WorldWideScience

Sample records for hybrid al cells

  1. Spindle disturbances in human-hamster hybrid (AL) cells induced by mobile communication frequency range signals.

    Science.gov (United States)

    Schrader, Thorsten; Münter, Klaus; Kleine-Ostmann, Thomas; Schmid, Ernst

    2008-12-01

    The production of spindle disturbances in FC2 cells, a human-hamster hybrid (A(L)) cell line, by non-ionizing radiation was studied using an electromagnetic field with a field strength of 90 V/m at a frequency of 835 MHz. Due to the given experimental conditions slide flask cultures were exposed at room temperature in a microTEM (transversal electromagnetic field) cell, which allows optimal experimental conditions for small samples of biological material. Numerical calculations suggest that specific absorption rates of up to 60 mW/kg are reached for maximum field exposure. All exposure field parameters--either measured or calculable--are precisely defined and, for the first time, traceable to the standards of the SI system of physical units. Compared with co-incident negative controls, the results of two independently performed experiments suggest that exposure periods of time from 0.5 to 2 h with an electric field strength of 90 V/m are spindle acting agents as predominately indicated by the appearance of spindle disturbances at the ana- and telophase stages (especially lagging and non-disjunction of single chromosomes) of cell divisions. The spindle disturbances do not change the fraction of mitotic cells with increasing exposure time up to 2 h. Due to the applied experimental conditions an influence of temperature as a confounder parameter for spindle disturbances can be excluded.

  2. A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Sahdan, M.Z.; Mamat, M.H.; Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Z.; Husairi, S.S. [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA -UiTM, 40450 Shah Alam, Selangor (Malaysia); Md Sin, N.D. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2013-06-15

    Vertically aligned Al:ZnO nanorod arrays has been used as window layer in the fabrication of ordered bulk heterojuction hybrid solar cells. The utilization of the nanorod arrays will enhance the electron transport in vertical direction and also for light harvesting applications for high performance devices. The performance of this hybrid polymer/metal oxide photovoltaic devices based on MEH-PPV [poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene)] and oriented Al:ZnO nanorod arrays is studied. The Al:ZnO nanorod arrays with a diameter of about 70–80 nm and thickness of approximately 500 nm were successfully grown on Al:ZnO-coated ITO substrate by sonicated sol–gel immersion technique. The photovoltaic performance of a short-circuit current density of 5.320 mA/cm{sup 2}, an open-circuit voltage of 195 mV and a fill factor of 27.71%, with a power conversion efficiency of about 0.287% under AM 1.5 illumination (100 mW/cm{sup 2}). To the best of our knowledge, preparation of aligned Al:ZnO nanorod arrays for this type of solar cell fabrication has not been reported by any research group.

  3. Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure

    Science.gov (United States)

    Jain, Priyal; Arun, P.

    2016-07-01

    The present paper discusses the performance of ITO/PEDOT:PSS/n-SnS/Al structured solar cells fabricated by thermal evaporation. The performance characterizing parameters such as the open circuit voltage, short circuit current density, series resistance, parallel resistance, ideality factor and the overall efficiency were found to be dependent on the SnS grain size in the nano-meter regime and incident light intensity. The experimental work directly reconfirms the theoretical results and ideas raised in the literature by early researchers.

  4. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    International Nuclear Information System (INIS)

    Fíla, T.; Koudelka, P.; Zlámal, P.; Jiroušek, O.; Kumpová, I.; Vavřík, D.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi 7 Mg 0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation

  5. Improving charge transport in PbS quantum Dot to Al:ZnO layer by changing the size of Quantum dots in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Masood [Maragheh Univ. (Iran, Islamic Republic of). Faculty of Basic Science; Abdollahian, Parinaz [Maragheh Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2016-07-01

    PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT and PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm{sup 2} and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).

  6. Human chromosome-specific changes in a human-hamster hybrid cell line (AL) assessed by fluorescent in situ hybridization (fish)

    International Nuclear Information System (INIS)

    Geard, Charles R.; Jenkins, Gloria

    1995-01-01

    Purpose: To quantitatively assess all gamma-ray induced chromosomal changes confined to one human chromosome using fluorescence microscopy and in situ hybridization with a fluorescently labeled human chromosome specific nucleic acid probe. Methods and Materials: Synchronized human-hamster hybrid cells containing human chromosome 11 were obtained by a modified mitotic shake-off procedure. G1 phase cells (> 95%) were irradiated with 137 Cs gamma rays (0, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, and 10.0 Gy) at a dose rate of 1.1 Gy/min and mitotic cells collected 16-20 h later; chromosomal spreads were prepared, denatured, and hybridized with a fluorescein-tagged nucleic acid probe against total human DNA. Chromosomes were examined by fluorescence microscopy and all categories of change involving the human chromosome 11 as target, recorded. Results: Overall, of the 3104 human-hamster hybrid cells examined, 82.1% were euploid, of which 88.6% contained one copy of human chromosome 11, 6.2% contained two copies, and 5.2% contained 0 copies. This is compatible with mitotic nondisjunction in a small fraction of cells. Of the remaining 17.9% of cells, 85.2% were tetraploid cells with two copies of human chromosome 11. For all aberrations involving human chromosome 11 there was a linear relationship between yield and absorbed dose of 0.1 aberrations per chromosome per Gy. The yield of dicentrics, translocations, and terminal deletions that involve one lesion on the human chromosome was linear, while the yield of interstitial deletions that arise from two interacting lesions on the human chromosome was curvilinear. The frequencies of dicentrics and translocations were about equal, while there was a high (40-60%) incidence of incomplete exchanges between human and hamster chromosomes. Conclusions: Fluorescent in situ hybridization (FISH) procedures allow for the efficient detection of a broad range of induced changes in target chromosomes. Symmetrical exchanges induced in G1

  7. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  8. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  9. Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors.

    Science.gov (United States)

    Lee, Jeong-Hyun; Lee, Seung-Hwan

    2016-10-26

    The hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon is fabricated as a cylindrical cell and investigated against electrochemical performances. The hybrid coating shows that the conductivity for the electron and Li ion is superior and it prevented active material from HF attack. Consequently, carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 shows enhanced rate capability and long-term cycle life. Also, the hybrid coating inhibits swelling phenomenon caused by gas generated as decomposition reaction of electrolyte. Therefore, the hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon can be applied to an energy storage system that requires a long-term life.

  10. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  11. Stem cells therapy for ALS.

    Science.gov (United States)

    Mazzini, Letizia; Vescovi, Angelo; Cantello, Roberto; Gelati, Maurizio; Vercelli, Alessandro

    2016-01-01

    Despite knowledge on the molecular basis of amyotrophic lateral sclerosis (ALS) having quickly progressed over the last few years, such discoveries have not yet translated into new therapeutics. With the advancement of stem cell technologies there is hope for stem cell therapeutics as novel treatments for ALS. We discuss in detail the therapeutic potential of different types of stem cells in preclinical and clinical works. Moreover, we address many open questions in clinical translation. SC therapy is a potentially promising new treatment for ALS and the need to better understand how to develop cell-based experimental treatments, and how to implement them in clinical trials, becomes more pressing. Mesenchymal stem cells and neural fetal stem cells have emerged as safe and potentially effective cell types, but there is a need to carry out appropriately designed experimental studies to verify their long-term safety and possibly efficacy. Moreover, the cost-benefit analysis of the results must take into account the quality of life of the patients as a major end point. It is our opinion that a multicenter international clinical program aime d at fine-tuning and coordinating transplantation procedures and protocols is mandatory.

  12. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  13. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.; Kamperman, Marleen; Nedelcu, Mihaela; Ducati, Caterina; Wiesner, Ulrich; Smilgies, Detlef -M.; Toombes, Gilman E. S.; Hillmyer, Marc A.; Ludwigs, Sabine; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided

  14. Josephson effect in Al/Bi{sub 2}Se{sub 3}/Al coplanar hybrid devices

    Energy Technology Data Exchange (ETDEWEB)

    Galletti, L., E-mail: luca.galletti@unina.it [Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); CNR-SPIN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli (Italy); Charpentier, S. [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden); Lucignano, P.; Massarotti, D. [Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); CNR-SPIN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli (Italy); Arpaia, R. [Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden); Tafuri, F. [CNR-SPIN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, I-81031 Aversa (CE) (Italy); Bauch, T. [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden); Suzuki, Y. [University of Tsukuba, Institute of Materials Science, Tsukuba 305, Ibaraki (Japan); Tagliacozzo, A. [Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); Kadowaki, K. [University of Tsukuba, Institute of Materials Science, Tsukuba 305, Ibaraki (Japan); Lombardi, F. [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden)

    2014-08-15

    Highlights: • Superconducting proximity effect induced in Al/Bi{sub 2}Se{sub 3}/Al coplanar hybrid devices. • Comparative study of Al/Bi{sub 2}Se{sub 3} interfaces with various buffer layers. • Towards a Josephson super-current through the edge states of topological insulators. - Abstract: The edge states of Topological Insulators (TI) are protected against backscattering, thanks to the topological properties arising from their band structure. Coupling a TI to a superconductor (S) can induce unconventional effects, including the creation of Majorana bound states (MBS). The fabrication of coplanar hybrid devices is a fundamental step to pave the way to the understanding of proximity effects in topologically non-trivial systems, and to a large variety of experiments aimed at the possible detection of MBS. We discuss the feasibility and some relevant properties of Al–Bi{sub 2}Se{sub 3}–Al coplanar proximity devices. Special attention is devoted to the design of the junction, aimed at enhancing the coupling between the electrodes and the TI.

  15. Electronic properties of B and Al doped graphane: A hybrid density functional study

    Science.gov (United States)

    Mapasha, R. E.; Igumbor, E.; Andriambelaza, N. F.; Chetty, N.

    2018-04-01

    Using a hybrid density functional theory approach parametrized by Heyd, Scuseria and Ernzerhof (HSE06 hybrid functional), we study the energetics, structural and electronic properties of a graphane monolayer substitutionally doped with the B (BCH) and Al (AlCH) atoms. The BCH defect can be integrated within a graphane monolayer at a relative low formation energy, without major structural distortions and symmetry breaking. The AlCH defect relaxes outward of the monolayer and breaks the symmetry. The density of states plots indicate that BCH doped graphane monolayer is a wide band gap semiconductor, whereas the AlCH defect introduces the spin dependent mid gap states at the vicinity of the Fermi level, revealing a metallic character with the pronounced magnetic features. We further examine the response of the Al dependent spin states on the multiple charge states doping. We find that the defect formation energy, structural and electronic properties can be altered via charge state modulation. The +1 charge doping opens an energy band gap of 1.75 eV. This value corresponds to the wavelength in the visible spectrum, suggesting an ideal material for solar cell absorbers. Our study fine tunes the graphane band gap through the foreign atom doping as well as via defect charge state modulation.

  16. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  17. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  18. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  19. Hybrid solar cells : Perovskites under the Sun

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Hummelen, Jan C.

    2013-01-01

    Mixed-halide organic–inorganic hybrid perovskites are reported to display electron–hole diffusion lengths over 1 μm. This observation provides important insight into the charge-carrier dynamics of this class of semiconductors and increases the expectations for highly efficient and cheap solar cells.

  20. Brazilian hybrid electric fuel cell bus

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.E.V.; Carreira, E.S. [Coppe-Federal Univ. of Rio de Janeiro (Brazil). Hydrogen Lab.

    2010-07-01

    The first prototype of a hybrid electric fuel cell bus developed with Brazilian technology is unveiled. It is a 12 m urban-type, low-floor, air-conditioned bus that possesses three doors, air suspension, 29 seats and reversible wheelchair site. The bus body was built based on a double-deck type monoblock vehicle that is able to sustain important load on its roof. This allowed positioning of the type 3 hydrogen tanks and the low weight traction batteries on the roof of the vehicles without dynamic stabilization problems. A novel hybrid energy configuration was designed in such a way that the low-power (77 kWe) fuel cell works on steady-state operation mode, not responding directly to the traction motor load demand. The rate of kinetic energy regeneration upon breaking was optimized by the use of an electric hybrid system with predominance of batteries and also by utilizing supercapacitors. The electric-electronic devices and the security control softwares for the auxiliary and traction systems were developed in-house. The innovative hybrid-electric traction system configuration led to the possibility to decrease the fuel cell power, with positive impact on weight and system volume reduction, as well as to significantly decrease the hydrogen consumption. (orig.)

  1. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  2. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo; Garnett, Erik C.; Wang, Shuang; Yu, Zongfu; Fan, Shanhui; Brongersma, Mark L.; McGehee, Michael D.; Cui, Yi

    2012-01-01

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  3. Analysis of fuel cell hybrid locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects LLC, 621, 17th Street, Suite 2131, Denver, CO 80293 (United States); Peters, John; Smith, Brian E. [Transportation Technology Center Inc., 55500 DOT Road, Pueblo, CO 81007 (United States); Velev, Omourtag A. [AeroVironment Inc., 232 West Maple Avenue, Monrovia, CA 91016 (United States)

    2006-07-03

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109t, 1.2MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive, that

  4. Design and Analysis of the AlNiCo Hybrid Magnet in EMS Maglev Vehicles

    Directory of Open Access Journals (Sweden)

    Lv Chao

    2017-01-01

    Full Text Available In order to solve the problem of hybrid electromagnet lock orbit, we design a new type of AlNiCo-NdFeB hybrid levitation electromagnet. The theoretical analysis has be carried on and mathematical model is established for AlNiCo-NdFeB hybrid levitation electromagnet. Through two dimensional simulation, the electromagnetic characteristics of the suspended electromagnet are analyzed in the 3 typical operating conditions , which are in heavy load at gap 8mm, in full load at gap 16mm and in no-load at gap 3mm. And it’s compared with the traditional electromagnetic magnet and NdFeB hybrid electromagnet. Calculation and analysis show that the new hybrid levitation electromagnet can effectively solve the problems of the electromagnet lock orbit, at the same time, have a good dynamic performance and suspension regulation performance.

  5. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NARCIS (Netherlands)

    van Vliet, O.P.R.|info:eu-repo/dai/nl/288519361; Kruithof, T.; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2010-01-01

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be

  6. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  7. ZnO-based nanocrystalline powders with applications in hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Ferrari, S.; Meyer, M. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Orozco, J. [Dto. de Ingenieria Mecanica y Materiales, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain)

    2010-06-15

    In recent years there has been a growing interest in the development of hybrid photovoltaic cells consisting of new materials, such as devices based on the combination of a wide gap semiconductor and an organic dye (dye-sensitized solar cells, DSSC). In this paper we obtain nano-zinc oxide particles whose optical and electrical properties have been modified by the presence of small amounts of Al or In acting as dopants. The aim of this study is to improve the compatibility of each of the compounds present in the photovoltaic solar cell. The knowledge gained will provide input to guide the processes in the manufacture of hybrid solar cells. (author)

  8. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    Science.gov (United States)

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  9. In Situ Hybridization of Pulp Fibers Using Mg-Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Carl-Erik Lange

    2015-04-01

    Full Text Available Inorganic Mg2+ and Al3+ containing layered double hydroxide (LDH particles were synthesised in situ from aqueous solution onto chemical pulp fibers of pine (Pinus sylvestris. High super saturated (hss solution with sodium carbonate produced LDH particles with an average diameter of 100–200 nm. Nano-size (70 nm LDH particles were found from fibers external surface and, to a lesser degree, from the S2 cell wall after synthesis via low super saturated (lss route. The synthesis via slow urea hydrolysis (Uhyd yielded micron and clay sized LDH (2–5 μm and enabled efficient fiber densification via mineralization of S2 fiber wall layer as indicated by TEM and compliance analysis. The Uhyd method decreased fiber compliance up to 50%. Reduction in the polymerisation degree of cellulose was observed with capillary viscometry. Thermogravimetric analysis showed that the hybridization with LDH reduced the exothermic heat, indicating, that this material can be incorporated in flame retardant applications. Fiber charge was assessed by Fibers 2015, 3 104 adsorption expermients with methylene blue (MB and metanil yellow (MY. Synthesis via lss route retained most of the fibres original charge and provided the highest capacity (10 μmol/g for anionic MY, indicating cationic character of hybrid fibers. Our results suggested that mineralized fibers can be potentially used in advanced applications such as biocomposites and adsorbent materials.

  10. Hybrid Solar Cells: Materials, Interfaces, and Devices

    Science.gov (United States)

    Mariani, Giacomo; Wang, Yue; Kaner, Richard B.; Huffaker, Diana L.

    Photovoltaic technologies could play a pivotal role in tackling future fossil fuel energy shortages, while significantly reducing our carbon dioxide footprint. Crystalline silicon is pervasively used in single junction solar cells, taking up 80 % of the photovoltaic market. Semiconductor-based inorganic solar cells deliver relatively high conversion efficiencies at the price of high material and manufacturing costs. A great amount of research has been conducted to develop low-cost photovoltaic solutions by incorporating organic materials. Organic semiconductors are conjugated hydrocarbon-based materials that are advantageous because of their low material and processing costs and a nearly unlimited supply. Their mechanical flexibility and tunable electronic properties are among other attractions that their inorganic counterparts lack. Recently, collaborations in nanotechnology research have combined inorganic with organic semiconductors in a "hybrid" effort to provide high conversion efficiencies at low cost. Successful integration of these two classes of materials requires a profound understanding of the material properties and an exquisite control of the morphology, surface properties, ligands, and passivation techniques to ensure an optimal charge carrier generation across the hybrid device. In this chapter, we provide background information of this novel, emerging field, detailing the various approaches for obtaining inorganic nanostructures and organic polymers, introducing a multitude of methods for combining the two components to achieve the desired morphologies, and emphasizing the importance of surface manipulation. We highlight several studies that have fueled new directions for hybrid solar cell research, including approaches for maximizing efficiencies by controlling the morphologies of the inorganic component, and in situ molecular engineering via electrochemical polymerization of a polymer directly onto the inorganic nanowire surfaces. In the end, we

  11. Methodological comparison on hybrid nano organic solar cell fabrication

    Science.gov (United States)

    Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad

    2018-02-01

    The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.

  12. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.

    2009-08-12

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies. © 2009 American Chemical Society.

  13. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    Science.gov (United States)

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    Nature has developed a fascinating strategy of cryptobiosis ("secret life") for counteracting the stressful, and often lethal, environmental conditions that fluctuate sporadically over time. For example, certain bacteria sporulate to transform from a metabolically active, vegetative state to an ametabolic endospore state. The bacterial endospores, encased within tough biomolecular shells, withstand the extremes of harmful stressors, such as radiation, desiccation, and malnutrition, for extended periods of time and return to a vegetative state by breaking their protective shells apart when their environment becomes hospitable for living. Certain ciliates and even higher organisms, for example, tardigrades, and others are also found to adopt a cryptobiotic strategy for survival. A common feature of cryptobiosis is the structural presence of tough sheaths on cellular structures. However, most cells and cellular assemblies are not "spore-forming" and are vulnerable to the outside threats. In particular, mammalian cells, enclosed with labile lipid bilayers, are highly susceptible to in vitro conditions in the laboratory and daily life settings, making manipulation and preservation difficult outside of specialized conditions. The instability of living cells has been a main bottleneck to the advanced development of cell-based applications, such as cell therapy and cell-based sensors. A judicious question arises: can cellular tolerance against harmful stresses be enhanced by simply forming cell-in-shell hybrid structures? Experimental results suggest that the answer is yes. A micrometer-sized "Iron Man" can be generated by chemically forming an ultrathin (cell. Since the report on silica nanoencapsulation of yeast cells, in which cytoprotective yeast-in-silica hybrids were formed, several synthetic strategies have been developed to encapsulate individual cells in a cytocompatible fashion, mimicking the cryptobiotic cell-in-shell structures found in nature, for example

  14. Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene

    Science.gov (United States)

    Jackson, Nathan; Mathewson, Alan

    2017-04-01

    Flexible piezoelectric materials are desired for numerous applications including biomedical, wearable, and flexible electronics. However, most flexible piezoelectric materials are not compatible with CMOS fabrication technology, which is desired for most MEMS applications. This paper reports on the development of a hybrid flexible piezoelectric material consisting of aluminium nitride (AlN) and a semi-crystalline polymer substrate. Various types of semi-crystalline parylene and polyimide materials were investigated as the polymer substrate. The crystallinity and surfaces of the polymer substrates were modified by micro-roughening and annealing in order to determine the effects on the AlN quality. The AlN crystallinity and piezoelectric properties decreased when the polymer surfaces were treated with O2 plasma. However, increasing the crystallinity of the parylene substrate prior to deposition of AlN caused enhanced c-axis (002) AlN crystallinity and piezoelectric response of the AlN. Piezoelectric properties of 200 °C annealed parylene-N substrate resulted in an AlN d 33 value of 4.87 pm V-1 compared to 2.17 pm V-1 for AlN on polyimide and 4.0 pm V-1 for unannealed AlN/parylene-N. The electrical response measurements to an applied force demonstrated that the parylene/AlN hybrid material had higher V pp (0.918 V) than commercial flexible piezoelectric material (PVDF) (V pp 0.36 V). The results in this paper demonstrate that the piezoelectric properties of a flexible AlN hybrid material can be enhanced by increasing the crystallinity of the polymer substrate, and the enhanced properties can function better than previous flexible piezoelectrics.

  15. Portable 25W hybrid fuel cell system

    International Nuclear Information System (INIS)

    Green, K.; Slee, R.; Tilley, J.

    2003-01-01

    Increased operating periods for portable electrical equipment are driving the development of battery and fuel cell technologies. Fuel cell systems promise greater endurance than battery based systems, and this paper describes the research into, and design of, a hybrid lithium-ion battery / fuel cell power source. The device is primarily aimed at military applications such as powering army radio sets and the UK MoD's Integrated Soldier Technology (IST) programme, but would be equally suitable as a power source for civilian applications such as camcorders, battery chargers etc. The air-breathing fuel cell comprises low cost, robust components, and a single cell is capable of developing >0.5W cm -2 . This power rating, however, is reduced in a stack where heat rejection becomes a critical issue. The stack design lends itself to facile manufacture, and the stack can be assembled in minutes by simply stacking the components into place. The remainder of the system includes two lithium-ion battery packs which provide start-up and shutdown power, and enable a silent-operating mode, during which the fuel cell is powered down, to be selected. The intelligent, electronic control, based upon an embedded RISC microprocessor, ensures safe operation and the recharge of the batteries. The overall system is capable of delivering 25W continuous power at an operating voltage of 12V dc. Preliminary testing results are reported. Advantages of this system include a relatively high gravimetric power density, load-following operation and the confidence of a high performance battery as an emergency backup. (author)

  16. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  17. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection

    DEFF Research Database (Denmark)

    Sestoft, Joachim E.; Kanne, Thomas; Gejl, Aske Nørskov

    2018-01-01

    The combination of strong spin-orbit coupling, large g factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition a...

  18. Hybridization and magnetism in U(Ru, Rh)X, X=Al, Ga

    NARCIS (Netherlands)

    Sechovsky, V.; Havela, L.; Boer, de F.R.; Veenhuizen, P.A.; Sugiyama, K.; Kuroda, T.; Sugiura, T.; Ono, M.; Date, M.; Yamagishi, A.

    1992-01-01

    Results of magnetic studies of pseudoternary U(Ru, Rh)Al and U(Ru, Rh)Ga systems are presented. Reduction of the 5f-4d hybridization with increasing Rh content is reflected in a gradual transition from paramagnetic (spin fluctuation) behaviour of URuX to ferromagnetism in URhX. The huge uniaxial

  19. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Science.gov (United States)

    Liu, Ruchuan

    2014-01-01

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591

  20. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  1. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology

    International Nuclear Information System (INIS)

    Yu Donghai; Wang Chengyong; Cheng Xiaoling; Zhang Fenglin

    2009-01-01

    TiAlSiN coatings with different Si content were prepared by hollow cathode discharge (HCD) and mid-frequency magnetron sputtering (MFMS) hybrid coating deposition technology. The chemical composition, microstructure, mechanical properties of these coatings were systematically investigated by means of energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation measurement, scratch and high speed milling hardened steel tests. The coatings prepared by this method showed the structure of crystalline phase was corresponding to that of TiAlN, however, different preferred orientation with addition of Si. Proper content of Si into TiAlN led to increase of microhardness and adhesion. TiAlSiN coated end mill with Si content of 4.78 at.% had the least flank wear, which was improved about 20% milling distance than TiAlN coated end mill.

  2. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology

    Energy Technology Data Exchange (ETDEWEB)

    Yu Donghai [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Wang Chengyong, E-mail: cywang@gdut.edu.c [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng Xiaoling; Zhang Fenglin [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-07-01

    TiAlSiN coatings with different Si content were prepared by hollow cathode discharge (HCD) and mid-frequency magnetron sputtering (MFMS) hybrid coating deposition technology. The chemical composition, microstructure, mechanical properties of these coatings were systematically investigated by means of energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation measurement, scratch and high speed milling hardened steel tests. The coatings prepared by this method showed the structure of crystalline phase was corresponding to that of TiAlN, however, different preferred orientation with addition of Si. Proper content of Si into TiAlN led to increase of microhardness and adhesion. TiAlSiN coated end mill with Si content of 4.78 at.% had the least flank wear, which was improved about 20% milling distance than TiAlN coated end mill.

  3. X-ray sensitivity of somatic cell hybrids

    International Nuclear Information System (INIS)

    Zampetti-Bosseler, F.; Heilporn, V.; Lievens, A.; Limbosch, S.

    1976-01-01

    Different somatic cell hybrids have been studied as a function of their x-ray survival and karyotypic properties. Hybrids between x-ray-sensitive mouse lymphoma cells and mouse fibroblasts, retaining a large proportion of both parental chromosomes, were much more resistant to irradiation than either of the parental cells. On the other hand, hybrids between sensitive mouse lymphoma cells and hamster fibroblasts which also retained a relatively high number of chromosomes from both parents had a sensitivity intermediate between the sensitivities of the parental cell lines. Finally, hybrids between mouse fibroblasts and hamster fibroblasts carrying at least one hamster genome and less than one mouse genome resembled the hamster parent with respect to survival capactity. The significance of these results is discussed

  4. Residual Stress Measurement of SiC tile/Al7075 Hybrid Composites by Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Bok; Lee, Jun Ho; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of); Lee, Sang Bok; Lee, Sang Kwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Muslihd, M. Rifai [Center for Advanced Materials Science and Technology, Tangerang (India)

    2016-05-15

    In this research, SiC which has low density, high compressive strength, and high elastic modulus was used to fabricate the armor plate. In addition, Al which has low density and high toughness was used for a metal matrix of the composites. If two materials are combined, the composite can be effective materials for light weight armor applications. However, the existence of a large difference in coefficients of thermal expansion (CTE) between SiC and Al matrix, SiC/Al composites can have residual stresses while cooled in the fabrication process. Previous research reported that residual stresses in the composites or microstructures have an effect on the fatigue life and their mechanical properties. Some researchers reported about the residual stresses in the SiCp/Al metal matrix composites by numerical simulation systems, X-ray diffraction, and destructive methods. In order to analyze the residual stress of SiC/Al composites, the neutron diffraction as the non-destructive method was performed in this research. The 50 vol.% SiC{sub p}/Al7075 composites and SiC tile inserted 50 vol.% SiC{sub p}/Al7075 hybrid composites were measured to analyze the residual stress of Al (111) and SiC (111). Both samples had the tensile residual stresses in the Al (111) and the compressive residual stresses in the SiC (111) due to the difference in CTE.

