over GM (1, 1 and GM (2, 1 in all the evaluation indexes.

  12. Application of a hybrid method combining grey model and back propagation artificial neural networks to forecast hepatitis B in china.

    Science.gov (United States)

    Gan, Ruijing; Chen, Xiaojun; Yan, Yu; Huang, Daizheng

    2015-01-01

    Accurate incidence forecasting of infectious disease provides potentially valuable insights in its own right. It is critical for early prevention and may contribute to health services management and syndrome surveillance. This study investigates the use of a hybrid algorithm combining grey model (GM) and back propagation artificial neural networks (BP-ANN) to forecast hepatitis B in China based on the yearly numbers of hepatitis B and to evaluate the method's feasibility. The results showed that the proposal method has advantages over GM (1, 1) and GM (2, 1) in all the evaluation indexes.

  13. Optimised operation of an off-grid hybrid wind-diesel-battery system using genetic algorithm

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2016-01-01

    Highlights: • Diesel generator’s operation is optimised in a hybrid wind-diesel-battery system. • Optimisation is performed using wind speed and load demand forecasts. • The objective is to maximise wind energy utilisation with limited battery storage. • Physical modelling approach (Simscape) is used to verify mathematical model. • Sensitivity analyses are performed with synthesised wind and load forecast errors. - Abstract: In an off-grid hybrid wind-diesel-battery system, the diesel generator is often not utilised efficiently, therefore compromising its lifetime. In particular, the general rule of thumb of running the diesel generator at more than 40% of its rated capacity is often unmet. This is due to the variation in power demand and wind speed which needs to be supplied by the diesel generator. In addition, the frequent start-stop of the diesel generator leads to additional mechanical wear and fuel wastage. This research paper proposes a novel control algorithm which optimises the operation of a diesel generator, using genetic algorithm. With a given day-ahead forecast of local renewable energy resource and load demand, it is possible to optimise the operation of a diesel generator, subjected to other pre-defined constraints. Thus, the utilisation of the renewable energy sources to supply electricity can be maximised. Usually, the optimisation studies of a hybrid system are being conducted through simple analytical modelling, coupled with a selected optimisation algorithm to seek the optimised solution. The obtained solution is not verified using a more realistic system model, for instance the physical modelling approach. This often led to the question of the applicability of such optimised operation being used in reality. In order to take a step further, model-based design using Simulink is employed in this research to perform a comparison through a physical modelling approach. The Simulink model has the capability to incorporate the electrical

  14. Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Application

    KAUST Repository

    Chambolle, Antonin; Ehrhardt, Matthias J.; Richtarik, Peter; Schö nlieb, Carola-Bibiane

    2017-01-01

    We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.

  15. Optimization of Wind-Marine Hybrid Power System Configuration Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    SHI Hongda; LI Linna; ZHAO Chenyu

    2017-01-01

    Multi-energy power systems can use energy generated from various sources to improve power generation reliability.This paper presents a cost-power generation model of a wind-tide-wave energy hybrid power system for use on a remote island,where the configuration is optimized using a genetic algorithm.A mixed integer programming model is used and a novel object function,including cost and power generation,is proposed to solve the boundary problem caused by existence of two goals.Using this model,the final optimized result is found to have a good fit with local resources.

  16. Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Application

    KAUST Repository

    Chambolle, Antonin

    2017-06-15

    We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.

  17. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  18. Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bousige, Colin; Boţan, Alexandru; Coasne, Benoît, E-mail: coasne@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Ulm, Franz-Josef [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Pellenq, Roland J.-M. [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); UMI 3466 CNRS-MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); CINaM, CNRS/Aix Marseille Université, Campus de Luminy, 13288 Marseille Cedex 09 (France)

    2015-03-21

    We report an efficient atom-scale reconstruction method that consists of combining the Hybrid Reverse Monte Carlo algorithm (HRMC) with Molecular Dynamics (MD) in the framework of a simulated annealing technique. In the spirit of the experimentally constrained molecular relaxation technique [Biswas et al., Phys. Rev. B 69, 195207 (2004)], this modified procedure offers a refined strategy in the field of reconstruction techniques, with special interest for heterogeneous and disordered solids such as amorphous porous materials. While the HRMC method generates physical structures, thanks to the use of energy penalties, the combination with MD makes the method at least one order of magnitude faster than HRMC simulations to obtain structures of similar quality. Furthermore, in order to ensure the transferability of this technique, we provide rational arguments to select the various input parameters such as the relative weight ω of the energy penalty with respect to the structure optimization. By applying the method to disordered porous carbons, we show that adsorption properties provide data to test the global texture of the reconstructed sample but are only weakly sensitive to the presence of defects. In contrast, the vibrational properties such as the phonon density of states are found to be very sensitive to the local structure of the sample.

  19. A hybrid multi-objective cultural algorithm for short-term environmental/economic hydrothermal scheduling

    International Nuclear Information System (INIS)

    Lu Youlin; Zhou Jianzhong; Qin Hui; Wang Ying; Zhang Yongchuan

    2011-01-01

    Research highlights: → Multi-objective optimization model of short-term environmental/economic hydrothermal scheduling. → A hybrid multi-objective cultural algorithm (HMOCA) is presented. → New heuristic constraint handling methods are proposed. → Better quality solutions by reducing fuel cost and emission effects simultaneously are obtained. -- Abstract: The short-term environmental/economic hydrothermal scheduling (SEEHS) with the consideration of multiple objectives is a complicated non-linear constrained optimization problem with non-smooth and non-convex characteristics. In this paper, a multi-objective optimization model of SEEHS is proposed to consider the minimal of fuel cost and emission effects synthetically, and the transmission loss, the water transport delays between connected reservoirs as well as the valve-point effects of thermal plants are taken into consideration to formulate the problem precisely. Meanwhile, a hybrid multi-objective cultural algorithm (HMOCA) is presented to deal with SEEHS problem by optimizing both two objectives simultaneously. The proposed method integrated differential evolution (DE) algorithm into the framework of cultural algorithm model to implement the evolution of population space, and two knowledge structures in belief space are redefined according to the characteristics of DE and SEEHS problem to avoid premature convergence effectively. Moreover, in order to deal with the complicated constraints effectively, new heuristic constraint handling methods without any penalty factor settings are proposed in this paper. The feasibility and effectiveness of the proposed HMOCA method are demonstrated by two case studies of a hydrothermal power system. The simulation results reveal that, compared with other methods established recently, HMOCA can get better quality solutions by reducing fuel cost and emission effects simultaneously.

  20. Hybrid cryptosystem RSA - CRT optimization and VMPC

    Science.gov (United States)

    Rahmadani, R.; Mawengkang, H.; Sutarman

    2018-03-01

    Hybrid cryptosystem combines symmetric algorithms and asymmetric algorithms. This combination utilizes speeds on encryption/decryption processes of symmetric algorithms and asymmetric algorithms to secure symmetric keys. In this paper we propose hybrid cryptosystem that combine symmetric algorithms VMPC and asymmetric algorithms RSA - CRT optimization. RSA - CRT optimization speeds up the decryption process by obtaining plaintext with dp and p key only, so there is no need to perform CRT processes. The VMPC algorithm is more efficient in software implementation and reduces known weaknesses in RC4 key generation. The results show hybrid cryptosystem RSA - CRT optimization and VMPC is faster than hybrid cryptosystem RSA - VMPC and hybrid cryptosystem RSA - CRT - VMPC. Keyword : Cryptography, RSA, RSA - CRT, VMPC, Hybrid Cryptosystem.

  1. Culture belief based multi-objective hybrid differential evolutionary algorithm in short term hydrothermal scheduling

    International Nuclear Information System (INIS)

    Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang

    2013-01-01

    Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.

  2. Length-Bounded Hybrid CPU/GPU Pattern Matching Algorithm for Deep Packet Inspection

    Directory of Open Access Journals (Sweden)

    Yi-Shan Lin

    2017-01-01

    Full Text Available Since frequent communication between applications takes place in high speed networks, deep packet inspection (DPI plays an important role in the network application awareness. The signature-based network intrusion detection system (NIDS contains a DPI technique that examines the incoming packet payloads by employing a pattern matching algorithm that dominates the overall inspection performance. Existing studies focused on implementing efficient pattern matching algorithms by parallel programming on software platforms because of the advantages of lower cost and higher scalability. Either the central processing unit (CPU or the graphic processing unit (GPU were involved. Our studies focused on designing a pattern matching algorithm based on the cooperation between both CPU and GPU. In this paper, we present an enhanced design for our previous work, a length-bounded hybrid CPU/GPU pattern matching algorithm (LHPMA. In the preliminary experiment, the performance and comparison with the previous work are displayed, and the experimental results show that the LHPMA can achieve not only effective CPU/GPU cooperation but also higher throughput than the previous method.

  3. A hybrid algorithm for flexible job-shop scheduling problem with setup times

    Directory of Open Access Journals (Sweden)

    Ameni Azzouz

    2017-01-01

    Full Text Available Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA and variable neighbourhood search (VNS to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.

  4. A Hybrid Quantum Evolutionary Algorithm with Improved Decoding Scheme for a Robotic Flow Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Weidong Lei

    2017-01-01

    Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.

  5. A hybrid niched-island genetic algorithm applied to a nuclear core optimization problem

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.

    2005-01-01

    Diversity maintenance is a key-feature in most genetic-based optimization processes. The quest for such characteristic, has been motivating improvements in the original genetic algorithm (GA). The use of multiple populations (called islands) has demonstrating to increase diversity, delaying the genetic drift. Island Genetic Algorithms (IGA) lead to better results, however, the drift is only delayed, but not avoided. An important advantage of this approach is the simplicity and efficiency for parallel processing. Diversity can also be improved by the use of niching techniques. Niched Genetic Algorithms (NGA) are able to avoid the genetic drift, by containing evolution in niches of a single-population GA, however computational cost is increased. In this work it is investigated the use of a hybrid Niched-Island Genetic Algorithm (NIGA) in a nuclear core optimization problem found in literature. Computational experiments demonstrate that it is possible to take advantage of both, performance enhancement due to the parallelism and drift avoidance due to the use of niches. Comparative results shown that the proposed NIGA demonstrated to be more efficient and robust than an IGA and a NGA for solving the proposed optimization problem. (author)

  6. New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter.

    Science.gov (United States)

    Lin, Jie; Zhao, Hongyang; Ma, Yuan; Tan, Jiubin; Jin, Peng

    2016-05-16

    The binary phase filters have been used to achieve an optical needle with small lateral size. Designing a binary phase filter is still a scientific challenge in such fields. In this paper, a hybrid genetic particle swarm optimization (HGPSO) algorithm is proposed to design the binary phase filter. The HGPSO algorithm includes self-adaptive parameters, recombination and mutation operations that originated from the genetic algorithm. Based on the benchmark test, the HGPSO algorithm has achieved global optimization and fast convergence. In an easy-to-perform optimizing procedure, the iteration number of HGPSO is decreased to about a quarter of the original particle swarm optimization process. A multi-zone binary phase filter is designed by using the HGPSO. The long depth of focus and high resolution are achieved simultaneously, where the depth of focus and focal spot transverse size are 6.05λ and 0.41λ, respectively. Therefore, the proposed HGPSO can be applied to the optimization of filter with multiple parameters.

  7. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  8. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Science.gov (United States)

    Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883

  9. Process planning optimization on turning machine tool using a hybrid genetic algorithm with local search approach

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-04-01

    Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.

  10. Combining neural networks and genetic algorithms for hydrological flow forecasting

    Science.gov (United States)

    Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr

    2010-05-01

    We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and

  11. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    International Nuclear Information System (INIS)

    Hedayat, Afshin; Davilu, Hadi; Barfrosh, Ahmad Abdollahzadeh; Sepanloo, Kamran

    2009-01-01

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  12. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)

    2009-12-15

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  13. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, F; Freud, N; Letang, J M; Babot, D [CNDRI (Nondestructive Testing using Ionizing Radiations) Laboratory, INSA-Lyon, 69621 Villeurbanne Cedex (France); Adam, J-F; Elleaume, H; Esteve, F [INSERM U-836, Equipe 6 ' Rayonnement Synchrotron et Recherche Medicale' , Institut des Neurosciences de Grenoble (France); Ferrero, C; Bravin, A [European Synchrotron Radiation Facility, Grenoble (France)], E-mail: francois.smekens@insa-lyon.fr

    2009-08-07

    A hybrid approach, combining deterministic and Monte Carlo (MC) calculations, is proposed to compute the distribution of dose deposited during stereotactic synchrotron radiation therapy treatment. The proposed approach divides the computation into two parts: (i) the dose deposited by primary radiation (coming directly from the incident x-ray beam) is calculated in a deterministic way using ray casting techniques and energy-absorption coefficient tables and (ii) the dose deposited by secondary radiation (Rayleigh and Compton scattering, fluorescence) is computed using a hybrid algorithm combining MC and deterministic calculations. In the MC part, a small number of particle histories are simulated. Every time a scattering or fluorescence event takes place, a splitting mechanism is applied, so that multiple secondary photons are generated with a reduced weight. The secondary events are further processed in a deterministic way, using ray casting techniques. The whole simulation, carried out within the framework of the Monte Carlo code Geant4, is shown to converge towards the same results as the full MC simulation. The speed of convergence is found to depend notably on the splitting multiplicity, which can easily be optimized. To assess the performance of the proposed algorithm, we compare it to state-of-the-art MC simulations, accelerated by the track length estimator technique (TLE), considering a clinically realistic test case. It is found that the hybrid approach is significantly faster than the MC/TLE method. The gain in speed in a test case was about 25 for a constant precision. Therefore, this method appears to be suitable for treatment planning applications.

  14. BLINCK?A diagnostic algorithm for skin cancer diagnosis combining clinical features with dermatoscopy findings

    OpenAIRE

    Bourne, Peter; Rosendahl, Cliff; Keir, Jeff; Cameron, Alan

    2012-01-01

    Background: Deciding whether a skin lesion requires biopsy to exclude skin cancer is often challenging for primary care clinicians in Australia. There are several published algorithms designed to assist with the diagnosis of skin cancer but apart from the clinical ABCD rule, these algorithms only evaluate the dermatoscopic features of a lesion. Objectives: The BLINCK algorithm explores the effect of combining clinical history and examination with fundamental dermatoscopic assessment in primar...

  15. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-07-23

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  16. Power Adaptation Based on Truncated Channel Inversion for Hybrid FSO/RF Transmission With Adaptive Combining

    KAUST Repository

    Rakia, Tamer; Hong-Chuan Yang; Gebali, Fayez; Alouini, Mohamed-Slim

    2015-01-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless communications. In this paper, we consider power adaptation strategies based on truncated channel inversion for the hybrid FSO/RF system employing adaptive combining. Specifically, we adaptively set the RF link transmission power when FSO link quality is unacceptable to ensure constant combined signal-to-noise ratio (SNR) at the receiver. Two adaptation strategies are proposed. One strategy depends on the received RF SNR, whereas the other one depends on the combined SNR of both links. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are obtained. Numerical examples show that the hybrid FSO/RF system with power adaptation achieves a considerable outage performance improvement over the conventional system.

  17. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    Science.gov (United States)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  18. Genetic determination of high productivity in experimental hybrid combinations of sugar beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    М. О. Корнєєва

    2016-05-01

    Full Text Available Purpose. Creation of experimental sugar beet hybrid combinations of high sugar yield values and defining gene­tic determination of their heterotic effect. Methods. Diallel crossing and topcrossing, genetic analysis of quantitative traits. Results. The authors have studied the frequency of occurrence of sugar beet heterotic hybrid combinations for «sugar yield» trait created on the basis of two pollinator lines to be genetically valuable for productivity elements, CMS lines and single-cross sterile hybrids with the use of diallel and topcrossing system of controlled hybridization. The share of parental components’ effect and their interaction in CMS hybrids variability for productivity was determined. Expediency of heterotic forecasting based on high combining ability lines was substabtiated. Promising high-yielding sugar beet combinations were selected that exceeded the group standard by 4.1–16.3%. Conclusions. The theory of genetic balance by M. V. Turbin was confirmed. Such hybrids as [CMS 5OT 4]MGP 1 (116.3%, [CMS 1OT 2]MGP 1 (112.5% and [CMS 3OT 5]MGP 1 (113.2% were recognized as the best for their productivity, MGP 1 and MGP 2 lines – as the best for their combining ability.

  19. A compression algorithm for the combination of PDF sets

    NARCIS (Netherlands)

    Carrazza, Stefano; Latorre, Jose I.; Rojo, Juan; Watt, Graeme

    2015-01-01

    The current PDF4LHC recommendation to estimate uncertainties due to parton distribution functions (PDFs) in theoretical predictions for LHC processes involves the combination of separate predictions computed using PDF sets from different groups, each of which comprises a relatively large number of

  20. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation

    International Nuclear Information System (INIS)

    Ram, J. Prasanth; Babu, T. Sudhakar; Dragicevic, Tomislav; Rajasekar, N.

    2017-01-01

    Highlights: • A new Bee Pollinator Flower Pollination Algorithm (BPFPA) is proposed for Solar PV Parameter extraction. • Standard RTC France data is used for the experimentation of BPFPA algorithm. • Four different PV modules are successfully tested via double diode model. • The BPFPA method is highly convincing in accuracy to convergence at faster rate. • The proposed BPFPA provides the best performance among the other recent techniques. - Abstract: The inaccurate I-V curve generation in solar PV modeling introduces less efficiency and on the other hand, accurate simulation of PV characteristics becomes a mandatory obligation before experimental validation. Although many optimization methods in literature have attempted to extract accurate PV parameters, all of these methods do not guarantee their convergence to the global optimum. Hence, the authors of this paper have proposed a new hybrid Bee pollinator Flower Pollination Algorithm (BPFPA) for the PV parameter extraction problem. The PV parameters for both single diode and double diode are extracted and tested under different environmental conditions. For brevity, the I_0_1, I_0_2, I_p_v for double diode and I_0_,I_p_v for single diode models are calculated analytically where the remaining parameters ‘R_s, R_p, a_1, a_2’ are optimized using BPFPA method. It is found that, the proposed Bee Pollinator method has all the scope to create exploration and exploitation in the control variable to yield a less RMSE value even under lower irradiated conditions. Further for performance validation, the parameters arrived via BPFPA method is compared with Genetic Algorithm (GA), Pattern Search (PS), Harmony Search (HS), Flower Pollination Algorithm (FPA) and Artificial Bee Swarm Optimization (ABSO). In addition, various outcomes of PV modeling and different parameters influencing the accurate PV modeling are critically analyzed.