  5. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

    Science.gov (United States)

    2013-01-01

    Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059

  6. Fabrication and Characterization of 5 vol.% (Al2O3p + 8 vol.% (Al2O3f/A336 Hybrid Micron and Nano-Composites

    Directory of Open Access Journals (Sweden)

    Ren Luyang

    2017-01-01

    Full Text Available Hybrid composites are fabricated by adding two reinforcements into matrix materials so that the expected excellent properties can be achieved through the combined advantages of short fibres, and different size particles (micron or nano, which provide a high degree of design freedom. In this paper, hybrid preforms were produced with the different size reinforcement of the Al2O3 particles and short fibres. The Al-Si alloy-based hybrid composites reinforced by 5 vol. % Al2O3 particles and 8 vol. % Al2O3 fibres were fabricated by preform-squeezing casting route. The structure and performance of composite materials were studied with Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM. The results show that the reinforcements, both particles and fibres, distribute homogeneously in the matrix materials, and the properties of composites are found to improve in comparison with the matrix Al-Si alloy.

  7. Wear and Friction Characteristics of AlN/Diamond-Like Carbon Hybrid Coatings on Aluminum Alloy

    Science.gov (United States)

    Nakamura, Masashi; Kubota, Sadayuki; Suzuki, Hideto; Haraguchi, Tadao

    2015-10-01

    The use of diamond-like carbon (DLC) coatings has the potential to greatly improve the wear resistance and friction of aluminum alloys, but practical application has so far been limited by poor adhesion due to large difference in hardness and elasticity between the two materials. This study investigates the deposition of DLC onto an Al-alloy using an intermediate AlN layer with a graded hardness to create a hybrid coating. By controlling the hardness of the AlN film, it was found that the wear life of the DLC film could be improved 80-fold compared to a DLC film deposited directly onto Al-alloy. Furthermore, it was demonstrated through finite element simulation that creating a hardness gradient in the AlN intermediate layer reduces the distribution of stress in the DLC film, while also increasing the force of adhesion between the DLC and AlN layers. Given that both the DLC and AlN films were deposited using the same unbalanced magnetron sputtering method, this process is considered to represent a simple and effective means of improving the wear resistance of Al-alloy components commonly used within the aerospace and automotive industries.

  8. Embryonic hybrid cells: a powerful tool for studying pluripotency and reprogramming of the differentiated cell chromosomes

    Directory of Open Access Journals (Sweden)

    SEROV OLEG

    2001-01-01

    Full Text Available The properties of embryonic hybrid cells obtained by fusion of embryonic stem (ES or teratocarcinoma (TC cells with differentiated cells are reviewed. Usually, ES-somatic or TC-somatic hybrids retain pluripotent capacity at high levels quite comparable or nearly identical with those of the pluripotent partner. When cultured in vitro, ES-somatic- and TC-somatic hybrid cell clones, as a rule, lose the chromosomes derived from the somatic partner; however, in some clones the autosomes from the ES cell partner were also eliminated, i.e. the parental chromosomes segregated bilaterally in the ES-somatic cell hybrids. This opens up ways for searching correlation between the pluripotent status of the hybrid cells and chromosome segregation patterns and therefore for identifying the particular chromosomes involved in the maintenance of pluripotency. Use of selective medium allows to isolate in vitro the clones of ES-somatic hybrid cells in which "the pluripotent" chromosome can be replaced by "the somatic" counterpart carrying the selectable gene. Unlike the TC-somatic cell hybrids, the ES-somatic hybrids with a near-diploid complement of chromosomes are able to contribute to various tissues of chimeric animals after injection into the blastocoel cavity. Analysis of the chimeric animals showed that the "somatic" chromosome undergoes reprogramming during development. The prospects for the identification of the chromosomes that are involved in the maintenance of pluripotency and its cis- and trans-regulation in the hybrid cell genome are discussed.

  9. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  10. Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects.

    Science.gov (United States)

    Kumar, Alok; Nune, K C; Misra, R D K

    2018-04-01

    We have designed a unique injectable bioactive hydrogel comprising of alginate, gelatin, and nanocrystalline hydroxyapatite and loaded with osteoblasts, with the ability to infiltrate into three-dimensional Ti-6Al-4V scaffolds with interconnected porous architecture, fabricated by electron beam melting. A two-step crosslinking process using the EDC/NHS and CaCl 2 was adopted and found to be effective in the fabrication of cell-loaded hydrogel/Ti-6Al-4V scaffold system. This hybrid Ti-6Al-4V scaffold/hydrogel system was designed for the reconstruction of bone defects, which are difficult to heal in the absence of suitable support materials. The hybrid Ti-6Al-4V/hydrogel system favourably modulated the biological functions, namely, adhesion, proliferation, cell-to-cell, and cell-material communication because of the presence of extracellular matrix-like hydrogel in the interconnected porous structure of 3D printed Ti-6Al-4V scaffold. The hydrogel was cytocompatible, which was proven through live/dead assay, the expression level of prominent proteins for cell adhesion and cytoskeleton, including 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Furthermore, the high bone formation ability of the hydrogel was confirmed using alkaline phosphatase assay. A high equilibrium water content (~97%) in the hydrogel enables the delivery of cells and bioactive molecules, necessary for bone tissue growth. Although not studied, the presence of hydrogel in the pores of the scaffold can provide the space for the cell migration as well as vascularization through it, required for the effective exchange of nutrients. In conclusion, we underscore that the 3D-printed Ti-6Al-4V scaffold-loaded with bioactive hydrogel to treat the bone defects significantly impacted cellular functions and cell-material interaction. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Improving the Carprofen Solubility: Synthesis of the Zn2Al-LDH Hybrid Compound.

    Science.gov (United States)

    Capsoni, Doretta; Quinzeni, Irene; Bruni, Giovanna; Friuli, Valeria; Maggi, Lauretta; Bini, Marcella

    2018-01-01

    The development of efficient strategies for drug delivery is considerably desired. Indeed, often several issues such as the drug solubility, the control of the drug release rate, the targeted delivery of drugs, the drug bioavailability, and the minimization of secondary effects still present great obstacles. Different methodologies have been proposed, but the use of nano-hybrids compounds that combine organic and inorganic substances seems particularly promising. An interesting inorganic host is the layered double hydroxide (LDH) with a sheets structure and formula [M 2+ 1-x M 3+ x (OH) 2 ](A n- ) x/n yH 2 O (M 2+  = Zn, Mg; M 3+  = Al; A n-  = nitrates, carbonates, chlorides). The possibility to exchange these counterions with drug molecules makes these systems ideal candidates for the drug delivery. In this article, we synthesize by co-precipitation method the hybrid compound Carprofen-Zn 2 Al-LDH. Carprofen, a poorly soluble anti-inflammatory drug, could also benefit of the association with a natural antacid such as LDH, to reduce the gastric irritation after its administration. Through X-ray diffraction and Fourier-transformed infrared spectroscopy (FT-IR), we could verify the effective drug intercalation into LDH. The dissolution tests clearly demonstrate a significant improvement of the drug release rate when carprofen is in the form of hybrid compound. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Hierarchical control of vehicular fuel cell / battery hybrid powertrain

    OpenAIRE

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Hua, Jianfeng

    2010-01-01

    In a proton exchange membrane (PEM) fuel cell/battery hybrid vehicle, a fuel cell system fulfills the stationary power demand, and a traction battery provides the accelerating power and recycles braking energy. The entire system is coordinated by a distributed control system, incorporating three key strategies: 1) vehicle control, 2) fuel cell control and 3) battery management. They make up a hierarchical control system. This paper introduces a hierarchical control strategy for a fuel cell / ...

  13. Investigation of Tribological Behavior of a Novel Hybrid Composite Prepared with Al-Coconut Shell Ash Mixed with Graphite

    Science.gov (United States)

    Siva Sankara Raju, R.; Panigrahi, M. K.; Ganguly, R. I.; Srinivasa Rao, G.

    2017-08-01

    The present investigation develops a next-generation hybrid Al metal matrix composite using coconut shell ash (CSA) and graphite (Gr) reinforcement. Stir-casting is adapted to prepare an Al-1100-based composite. Three other composites of Al-Al2O3, Al-Al2O3-Gr, and Al-CSA are prepared that contain equivalent volume fractions of Al2O3, CSA, and Gr. These assist in comparisons among the three composites and the developed hybrid Al-CSA-Gr composite. The study reveals that the addition of 3 pct Gr improves the specific strength, toughness, and tribological properties. The Al-CSA composite shows better mechanical properties, such as tensile strength and hardness, than the other three composites. Gr addition helps the hybrid Al-CSA-Gr composite to attain better tribological properties with a slightly lower specific strength. Scanning electron microscopy studies of the worn material surfaces corroborate the findings of the abrasion testing. Elemental analyses by energy-dispersive X-ray spectroscopy of the debris from the counter-face of the tribo surface confirm the presence of Al, O, Si, Fe, Mn, and C.

  14. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    International Nuclear Information System (INIS)

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari

    2005-01-01

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH 2 ). The CHPNH 2 -QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging

  15. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method

    International Nuclear Information System (INIS)

    Mostafapour Asl, A.; Khandani, S.T.

    2013-01-01

    Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nanocomposites of Al5083/Graphite p /Al 2 O 3p with different hybrid ratios were fabricated by friction stir processing method. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nanocomposite was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples. Hardness value measurements, tensile and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nanocomposites. Microstructural investigations displayed better distribution with less agglomeration of reinforcement for lower volume fraction of reinforcement for both alumina and graphite particles. Hardness value, yield strength, ultimate tensile strength and wear rate of the nanocomposites revealed a two stage form along with hybrid ratio variation. The results are discussed based on microstructural observations of the nanocomposites and worn surface analyses.

  16. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness

    International Nuclear Information System (INIS)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-01-01

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial-mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer. The online version of this article (doi:10.1186/s12885-015-1780-1) contains supplementary material, which is available to authorized users

  17. Hybrid cell adhesive material for instant dielectrophoretic cell trapping and long-term cell function assessment.

    Science.gov (United States)

    Reyes, Darwin R; Hong, Jennifer S; Elliott, John T; Gaitan, Michael

    2011-08-16

    Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.

  18. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  19. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  20. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  1. Oxygen defects in amorphous Al{sub 2}O{sub 3}: A hybrid functional study

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhendong, E-mail: zhendong.guo@epfl.ch; Ambrosio, Francesco; Pasquarello, Alfredo [Chaire de Simulation à l' Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-08-08

    The electronic properties of the oxygen vacancy and interstitial in amorphous Al{sub 2}O{sub 3} are studied via ab initio molecular dynamics simulations and hybrid functional calculations. Our results indicate that these defects do not occur in amorphous Al{sub 2}O{sub 3}, due to structural rearrangements which assimilate the defect structure and cause a delocalization of the associated defect levels. The imbalance of oxygen leads to a nonstoichiometric compound in which the oxygen occurs in the form of O{sup 2–} ions. Intrinsic oxygen defects are found to be unable to trap excess electrons. For low Fermi energies, the formation of peroxy linkages is found to be favored leading to the capture of holes. The relative +2/0 defect levels occur at 2.5 eV from the valence band.

  2. Thermoeconomic analysis of a fuel cell hybrid power system from the fuel cell experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Tomas [Endesa Generacion, Ribera del Loira, 60, 28042 Madrid (Spain)]. E-mail: talvarez@endesa.es; Valero, Antonio [Fundacion CIRCE, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Montes, Jose M. [ETSIMM-Universidad Politecnica de.Madrid, Rios Rosas, 21, 28003 Madrid (Spain)

    2006-08-15

    An innovative configuration of fuel cell technology is proposed based on a hybrid fuel cell system that integrates a turbogenerator to overcome the intrinsic limitations of fuel cells in conventional operation. An analysis is done of the application of molten carbonate fuel cell technology at the Guadalix Fuel Cell Test Facility, for the assessment of the performance of the fuel cell prototype to be integrated in the Hybrid Fuel Cell System. This is completed with a thermoeconomic analysis of the 100 kW cogeneration fuel cell power plant which was subsequently built. The operational results and design limitations are evaluated, together with the operational limits and thermodynamic inefficiencies (exergy destruction and losses) of the 100 kW fuel cell. This leads to the design of a hybrid system in order to demonstrate the possibilities and benefits of the new hybrid configuration. The results are quantified through a thermoeconomic analysis in order to get the most cost-effective plant configuration. One promising configuration is the MCFC topper where the fuel cell in the power plant behaves as a combustor for the turbogenerator. The latter behaves as the balance of plant for the fuel cell. The combined efficiency increased to 57% and NOx emissions are essentially eliminated. The synergy of the fuel cell/turbine hybrids lies mainly in the use of the rejected thermal energy and residual fuel from the fuel cell to drive the turbogenerator in a 500 kW hybrid system.

  3. Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading

    International Nuclear Information System (INIS)

    Fíla, T.; Jiroušek, O.; Jung, A.; Kumpová, I.

    2016-01-01

    Hybrid foams are materials formed by a core from a standard open cell metal foam that is during the process of electrodeposition coated by a thin layer of different nanocrystalline metals. The material properties of the base metal foam are in this way modified resulting in higher plateau stress and, more importantly, by introduction of strain-rate dependence to its deformation response. In this paper, we used time-lapse X-ray micro-tomography for the mechanical characterization of Ni/Al hybrid foams (aluminium open cell foams with nickel coating layer). To fully understand the effects of the coating layer on the material's effective properties, we compared the compressive response of the base uncoated foam to the response of the material with coating thickness of 50 and 75 μm. Digital volume correlation (DVC) was applied to obtain volumetric strain fields of the deforming micro-structure up to the densification region of the deforming cellular structure. The analysis was performed as a compressive mechanical test with simultaneous observation using X-ray radiography and tomography. A custom design experimental device was used for compression of the foam specimens in several deformation states directly in the X-ray setup. Planar X-ray images were taken during the loading phases and a X-ray tomography was performed at the end of each loading phase (up to engineering strain 22%). The samples were irradiated using micro-focus reflection type X-ray tube and images were taken using a large area flat panel detector. Tomography reconstructions were used for an identification of a strain distribution in the foam using digital volumetric correlation. A comparison of the deformation response of the coated and the uncoated foam in uniaxial quasi-static compression is summarized in the paper.

  4. Ti-Al-Si-C-N hard coatings synthesized by hybrid arc enhanced magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Guizhi; Liu, Sitao; Ma, Shengli; Xu, Kewei; Vincent, Ji; Chu, Paul K.

    2010-01-01

    Ti-Al-Si-C-N coatings are deposited by hybrid arc-enhanced magnetic sputtering and characterized by various micro- and macro-tools. X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy reveal that the coatings are nanocomposites consisting of nanocrystallites and amorphous phases. They are generally in the form of nc-(Ti,Al)(C,N)/a-Si_3N_4/a-C depending on the composition of the coatings. With increasing Al concentrations, the X-ray diffraction peaks shift to a lower angle indicating compressive stress in the coatings. The measured hardness also diminishes implying reduced contributions from the self-organized stable nanostructure. The dry friction coefficients of the Ti-Al-Si-C-N coatings are found to be about 0.3 which is lower than that of conventional Ti-Si-N coatings. These coatings can find potential applications requiring high temperature with heavy contact loading. (author)

  5. Cathode-supported hybrid direct carbon fuel cells

    DEFF Research Database (Denmark)

    Gil, Vanesa; Gurauskis, Jonas; Deleebeeck, Lisa

    2017-01-01

    The direct conversion of coal to heat and electricity by a hybrid direct carbon fuel cell (HDCFC) is a highly efficient and cleaner technology than the conventional combustion power plants. HDCFC is defined as a combination of solid oxide fuel cell and molten carbonate fuel cell. This work...... investigates cathode-supported cells as an alternative configuration for HDCFC, with better catalytic activity and performance. This study aims to define the best processing route to manufacture highly efficient cathode-supported cells based on La0.75Sr0.25MnO3/yttria-stabilized zirconia infiltrated backbones...

  6. A Bicontinuous Double Gyroid Hybrid Solar Cell : Letter

    NARCIS (Netherlands)

    Crossland, E.J.W.; Kamperman, M.M.G.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D.M.; Toombes, G.E.S.; Hillmyer, M.A.; Ludwigs, S.; Steiner, U.; Snaith, H.J.

    2009-01-01

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable

  7. A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Krupp, Carsten; Baltzer, Sidney; Gnörich, Bruno; Peters, Ralf; Stolten, Detlef

    2016-01-01

    Highlights: • A battery-fuel cell hybrid auxiliary power unit for heavy duty vehicles is reported. • Comparison of direct and indirect hybrids using representative load profiles. • Evaluation based on validated fuel cell system and battery models. • Indirect hybrid with constant fuel cell load yields 29.3% hybrid system efficiency. • Fuel cell should be pre-heated using waste heat from the diesel engine during drive. - Abstract: The idling operation of engines in heavy duty vehicles to cover electricity demand during layovers entails significant fuel consumption and corresponding emissions. Indeed, this mode of operation is highly inefficient and a noteworthy contributor to the transportation sector’s aggregate carbon dioxide emissions. Here, a potential solution to this wasteful practice is outlined in the form of a hybrid battery-fuel cell system for application as an auxiliary power unit for trucks. Drawing on experimentally-validated fuel cell and battery models, several possible hybrid concepts are evaluated and direct and indirect hybrid configurations analyzed using a representative load profile. The results indicate that a direct hybrid configuration is only applicable if the load demand profile does not deviate strongly from the assumed profile. Operation of an indirect hybrid with a constant fuel cell load yields the greatest hybrid system efficiency, at 29.3%, while battery size could be reduced by 87% if the fuel cell is operated at the highest dynamics. Maximum efficiency in truck applications can be achieved by pre-heating the system prior to operation using exhaust heat from the motor, which increased system efficiency from 25.3% to 28.1%, including start-up. These findings confirm that hybrid systems could offer enormous fuel savings and constitute a sizeable step on the path toward energy-efficient and environmentally-friendly heavy duty vehicles that does not necessitate a fuel switch.

  8. File list: Oth.ALL.10.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids All cell ...types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.10.DNA-RNA_hybrids.AllCell.bed ...

  9. File list: Oth.ALL.50.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids All cell ...types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.50.DNA-RNA_hybrids.AllCell.bed ...

  10. File list: Oth.ALL.05.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids All cell ...types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.05.DNA-RNA_hybrids.AllCell.bed ...

  11. File list: Oth.ALL.20.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids All cell ...types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.20.DNA-RNA_hybrids.AllCell.bed ...

  12. Energy control of supercapacitor/fuel cell hybrid power source

    International Nuclear Information System (INIS)

    Payman, Alireza; Pierfederici, Serge; Meibody-Tabar, Farid

    2008-01-01

    This paper deals with a flatness based control principle in a hybrid system utilizing a fuel cell as a main power source and a supercapacitor as an auxiliary power source. The control strategy is based on regulation of the dc bus capacitor energy and, consequently, voltage regulation. The proposed control algorithm does not use a commutation algorithm when the operating mode changes with the load power variation and, thus, avoids chattering effects. Using the flatness based control method, the fuel cell dynamic and its delivered power is perfectly controlled, and the fuel cell can operate in a safe condition. In the hybrid system, the supercapacitor functions during transient energy delivery or during energy recovery situations. To validate the proposed method, the control algorithms are executed in dSPACE hardware, while analogical current loops regulators are employed in the experimental environment. The experimental results prove the validity of the proposed approach

  13. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  14. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  15. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  16. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  17. Hybrid window layer for photovoltaic cells

    Science.gov (United States)

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  18. A hybrid ferroelectric-flash memory cells

    Science.gov (United States)

    Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki

    2014-09-01

    A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.

  19. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  20. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  1. Hybrid wind-PV grid connected power station case study: Al Tafila, Jordan

    Energy Technology Data Exchange (ETDEWEB)

    El-Tous, Yousif [Department of Electrical Engineering/Faculty of Engineering Technology/ Al-Balqa' Applied University, Amman, P.O.Box (15008), Marka Ashamalia (Jordan); Al-Battat, Saleh [Department of substation maintenance and protection, National Electric Power Company (NEPCO), Amman (Jordan); Abdel Hafith, Sandro [Department of technical support and project supervision/Integrated power systems co., Amman (Jordan)

    2012-07-01

    In this paper, we are providing an attempt to highlight the importance of renewable energy, more specifically, the one produced from a wind-solar hybrid system. This purpose will be achieved through providing a detailed case study for such system that would be applied in Al-Tafila, Jordan. First and foremost site assessment has been conducted based on an intensive literature review for the data available regarding the availability of wind and solar energy in Jordan and resulted in the selection of Al-Tafila 2 district as the best option among all. Then, the components of the power station and its size have been selected based on specific criteria that make the station as much efficient and competitive as possible. To obtain the output of the different components with respect to the demand for a period of 25 years, a system model was built using HOMER. Finally, the total capital cost of the system was calculated and resulted to be (63400168) $ and with a cost of energy of (0.053) $/kWh which is a very competitive and feasible cost compared to similar international projects and to the conventional energy price.

  2. Anti tumor vaccination with hybrid dendritic-tumour cells

    International Nuclear Information System (INIS)

    Barbuto, Jose Alexandre M.; Neves, Andreia R.; Ensina, Luis Felipe C.; Anselmo, Luciene B.

    2005-01-01

    Dendritic cells are the most potent antigen-presenting cells, and the possibility of their use for cancer vaccination has renewed the interest in this therapeutic modality. Nevertheless, the ideal immunization protocol with these cells has not been described yet. In this paper we describe the preliminary results of a protocol using autologous tumor and allogeneic dendritic hybrid cell vaccination every 6 weeks, for metastatic melanoma and renal cell carcinoma (RCC) patients. Thirty-five patients were enrolled between March 2001 and March 2003. Though all patients included presented with large tumor burdens and progressive diseases, 71% of them experienced stability after vaccination, with durations up to 19 months. Among RCC patients 3/22 (14%) presented objective responses. The median time to progression was 4 months for melanoma and 5.7 months for RCC patients; no significant untoward effects were noted. Furthermore, immune function, as evaluated by cutaneous delayed-type hypersensitivity reactions to recall antigens and by peripheral blood proliferative responses to tumor-specific and nonspecific stimuli, presented a clear tendency to recover in vaccinated patients. These data indicate that dendritic cell-tumor cell hybrid vaccination affects the natural history of advanced cancer and provide support for its study in less advanced patients, who should, more likely, benefit even more from this approach. (author)

  3. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  4. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    Science.gov (United States)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2018-04-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  5. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  6. File list: Oth.Unc.20.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.20.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Unclassif...ied http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.20.DNA-RNA_hybrids.AllCell.bed ...

  7. File list: Oth.Unc.50.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Unclassif...ied http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.50.DNA-RNA_hybrids.AllCell.bed ...

  8. File list: Oth.YSt.05.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.05.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Yeast str...ain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.05.DNA-RNA_hybrids.AllCell.bed ...

  9. File list: Oth.Unc.10.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Unclassif...ied http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.10.DNA-RNA_hybrids.AllCell.bed ...

  10. File list: Oth.YSt.50.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.50.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Yeast str...ain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.50.DNA-RNA_hybrids.AllCell.bed ...

  11. File list: Oth.Unc.05.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.05.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Unclassif...ied http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.05.DNA-RNA_hybrids.AllCell.bed ...

  12. File list: Oth.YSt.20.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.20.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Yeast str...ain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.20.DNA-RNA_hybrids.AllCell.bed ...

  13. File list: Oth.YSt.10.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.10.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids Yeast str...ain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.10.DNA-RNA_hybrids.AllCell.bed ...

  14. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    Science.gov (United States)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy

  15. Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Torsvik, V.L.; Torsvik, T.

    1997-01-01

    Two new oligonucleotide probes targeting the 16S rRNA of the methanogenic genus Methanosarcina were developed. The probes have the following sequences (Escherichia coli numbering): probe SARCI551, 5'-GAC CCAATAATCACGATCAC-3', and probe SARCI645, 5'-TCCCGGTTCCAAGTCTGGC-3'. In situ hybridization...... with the fluorescently labelled probes required several modifications of standard procedures. Cells of Methanosarcina mazeii S-6 were found to lyse during the hybridization step if fixed in 3% formaldehyde and stored in 50% ethanol. Lysis was, however, not observed with cells fixed and stored in 1.6% formaldehyde-0.......85% NaCl. Extensive autofluorescence of the cells was found upon hybridization in the presence of 5 mM EDTA, but successful hybridization could be obtained without addition of this compound. The mounting agent Citifluor AF1, often used in conjugation with the fluorochrome fluorescein, was found to wash...

  16. Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells

    OpenAIRE

    ZHAO, XIAOMIN; OH, SOON-HWAN; HOYER, LOIS L.

    2007-01-01

    C. albicans yeast forms deleted for ALS5, ALS6 or ALS7 are more adherent than a relevant control strain to human vascular endothelial cell monolayers and buccal epithelial cells. In the buccal and vaginal reconstituted human epithelium (RHE) disease models, however, mutant and control strains caused a similar degree of tissue destruction. Deletion of ALS5 or ALS6 significantly slowed growth of the mutant strain; this phenotype was not affected by addition of excess uridine to the culture medi...

  17. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  18. System design of a large fuel cell hybrid locomotive

    Science.gov (United States)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  19. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  20. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    Directory of Open Access Journals (Sweden)

    Soufiane El Hallani

    2014-01-01

    Full Text Available Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM. Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF. By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance.

  1. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process

    Energy Technology Data Exchange (ETDEWEB)

    An, Ha-Rim; Oh, Sung-Tag [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Chang Yeoul [Future Convergence Ceramic Division, Korea Institute Ceramic Engineering and Technology (KICET), Seoul 233-5 (Korea, Republic of); Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Park, Il-Kyu, E-mail: ikpark@ynu.ac.kr [Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Ahn, Hyo-Jin, E-mail: hjahn@seoultech.ac.kr [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2014-12-05

    Highlights: • Al-doped ZnO/Ag transparent conductive electrode is fabricated at low temperature. • Performance of the hybrid transparent conductive electrode affected by the structure. • The performance enhancement mechanism is suggested. - Abstract: Al-doped ZnO (AZO)/Ag grid hybrid transparent conductive electrode (TCE) structures were fabricated at a low temperature by using electrohydrodynamic jet printing for the Ag grids and atomic layer deposition for the AZO layers. The structural investigations showed that the AZO/Ag grid hybrid structures consisted of Ag grid lines formed by Ag particles and the AZO layer covering the inter-spacing between the Ag grid lines. The Ag particles comprising the Ag grid lines were also capped by thin AZO layers, and the coverage of the AZO layers was increased with increasing the thickness of the AZO layer. Using the optimum thickness of AZO layer of 70 nm, the hybrid TCE structure showed an electrical resistivity of 5.45 × 10{sup −5} Ω cm, an optical transmittance of 80.80%, and a figure of merit value of 1.41 × 10{sup −2} Ω{sup −1}. The performance enhancement was suggested based on the microstructural investigations on the AZO/Ag grid hybrid structures.