  1. Algorithm for locating the extremum of a multi-dimensional constrained function and its application to the PPPL Hybrid Study

    International Nuclear Information System (INIS)

    Bathke, C.

    1978-03-01

    A description is presented of a general algorithm for locating the extremum of a multi-dimensional constrained function. The algorithm employs a series of techniques dominated by random shrinkage, steepest descent, and adaptive creeping. A discussion follows of the algorithm's application to a ''real world'' problem, namely the optimization of the price of electricity, P/sub eh/, from a hybrid fusion-fission reactor. Upon the basis of comparisons with other optimization schemes of a survey nature, the algorithm is concluded to yield a good approximation to the location of a function's optimum

  2. Solution Approach to Automatic Generation Control Problem Using Hybridized Gravitational Search Algorithm Optimized PID and FOPID Controllers

    Directory of Open Access Journals (Sweden)

    DAHIYA, P.

    2015-05-01

    Full Text Available This paper presents the application of hybrid opposition based disruption operator in gravitational search algorithm (DOGSA to solve automatic generation control (AGC problem of four area hydro-thermal-gas interconnected power system. The proposed DOGSA approach combines the advantages of opposition based learning which enhances the speed of convergence and disruption operator which has the ability to further explore and exploit the search space of standard gravitational search algorithm (GSA. The addition of these two concepts to GSA increases its flexibility for solving the complex optimization problems. This paper addresses the design and performance analysis of DOGSA based proportional integral derivative (PID and fractional order proportional integral derivative (FOPID controllers for automatic generation control problem. The proposed approaches are demonstrated by comparing the results with the standard GSA, opposition learning based GSA (OGSA and disruption based GSA (DGSA. The sensitivity analysis is also carried out to study the robustness of DOGSA tuned controllers in order to accommodate variations in operating load conditions, tie-line synchronizing coefficient, time constants of governor and turbine. Further, the approaches are extended to a more realistic power system model by considering the physical constraints such as thermal turbine generation rate constraint, speed governor dead band and time delay.

  3. Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Lvjiang Yin

    2016-12-01

    Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.

  4. Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization.

    Science.gov (United States)

    Pashaei, Elnaz; Pashaei, Elham; Aydin, Nizamettin

    2018-04-14

    In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A Hybrid Multiobjective Differential Evolution Algorithm and Its Application to the Optimization of Grinding and Classification

    Directory of Open Access Journals (Sweden)

    Yalin Wang

    2013-01-01

    Full Text Available The grinding-classification is the prerequisite process for full recovery of the nonrenewable minerals with both production quality and quantity objectives concerned. Its natural formulation is a constrained multiobjective optimization problem of complex expression since the process is composed of one grinding machine and two classification machines. In this paper, a hybrid differential evolution (DE algorithm with multi-population is proposed. Some infeasible solutions with better performance are allowed to be saved, and they participate randomly in the evolution. In order to exploit the meaningful infeasible solutions, a functionally partitioned multi-population mechanism is designed to find an optimal solution from all possible directions. Meanwhile, a simplex method for local search is inserted into the evolution process to enhance the searching strategy in the optimization process. Simulation results from the test of some benchmark problems indicate that the proposed algorithm tends to converge quickly and effectively to the Pareto frontier with better distribution. Finally, the proposed algorithm is applied to solve a multiobjective optimization model of a grinding and classification process. Based on the technique for order performance by similarity to ideal solution (TOPSIS, the satisfactory solution is obtained by using a decision-making method for multiple attributes.

  6. Parallel genetic algorithms with migration for the hybrid flow shop scheduling problem

    Directory of Open Access Journals (Sweden)

    K. Belkadi

    2006-01-01

    Full Text Available This paper addresses scheduling problems in hybrid flow shop-like systems with a migration parallel genetic algorithm (PGA_MIG. This parallel genetic algorithm model allows genetic diversity by the application of selection and reproduction mechanisms nearer to nature. The space structure of the population is modified by dividing it into disjoined subpopulations. From time to time, individuals are exchanged between the different subpopulations (migration. Influence of parameters and dedicated strategies are studied. These parameters are the number of independent subpopulations, the interconnection topology between subpopulations, the choice/replacement strategy of the migrant individuals, and the migration frequency. A comparison between the sequential and parallel version of genetic algorithm (GA is provided. This comparison relates to the quality of the solution and the execution time of the two versions. The efficiency of the parallel model highly depends on the parameters and especially on the migration frequency. In the same way this parallel model gives a significant improvement of computational time if it is implemented on a parallel architecture which offers an acceptable number of processors (as many processors as subpopulations.

  7. Feature Reduction Based on Genetic Algorithm and Hybrid Model for Opinion Mining

    Directory of Open Access Journals (Sweden)

    P. Kalaivani

    2015-01-01

    Full Text Available With the rapid growth of websites and web form the number of product reviews is available on the sites. An opinion mining system is needed to help the people to evaluate emotions, opinions, attitude, and behavior of others, which is used to make decisions based on the user preference. In this paper, we proposed an optimized feature reduction that incorporates an ensemble method of machine learning approaches that uses information gain and genetic algorithm as feature reduction techniques. We conducted comparative study experiments on multidomain review dataset and movie review dataset in opinion mining. The effectiveness of single classifiers Naïve Bayes, logistic regression, support vector machine, and ensemble technique for opinion mining are compared on five datasets. The proposed hybrid method is evaluated and experimental results using information gain and genetic algorithm with ensemble technique perform better in terms of various measures for multidomain review and movie reviews. Classification algorithms are evaluated using McNemar’s test to compare the level of significance of the classifiers.

  8. A Thrust Allocation Method for Efficient Dynamic Positioning of a Semisubmersible Drilling Rig Based on the Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Luman Zhao

    2015-01-01

    Full Text Available A thrust allocation method was proposed based on a hybrid optimization algorithm to efficiently and dynamically position a semisubmersible drilling rig. That is, the thrust allocation was optimized to produce the generalized forces and moment required while at the same time minimizing the total power consumption under the premise that forbidden zones should be taken into account. An optimization problem was mathematically formulated to provide the optimal thrust allocation by introducing the corresponding design variables, objective function, and constraints. A hybrid optimization algorithm consisting of a genetic algorithm and a sequential quadratic programming (SQP algorithm was selected and used to solve this problem. The proposed method was evaluated by applying it to a thrust allocation problem for a semisubmersible drilling rig. The results indicate that the proposed method can be used as part of a cost-effective strategy for thrust allocation of the rig.

  9. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  10. Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2012-11-01

    Full Text Available The optimal sizing and control of a hybrid tracked vehicle is presented and solved in this paper. A driving schedule obtained from field tests is used to represent typical tracked vehicle operations. Dynamics of the diesel engine-permanent magnetic AC synchronous generator set, the lithium-ion battery pack, and the power split between them are modeled and validated through experiments. Two coupled optimizations, one for the plant parameters, forming the outer optimization loop and one for the control strategy, forming the inner optimization loop, are used to achieve minimum fuel consumption under the selected driving schedule. The dynamic programming technique is applied to find the optimal controller in the inner loop while the component parameters are optimized iteratively in the outer loop. The results are analyzed, and the relationship between the key parameters is observed to keep the optimal sizing and control simultaneously.

  11. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Nandakumar, A.; Barradas, A.M.C.; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP),

  12. Breeding of early restorer Fuhui 306 and predominant performance of F1 hybrid combinations

    International Nuclear Information System (INIS)

    Wu Wanyi; Liu Yongqiang; Wu Maoli; Xue Xingqiong

    2004-01-01

    Fuhui 306, an early rice restorer with strong restoring ability, short growth period (86 days) and no restriction of separating areas in seed production, was bred by radiation treatment. F 1 hybrid combinations with different mature period were developed when cross with different sterile lines, that combination would be widely applied to meet the requirement of different ecological environment and harvest period. (authors)

  13. Robust total energy demand estimation with a hybrid Variable Neighborhood Search – Extreme Learning Machine algorithm

    International Nuclear Information System (INIS)

    Sánchez-Oro, J.; Duarte, A.; Salcedo-Sanz, S.

    2016-01-01

    Highlights: • The total energy demand in Spain is estimated with a Variable Neighborhood algorithm. • Socio-economic variables are used, and one year ahead prediction horizon is considered. • Improvement of the prediction with an Extreme Learning Machine network is considered. • Experiments are carried out in real data for the case of Spain. - Abstract: Energy demand prediction is an important problem whose solution is evaluated by policy makers in order to take key decisions affecting the economy of a country. A number of previous approaches to improve the quality of this estimation have been proposed in the last decade, the majority of them applying different machine learning techniques. In this paper, the performance of a robust hybrid approach, composed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining the most relevant features among the set of initial ones, by including an exponential prediction model. While previous approaches consider that the number of macroeconomic variables used for prediction is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search method optimizes both: the number of variables and the best ones. After this first step of feature selection, an Extreme Learning Machine network is applied to obtain the final energy demand prediction. Experiments in a real case of energy demand estimation in Spain show the excellent performance of the proposed approach. In particular, the whole method obtains an estimation of the energy demand with an error lower than 2%, even when considering the crisis years, which are a real challenge.

  14. An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2017-07-01

    Full Text Available Wind speed forecasting has an unsuperseded function in the high-efficiency operation of wind farms, and is significant in wind-related engineering studies. Back-propagation (BP algorithms have been comprehensively employed to forecast time series that are nonlinear, irregular, and unstable. However, the single model usually overlooks the importance of data pre-processing and parameter optimization of the model, which results in weak forecasting performance. In this paper, a more precise and robust model that combines data pre-processing, BP neural network, and a modified artificial intelligence optimization algorithm was proposed, which succeeded in avoiding the limitations of the individual algorithm. The novel model not only improves the forecasting accuracy but also retains the advantages of the firefly algorithm (FA and overcomes the disadvantage of the FA while optimizing in the later stage. To verify the forecasting performance of the presented hybrid model, 10-min wind speed data from Penglai city, Shandong province, China, were analyzed in this study. The simulations revealed that the proposed hybrid model significantly outperforms other single metaheuristics.

  15. A Modified Method Combined with a Support Vector Machine and Bayesian Algorithms in Biological Information

    Directory of Open Access Journals (Sweden)

    Wen-Gang Zhou

    2015-06-01

    Full Text Available With the deep research of genomics and proteomics, the number of new protein sequences has expanded rapidly. With the obvious shortcomings of high cost and low efficiency of the traditional experimental method, the calculation method for protein localization prediction has attracted a lot of attention due to its convenience and low cost. In the machine learning techniques, neural network and support vector machine (SVM are often used as learning tools. Due to its complete theoretical framework, SVM has been widely applied. In this paper, we make an improvement on the existing machine learning algorithm of the support vector machine algorithm, and a new improved algorithm has been developed, combined with Bayesian algorithms. The proposed algorithm can improve calculation efficiency, and defects of the original algorithm are eliminated. According to the verification, the method has proved to be valid. At the same time, it can reduce calculation time and improve prediction efficiency.

  16. On battery-less autonomous polygeneration microgrids: Investigation of the combined hybrid capacitors/hydrogen alternative

    International Nuclear Information System (INIS)

    Kyriakarakos, George; Piromalis, Dimitrios D.; Arvanitis, Konstantinos G.; Dounis, Anastasios I.; Papadakis, George

    2015-01-01

    Highlights: • A battery-less autonomous polygeneration microgrid is technically feasible. • Laboratory testing of hybrid capacitors. • Investigation of hybrid capacitors utilization along with hydrogen subsystem. - Abstract: The autonomous polygeneration microgrid topology aims to cover holistically the needs in remote areas as far as electrical power, potable water through desalination, fuel for transportation in the form of hydrogen, heating and cooling are concerned. Deep discharge lead acid batteries are mostly used in such systems, associated with specific disadvantages, both technical and environmental. This paper investigated the possibility of replacing the battery bank from a polygeneration microgrid with a hybrid capacitor bank and more intensive utilization of a hydrogen subsystem. Initially commercial hybrid capacitors were tested under laboratory conditions and based on the respective results a case study was performed. The optimized combination of hybrid capacitors and higher hydrogen usage was then investigated through simulations and compared to a polygeneration microgrid featuring deep discharge lead acid batteries. From the results it was clear that it is technically possible to exchange the battery bank with a hybrid capacitor bank and higher hydrogen utilization. From the economic point of view, the current cost of the hybrid capacitors and the hydrogen components is high which leads to higher overall cost in comparison with deep discharge lead acid batteries. Taking into account, though, the decreasing cost prospects and trends of both the hybrid capacitors and the hydrogen components it is expected that this approach will become economically competitive in a few years

  17. Efficient Hybrid Genetic Based Multi Dimensional Host Load Aware Algorithm for Scheduling and Optimization of Virtual Machines

    OpenAIRE

    Thiruvenkadam, T; Karthikeyani, V

    2014-01-01

    Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...

  18. Search algorithms as a framework for the optimization of drug combinations.

    Directory of Open Access Journals (Sweden)

    Diego Calzolari

    2008-12-01

    Full Text Available Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms -- originally developed for digital communication -- modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs using only one-third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6-9 interventions in 80-90% of tests, compared with 15-30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.

  19. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol.

    Directory of Open Access Journals (Sweden)

    Ping Zeng

    Full Text Available In this paper, based on our previous multi-pattern uniform resource locator (URL binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on-all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications.

  20. Hybrid Electromagnetism-Like Algorithm for Dynamic Supply Chain Network Design under Traffic Congestion and Uncertainty

    Directory of Open Access Journals (Sweden)

    Javid Jouzdani

    2016-01-01

    Full Text Available With the constantly increasing pressure of the competitive environment, supply chain (SC decision makers are forced to consider several aspects of business climate. More specifically, they should take into account the endogenous features (e.g., available means of transportation, and the variety of products and exogenous criteria (e.g., the environmental uncertainty, and transportation system conditions. In this paper, a mixed integer nonlinear programming (MINLP model for dynamic design of a supply chain network is proposed. In this model, multiple products and multiple transportation modes, the time value of money, traffic congestion, and both supply-side and demand-side uncertainties are considered. Due to the complexity of such models, conventional solution methods are not applicable; therefore, two hybrid Electromagnetism-Like Algorithms (EMA are designed and discussed for tackling the problem. The numerical results show the applicability of the proposed model and the capabilities of the solution approaches to the MINLP problem.

  1. A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules.

    Science.gov (United States)

    Nguyen, Su; Mei, Yi; Xue, Bing; Zhang, Mengjie

    2018-06-04

    Designing effective dispatching rules for production systems is a difficult and timeconsuming task if it is done manually. In the last decade, the growth of computing power, advanced machine learning, and optimisation techniques has made the automated design of dispatching rules possible and automatically discovered rules are competitive or outperform existing rules developed by researchers. Genetic programming is one of the most popular approaches to discovering dispatching rules in the literature, especially for complex production systems. However, the large heuristic search space may restrict genetic programming from finding near optimal dispatching rules. This paper develops a new hybrid genetic programming algorithm for dynamic job shop scheduling based on a new representation, a new local search heuristic, and efficient fitness evaluators. Experiments show that the new method is effective regarding the quality of evolved rules. Moreover, evolved rules are also significantly smaller and contain more relevant attributes.

  2. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    Science.gov (United States)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  3. Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-04-01

    Full Text Available To secure a stable energy supply and bring renewable energy to buildings within a reasonable cost range, a hybrid energy system (HES that integrates both fossil fuel energy systems (FFESs and new and renewable energy systems (NRESs needs to be designed and applied. This paper presents a methodology to optimize a HES consisting of three types of NRESs and six types of FFESs while simultaneously minimizing life cycle cost (LCC, maximizing penetration of renewable energy and minimizing annual greenhouse gas (GHG emissions. An elitist non-dominated sorting genetic algorithm is utilized for multi-objective optimization. As an example, we have designed the optimal configuration and sizing for a HES in an elementary school. The evolution of Pareto-optimal solutions according to the variation in the economic, technical and environmental objective functions through generations is discussed. The pair wise trade-offs among the three objectives are also examined.

  4. A hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller design

    Directory of Open Access Journals (Sweden)

    Srikanta Mahapatra

    2014-12-01

    Full Text Available In this paper, a novel hybrid Firefly Algorithm and Pattern Search (h-FAPS technique is proposed for a Static Synchronous Series Compensator (SSSC-based power oscillation damping controller design. The proposed h-FAPS technique takes the advantage of global search capability of FA and local search facility of PS. In order to tackle the drawback of using the remote signal that may impact reliability of the controller, a modified signal equivalent to the remote speed deviation signal is constructed from the local measurements. The performances of the proposed controllers are evaluated in SMIB and multi-machine power system subjected to various transient disturbances. To show the effectiveness and robustness of the proposed design approach, simulation results are presented and compared with some recently published approaches such as Differential Evolution (DE and Particle Swarm Optimization (PSO. It is observed that the proposed approach yield superior damping performance compared to some recently reported approaches.

  5. A Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube

    Directory of Open Access Journals (Sweden)

    M. Faridi Masouleh

    2016-10-01

    Full Text Available Decision-based programs include large-scale complex database queries. If the response time is short, query optimization is critical. Users usually observe data as a multi-dimensional data cube. Each data cube cell displays data as an aggregation in which the number of cells depends on the number of other cells in the cube. At any given time, a powerful query optimization method can visualize part of the cells instead of calculating results from raw data. Business systems use different approaches and positioning of data in the data cube. In the present study, the data is trained by a neural network and a genetic-firefly hybrid algorithm is proposed for finding the best position for the data in the cube.