  2. Immunoprotective capability of somatic hybrid cells in comparison with parental tumor cells maintained in vitro

    International Nuclear Information System (INIS)

    Mizushima, Yutaka; Cohen, E.P.

    1985-01-01

    The immunogenicity of X-irradiated hybrid cells derived from fusion of ASL-1 leukemia (A origin) and LM (TK - ) fibroblasts (C3H origin) was compared to X-irradiated parental ASL-1 leukemia cells maintained in vivo (V-ASL-1) and to X-irradiated ASL-1 leukemia cells maintained in vitro (C-ASL-1). Immunization with hybrid cells induced transplantation resistance against tumor rechallenge with V-ASL-1 more effectively than did immunization with V-ASL-1 tumor cells. Immunization with X-irradiated C-ASL-1 cells produced the same, or slightly stronger level of transplantation resistance than that with X-irradiated hybrid cells. These findings were observed both in A/J and in (C3H/HeJxA/J) F 1 mice. These results raise a question about whether the apparent increased immunogenicity of hybrid cells is due to a result of cell fusion or a result of their growth in vitro. (author)

  3. Simulation and Test of a Fuel Cell Hybrid Golf Cart

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2014-01-01

    Full Text Available This paper establishes the simulation model of fuel cell hybrid golf cart (FCHGC, which applies the non-GUI mode of the Advanced Vehicle Simulator (ADVISOR and the genetic algorithm (GA to optimize it. Simulation of the objective function is composed of fuel consumption and vehicle dynamic performance; the variables are the fuel cell stack power sizes and the battery numbers. By means of simulation, the optimal parameters of vehicle power unit, fuel cell stack, and battery pack are worked out. On this basis, GUI mode of ADVISOR is used to select the rated power of vehicle motor. In line with simulation parameters, an electrical golf cart is refitted by adding a 2 kW hydrogen air proton exchange membrane fuel cell (PEMFC stack system and test the FCHGC. The result shows that the simulation data is effective but it needs improving compared with that of the real cart test.

  4. Prediction of AL and Dst Indices from ACE Measurements Using Hybrid Physics/Black-Box Techniques

    Science.gov (United States)

    Spencer, E.; Rao, A.; Horton, W.; Mays, L.

    2008-12-01

    ACE measurements of the solar wind velocity, IMF and proton density is used to drive a hybrid Physics/Black- Box model of the nightside magnetosphere. The core physics is contained in a low order nonlinear dynamical model of the nightside magnetosphere called WINDMI. The model is augmented by wavelet based nonlinear mappings between the solar wind quantities and the input into the physics model, followed by further wavelet based mappings of the model output field aligned currents onto the ground based magnetometer measurements of the AL index and Dst index. The black box mappings are introduced at the input stage to account for uncertainties in the way the solar wind quantities are transported from the ACE spacecraft at L1 to the magnetopause. Similar mappings are introduced at the output stage to account for a spatially and temporally varying westward auroral electrojet geometry. The parameters of the model are tuned using a genetic algorithm, and trained using the large geomagnetic storm dataset of October 3-7 2000. It's predictive performance is then evaluated on subsequent storm datasets, in particular the April 15-24 2002 storm. This work is supported by grant NSF 7020201

  5. Fabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite

    Directory of Open Access Journals (Sweden)

    A. Mostafapour

    2012-10-01

    Full Text Available Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to implement powder mixture into the aluminum alloy matrix. Microstructural properties were investigated by means of optical microscopy and scanning electron microscopy (SEM. It was found that reinforcement particle mixture was distributed uniformly in nugget zone. Wear resistance of composite was measured by dry sliding wear test. As a result, hybrid composite revealed significant reduction in wear rate in comparison with Al/AL2O3 composite produced by friction stir processing. Worn surface of the wear test samples were examined by SEM in order to determine wear mechanism.

  6. Cast AlSi9Cu4 alloy with hybride strenghtened by Fe{sub x}Al{sub y}-Al{sub 2}O{sub 3} composite powder

    Energy Technology Data Exchange (ETDEWEB)

    Piatkowski, J [Department of Materials Technology, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland); Formanek, B, E-mail: jaroslaw.piatkowski@polsl.pl, E-mail: boleslaw.formanek@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The main objective of the study was to develop a technology of dispersion strenghtened hypoeutectic Al-Si alloy. The article presented the materials and technology conception for producing aluminium matrix composite AlSi9Cu4Fe alloy with hybride reinforcement of Al{sub x}Fe{sub y} intermetallic and aluminium oxide powders. Composite powder obtained in mechanical agllomerisation mixture of elemental powders. Changes in the structure were confirmed by TA and ATD thermal analyses plotting the solidification curves, which showed a decrease in temperature T{sub liq} compared to the unmodified alloy and an exothermic effect originating from the crystallisation of eutectics with alloying elements. The examinations carried out by SEM and BSE as well as the determination of local chemical composition by EDX technique have characterised the structure of the alloy as containing some binary Al-Si-Al-Cu and Al-Fe eutectics and multicomponent eutectics.

  7. Array comparative genomic hybridization of keratoacanthomas and squamous cell carcinomas

    DEFF Research Database (Denmark)

    Li, Jian; Wang, Kai; Gao, Fei

    2012-01-01

    Keratoacanthoma (KA) is a benign keratinocytic neoplasm that spontaneously regresses after 3-6 months and shares features with squamous cell carcinomas (SCCs). Furthermore, there are reports of KAs that have metastasized, invoking the question of whether KA is a variant of SCC (Hodak et al., 1993...

  8. Real life testing of a Hybrid PEM Fuel Cell Bus

    Science.gov (United States)

    Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars

    Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are

  9. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  10. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  11. 0.4-1.2 GHz hybrid Al-CFRP open-boundary quad-ridge horn

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    We present a 0.4-1.2 GHz open-boundary quad-ridge horn to be used as a wide-band probe at the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark (DTU). Due to adopted hybrid Al-CFRP fabrication technology, the weight of the probe is reduced by a factor of 2...

  12. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  13. In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites.

    Science.gov (United States)

    Tripathi, Garima; Gough, Julie E; Dinda, Amit; Basu, Bikramjit

    2013-06-01

    The aim of this study was to investigate the in vivo biocompatibility in terms of healing of long segmental bone defect in rabbit model as well as in vitro cytotoxicity of eluates of compression-molded High density polyethylene (HDPE)-hydroxyapatite (HA)-aluminum oxide (Al2O3) composite-based implant material. Based on the physical property in terms of modulus and strength properties, as reported in our recent publication, HDPE-40 wt % HA and HDPE-20 wt % HA-20 wt % Al2O3 hybrid composites were used for biocompatibility assessment. Osteoblasts cells were cultured in conditioned media, which contains varying amount of composite eluate (0.01, 0.1, and 1.0 wt %). In vitro, the eluates did not exhibit any significant negative impact on proliferation, mineralization or on morphology of human osteoblast cells. In vivo, the histological assessment revealed neobone formation at the bone/implant interface, characterized by the presence of osteoid and osteoblasts. The observation of osteoclastic activity indicates the process of bone remodeling. No inflammation to any noticeable extent was observed at the implantation site. Overall, the combination of in vitro and in vivo results are suggestive of potential biomedical application of compression-molded HDPE- 20 wt % HA- 20 wt % Al2O3 composites to heal long segmental bone defects without causing any toxicity of bone cells. Copyright © 2012 Wiley Periodicals, Inc.

  14. Control of hybrid fuel cell/energy storage distributed generation system against voltage sag

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh, Amin; Golkar, Masoud Aliakbar [Electrical Engineering Department, K.N. Toosi University of Technology, Seyedkhandan, Dr. Shariati Ave, P.O. Box 16315-1355, Tehran (Iran)

    2010-06-15

    Fuel cell (FC) and energy storage (ES) based hybrid distributed power generation systems appear to be very promising for satisfying high energy and high power requirements of power quality problems in distributed generation (DG) systems. In this study, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage disturbance occurs in distribution system and hybrid system stays connected to the main grid. Hence, modeling, controller design, and simulation study of a hybrid distributed generation system are investigated. The physical model of the fuel cell stack, energy storage and the models of power conditioning units are described. Then the control design methodology for each component of the hybrid system is proposed. Simulation results are given to show the overall system performance including active power control and voltage sag ride-through capability of the hybrid distributed generation system. (author)

  15. Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dan [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Department of Physics and Institute of Solid-state electronics physical, Ningbo University, Ningbo 315211 (China); Sheng, Jiang, E-mail: shengjiang@nimte.ac.cn; Wu, Sudong; Zhu, Juye; Chen, Shaojie; Gao, Pingqi; Ye, Jichun, E-mail: jichun.ye@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-07-25

    Back contact property plays a key role in the charge collection efficiency of c-Si/poly(3,4-ethylthiophene):poly(styrenesulfonate) hybrid solar cells (Si-HSCs), as an alternative for the high-efficiency and low-cost photovoltaic devices. In this letter, we utilize the water soluble poly (ethylene oxide) (PEO) to modify the Al/Si interface to be an Ohmic contact via interface dipole tuning, decreasing the work function of the Al film. This Ohmic contact improves the electron collection efficiency of the rear electrode, increasing the short circuit current density (J{sub sc}). Furthermore, the interface dipoles make the band bending downward to increase the total barrier height of built-in electric field of the solar cell, enhancing the open circuit voltage (V{sub oc}). The PEO solar cell exhibits an excellent performance, 12.29% power conversion efficiency, a 25.28% increase from the reference solar cell without a PEO interlayer. The simple and water soluble method as a promising alternative is used to develop the interfacial contact quality of the rear electrode for the high photovoltaic performance of Si-HSCs.

  16. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  17. Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Hu, Xiaosong; Johannesson, Lars; Murgovski, Nikolce; Egardt, Bo

    2015-01-01

    Highlights: • Hybrid energy storage system is optimally sized and controlled for a hybrid bus. • Dynamic battery health model is incorporated in the optimization. • Convex programming is efficient for optimizing hybrid propulsion systems. • Optimal battery replacement strategy is explored. • Comparison to the battery-only option is made in the health-aware optimization. - Abstract: Energy storage systems (ESSs) play an important role in the performance and economy of electrified vehicles. Hybrid energy storage system (HESS) combining both lithium-ion cells and supercapacitors is one of the most promising solutions. This paper discusses the optimal HESS dimensioning and energy management of a fuel cell hybrid electric bus. Three novel contributions are added to the relevant literature. First, efficient convex programming is used to simultaneously optimize the HESS dimension (including sizes of both the lithium-ion battery pack and the supercapacitor stack) and the power allocation between the HESS and the fuel cell system (FCS) of the hybrid bus. In the combined plant/controller optimization problem, a dynamic battery State-of-Health (SOH) model is integrated to quantitatively examine the impact of the battery replacement strategy on both the HESS size and the bus economy. Second, the HESS and the battery-only ESS options are systematically compared in the proposed optimization framework. Finally, the battery-health-perceptive HESS optimization outcome is contrasted to the ideal one neglecting the battery degradation (assuming that the battery is durable over the bus service period without deliberate power regulation)

  18. Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells

    NARCIS (Netherlands)

    Vermang, B.; Goverde, J.C.; Uruena, A.; Lorenz, A.; Cornagliotti, E.; Rothschild, A.; John, J.; Poortmans, J.; Mertens, R.

    2012-01-01

    Random Al back surface field (BSF) p-type Si solar cells are presented, where a stack of Al2O3 and SiNx is used as rear surface passivation layer containing blisters. It is shown that no additional contact opening step is needed, since during co-firing local Al BSFs are induced at the location of

  19. Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis.

    Science.gov (United States)

    Sottile, Francesco; Aulicino, Francesco; Theka, Ilda; Cosma, Maria Pia

    2016-11-09

    Homotypic and heterotypic cell-to-cell fusion are key processes during development and tissue regeneration. Nevertheless, aberrant cell fusion can contribute to tumour initiation and metastasis. Additionally, a form of cell-in-cell structure called entosis has been observed in several human tumours. Here we investigate cell-to-cell interaction between mouse mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs). MSCs represent an important source of adult stem cells since they have great potential for regenerative medicine, even though they are also involved in cancer progression. We report that MSCs can either fuse forming heterokaryons, or be invaded by ESCs through entosis. While entosis-derived hybrids never share their genomes and induce degradation of the target cell, fusion-derived hybrids can convert into synkaryons. Importantly we show that hetero-to-synkaryon transition occurs through cell division and not by nuclear membrane fusion. Additionally, we also observe that the ROCK-actin/myosin pathway is required for both fusion and entosis in ESCs but only for entosis in MSCs. Overall, we show that MSCs can undergo fusion or entosis in culture by generating distinct functional cellular entities. These two processes are profoundly different and their outcomes should be considered given the beneficial or possible detrimental effects of MSC-based therapeutic applications.

  20. Material properties of Ni-Cr-Al alloy and design of a 4 GPa class non-magnetic high-pressure cell

    CERN Document Server

    Uwatoko, Y; Ueda, K; Uchida, A; Kosaka, M; Mori, N; Matsumoto, T

    2002-01-01

    The Ni-Cr-Al Russian alloy was prepared. Its magnetic and mechanical properties were better than those of MP35N alloy. We fabricated the a piston-cylinder-type hybrid high-pressure cell using the Ni-Cr-Al alloy. It has been found that the maximum working pressure can be repeatedly raised to 3.5 GPa at T = 2 K without any difficulties.

  1. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; Y. Shen; P.P.J. van den Bosch; Edwin Tazelaar; T. Hofman

    2012-01-01

    Fuel cell hybrid vehicles are believed to provide a solution to cut down emissions in the long term. They provide local zero-emission propulsion and when the hydrogen as fuel is derived from renewable energy sources, fuel cell hybrids enable well-to-wheel zero-emission transportation,

  2. Communication: Hole localization in Al-doped quartz SiO{sub 2} within ab initio hybrid-functional DFT

    Energy Technology Data Exchange (ETDEWEB)

    Gerosa, Matteo [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Di Valentin, Cristiana; Pacchioni, Gianfranco [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milan (Italy); Bottani, Carlo Enrico, E-mail: carlo.bottani@polimi.it [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy); Onida, Giovanni [Dipartimento di Fisica dell’ Universita’ degli Studi di Milano and European Theoretical Spectroscopy Facility (ETSF), Via Celoria 16, 20133 Milan (Italy)

    2015-09-21

    We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO{sub 2}, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained ab initio, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.

  3. Vapor-fed bio-hybrid fuel cell.

    Science.gov (United States)

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  4. A hybrid of cells and pancreatic islets toward a new bioartificial pancreas

    Directory of Open Access Journals (Sweden)

    Yuji Teramura

    2016-03-01

    Full Text Available Cell surface engineering using single-stranded DNA–poly(ethylene glycol-conjugated phospholipid (ssDNA–PEG-lipid is useful for inducing cell–cell attachment two and three dimensionally. In this review, we summarize our recent techniques for cell surface engineering and their applications to islet transplantation. Because any DNA sequence can be immobilized onto the cell surface by hydrophobic interactions between ssDNA–PEG-lipid and the cellular membrane without impairing cell function, a cell–cell hybrid can be formed through the DNA hybridization. With this technique, it would be possible to create three-dimensional hybrid structures of pancreatic islets coated with various accessory cells, such as patients’ own cells, mesenchymal and adipose-derived stem cells, endothelial progenitor cells, neural crest stem cells or regulatory T cells, which might significantly improve the outcome of islet transplantation in diabetic patients.

  5. Hydrothermal synthesis and characterization of hybrid Al/ZnO-GO composite for significant photodegrdation of dyes

    Energy Technology Data Exchange (ETDEWEB)

    Lellala, Kashinath; Namratha, K.; Byrappa, K., E-mail: kashinathlellala@gmail.com, E-mail: kbyrappa@gmail.com [Centre for Materials Science and Technology, University of Mysore, Vijnana Bhavan, P.B.No.21, Manasagangothri, Mysore - 570006, India. (India); Sudhakar, K. [Lal Bhadur College, S.V.N. Road, Mulugu X-road, Kakatiya University, Warangal-560001, India. (India)

    2016-05-06

    In the present work, undoped and doped Aluminum/Zinc Oxide - graphene oxide (Al/ZnO-GO) nanocomposite have been successfully synthesized by hydrothermal method from zinc acetate and aluminum nitrate solutions without using of any surfactant/stabilizing agents. The results show that the composites of GO nanosheets are decorated densely by Al/ZnO nanoparticles, which displays a good morphology and blend between GO and Al/ZnO. Hybrid composites exhibit an enhanced photocatalytic performance in reduction of dyes under UV-Vis radiation better than bare ZnO-GO and GO for methylene blue dye. The hydrothermal method leads to particles with a higher crystalline due to ambient temperature of the reaction and autogenously pressure conditions, which alters the phases and crystallizations of the nanocomposite. The optical band gap is narrowed to lower energy values due to controlled addition of aluminum and GO in the composite. The improved optical property in Al-doped ZnO flower decorated on GO can be attributed to the decrease in oxygen deficiency after Al doping. XRD, FTIR, UV-Vis spectroscopy, Raman, and Field Emission Scanning Electron Microscopy characterized the effects of Al doping on the structural characteristics and optical properties on the ZnO-GO.

  6. Performance evaluation and parametric optimum design of a molten carbonate fuel cell-thermophotovoltaic cell hybrid system

    International Nuclear Information System (INIS)

    Yang, Zhimin; Liao, Tianjun; Zhou, Yinghui; Lin, Guoxing; Chen, Jincan

    2016-01-01

    Highlights: • A molten carbonate fuel cell-thermophotovoltaic cell hybrid system is established. • The performance characteristics of the hybrid system are systematically evaluated. • The optimal regions of the power output density and efficiency are determined. • The values of key parameters at the maximum power output density are calculated. • The proposed system is proved to have advantages over other hybrid systems. - Abstract: A new model of the hybrid system composed of a molten carbonate fuel cell (MCFC) and a thermophotovoltaic cell (TPVC) is proposed to recovery the waste heat produced by the MCFC. Expressions for the power output and the efficiency of the hybrid system are analytically derived. The performance characteristics of the hybrid system are evaluated. It is found that when the current density of the MCFC, voltage output of the TPVC, electrode area ratio of the MCFC to the TPVC, and energy gap of the material in the photovoltaic cell are optimally chosen, the maximum power output density of the hybrid system is obviously larger than that of the single MCFC. Moreover, the improved percentages of the maximum power output density of the proposed model relative to that of the single MCFC are calculated for differently operating temperatures of the MCFC and are compared with those of some MCFC-based hybrid systems reported in the literature, and consequently, the advantages of the MCFC-TPVC hybrid system are revealed.

  7. Pt/Al/sub 2/O/sub 3/- carbon nanocomposite as a catalyst for fuel cells

    International Nuclear Information System (INIS)

    Naeem, R.; Ahmed, R.; Ansari, M.S.

    2013-01-01

    Catalysts comprising platinum nanoparticles (Pt NPs) on carbon support are used in fuel cells for the hydrogen and electricity production by electrochemical oxidation of methanol. However, the catalyst is not the best in terms of its performance. Considering role of the support as significant towards efficiency and durability of the catalyst, there is need for introducing novel support materials to replace carbon alone. Deposition of various metallic NPs on ceramic-carbon (hybrid) supports has been reported to improve thermal, mechanical, electrical and chemical properties of different types of catalyst. In search of better performing catalysts for proton exchange membrane fuel cells (PEMFCs), hybrid supports having different ceramic materials should be synthesized. In this regard Pt/Al/sub 2/O/sub 3/-Carbon (nanocomposites) have been synthesized and applied as promising catalysts in the PEMFCs; results obtained for the nanocomposites were compared with Pt/carbon and Pt/Al/sub 2/O/sub 3/. Vulcan carbon was purified and functionalized prior to use; presence of oxygen containing functional groups on carbon was established from the FTIR spectrum, Hybrid support (1:8 by weight ratio of ceramic and carbon) were already prepared in aqueous 2-propanol employing sonication method on to which Pt NPs (10% by weight in all the cases) were deposited by simple chemical reduction of PtCl/sub 4/ by NaBH/sub 4/ under controlled conditions. The catalysts were subjected to various characterization techniques like TGA (for thermal stability), EDX (for chemical composition), SEM (for surface morphology) and XRD (for cell-shape and -volume, material density and average crystalline size). Catalysts efficiencies for the methanol oxidation were investigated through cyclic voltammetery (CV) by comparing electrochemical surface area, peak current, exchange current density and rate constant in the acidic and basic media. Pt/Al/sub 2/O/sub 3/-carbon exhibited better catalytic efficiencies

  8. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Pluripotent hybrid cells contribute to extraembryonic as well as embryonic tissues.

    Science.gov (United States)

    Do, Jeong Tae; Choi, Hyun Woo; Choi, Youngsok; Schöler, Hans R

    2011-06-01

    The restricted gene expression of a differentiated cell can be reversed by forming hybrid with embryonic stem cells (ESCs). The resulting hybrid cells showed not only an ESC-specific marker expression but also a differentiation potential similar to the pluripotent fusion partner. Here, we evaluated whether the tetraploid fusion hybrid cells have a unique differentiation potential compared with diploid pluripotent cells. The first Oct4-GFP-positive cells were observed at day 2 following fusion between ESCs and neurosphere cells (OG2(+/-)/ROSA26(+/-)). Reprogramming efficiency was as high as 94.5% at passage 5 and 96.4% at passage 13. We have found that the tetraploid hybrid cells could form chimera with contribution to placenta after blastocyst injection. This result indicates that the tetraploid pluripotent fusion hybrid cells have wide range of differentiation potential. Therefore, we suggest that once the somatic cells are reprogrammed by fusion with ESCs, the tetraploid hybrid cells contributed to the extraembryonic as well as embryonic tissues.

  10. Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources

    International Nuclear Information System (INIS)

    Dai Wei; Wang Aiying

    2011-01-01

    Research highlights: → Weak carbide former, Al element, was incorporated into DLC films using a hybrid ion beams system comprising an anode-layer ion source and a magnetron sputtering unit. → The structure disorder of the films tended to decrease with Al atoms doping, which resulted in the distinct reduction of the film internal stress and hardness, but the internal stress dropped faster than the hardness. → The DLC films with low internal stress and high hardness can be acquired by Al incorporation. - Abstract: Metal incorporation is one of the most effective methods for relaxing internal stress in diamond-like carbon (DLC) films. It was reported that the chemical state of the incorporated metal atoms has a significant influence on the film internal stress. The doped atoms embedding in the DLC matrix without bonding with C atoms can reduce the structure disorder of the DLC films through bond angle distortion and thus relax the internal stress of the films. In present paper, Al atoms, which are inert to carbon, were incorporated into the DLC films deposited by a hybrid ion beams system comprising an anode-layer ion source and a magnetron sputtering unit. The film composition, microstructure and atomic bond structure were characterized using X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy. The internal stress, mechanical properties and tribogoical behavior were studied as a function of Al concentration using a stress-tester, nanoindentation and ball-on-disc tribo-tester, respectively. The results indicated that the incorporated Al atoms were dissolved in the DLC matrix without bonding with C atoms and the films exhibited the feature of amorphous carbon. The structure disorder of the films tended to decrease with Al atoms incorporation. This resulted in the distinct reduction of the internal stress in the films. All Al-DLC films exhibited a lower friction coefficient compared with pure DLC film. The formation of the

  11. Increased efficiency of mammalian somatic cell hybrid production under microgravity conditions during ballistic rocket flight

    Science.gov (United States)

    Schnettler, R.; Gessner, P.; Zimmermann, U.; Neil, G. A.; Urnovitz, H. B.

    1989-01-01

    The electrofusion of hybridoma cell lines under short-duration microgravity during a flight of the TEXUS 18 Black Brand ballistic sounding rocket at Kiruna, Sweden is reported. The fusion partners, growth medium, cell fusion medium, cell fusion, cell viability in the fusion medium, and postfusion cell culture are described, and the rocket, cell fusion chamber, apparatus, and module are examined. The experimental timeline, the effects of fusion medium and incubation time on cell viability and hybrid yields, and the effect of microgravity on hybrid yields are considered.

  12. Recent progress in stabilizing hybrid perovskites for solar cell applications

    Science.gov (United States)

    Chen, Jianqing; Cai, Xin; Yang, Donghui; Song, Dan; Wang, Jiajia; Jiang, Jinghua; Ma, Aibin; Lv, Shiquan; Hu, Michael Z.; Ni, Chaoying

    2017-07-01

    Hybrid inorganic-organic perovskites have quickly evolved as a promising group of materials for solar cells and optoelectronic applications mainly owing to the inexpensive materials, relatively simple and versatile fabrication and high power conversion efficiency (PCE). The certified energy conversion efficiency for perovskite solar cell (PSC) has reached above 20%, which is compatible to the current best for commercial applications. However, long-term stabilities of the materials and devices remain to be the biggest challenging issue for realistic implementation of the PSCs. This article discusses the key issues related to the stability of perovskite absorbing layer including crystal structural stability, chemical stability under moisture, oxygen, illumination and interface reaction, effects of electron-transporting materials (ETM), hole-transporting materials (HTM), contact electrodes, ion migration and preparation conditions. Towards the end, prospective strategies for improving the stability of PSCs are also briefly discussed and summarized. We focus on recent understanding of the stability of materials and devices and our perspectives about the strategies for the stability improvement.

  13. Tunnel and electrostatic coupling in graphene-LaAlO3/SrTiO3 hybrid systems

    Directory of Open Access Journals (Sweden)

    I. Aliaj

    2016-06-01

    Full Text Available We report on the transport properties of hybrid devices obtained by depositing graphene on a LaAlO3/SrTiO3 oxide junction hosting a 4 nm-deep 2-dimensional electron system. At low graphene-oxide inter-layer bias, the two electron systems are electrically isolated, despite their small spatial separation. A very efficient reciprocal gating of the two neighboring 2-dimensional systems is shown. A pronounced rectifying behavior is observed for larger bias values and ascribed to the interplay between electrostatic field-effects and tunneling across the LaAlO3 barrier. The relevance of these results in the context of strongly coupled bilayer systems is discussed.

  14. Perspective: Hybrid solar cells: How to get the polymer to cooperate?

    Directory of Open Access Journals (Sweden)

    Jonas Weickert

    2013-08-01

    Full Text Available Lately, a lot of attention has been paid to metal oxide-organic hybrid solar cells. In these devices, conjugated polymers replace the typically transparent hole transporter as usually used in solid-state dye-sensitized solar cells in order to maximize the photon absorption efficiency. However, to unleash the full potential of hybrid solar cells it is imperative to push the photocurrent contribution of the absorbing polymer.