  6. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  7. Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2013-01-01

    The stochastic volatility model is one of volatility models which infer latent volatility of asset returns. The Bayesian inference of the stochastic volatility (SV) model is performed by the hybrid Monte Carlo (HMC) algorithm which is superior to other Markov Chain Monte Carlo methods in sampling volatility variables. We perform the HMC simulations of the SV model for two liquid stock returns traded on the Tokyo Stock Exchange and measure the volatilities of those stock returns. Then we calculate the accuracy of the volatility measurement using the realized volatility as a proxy of the true volatility and compare the SV model with the GARCH model which is one of other volatility models. Using the accuracy calculated with the realized volatility we find that empirically the SV model performs better than the GARCH model.

  8. A Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2011-01-01

    Full Text Available The job shop scheduling problem (JSSP is a notoriously difficult problem in combinatorial optimization. In terms of the objective function, most existing research has been focused on the makespan criterion. However, in contemporary manufacturing systems, due-date-related performances are more important because they are essential for maintaining a high service reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP. Considering the high complexity, a hybrid differential evolution (DE algorithm is proposed for the problem. To enhance the overall search efficiency, a neighborhood property of the problem is discovered, and then a tree search procedure is designed and embedded into the DE framework. According to the extensive computational experiments, the proposed approach is efficient in solving the job shop scheduling problem with total weighted tardiness objective.

  9. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.

    Science.gov (United States)

    Harrison, Jonathan U; Yates, Christian A

    2016-09-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.

  10. Combination Base64 Algorithm and EOF Technique for Steganography

    Science.gov (United States)

    Rahim, Robbi; Nurdiyanto, Heri; Hidayat, Rahmat; Saleh Ahmar, Ansari; Siregar, Dodi; Putera Utama Siahaan, Andysah; Faisal, Ilham; Rahman, Sayuti; Suita, Diana; Zamsuri, Ahmad; Abdullah, Dahlan; Napitupulu, Darmawan; Ikhsan Setiawan, Muhammad; Sriadhi, S.

    2018-04-01

    The steganography process combines mathematics and computer science. Steganography consists of a set of methods and techniques to embed the data into another media so that the contents are unreadable to anyone who does not have the authority to read these data. The main objective of the use of base64 method is to convert any file in order to achieve privacy. This paper discusses a steganography and encoding method using base64, which is a set of encoding schemes that convert the same binary data to the form of a series of ASCII code. Also, the EoF technique is used to embed encoding text performed by Base64. As an example, for the mechanisms a file is used to represent the texts, and by using the two methods together will increase the security level for protecting the data, this research aims to secure many types of files in a particular media with a good security and not to damage the stored files and coverage media that used.

  11. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  12. Hybrid Combined Cycles with Biomass and Waste Fired Bottoming Cycle - a Literature Study

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Miroslav P.

    2002-02-01

    Biomass is one of the main natural resources in Sweden. The present low-CO{sub 2} emission characteristics of the Swedish electricity production system (hydro and nuclear) can be retained only by expansion of biofuel applications for energy purposes. Domestic Swedish biomass resources are vast and renewable, but not infinite. They must be utilized as efficiently as possible, in order to make sure that they meet the conditions for sustainability in the future. Application of efficient power generation cycles at low costs is essential for meeting this challenge. This applies also to municipal solid waste incineration with energy extraction, which should be preferred to its dumping in landfills. Hybrid dual-fuel combined cycle units are a simple and affordable way to increase the electric efficiency of biofuel energy utilization, without big investments, uncertainties or loss of reliability arising from complicated technologies. Configurations of such power cycles are very flexible and reliable. Their potential for high electric efficiency in condensing mode, high total efficiency in combined heat and power mode and unrivalled load flexibility is explored in this project. The present report is a literature study that concentrates on certain biomass utilization technologies, in particular the design and performance of hybrid combined cycle power units of various configurations, with gas turbines and internal combustion engines as topping cycles. An overview of published literature and general development trends on the relevant topic is presented. The study is extended to encompass a short overview of biomass utilization as an energy source (focusing on Sweden), history of combined cycles development with reference especially to combined cycles with supplementary firing and coal-fired hybrid combined cycles, repowering of old steam units into hybrid ones and combined cycles for internal combustion engines. The hybrid combined cycle concept for municipal solid waste

  13. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    Science.gov (United States)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  14. H-Ransac a Hybrid Point Cloud Segmentation Combining 2d and 3d Data

    Science.gov (United States)

    Adam, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I.

    2018-05-01

    In this paper, we present a novel 3D segmentation approach operating on point clouds generated from overlapping images. The aim of the proposed hybrid approach is to effectively segment co-planar objects, by leveraging the structural information originating from the 3D point cloud and the visual information from the 2D images, without resorting to learning based procedures. More specifically, the proposed hybrid approach, H-RANSAC, is an extension of the well-known RANSAC plane-fitting algorithm, incorporating an additional consistency criterion based on the results of 2D segmentation. Our expectation that the integration of 2D data into 3D segmentation will achieve more accurate results, is validated experimentally in the domain of 3D city models. Results show that HRANSAC can successfully delineate building components like main facades and windows, and provide more accurate segmentation results compared to the typical RANSAC plane-fitting algorithm.

  15. Joint Adaptive Modulation and Combining for Hybrid FSO/RF Systems

    KAUST Repository

    Rakia, Tamer

    2015-11-12

    In this paper, we present and analyze a new transmission scheme for hybrid FSO/RF communication system based on joint adaptive modulation and adaptive combining. Specifically, the data rate on the FSO link is adjusted in discrete manner according to the FSO link\\'s instantaneous received signal-to-noise-ratio (SNR). If the FSO link\\'s quality is too poor to maintain the target bit-error-rate, the system activates the RF link along with the FSO link. When the RF link is activated, simultaneous transmission of the same modulated data takes place on both links, where the received signals from both links are combined using maximal ratio combining scheme. In this case, the data rate of the system is adjusted according to the instantaneous combined SNRs. Novel analytical expression for the cumulative distribution function (CDF) of the received SNR for the proposed adaptive hybrid system is obtained. This CDF expression is used to study the spectral and outage performances of the proposed adaptive hybrid FSO/RF system. Numerical examples are presented to compare the performance of the proposed adaptive hybrid FSO/RF system with that of switch-over hybrid FSO/RF and FSO-only systems employing the same adaptive modulation schemes. © 2015 IEEE.

  16. A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.

    Science.gov (United States)

    Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao

    2011-08-01

    The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.

  17. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Directory of Open Access Journals (Sweden)

    Montri Inthachot

    2016-01-01

    Full Text Available This study investigated the use of Artificial Neural Network (ANN and Genetic Algorithm (GA for prediction of Thailand’s SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid’s prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.

  18. Modeling of Energy Demand in the Greenhouse Using PSO-GA Hybrid Algorithms

    Directory of Open Access Journals (Sweden)

    Jiaoliao Chen

    2015-01-01

    Full Text Available Modeling of energy demand in agricultural greenhouse is very important to maintain optimum inside environment for plant growth and energy consumption decreasing. This paper deals with the identification parameters for physical model of energy demand in the greenhouse using hybrid particle swarm optimization and genetic algorithms technique (HPSO-GA. HPSO-GA is developed to estimate the indistinct internal parameters of greenhouse energy model, which is built based on thermal balance. Experiments were conducted to measure environment and energy parameters in a cooling greenhouse with surface water source heat pump system, which is located in mid-east China. System identification experiments identify model parameters using HPSO-GA such as inertias and heat transfer constants. The performance of HPSO-GA on the parameter estimation is better than GA and PSO. This algorithm can improve the classification accuracy while speeding up the convergence process and can avoid premature convergence. System identification results prove that HPSO-GA is reliable in solving parameter estimation problems for modeling the energy demand in the greenhouse.

  19. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    Science.gov (United States)

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  20. Simulation of modified hybrid noise reduction algorithm to enhance the speech quality

    International Nuclear Information System (INIS)

    Waqas, A.; Muhammad, T.; Jamal, H.

    2013-01-01

    Speech is the most essential method of correspondence of humankind. Cell telephony, portable hearing assistants and, hands free are specific provisions in this respect. The performance of these communication devices could be affected because of distortions which might augment them. There are two essential sorts of distortions that might be recognized, specifically: convolutive and additive noises. These mutilations contaminate the clean speech and make it unsatisfactory to human audiences i.e. perceptual value and intelligibility of speech signal diminishes. The objective of speech upgrade systems is to enhance the quality and understandability of speech to make it more satisfactory to audiences. This paper recommends a modified hybrid approach for single channel devices to process the noisy signals considering only the effect of background noises. It is a mixture of pre-processing relative spectral amplitude (RASTA) filter, which is approximated by a straight forward 4th order band-pass filter, and conventional minimum mean square error short time spectral amplitude (MMSE STSA85) estimator. To analyze the performance of the algorithm an objective parameter called Perceptual estimation of speech quality (PESQ) is measured. The results show that the modified algorithm performs well to remove the background noises. SIMULINK implementation is also performed and its profile report has been generated to observe the execution time. (author)

  1. A NEW HYBRID YIN-YANG-PAIR-PARTICLE SWARM OPTIMIZATION ALGORITHM FOR UNCAPACITATED WAREHOUSE LOCATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    A. A. Heidari

    2017-09-01

    Full Text Available Yin-Yang-pair optimization (YYPO is one of the latest metaheuristic algorithms (MA proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL problems. This efficient hierarchical PSO-based optimizer (PSOYPO can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA, harmony search (HS, modified HS (OBCHS, and evolutionary simulated annealing (ESA. The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.

  2. a New Hybrid Yin-Yang Swarm Optimization Algorithm for Uncapacitated Warehouse Location Problems

    Science.gov (United States)

    Heidari, A. A.; Kazemizade, O.; Hakimpour, F.

    2017-09-01

    Yin-Yang-pair optimization (YYPO) is one of the latest metaheuristic algorithms (MA) proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO) is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO) stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL) problems. This efficient hierarchical PSO-based optimizer (PSOYPO) can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA), harmony search (HS), modified HS (OBCHS), and evolutionary simulated annealing (ESA). The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.

  3. Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran

    International Nuclear Information System (INIS)

    Tahani, Mojtaba; Babayan, Narek; Pouyaei, Arman

    2015-01-01

    Highlights: • The utilization of an optimized Hybrid PV/Wind/Battery system has been studied. • The proposed system has been studied for a building in Tehran. • A novel hybrid optimization method, namely FPA/SA has been proposed. • The impact of inclined part of the roof on wind velocity is studied by CFD. • LPSP and Payback time were considered as objective functions in this study. - Abstract: Renewable energy hybrid systems are a promising technology toward sustainable and clean development. Due to stochastic behavior of renewable energy sources, optimization of their convertors has great importance for increasing system’s reliability and efficiency and also in order to decrease the costs. In this research study, it was aimed to study the utilization of an optimized hybrid PV/Wind/Battery system for a three story building, with an inclined surface on the edge of its roof, located in Tehran, capital of Iran. For this purpose, a new evolutionary based optimization technique, namely hybrid FPA/SA algorithm was developed, in order to maximize system’s reliability and minimize system’s costs. The new algorithm combines the approaches which are utilized in Flower Pollination Algorithm (FPA) and Simulated Annealing (SA) algorithm. The developed algorithm was validated using popular benchmark functions. Moreover the influence of PV panels tilt angle (which is equal to the slope of inclined part of the roof) is studied on the wind speed by using computational fluid dynamics (CFD) simulation. The outputs of CFD simulations are utilized as inputs for modeling wind turbine performance. The Loss of Power Supply Probability (LPSP) and Payback time are considered as objective functions, and PV panel tilt angle, number of PV panels and number of batteries are selected as decision variables. The results showed that if the tilt angle for PV panels is set equal to 30° and the number of PV panels is selected equal to 11 the fastest payback time which is 12 years and

  4. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    Science.gov (United States)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond

  5. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.

    Science.gov (United States)

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun

    2014-07-01

    on the clinically standard 1-min 3D CBCT scanning protocol is feasible via the proposed hybrid reconstruction algorithm.

  6. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun, E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 (United States); Zhen, Xin [Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Yongbao [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Pan, Tinsu [Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cervino, Laura [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2014-07-15

    . Conclusions: High-quality 4D-CBCT imaging based on the clinically standard 1-min 3D CBCT scanning protocol is feasible via the proposed hybrid reconstruction algorithm.

  7. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  8. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    Science.gov (United States)

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F

    2018-03-01

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.

  9. Combined spatial/angular domain decomposition SN algorithms for shared memory parallel machines

    International Nuclear Information System (INIS)

    Hunter, M.A.; Haghighat, A.

    1993-01-01

    Several parallel processing algorithms on the basis of spatial and angular domain decomposition methods are developed and incorporated into a two-dimensional discrete ordinates transport theory code. These algorithms divide the spatial and angular domains into independent subdomains so that the flux calculations within each subdomain can be processed simultaneously. Two spatial parallel algorithms (Block-Jacobi, red-black), one angular parallel algorithm (η-level), and their combinations are implemented on an eight processor CRAY Y-MP. Parallel performances of the algorithms are measured using a series of fixed source RZ geometry problems. Some of the results are also compared with those executed on an IBM 3090/600J machine. (orig.)

  10. A solution to energy and environmental problems of electric power system using hybrid harmony search-random search optimization algorithm

    Directory of Open Access Journals (Sweden)

    Vikram Kumar Kamboj

    2016-04-01

    Full Text Available In recent years, global warming and carbon dioxide (CO2 emission reduction have become important issues in India, as CO2 emission levels are continuing to rise in accordance with the increased volume of Indian national energy consumption under the pressure of global warming, it is crucial for Indian government to impose the effective policy to promote CO2 emission reduction. Challenge of supplying the nation with high quality and reliable electrical energy at a reasonable cost, converted government policy into deregulation and restructuring environment. This research paper presents aims to presents an effective solution for energy and environmental problems of electric power using an efficient and powerful hybrid optimization algorithm: Hybrid Harmony search-random search algorithm. The proposed algorithm is tested for standard IEEE-14 bus, -30 bus and -56 bus system. The effectiveness of proposed hybrid algorithm is compared with others well known evolutionary, heuristics and meta-heuristics search algorithms. For multi-objective unit commitment, it is found that as there are conflicting relationship between cost and emission, if the performance in cost criterion is improved, performance in the emission is seen to deteriorate.

  11. Voltage Profile Enhancement and Reduction of Real Power loss by Hybrid Biogeography Based Artificial Bee Colony algorithm

    Directory of Open Access Journals (Sweden)

    K. Lenin

    2014-04-01

    Full Text Available This paper presents Hybrid Biogeography algorithm for solving the multi-objective reactive power dispatch problem in a power system. Real Power Loss minimization and maximization of voltage stability margin are taken as the objectives. Artificial bee colony optimization (ABC is quick and forceful algorithm for global optimization. Biogeography-Based Optimization (BBO is a new-fangled biogeography inspired algorithm. It mainly utilizes the biogeography-based relocation operator to share the information among solutions. In this work, a hybrid algorithm with BBO and ABC is projected, and named as HBBABC (Hybrid Biogeography based Artificial Bee Colony Optimization, for the universal numerical optimization problem. HBBABC merge the searching behavior of ABC with that of BBO. Both the algorithms have different solution probing tendency like ABC have good exploration probing tendency while BBO have good exploitation probing tendency.  HBBABC used to solve the reactive power dispatch problem and the proposed technique has been tested in standard IEEE30 bus test system.

  12. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    Science.gov (United States)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  13. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    Science.gov (United States)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  14. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system

    International Nuclear Information System (INIS)

    Berrazouane, S.; Mohammedi, K.

    2014-01-01

    Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller

  15. Harmony search algorithm for solving combined heat and power economic dispatch problems

    Energy Technology Data Exchange (ETDEWEB)

    Khorram, Esmaile, E-mail: eskhor@aut.ac.i [Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914 Tehran (Iran, Islamic Republic of); Jaberipour, Majid, E-mail: Majid.Jaberipour@gmail.co [Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914 Tehran (Iran, Islamic Republic of)

    2011-02-15

    Economic dispatch (ED) is one of the key optimization problems in electric power system operation. The problem grows complex if one or more units produce both power and heat. Combined heat and power economic dispatch (CHPED) problem is a complicated problem that needs powerful methods to solve. This paper presents a harmony search (EDHS) algorithm to solve CHPED. Some standard examples are presented to demonstrate the effectiveness of this algorithm in obtaining the optimal solution. In all cases, the solutions obtained using EDHS algorithm are better than those obtained by other methods.

  16. A Robust Formant Extraction Algorithm Combining Spectral Peak Picking and Root Polishing

    Directory of Open Access Journals (Sweden)

    Seo Kwang-deok

    2006-01-01

    Full Text Available We propose a robust formant extraction algorithm that combines the spectral peak picking, formants location examining for peak merger checking, and the root extraction methods. The spectral peak picking method is employed to locate the formant candidates, and the root extraction is used for solving the peak merger problem. The location and the distance between the extracted formants are also utilized to efficiently find out suspected peak mergers. The proposed algorithm does not require much computation, and is shown to be superior to previous formant extraction algorithms through extensive tests using TIMIT speech database.

  17. The Combination of RSA And Block Chiper Algorithms To Maintain Message Authentication

    Science.gov (United States)

    Yanti Tarigan, Sepri; Sartika Ginting, Dewi; Lumban Gaol, Melva; Lorensi Sitompul, Kristin

    2017-12-01

    RSA algorithm is public key algorithm using prime number and even still used today. The strength of this algorithm lies in the exponential process, and the factorial number into 2 prime numbers which until now difficult to do factoring. The RSA scheme itself adopts the block cipher scheme, where prior to encryption, the existing plaintext is divide in several block of the same length, where the plaintext and ciphertext are integers between 1 to n, where n is typically 1024 bit, and the block length itself is smaller or equal to log(n)+1 with base 2. With the combination of RSA algorithm and block chiper it is expected that the authentication of plaintext is secure. The secured message will be encrypted with RSA algorithm first and will be encrypted again using block chiper. And conversely, the chipertext will be decrypted with the block chiper first and decrypted again with the RSA algorithm. This paper suggests a combination of RSA algorithms and block chiper to secure data.