  15. Effect of forging on mechanical properties of rice husk ash-silicon carbide reinforced Al1100 hybrid composites

    Science.gov (United States)

    Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.

    2018-04-01

    During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.

  16. Microstructure Characterization and Stress Corrosion Evaluation of Autogenous and Hybrid Friction Stir Welded Al-Cu-Li 2195 Alloy

    Science.gov (United States)

    Li, Zhixian; Arbegast, William J.; Meletis, Efstathios I.

    1997-01-01

    Friction stir welding process is being evaluated for application on the Al-Cu-Li 2195 Super-Light Weight External Tank of the Space Transportation System. In the present investigation Al-Cu-Li 2195 plates were joined by autogenous friction stir welding (FSW) and hybrid FSW (friction stir welding over existing variable polarity plasma arc weld). Optical microscopy and transmission electron microscopy (TEM) were utilized to characterize microstructures of the weldments processed by both welding methods. TEM observations of autogenous FSW coupons in the center section of the dynamically-recrystallized zone showed an equiaxed recrystallized microstructure with an average grain size of approx. 3.8 microns. No T(sub 1), precipitates were present in the above-mentioned zone. Instead, T(sub B) and alpha precipitates were found in this zone with a lower population. Alternate immersion, anodic polarization, constant load, and slow strain tests were carried out to evaluate the general corrosion and stress-corrosion properties of autogenous and hybrid FSW prepared coupons. The experimental results will be discussed.

  17. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses

    International Nuclear Information System (INIS)

    Lajunen, Antti; Lipman, Timothy

    2016-01-01

    This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels. - Highlights: • Alternative powertrains can significantly improve energy efficiency of transit buses. • Operating environment has an important impact on the lifecycle costs of buses. • Diesel hybrid buses are already cost effective solution for public transportation. • The cost of fuel cell technology is the major challenge for fuel cell hybrid buses. • Fully-electric buses have potential to significantly reduce carbon dioxide emissions.

  18. What Is Moving in Hybrid Halide Perovskite Solar Cells?

    Science.gov (United States)

    2016-01-01

    and fuel cell applications. We expound on the implications of these effects for the photovoltaic action. The temporal behavior displayed by hybrid perovskites introduces a sensitivity in materials characterization to the time and length scale of the measurement, as well as the history of each sample. It also poses significant challenges for accurate materials modeling and device simulations. There are large differences between the average and local crystal structures, and the nature of charge transport is too complex to be described by common one-dimensional drift-diffusion models. Herein, we critically discuss the atomistic origin of the dynamic processes and the associated chemical disorder intrinsic to crystalline hybrid perovskite semiconductors. PMID:26859250

  19. Comparative genomic and in situ hybridization of germ cell tumors of the infantile testis

    NARCIS (Netherlands)

    Mostert, M; Rosenberg, C; Stoop, H; Schuyer, M; Timmer, A; Oosterhuis, W; Looijenga, L

    Chromosomal information on germ cell tumors of the infantile testis, ie, teratomas and yolk sac tumors, is limited and controversial. We studied two teratomas and four yolk sac tumors using comparative genomic hybridization (CGH) and in situ hybridization. No chromosomal anomalies were found in the

  20. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then...

  1. Effect of hybrid carbon nanotubes-bimetallic composite particles on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Young [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Kim, Whi-Dong; Kim, Soo H. [Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); Kim, Do-Geun; Kim, Jong-Kuk; Jeong, Yong-Soo; Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Kim, Joo Hyun [Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Lee, Jae Keun [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)

    2010-05-15

    Hybrid carbon nanotubes-bimetallic composite nanoparticles with sea urchin-like structures (SU-CNTs) were introduced to bulk heterojunction polymer-fullerene solar cells to improve their performance. The SU-CNTs were composed of multi-walled CNTs, which were grown radially over the entire surface of the bimetallic nanoparticles composed of Ni and Al. SU-CNTs with a precisely controlled length of {proportional_to}200{+-}40 nm were dispersed homogenously in a polymer active layer. Compared with a pristine device (i.e., without SU-CNTs), the SU-CNTs-doped organic photovoltaic (OPV) cells showed an improved short-circuit current density and power conversion efficiency from 7.5 to 9.5 mA/cm{sup 2} and 2.1{+-}0.1% to 2.2{+-}0.2% (max. 2.5%), respectively. The specially designed SU-CNTs have strong potential as an effective exciton dissociation medium in the polymer active layer to enhance the performance of organic solar cells. (author)

  2. Alterations in the extracellular matrix organization associated with the reexpression of tumorigenicity in human cell hybrids.

    Science.gov (United States)

    Der, C J; Stanbridge, E J

    1980-10-15

    The expression of fibronectin on the cell surface was evaluated on a series of intraspecific human cell hybrids formed between HeLa and normal fibroblast strains. Although these hybrids continued to express many of the in vitro transformation properties of their corresponding tumorigenic HeLa parent, they were now unable to form tumors when inoculated into athymic nude mice. From these suppressed hybrid populations, rare tumorigenic segregant subpopulations arose which had regained their tumorigenic capacity. A comparison of the expression of fibronectin on the cell surface was made between these tumorigenic segregant cell lines and their corresponding non-tumorigenic HeLa/fibroblast hybrid. Following specific immunofluorescent staining for fibronectin, a striking alteration in the cell surface organization was observed to correspond with the reexpression of tumorigenicity in these hybrids. Tumorigenic HeLa/fibroblast hybrids were also significantly altered in both their cellular and colonial morphology. Double immunofluorescent staining to simultaneously visualize both surface fibronectin and collagen revealed that these two extracellular matrix proteins displayed an extensive degree of codistribution and expressed a coordinate shift in organization which correlated with the appearance of tumorigenic segregant hybrid populations. These observations are in agreement with the apparently close structural association between fibronectin and collagen and suggest that the organization of these two components in the extracellular matrix may be an important determinant for in vivo growth potential.

  3. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    Science.gov (United States)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  4. File list: Oth.NoD.50.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.50.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids No descri...ption http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.50.DNA-RNA_hybrids.AllCell.bed ...

  5. File list: Oth.NoD.20.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.20.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids No descri...ption http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.20.DNA-RNA_hybrids.AllCell.bed ...

  6. File list: Oth.NoD.10.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.10.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids No descri...ption http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.10.DNA-RNA_hybrids.AllCell.bed ...

  7. File list: Oth.NoD.05.DNA-RNA_hybrids.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.05.DNA-RNA_hybrids.AllCell sacCer3 TFs and others DNA-RNA hybrids No descri...ption http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.05.DNA-RNA_hybrids.AllCell.bed ...

  8. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Root growth is different in plants with different levels of Al-tolerance under Al stress. Cell wall chemical components of root tip cell are related to root growth. The aim of this study was to explore the relationship between root growth difference and cell wall chemical components. For this purpose, the cell wall chemical ...

  9. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Banavoth, Murali; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif D.; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre; Sargent, Edward H.; Amassian, Aram

    2017-01-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies

  10. Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2007-01-01

    We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We

  11. Optimal design of a hybridization scheme with a fuel cell using genetic optimization

    Science.gov (United States)

    Rodriguez, Marco A.

    Fuel cell is one of the most dependable "green power" technologies, readily available for immediate application. It enables direct conversion of hydrogen and other gases into electric energy without any pollution of the environment. However, the efficient power generation is strictly stationary process that cannot operate under dynamic environment. Consequently, fuel cell becomes practical only within a specially designed hybridization scheme, capable of power storage and power management functions. The resultant technology could be utilized to its full potential only when both the fuel cell element and the entire hybridization scheme are optimally designed. The design optimization in engineering is among the most complex computational tasks due to its multidimensionality, nonlinearity, discontinuity and presence of constraints in the underlying optimization problem. this research aims at the optimal utilization of the fuel cell technology through the use of genetic optimization, and advance computing. This study implements genetic optimization in the definition of optimum hybridization rules for a PEM fuel cell/supercapacitor power system. PEM fuel cells exhibit high energy density but they are not intended for pulsating power draw applications. They work better in steady state operation and thus, are often hybridized. In a hybrid system, the fuel cell provides power during steady state operation while capacitors or batteries augment the power of the fuel cell during power surges. Capacitors and batteries can also be recharged when the motor is acting as a generator. Making analogies to driving cycles, three hybrid system operating modes are investigated: 'Flat' mode, 'Uphill' mode, and 'Downhill' mode. In the process of discovering the switching rules for these three modes, we also generate a model of a 30W PEM fuel cell. This study also proposes the optimum design of a 30W PEM fuel cell. The PEM fuel cell model and hybridization's switching rules are postulated

  12. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    Science.gov (United States)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  13. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    International Nuclear Information System (INIS)

    Kozbor, D.; Burioni, R.; Ar-Rushdi, A.; Zmijewski, C.; Croce, C.M.

    1987-01-01

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3 - , CD4 + , CD1 + , CD8 + , is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor α chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig + , B1 + , B532 + , EBNA + , HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor β-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor α-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression

  14. An organic-inorganic hybrid coagulant containing Al, Zn and Fe (HOAZF: preparation, efficiency and mechanism of removing organic phosphorus

    Directory of Open Access Journals (Sweden)

    Y. Fu

    2018-04-01

    Full Text Available A polymeric-Al-Zn-Fe (PAZF coagulant showing high removal of pollutants has been successfully developed using a galvanized slag in earlier works, but it gave less elimination of phosphorus. To improve phosphorus removal, a hybrid organic-Al-Zn-Fe (HOAZF coagulant was prepared using PAZF and polyacrylamide (PAM as an organic additive, and then was characterized by scanning electron microscopy (SEM, infrared spectroscopy (IR, X-ray diffraction (XRD, and Zeta potential, respectively. Removing efficiency and mechanism of organophosphorus by HOAZF was probed using jar tests in treating a simulated pesticide wastewater containing dichlorvos (DDVP, compared to that by PAZF and polyaluminum chloride. The results displayed that HOAZF having relative lower Zeta potential (compared to PAZF exhibited complex surface morphology composited by Al, Zn and Fe and PAM, forming some new crystalline and amorphous substances different from that in PAZF. HOAZF gave higher removal of organophosphorus and far lower dosage than PAZF, and also posed a suitable wider pH range (pH = 7–12 for HOAZF and 10–11 for PAZF, respectively and suitable wider organophosphorus level range than PAZF. Removing organophosphorus by HOAZF was a simultaneous complex process involving a non-phase transfer of adsorption/bridging/sweeping and a phase transfer of chemical precipitation.

  15. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    Science.gov (United States)

    2012-10-01

    Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS PRINCIPAL INVESTIGATOR: Nicholas J. Maragakis, M.D...Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS 5b. GRANT NUMBER W81XWH-10-1-0520 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...into astrocytes following transplantation. 15. SUBJECT TERMS Stem Cells , iPS cells, astrocytes, familial ALS 16. SECURITY CLASSIFICATION OF

  16. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  17. Controlled initiation and quantitative visualization of cell interaction dynamics - a novel hybrid microscopy method -

    NARCIS (Netherlands)

    Snijder-van As, M.I.

    2010-01-01

    This thesis describes the development, validation, and application of a hybrid microscopy technique to study cell-substrate and cell-cell interactions in a controlled and quantitative manner. We studied the spatial and temporal dynamics of the selected membrane molecules CD6 and the activated

  18. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    Science.gov (United States)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  19. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes

    International Nuclear Information System (INIS)

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-01-01

    Transparent conducting films with a composite structure of AlZnO–Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al_2O_3–TiO_2–Al_2O_3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm"−"2, which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm"−"1). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10"−"7 A cm"−"2 at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits. (paper)

  20. A dynamic simulation tool for the battery-hybrid hydrogen fuel cell vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M. [Hawaii Natural Energy Institute, University of Hawaii, Manoa (United States); Ramaswamy, S.; Cunningham, J.M. [California Univ., Berkeley, CA (United States); Hauer, K.H. [xcellvision, Major-Hirst-Strasse 11, 38422 Wolfsburg (Germany)

    2006-10-15

    This paper describes a dynamic fuel cell vehicle simulation tool for the battery-hybrid direct-hydrogen fuel cell vehicle. The emphasis is on simulation of the hybridized hydrogen fuel cell system within an existing fuel cell vehicle simulation tool. The discussion is focused on the simulation of the sub-systems that are unique to the hybridized direct-hydrogen vehicle, and builds on a previous paper that described a simulation tool for the load-following direct-hydrogen vehicle. The configuration of the general fuel cell vehicle simulation tool has been previously presented in detail, and is only briefly reviewed in the introduction to this paper. Strictly speaking, the results provided in this paper only serve as an example that is valid for the specific fuel cell vehicle design configuration analyzed. Different design choices may lead to different results, depending strongly on the parameters used and choices taken during the detailed design process required for this highly non-linear and n-dimensional system. The primary purpose of this paper is not to provide a dynamic simulation tool that is the ''final word'' for the ''optimal'' hybrid fuel cell vehicle design. The primary purpose is to provide an explanation of a simulation method for analyzing the energetic aspects of a hybrid fuel cell vehicle. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Performance evaluation of hybrid modified micro-channel solar cell ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology ... of hybrid PVT solar air heater had been proposed in the past. ...... president of Bag Energy Research Society (BERS:www.bers.in) which is responsible for energy education in ...

  2. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  3. Reconfiguration of photovoltaic panels for reducing the hydrogen consumption in fuel cells of hybrid systems

    Directory of Open Access Journals (Sweden)

    Daniel González-Montoya

    2017-05-01

    Full Text Available Hybrid generation combines advantages from fuel cell systems with non-predictable generation approaches, such as photovoltaic and wind generators. In such hybrid systems, it is desirable to minimize as much as possible the fuel consumption, for the sake of reducing costs and increasing the system autonomy. This paper proposes an optimization algorithm, referred to as population-based incremental learning, in order to maximize the produced power of a photovoltaic generator. This maximization reduces the fuel consumption in the hybrid aggregation. Moreover, the algorithm's speed enables the real-time computation of the best configuration for the photovoltaic system, which also optimizes the fuel consumption in the complementary fuel cell system. Finally, a system experimental validation is presented considering 6 photovoltaic modules and a NEXA 1.2KW fuel cell. Such a validation demonstrates the effectiveness of the proposed algorithm to reduce the hydrogen consumption in these hybrid systems.

  4. Hybrid Density Functional Study of the Local Structures and Energy Levels of CaAl2O4:Ce3.

    Science.gov (United States)

    Lou, Bibo; Jing, Weiguo; Lou, Liren; Zhang, Yongfan; Yin, Min; Duan, Chang-Kui

    2018-05-03

    First-principles calculations were carried out for the electronic structures of Ce 3+ in calcium aluminate phosphors, CaAl 2 O 4 , and their effects on luminescence properties. Hybrid density functional approaches were used to overcome the well-known underestimation of band gaps of conventional density functional approaches and to calculate the energy levels of Ce 3+ ions more accurately. The obtained 4f-5d excitation and emission energies show good consistency with measured values. A detailed energy diagram of all three sites is obtained, which explains qualitatively all of the luminescent phenomena. With the results of energy levels calculated by combining the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) and the constraint occupancy approach, we are able to construct a configurational coordinate diagram to analyze the processes of capture of a hole or an electron and luminescence. This approach can be applied for systematic high-throughput calculations in predicting Ce 3+ activated luminescent materials with a moderate computing requirement.

  5. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  6. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  7. Generation of a panel of somatic cell hybrids containing unselected fragments of human chromosome 10 by X-ray irradiation and cell fusion: Application to isolating the MEN2A region in hybrid cells

    International Nuclear Information System (INIS)

    Goodfellow, P.J.; Povey, S.; Nevanlinna, H.A.; Goodfellow, P.N.

    1990-01-01

    We have used X-ray irradiation and cell fusion to generate somatic cell hybrids containing fragments of human chromosome 10. Our experiments were directed towards isolating the region of the MEN2A gene in hybrids and to use those as the source of DNA for cloning and mapping new markers from near the MEN2A locus. A number of hybrid clones containing human sequences that are tightly linked to the MEN2A gene were identified. Some 25% of our hybrids, however, proved to contain more than one human chromosome 10-derived fragment or showed evidence of deletions and/or rearrangements. A detailed analysis of the human content of X-ray irradiation hybrids is required to assess the integrity and number of human fragments retained. Despite retention of multiple human-derived fragments, these hybrids will prove useful as cloning and mapping resources

  8. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating

    Directory of Open Access Journals (Sweden)

    Clément Genet

    2018-05-01

    Full Text Available The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS, zirconium (IV propoxide (TPOZ and aluminium tri-sec-butoxide (ASB. This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  9. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating.

    Science.gov (United States)

    Genet, Clément; Menu, Marie-Joëlle; Gavard, Olivier; Ansart, Florence; Gressier, Marie; Montpellaz, Robin

    2018-05-10

    The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH) sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS), zirconium (IV) propoxide (TPOZ) and aluminium tri-sec-butoxide (ASB). This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III) nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS) resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR) analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  10. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  11. Hybrid Co2Al-ABTS/reduced graphene oxide Layered Double Hydroxide: Towards O2 biocathode development

    International Nuclear Information System (INIS)

    Vialat, Pierre; Leroux, Fabrice; Mousty, Christine

    2015-01-01

    Highlights: • Synthesis of new redox mediator intercalated Layered Double Hydroxide using the coprecipitation synthesis. • Presence of electroactive Co into the LDH layers to enhance electroactivity of the system. • Improvement of the electronic conductivity by association with reduced graphene oxide (GOr) into composite system. • Application potentiality as biocathode material for O 2 reduction with immobilization of Bilirubin Oxidase enzyme. • Enhancement of the electrocatalytic response in the presence of a biopolymer like carrageenan into the electrode formulation - Abstract: Co 2 Al-ABTS layered double hydroxides and associated Co 2 Al-ABTS@graphene composite were prepared in one pot technique by in situ coprecipitation. The as-obtained materials were then fully characterized by means of Powder X-Ray Diffraction, Fourier Transformed InfraRed and Scanning Electron Microscopy confirming the intercalation of azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS) between the LDH layers. Their electrochemical properties, according to Cyclic Voltammetry and Electrochemical Impedance Spectroscopy data, were improved compared to Zn 2 Al-ABTS reference material. Co 2 Al-ABTS hybrid LDH was found to combine both electronic transfers: interlayer provided by the presence of ABTS and intralayer due to the Co redox species. Moreover, an improvement of electronic transfer between the LDH particles was further achieved by addition of graphene. The resulting composite assemblies were tested for the first time as oxygen bioelectrode based on bilirubin oxidase. This original approach gives rise to enhanced electroenzymatic currents (×2.5) for oxygen reduction at 0 V and pH 7.0 as regard to that obtained for the reference laccase/LDH-ABTS based bioelectrode at pH 5.5

  12. On practicality of a hybrid car with solar cells; Taiyo denchi wo tosaishita hybrid car no jitsuyosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K; Nagayoshi, H; Kamisako, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    The paper stated a development of a hybrid car which is a parallel type with gasoline engine and electric motor as driving source (connecting each according to the situation) and is also equipped with solar cells. Specifications are gasoline engine of 1200cc, induction motor of 5.5kW, lead battery of 288V and 7.2kWh, monocrystal silicon solar cells of 180W maximum output, and body weight of 1100kg. The rear wheel is driven by electric motor, and the front wheel by gasoline engine. The car is loaded with battery charge use solar cells on hood and roof. To enhance cleaning degree, 1.6kW solar cells are installed as an installed power system and used for battery charge. Even by an electric motor with output less than that of the usual electric car, harmful exhaust gas emitted in start-up can be controlled. This is because the electric motor can be used in accelerating. It was confirmed that the power required for it could be supplied by solar cells installed on the car. The hybrid car is practically useful for prevention of local air pollution. 5 refs., 4 figs., 2 tabs.

  13. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    International Nuclear Information System (INIS)

    Raj, V.; Mohan Raj, R.

    2016-01-01

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  14. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Raj, V., E-mail: alaguraj2@rediffmail.com; Mohan Raj, R., E-mail: chem_mohan@rediffmail.com

    2016-12-15

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  15. Reversible energy storage on a fuel cell-supercapacitor hybrid device

    Energy Technology Data Exchange (ETDEWEB)

    Zerpa Unda, Jesus Enrique

    2011-02-18

    A new concept of energy storage based on hydrogen which operates reversibly near ambient conditions and without important energy losses is investigated. This concept involves the hybridization between a proton exchange membrane fuel cell and a supercapacitor. The main idea consists in the electrochemical splitting of hydrogen at a PEM fuel cell-type electrode into protons and electrons and then in the storage of these two species separately in the electrical double layer of a supercapacitor-type electrode which is made of electrically conductive large-surface area carbon materials. The investigation of this concept was performed first using a two-electrode fuel cell-supercapacitor hybrid device. A three-electrode hybrid cell was used to explore the application of this concept as a hydrogen buffer integrated inside a PEM fuel cell to be used in case of peak power demand. (orig.)

  16. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2012-10-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon-carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux.

  17. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    International Nuclear Information System (INIS)

    Battuello, M; Girard, F; Florio, M

    2012-01-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon–carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux. (paper)

  18. An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams

    OpenAIRE

    Hasan, MD. Anwarul

    2010-01-01

    Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...

  19. Activation of specific cellular immunity toward murine leukemia in mice rejecting syngeneic somatic hybrid cells

    International Nuclear Information System (INIS)

    Liang, W.; Cohen, E.P.

    1977-01-01

    ASL-1 x LM(TK) - somatic hybrid cells form both H-2/sup a/ and H-2/sup k/ antigen complexes. After forming a localized tumor in syngeneic (A/J x C 3 H/HeJ)F 1 mice, they are rejected. Such mice are resistant to otherwise invariably lethal injections of ASL-1 cells, surviving for prolonged and, in some instances, indefinite periods. To examine the basis of immunity, the capacity of spleen cells from mice rejecting hybrid cells to stimulate the release of 51 Cr from labeled ASL-1 cells was investigated. Cells from the spleens of mice rejecting ASL-1 x LM(TK) - cells stimulated the release of 51 Cr from labeled ASL-1 cells, but not from Ehrlich ascites or P815 cells. Cells from mice injected with mitomycin-C-treated ASL-1 cells led to the release of 51 Cr from labeled ASL-1 cells as well, but the extent of 51 Cr release was approximately one-third as occurred in the presence of cells from hybrid cell-injected mice. Cells from noninjected mice or from mice injected with LM(TK) - cells failed to lead to the specific release of 51 Cr from ASL-1 cells. The presence of unlabeled ASL-1 cells, but not Ehrlich ascites cells, competitively inhibited the spleen cell-stimulated release of 51 Cr from labeled ASL-1 cells. Sera from A/J mice injected with mitomycin-C-treated ASL-1 cells contained antibodies specific for the tumor-associated antigen of ASL-1 cells

  20. Assignment of electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) to human chromosome 4q33 by fluorescence in situ hybridization and somatic cell hybridization.

    Science.gov (United States)

    Spector, E B; Seltzer, W K; Goodman, S I

    1999-08-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a nuclear-encoded protein located in the inner mitochondrial membrane. Inherited defects of ETF-QO cause glutaric acidemia type II. We here describe the localization of the ETF-QO gene to human chromosome 4q33 by somatic cell hybridization and fluorescence in situ hybridization. Copyright 1999 Academic Press.

  1. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu, E-mail: skim@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Pham, Vuong-Hung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Chong-Hyun [Department of Food Science, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  2. Metal-insulator transition at the LaAlO3/SrTiO3 interface revisited: A hybrid functional study

    KAUST Repository

    Cossu, Fabrizio; Eyert, V.; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the electronic properties of the LaAlO3/SrTiO3 interface using density functional theory. In contrast to previous studies, which relied on (semi-)local functionals and the GGA+U method, we here use a recently developed hybrid

  3. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    Science.gov (United States)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  4. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  5. Mechanical Properties and Wear Characteristics Al-ZrO2-SiCp and Graphite Hybrid Metal Matrix Composites

    Science.gov (United States)

    Nayak, S. K.; Mahanta, T.; Sahoo, J. K.; Mishra, A.

    2018-03-01

    Development of Aluminum Metal Matrix Co mposites (AMMCs) has been one of the major requirements in engineering applicat ions due to their excellent mechanical properties, light weight and high strength. In the present investigation, Stir casting technique has been used for fabrication of co mposites, taking Alu miniu m as parent metal, Silicon Carbide (SiCp) of 7 vol. % of 220 mesh size and 1.75 vol. % of graphite as reinforcements. The Zirconia content was varied as 2.75, 4.5 and 6 vol. % to fabricate three d ifferent types of hybrid composites. The tensile strength and hardness were measured in UTM and Vickers hardness tester respectively and the wear characteristics were studied in a pin on disc friction monitor under dry sliding condition against steel counter face. The tensile strength was found to be 90 MPa, 120 MPa, 130 MPa and hardness 80.25 VHN, 103.22 VHN, 103.77 VHN for 2.75, 4.5 and 6vol. % of Zirconia respectively. Fro m the above investigation, it is recommended that composition with Al, 7 %-SiCp, 1.75 % -Gr and 6 vol %-ZrO2 showed better mechanical p roperties i.e . h igh tensile strength (130MPa) and reasonably good hardness (103.77 VHN) . The co mposite with Al, 7 % - SiCp, 1.75 % -Gr and 6 %-ZrO2 is good for short run frictional applicat ion and the composite with Al, 7 %- SiCp, 1.75 % -Gr and 4.5 %- ZrO2 may be used for long run frictional applicat ions after testing.

  6. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  7. Energy storage in hybrid organic-inorganic materials hexacyanoferrate-doped polypyrrole as cathode in reversible lithium cells

    DEFF Research Database (Denmark)

    Torres-Gomez, G,; Skaarup, Steen; West, Keld

    2000-01-01

    A study of the hybrid oganic-inorganic hexacyanoferrate-polypyrrole material as a cathode in rechargeable lithium cells is reported as part of a series of functional hybrid materials that represent a new concept in energy storage. The effect of synthesis temperatures of the hybrid in the specific...

  8. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    A fully integrated, solid-state, compact hybrid cell (CHC) that comprises ''convoluted'' ZnO nanowire structures for concurrent harvesting of both solar and mechanical energy is demonstrated. The compact hybrid cell is based on a conjunction design of an organic solid-state dye-sensitized solar cell (DSSC) and piezoelectric nanogenerator in one compact structure. The CHC shows a significant increase in output power, clearly demonstrating its potential for simultaneously harvesting multiple types of energy for powering small electronic devices for independent, sustainable, and mobile operation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft

    Science.gov (United States)

    Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae

    2017-06-01

    In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.

  10. Derivation of hybrid ES cell lines from two different strains of mice

    Directory of Open Access Journals (Sweden)

    Ho-Tak Lau

    2016-03-01

    Full Text Available Parental origin-dependent expression of the imprinted genes is essential for mammalian development. Zfp57 maintains genomic imprinting in mouse embryos and ES cells. To examine the allelic expression patterns of the imprinted genes in ES cells, we obtained multiple hybrid ES clones that were directly derived from the blastocysts generated from the cross between mice on two different genetic backgrounds. The blastocyst-derived ES clones displayed largely intact DNA methylation imprint at the tested imprinted regions. These hybrid ES clones will be useful for future studies to examine the allelic expression of the imprinted genes in ES cells and their differentiated progeny.

  11. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells

    KAUST Repository

    Weintraub, Benjamin

    2009-11-09

    Wired up: The energy conversion efficiency of three-dimensional dye-sensitized solar cells (DSSCs) in a hybrid structure that integrates optical fibers and nanowire arrays is greater than that of a two-dimensional device. Internal axial illumination enhances the energy conversion efficiency of a rectangular fiber-based hybrid structure (see picture) by a factor of up to six compared to light illumination normal to the fiber axis from outside the device.

  12. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Gandhimathi, Chinnasamy [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Venugopal, Jayarama Reddy [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, National University of Singapore (Singapore); Tham, Allister Yingwei [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, National University of Singapore (Singapore); Kumar, Srinivasan Dinesh, E-mail: dineshkumar@ntu.edu.sg [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore)

    2015-04-01

    Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(L-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). Fabricated nanofibrous scaffolds were characterized for fiber morphology, hydrophilicity, porosity, mechanical test and chemical properties by FT-IR and EDX analysis. The results showed that the fiber diameter and pore size of scaffolds observed around 228 ± 62–320 ± 22 nm and 1.5–6.9 μm respectively. Resulting nanofibrous scaffolds are highly porous (87–94%) with ultimate tensile strength observed in the range of 1.51–4.86 MPa and also showed better hydrophilic properties after addition of AA, TC and n-HA. Human mesenchymal stem cells (MSCs) cultured on these bio-composite nanofibrous scaffolds and stimulated to osteogenic differentiation in the presence of AA/TC/n-HA for BTE. The cell proliferation and biomaterial interactions were studied using MTS assay, SEM and CMFDA dye exclusion methods. Osteogenic differentiation of MSCs was proven by using alkaline phosphatase activity, mineralization and double immunofluorescence staining of both CD90 and osteocalcin. The observed results suggested that the fabricated PLACL/SF/AA/TC/n-HA biocomposite hybrid nanofibrous scaffolds have good potential for the differentiation of MSCs into osteogenesis for bone tissue engineering. - Highlights: • We fabricated and characterized hybrid porous nanofibrous scaffolds. • PLACL/SF/AA/TC/n-HA scaffolds promote cell differentiation and mineralization. • Porous nanofibrous scaffolds initiate MSC differentiation into osteogenic cells. • Biomimetic nanofibrous scaffolds have good potential for bone tissue engineering.

  13. Perylenes as sensitizers in hybrid solar cells : how molecular size influences performance

    NARCIS (Netherlands)

    Li, Chen; Liu, Zhihong; Schoneboom, Jan; Eickemeyer, Felix; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Mullen, Klaus; Schöneboom, Jan; Grätzel, Michael; Janssen, René

    2009-01-01

    Dye-sensitized solar cells (DSCs), one kind of hybrid solar cells, are being intensively developed due to their high efficiency and low cost. One of the main factors to improve the efficiency is the minimization of the recombination of holes and electrons at the TiO(2)/dye/electrolyte interface. To

  14. Hybrid TiO2: polymer photovoltaic cells made from a titanium oxide precursor

    NARCIS (Netherlands)

    Slooff, L.H.; Wienk, M.M.; Kroon, J.M.

    2004-01-01

    Hybrid TiO2:polymer photovoltaic cells were made from mixtures of titanium(IV) isopropoxide and poly[2-methoxy-5-(3',7'-dimethyloctyl)-p-phenylene vinylene] (MDMO-PPV) or poly(3-octyl thiophene) (P3OT) via hydrolysis in air. Cells were made with varying titanium(IV) isopropoxide:polymer ratios.

  15. Correlation between ultraviolet survival and DNA repair efficiency in mouse cell hybrids and their parent lines

    International Nuclear Information System (INIS)

    Limbosch, S.

    1982-01-01

    Three hybrid cell lines formed between mouse lymphoma (LS) and mouse fibroblasts (A9) have been tested for their capacity to perform unscheduled DNA synthesis; their recovery characteristics after uv irradiation have also been studied to determine if DNA repair is implicated in the high survival observed in one hybrid (clone 3). The results of these investigations indicate that hybrid clone 3 was distinguishable from the more uv sensitive parental and other hybrid cell lines by its higher uv-induced unscheduled DNA synthesis, its greater clonogenic survival in plateau phase, and its faster recovery when maintained in conditioned medium after irradiation. The simultaneous increase of these three properties in hybrid clone 3 suggest that, by three different approaches, we have evidenced the same molecular process, a process involved in the elimination of potentially lethal damage, most probably the excision repair pathway. This report also shows that the low efficiency in excision repair in the parent line A9 is probably not due to deletion but rather to repression of the relevant gene(s) and that somatic cell hybridization can result in a stimulation of a previously poorly expressed repair process

  16. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  17. Comparison of closed-cell and hybrid-cell stent designs in carotid artery stenting: clinical and procedural outcomes

    Directory of Open Access Journals (Sweden)

    Ersan TatlI

    2017-05-01

    Full Text Available Introduction: Carotid artery stenting (CAS is a promising alternative to surgery in high-risk patients. However, the impact of stent cell design on outcomes in CAS is a matter of continued debate. Aim : To compare the periprocedural and clinical outcomes of different stent designs for CAS with distal protection devices. Material and methods : All CAS procedures with both closed- and hybrid-cell stents performed at our institution between February 2010 and December 2015 were analyzed retrospectively. Adverse events were defined as death, major stroke, minor stroke, transient ischemic attack and myocardial infarction. Periprocedural and 30-day adverse events and internal carotid artery (ICA vasospasm rates were compared between the closed-cell and hybrid-cell stent groups. Results : The study included 234 patients comprising 146 patients with a closed-cell stent (Xact stent, Abbott Vascular (mean age: 68.5 ±8.6; 67.1% male and 88 patients with a hybrid-cell stent (Cristallo Ideale, Medtronic (mean age: 67.2 ±12.8; 68.2% male. There was no significant difference between the groups with respect to periprocedural or 30-day adverse event rates. While there was no difference in terms of tortuosity index between the groups, there was a higher procedural ICA vasospasm rate in the closed-cell stent group (35 patients, 23% compared with the hybrid-cell stent group (10 patients, 11% (p = 0.017. Conclusions : The results of this study showed no significant difference in the clinical adverse event rates after CAS between the closed-cell stent group and the hybrid-cell stent group. However, procedural ICA vasospasm was more common in the closed-cell stent group.

  18. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V.

    Science.gov (United States)

    Marin, E; Offoiach, R; Lanzutti, A; Regis, M; Fusi, S; Fedrizzi, L

    2014-01-01

    Titanium alloys are nowadays used for a wide range of biomedical applications thanks to their combination of high mechanical resistance, high corrosion resistance and biocompatibility. Nevertheless, the applicability of titanium alloys is sometimes limited due to their low microhardness and tribological resistance. Thus the titanium alloys cannot be successfully applied to prosthetic joint couplings. A wide range of surface treatments, in particular PVD coatings such as CrN and TiN, have been used in order to improve the tribological behaviour of titanium alloys. However, the low microhardness of the titanium substrate often results in coating failure due to cracks and delamination. For this reason, hybrid technologies based on diffusive treatments and subsequent PVD coatings may improve the overall coating resistance. In this work, conventional PVD coatings of CrN or TiCN, deposited on Titanium Grade 5, were characterized and then combined with a standard thermal diffusive nitriding treatment in order to improve the tribological resistance of the titanium alloys and avoid coating delamination. The different treatments were studied by means of scanning electron microscopy both on the sample surface and in cross-section. In-depth composition profiles were obtained using glow discharge optical emission spectrometry (GDOES) and localized energy dispersive X-ray diffraction on linear scan-lines. The microhardness and adhesion properties of the different treatments were evaluated using Vickers microhardness tests at different load conditions. The indentations were observed by means of SEM in order to evaluate delaminated areas and the crack's shape and density. The tribological behaviour of the different treatments was tested in dry conditions and in solution, in alternate pin-on-flat configuration, with a frequency of 0.5 Hz. After testing, the surface was investigated by means of stylus profilometry and SEM both on the surface and in cross-section. The standalone PVD

  19. Fabrication of Hybrid Polymer Solar Cells By Inverted Structure Based on P3HT:PCBM Active Layer

    Directory of Open Access Journals (Sweden)

    Shobih Shobih

    2017-08-01

    Full Text Available Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al. In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.

  20. Microstructure and Mechanical Behaviour of Stir-Cast Al-Mg-Sl Alloy Matrix Hybrid Composite Reinforced with Corn Cob Ash and Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Oluwagbenga Babajide Fatile

    2014-10-01

    Full Text Available In this present study, the microstructural and mechanical behaviour of Al-Mg-Si alloy matrix composites reinforced with silicon carbide (SiC and Corn cob ash (An agro‑waste was investigated. This research work was aimed at assessing the suitability of developing low cost- high performance Al-Mg-Si hybrid composite. Silicon carbide (SiC particulates added with 0,1,2,3 and 4 wt% Corn cob ash (CCA were utilized to prepare 10 wt% of the reinforcing phase with Al-Mg-Si alloy as matrix using two-step stir casting method. Microstructural characterization, density measurement, estimated percent porosity, tensile testing, and micro‑hardness measurement were used to characterize the composites produced. From the results obtained, CCA has great potential to serve as a complementing reinforcement for the development of low cost‑high performance aluminum hybrid composites.

  1. Experimental Studies on Al (5.7% Zn) Alloy based Hybrid MMC

    Science.gov (United States)

    Shivaprakash, Y. M.; Ramu, H. C.; Chiranjivee; Kumar, Roushan; Kumar, Deepak

    2018-02-01

    In this investigation, an attempt is made to disperse SiC (20-25 microns) and Gr (15-20 microns) in the aluminium alloy having Zn, Mg and coper as major alloying elements. The composite is further subjected to mechanical testing to determine various properties like hardness, tensile strength and wear resistance. The alloy and composite samples were tested in the un heat treated conditions. All the tests were done at the laboratory conditions as per ASTM standards. The Pin-On-Disc tribometer is used to test the two-body abrasive sliding wear behaviour in dry conditions. The wear pattern is analysed by the optical images of worn surface taken in an inverted metallurgical microscope. The calculated density is found to be reducing as the SiC and Gr quantity is increased in the base alloy. The as cast Al alloy was found to be having highest hardness. The introduction of SiC tend to increase the hardness and UTS, since Gr is also introduced simultaneously which tends to reduce the hardness and UTS of composite. The composite having highest quantity of Gr showed superior wear resistance which is mainly because the Gr particulates provide an inbuilt lubricating properties to composite. The analysis of images of worn surface showed the abrasive and delamination pattern of wear. The composites developed in the present work can be used in the automobile and aerospace parts that are light in weight and require self-lubricating properties to enhance the wear resistance.

  2. Photoelectrochemical Cell of Hybrid Regioregular POLY(3-HEXYLTHIOPHENE-2,5-DIYL) and Molybdenum Disulfide Film

    Science.gov (United States)

    Abdelmola, Fatmaelzahraa M.; Ram, Manoj K.; Takshi, Arash; Stafanakos, Elias; Kumar, Ashok; Goswami, D. Yogi

    The photoelectrochemical cell attracts attention worldwide due to conversion of optical energy into electricity, production of hydrogen through water splitting and use in photodetector and photo-sensor applications. We have been working on the photochemical cell based on regioregular polyhexylthiophenes hybrid-structured films for photoelectrochemical and photovoltaic applications. This paper discusses the hybrid film studies on regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) with 2D molybdenum disulfide (MoS2) for photoelectrochemical cell. The hybrid P3HT/MoS2 films deposited over indium tin oxide (ITO)-coated glass plate or n-type silicon substrates were characterized using FTIR, UV/vis, electrochemical and scanning electron microscopy (SEM) techniques. The optical measurements showed a higher absorption magnitude with low reflection properties of P3HT/MoS2 hybrid films revealing a superior photocurrent compared to both P3HT and MoS2 films. The P3HT/MoS2 hybrid-based photoelectrochemical cell yielded a short-circuit current (Isc) of 183.16μAṡcm-2, open-circuit voltage (Voc) of 0.92V, fill factor (FF) of 25% and power conversion efficiency (η) of 0.18% under the light intensity of 242Wṡm-2. The estimated power conversion efficiency and fill factor are comparable to organic-based photovoltaic devices.

  3. Utilization of the computational technique to improve the thermophysical performance in the transportation of an electrically conducting Al2O3 - Ag/H2O hybrid nanofluid

    Science.gov (United States)

    Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.

    2017-12-01

    In this study, we analyzed the induced magnetic field effect on stagnation-point flow of a Al2O3-Ag/water hybrid nanofluid over a stretching sheet. Hybrid nanofluid, a new type of conventional fluid has been used for enhancement of heat transfer within boundary layer flow. It is notable here that only 1% to 5% contribution of nanoparticles enhance thermal conductivity of water. Nonlinear governing equations are simplified into boundary layer equations under boundary layer approximation assumption. A coupled system of nonlinear partial differential equation is transformed into a nonlinear system of ordinary differential equation by implementing suitable similarity conversions. Numerical analysis is performed by means of Keller box scheme. Effects of different non-dimensional governing parameters on velocity, induced magnetic field and temperature profiles, along with skinfriction coefficient and local Nusselt number, are discussed and presented through graphs and tables. Hybrid nanofluid is considered by keeping the 0.1% volumetric fraction of silver. From this study it is observed that the heat transfer rate of hybrid nanofluid (Al2O3-Ag/water) is higher than nanofluid (Ag/water). Novel results computed are useful in academic studies of hybrid nanofluids in engineering and industry.

  4. Industrially relevant Al2O3 deposition techniques for the surface passivation of Si solar cells

    NARCIS (Netherlands)

    Schmidt, J.; Werner, F.; Veith, B.; Zielke, D.; Bock, R.; Tiba, M.V.; Poodt, P.; Roozeboom, F.; Li, A.; Cuevas, A.; Brendel, R.

    2010-01-01

    We present independently confirmed efficiencies of 21.4% for PERC cells with plasma-assisted atom-ic-layer-deposited (plasma ALD) Al2O3 rear passivation and 20.7% for cells with thermal ALD-Al2O3. Additionally, we evaluate three different industrially relevant techniques for the deposition of

  5. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  6. Radiobiological properties of radiosensitive XR-1 Chinese hamster cells and hybrids from these and human A-T cells

    International Nuclear Information System (INIS)

    Bahari, I.B.

    1989-01-01

    Results indicate that XR-1 cells were very radiosensitive to gamma-irradiation compared to its parental type, and that this radiosensitivity is cell cycle dependent. Irradiating the cells the G 1 or plateau phase did not induce any delay entering S-phase but mitotic delays were observed in both XR-1 and the wild-type cells. The delays per unit dose were much longer for XR-1. A delay in subculture from plateau phase reduced the mitotic delay in both cell lines. Unlike the wild-type cells which expressed virtually all chromosome-type aberrations after irradiation of G 1 cells, the XR-1 cells expressed both chromatid- as well as chromosome-type aberrations. There was a one-to-one correlation between total aberrations induced and lethality for both cells. Many of these radiobiological properties of XR-1 cells relative to the wild-type cells, mimic the response of A-T cells relative to the normal human cells. However, the restoration of radioresistance and cytogenetic response in the XR1/AT5BI(4) hybrid cells suggest that the XR-1 and A-T cells have different defects because of the complementation in the hybrids. It also appears that this genetic defect is recessive in nature

  7. Fast Response, Load-Matching Hybrid Fuel Cell: Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, T. S.; Sitzlar, H. E.; Geist, T. D.

    2003-06-01

    Hybrid DER technologies interconnected with the grid can provide improved performance capabilities compared to a single power source, and, add value, when matched to appropriate applications. For example, in a typical residence, the interconnected hybrid system could provide power during a utility outage, and also could compensate for voltage sags in the utility service. Such a hybrid system would then function as a premium power provider and eliminate the potential need for an uninterruptible power supply. In this research project, a proton exchange membrane (PEM) fuel cell is combined with an asymmetrical ultracapacitor to provide robust power response to changes in system loading. This project also considers the potential of hybrid DER technologies to improve overall power system compatibility and performance. This report includes base year accomplishments of a proposed 3-year-option project.

  8. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  9. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology is one of the most attractive candidates for transportation applications due to its inherently high efficiency and high power density. However, the fuel cell system efficiency can suffer because of the need for forced air supply and water-cooling systems. Hence the operating strategy of the fuel cell system can have a significant impact on the fuel cell system efficiency and thus vehicle fuel economy. The key issues are how the fuel cell b...

  10. Analysis of Smut Formation Phenomena on MIG and Plasma-MIG Hybrid Weld of Cryogenic Al-Mg Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-keun [Daewoo Shipbuilding and Marine Engineering, Geoje (Korea, Republic of); Yoon, Tae-jin; Kang, Chung-yun [Pusan National University, Busan (Korea, Republic of)

    2016-02-15

    Black deposits (smut) are created on MIG welds in cryogenic Al alloys. The smut should be removed because it ruins the appearance of the end product and affects surface treatments such as painting. It was recently reported that plasma–MIG hybrid (PMH) welding controls the formation of smut during welding. In order to determine the reason for this, smut formation using both MIG and PMH welding was investigated through metallurgy and arc phenomena analysis. Smut on MIG welds is a Mg–Al–O amorphous layer that includes nano-sized MgO particles less than 100 nm in diameter and MgO particles 1–2 µm in diameter. Smut on MIG welds is created by large amounts of metal vapor from the arc explosion generated between the welding wire and the weld pool after a short circuit transfer. However, smut on PMH welds is not created owing to the small amount of metal vapor produced from a stable globular transfer rather than a short circuit transfer and arc explosion.

  11. Analysis of Smut Formation Phenomena on MIG and Plasma-MIG Hybrid Weld of Cryogenic Al-Mg Alloy

    International Nuclear Information System (INIS)

    Lee, Hee-keun; Yoon, Tae-jin; Kang, Chung-yun

    2016-01-01

    Black deposits (smut) are created on MIG welds in cryogenic Al alloys. The smut should be removed because it ruins the appearance of the end product and affects surface treatments such as painting. It was recently reported that plasma–MIG hybrid (PMH) welding controls the formation of smut during welding. In order to determine the reason for this, smut formation using both MIG and PMH welding was investigated through metallurgy and arc phenomena analysis. Smut on MIG welds is a Mg–Al–O amorphous layer that includes nano-sized MgO particles less than 100 nm in diameter and MgO particles 1–2 µm in diameter. Smut on MIG welds is created by large amounts of metal vapor from the arc explosion generated between the welding wire and the weld pool after a short circuit transfer. However, smut on PMH welds is not created owing to the small amount of metal vapor produced from a stable globular transfer rather than a short circuit transfer and arc explosion.

  12. Relaxation-phenomena in LiAl/FeS-cells

    Science.gov (United States)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  13. PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Bingtao; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-01-01

    The thermal conductivity of form-stable PEG/SiO 2 phase change material (PCM) was enhanced by in situ doping of Al 2 O 3 using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO 2 –Al 2 O 3 reached 124 J g −1 , and thermal conductivity improved by 12.8% for 3.3 wt% Al 2 O 3 in the PCM compared with PEG/SiO 2 . The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO 2 –Al 2 O 3 hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects

  14. PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change materials with enhanced thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tangbt@dlut.edu.cn; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-03-01

    The thermal conductivity of form-stable PEG/SiO{sub 2} phase change material (PCM) was enhanced by in situ doping of Al{sub 2}O{sub 3} using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO{sub 2}–Al{sub 2}O{sub 3} reached 124 J g{sup −1}, and thermal conductivity improved by 12.8% for 3.3 wt% Al{sub 2}O{sub 3} in the PCM compared with PEG/SiO{sub 2}. The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects.

  15. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  16. Simple synthesis of Al{sub 2}O{sub 3} sphere composite from hybrid process with improved thermal stability for catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Regina C.R., E-mail: reginaclaudiasantos@yahoo.com.br [Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus of Pici, Fortaleza, CE, CEP: 60440-554 (Brazil); Pinheiro, Antônio N.; Leite, Edson R. [Department of Chemistry, Federal University of São Carlos, São Carlos, SP, CEP: 13560-905 (Brazil); Freire, Valder N. [Department of Physics, Federal University of Ceará, Campus of Pici, Fortaleza, CE, CEP: 60440-554 (Brazil); Longhinotti, Elisane; Valentini, Antoninho [Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus of Pici, Fortaleza, CE, CEP: 60440-554 (Brazil)

    2015-06-15

    Aluminium oxide spheres were synthesized by the hybrid process applying the biopolymer chitosan. After the calcination process the porous spheres were characterized by Chemical elemental analysis (XRF), X-ray diffraction (XRD), Scanning electron microscopy and Energy Dispersive X-ray Spectroscopy (SEM-EDS), N{sub 2} adsorption–desorption isotherms, infrared spectroscopy (IR), and CO{sub 2} temperature programmed desorption (CO{sub 2}-TPD). The effect of thermal treatment on surface properties of the oxide spheres was also evaluated by the catalytic ethanol dehydration reaction. The hybrid method produced interesting results related to the thermal stability against sintering process and consequently low decreases of surface area. The hybrid spheres calcination at 900 and 1200 °C produced a metastable phases of alumina with a high surface area, and nanometric crystallites. Additionally, the spheres of mixed silica-alumina synthesized by this method reveal the formation of porous spheres with highly acidic OH groups, which was suggested by the catalytic performance. - Highlights: • Al and Si/Al oxide spheres with promising properties are synthesized by hybrid method. • Al{sub 2}O{sub 3} spheres show high thermal stability and resistance the loss surface area. • The SiO{sub 2} addition plays an important role in the structure and porosity of the spheres. • Al{sub 2}O{sub 3} and SiO{sub 2}/Al{sub 2}O{sub 3} spheres presented a good activity to conversion ethanol. • The activity is related to the surface area and density of OH groups on surface.

  17. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  18. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    Fahad, A.; Ali, S.M.; Bhatti, A.A.; Nasir, M

    2013-01-01

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  19. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  20. 3-oxo-rhazinilam: a new indole alkaloid from Rauvolfia serpentina x Rhazya stricta hybrid plant cell cultures.

    Science.gov (United States)

    Gerasimenko, I; Sheludko, Y; Stöckigt, J

    2001-01-01

    A new monoterpenoid indole alkaloid, 3-oxo-rhazinilam (1), was isolated from intergeneric somatic hybrid cell cultures of Rauvolfia serpentina and Rhazya stricta, and the structure was determined by detailed 1D and 2D NMR analysis. It was also proved that 3-oxo-rhazinilam (1) is a natural constituent of the hybrid cells.

  1. A hybrid bio-jetting approach for directly engineering living cells

    International Nuclear Information System (INIS)

    Kwok, Albert; Irvine, Scott; Arumuganathar, Sumathy; Jayasinghe, Suwan N; McEwan, Jean R

    2008-01-01

    This paper reports developments on a hybrid cell-engineering protocol coupling both bio-electrosprays and aerodynamically assisted bio-jets for process-handling living cells. The current work demonstrates the ability to couple these two cell-jetting protocols for handling a wide range of cells for deposition. The post-treated cells are assessed for their viability by way of flow cytometry, which illustrates a significant population of viable cells post-treatment in comparison to those controls. This work is the first example of coupling these two protocols for the process handling of living cells. The hybrid protocol demonstrates the achievement of stable cone jetting of a cellular suspension in the single-needle configuration which was previously unachieved with single-needle bio-electrosprays. Furthermore the living cells explored in these investigations expressed GFP, thus demonstrating the ability to couple gene therapy with this hybrid protocol. Hence, this approach could one day be explored for building biologically viable tissues incorporating a therapeutic payload for combating a range of cellular/tissue-based pathologies

  2. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  3. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs.

    Science.gov (United States)

    Chung, C A; Lin, Tze-Hung; Chen, Shih-Di; Huang, Hsing-I

    2010-01-21

    Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.

  4. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Pankajakshan, Divya; Krishnan, Lissy K [Thrombosis Research Unit, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012 (India); Krishnan V, Kalliyana, E-mail: lissykk@sctimst.ac.i [Division of Polymer Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012 (India)

    2010-12-15

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly({epsilon}-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  5. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    International Nuclear Information System (INIS)

    Pankajakshan, Divya; Krishnan, Lissy K; Krishnan V, Kalliyana

    2010-01-01

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly(ε-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  6. The Role of NG2 Glial Cells in ALS Pathogenesis

    Science.gov (United States)

    2014-12-01

    attached and cells migrated out from the spheres. Some had typical OPC morphology (figure 2A), bipolar and tripolar . More importantly, they...cells showed NG2 and Olig2 expression (Figure 5B) after being cultured. After being treated with T3, some cells changed their bipolar and tripolar

  7. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  8. Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.

    Science.gov (United States)

    Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2016-08-01

    Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J.

    2006-01-01

    Blends of nanocryst. zinc oxide nanoparticles (nc-ZnO) and regioregular poly(3-hexylthiophene) (P3HT) processed from soln. have been used to construct hybrid polymer-metal oxide bulk-heterojunction solar cells. Thermal annealing of the spin-cast films significantly improves the solar-energy

  10. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  11. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...

  12. Modeling and Nonlinear Control of Fuel Cell / Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    DEFF Research Database (Denmark)

    El Fadil, Hassan; Giri, Fouad; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of controlling hybrid energy storage system (HESS) for electric vehicle. The storage system consists of a fuel cell (FC), serving as the main power source, and a supercapacitor (SC), serving as an auxiliary power source. It also contains a power block for energy...

  13. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; P. van den Bosch; T. Hofman; Edwin Tazelaar; Y. Shen

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  14. Analytical solution and experimental validation of the energy management problem for fuel cell hybrid vehicles

    NARCIS (Netherlands)

    P.P.J. van den Bosch; Edwin Tazelaar; M. Grimminck; Stijn Hoppenbrouwers; Bram Veenhuizen

    2011-01-01

    The objective of an energy management strategy for fuel cell hybrid propulsion systems is to minimize the fuel needed to provide the required power demand. This minimization is defined as an optimization problem. Methods such as dynamic programming numerically solve this optimization problem.

  15. Analytical solution of the energy management for fuel cell hybrid propulsion systems

    NARCIS (Netherlands)

    P.P.J. van den Bosch; E. Tazelaar; Bram Veenhuizen

    2012-01-01

    The objective of an energy management strategy for fuel cell hybrid propulsion systems is to minimize the fuel needed to provide the required power demand. This minimization is defined as an optimization problem. Methods such as dynamic programming numerically solve this optimization problem.

  16. Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System

    DEFF Research Database (Denmark)

    Abreu-Sepulveda, Maria A.; Harun, Nor Farida; Hackett, Gregory

    2015-01-01

    The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing...