  18. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  19. Multifunctional hybrid materials for combined photo and chemotherapy of cancer.

    Science.gov (United States)

    Botella, Pablo; Ortega, Ilida; Quesada, Manuel; Madrigal, Roque F; Muniesa, Carlos; Fimia, Antonio; Fernández, Eduardo; Corma, Avelino

    2012-08-21

    Combined chemo and photothermal therapy in in vitro testing has been achieved by means of multifunctional nanoparticles formed by plasmonic gold nanoclusters with a protecting shell of porous silica that contains an antitumor drug. We propose a therapeutic nanoplatform that associates the optical activity of small gold nanoparticles aggregates with the cytotoxic activity of 20(S)-camptothecin simultaneously released for the efficient destruction of cancer cells. For this purpose, a method was used for the controlled assembly of gold nanoparticles into stable clusters with a tailored absorption cross-section in the vis/NIR spectrum, which involves aggregation in alkaline medium of 15 nm diameter gold colloids protected with a thin silica layer. Clusters were further encapsulated in an ordered homogeneous mesoporous silica coating that provides biocompatibility and stability in physiological fluids. After internalization in 42-MG-BA human glioma cells, these protected gold nanoclusters were able to produce effective photothermolysis under femtosecond pulse laser irradiation of 790 nm. Cell death occurred by combination of a thermal mechanism and mechanical disruption of the membrane cell due to induced generation of micrometer-scale bubbles by vaporizing the water inside the channels of the mesoporous silica coating. Moreover, the incorporation of 20(S)-camptothecin within the pores of the external shell, which was released during the process, provoked significant cell death increase. This therapeutic model could be of interest for application in the treatment and suppression of non-solid tumors.

  20. A study on application of the combination of hybridization with γ-radiation in wheat breeding

    International Nuclear Information System (INIS)

    Wang Jinxiang

    1989-11-01

    F 0 and F 1 dry seeds of winter wheat were irradiated by 60 Co γ-rays. The biological effects of M 1 , variation frequency and useful types of M 2 were investigated. Percentages of the selectivities of M 2 , M 3 and M 4 were also evaluated. The results showed that the seeds treated by combining hybridization with γ-radiation could increase variation frequency by 6∼44%, useful types by 13∼34%, and percentages of the selectivities by 6∼70%, as compared with the seeds treated only by the hybridization. Thus, the strains with high yield and protein were selected. It indicates that to combine the hybridization with γ-radiation is one of the ways for raising efficiency of wheat breeding

  1. Successfully combining SUGRA hybrid inflation and moduli stabilisation

    International Nuclear Information System (INIS)

    Davis, S.C.

    2008-01-01

    Inflation and moduli stabilisation mechanisms work well independently, and many string-motivated supergravitymodels have been proposed for them. However a complete theory will contain both, and there will be (gravitational) interactions between the two sectors. These give corrections to the inflaton potential, which generically ruin inflation. This holds true even for fine-tuned moduli stabilisation schemes. We show that a viable combined model can be obtained if it is the Kaehler functions (G=K+ln vertical stroke W vertical stroke 2 ) of the two sectors that are added, rather than the superpotentials (as is usually done). Interaction between the two sectors does still impose some restrictions on the moduli stabilisation mechanism, which are derived. Significantly, we find that the (post-inflation) moduli stabilisation scale no longer needs to be above the inflationary energy scale. (orig.)

  2. Successfully combining SUGRA hybrid inflation and moduli stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique; Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-01-15

    Inflation and moduli stabilisation mechanisms work well independently, and many string-motivated supergravitymodels have been proposed for them. However a complete theory will contain both, and there will be (gravitational) interactions between the two sectors. These give corrections to the inflaton potential, which generically ruin inflation. This holds true even for fine-tuned moduli stabilisation schemes. We show that a viable combined model can be obtained if it is the Kaehler functions (G=K+ln vertical stroke W vertical stroke {sup 2}) of the two sectors that are added, rather than the superpotentials (as is usually done). Interaction between the two sectors does still impose some restrictions on the moduli stabilisation mechanism, which are derived. Significantly, we find that the (post-inflation) moduli stabilisation scale no longer needs to be above the inflationary energy scale. (orig.)

  3. Approximate and exact hybrid algorithms for private nearest-neighbor queries with database protection

    KAUST Repository

    Ghinita, Gabriel; Kalnis, Panos; Kantarcioǧlu, Murâ t; Bertino, Elisa

    2010-01-01

    Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. To protect user privacy, it is important not to disclose exact user coordinates to un-trusted entities that provide location-based services. Currently, there are two main approaches to protect the location privacy of users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location data using private information retrieval (PIR) protocols. Previous work focused on finding good trade-offs between privacy and performance of user protection techniques, but disregarded the important issue of protecting the POI dataset D. For instance, location cloaking requires large-sized CRs, leading to excessive disclosure of POIs (O({pipe}D{pipe}) in the worst case). PIR, on the other hand, reduces this bound to O(√{pipe}D{pipe}), but at the expense of high processing and communication overhead. We propose hybrid, two-step approaches for private location-based queries which provide protection for both the users and the database. In the first step, user locations are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR protocol is applied with respect to the obtained query CR. To protect against excessive disclosure of POI locations, we devise two cryptographic protocols that privately evaluate whether a point is enclosed inside a rectangular region or a convex polygon. We also introduce algorithms to efficiently support PIR on dynamic POI sub-sets. We provide solutions for both approximate and exact NN queries. In the approximate case, our method discloses O(1) POI, orders of magnitude fewer than CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of a single POI, although with slightly higher computational overhead. Experimental results show that the hybrid approaches are scalable in practice, and outperform the pure-PIR approach in terms of computational and communication overhead. © 2010

  4. Approximate and exact hybrid algorithms for private nearest-neighbor queries with database protection

    KAUST Repository

    Ghinita, Gabriel

    2010-12-15

    Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. To protect user privacy, it is important not to disclose exact user coordinates to un-trusted entities that provide location-based services. Currently, there are two main approaches to protect the location privacy of users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location data using private information retrieval (PIR) protocols. Previous work focused on finding good trade-offs between privacy and performance of user protection techniques, but disregarded the important issue of protecting the POI dataset D. For instance, location cloaking requires large-sized CRs, leading to excessive disclosure of POIs (O({pipe}D{pipe}) in the worst case). PIR, on the other hand, reduces this bound to O(√{pipe}D{pipe}), but at the expense of high processing and communication overhead. We propose hybrid, two-step approaches for private location-based queries which provide protection for both the users and the database. In the first step, user locations are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR protocol is applied with respect to the obtained query CR. To protect against excessive disclosure of POI locations, we devise two cryptographic protocols that privately evaluate whether a point is enclosed inside a rectangular region or a convex polygon. We also introduce algorithms to efficiently support PIR on dynamic POI sub-sets. We provide solutions for both approximate and exact NN queries. In the approximate case, our method discloses O(1) POI, orders of magnitude fewer than CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of a single POI, although with slightly higher computational overhead. Experimental results show that the hybrid approaches are scalable in practice, and outperform the pure-PIR approach in terms of computational and communication overhead. © 2010

  5. Calculation of earthquake rupture histories using a hybrid global search algorithm: Application to the 1992 Landers, California, earthquake

    Science.gov (United States)

    Hartzell, S.; Liu, P.

    1996-01-01

    A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.

  6. Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

    Directory of Open Access Journals (Sweden)

    Hadi Fattahi

    2016-12-01

    Full Text Available Shear wave velocity (Vs data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodology to remove aforementioned problems by use of hybrid adaptive neuro fuzzy inference system (ANFIS with ant colony optimization algorithm (ACO based on fuzzy c–means clustering (FCM and subtractive clustering (SCM. The ACO is combined with two ANFIS models for determining the optimal value of its user–defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the ANFIS models. These models are used in this study to formulate conventional well log data into Vs in a quick, cheap, and accurate manner. A total of 3030 data points was used for model construction and 833 data points were employed for assessment of ANFIS models. Finally, a comparison among ANFIS models, and six well–known empirical correlations demonstrated ANFIS models outperformed other methods. This strategy was successfully applied in the Marun reservoir, Iran.

  7. A digital combining-weight estimation algorithm for broadband sources with the array feed compensation system

    Science.gov (United States)

    Vilnrotter, V. A.; Rodemich, E. R.

    1994-01-01

    An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.

  8. DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach

    DEFF Research Database (Denmark)

    Akhter, F.; Macpherson, D.E.; Harrison, G.P.

    2015-01-01

    of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....

  9. Development of a hybrid energy storage sizing algorithm associated with the evaluation of power management in different driving cycles

    International Nuclear Information System (INIS)

    Masoud, Masih Tehrani; Mohammad Reza, Ha'iri Yazdi; Esfahanian, Vahid; Sagha, Hossein

    2012-01-01

    In this paper, a hybrid energy storage sizing algorithm for electric vehicles is developed to achieve a semi optimum cost effective design. Using the developed algorithm, a driving cycle is divided into its micro-trips and the power and energy demands in each micro trip are determined. The battery size is estimated because the battery fulfills the power demands. Moreover, the ultra capacitor (UC) energy (or the number of UC modules) is assessed because the UC delivers the maximum energy demands of the different micro trips of a driving cycle. Finally, a design factor, which shows the power of the hybrid energy storage control strategy, is utilized to evaluate the newly designed control strategies. Using the developed algorithm, energy saving loss, driver satisfaction criteria, and battery life criteria are calculated using a feed forward dynamic modeling software program and are utilized for comparison among different energy storage candidates. This procedure is applied to the hybrid energy storage sizing of a series hybrid electric city bus in Manhattan and to the Tehran driving cycle. Results show that a higher aggressive driving cycle (Manhattan) requires more expensive energy storage system and more sophisticated energy management strategy

  10. A Hybrid Computational Intelligence Approach Combining Genetic Programming And Heuristic Classification for Pap-Smear Diagnosis

    DEFF Research Database (Denmark)

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan

    2001-01-01

    The paper suggests the combined use of different computational intelligence (CI) techniques in a hybrid scheme, as an effective approach to medical diagnosis. Getting to know the advantages and disadvantages of each computational intelligence technique in the recent years, the time has come...

  11. The ATPG Attack for Reverse Engineering of Combinational Hybrid Custom-Programmable Circuits

    Science.gov (United States)

    2017-03-23

    Introduction The widely practiced horizontal integrated circuit supply chain exposes a design to various types of attacks including the reverse engineering ...STT_CMOS designs for reverse- engineering prevention, DAC 2016. [5] M. E. Massad and et. al. Integrated circuit (IC) decamouflaging: reverse...The ATPG Attack for Reverse Engineering of Combinational Hybrid Custom-Programmable Circuits Raza Shafiq Hamid Mahmoodi Houman Homayoun Hassan

  12. A hybrid sales forecasting scheme by combining independent component analysis with K-means clustering and support vector regression.

    Science.gov (United States)

    Lu, Chi-Jie; Chang, Chi-Chang

    2014-01-01

    Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting.

  13. Effects of agroecological conditions and hybrid combinations on maize seed germination

    OpenAIRE

    Tabaković, M.; Glamočlija, Đ.; Jovanović, S.; Popović, V.; Simić, D.; Anđelković, S.

    2013-01-01

    Germination energy and seed germination of four maize combinations cultivated under different growing conditions were observed. Analysis of hybrid seed of four commercial combinations derived at the Maize Research Institute, Zemun Polje, grown in three locations, were done on the working sample of 4 x 100 seeds under laboratory conditions. The experimental data was processed for the mean and total variability (X and C.V.) for both seed traits and for each t...

  14. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    Science.gov (United States)

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  15. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi

    Full Text Available Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS has been shown to perform competitively with Particle Swarm Optimization (PSO. The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA based SOS (SASOS in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  16. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Maryam Mousavi

    Full Text Available Flexible manufacturing system (FMS enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs. An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA, particle swarm optimization (PSO, and hybrid GA-PSO to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.

  17. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization.

    Science.gov (United States)

    Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah

    2017-01-01

    Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.

  18. Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm

    International Nuclear Information System (INIS)

    Xiao, Liye; Qian, Feng; Shao, Wei

    2017-01-01

    Highlights: • Propose a hybrid architecture based on a modified bat algorithm for multi-step wind speed forecasting. • Improve the accuracy of multi-step wind speed forecasting. • Modify bat algorithm with CG to improve optimized performance. - Abstract: As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing pollution. Generally, wind speed forecasting, which has an essential influence on wind power systems, is regarded as a challenging task. Analyses based on single-step wind speed forecasting have been widely used, but their results are insufficient in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting architecture based on decomposing algorithms and modified neural networks is successfully developed for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture, and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate gradient (CG) method is developed to optimize the initial weights between layers and thresholds of the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind speed data collected from four different wind power stations in Penglai, China, were used as a case study. The numerical experiments showed that the hybrid model including the singular spectrum analysis and general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate forecasting results in one-step to three-step wind speed forecasting.

  19. Combined Dust Detection Algorithm by Using MODIS Infrared Channels over East Asia

    Science.gov (United States)

    Park, Sang Seo; Kim, Jhoon; Lee, Jaehwa; Lee, Sukjo; Kim, Jeong Soo; Chang, Lim Seok; Ou, Steve

    2014-01-01

    A new dust detection algorithm is developed by combining the results of multiple dust detectionmethods using IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods. However, BTDmethods have limitations in identifying the offset values of the BTDto discriminate clear-sky areas. The current algorithm overcomes the disadvantages of previous dust detection methods by considering the Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally, the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations. From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI). The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.

  20. A fingerprint classification algorithm based on combination of local and global information

    Science.gov (United States)

    Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu

    2011-12-01

    Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.

  1. A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows.

    Science.gov (United States)

    Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian

    2015-08-27

    A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following.

  2. A combination of genetic algorithm and particle swarm optimization method for solving traveling salesman problem

    Directory of Open Access Journals (Sweden)

    Keivan Borna

    2015-12-01

    Full Text Available Traveling salesman problem (TSP is a well-established NP-complete problem and many evolutionary techniques like particle swarm optimization (PSO are used to optimize existing solutions for that. PSO is a method inspired by the social behavior of birds. In PSO, each member will change its position in the search space, according to personal or social experience of the whole society. In this paper, we combine the principles of PSO and crossover operator of genetic algorithm to propose a heuristic algorithm for solving the TSP more efficiently. Finally, some experimental results on our algorithm are applied in some instances in TSPLIB to demonstrate the effectiveness of our methods which also show that our algorithm can achieve better results than other approaches.

  3. A New Image Encryption Technique Combining Hill Cipher Method, Morse Code and Least Significant Bit Algorithm

    Science.gov (United States)

    Nofriansyah, Dicky; Defit, Sarjon; Nurcahyo, Gunadi W.; Ganefri, G.; Ridwan, R.; Saleh Ahmar, Ansari; Rahim, Robbi

    2018-01-01

    Cybercrime is one of the most serious threats. Efforts are made to reduce the number of cybercrime is to find new techniques in securing data such as Cryptography, Steganography and Watermarking combination. Cryptography and Steganography is a growing data security science. A combination of Cryptography and Steganography is one effort to improve data integrity. New techniques are used by combining several algorithms, one of which is the incorporation of hill cipher method and Morse code. Morse code is one of the communication codes used in the Scouting field. This code consists of dots and lines. This is a new modern and classic concept to maintain data integrity. The result of the combination of these three methods is expected to generate new algorithms to improve the security of the data, especially images.

  4. Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm

    Directory of Open Access Journals (Sweden)

    Jingxian Hao

    2016-11-01

    Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.

  5. A hybrid algorithm of BSC and QFD to determine the criteria affecting implementation of successful outsourcing

    Directory of Open Access Journals (Sweden)

    Mohammad Hemati

    2012-04-01

    Full Text Available Successful organizations share some identical factors that pave the way for their success. Among these factors, strategic management is the key to success for organizations to contribute more to the competitive world market of today. In this respect, the pivotal role of outsourcing cannot be denied. This research parallelizes the criteria affecting the outsourcing success as presented in Elmuti model with the Balanced score card method in the Tose'e Ta'avon Bank. In this research, questionnaires and interviews with experts helped determine the strategic goals at four perspectives of balanced score card method (at Tose'e Ta'avon Bank and the relative weights were computed for each of balance score card (BSC perspectives by using AHP method. As the next step, the indexes were prioritized by applying the quality function development(QFD technique and considering strategic goals at four perspectives in section "WHAT" and the outsourcing success criteria of Elmuti model in section "HOW". At the end of algorithm, the results are compared with the Elmuti method. Based on the results, the hybrid proposed technique seems to perform better than Elmuti.

  6. A simple model based magnet sorting algorithm for planar hybrid undulators

    International Nuclear Information System (INIS)

    Rakowsky, G.

    2010-01-01

    Various magnet sorting strategies have been used to optimize undulator performance, ranging from intuitive pairing of high- and low-strength magnets, to full 3D FEM simulation with 3-axis Helmholtz coil magnet data. In the extreme, swapping magnets in a full field model to minimize trajectory wander and rms phase error can be time consuming. This paper presents a simpler approach, extending the field error signature concept to obtain trajectory displacement, kick angle and phase error signatures for each component of magnetization error from a Radia model of a short hybrid-PM undulator. We demonstrate that steering errors and phase errors are essentially decoupled and scalable from measured X, Y and Z components of magnetization. Then, for any given sequence of magnets, rms trajectory and phase errors are obtained from simple cumulative sums of the scaled displacements and phase errors. The cost function (a weighted sum of these errors) is then minimized by swapping magnets, using one's favorite optimization algorithm. This approach was applied recently at NSLS to a short in-vacuum undulator, which required no subsequent trajectory or phase shimming. Trajectory and phase signatures are also obtained for some mechanical errors, to guide 'virtual shimming' and specifying mechanical tolerances. Some simple inhomogeneities are modeled to assess their error contributions.