  17. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower

  18. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Portale, Giuseppe; Fang, Hong-Hua; Blake, Graeme R.; ten Brink, Gert H.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2018-01-01

    The low power conversion efficiency (PCE) of tin-based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn-based HPSCs. Herein, this study

  19. Hybrid energy fuel cell based system for household applications in a Mediterranean climate

    International Nuclear Information System (INIS)

    Nižetić, S.; Tolj, I.; Papadopoulos, A.M.

    2015-01-01

    Highlights: • A hybrid energy system was proposed, combining a HT-PEM fuel cell system and a standard split heat pump system with heat recovery for household applications. • The hybrid energy system is able to produce both high and low temperature heat, electricity and cooling capacity. • The system showed high overall energy efficiency and a favorable environmental aspect. • The calculated cost of overall produced energy proved to be competitive in comparison with the average cost of electricity for households. - Abstract: In this paper, a specific hybrid energy system was proposed for household applications. The hybrid energy system was assembled from a HT-PEM fuel cell stack supplied by hydrogen via a steam reformer, where finally the majority of produced electricity is used to drive a modified split heat pump system with heat recovery (that is enabled via standard modified accumulation boilers). The system is able to produce both high and low temperature heat output (in the form of hot water), cooling thermal output and electricity. Performance analysis was conducted and the specific hybrid energy system showed high value for overall energy efficiency, for the specific case examined it reached 250%. Levelized Cost of Energy (LCOE) analysis was also carried out and the proposed hybrid energy system’s cost is expected to be between 0.09 €/kW h and 0.16 €/kW h, which is certainly competitive with the current retail electricity price for households on the EU market. Additionally, the system also has environmental benefits in relation to reduced CO 2 emissions, as estimated CO 2 emissions from the proposed hybrid energy system are expected to be at around 9.0 gCO 2 /kW h or 2.6 times less than the emissions released from the utilization of grid electricity.

  20. Surface passivation of InP solar cells with InAlAs layers

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.

    1993-01-01

    The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.

  1. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  2. Constructional types of hybrid tower cells. First plume observations on experimental cells in the Gemeinschaftskernkraftwerk Neckar (GKN)

    International Nuclear Information System (INIS)

    Maeule, R.

    1977-01-01

    First experience with two experimental hybrid-cell cooling towers at the Gemeinschaftkernkraftwerk Neckar (GKN) concerning techniques and plume influence. In dependence of plume-determining parameters coinciding, noticeable plume reductions as well as situations without visible improvements are observed. These results, which are not quite clear, demonstrate that systematical analytical investigations are needed. (orig.) [de

  3. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    Science.gov (United States)

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).

  4. Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell

    Science.gov (United States)

    Jossen, Andreas; Garche, Juergen; Doering, Harry; Goetz, Markus; Knaupp, Werner; Joerissen, Ludwig

    Hybrid systems, based on a lead-acid battery and a proton-exchange membrane fuel cell (PEMFC) give the possibility to combine the advantages of both technologies. The benefits for different applications are discussed and the practical realisation of such systems is shown. Furthermore a numerical model for such a hybrid system is described and results are shown and discussed. The results show that the combination of lead-acid batteries and PEMFC shows advantages in case of applications with high peak power requirements (i.e. electric scooter) and applications where the fuel cell is used as auxiliary power supply to recharge the battery. The high efficiency of fuel cells at partial load operation results in a good fuel economy for recharging of lead-acid batteries with a fuel cell system.

  5. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al 2 O 3 Buffer Layer

    KAUST Repository

    Guarnera, Simone; Abate, Antonio; Zhang, Wei; Foster, Jamie M.; Richardson, Giles; Petrozza, Annamaria; Snaith, Henry J.

    2015-01-01

    © 2015 American Chemical Society. Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode's metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation. (Graph Presented).

  6. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al 2 O 3 Buffer Layer

    KAUST Repository

    Guarnera, Simone

    2015-02-05

    © 2015 American Chemical Society. Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode\\'s metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation. (Graph Presented).

  7. Fuel cells for portable, mobile and hybrid applications

    International Nuclear Information System (INIS)

    Roberge, R.; Kaufman, A.

    2002-01-01

    The introduction of fuel cell systems for a variety of low-power applications (below 1000 watts) means they can be used for applications such as portable power sources and mobile power sources. The energy and power are separate elements in a fuel cell system. The power is provided by the fuel cell stack (output characteristics are dependent on the cell active area, number of cells, and operating conditions), and the energy is defined by the fuel (hydrogen) storage. The authors indicated that proton exchange membrane fuel cells are the most appropriate for small fuel cell systems, since they have a temperature range ambient to 90 Celsius, ambient air (non-humidified), and load following response. In addition, they possess a solid electrolyte, high power density and specific power, and low-pressure operation. Simplicity of operation is the key to the design of a fuel cell system. The parameters to be considered include hydrogen supply, air supply, water management, and thermal management. Some of the options available for fuels are: compressed hydrogen, metal hydrides, chemical hydrides, and carbon-based hydrogen storage. Some of the factors that will help in determining market penetration are: rapid cost reduction with volume, fuel infrastructure, proven reliability, and identification of applications where fuel cells provide superior performance. 2 figs

  8. Direct synthesis of iso-butane from synthesis gas or CO2 over CuZnZrAl/Pd-β hybrid catalyst

    Directory of Open Access Journals (Sweden)

    Congming Li

    2017-12-01

    Full Text Available The effect of various factors on the catalytic performance of iso-butane formation over CuZnZrAl/Pd-β hybrid catalyst via synthesis gas or CO2 hydrogenation has been deeply investigated in this work. It was interesting to note that the iso-butane/n-butane ratio value was much higher than that of thermodynamic equilibrium (about 1/1, whose value was directly related to the reaction condition using this hybrid catalyst. In order to further clearly clarify this finding, various experimental reaction factors were selected to investigate the formation of iso-butane. The results revealed that increasing temperature, H2/COx, CO2/COx, and/or Pd loading possessed an inhibiting effect on the iso-butane yield. High selectivity of iso-butane could be achieved by increasing the reaction pressure, W/F and the weight ratio of CuZnZrAl methanol catalyst to Pd-β catalyst. It is also noted that the addition of water seriously suppressed the reaction activity, resulting in the low ratio of iso-butane/n-butane. A possible reaction route was elucidated based on the latest results. This might shed light on the development of a high efficient catalyst for iso-butane production from synthesis gas or CO2 hydrogenation. Keywords: Iso-butane, Synthesis gas, CO2, CuZnZrAl/Pd-β hybrid catalyst

  9. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin [Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Shin, So-Ra; Park, Jong-Wan, E-mail: jwpark@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-15

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H{sub 2} plasma, while Al was deposited using trimethylaluminum as the precursor and H{sub 2} plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO{sub 2} dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.

  10. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    International Nuclear Information System (INIS)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin; Shin, So-Ra; Park, Jong-Wan

    2014-01-01

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H 2 plasma, while Al was deposited using trimethylaluminum as the precursor and H 2 plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO 2 dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects

  11. Design of a Fuel Cell Hybrid Electric Vehicle Drive System

    DEFF Research Database (Denmark)

    Schaltz, Erik

    Fuel cells achieve more and more attention due to their potential of replacing the traditional internal combustion engine (ICE) used in the area of transportation. In this PhD thesis a fuel cell shaft power pack (FCSPP) is designed and implemented in a small truck. The FCSPP replaces the original...

  12. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    Science.gov (United States)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  13. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2008-10-15

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus. (author)

  14. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  15. Tailoring the magnetic properties and thermal stability of FeSiAl-Al{sub 2}O{sub 3} thin films fabricated by hybrid oblique gradient-composition sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaoxi, E-mail: xiaoxi.zhong@gmail.com [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China); Phuoc, Nguyen N. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, 117411 Singapore (Singapore); Soh, Wee Tee [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive3, 117542 Singapore (Singapore); Ong, C.K. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, 117411 Singapore (Singapore); Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive3, 117542 Singapore (Singapore); Peng, Long; Li, Lezhong [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2017-05-01

    In this study, we systematically investigate the dynamic magnetic properties of FeSiAl-Al{sub 2}O{sub 3} thin films fabricated by hybrid oblique gradient-composition sputtering technique with respect to temperature ranging from 300 K to 420 K. The magnetic anisotropy field H{sub K} and ferromagnetic resonance frequency f{sub FMR} can be tuned from 14.06 to 110.18 Oe and 1.05–3.05 GHz respectively, by changing the oblique angle, which can be interpreted in terms of the contribution of stress-induced anisotropy and shape anisotropy. In addition, the thermal stability of FeSiAl-Al{sub 2}O{sub 3} films in terms of magnetic anisotropy H{sub K} and ferromagnetic resonance frequency f{sub FMR} are enhanced with the increase of oblique angle up to 35° while the thermal stability of effective Gilbert damping factor α{sub eff} and the maximum imaginary permeability μ’’{sub max} are improved with the increase of oblique angle up to 45°. - Highlights: • We prepared FeSiAl-based thin films using hybrid oblique gradient-composition deposition technique. • The microwave properties of FeSiAl-based thin films were systematically studied. • The thermal stability of microwave properties of FeSiAl-based films was studied. • The permeabilities were got using shorted micro-strip transmission-line perturbation. • The thermal stability of properties we studied is relatively good.

  16. Evaluation of fuel cell hybrid electric light commercial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.M.

    2002-07-01

    This report summarised the results of tests both in the laboratory and in operation on the roads in London carried out to determine the performance of the Zetek Fuel Cell Vehicle operated by Westminster County Council. Details are given of the vehicle's data logging system, and measurement of its acceleration and power, driveability, vehicle range, and the energy efficiency of the fuel cell, and its environmental performance. The frequent shutdowns of the fuel cell system and the problems with the DC/DC converter are discussed.

  17. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  18. Targeting of porous hybrid silica nanoparticles to cancer cells

    NARCIS (Netherlands)

    Rosenholm, J.M.; Meinander, A.; Peuhu, E.; Niemi, R.; Eriksson, J.E.; Sahlgren, C.; Lindén, M.

    2009-01-01

    Mesoporous silica nanoparticles functionalized by surface hyperbranching polymerization of polyethylene imine), PEI, were further modified by introducing both fluorescent and targeting moieties, with the aim of specifically targeting cancer cells. Owing to the high abundance of folate receptors in

  19. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  20. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles.

    Science.gov (United States)

    Bonafede, Roberta; Mariotti, Raffaella

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

  1. A hybrid approach to solving the problem of design of nuclear fuel cells

    International Nuclear Information System (INIS)

    Montes T, J. L.; Perusquia del C, R.; Ortiz S, J. J.; Castillo, A.

    2015-09-01

    An approach to solving the problem of fuel cell design for BWR power reactor is presented. For this purpose the hybridization of a method based in heuristic knowledge rules called S15 and the advantages of a meta-heuristic method is proposed. The synergy of potentialities of both techniques allows finding solutions of more quality. The quality of each solution is obtained through a multi-objective function formed from the main cell parameters that are provided or obtained during the simulation with the CASMO-4 code. To evaluate this alternative of solution nuclear fuel cells of reference of nuclear power plant of Laguna Verde were used. The results show that in a systematic way the results improve when both methods are coupled. As a result of the hybridization process of the mentioned techniques an improvement is achieved in a range of 2% with regard to the achieved results in an independent way by the S15 method. (Author)

  2. Fluorescent whole-mount RNA in situ hybridization (F-WISH) in plant germ cells and the fertilized ovule.

    Science.gov (United States)

    Bleckmann, Andrea; Dresselhaus, Thomas

    2016-04-01

    First evidence on gene function and regulation is provided by the cellular expression pattern in complex tissues. However, to understand the activity of a specific gene, it is essential to analyze the regulatory network, which controls the spatio-temporal translation pattern during the entire life span of the transcribed mRNA. To explore mechanisms which control mRNA abundance and localization in space and time, it is necessary to visualize mRNAs quantitatively with a subcellular resolution, without sectioning the tissues. We have adapted and optimized a protocol for colorimetric whole-mount RNA in situ hybridization (WISH) using egg cell-specific digoxigenin (DIG) labeled probes (Hejátko et al., 2006) [1] on ovules and early seeds of Arabidopsis. Furthermore, we established a fluorescent whole-mount RNA in situ hybridization (F-WISH) protocol, which allows mRNA visualization on a subcellular level. The polar localized mRNA of SBT4.13, encoding a subtilase, was identified using this protocol. Both methods are described and discussed in detail. Additionally a (F)-WISH flow-chart is provided along with a troubleshooting table. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.

    Science.gov (United States)

    Lek, Jun Yan; Xing, Guichuan; Sum, Tze Chien; Lam, Yeng Ming

    2014-01-22

    Hybrid solar cells have the potential to be efficient solar-energy-harvesting devices that can combine the benefits of solution-processable organic materials and the extended absorption offered by inorganic materials. In this work, an understanding of the factors limiting the performance of hybrid solar cells is explored. Through photovoltaic-device characterization correlated with transient absorption spectroscopy measurements, it was found that the interfacial charge transfer between the organic (P3HT) and inorganic (CdSe nanorods) components is not the factor limiting the performance of these solar cells. The insulating original ligands retard the charge recombination between the charge-transfer states across the CdSe-P3HT interface, and this is actually beneficial for charge collection. These cells are, in fact, limited by the subsequent electron collection via CdSe nanoparticles to the electrodes. Hence, the design of a more continuous electron-transport pathway should greatly improve the performance of hybrid solar cells in the future.

  4. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites was investigated by Kalaprasad et al [25].Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane...

  5. What is the role of giant cells in AL-amyloidosis?

    DEFF Research Database (Denmark)

    Olsen, K E; Sletten, K; Sandgren, O

    1999-01-01

    of some cases of systemic AL-amyloidosis. Based on these findings and electron microscopic studies, it is discussed whether the giant cells actively participate in amyloid fibril formation by uptake and modification of the precursor protein or the giant cells are part of a foreign body reaction. Included....... In this work it is shown that that there is a difference between localized and systemic amyloidosis in respect to accompanying giant cells which constantly are found associated with amyloid deposits in localized AL-amyloidosis. In addition, giant cells were found together with amyloid deposits in lymph nodes...

  6. Energy Management Strategy for a Fuel Cell/ Ultracapasitor/ Battery Hybrid System for Portable Applications

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    A proton exchange membrane (PEM) fuel cells (FCs) with ultracapacitor (UC) and battery (BT) hybrid system has fast transient response compare to stand alone FCs. This hybrid system is promising candidates for environmentally friendly alternative energy sources. An energy management system design and control strategy was introduced in this study. The energy management strategy FC/ UC/ BT hybrid system model has been developed and the control strategy was programmed in the LabVIEWTM environment and implemented using National Instrument (NI) devices. The energy management strategy is able to manage the energy flow between the main power source (FCs) and auxiliary sources (UC and BT). To control the hybrid system and achieved proper performance, a controller circuit was developed with the three energy sources aligned in parallel to deliver the requested power. The developed model demonstrates the proportion power from the FC, UC and BT under various load demand. Experimental results demonstrate that FC/ UC/ BT hybrid system operated automatically with the varying load condition. The experimental results are presented; showing that the proposed strategy utilized the characteristic of both energy storage devices thus satisfies the load requirement. (author)

  7. The Role of NG2 Glial Cells in ALS Pathogenesis

    Science.gov (United States)

    2013-10-01

    line of OPC differentiation from iPS cells. SHH, sonic hedgehog ; RA, retinoitic acid; bFGF, basic FGF; PDGF, platelet-derived growth factor; IGF...University School of Medicine, Baltimore, Maryland, USA. 3Department of Anatomy , Kitasato University School of Medicine, Sagamihara, Japan. 4Brain Science...6Present address: Shriners Hospital Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine

  8. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    Science.gov (United States)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch

  9. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    Science.gov (United States)

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  10. Enhancement of photoresponse property of perovskite solar cell by aluminium chloride (AlCl3)

    Science.gov (United States)

    Ghosh, S. S.; Sil, A.

    2018-05-01

    The fabrication of a three layer solar cell device is a new area of research. The formation of perovskite phase is evident from x-ray diffraction and its particle size is observed by microstructural analysis. A thin layer of gold coating over the device increases the surface conductivity. Direct contact between a SnCl2 or AlCl3 based perovskite with the gold coating increases the durability of the film but decreases the hole transport properties due to absence of an organic hole transport material. The absorbance spectroscopy analysis gives characteristic peaks showing the evidence of ITO, TiO2 (rutile) and Sn2+ complexes present in the Sn-perovskite film or Al3+ complexes present within the Al-perovskite cell. The desired absorbance near 550 nm due to Al3+ complexes causes a much higher flow of current on illumination and thus is also evidenced by the presence of comparatively high intensity PL spectra in the Al-perovskite system which occurred due to free exciton formation near band edge excitation. The fill factor of the devices is estimated as ∼0.83 and ∼0.65 for Sn-perovskite and Al-perovskite devices respectively. The PCE values of Sn-perovskite and Al-perovskite devices are calculated 0.39% and 0.96% respectively, which establish Al-perovskite film as a useful component for future solar cell device manufacturing.

  11. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...

  12. Hybrid Modulation Scheme for Cascaded H-Bridge Inverter Cells ...

    African Journals Online (AJOL)

    This work proposes a switching technique for cascaded H-Bridge (CHB) cells. Single carrier Sinusoidal PWM (SCSPWM) scheme is employed in the generation of the gating signals. A sequential switching and base PWM circulation schemes are presented for this fundamental cascaded multilevel inverter topology.

  13. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    International Nuclear Information System (INIS)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-01-01

    Highlights: • Diamond-like carbon films with Al and Cr doping were deposited. • Alternate multilayered structure consisted of Al-poor layer and Al-rich layer was formed. • The periodic Al-rich layers can greatly improve the residual stress and elastic resilience of the films. - Abstract: DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C 2 H 2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C 2 H 2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C 2 H 2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C 2 H 2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus

  14. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei, E-mail: popdw@126.com [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Liu, Jingmao; Geng, Dongsen [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Guo, Peng [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zheng, Jun [Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Qimin, E-mail: qmwang@gdut.edu.cn [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-12-01

    Highlights: • Diamond-like carbon films with Al and Cr doping were deposited. • Alternate multilayered structure consisted of Al-poor layer and Al-rich layer was formed. • The periodic Al-rich layers can greatly improve the residual stress and elastic resilience of the films. - Abstract: DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C{sub 2}H{sub 2} and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C{sub 2}H{sub 2} fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C{sub 2}H{sub 2} fraction. The results show that the Al and Cr contents in the films increased continuously as the C{sub 2}H{sub 2} fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would

  15. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  16. Hybrid Graphene-Polyoxometalates Nanofluids as Liquid Electrodes for Dual Energy Storage in Novel Flow Cells.

    Science.gov (United States)

    Dubal, Deepak P; Rueda-Garcia, Daniel; Marchante, Carlos; Benages, Raul; Gomez-Romero, Pedro

    2018-02-22

    Solid Hybrid materials abound. But flowing versions of them are new actors in the materials science landscape and in particular for energy applications. This paper presents a new way to deliver nanostructured hybrid materials for energy storage, namely, in the form of nanofluids. We present here the first example of a hybrid electroactive nanofluid (HENFs) combining capacitive and faradaic energy storage mechanisms in a single fluid material. This liquid electrode is composed of reduced graphene oxide and polyoxometalates (rGO-POMs) forming a stable nanocomposite for electrochemical energy storage in novel Nanofluid Flow Cells. Two graphene based hybrid materials (rGO-phosphomolybdate, rGO-PMo 12 and rGO-phosphotungstate, rGO-PW 12 ) were synthesized and dispersed with the aid of a surfactant in 1 M H 2 SO 4 aqueous electrolyte to yield highly stable hybrid electroactive nanofluids (HENFs) of low viscosity which were tested in a home-made flow cell under static and continuous flowing conditions. Remarkably, even low concentration rGO-POMs HENFs (0.025 wt%) exhibited high specific capacitances of 273 F/g(rGO-PW 12 ) and 305 F/g(rGO-PMo 12 ) with high specific energy and specific power. Moreover, rGO-POM HENFs show excellent cycling stability (∼95 %) as well as Coulombic efficiency (∼77-79 %) after 2000 cycles. Thus, rGO-POM HENFs effectively behave as real liquid electrodes with excellent properties, demonstrating the possible future application of HENFs for dual energy storage in a new generation of Nanofluid Flow Cells. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Advani, Suresh G.

    2013-01-01

    The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control...... strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical...

  18. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector......The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  19. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source...... of energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  20. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load

    CSIR Research Space (South Africa)

    Sichilalu, S

    2016-10-01

    Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...

  1. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso

    2014-01-01

    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  2. Hybrid Solar Cell with TiO2 Film: BBOT Polymer and Copper Phthalocyanine as Sensitizer

    Directory of Open Access Journals (Sweden)

    Saptadip Saha

    2016-01-01

    Full Text Available An organic-inorganic hybrid solar cell was fabricated using Titanium dioxide (TiO2: 2,5-bis(5-tert-butyl-2-benzoxazolyl thiophene (BBOT film and Copper Phthalocyanine (CuPc as a sensitizer. BBOT was used in photodetector in other reported research works, but as per best of our knowledge, it was not implemented in solar cells till date. The blend of TiO2: BBOT blend was used to fabricate the film on ITO-coated glass and further a thin layer of CuPc was coated on the film. This was acted as photoanode and another ITO coated glass with a platinum coating was used as a counter electrode (cathode. An optimal blend of acetonitrile (solvent (50-100%, 1,3-dimethylimidazolium iodide (10-25%, iodine (2.5-10% and lithium iodide, pyridine derivative and thiocyanate was used as electrolytes in the hybrid solar cell. The different structural, optical and electrical characteristics were measured. The Hybrid solar cell showed a maximum conversion efficiency of 6.51%.

  3. Experimental Evaluation of Supercapacitor-Fuel Cell Hybrid Power Source for HY-IEL Scooter

    Directory of Open Access Journals (Sweden)

    Piotr Bujlo

    2013-01-01

    Full Text Available This paper presents the results of development of a hybrid fuel cell supercapacitor power system for vehicular applications that was developed and investigated at the Energy Sources Research Section of the Wroclaw Division of Electrotechnical Institute (IEL/OW. The hybrid power source consists of a polymer exchange membrane fuel cell (PEMFC stack and an energy-type supercapacitor that supports the system in time of peak power demands. The developed system was installed in the HY-IEL electric scooter. The vehicle was equipped with auxiliary components (e.g., air compressor, hydrogen tank, and electromagnetic valves needed for proper operation of the fuel cell stack, as well as electronic control circuits and a data storage unit that enabled on-line recording of system and vehicle operation parameters. Attention is focused on the system energy flow monitoring. The experimental part includes field test results of a vehicle powered with the fuel cell-supercapacitor system. Values of currents and voltages recorded for the system, as well as the vehicle’s velocity and hydrogen consumption rate, are presented versus time of the experiment. Operation of the hybrid power system is discussed and analysed based on the results of measurements obtained.

  4. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  5. Towards sustainable urban transportation: Test, demonstration and development of fuel cell and hybrid-electric buses

    International Nuclear Information System (INIS)

    Folkesson, Anders

    2008-05-01

    Several aspects make today's transport system non-sustainable: - Production, transport and combustion of fossil fuels lead to global and local environmental problems. - Oil dependency in the transport sector may lead to economical and political instability. - Air pollution, noise, congestion and land-use may jeopardise public health and quality of life, especially in urban areas. In a sustainable urban transport system most trips are made with public transport because high convenience and comfort makes travelling with public transport attractive. In terms of emissions, including noise, the vehicles are environmentally sustainable, locally as well as globally. Vehicles are energy-efficient and the primary energy stems from renewable sources. Costs are reasonable for all involved, from passengers, bus operators and transport authorities to vehicle manufacturers. The system is thus commercially viable on its own merits. This thesis presents the results from three projects involving different concept buses, all with different powertrains. The first two projects included technical evaluations, including tests, of two different fuel cell buses. The third project focussed on development of a series hybrid-bus with internal combustion engine intended for production around 2010. The research on the fuel cell buses included evaluations of the energy efficiency improvement potential using energy mapping and vehicle simulations. Attitudes to hydrogen fuel cell buses among passengers, bus drivers and bus operators were investigated. Safety aspects of hydrogen as a vehicle fuel were analysed and the use of hydrogen compared to electrical energy storage were also investigated. One main conclusion is that a city bus should be considered as one energy system, because auxiliaries contribute largely to the energy use. Focussing only on the powertrain is not sufficient. The importance of mitigating losses far down an energy conversion chain is emphasised. The Scania hybrid fuel cell

  6. Composite Layers “MgAl Intermetalic Layer / PVD Coating” Obtained On The AZ91D Magnesium Alloy By Different Hybrid Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Smolik J.

    2015-06-01

    Full Text Available Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS, arc evaporation (AE and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.

  7. Effects of metallic Ti particles on the aging behavior and the influenced mechanical properties of squeeze-cast (SiCp+Ti)/7075Al hybrid composites

    International Nuclear Information System (INIS)

    Liu, Yixiong; Chen, Weiping; Yang, Chao; Zhu, Dezhi; Li, Yuanyuan

    2015-01-01

    The effects of metallic Ti particles on the aging behavior of squeeze-cast (SiC p +Ti)/7075Al hybrid composites and the mechanical properties of the aging treated composites were investigated. Results shown that the precipitation hardening of the hybrid composites during aging processes was delayed due to the segregation of solute Mg atoms in the vicinity of the Ti particles even though the activation energy of the η′ precipitates in the hybrid composites was reduced when compared with the Ti particle-free composites. The segregation of the solute Mg atoms was facilitated as a result of the high diffusivity paths formed by the generated dislocations in the matrix induced by the thermal misfit between the SiC particle and the matrix. The smaller activation energy for the hybrid composite may attribute to a significant reduction in the nucleation rate of the dislocation nucleated η′ precipitates compared with the Ti particle-free composite. After aging treated under the optimum aging conditions, the tensile strength of both composites was improved because of the precipitation hardening of the matrix alloy. In contrast with the reduced ductility of the traditional Ti particle-free composites after aging treatment, the ductility of the Ti particle-containing composites was improved as a result of the strengthened interfaces between the Ti particles and the matrix alloy

  8. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.

    Science.gov (United States)

    Chen, Hongbo; Kankel, Mark W; Su, Susan C; Han, Steve W S; Ofengeim, Dimitry

    2018-03-01

    Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia

  9. Construction of g-C_3N_4/Al_2O_3 hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Xiao-jing; Liu, Chao; Li, Xu-li; Li, Fa-tang; Li, Yu-pei; Zhao, Jun; Liu, Rui-hong

    2017-01-01

    Highlights: • Ultrathin g-C_3N_4/Al_2O_3 hybrids are prepared via in-situ reaction. • The structure modification role of in-situ formed HNO_3 for g-C_3N_4 is found. • The ultrathin g-C_3N_4 nanosheets are formed by the acidified melamine and Al(OH)_3. • In-situ calcination of melamine and Al(OH)_3 benefits the contact of C_3N_4 and Al_2O_3. • The activity of g-C_3N_4/Al_2O_3 is 16.6 times that of pristine g-C_3N_4 in degrading RhB. - Abstract: Homogeneous ultrathin g-C_3N_4 nanosheets/Al_2O_3 heterojunctions are synthesized using melamine and Al(NO_3)_3 via in-situ reaction and the following thermal polymerization approach. The in-situ reaction between melamine and Al(NO_3)_3 results in the existence of HNO_3-acidified melamine and Al(OH)_3 aggregates via the hydrolysis of Al(NO_3)_3. After thermal polymerization, the aggregates are converted to g-C_3N_4/Al_2O_3 composites. The thermal polymerization of acidified melamine and the support effect of aluminum hydroxide for g-C_3N_4 during the calcination process lead to highly dispersed amrophous Al_2O_3 on ultrathin g-C_3N_4 nanosheets, which is beneficial for the separation of photogenerated electron-hole pairs in the heterojunction. The degradation rate for Rhodamine B (RhB) over the most activie sample is 16.6 times than that of pristine g-C_3N_4 under visible light irradiation, which can be attributed to the high specific surface area, highly dispersion of amorphous Al_2O_3 on ultrathin g-C_3N_4 nanosheet, and the effective electrons transfer from g-C_3N_4 to the amorphous Al_2O_3.

  10. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    Science.gov (United States)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  11. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, PO Box 1527, 711 10 Heraklion, Crete (Greece); Tosca, Androniki, E-mail: ranthi@iesl.forth.gr [Department of Medicine, University of Crete, 710 03 Heraklion, Crete (Greece)

    2011-08-15

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  12. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    International Nuclear Information System (INIS)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi; Tosca, Androniki

    2011-01-01

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  13. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  14. Hybrid Lentivirus-transposon Vectors With a Random Integration Profile in Human Cells

    DEFF Research Database (Denmark)

    Staunstrup, Nicklas H; Moldt, Brian; Mátés, Lajos

    2009-01-01

    Gene delivery by human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) is efficient, but genomic integration of the viral DNA is strongly biased toward transcriptionally active loci resulting in an increased risk of insertional mutagenesis in gene therapy protocols. Nonviral...... Sleeping Beauty (SB) transposon vectors have a significantly safer insertion profile, but efficient delivery into relevant cell/tissue types is a limitation. In an attempt to combine the favorable features of the two vector systems we established a novel hybrid vector technology based on SB transposase......-mediated insertion of lentiviral DNA circles generated during transduction of target cells with integrase (IN)-defective LVs (IDLVs). By construction of a lentivirus-transposon hybrid vector allowing transposition exclusively from circular viral DNA substrates, we demonstrate that SB transposase added in trans...

  15. Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure.

    Science.gov (United States)

    Su, Pengyu; Fu, Wuyou; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin

    2017-10-01

    In this paper, we fabricated a TiO 2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO 2 nanosheets. The enhanced properties can be explained by the better contact of TiO 2 nanosheets/nanoparticles with CH 3 NH 3 PbI 3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells.

  16. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-10-09

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO 2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al 2 O 3 underlayer for perovskite solar cells. The thickness of the Al 2 O 3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al 2 O 3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al 2 O 3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al 2 O 3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al 2 O 3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al 2 O 3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metal-insulator transition at the LaAlO3/SrTiO3 interface revisited: A hybrid functional study

    KAUST Repository

    Cossu, Fabrizio

    2013-07-17

    We investigate the electronic properties of the LaAlO3/SrTiO3 interface using density functional theory. In contrast to previous studies, which relied on (semi-)local functionals and the GGA+U method, we here use a recently developed hybrid functional to determine the electronic structure. This approach offers the distinct advantage of accessing both the metallic and insulating multilayers on a parameter-free equal footing. As compared to calculations based on semilocal GGA functionals, our hybrid functional calculations lead to a considerably increased band gap for the insulating systems. The details of the electronic structure show substantial deviations from those obtained by GGA calculations. This casts severe doubts on all previous results based on semilocal functionals. In particular, corrections using rigid band shifts (“scissors operator”) cannot lead to valid results.

  19. A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    A new hybrid system consisting of a PEMFC (proton exchange membrane fuel cell) subsystem and a TREC (thermally regenerative electrochemical cycle) subsystem is proposed to convert the waste heat produced by the PEMFC system into electricity. The performance of the hybrid system and its corresponding subsystems is analyzed. Results reveal that there exists optimal current densities of the PEMFC and TREC systems leading to the maximum power output of the hybrid system. With the maximum power output as the objective function, an optimization of the hybrid system based on genetic algorithm method is conducted under different operating temperatures of the PEMFC subsystem. The power output of the hybrid system is 6.85%–20.59% larger than that of the PEMFC subsystem. And the total electrical efficiency is improved by 2.74%–8.27%. The corresponding electrical efficiency of the TREC is 4.56%–13.81%. The hybrid system proposed in this paper could contribute to utilizing the fuel energy more efficiently and sufficiently. - Highlights: • A hybrid power system consisting of a PEMFC and a TREC subsystems is proposed. • Parameters' impacts on performance of the hybrid system have been analyzed. • The maximum power output of the hybrid system is investigated based on genetic algorithm. • Total power output of the hybrid system is 7.63%–18.84% larger than that of the PEMFC subsystem.

  20. Characterization of a panel of somatic cell hybrids for regional mapping of the mouse X chromosome

    International Nuclear Information System (INIS)

    Avner, P.; Arnaud, D.; Amar, L.; Cambrou, J.; Winking, H.; Russell, L.B.

    1987-01-01

    A panel of five hybrid cell lines containing mouse X chromosomes with various deletions has been obtained by fusing splenocytes from male mice carrying one of a series of reciprocal X-autosome translocations with the azaguanine-resistant Chinese hamster cell line CH3g. These hybrids have been extensively characterized by using the allozymes hypoxanthine/guanine phosphoribosyltransferase (encoded by the Hprt locus) and α-galactosidase (Ags) and a series of 11 X-chromosome-specific DNA probes whose localization had been previously established by linkage studies. Such studies have established the genetic breakpoints of the T(X;12)13R1 and T(X;2)14R1 X-autosome translocations on the X chromosome and provided additional information as to the X-chromosome genetic breakpoints of the T(X;16)16H, T(X;4)7R1, and T(X;7)6R1 translocations. The data establish clearly that both the T(X;7)5RI and T(X;12)13R1 X-chromosome breakpoints are proximal to Hprt, the breakpoint of the former being more centromeric, lying as it does in the 9-centimorgan interval between the ornithine transcarbamoylase (Otc) and DXPas7 (M2C) loci. These five hybrid cell lines provide, with the previously characterized EBS4 hybrid cell line, a nested series of seven mapping intervals distributed along the length of the mouse X chromosome. Their characterization not only allows further correlation of the genetic and cytological X-chromosome maps but also should permit the rapid identification of DNA probes specific for particular regions of the mouse X chromosome

  1. Advanced control approach for hybrid systems based on solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ferrari, Mario L.

    2015-01-01

    Highlights: • Advanced new control system for SOFC based hybrid plants. • Proportional–Integral approach with feed-forward technology. • Good control of fuel cell temperature. • All critical properties maintained inside safe conditions. - Abstract: This paper shows a new advanced control approach for operations in hybrid systems equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and standard proportional–integral techniques, controls the system during load changes avoiding failures and stress conditions detrimental to component life. This approach was selected to combine simplicity and good control performance. Moreover, the new approach presented in this paper eliminates the need for mass flow rate meters and other expensive probes, as usually required for a commercial plant. Compared to previous works, better performance is achieved in controlling fuel cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap between cathode and anode sides (at least a 30% decrease during transient operations), and generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. This new control system was developed and optimized using a hybrid system transient model implemented, validated and tested within previous works. The plant, comprising the coupling of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to connect the compressor outlet with the turbine inlet duct for rotational speed control. Following model development and tuning activities, several operative conditions were considered to show the new control system increased performance compared to previous tools (the same hybrid system model was used with the new control approach). Special attention was devoted to electrical load steps and ramps considering significant changes in ambient conditions

  2. Energy storage options for fuel cell hybrid power-trains in road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D; Mortimer, R; Moore, J

    2000-07-01

    The objective of this work was to identify and assess energy storage technologies that may be applicable for use in fuel cell hybrid electric vehicles (HEVs) in the time frame to 2010. The current and projected status of each technology was evaluated, based on recognised existing goals (such as USDoE and USABC) and performance requirements, so that potential commercial opportunities could be identified. (Author)

  3. Hybrid optical pumping of K and Rb atoms in a paraffin coated vapor cell

    Science.gov (United States)

    Li, Wenhao; Peng, Xiang; Budker, Dmitry; Wickenbrock, Arne; Pang, Bo; Zhang, Rui; Guo, Hong

    2017-10-01

    Dynamic hybrid optical pumping effects with a radio-frequency-field-driven nonlinear magneto-optical rotation (RF NMOR) scheme are studied in a dual-species paraffin coated vapor cell. By pumping K atoms and probing $^{87}$Rb atoms, we achieve an intrinsic magnetic resonance linewidth of 3 Hz and the observed resonance is immune to power broadening and light-shift effects. Such operation scheme shows favorable prospects for atomic magnetometry applications.

  4. PEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tinton Dwi Atmaja

    2012-02-01

    Full Text Available Page HeaderOpen Journal SystemsJournal HelpUser You are logged in as...aulia My Journals My Profile Log Out Log Out as UserNotifications View (27 new ManageJournal Content SearchBrowse By Issue By Author By Title Other JournalsFont SizeMake font size smaller Make font size default Make font size largerInformation For Readers For Authors For LibrariansKeywords CBPNN Displacement FLC LQG/LTR Mixed PMA Ventilation bottom shear stress direct multiple shooting effective fuzzy logic geoelectrical method hourly irregular wave missile trajectory panoramic image predator-prey systems seawater intrusion segmentation structure development pattern terminal bunt manoeuvre Home About User Home Search Current Archives ##Editorial Board##Home > Vol 23, No 1 (2012 > AtmajaPEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid VehicleTinton Dwi Atmaja, Amin AminAbstractone of the present-day implementation of fuel cell is acting as main power source in Fuel Cell Hybrid Vehicle (FCHV. This paper proposes some strategies to optimize the performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC implanted with auxiliary power source to construct a proper FCHV hybridization. The strategies consist of the most updated optimization method determined from three point of view i.e. Energy Storage System (ESS, hybridization topology and control system analysis. The goal of these strategies is to achieve an optimum hybridization with long lifetime, low cost, high efficiency, and hydrogen consumption rate improvement. The energy storage system strategy considers battery, supercapacitor, and high-speed flywheel as the most promising alternative auxiliary power source. The hybridization topology strategy analyzes the using of multiple storage devices injected with electronic components to bear a higher fuel economy and cost saving. The control system strategy employs nonlinear control system to optimize the ripple factor of the voltage and the current

  5. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  6. Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development

    International Nuclear Information System (INIS)

    Paladini, Vanessa; Donateo, Teresa; De Risi, Arturo; Laforgia, Domenico

    2007-01-01

    In the last decades, due to emissions reduction policies, research focused on alternative powertrains among which hybrid electric vehicles (HEVs) powered by fuel cells are becoming an attractive solution. One of the main issues of these vehicles is the energy management in order to improve the overall fuel economy. The present investigation aims at identifying the best hybrid vehicle configuration and control strategy to reduce fuel consumption. The study focuses on a car powered by a fuel cell and equipped with two secondary energy storage devices: batteries and super-capacitors. To model the powertrain behavior an on purpose simulation program called ECoS has been developed in Matlab/Simulink environment. The fuel cell model is based on the Amphlett theory. The battery and the super-capacitor models account for charge/discharge efficiency. The analyzed powertrain is also equipped with an energy regeneration system to recover braking energy. The numerical optimization of vehicle configuration and control strategy of the hybrid electric vehicle has been carried out with a multi objective genetic algorithm. The goal of the optimization is the reduction of hydrogen consumption while sustaining the battery state of charge. By applying the algorithm to different driving cycles, several optimized configurations have been identified and discussed

  7. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  8. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  9. Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model

    Science.gov (United States)

    Ho, Kuan-Ying; Li, Chi-Kang; Syu, Hong-Jhang; Lai, Yi; Lin, Ching-Fuh; Wu, Yuh-Renn

    2016-12-01

    In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison. We first developed a simulation software which is capable of modeling organic/inorganic hybrid solar cells by including Gaussian shape density of states into Poisson and drift-diffusion solver to present the tail states and trap states in the organic material. Therefore, the model can handle carrier transport, generation, and recombination in both organic and inorganic materials. Our results show that at the applied voltage near open-circuit voltage (Voc), the recombination rate becomes much higher at the PEDOT:PSS/Si interface region, which limits the fill factor and Voc. Hence, a modified structure with a p-type amorphous silicon (a-Si) layer attached on the interface of Si layer and an n+-type Si layer inserted near the bottom contact are proposed. The highest conversion efficiency of 16.10% can be achieved if both structures are applied.

  10. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    Science.gov (United States)

    Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.

    2016-02-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.

  11. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    International Nuclear Information System (INIS)

    Sandoval Amador, A; Carreño Garcia, H; Escobar Rivero, P; Peña Ballesteros, D Y; Estupiñán Duran, H A

    2016-01-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti 6 Al 4 V surfaces were evaluated. Ti 6 Al 4 V surfaces were textured using a CO 2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment. (paper)

  12. Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study

    International Nuclear Information System (INIS)

    Valeh-e-Sheyda, Peyvand; Rahimi, Masoud; Karimi, Ebrahim; Asadi, Masomeh

    2013-01-01

    Highlights: ► Showing cooling potential of gas–liquid two-phase flow in microchannels for PV cell. ► Introducing the concept of using slug flow in microchannels for cooling of PV cells. ► In single-phase flow, increasing the liquid flow rate enhances the PV power. ► Showing that in two-phase flow the output power related the fluid flow regime. ► By coupling PV and microchannel an increase up to 38% in output power was observed. - Abstract: This paper reports the experimental data from performance of two-phase flows in a small hybrid microchannel solar cell. Using air and water as two-phase fluid, the experiments were conducted at indoor condition in an array of rectangular microchannels with a hydraulic diameter of 0.667 mm. The gas superficial velocity ranges were between 0 and 3.27 m s −1 while liquid flow rate was 0.04 m s −1 . The performance analysis of the PV cell at slug and transitional slug/annular flow regimes are the focus of this study. The influence of two-phase working fluid on PV cell cooling was compared with single-phase. In addition, the great potential of slug flow for heat removal enhancement in PV/T panel was investigated. The obtained data showed the proposed hybrid system could substantially increases the output power of PV solar cells

  13. Morphological and Wear behaviour of new Al-SiCmicro-SiCnano hybrid nanocomposites fabricated through powder metallurgy

    Science.gov (United States)

    Arif, Sajjad; Tanwir Alam, Md; Aziz, Tariq; Ansari, Akhter H.

    2018-04-01

    In the present work, aluminium matrix composites reinforced with 10 wt% SiC micro particles along with x% SiC nano particles (x = 0, 1, 3, 5 and 7 wt%) were fabricated through powder metallurgy. The fabricated hybrid composites were characterized by x-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrum (EDS) and elemental mapping. The relative density, hardness and wear behaviour of all hybrid nanocomposites were studied. The influence of various control factors like SiC reinforcement, sliding distance (300, 600, 900 and 1200 m) and applied load (20, 30 and 40 N) were explored using pin-on-disc wear apparatus. The uniform distribution of micro and nano SiC particles in aluminium matrix is confirmed by elemental maps. The hardness and wear test results showed that properties of the hybrid composite containing 5 wt% nano SiC was better than other hybrid composites. Additionally, the wear loss of all hybrid nanocomposites increases with increasing sliding distance and applied load. The identification of wear phenomenon were studied through the SEM images of worn surface.

  14. Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure

    Science.gov (United States)

    Bimo Prakoso, Ari; Rusli; Li, Zeyu; Lu, Chenjin; Jiang, Changyun

    2018-03-01

    We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness.

  15. Friction-stir processing of an AA8026-TiB{sub 2}-Al{sub 2}O{sub 3} hybrid nanocomposite: Microstructural developments and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari, H.; Taheri, R. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz (Iran, Islamic Republic of)

    2016-04-13

    In this study, micro- and nano-sized TiB{sub 2} and Al{sub 2}O{sub 3} particles were incorporated separately and simultaneously through the AA8026 aluminum base alloy during multi-pass friction stir processing (FSP) with 100% overlapping to fabricate metal matrix mono and hybrid nanocomposites. Various FSP conditions including different rotational speeds (w), traverse velocities (v), and processing pass numbers were assessed to attain a homogenous distribution of reinforcing particles through the Al-metal matrix. Moreover, the impacts of size (micro or nano) and type of reinforcement particles (TiB{sub 2} and Al{sub 2}O{sub 3}) on the process-ability of single and hybrid nanocomposite systems were examined. Microstructures of different zones and distributions of reinforcing ceramic particles through the Al-matrix under various processing conditions were studied and characterized by using optical (OM), scanning (SEM), and transmission electron microscopy (TEM) techniques, respectively. The main mechanical characteristics of the prepared nanocomposites, such as, indentation Vickers hardness, tensile properties, and wear resistance were measured and compared for all of the various processing conditions. By optimization of the FSP parameters, as a rotational speed of 1600 rpm and a traverse velocity of 40 mm/min after 4 passes, a uniform AA8026-TiB{sub 2}-Al{sub 2}O{sub 3} hybrid nanocomposite was attained with significant improvements (~70–100%) in the different mechanical properties. As a result, the tensile yield strength of ~270 MPa, elongation of ~4.5%, and indentation Vickers hardness of ~141 HV were obtained. Also, the average wear rate was reduced from the 21×10{sup −3} mg/m value for the AA8026 base alloy down to 2.6×10{sup −3} mg/m for the best processed nanocomposite. A direct relationship between the wear rate and the indentation hardness resistance was demonstrated. Finally, effects of FSP processing conditions and reinforcement particles (type and

  16. Fuel cell/electrochemical capacitor hybrid for intermittent high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, L P; Atwater, T B; Cygan, P J [Army Communications-Electronics Command (CECOM), Fort Monmouth, NJ (United States). Research and Development Center

    1999-05-01

    A hybrid power source was demonstrated to successfully power a simulated power load encountered in portable military electronics and communications equipment. The hybrid system consisted of a 25 W proton exchange membrane fuel cell (PEMFC) stack connected in parallel with a 70 F capacitor bank. The cyclic regime of 18.0 W for 2 min followed by 2.5 W for 18 min was chosen as the baseline for the simulation of power load. The operating potential cut-off voltage for pass/failure was set to 3.0 V. At room temperature (23-25 C), the PEMFC alone could not handle the described baseline regime with the PEMFC operating potential dropping below the cut-off voltage within 10 s. The hybrid, however, continuously powered the same regime for 25 h. Its operating potential never reached the voltage cut-off point, not even during the high load of 18.0 W. The tests with hybrid configuration were aborted after 25 h of operation with no signs of output degradation, suggesting that further extended operation was possible. (orig.)

  17. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    Science.gov (United States)

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  18. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications

    Directory of Open Access Journals (Sweden)

    Chenghua Cui

    2016-09-01

    Full Text Available Fluorescence in situ hybridization (FISH is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbials and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells

  19. Application of Cu-polyimide flex circuit and Al-on-glass pitch adapter for the ATLAS SCT barrel hybrid

    CERN Document Server

    Unno, Y; Ikegami, Y; Iwata, Y; Kohriki, T; Kondo, T; Nakano, I; Ohsugi, T; Takashima, R; Tanaka, R; Terada, S; Ujiie, N

    2005-01-01

    We applied the surface build-up Cu-polyimide flex-circuit technology with laser vias to the ATLAS SCT barrel hybrid to be made in one piece from the connector to the electronics sections including cables. The hybrids, reinforced with carbon-carbon substrates, provide mechanical strength, thermal conductivity, low-radiation length, and stability in application-specific integrated circuit (ASIC) operation. By following the design rules, we experienced little trouble in breaking the traces. The pitch adapter between the sensor and the ASICs was made of aluminum traces on glass substrate. We identified that the generation of whiskers around the wire-bonding feet was correlated with the hardness of metallized aluminum. The appropriate hardness has been achieved by keeping the temperature of the glasses as low as room temperature during the metallization. The argon plasma cleaning procedure cleaned the contamination on the gold pads of the hybrids for successful wire bonding, although it was unsuccessful in the alu...

  20. Sizing stack and battery of a fuel cell hybrid distribution truck

    OpenAIRE

    Tazelaar, E.; Shen, Y.; Veenhuizen, P.A.; Hofman, T.; Bosch, van den, P.P.J.

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS) is used for determining the control setpoint for the fuel cell and battery system. It closely appr...

  1. Design, building and testing of a stand alone fuel cell hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Segura, F.; Duran, E.; Andujar, J.M. [Department of Electronic, Computer Science and Automatic Engineering, University of Huelva (Spain)

    2009-08-01

    This paper designs, sizes, builds and tests a stand alone fuel cell hybrid system made up of a fuel cell stack and a battery bank. This system has been sized to supply a typical telecommunication load profile, but moreover, the system can supply other profiles. For this purpose, a modular low cost electronic load bank has been designed and built. This load bank allows the power demand to be chosen by selecting different solid state relays. Moreover, a virtual instrument based on NI Labview {sup registered} has been designed to select the load power demand from the computer. (author)

  2. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation

  3. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  4. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  5. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2006-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  6. Strontium-doped organic-inorganic hybrids towards three-dimensional scaffolds for osteogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    John, Łukasz, E-mail: lukasz.john@chem.uni.wroc.pl [Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław (Poland); Podgórska, Marta [Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław (Poland); Nedelec, Jean-Marie [Université Clermont Auvergne, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63178 Aubiere (France); Cwynar-Zając, Łucja [Department of Histology and Embryology, Wrocław Medical University, 6a Chałubińskiego, 50-368 Wrocław (Poland); Dzięgiel, Piotr [Department of Histology and Embryology, Wrocław Medical University, 6a Chałubińskiego, 50-368 Wrocław (Poland); Department of Physiotherapy and Occupational Therapy in Conservative and Interventional Medicine, 35 Paderewskiego, 51-612 Wrocław (Poland)

    2016-11-01

    Biomimetic organic–inorganic hybrid bioscaffolds are developed to complement or replace damaged fragments in bone tissue surgery. The aim of this work was to develop a simple and fast method to prepare composite material for bone engineering, avoiding time consuming and complex methodologies. The resulting materials (also called in this work as hybrid composites or hybrid scaffolds) have a three-dimensional macroporous polymer-like network derived from triethoxyvinylsilane (TEVS) and 2-hydroxyethylmethacrylate (HEMA) monomers, with incorporated calcium, strontium, and phosphate ions. The materials were fully characterized using FT-IR, biomineralization studies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, scratch tests, Young's modulus and compressive strength tests, and gas physisorption. We report a comprehensive study on the in vitro effect of novel strontium doped materials on human bone cells. In vitro investigations were conducted using a normal human osteoblast cell line that mimics the cellular events of the in vivo intramembranous bone formation process. The materials do not have a negative impact on the survival of the normal human osteoblasts; moreover, materials doped with strontium show that not only are cells able to survive, but they also attach to and grow on a bioscaffolds surface. For this reason, they may be used in future in vivo experiments. - Highlights: • New hybrid scaffolds derived from TEVS and HEMA doped with Ca{sup 2+}, Sr{sup 2+}, and PO{sub 4}{sup 3-} ions have been developed. • A comprehensive characterization of the scaffolds for regenerative medicine was performed. • The incorporation of Sr{sup 2+} ions into the scaffolds was non-cytotoxic to the osteoblasts.

  7. WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions.

    Science.gov (United States)

    Karr, Jonathan R; Phillips, Nolan C; Covert, Markus W

    2014-01-01

    Mechanistic 'whole-cell' models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. http://www.wholecellsimdb.org SOURCE CODE REPOSITORY: URL: http://github.com/CovertLab/WholeCellSimDB. © The Author(s) 2014. Published by Oxford University Press.

  8. CD1d-unrestricted NKT cells are endowed with a hybrid function far superior than that of iNKT cells.

    Science.gov (United States)

    Farr, Alexander R; Wu, Weisheng; Choi, Bongkum; Cavalcoli, James D; Laouar, Yasmina

    2014-09-02

    Invariant natural killer T (iNKT) cells to date represent the best example of cells known to have a hybrid function, representing both innate and adaptive immunity. Shared phenotypic similarities with NK cells together with a rapid response to a cytokine stimulus and a productive TCR engagement are the features that underline the hybrid nature of iNKT cells. Using these criteria, we provide molecular and functional evidence demonstrating that CD1d-independent (CD1d(ind)) NKT cells, a population of CD1d-unrestricted NKT cells, are endowed with a hybrid function far superior to that of iNKT cells: (i) an extensive shared program with NK cells, (ii) a closer Euclidian distance with NK cells, and (iii) the ability to respond to innate stimuli (Poly:IC) with cytotoxic potential in the same manner as NK cells identify a hybrid feature in CD1d(ind)NKT cells that truly fulfills the dual function of an NK and a T cell. Our finding that CD1d(ind)NKT cells are programmed to act like NK cells in response to innate signals while being capable of adaptive responses is unprecedented, and thus might reemphasize CD1d-unrestricted NKT cells as a subset of lymphocytes that could affect biological processes of antimicrobial and tumor immunity in a unique way.

  9. Modeling and Simulation of Monolithic AlGaAs/InGaAs Tandem Solar Cell

    Directory of Open Access Journals (Sweden)

    Samia SLIMANI

    2015-06-01

    Full Text Available Employing conventional III-V junctions we report a classical calculation of conduction and valence band edge and the electron and hole densities. It is shown that the optimum performance can be achieved by employing AlGaAs /AlGaAs/InGaAs monolithic cascade solar cells, we have established these calculations by solving the Poisson equation within the framework of the Nextnano.

  10. Regional assignment of seven loci to 12p 13. 2-pter by PCR analysis of somatic cell hybrids containing the der(12) or the der(X) chromosome from a mesothelioma showing t(X; 12)(q22; p13)

    Energy Technology Data Exchange (ETDEWEB)

    Aerssens, J.; Chaffanet, M.; Baens, M.; Matthijs, G.; Van Den Berche, H.; Cassiman, J.J.; Marynen, P. (Arthritis and Metabolic Bone Disease Research Unit, Leuven (Belgium))

    1994-03-01

    Two somatic cell hybrids containing the der(12) or the der(X) from a mesothelioma with a translocation t(X;12) (q22;p13) as the only chromosomal change were generated to characterize the region of 12p12 containing the translocation breakpoint. Fluorescence in situ hybridization analysis showed the breakpoint on chromosome 12 to occur between VWF and D12S158. On the linkage map developed by J. Weissenbach et al., the breakpoints were located between DXS1106 and DCS1001 on chromosome X. PCR analysis based on genomic sequences, with DNA from both somatic cell hybrids, enabled mapping of CACNL1A1, FGF6, D12S370, D12S38OE, D12S381E, and D12S382E distally to the 12p13 breakpoint and to VWF. 11 refs., 2 figs., 1 tab.