  7. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.

    Science.gov (United States)

    Li, Bin-Bin; Wang, Ling

    2007-06-01

    This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.

  8. A HYBRID GENETIC ALGORITHM-NEURAL NETWORK APPROACH FOR PRICING CORES AND REMANUFACTURED CORES

    Directory of Open Access Journals (Sweden)

    M. Seidi

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT:Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. Remanufacturing is an industrial process that makes used products reusable. One of the important aspects in both reverse logistics and remanufacturing is the pricing of returned and remanufactured products (called cores. In this paper, we focus on pricing the cores and remanufactured cores. First we present a mathematical model for this purpose. Since this model does not satisfy our requirements, we propose a simulation optimisation approach. This approach consists of a hybrid genetic algorithm based on a neural network employed as the fitness function. We use automata learning theory to obtain the learning rate required for training the neural network. Numerical results demonstrate that the optimal value of the acquisition price of cores and price of remanufactured cores is obtained by this approach.

    AFRIKAANSE OPSOMMING: Volhoubaarheid het ‘n belangrike saak geword in die meeste ekonomieë, wat verskeie maatskappye genoop het om produkherwinning en omgekeerde logistiek te onder oë te neem. Hervervaardiging is ‘n industriële proses wat gebruikte produkte weer bruikbaar maak. Een van die belangrike aspekte in beide omgekeerde logistiek en hervervaardiging is die prysbepaling van herwinne en hervervaardigde produkte. Hierdie artikel fokus op die prysbepalingsaspekte by wyse van ‘n wiskundige model.

  9. Proposed prediction algorithms based on hybrid approach to deal with anomalies of RFID data in healthcare

    Directory of Open Access Journals (Sweden)

    A. Anny Leema

    2013-07-01

    Full Text Available The RFID technology has penetrated the healthcare sector due to its increased functionality, low cost, high reliability, and easy-to-use capabilities. It is being deployed for various applications and the data captured by RFID readers increase according to timestamp resulting in an enormous volume of data duplication, false positive, and false negative. The dirty data stream generated by the RFID readers is one of the main factors limiting the widespread adoption of RFID technology. In order to provide reliable data to RFID application, it is necessary to clean the collected data and this should be done in an effective manner before they are subjected to warehousing. The existing approaches to deal with anomalies are physical, middleware, and deferred approach. The shortcomings of existing approaches are analyzed and found that robust RFID system can be built by integrating the middleware and deferred approach. Our proposed algorithms based on hybrid approach are tested in the healthcare environment which predicts false positive, false negative, and redundant data. In this paper, healthcare environment is simulated using RFID and the data observed by RFID reader consist of anomalies false positive, false negative, and duplication. Experimental evaluation shows that our cleansing methods remove errors in RFID data more accurately and efficiently. Thus, with the aid of the planned data cleaning technique, we can bring down the healthcare costs, optimize business processes, streamline patient identification processes, and improve patient safety.

  10. Receiver Architectures for MIMO-OFDM Based on a Combined VMP-SP Algorithm

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro; Kirkelund, Gunvor Elisabeth; Riegler, Erwin

    2011-01-01

    , such as the sum-product (SP) and variational message passing (VMP) algorithms, have become increasingly popular. In this contribution, we apply a combined VMP-SP message-passing technique to the design of receivers for MIMO-ODFM systems. The message-passing equations of the combined scheme can be obtained from......Iterative information processing, either based on heuristics or analytical frameworks, has been shown to be a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within this context, algorithms performing message-passing on a probabilistic graph...... assessment of our solutions, based on Monte Carlo simulations, corroborates the high performance of the proposed algorithms and their superiority to heuristic approaches....

  11. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2014-07-01

    Full Text Available We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC in a combined heat and power generation (CHP case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency as well as economic parameters show that hybrid power plants are more efficient compared to conventional CHP concepts or separate use of the energy sources.

  12. Outage Analysis of Practical FSO/RF Hybrid System With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-08-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless transmission. We present and analyze a transmission scheme for the hybrid FSO/RF communication system based on adaptive combining. Specifically, only FSO link is active as long as the instantaneous signal-to-noise ratio (SNR) at the FSO receiver is above a certain threshold level. When it falls below this threshold level, the RF link is activated along with the FSO link and the signals from the two links are combined at the receiver using a dual-branch maximal ratio combiner. Novel analytical expression for the cumulative distribution function (CDF) of the received SNR for the proposed hybrid system is obtained. This CDF expression is used to study the system outage performance. Numerical examples are presented to compare the outage performance of the proposed hybrid FSO/RF system with that of the FSO-only and RF-only systems. © 1997-2012 IEEE.

  13. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  14. Simulation of Mercury's magnetosheath with a combined hybrid-paraboloid model

    Science.gov (United States)

    Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku

    2017-08-01

    In this paper we introduce a novel approach for modeling planetary magnetospheres that involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further refer to it as the combined hybrid model. While both of these individual models have been successfully applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in the PMM. We then use this combined model to simulate Mercury's magnetosphere and investigate the geometry and configuration of Mercury's magnetosheath controlled by various conditions in the interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's magnetospheric environment for the first time. Using this setup, we compare the locations of the bow shock and the magnetopause as determined by simulations with the locations predicted by stand-alone PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also compare the results produced by these simulations with observational data obtained by the magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with a self-consistent global kinetic model creates new modeling possibilities which individual models cannot provide on their own.

  15. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hala Alshamlan

    2015-01-01

    Full Text Available An artificial bee colony (ABC is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR, and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO. The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  16. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    Science.gov (United States)

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  17. An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Weizhen Rao

    2016-01-01

    Full Text Available The classical model of vehicle routing problem (VRP generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS. TOHLS is based on a hybrid local search algorithm (HLS that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.

  18. Combining motor imagery with selective sensation toward a hybrid-modality BCI.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2014-08-01

    A hybrid modality brain-computer interface (BCI) is proposed in this paper, which combines motor imagery with selective sensation to enhance the discrimination between left and right mental tasks, e.g., the classification between left/ right stimulation sensation and right/ left motor imagery. In this paradigm, wearable vibrotactile rings are used to stimulate both the skin on both wrists. Subjects are required to perform the mental tasks according to the randomly presented cues (i.e., left hand motor imagery, right hand motor imagery, left stimulation sensation or right stimulation sensation). Two-way ANOVA statistical analysis showed a significant group effect (F (2,20) = 7.17, p = 0.0045), and the Benferroni-corrected multiple comparison test (with α = 0.05) showed that the hybrid modality group is 11.13% higher on average than the motor imagery group, and 10.45% higher than the selective sensation group. The hybrid modality experiment exhibits potentially wider spread usage within ten subjects crossed 70% accuracy, followed by four subjects in motor imagery and five subjects in selective sensation. Six subjects showed statistically significant improvement ( Benferroni-corrected) in hybrid modality in comparison with both motor imagery and selective sensation. Furthermore, among subjects having difficulties in both motor imagery and selective sensation, the hybrid modality improves their performance to 90% accuracy. The proposed hybrid modality BCI has demonstrated clear benefits for those poorly performing BCI users. Not only does the requirement of motor and sensory anticipation in this hybrid modality provide basic function of BCI for communication and control, it also has the potential for enhancing the rehabilitation during motor recovery.

  19. Cryptic Species Due to Hybridization: A Combined Approach to Describe a New Species (Carex: Cyperaceae).

    Science.gov (United States)

    Maguilla, Enrique; Escudero, Marcial

    2016-01-01

    Disappearance of diagnostic morphological characters due to hybridization is considered to be one of the causes of the complex taxonomy of the species-rich (ca. 2000 described species) genus Carex (Cyperaceae). Carex furva s.l. belongs to section Glareosae. It is an endemic species from the high mountains of the Iberian Peninsula (Spain and Portugal). Previous studies suggested the existence of two different, cryptic taxa within C. furva s.l. Intermediate morphologies found in the southern Iberian Peninsula precluded the description of a new taxa. We aimed to determine whether C. furva s.l. should be split into two different species based on the combination of morphological and molecular data. We sampled ten populations across its full range and performed a morphological study based on measurements on herbarium specimens and silica-dried inflorescences. Both morphological and phylogenetic data support the existence of two different species within C. furva s.l. Nevertheless, intermediate morphologies and sterile specimens were found in one of the southern populations (Sierra Nevada) of C. furva s.l., suggesting the presence of hybrid populations in areas where both supposed species coexist. Hybridization between these two putative species has blurred morphological and genetic limits among them in this hybrid zone. We have proved the utility of combining molecular and morphological data to discover a new cryptic species in a scenario of hybridization. We now recognize a new species, C. lucennoiberica, endemic to the Iberian Peninsula (Sierra Nevada, Central system and Cantabrian Mountains). On the other hand, C. furva s.s. is distributed only in Sierra Nevada, where it may be threatened by hybridization with C. lucennoiberica. The restricted distribution of both species and their specific habitat requirements are the main limiting factors for their conservation.

  20. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Science.gov (United States)

    Kádár, Roland; Abbasi, Mahdi; Figuli, Roxana; Rigdahl, Mikael; Wilhelm, Manfred

    2017-01-01

    The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate) (EBA) nanocomposite hybrids containing graphite nanoplatelets (GnP) and carbon black (CB). The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests. PMID:28336857

  1. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm

    International Nuclear Information System (INIS)

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-01-01

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence. (paper)

  2. An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Majid Yousefikhoshbakht

    2016-08-01

    Full Text Available The traveling salesman problem (TSP is one of the most important NP-hard Problems and probably the most famous and extensively studied problem in the field of combinatorial optimization. In this problem, a salesman is required to visit each of n given nodes once and only once, starting from any node and returning to the original place of departure. This paper presents an efficient evolutionary optimization algorithm developed through combining imperialist competitive algorithm and lin-kernighan algorithm called (MICALK in order to solve the TSP. The MICALK is tested on 44 TSP instances involving from 24 to 1655 nodes from the literature so that 26 best known solutions of the benchmark problem are also found by our algorithm. Furthermore, the performance of MICALK is compared with several metaheuristic algorithms, including GA, BA, IBA, ICA, GSAP, ABO, PSO and BCO on 32 instances from TSPLIB. The results indicate that the MICALK performs well and is quite competitive with the above algorithms.

  3. A Causal and Real-Time Capable Power Management Algorithm for Off-Highway Hybrid Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Johannes Schalk

    2016-12-01

    Full Text Available Hybrid propulsion systems allow for a reduction of fuel consumption and pollutant emissions of future off-highway applications. A challenging aspect of a hybridization is the larger number of system components that further increases both the complexity and the diversification of such systems. Hence, beside a standardization on the hardware side for off-highway systems, a high flexibility and modularity of the control schemes is required to employ them in as many different applications as possible. In this paper, a causal optimization-based power management algorithm is introduced to control the power split between engine and electric machine in a hybrid powertrain. The algorithm optimizes the power split to achieve the maximum power supply efficiency and, thereby, considers the energy cost for maintaining the battery charge. Furthermore, the power management provides an optional function to control the battery state of charge in such a way that a target value is attained. In a simulation case study, the potential and the benefits of the proposed power management for the hybrid powertrain—aiming at a reduction of the fuel consumption of a DMU (diesel multiple unit train operated on a representative track—will be shown.

  4. A hybrid non-dominated sorting genetic algorithm and its application on multi-objective optimal design of nuclear power plant

    International Nuclear Information System (INIS)

    Chen, Lei; Yan, Changqi; Liao, Yi; Song, Feifei; Jia, Zhen

    2017-01-01

    Highlights: • The optimization ability of NSGA-II is improved. • The design targets can be obvious optimized through optimization methodology. • Multi-objective optimization is implanted into the design of nuclear power plant. - Abstract: The design of nuclear component can be optimized by seeking out the best combination of article operational and structural parameters. Through multi-objective optimization, the optimized scheme can not only meets the design requirements, but also satisfies the safety regulations. In this work, a hybrid non-dominated sorting genetic algorithm is proposed, and its performance is verified by comparing it with its prototype and immune memory clone constraint multi-objective algorithm through four test-functions; the designs of the steam generator and the primary loop of Qinshan I nuclear power plant are optimized by the proposed algorithm. The results show that the algorithm outperforms the other two through overall evaluation; the reactor inlet temperature is an important parameter which influences the distribution of the Pareto optimal front; through optimization, the weight of the steam generator can be reduced by 16.5%, and the primary flow-rate can be reduced by 17.0%, the weight of the primary loop can be reduced by 11.4%, and the volume can be reduced by 9.8%.

  5. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  6. Joint User Scheduling and MU-MIMO Hybrid Beamforming Algorithm for mmWave FDMA Massive MIMO System

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    2016-01-01

    Full Text Available The large bandwidth and multipath in millimeter wave (mmWave cellular system assure the existence of frequency selective channels; it is necessary that mmWave system remains with frequency division multiple access (FDMA and user scheduling. But for the hybrid beamforming system, the analog beamforming is implemented by the same phase shifts in the entire frequency band, and the wideband phase shifts may not be harmonious with all users scheduled in frequency resources. This paper proposes a joint user scheduling and multiuser hybrid beamforming algorithm for downlink massive multiple input multiple output (MIMO orthogonal frequency division multiple access (OFDMA systems. In the first step of user scheduling, the users with identical optimal beams form an OFDMA user group and multiplex the entire frequency resource. Then base station (BS allocates the frequency resources for each member of OFDMA user group. An OFDMA user group can be regarded as a virtual user; thus it can support arbitrary MU-MIMO user selection and beamforming algorithms. Further, the analog beamforming vectors employ the best beam of each selected MU-MIMO user and the digital beamforming algorithm is solved by weight MMSE to acquire the best performance gain and mitigate the interuser inference. Simulation results show that hybrid beamforming together with user scheduling can greatly improve the performance of mmWave OFDMA massive MU-MIMO system.

  7. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  8. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design

    Science.gov (United States)

    Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter

    2012-01-01

    Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.

  9. Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design.

    Science.gov (United States)

    Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter

    2012-01-01

    Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctive-use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water-delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources. Ground Water © 2011, National Ground Water Association. This article is a U.S. Government work and is in the public domain in the USA.

  10. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  11. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  12. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Zhang, Wenyu; Qu, Zongxi; Zhang, Kequan; Mao, Wenqian; Ma, Yining; Fan, Xu

    2017-01-01

    Highlights: • A CEEMDAN-CLSFPA combined model is proposed for short-term wind speed forecasting. • The CEEMDAN technique is used to decompose the original wind speed series. • A modified optimization algorithm-CLSFPA is proposed to optimize the weights of the combined model. • The no negative constraint theory is applied to the combined model. • Robustness of the proposed model is validated by data sampled from four different wind farms. - Abstract: Wind energy, which is stochastic and intermittent by nature, has a significant influence on power system operation, power grid security and market economics. Precise and reliable wind speed prediction is vital for wind farm planning and operational planning for power grids. To improve wind speed forecasting accuracy, a large number of forecasting approaches have been proposed; however, these models typically do not account for the importance of data preprocessing and are limited by the use of individual models. In this paper, a novel combined model – combining complete ensemble empirical mode decomposition adaptive noise (CEEMDAN), flower pollination algorithm with chaotic local search (CLSFPA), five neural networks and no negative constraint theory (NNCT) – is proposed for short-term wind speed forecasting. First, a recent CEEMDAN is employed to divide the original wind speed data into a finite set of IMF components, and then a combined model, based on NNCT, is proposed for forecasting each decomposition signal. To improve the forecasting capacity of the combined model, a modified flower pollination algorithm (FPA) with chaotic local search (CLS) is proposed and employed to determine the optimal weight coefficients of the combined model, and the final prediction values were obtained by reconstructing the refined series. To evaluate the forecasting ability of the proposed combined model, 15-min wind speed data from four wind farms in the eastern coastal areas of China are used. The experimental results of

  13. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree-Fock exchange

    International Nuclear Information System (INIS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas; Becker, Ute

    2009-01-01

    In this paper, the possibility is explored to speed up Hartree-Fock and hybrid density functional calculations by forming the Coulomb and exchange parts of the Fock matrix by different approximations. For the Coulomb part the previously introduced Split-RI-J variant (F. Neese, J. Comput. Chem. 24 (2003) 1740) of the well-known 'density fitting' approximation is used. The exchange part is formed by semi-numerical integration techniques that are closely related to Friesner's pioneering pseudo-spectral approach. Our potentially linear scaling realization of this algorithm is called the 'chain-of-spheres exchange' (COSX). A combination of semi-numerical integration and density fitting is also proposed. Both Split-RI-J and COSX scale very well with the highest angular momentum in the basis sets. It is shown that for extended basis sets speed-ups of up to two orders of magnitude compared to traditional implementations can be obtained in this way. Total energies are reproduced with an average error of <0.3 kcal/mol as determined from extended test calculations with various basis sets on a set of 26 molecules with 20-200 atoms and up to 2000 basis functions. Reaction energies agree to within 0.2 kcal/mol (Hartree-Fock) or 0.05 kcal/mol (hybrid DFT) with the canonical values. The COSX algorithm parallelizes with a speedup of 8.6 observed for 10 processes. Minimum energy geometries differ by less than 0.3 pm in the bond distances and 0.5 deg. in the bond angels from their canonical values. These developments enable highly efficient and accurate self-consistent field calculations including nonlocal Hartree-Fock exchange for large molecules. In combination with the RI-MP2 method and large basis sets, second-order many body perturbation energies can be obtained for medium sized molecules with unprecedented efficiency. The algorithms are implemented into the ORCA electronic structure system

  14. ECG based Atrial Fibrillation detection using Sequency Ordered Complex Hadamard Transform and Hybrid Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Padmavathi Kora

    2017-06-01

    Full Text Available Electrocardiogram (ECG, a non-invasive diagnostic technique, used for detecting cardiac arrhythmia. From last decade industry dealing with biomedical instrumentation and research, demanding an advancement in its ability to distinguish different cardiac arrhythmia. Atrial Fibrillation (AF is an irregular rhythm of the human heart. During AF, the atrial moments are quicker than the normal rate. As blood is not completely ejected out of atria, chances for the formation of blood clots in atrium. These abnormalities in the heart can be identified by the changes in the morphology of the ECG. The first step in the detection of AF is preprocessing of ECG, which removes noise using filters. Feature extraction is the next key process in this research. Recent feature extraction methods, such as Auto Regressive (AR modeling, Magnitude Squared Coherence (MSC and Wavelet Coherence (WTC using standard database (MIT-BIH, yielded a lot of features. Many of these features might be insignificant containing some redundant and non-discriminatory features that introduce computational burden and loss of performance. This paper presents fast Conjugate Symmetric Sequency Ordered Complex Hadamard Transform (CS-SCHT for extracting relevant features from the ECG signal. The sparse matrix factorization method is used for developing fast and efficient CS-SCHT algorithm and its computational performance is examined and compared to that of the HT and NCHT. The applications of the CS-SCHT in the ECG-based AF detection is also discussed. These fast CS-SCHT features are optimized using Hybrid Firefly and Particle Swarm Optimization (FFPSO to increase the performance of the classifier.

  15. An online hybrid brain-computer interface combining multiple physiological signals for webpage browse.

    Science.gov (United States)

    Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming

    2015-08-01

    The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.

  16. Combined amplification and hybridization techniques for genome scanning in vegetatively propagated crops

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, G; Ramser, J; Terauchi, R [Biocentre, University of Frankfurt, Frankfurt am Main (Germany); Lopez-Peralta, C [IRGP, Colegio de Postgraduados, Montecillo, Edo. de Mexico, Texcoco (Mexico); Asemota, H N [Biotechnology Centre, University of the West Indies, Mona, Kingston (Jamaica); Weising, K [School of Biological Sciences, University of Auckland, Auckland (New Zealand)

    1998-10-01

    A combination of PCR- and hybridization-based genome scanning techniques and sequence comparisons between non-coding chloroplast DNA flanking tRNA genes has been employed to screen Dioscorea species for intra- and interspecific genetic diversity. This methodology detected extensive polymorphisms within Dioscorea bulbifera L., and revealed taxonomic and phylogenetic relationships among cultivated Guinea yams varieties and their potential wild progenitors. Finally, screening of yam germplasm grown in Jamaica permitted reliable discrimination between all major cultivars. Genome scanning by micro satellite-primed PCR (MP-PCR) and random amplified polymorphic DNA (RAPD) analysis in combination with the novel random amplified micro satellite polymorphisms (RAMPO) hybridization technique has shown high potential for the genetic analysis of yams, and holds promise for other vegetatively propagated orphan crops. (author) 46 refs, 3 figs, 3 tabs

  17. Combined amplification and hybridization techniques for genome scanning in vegetatively propagated crops

    International Nuclear Information System (INIS)

    Kahl, G.; Ramser, J.; Terauchi, R.; Lopez-Peralta, C.; Asemota, H.N.; Weising, K.

    1998-01-01

    A combination of PCR- and hybridization-based genome scanning techniques and sequence comparisons between non-coding chloroplast DNA flanking tRNA genes has been employed to screen Dioscorea species for intra- and interspecific genetic diversity. This methodology detected extensive polymorphisms within Dioscorea bulbifera L., and revealed taxonomic and phylogenetic relationships among cultivated Guinea yams varieties and their potential wild progenitors. Finally, screening of yam germplasm grown in Jamaica permitted reliable discrimination between all major cultivars. Genome scanning by micro satellite-primed PCR (MP-PCR) and random amplified polymorphic DNA (RAPD) analysis in combination with the novel random amplified micro satellite polymorphisms (RAMPO) hybridization technique has shown high potential for the genetic analysis of yams, and holds promise for other vegetatively propagated orphan crops. (author)

  18. Combined heat and power economic dispatch by a fish school search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonardo Trigueiro dos; Costa e Silva, Marsil de Athayde [Undergraduate in Mechatronics Engineering, Pontifical Catholic University of Parana, Curitiba, PR (Brazil); Coelho, Leandro dos Santos [Industrial and Systems Engineering Graduate Program, PPGEPS, Pontifical Catholic University of Parana, Curitiba, PR (Brazil)], e-mail: leandro.coelho@pucpr.br

    2010-07-01

    The conversion of primary fossil fuels, such as coal and gas, to electricity is a a relatively inefficient process. Even the most modern combined cycle plants can only achieve efficiencies of between 50-60%. A great portion of the energy wasted in this conversion process is released to the environment as waste heat. The principle of combined heat and power, also known as cogeneration, is to recover and make beneficial use of this heat, significantly raising the overall efficiency of the conversion process. However, the optimal utilization of multiple combined heat and power systems is a complicated problem which needs powerful methods to solve. This paper presents a fish school search (FSS) algorithm to solve the combined heat and power economic dispatch problem. FSS is a novel approach recently proposed to perform search in complex optimization problems. Some simulations presented in the literature indicated that FSS can outperform many bio-inspired algorithms, mainly in multimodal functions. The search process in FSS is carried out by a population of limited-memory individuals - the fishes. Each fish represents a possible solution to the problem. Similarly to particle swarm optimization or genetic algorithm, search guidance in FSS is driven by the success of some individual members of the population. A four-unit system proposed recently which is a benchmark case in the power systems field has been validated as a case study in this paper. (author)

  19. Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm.

    Science.gov (United States)

    Bai, Li-Yue; Dai, Hao; Xu, Qin; Junaid, Muhammad; Peng, Shao-Liang; Zhu, Xiaolei; Xiong, Yi; Wei, Dong-Qing

    2018-02-05

    Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of various types of features to characterize pairs of drugs. These features included information about the targets of the drugs, the pathway in which the target protein of a drug was involved in, side effects of drugs, metabolic enzymes of the drugs, and drug transporters. The latter two features (metabolic enzymes and drug transporters) were related to the metabolism and transportation properties of drugs, which were not analyzed or used in previous studies. Then, we devised a novel improved naïve Bayesian algorithm to construct classification models to predict effective drug combinations by using the individual types of features mentioned above. Our results indicated that the performance of our proposed method was indeed better than the naïve Bayesian algorithm and other conventional classification algorithms such as support vector machine and K-nearest neighbor.

  20. Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm

    Directory of Open Access Journals (Sweden)

    Li-Yue Bai

    2018-02-01

    Full Text Available Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of various types of features to characterize pairs of drugs. These features included information about the targets of the drugs, the pathway in which the target protein of a drug was involved in, side effects of drugs, metabolic enzymes of the drugs, and drug transporters. The latter two features (metabolic enzymes and drug transporters were related to the metabolism and transportation properties of drugs, which were not analyzed or used in previous studies. Then, we devised a novel improved naïve Bayesian algorithm to construct classification models to predict effective drug combinations by using the individual types of features mentioned above. Our results indicated that the performance of our proposed method was indeed better than the naïve Bayesian algorithm and other conventional classification algorithms such as support vector machine and K-nearest neighbor.

  1. A Local and Global Search Combined Particle Swarm Optimization Algorithm and Its Convergence Analysis

    Directory of Open Access Journals (Sweden)

    Weitian Lin

    2014-01-01

    Full Text Available Particle swarm optimization algorithm (PSOA is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA, and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA. Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.

  2. Multi-objective optimization in the presence of practical constraints using non-dominated sorting hybrid cuckoo search algorithm

    Directory of Open Access Journals (Sweden)

    M. Balasubbareddy

    2015-12-01

    Full Text Available A novel optimization algorithm is proposed to solve single and multi-objective optimization problems with generation fuel cost, emission, and total power losses as objectives. The proposed method is a hybridization of the conventional cuckoo search algorithm and arithmetic crossover operations. Thus, the non-linear, non-convex objective function can be solved under practical constraints. The effectiveness of the proposed algorithm is analyzed for various cases to illustrate the effect of practical constraints on the objectives' optimization. Two and three objective multi-objective optimization problems are formulated and solved using the proposed non-dominated sorting-based hybrid cuckoo search algorithm. The effectiveness of the proposed method in confining the Pareto front solutions in the solution region is analyzed. The results for single and multi-objective optimization problems are physically interpreted on standard test functions as well as the IEEE-30 bus test system with supporting numerical and graphical results and also validated against existing methods.

  3. A Hybrid Genetic Algorithm with a Knowledge-Based Operator for Solving the Job Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Hamed Piroozfard

    2016-01-01

    Full Text Available Scheduling is considered as an important topic in production management and combinatorial optimization in which it ubiquitously exists in most of the real-world applications. The attempts of finding optimal or near optimal solutions for the job shop scheduling problems are deemed important, because they are characterized as highly complex and NP-hard problems. This paper describes the development of a hybrid genetic algorithm for solving the nonpreemptive job shop scheduling problems with the objective of minimizing makespan. In order to solve the presented problem more effectively, an operation-based representation was used to enable the construction of feasible schedules. In addition, a new knowledge-based operator was designed based on the problem’s characteristics in order to use machines’ idle times to improve the solution quality, and it was developed in the context of function evaluation. A machine based precedence preserving order-based crossover was proposed to generate the offspring. Furthermore, a simulated annealing based neighborhood search technique was used to improve the local exploitation ability of the algorithm and to increase its population diversity. In order to prove the efficiency and effectiveness of the proposed algorithm, numerous benchmarked instances were collected from the Operations Research Library. Computational results of the proposed hybrid genetic algorithm demonstrate its effectiveness.

  4. Fuzzy Expert System based on a Novel Hybrid Stem Cell (HSC) Algorithm for Classification of Micro Array Data.

    Science.gov (United States)

    Vijay, S Arul Antran; GaneshKumar, P

    2018-02-21

    In the growing scenario, microarray data is extensively used since it provides a more comprehensive understanding of genetic variants among diseases. As the gene expression samples have high dimensionality it becomes tedious to analyze the samples manually. Hence an automated system is needed to analyze these samples. The fuzzy expert system offers a clear classification when compared to the machine learning and statistical methodologies. In fuzzy classification, knowledge acquisition would be a major concern. Despite several existing approaches for knowledge acquisition much effort is necessary to enhance the learning process. This paper proposes an innovative Hybrid Stem Cell (HSC) algorithm that utilizes Ant Colony optimization and Stem Cell algorithm for designing fuzzy classification system to extract the informative rules to form the membership functions from the microarray dataset. The HSC algorithm uses a novel Adaptive Stem Cell Optimization (ASCO) to improve the points of membership function and Ant Colony Optimization to produce the near optimum rule set. In order to extract the most informative genes from the large microarray dataset a method called Mutual Information is used. The performance results of the proposed technique evaluated using the five microarray datasets are simulated. These results prove that the proposed Hybrid Stem Cell (HSC) algorithm produces a precise fuzzy system than the existing methodologies.

  5. Studies on combining ability and heritability of milling and physical properties in indica hybrid rice

    International Nuclear Information System (INIS)

    Zhang Lihua; Wang Linyou; Wang Jianjun

    2003-01-01

    14 different qualities parents of indica hybrid rice, including 7 CMS lines and 7 restorers, were chosen to analyze the combining ability of milling property and physical property by way of p x q incomplete diallel cross (NC II) design. The results showed that: 1) Both general combining ability (gca) and specific combining ability (sca) were highly significant in all 12 characters; the genetic additive effects was principal in brown rice length (BRL), brown rice width (BRW), ratio of length to width of brown rice (RLWBR), milled rice length (MRL), milled rice width (MRW), ratio of length to width of milled rice (RLWMR) and chalkyness (CN); while the nonadditive effects were greater in brown rice rate (BRR), milled rice rate (MRR), head rice rate (HRR), chalky rice percentage (CRP) and area of chalky rice (ACR). 2) Through the analysis of the contribution ratio of the male, female and their interaction to the total variance of the quality characters in F 1 hybrids, the results showed that BRR, MRR, BRL, MRL and ACR were influenced more greatly by restorer line than by CMS line, but the others were influenced more greatly by CMS line than by restorer line. 3) The gca and sca effects were independent each other, which suggests that it is essential to make widely testcrosses in the selection of hybrid combinations. There existed a positive correlation between gca and phenotypic value of parents, which indicates that great attention must be paid to the improvement of parent own characters in hybrid rice breeding. 4) BRL, BRW, RLWBR, MRL, MRW and RLWMR had higher narrow heritabilities (h N 2 ), and these characters may be used as indirect traits in early breeding generation

  6. Application brushless machines with combine excitation for a hybrid car and an electric car

    OpenAIRE

    GANDZHA S.A.; KIESSH I.E.

    2015-01-01

    This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding) for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric...

  7. Maize forage aptitude: Combining ability of inbred lines and stability of hybrids

    Directory of Open Access Journals (Sweden)

    Luis Máximo Bertoia

    2014-12-01

    Full Text Available Breeding of forage maize should combine improvement achieved for grain with the specific needs of forage hybrids. Production stability is important when maize is used for silage if the planting area is not in the ideal agronomic environment. The objectives of the present research were: (i to quantify environmental and genetic and their interaction effects on maize silage traits; (ii to identify possible heterotic groups for forage aptitude and suggest the formation of potential heterotic patterns, and (iii to identify suitable inbred line combinations for producing hybrids with forage aptitude. Forty-five hybrids derived from diallelic crosses (without reciprocals among ten inbred lines of maize were evaluated in this study. Combined ANOVA over environments showed differences between genotypes (G, environments (E, and their interactions (GEI. Heritability (H2, and genotypic and phenotypic correlations were estimated to evaluate the variation in and relationships between forage traits. Postdictive and predictive AMMI models were fitted to determine the importance of each source of variation, G, E, and GEI, and to select genotypes simultaneously on yield, quality and stability. A predominance of additive effects was found in the evaluated traits. The heterotic pattern Reid-BSSS × Argentine flint was confirmed for ear yield (EY and harvest index (HI. High and broad genetic variation was found for stover and whole plant traits. Some inbred lines had genes with differential breeding aptitude for ear and stover. Stover and ear yield should be the main breeding objectives in maize forage breeding.

  8. Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem.

    Directory of Open Access Journals (Sweden)

    Carlos Contreras-Bolton

    Full Text Available Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature.

  9. Hybrid Spatial Data Model for Indoor Space: Combined Topology and Grid

    Directory of Open Access Journals (Sweden)

    Zhiyong Lin

    2017-11-01

    Full Text Available The construction and application of an indoor spatial data model is an important prerequisite to meet the requirements of diversified indoor spatial location services. The traditional indoor spatial topology model focuses on the construction of topology information. It has high path analysis and query efficiency, but ignores the spatial location information. The grid model retains the plane position information by grid, but increases the data volume and complexity of the model and reduces the efficiency of the model analysis. This paper presents a hybrid model for interior space based on topology and grid. Based on the spatial meshing and spatial division of the interior space, the model retains the position information and topological connectivity information of the interior space by establishing the connection or affiliation between the grid subspace and the topological subspace. The model improves the speed of interior spatial analysis and solves the problem of the topology information and location information updates not being synchronized. In this study, the A* shortest path query efficiency of typical daily indoor activities under the grid model and the hybrid model were compared for the indoor plane of an apartment and a shopping mall. The results obtained show that the hybrid model is 43% higher than the A* algorithm of the grid model as a result of the existence of topology communication information. This paper provides a useful idea for the establishment of a highly efficient and highly available interior spatial data model.

  10. Cross-layer designed adaptive modulation algorithm with packet combining and truncated ARQ over MIMO Nakagami fading channels

    KAUST Repository

    Aniba, Ghassane; Aissa, Sonia

    2011-01-01

    works addressed the link layer performance of AM with truncated ARQ but without packet combining. In addition, previously proposed AM algorithms are not optimal and can provide poor performance when packet combining is implemented. Herein, we first show

  11. A new algorithm for combined dynamic economic emission dispatch with security constraints

    International Nuclear Information System (INIS)

    Arul, R.; Velusami, S.; Ravi, G.

    2015-01-01

    The primary objective of CDEED (combined dynamic economic emission dispatch) problem is to determine the optimal power generation schedule for the online generating units over a time horizon considered and simultaneously minimizing the emission level and satisfying the generators and system constraints. The CDEED problem is bi-objective optimization problem, where generation cost and emission are considered as two competing objective functions. This bi-objective CDEED problem is represented as a single objective optimization problem by assigning different weights for each objective functions. The weights are varied in steps and for each variation one compromise solution are generated and finally fuzzy based selection method is used to select the best compromise solution from the set of compromise solutions obtained. In order to reflect the test systems considered as real power system model, the security constraints are also taken into account. Three new versions of DHS (differential harmony search) algorithms have been proposed to solve the CDEED problems. The feasibility of the proposed algorithms is demonstrated on IEEE-26 and IEEE-39 bus systems. The result obtained by the proposed CSADHS (chaotic self-adaptive differential harmony search) algorithm is found to be better than EP (evolutionary programming), DHS, and the other proposed algorithms in terms of solution quality, convergence speed and computation time. - Highlights: • In this paper, three new algorithms CDHS, SADHS and CSADHS are proposed. • To solve DED with emission, poz's, spinning reserve and security constraints. • Results obtained by the proposed CSADHS algorithm are better than others. • The proposed CSADHS algorithm has fast convergence characteristic than others

  12. Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers

    Science.gov (United States)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2010-01-01

    The design, simulation, and characterization of a novel Ka-band (32.05 0.25 GHz) rectangular waveguide two-way branch-line hybrid unequal power combiner (with port impedances matched to that of a standard WR-28 waveguide) has been created to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The measured combining efficiency is 92.9 percent at the center frequency of 32.05 GHz. This circuit is efficacious in combining the unequal output power from two Ka-band GaAs pseudomorphic high electron mobility transistor (pHEMT) monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with high efficiency. The component parts include the branch-line hybrid-based power combiner and the MMIC-based PAs. A two-way branch-line hybrid is a four-port device with all ports matched; power entering port 1 is divided in phase, and into the ratio 2:1 between ports 3 and 4. No power is coupled to port 2. MMICs are a type of integrated circuit fabricated on GaAs that operates at microwave frequencies, and performs the function of signal amplification. The power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA's deep space frequency band. The power combiner would have an output return loss better than 20 dB. Isolation between the output port and the isolated port is greater than 25 dB. Isolation between the two input ports is greater than 25 dB. The combining efficiency would be greater than 90 percent when the ratio of the two input power levels is two. The power combiner is machined from aluminum with E-plane split-block arrangement, and has excellent reliability. The flexibility of this design allows the combiner to be customized for combining the power from MMIC PAs with an arbitrary power output ratio. In addition, it allows combining a low-power GaAs MMIC with a high-power GaN MMIC. The arbitrary

  13. An optimized Fuzzy Logic Controller by Water Cycle Algorithm for power management of Stand-alone Hybrid Green Power generation

    International Nuclear Information System (INIS)

    Sarvi, Mohammad; Avanaki, Isa Nasiri

    2015-01-01

    Highlights: • A new method to improve the performance of renewable power management is proposed. • The proposed method is based on Fuzzy Logic optimized by the Water Cycle Algorithm. • The proposed method characteristics are compared with two other methods. • The comparisons confirm that the proposed method is robust and effectiveness one. - Abstract: This paper aims to improve the power management system of a Stand-alone Hybrid Green Power generation based on the Fuzzy Logic Controller optimized by the Water Cycle Algorithm. The proposed Stand-alone Hybrid Green Power consists of wind energy conversion and photovoltaic systems as primary power sources and a battery, fuel cell, and Electrolyzer as energy storage systems. Hydrogen is produced from surplus power generated by the wind energy conversion and photovoltaic systems of Stand-alone Hybrid Green Power and stored in the hydrogen storage tank for fuel cell later using when the power generated by primary sources is lower than load demand. The proposed optimized Fuzzy Logic Controller based power management system determines the power that is generated by fuel cell or use by Electrolyzer. In a hybrid system, operation and maintenance cost and reliability of the system are the important issues that should be considered in studies. In this regard, Water Cycle Algorithm is used to optimize membership functions in order to simultaneously minimize the Loss of Power Supply Probability and operation and maintenance. The results are compared with the particle swarm optimization and the un-optimized Fuzzy Logic Controller power management system to prove that the proposed method is robust and effective. Reduction in Loss of Power Supply Probability and operation and maintenance, are the most advantages of the proposed method. Moreover the level of the State of Charge of the battery in the proposed method is higher than other mentioned methods which leads to increase battery lifetime.

  14. An efficient genetic algorithm for a hybrid flow shop scheduling problem with time lags and sequence-dependent setup time

    Directory of Open Access Journals (Sweden)

    Farahmand-Mehr Mohammad

    2014-01-01

    Full Text Available In this paper, a hybrid flow shop scheduling problem with a new approach considering time lags and sequence-dependent setup time in realistic situations is presented. Since few works have been implemented in this field, the necessity of finding better solutions is a motivation to extend heuristic or meta-heuristic algorithms. This type of production system is found in industries such as food processing, chemical, textile, metallurgical, printed circuit board, and automobile manufacturing. A mixed integer linear programming (MILP model is proposed to minimize the makespan. Since this problem is known as NP-Hard class, a meta-heuristic algorithm, named Genetic Algorithm (GA, and three heuristic algorithms (Johnson, SPTCH and Palmer are proposed. Numerical experiments of different sizes are implemented to evaluate the performance of presented mathematical programming model and the designed GA in compare to heuristic algorithms and a benchmark algorithm. Computational results indicate that the designed GA can produce near optimal solutions in a short computational time for different size problems.

  15. A Hybrid Symbiotic Organisms Search Algorithm with Variable Neighbourhood Search for Solving Symmetric and Asymmetric Traveling Salesman Problem

    Science.gov (United States)

    Umam, M. I. H.; Santosa, B.

    2018-04-01

    Combinatorial optimization has been frequently used to solve both problems in science, engineering, and commercial applications. One combinatorial problems in the field of transportation is to find a shortest travel route that can be taken from the initial point of departure to point of destination, as well as minimizing travel costs and travel time. When the distance from one (initial) node to another (destination) node is the same with the distance to travel back from destination to initial, this problems known to the Traveling Salesman Problem (TSP), otherwise it call as an Asymmetric Traveling Salesman Problem (ATSP). The most recent optimization techniques is Symbiotic Organisms Search (SOS). This paper discuss how to hybrid the SOS algorithm with variable neighborhoods search (SOS-VNS) that can be applied to solve the ATSP problem. The proposed mechanism to add the variable neighborhoods search as a local search is to generate the better initial solution and then we modify the phase of parasites with adapting mechanism of mutation. After modification, the performance of the algorithm SOS-VNS is evaluated with several data sets and then the results is compared with the best known solution and some algorithm such PSO algorithm and SOS original algorithm. The SOS-VNS algorithm shows better results based on convergence, divergence and computing time.

  16. Generic Energy Matching Model and Figure of Matching Algorithm for Combined Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    J.C. Brezet

    2009-08-01

    Full Text Available In this paper the Energy Matching Model and Figure of Matching Algorithm which originally was dedicated only to photovoltaic (PV systems [1] are extended towards a Model and Algorithm suitable for combined systems which are a result of integration of two or more renewable energy sources into one. The systems under investigation will range from mobile portable devices up to the large renewable energy system conceivably to be applied at the Afsluitdijk (Closure- dike in the north of the Netherlands. This Afsluitdijk is the major dam in the Netherlands, damming off the Zuiderzee, a salt water inlet of the North Sea and turning it into the fresh water lake of the IJsselmeer. The energy chain of power supplies based on a combination of renewable energy sources can be modeled by using one generic Energy Matching Model as starting point.

  17. A Combined Algorithm for Optimization: Application for Optimization of the Transition Gas-Liquid in Stirred Tank Bioreactors

    Directory of Open Access Journals (Sweden)

    Mitko Petrov

    2005-12-01

    Full Text Available A combined algorithm for static optimization is developed. The algorithm includes a method for random search of optimal an initial point and a method based on fuzzy sets theory, combined in order to be found for the best solution of the optimization problem. The application of the combined algorithm eliminates the main disadvantage of the used fuzzy optimization method, namely decreases the number of discrete values of control variables. In this way, the algorithm allows problems with larger scale to be solved. The combined algorithm is used for optimization of gas-liquid transition in dependence on some constructive and regime parameters of a laboratory scale stirred tank bioreactor. After the application of developed optimization algorithm significant increase of mass-transfer effectiveness, aeration and mixing processes in the bioreactor are observed.

  18. An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by Combining Landsat, MODIS, and Secondary Data

    OpenAIRE

    Thenkabail, Prasad S.; Wu, Zhuoting

    2012-01-01

    The overarching goal of this research was to develop and demonstrate an automated Cropland Classification Algorithm (ACCA) that will rapidly, routinely, and accurately classify agricultural cropland extent, areas, and characteristics (e.g., irrigated vs. rainfed) over large areas such as a country or a region through combination of multi-sensor remote sensing and secondary data. In this research, a rule-based ACCA was conceptualized, developed, and demonstrated for the country of Tajikistan u...

  19. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques

    Science.gov (United States)

    Bellos, Vasilis; Tsakiris, George

    2016-09-01

    The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.

  20. Modeling the ultrasonic testing echoes by a combination of particle swarm optimization and Levenberg–Marquardt algorithms

    International Nuclear Information System (INIS)

    Gholami, Ali; Honarvar, Farhang; Moghaddam, Hamid Abrishami

    2017-01-01

    This paper presents an accurate and easy-to-implement algorithm for estimating the parameters of the asymmetric Gaussian chirplet model (AGCM) used for modeling echoes measured in ultrasonic nondestructive testing (NDT) of materials. The proposed algorithm is a combination of particle swarm optimization (PSO) and Levenberg–Marquardt (LM) algorithms. PSO does not need an accurate initial guess and quickly converges to a reasonable output while LM needs a good initial guess in order to provide an accurate output. In the combined algorithm, PSO is run first to provide a rough estimate of the output and this result is consequently inputted to the LM algorithm for more accurate estimation of parameters. To apply the algorithm to signals with multiple echoes, the space alternating generalized expectation maximization (SAGE) is used. The proposed combined algorithm is robust and accurate. To examine the performance of the proposed algorithm, it is applied to a number of simulated echoes having various signal to noise ratios. The combined algorithm is also applied to a number of experimental ultrasonic signals. The results corroborate the accuracy and reliability of the proposed combined algorithm. (paper)

  1. Forecasting Energy CO2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model

    Directory of Open Access Journals (Sweden)

    Xingsheng Gu

    2013-03-01

    Full Text Available he accurate forecasting of carbon dioxide (CO2 emissions from fossil fuel energy consumption is a key requirement for making energy policy and environmental strategy. In this paper, a novel quantum harmony search (QHS algorithm-based discounted mean square forecast error (DMSFE combination model is proposed. In the DMSFE combination forecasting model, almost all investigations assign the discounting factor (β arbitrarily since β varies between 0 and 1 and adopt one value for all individual models and forecasting periods. The original method doesn’t consider the influences of the individual model and the forecasting period. This work contributes by changing β from one value to a matrix taking the different model and the forecasting period into consideration and presenting a way of searching for the optimal β values by using the QHS algorithm through optimizing the mean absolute percent error (MAPE objective function. The QHS algorithm-based optimization DMSFE combination forecasting model is established and tested by forecasting CO2 emission of the World top‒5 CO2 emitters. The evaluation indexes such as MAPE, root mean squared error (RMSE and mean absolute error (MAE are employed to test the performance of the presented approach. The empirical analyses confirm the validity of the presented method and the forecasting accuracy can be increased in a certain degree.

  2. A unified classifier for robust face recognition based on combining multiple subspace algorithms

    Science.gov (United States)

    Ijaz Bajwa, Usama; Ahmad Taj, Imtiaz; Waqas Anwar, Muhammad

    2012-10-01

    Face recognition being the fastest growing biometric technology has expanded manifold in the last few years. Various new algorithms and commercial systems have been proposed and developed. However, none of the proposed or developed algorithm is a complete solution because it may work very well on one set of images with say illumination changes but may not work properly on another set of image variations like expression variations. This study is motivated by the fact that any single classifier cannot claim to show generally better performance against all facial image variations. To overcome this shortcoming and achieve generality, combining several classifiers using various strategies has been studied extensively also incorporating the question of suitability of any classifier for this task. The study is based on the outcome of a comprehensive comparative analysis conducted on a combination of six subspace extraction algorithms and four distance metrics on three facial databases. The analysis leads to the selection of the most suitable classifiers which performs better on one task or the other. These classifiers are then combined together onto an ensemble classifier by two different strategies of weighted sum and re-ranking. The results of the ensemble classifier show that these strategies can be effectively used to construct a single classifier that can successfully handle varying facial image conditions of illumination, aging and facial expressions.

  3. Performance analysis of AES-Blowfish hybrid algorithm for security of patient medical record data

    Science.gov (United States)

    Mahmud H, Amir; Angga W, Bayu; Tommy; Marwan E, Andi; Siregar, Rosyidah

    2018-04-01

    A file security is one method to protect data confidentiality, integrity and information security. Cryptography is one of techniques used to secure and guarantee data confidentiality by doing conversion to the plaintext (original message) to cipher text (hidden message) with two important processes, they are encrypt and decrypt. Some researchers proposed a hybrid method to improve data security. In this research we proposed hybrid method of AES-blowfish (BF) to secure the patient’s medical report data into the form PDF file that sources from database. Generation method of private and public key uses two ways of approach, those are RSA method f RSA and ECC. We will analyze impact of these two ways of approach for hybrid method at AES-blowfish based on time and Throughput. Based on testing results, BF method is faster than AES and AES-BF hybrid, however AES-BF hybrid is better for throughput compared with AES and BF is higher.

  4. A New Hybrid Approach for Wind Speed Prediction Using Fast Block Least Mean Square Algorithm and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ummuhan Basaran Filik

    2016-01-01

    Full Text Available A new hybrid wind speed prediction approach, which uses fast block least mean square (FBLMS algorithm and artificial neural network (ANN method, is proposed. FBLMS is an adaptive algorithm which has reduced complexity with a very fast convergence rate. A hybrid approach is proposed which uses two powerful methods: FBLMS and ANN method. In order to show the efficiency and accuracy of the proposed approach, seven-year real hourly collected wind speed data sets belonging to Turkish State Meteorological Service of Bozcaada and Eskisehir regions are used. Two different ANN structures are used to compare with this approach. The first six-year data is handled as a train set; the remaining one-year hourly data is handled as test data. Mean absolute error (MAE and root mean square error (RMSE are used for performance evaluations. It is shown for various cases that the performance of the new hybrid approach gives better results than the different conventional ANN structure.

  5. A Hybrid Forecasting Model Based on Empirical Mode Decomposition and the Cuckoo Search Algorithm: A Case Study for Power Load

    Directory of Open Access Journals (Sweden)

    Jiani Heng

    2016-01-01

    Full Text Available Power load forecasting always plays a considerable role in the management of a power system, as accurate forecasting provides a guarantee for the daily operation of the power grid. It has been widely demonstrated in forecasting that hybrid forecasts can improve forecast performance compared with individual forecasts. In this paper, a hybrid forecasting approach, comprising Empirical Mode Decomposition, CSA (Cuckoo Search Algorithm, and WNN (Wavelet Neural Network, is proposed. This approach constructs a more valid forecasting structure and more stable results than traditional ANN (Artificial Neural Network models such as BPNN (Back Propagation Neural Network, GABPNN (Back Propagation Neural Network Optimized by Genetic Algorithm, and WNN. To evaluate the forecasting performance of the proposed model, a half-hourly power load in New South Wales of Australia is used as a case study in this paper. The experimental results demonstrate that the proposed hybrid model is not only simple but also able to satisfactorily approximate the actual power load and can be an effective tool in planning and dispatch for smart grids.

  6. A New Hybrid Model Based on Data Preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available The establishment of electrical power system cannot only benefit the reasonable distribution and management in energy resources, but also satisfy the increasing demand for electricity. The electrical power system construction is often a pivotal part in the national and regional economic development plan. This paper constructs a hybrid model, known as the E-MFA-BP model, that can forecast indices in the electrical power system, including wind speed, electrical load, and electricity price. Firstly, the ensemble empirical mode decomposition can be applied to eliminate the noise of original time series data. After data preprocessing, the back propagation neural network model is applied to carry out the forecasting. Owing to the instability of its structure, the modified firefly algorithm is employed to optimize the weight and threshold values of back propagation to obtain a hybrid model with higher forecasting quality. Three experiments are carried out to verify the effectiveness of the model. Through comparison with other traditional well-known forecasting models, and models optimized by other optimization algorithms, the experimental results demonstrate that the hybrid model has the best forecasting performance.

  7. Improved Hybrid Fireworks Algorithm-Based Parameter Optimization in High-Order Sliding Mode Control of Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaomeng Yin

    2018-01-01

    Full Text Available With respect to the nonlinear hypersonic vehicle (HV dynamics, achieving a satisfactory tracking control performance under uncertainties is always a challenge. The high-order sliding mode control (HOSMC method with strong robustness has been applied to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA- based parameter optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other algorithms.

  8. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey

    International Nuclear Information System (INIS)

    Kıran, Mustafa Servet; Özceylan, Eren; Gündüz, Mesut; Paksoy, Turan

    2012-01-01

    Highlights: ► PSO and ACO algorithms are hybridized for forecasting energy demands of Turkey. ► Linear and quadratic forms are developed to meet the fluctuations of indicators. ► GDP, population, export and import have significant impacts on energy demand. ► Quadratic form provides better fit solution than linear form. ► Proposed approach gives lower estimation error than ACO and PSO, separately. - Abstract: This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.

  9. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    Science.gov (United States)

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  10. Combined hybrid functional and DFT+U calculations for metal chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Aras, Mehmet; Kılıç, Çetin, E-mail: cetin-kilic@gyte.edu.tr [Department of Physics, Gebze Institute of Technology, Gebze, Kocaeli 41400 (Turkey)

    2014-07-28

    In the density-functional studies of materials with localized electronic states, the local/semilocal exchange-correlation functionals are often either combined with a Hubbard parameter U as in the LDA+U method or mixed with a fraction of exactly computed (Fock) exchange energy yielding a hybrid functional. Although some inaccuracies of the semilocal density approximations are thus fixed to a certain extent, the improvements are not sufficient to make the predictions agree with the experimental data. Here, we put forward the perspective that the hybrid functional scheme and the LDA+U method should be treated as complementary, and propose to combine the range-separated Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with the Hubbard U. We thus present a variety of HSE+U calculations for a set of II-VI semiconductors, consisting of zinc and cadmium monochalcogenides, along with comparison to the experimental data. Our findings imply that an optimal value U{sup *} of the Hubbard parameter could be determined, which ensures that the HSE+U{sup *} calculation reproduces the experimental band gap. It is shown that an improved description not only of the electronic structure but also of the crystal structure and energetics is obtained by adding the U{sup *} term to the HSE functional, proving the utility of HSE+U{sup *} approach in modeling semiconductors with localized electronic states.

  11. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Directory of Open Access Journals (Sweden)

    Roland Kádár

    2017-01-01

    Full Text Available The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate (EBA nanocomposite hybrids containing graphite nanoplatelets (GnP and carbon black (CB. The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests.

  12. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations.

    Science.gov (United States)

    Jung, Jaewoon; Mori, Takaharu; Kobayashi, Chigusa; Matsunaga, Yasuhiro; Yoda, Takao; Feig, Michael; Sugita, Yuji

    2015-07-01

    GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310-323. doi: 10.1002/wcms.1220.

  13. A hybrid meta-heuristic algorithm for the vehicle routing problem with stochastic travel times considering the driver's satisfaction

    Science.gov (United States)

    Tavakkoli-Moghaddam, Reza; Alinaghian, Mehdi; Salamat-Bakhsh, Alireza; Norouzi, Narges

    2012-05-01

    A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time, number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost and increasing the driver's satisfaction level. On the other hand, this satisfaction, which will decrease by increasing the service time, is considered as an important logistic problem for a company. The stochastic time dominated by a probability variable leads to variation of the service time, while it is ignored in classical routing problems. This paper investigates the problem of the increasing service time by using the stochastic time for each tour such that the total traveling time of the vehicles is limited to a specific limit based on a defined probability. Since exact solutions of the vehicle routing problem that belong to the category of NP-hard problems are not practical in a large scale, a hybrid algorithm based on simulated annealing with genetic operators was proposed to obtain an efficient solution with reasonable computational cost and time. Finally, for some small cases, the related results of the proposed algorithm were compared with results obtained by the Lingo 8 software. The obtained results indicate the efficiency of the proposed hybrid simulated annealing algorithm.

  14. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM

    Directory of Open Access Journals (Sweden)

    Ji Li

    2016-10-01

    Full Text Available A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  15. Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using an MRAC-Based Robust Hybrid Control Algorithm

    Directory of Open Access Journals (Sweden)

    Zain Anwar Ali

    2017-01-01

    Full Text Available In this paper, a novel Model Reference Adaptive Control (MRAC-based hybrid control algorithm is presented for the trajectory tracking of a tri-rotor Unmanned Aerial Vehicle (UAV. The mathematical model of the tri-rotor is based on the Newton–Euler formula, whereas the MRAC-based hybrid controller consists of Fuzzy Proportional Integral Derivative (F-PID and Fuzzy Proportional Derivative (F-PD controllers. MRAC is used as the main controller for the dynamics, while the parameters of the adaptive controller are fine-tuned by the F-PD controller for the altitude control subsystem and the F-PID controller for the attitude control subsystem of the UAV. The stability of the system is ensured and proven by Lyapunov stability analysis. The proposed control algorithm is tested and verified using computer simulations for the trajectory tracking of the desired path as an input. The effectiveness of our proposed algorithm is compared with F-PID and the Fuzzy Logic Controller (FLC. Our proposed controller exhibits much less steady state error, quick error convergence in the presence of disturbance or noise, and model uncertainties.

  16. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    Science.gov (United States)

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  17. Efficiency maximization and performance evaluation of hybrid dual channel semitransparent photovoltaic thermal module using fuzzyfied genetic algorithm

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay

    2016-01-01

    Highlights: • Thermal modeling of novel dual channel semitransparent photovoltaic thermal hybrid module. • Efficiency maximization and performance evaluation of dual channel photovoltaic thermal module. • Annual performance has been evaluated for Srinagar, Jodhpur, Bangalore and New Delhi (India). • There are improvements in results for optimized system as compared to un-optimized system. - Abstract: The work has been carried out in two steps; firstly the parameters of hybrid dual channel semitransparent photovoltaic thermal module has been optimized using a fuzzyfied genetic algorithm. During the course of optimization, overall exergy efficiency is considered as an objective function and different design parameters of the proposed module have been optimized. Fuzzy controller is used to improve the performance of genetic algorithms and the approach is called as a fuzzyfied genetic algorithm. In the second step, the performance of the module has been analyzed for four cities of India such as Srinagar, Bangalore, Jodhpur and New Delhi. The performance of the module has been evaluated for daytime 08:00 AM to 05:00 PM and annually from January to December. It is to be noted that, an average improvement occurs in electrical efficiency of the optimized module, simultaneously there is also a reduction in solar cell temperature as compared to un-optimized module.

  18. Process combinations for the manufacturing of metal-plastic hybrid parts

    International Nuclear Information System (INIS)

    Drossel, W-G; Lies, C; Albert, A; Haase, R; Müller, R; Scholz, P

    2016-01-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts. (paper)

  19. Hybrid Detectors for Neutrons Combining Phenyl- Polysiloxanes with 3D Silicon Detectors

    International Nuclear Information System (INIS)

    Dalla Palma, Matteo; Quaranta, Alberto; Collazuol, Gianmaria; Carturan, Sara; Cinausero, Marco; Gramegna, Fabiana; Marchi, Tommaso; Dalla Betta, Gian-Franco; Mendicino, Roberto; Povoli, Marco; Boscardin, Maurizio; Giacomini, Gabriele; Ronchin, Sabina; Zorzi, Nicola

    2013-06-01

    We report on the initial results of a research project aimed at the development hybrid detectors for fast neutrons by combining a phenyl-polysiloxane-based converter with a 3D silicon detector. To this purpose, new 3D sensor structures have been designed, fabricated and electrically tested, showing low depletion voltage and good leakage current. Moreover, the radiation detection capability of 3D sensors was tested by measuring the signals recorded from alpha particles, gamma rays, and pulsed lasers. The converter has been poured into the 3D cavities with excellent coupling, as confirmed by cross-section SEM analyses. Preliminary tests with neutrons have been carried out on the first hybrid detector prototypes at the CN accelerator of INFN LNL. The device design and technology are discussed, along with the first results from the electrical and functional characterization. (authors)

  20. Combination of Rivest-Shamir-Adleman Algorithm and End of File Method for Data Security

    Science.gov (United States)

    Rachmawati, Dian; Amalia, Amalia; Elviwani

    2018-03-01

    Data security is one of the crucial issues in the delivery of information. One of the ways which used to secure the data is by encoding it into something else that is not comprehensible by human beings by using some crypto graphical techniques. The Rivest-Shamir-Adleman (RSA) cryptographic algorithm has been proven robust to secure messages. Since this algorithm uses two different keys (i.e., public key and private key) at the time of encryption and decryption, it is classified as asymmetric cryptography algorithm. Steganography is a method that is used to secure a message by inserting the bits of the message into a larger media such as an image. One of the known steganography methods is End of File (EoF). In this research, the cipher text resulted from the RSA algorithm is compiled into an array form and appended to the end of the image. The result of the EoF is the image which has a line with black gradations under it. This line contains the secret message. This combination of cryptography and steganography in securing the message is expected to increase the security of the message, since the message encryption technique (RSA) is mixed with the data hiding technique (EoF).

  1. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Komatsu, Shuhei; Kandatsu, Susumu; Yashiro, Tomoyasu; Baba, Masayuki

    2006-01-01

    The combination-weighted Feldkamp algorithm (CW-FDK) was developed and tested in a phantom in order to reduce cone-beam artefacts and enhance cranio-caudal reconstruction coverage in an attempt to improve image quality when utilizing cone-beam computed tomography (CBCT). Using a 256-slice cone-beam CT (256CBCT), image quality (CT-number uniformity and geometrical accuracy) was quantitatively evaluated in phantom and clinical studies, and the results were compared to those obtained with the original Feldkamp algorithm. A clinical study was done in lung cancer patients under breath holding and free breathing. Image quality for the original Feldkamp algorithm is degraded at the edge of the scan region due to the missing volume, commensurate with the cranio-caudal distance between the reconstruction and central planes. The CW-FDK extended the reconstruction coverage to equal the scan coverage and improved reconstruction accuracy, unaffected by the cranio-caudal distance. The extended reconstruction coverage with good image quality provided by the CW-FDK will be clinically investigated for improving diagnostic and radiotherapy applications. In addition, this algorithm can also be adapted for use in relatively wide cone-angle CBCT such as with a flat-panel detector CBCT

  2. Syndromic surveillance using veterinary laboratory data: algorithm combination and customization of alerts.

    Science.gov (United States)

    Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Sanchez, Javier; Revie, Crawford W

    2013-01-01

    Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes.

  3. Improving the Fine-Tuning of Metaheuristics: An Approach Combining Design of Experiments and Racing Algorithms

    Directory of Open Access Journals (Sweden)

    Eduardo Batista de Moraes Barbosa

    2017-01-01

    Full Text Available Usually, metaheuristic algorithms are adapted to a large set of problems by applying few modifications on parameters for each specific case. However, this flexibility demands a huge effort to correctly tune such parameters. Therefore, the tuning of metaheuristics arises as one of the most important challenges in the context of research of these algorithms. Thus, this paper aims to present a methodology combining Statistical and Artificial Intelligence methods in the fine-tuning of metaheuristics. The key idea is a heuristic method, called Heuristic Oriented Racing Algorithm (HORA, which explores a search space of parameters looking for candidate configurations close to a promising alternative. To confirm the validity of this approach, we present a case study for fine-tuning two distinct metaheuristics: Simulated Annealing (SA and Genetic Algorithm (GA, in order to solve the classical traveling salesman problem. The results are compared considering the same metaheuristics tuned through a racing method. Broadly, the proposed approach proved to be effective in terms of the overall time of the tuning process. Our results reveal that metaheuristics tuned by means of HORA achieve, with much less computational effort, similar results compared to the case when they are tuned by the other fine-tuning approach.

  4. Optimal design approach for heating irregular-shaped objects in three-dimensional radiant furnaces using a hybrid genetic algorithm-artificial neural network method

    Science.gov (United States)

    Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad

    2018-03-01

    In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.

  5. Hail statistic in Western Europe based on a hyrid cell-tracking algorithm combining radar signals with hailstone observations

    Science.gov (United States)

    Fluck, Elody

    2015-04-01

    Hail statistic in Western Europe based on a hybrid cell-tracking algorithm combining radar signals with hailstone observations Elody Fluck¹, Michael Kunz¹ , Peter Geissbühler², Stefan P. Ritz² With hail damage estimated over Billions of Euros for a single event (e.g., hailstorm Andreas on 27/28 July 2013), hail constitute one of the major atmospheric risks in various parts of Europe. The project HAMLET (Hail Model for Europe) in cooperation with the insurance company Tokio Millennium Re aims at estimating hail probability, hail hazard and, combined with vulnerability, hail risk for several European countries (Germany, Switzerland, France, Netherlands, Austria, Belgium and Luxembourg). Hail signals are obtained from radar reflectivity since this proxy is available with a high temporal and spatial resolution using several hail proxies, especially radar data. The focus in the first step is on Germany and France for the periods 2005- 2013 and 1999 - 2013, respectively. In the next step, the methods will be transferred and extended to other regions. A cell-tracking algorithm TRACE2D was adjusted and applied to two dimensional radar reflectivity data from different radars operated by European weather services such as German weather service (DWD) and French weather service (Météo-France). Strong convective cells are detected by considering 3 connected pixels over 45 dBZ (Reflectivity Cores RCs) in a radar scan. Afterwards, the algorithm tries to find the same RCs in the next 5 minute radar scan and, thus, track the RCs centers over time and space. Additional information about hailstone diameters provided by ESWD (European Severe Weather Database) is used to determine hail intensity of the detected hail swaths. Maximum hailstone diameters are interpolated along and close to the individual hail tracks giving an estimation of mean diameters for the detected hail swaths. Furthermore, a stochastic event set is created by randomizing the parameters obtained from the

  6. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    Science.gov (United States)

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-05-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.

  7. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  8. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  9. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    Science.gov (United States)

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  10. Appropriate Combination of Artificial Intelligence and Algorithms for Increasing Predictive Accuracy Management

    Directory of Open Access Journals (Sweden)

    Shahram Gilani Nia

    2010-03-01

    Full Text Available In this paper a simple and effective expert system to predict random data fluctuation in short-term period is established. Evaluation process includes introducing Fourier series, Markov chain model prediction and comparison (Gray combined with the model prediction Gray- Fourier- Markov that the mixed results, to create an expert system predicted with artificial intelligence, made this model to predict the effectiveness of random fluctuation in most data management programs to increase. The outcome of this study introduced artificial intelligence algorithms that help detect that the computer environment to create a system that experts predict the short-term and unstable situation happens correctly and accurately predict. To test the effectiveness of the algorithm presented studies (Chen Tzay len,2008, and predicted data of tourism demand for Iran model is used. Results for the two countries show output model has high accuracy.

  11. A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Zhang, Chu; Zhou, Jianzhong; Li, Chaoshun; Fu, Wenlong; Peng, Tian

    2017-01-01

    Highlights: • A novel hybrid approach is proposed for wind speed forecasting. • The variational mode decomposition (VMD) is optimized to decompose the original wind speed series. • The input matrix and parameters of ELM are optimized simultaneously by using a hybrid BSA. • Results show that OVMD-HBSA-ELM achieves better performance in terms of prediction accuracy. - Abstract: Reliable wind speed forecasting is essential for wind power integration in wind power generation system. The purpose of paper is to develop a novel hybrid model for short-term wind speed forecasting and demonstrates its efficiency. In the proposed model, a compound structure of extreme learning machine (ELM) based on feature selection and parameter optimization using hybrid backtracking search algorithm (HBSA) is employed as the predictor. The real-valued BSA (RBSA) is exploited to search for the optimal combination of weights and bias of ELM while the binary-valued BSA (BBSA) is exploited as a feature selection method applying on the candidate inputs predefined by partial autocorrelation function (PACF) values to reconstruct the input-matrix. Due to the volatility and randomness of wind speed signal, an optimized variational mode decomposition (OVMD) is employed to eliminate the redundant noises. The parameters of the proposed OVMD are determined according to the center frequencies of the decomposed modes and the residual evaluation index (REI). The wind speed signal is decomposed into a few modes via OVMD. The aggregation of the forecasting results of these modes constructs the final forecasting result of the proposed model. The proposed hybrid model has been applied on the mean half-hour wind speed observation data from two wind farms in Inner Mongolia, China and 10-min wind speed data from the Sotavento Galicia wind farm are studied as an additional case. Parallel experiments have been designed to compare with the proposed model. Results obtained from this study indicate that the

  12. Edge turbulence measurement in Heliotron J using a combination of hybrid probe system and fast cameras

    International Nuclear Information System (INIS)

    Nishino, N.; Zang, L.; Takeuchi, M.; Mizuuchi, T.; Ohshima, S.; Kasajima, K.; Sha, M.; Mukai, K.; Lee, H.Y.; Nagasaki, K.; Okada, H.; Minami, T.; Kobayashi, S.; Yamamoto, S.; Konoshima, S.; Nakamura, Y.; Sano, F.

    2013-01-01

    The hybrid probe system (a combination of Langmuir probes and magnetic probes), fast camera and gas puffing system were installed at the same toroidal section to study edge plasma turbulence/fluctuation in Heliotron J, especially blob (intermittent filament). Fast camera views the location of the probe head, so that the probe system yields the time evolution of the turbulence/fluctuation while the camera images the spatial profile. Gas puff at the same toroidal section was used to control the plasma density and simultaneous gas puff imaging technique. Using this combined system the filamentary structure associated with magnetic fluctuation was found in Heliotron J at the first time. The other kind of fluctuation was also observed at another experiment. This combination measurement enables us to distinguish MHD activity and electro-static activity

  13. Optimizing maintenance and repair policies via a combination of genetic algorithms and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zio, E.

    2000-01-01

    In this paper we present an optimization approach based on the combination of a Genetic Algorithms maximization procedure with a Monte Carlo simulation. The approach is applied within the context of plant logistic management for what concerns the choice of maintenance and repair strategies. A stochastic model of plant operation is developed from the standpoint of its reliability/availability behavior, i.e. of the failure/repair/maintenance processes of its components. The model is evaluated by Monte Carlo simulation in terms of economic costs and revenues of operation. The flexibility of the Monte Carlo method allows us to include several practical aspects such as stand-by operation modes, deteriorating repairs, aging, sequences of periodic maintenances, number of repair teams available for different kinds of repair interventions (mechanical, electronic, hydraulic, etc.), components priority rankings. A genetic algorithm is then utilized to optimize the components maintenance periods and number of repair teams. The fitness function object of the optimization is a profit function which inherently accounts for the safety and economic performance of the plant and whose value is computed by the above Monte Carlo simulation model. For an efficient combination of Genetic Algorithms and Monte Carlo simulation, only few hundreds Monte Carlo histories are performed for each potential solution proposed by the genetic algorithm. Statistical significance of the results of the solutions of interest (i.e. the best ones) is then attained exploiting the fact that during the population evolution the fit chromosomes appear repeatedly many times. The proposed optimization approach is applied on two case studies of increasing complexity

  14. A hybrid neural network – world cup optimization algorithm for melanoma detection

    Directory of Open Access Journals (Sweden)

    Razmjooy Navid

    2018-03-01

    Full Text Available One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN. World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.

  15. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  16. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  17. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    Directory of Open Access Journals (Sweden)

    Gallart Dani

    2017-01-01

    Full Text Available During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ∼7.0 MW in D-T.

  18. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  19. Aesthethic and masticatory rehabilitation on post mandibular resection with combination of hollow obturator and hybrid prosthesis

    Directory of Open Access Journals (Sweden)

    Arif Rachman

    2009-06-01

    Full Text Available Background: Replacing tooth lost caused by caries, periodontal disease, trauma and neoplasm including ameloblastoma which requires mandibular resection is important. Purpose: The aim of the study to rehabilitation of post mandibular resection with combination of hollow obturator and hybrid prosthesis. Case: A patient 25 years old, male, for having prosthesis to cover defect due to post right mandibular resection. Case Management: In this presented case, mandibular plate was applied due to spreading defect with losing almost a half body of mandible (class II modification 2 according to cantor and curtis classification. The design of therapy was mandibular obturator using hybrid prosthesis (removable partial denture metal frame and fixed splint crown with precision attachment with hollow obturator. The application was based on several advantages: good aesthetic performance, retention, stability, lighter weight and equal share of vertical load for teeth on non surgical site. The result of control I, II, III, showed that aesthetic performance, masticatory function, speech and swallowing were in good condition. Conclusion: The design of mandibular obturator using hybrid denture with hollow obturator could rehabilitate aesthetic performance, masticatory function, speech and swallowing for patient with post mandibular resection.

  20. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    Science.gov (United States)

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.