  11. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas

    Science.gov (United States)

    Stempien, J. P.; Chan, S. H.

    2017-02-01

    Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.

  12. A hybrid waveguide cell for the dielectric properties of reservoir rocks

    International Nuclear Information System (INIS)

    Siggins, A F; Gunning, J; Josh, M

    2011-01-01

    A hybrid waveguide cell is described for broad-band measurements of the dielectric properties of hydrocarbon reservoir rocks. The cell is designed to operate in the radio frequency range of 1 MHz to 1 GHz. The waveguide consists of 50 Ω coaxial lines feeding into a central cylindrical section which contains the sample under test. The central portion of the waveguide acts as a circular waveguide and can accept solid core plugs of 38 mm diameter and lengths from 2 to 150 mm. The central section can also be used as a conventional coaxial waveguide when a central electrode with spring-loaded end collets is installed. In the latter mode the test samples are required to be in the form of hollow cylinders. An additional feature of the cell is that the central section is designed to telescope over a limited range of 1–2 mm with the application of an axial load. Effective pressures up to 35 MPa can be applied to the sample under the condition of uniaxial strain. The theoretical basis of the hybrid waveguide cell is discussed together with calibration results. Two reservoir rocks, a Donnybrook sandstone and a kaolin rich clay, are then tested in the cell, both as hollow cylinders in coaxial mode and in the form of solid core plugs. The complex dielectric properties of the two materials over the bandwidth of 1 MHz to 1 GHz are compared with the results of the two testing methods

  13. The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids.

    Science.gov (United States)

    Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna; Terrier, Nancy; Doco, Thierry; Ros-García, José María

    2017-09-01

    Monastrell is a red grape cultivar adapted to the dry environmental conditions of Murcia, SE Spain. Its berries seem to be characterized by a rigid cell wall structure, which could make difficult the winemaking process. Cabernet Sauvignon cultivar is used to complement Monastrell wines in this region owing to its high phenolic content with high extractability. This study explores the skin cell wall composition of grapes from plants resulting from intraspecific crosses of Vitis vinifera cultivars Monastrell × Cabernet Sauvignon. Moreover, the morphology of the cell wall material (CWM) from some representative samples was visualized by transmission optical microscopy. The total sugar content of CWM from nine out of ten genotypes of the progeny was lower than that from Monastrell. Seven out of ten genotypes showed lower phenolic content than Cabernet Sauvignon. The CWM from nine out of ten hybrids presented lower protein content than that from Monastrell. This study confirms that skin cell walls from Monastrell × Cabernet Sauvignon hybrid grapes presented major differences in composition compared with their parents. These data could help in the development of new cultivars adapted to the dry conditions of SE Spain and with a cell wall composition favouring extractability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen

    2009-04-29

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogenerator. Our study demonstrates a new approach for concurrently harvesting multiple types of energies using an integrated hybrid cell so that the energy resources can be effectively and complementary utilized whenever and wherever one or all of them is available. © 2009 American Chemical Society.

  15. A hybrid waveguide cell for the dielectric properties of reservoir rocks

    Science.gov (United States)

    Siggins, A. F.; Gunning, J.; Josh, M.

    2011-02-01

    A hybrid waveguide cell is described for broad-band measurements of the dielectric properties of hydrocarbon reservoir rocks. The cell is designed to operate in the radio frequency range of 1 MHz to 1 GHz. The waveguide consists of 50 Ω coaxial lines feeding into a central cylindrical section which contains the sample under test. The central portion of the waveguide acts as a circular waveguide and can accept solid core plugs of 38 mm diameter and lengths from 2 to 150 mm. The central section can also be used as a conventional coaxial waveguide when a central electrode with spring-loaded end collets is installed. In the latter mode the test samples are required to be in the form of hollow cylinders. An additional feature of the cell is that the central section is designed to telescope over a limited range of 1-2 mm with the application of an axial load. Effective pressures up to 35 MPa can be applied to the sample under the condition of uniaxial strain. The theoretical basis of the hybrid waveguide cell is discussed together with calibration results. Two reservoir rocks, a Donnybrook sandstone and a kaolin rich clay, are then tested in the cell, both as hollow cylinders in coaxial mode and in the form of solid core plugs. The complex dielectric properties of the two materials over the bandwidth of 1 MHz to 1 GHz are compared with the results of the two testing methods.

  16. Particle variations and effect on the microstructure and microhardness of Ti6al4V hybrid metal matrix system

    CSIR Research Space (South Africa)

    Akinlabi, ET

    2017-01-01

    Full Text Available obtained as follow: 3.0 Ti6Al4 V, B4C and BN, 3.2 Ti6Al4 V, B4C and BN, and 3.4 Ti6Al4 V, B4C and BN systems. Laser coating experiment was done at 1400W. The influence of difference in variation of powder on the microstructure and hardness values...

  17. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    Directory of Open Access Journals (Sweden)

    Ioana Voiculescu

    2013-03-01

    Full Text Available A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS. The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device’s sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35~45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection.

  18. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    Science.gov (United States)

    Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387

  19. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  20. PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.

    Science.gov (United States)

    Du, Jiang-bo; Song, Yan-feng; Ye, Wei-liang; Cheng, Ying; Cui, Han; Liu, Dao-zhou; Liu, Miao; Zhang, Bang-le; Zhou, Si-yuan

    2014-08-01

    The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.

  1. Analysis, operation and maintenance of a fuel cell/battery series-hybrid bus for urban transit applications

    Energy Technology Data Exchange (ETDEWEB)

    Bubna, Piyush; Brunner, Doug; Gangloff, John J. Jr.; Advani, Suresh G.; Prasad, Ajay K. (Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 United States)

    2010-06-15

    The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions. (author)

  2. Analysis, operation and maintenance of a fuel cell/battery series-hybrid bus for urban transit applications

    Science.gov (United States)

    Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.

    The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.

  3. A Parallel Energy-Sharing Control Strategy for Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Nik Rumzi Nik Idris

    2011-08-01

    Full Text Available This paper presents a parallel energy-sharing control strategy for the application of fuel cell hybrid vehicles (FCHVs. The hybrid source discussed consists of a fuel cells (FCs generator and energy storage units (ESUs which composed by the battery and ultracapacitor (UC modules. A direct current (DC bus is used to interface between the energy sources and the electric vehicles (EV propulsion system (loads. Energy sources are connected to the DC bus using of power electronics converters. A total of six control loops are designed in the supervisory system in order to regulate the DC bus voltage, control of current flow and to monitor the state of charge (SOC of each energy storage device at the same time. Proportional plus integral (PI controllers are employed to regulate the output from each control loop referring to their reference signals. The proposed energy control system is simulated in MATLAB/Simulink environment. Results indicated that the proposed parallel energy-sharing control system is capable to provide a practical hybrid vehicle in respond to the vehicle traction response and avoids the FC and battery from overstressed at the same time.

  4. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips.

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M

    2010-11-07

    We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.

  5. Full-spectrum photon management of solar cell structures for photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin; Yang, Lili

    2015-01-01

    Highlights: • A novel photon management method is proposed for hybrid photovoltaic–thermoelectric systems. • Composite structured surfaces enable creditable ultra-broadband anti-reflection property. • Incorporation of anti-reflection and light-trapping brings spectral absorption and transmission. • The efficient photon management of the structured surface is also omnidirectional. - Abstract: In this paper, a novel ultra-broadband photon management structure is proposed for crystalline silicon thin-film solar cells used in the photovoltaic–thermoelectric hybrid system. Nanostructures are employed on both front and back side. Optical behavior of the structure in ultra-broadband (300–2500 nm) are investigated through the Finite Difference Time Domain method. By combing moth-eye and inverted-parabolic surface, a new composite surface structure is proposed for anti-reflection in the ultra-broadband wavelengths. Front metallic nanoparticles, plasmonic back reflector and metallic gratings are studied for light-trapping and the effect of plasmonic back reflector is validated by the experimental data of the external quantum efficiency. The effects of incident angle are discussed for metallic gratings. Numerical computation shows that the incorporation of anti-reflection and light-trapping can obtain high absorption in the solar cell and ensure the rest incident light transmits to the thermoelectric generator efficiently. This work shows potential full-spectrum utilization of solar energy for various photovoltaic devices related with hybrid photovoltaic–thermoelectric systems

  6. The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy - a perspective on cell biological mechanisms.

    Science.gov (United States)

    Tang, Bor Luen

    2017-10-26

    Recent clinical trials of mesenchymal stem cells (MSCs) transplantation have demonstrated procedural safety and clinical proof of principle with a modest indication of benefit in patients with amyotrophic lateral sclerosis (ALS). While replacement therapy remained unrealistic, the clinical efficacy of this therapeutic option could be potentially enhanced if we could better decipher the mechanisms underlying some of the beneficial effects of transplanted cells, and work toward augmenting or combining these in a strategic manner. Novel ways whereby MSCs could act in modifying disease progression should also be explored. In this review, I discuss the known, emerging and postulated mechanisms of action underlying effects that transplanted MSCs may exert to promote motor neuron survival and/or to encourage regeneration in ALS. I shall also speculate on how transplanted cells may alter the diseased environment so as to minimize non-neuron cell autonomous damages by immune cells and astrocytes.

  7. Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system

    International Nuclear Information System (INIS)

    Yang, Puqing; Zhang, Houcheng

    2015-01-01

    A hybrid system mainly consisting of a PEMFC (proton exchange membrane fuel cell) and an absorption refrigerator is proposed, where the PEMFC directly converts the chemical energy contained in the hydrogen into electrical and thermal energies, and the thermal energy is transferred to drive the bottoming absorption refrigerator for cooling purpose. By considering the existing irreversible losses in the hybrid system, the operating current density region of the PEMFC permits the absorption refrigerator to exert its function is determined and the analytical expressions for the equivalent power output and efficiency of the hybrid system under different operating conditions are specified. Numerical calculations show that the equivalent maximum power density and the corresponding efficiency of the hybrid system can be respectively increased by 5.3% and 6.8% compared to that of the stand-alone PEMFC. Comprehensive parametric analyses are conducted to reveal the effects of the internal irreversibility of the absorption refrigerator, operating current density, operating temperature and operating pressure of the PEMFC, and some integrated parameters related to the thermodynamic losses on the performance of the hybrid system. The model presented in the paper is more general than previous study, and the results for some special cases can be directly derived from this paper. - Highlights: • A CHP system composed of a PEMFC and an absorption refrigerator is proposed. • Current density region enables the absorption refrigerator to work is determined. • Multiple irreversible losses in the system are analytically characterized. • Maximum power density and corresponding efficiency can be increased by 5.3% and 6.8%. • Effects of some designing and operating parameters on the performance are discussed

  8. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  9. Programmable display of DNA-protein chimeras for controlling cell-hydrogel interactions via reversible intermolecular hybridization.

    Science.gov (United States)

    Zhang, Zhaoyang; Li, Shihui; Chen, Niancao; Yang, Cheng; Wang, Yong

    2013-04-08

    Extensive studies have been recently carried out to achieve dynamic control of cell-material interactions primarily through physicochemical stimulation. The purpose of this study was to apply reversible intermolecular hybridization to program cell-hydrogel interactions in physiological conditions based on DNA-antibody chimeras and complementary oligonucleotides. The results showed that DNA oligonucleotides could be captured to and released from the immobilizing DNA-functionalized hydrogels with high specificity via DNA hybridization. Accordingly, DNA-antibody chimeras were captured to the hydrogels, successfully inducing specific cell attachment. The cell attachment to the hydrogels reached the plateau at approximately half an hour after the functionalized hydrogels and the cells were incubated together. The attached cells were rapidly released from the bound hydrogels when triggering complementary oligonucleotides were introduced to the system. However, the capability of the triggering complementary oligonucleotides in releasing cells was affected by the length of intermolecular hybridization. The length needed to be at least more than 20 base pairs in the current experimental setting. Notably, because the procedure of intermolecular hybridization did not involve any harsh condition, the released cells maintained the same viability as that of the cultured cells. The functionalized hydrogels also exhibited the potential to catch and release cells repeatedly. Therefore, this study demonstrates that it is promising to regulate cell-material interactions dynamically through the DNA-programmed display of DNA-protein chimeras.

  10. Enhancing hybrid direct carbon fuel cell anode performance using Ag2O

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    A hybrid-direct carbon fuel cell (HDCFC), consisting of a molten slurry of solid carbon black and (Li-K)2CO3 added to the anode chamber of a solid oxide fuel cell, was characterized using current-potential-power density curves, electrochemical impedance spectroscopy, and cyclic voltammetry. Two...... types of experimental setups were employed in this study, an anode-supported full cell configuration (two electrodes, two atmospheres setup) and a 3-electrode electrolyte-supported half-cell setup (single atmosphere). Anode processes with and without catalysts were investigated as a function...... of temperature (700-800 °C) and anode sweep gas (N2, 4-100% CO2 in N2-CO2). It was shown that the addition of silver based catalysts (Ag, Ag2O, Ag2CO3) into the carbon-carbonate slurry enhanced the performance of the HDCFC....

  11. Infiltration and Selective Interactions at the Interface in Polymer-Oxide Hybrid Solar Cells

    Science.gov (United States)

    Ferragut, R.; Aghion, S.; Moia, F.; Binda, M.; Canesi, E. V.; Lanzani, G.; Petrozza, A.

    2013-06-01

    Positron annihilation spectroscopy was used to characterize polymer-based hybrid solar cells formed by poly(3-hexylthiophene) (P3HT) finely infiltrated in a porous TiO2 skeleton. A step-change improvement in the device performance is enabled by engineering the hybrid interface by the insertion of a proper molecular interlayer namely 4-mercaptopyridine (4-MP). In order to obtain depth-resolved data, positrons were implanted in the sample using a variable-energy positron beam. The characteristics of the partially filled nanoporous structures were evaluated in terms of the depth profile of the positronium yield and the S-parameter. A quantitative evaluation of the pore filling in the deep region is given from the analysis of Coincidence Doppler Broadening taken at fixed implantation energy. We note a remarkable difference in terms of the positronium yield when the 4-MP interlayer is introduced, which means a better covering of P3HT on the porous surface.

  12. Design optimisation of a hybrid solid oxide fuel cell and gas turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.; Siddle, A.; Pointon, K.

    2001-07-01

    The objectives of the combined ALSTOM Power Technology and Advantica Technologies project are reported as: (a) to design a gas turbine (GT) unit compatible with a solid oxide fuel cell (SOFC) in a high efficiency power system and aimed at the Distributed Power application range of 1-20MW, and (b) to identify the main features and components of a 'Proof of Concept' hybrid unit of output around 0.1MW, based on existing or near-market technology. The study showed: (i) while the potential for high efficiency SOFC + GT hybrid cycles is clear, little effort has been put into the design of the gas turbine and some other components and (ii) there is room for commercial exploitation in the areas of both component manufacture and system supply.

  13. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  14. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    Science.gov (United States)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  15. Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells.

    Science.gov (United States)

    Aguiñiga-Sánchez, Itzen; Soto-Hernández, Marcos; Cadena-Iñiguez, Jorge; Ruíz-Posadas, Lucero del Mar; Cadena-Zamudio, Jorge David; González-Ugarte, Ana Karen; Steider, Benny Weiss; Santiago-Osorio, Edelmiro

    2015-01-01

    The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and WEHI-3 cell lines (with an IC50 below 1.3 μg·mL(-1)), reduced cell viability, and induced apoptotic body production, phosphatidylserine translocation, and DNA fragmentation. However, the extract had no effect on BM-MNCs. We postulate that these properties make the extract a good candidate for an anti-tumour agent for clinical use.

  16. Modeling and energy management control design for a fuel cell hybrid passenger bus

    Science.gov (United States)

    Simmons, Kyle; Guezennec, Yann; Onori, Simona

    2014-01-01

    This paper presents the modeling and supervisory energy management design of a hybrid fuel cell/battery-powered passenger bus. With growing concerns about petroleum usage and greenhouse gas emissions in the transportation sector, finding alternative methods for vehicle propulsion is necessary. Proton Exchange Membrane (PEM) fuel cell systems are viable possibilities for energy converters due to their high efficiencies and zero emissions. It has been shown that the benefits of PEM fuel cell systems can be greatly improved through hybridization. In this work, the challenge of developing an on-board energy management strategy with near-optimal performance is addressed by a two-step process. First, an optimal control based on Pontryagin's Minimum Principle (PMP) is implemented to find the global optimal solution which minimizes fuel consumption, for different drive cycles, with and without grade. The optimal solutions are analyzed in order to aid in development of a practical controller suitable for on-board implementation, in the form of an Auto-Regressive Moving Average (ARMA) regulator. Simulation results show that the ARMA controller is capable of achieving fuel economy within 3% of the PMP controller while being able to limit the transient demand on the fuel cell system.

  17. Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles

    International Nuclear Information System (INIS)

    Feroldi, Diego; Carignano, Mauro

    2016-01-01

    Highlights: • A sizing procedure based on the fulfilment of real driving conditions is proposed. • A methodology to generate long-term stochastic driving cycles is proposed. • A parametric optimization of the real-time EMS is conducted. • A trade-off design is adopted from a Pareto front. • A comparison with optimal consumption via Dynamic Programming is performed. - Abstract: In this article, a methodology for the sizing and analysis of fuel cell/supercapacitor hybrid vehicles is presented. The proposed sizing methodology is based on the fulfilment of power requirements, including sustained speed tests and stochastic driving cycles. The procedure to generate driving cycles is also presented in this paper. The sizing algorithm explicitly accounts for the Equivalent Consumption Minimization Strategy (ECMS). The performance is compared with optimal consumption, which is found using an off-line strategy via Dynamic Programming. The sizing methodology provides guidance for sizing the fuel cell and the supercapacitor number. The results also include analysis on oversizing the fuel cell and varying the parameters of the energy management strategy. The simulation results highlight the importance of integrating sizing and energy management into fuel cell hybrid vehicles.

  18. Modeling, simulation, and concept studies of a fuel cell hybrid electric vehicle powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Oezbek, Markus

    2010-03-29

    This thesis focuses on the development of a fuel cell-based hybrid electric powertrain for smaller (2 kW) hybrid electric vehicles (HEVs). A Hardware-in-the-Loop test rig is designed and built with the possibility to simulate any load profile for HEVs in a realistic environment, whereby the environment is modeled. Detailed simulation models of the test rig are developed and validated to real physical components and control algorithms are designed for the DC/DC-converters and the fuel cell system. A state-feedback controller is developed for the DC/DC-converters where the state-space averaging method is used for the development. For the fuel cells, a gain-scheduling controller based on state feedback is developed and compared to two conventional methods. The design process of an HEV with regard to a given load profile is introduced with comparison between SuperCaps and batteries. The HEV is also evaluated with an introduction to different power management concepts with regard to fuel consumption, dynamics, and fuel cell deterioration rate. The power management methods are implemented in the test rig and compared. (orig.)

  19. Tuning the hybridization and magnetic ground state of electron and hole doped CeOs2Al10 : An x-ray spectroscopy study

    Science.gov (United States)

    Chen, Kai; Sundermann, Martin; Strigari, Fabio; Kawabata, Jo; Takabatake, Toshiro; Tanaka, Arata; Bencok, Peter; Choueikani, Fadi; Severing, Andrea

    2018-04-01

    Here we present linear and circular polarized soft x-ray absorption spectroscopy (XAS) data at the Ce M4 ,5 edges of the electron (Ir) and hole-doped (Re) Kondo semiconductor CeOs2Al10 . Both substitutions have a strong impact on the unusual high Néel temperature TN=28.5 K, and also the direction of the ordered moment in case of Ir. The substitution dependence of the linear dichroism is weak thus validating the crystal-field description of CeOs2Al10 being representative for the Re and Ir substituted compounds. The impact of electron and hole doping on the hybridization between conduction and 4 f electrons is related to the amount of f0 in the ground state and reduction of x-ray magnetic circular dichroism. A relationship of c f -hybridization strength and enhanced TN is discussed. The direction and doping dependence of the circular dichroism strongly supports the idea of strong Kondo screening along the crystallographic a direction.

  20. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Jeon, GeunHong; Oh, IkHyun; Ro, ChanSeung

    2012-01-01

    Highlights: ► GTAW assisted hybrid friction stir welding (HFSW) has been carried out for dissimilar butt joint. ► Mechanical strength of dissimilar butt joint by HFSW and FSW has been investigated and compared. ► Microstructure of dissimilar butt joint by HFSW and FSW has been investigated and compared. -- Abstract: The aim of this research is to evaluate the potential for using the gas tungsten arc welding (GTAW) assisted hybrid friction stir welding (HFSW) process to join a stainless steel alloy (STS304) to an aluminum alloy (Al6061) in order to improve the weld strength. The difference in mechanical and microstructural characteristics of dissimilar joint by friction stir welding (FSW) and HFSW has been investigated and compared. Transverse tensile strength of approximately 93% of the aluminum alloy (Al6061) base metal tensile strength is obtained with HFSW, which is higher than the tensile strength of FSW welds. This may be due to the enhanced material plastic flow and partial annealing effect in dissimilar materials due to preheating of stainless steel surface by GTAW, resulting in significantly increased elongation of welds. The results indicate that HFSW that integrates GTAW preheating to FSW is advantageous in joining dissimilar combinations compared to conventional FSW.

  1. Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation

    International Nuclear Information System (INIS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Sluckin, T. J.; Cook, G.; Evans, D. R.

    2014-01-01

    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters

  2. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    Science.gov (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  3. Blot hybridization analysis of TCR genes of T cells for five people exposed in a radiation accident

    International Nuclear Information System (INIS)

    Min Rui; Liu Benti; Cheng Tianmin; Yang Rujun; Meng Xiangshun; Xiao Jinsong

    1996-01-01

    Human lymphocyte total DNA was prepared in agarose plug by mixing cells with low melting agarose, and two restriction endonucleases were used for digestion of the total DNA with human α and β TCR cDNA probes. The total digested DNA from five people who were whole body exposed to 2.0-2.5 Gy ionizing radiation in an accident 4.5 years ago was hybridized by Southern blot method. The results showed that no obvious difference in hybridization bands was found between controls and the five victims when hybridizations were fulfilled in the total DNA which was digested by Hind III restriction endonuclease with both α and β probes. However, when the total DNA was digested with restriction endonuclease EcoR I and was hybridized with TCR α probe, four of the five exposed people showed a different hybridizing band pattern compared with the controls. The results are also discussed

  4. Graphene-cobaltite-Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells.

    Science.gov (United States)

    Sharma, Chandra Shekhar; Awasthi, Rahul; Singh, Ravindra Nath; Sinha, Akhoury Sudhir Kumar

    2013-12-14

    Hybrid materials comprising of Pd, MCo2O4 (where M = Mn, Co or Ni) and graphene have been prepared for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells. Structural and electrochemical characterizations were carried out using X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry and cyclic, CO stripping, and linear sweep voltammetries. The study revealed that all the three hybrid materials are active for both methanol oxidation (MOR) and oxygen reduction (ORR) reactions in 1 M KOH. However, the Pd-MnCo2O4/GNS hybrid electrode exhibited the greatest MOR and ORR activities. This active hybrid electrode has also outstanding stability under both MOR and ORR conditions, while Pt- and other Pd-based catalysts undergo degradation under similar experimental conditions. The Pd-MnCo2O4/GNS hybrid catalyst exhibited superior ORR activity and stability compared to even Pt in alkaline solutions.

  5. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  6. Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique

    Science.gov (United States)

    Arif, Sajjad; Tanwir Alam, Md; Ansari, Akhter H.; Bilal Naim Shaikh, Mohd; Arif Siddiqui, M.

    2018-05-01

    The tribological performance of aluminium hybrid composites reinforced with micro SiC (5 wt%) and nano zirconia (0, 3, 6 and 9 wt%) fabricated through powder metallurgy technique were investigated using statistical and artificial neural network (ANN) approach. The influence of zirconia reinforcement, sliding distance and applied load were analyzed with test based on full factorial design of experiments. Analysis of variance (ANOVA) was used to evaluate the percentage contribution of each process parameters on wear loss. ANOVA approach suggested that wear loss be mainly influenced by sliding distance followed by zirconia reinforcement and applied load. Further, a feed forward back propagation neural network was applied on input/output date for predicting and analyzing the wear behaviour of fabricated composite. A very close correlation between experimental and ANN output were achieved by implementing the model. Finally, ANN model was effectively used to find the influence of various control factors on wear behaviour of hybrid composites.

  7. Hybridization change of DNA and nuclear RNA synthesized immediately after ionizing irradiation in spleen cells isolated from 615 mice

    International Nuclear Information System (INIS)

    Meng Ziqiang

    1986-01-01

    DNA hybridization with nuclear RNA(nRNA) synthesized immediately after 60 Co Gamma-irradiation in the spleen cells freshly isolated from inbred line 615 mice was investigated, using the technique of Gillespie and Spiegelman. In RNA/DNA hybridization percentage experiment, it was showed that the hybridization of normal DNA with labelled nRNA synthesized in irradiated cells reached the saturation point at a much faster rate than with labelled normal nRNA. The hybridization percentage of nRNA synthesized in irradiated cells was higher than that of normal nRNA during the different reaction time before the saturation point of DNA with nRNA synthesized in irradiated cells, but it was lower than that of normal nRNA after the zone of high repetitive DNA sequences was stimulated, however, the transcription of some base sequences in the zone of low repetitive DNA sequences was seriously inhibited. Measurements of the exhaustion rates of pulse-labelled nRNA were carried out as described by Greene and Flickinger Biochim. In these studies, pulse-labelled nRNA synthesized in unirradiated and irradiated cells were compared by exhausion with DNA at hybridization time of 4 or 24 hours, When the hybridization time was 4 hours, the nRNA synthesized in irradiated cells displayed a faster exhaustion rate than the control nRNA. But if the hybridization time was 24 hours, the exhaustion rate of nRNA synthesized in irradiated cells reduced. These results demostrated that Gamma-irradiation changed the proportion of transcription of some nRNA species and implayed that the sensitivities of the transcription activeties of the different repetitive DNA sequences to Gamma-irradiation were different, and so were the transcription activeties of the different base sequences in the same repetitive DNA sequences

  8. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shibu; Wei Wei; Chen Xiangnan [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Jiang Man, E-mail: jiangman1021@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Zhou Zuowan, E-mail: zwzhou@at-c.net [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China)

    2012-06-15

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: Black-Right-Pointing-Pointer PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. Black-Right-Pointing-Pointer Photoelectric conversion efficiency after hybridization was enhanced by 60%. Black-Right-Pointing-Pointer PANI hybridizing ZnO nanograss induced a rapid charge separation.

  9. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    International Nuclear Information System (INIS)

    Zhu Shibu; Wei Wei; Chen Xiangnan; Jiang Man; Zhou Zuowan

    2012-01-01

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: ► PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. ► Photoelectric conversion efficiency after hybridization was enhanced by 60%. ► PANI hybridizing ZnO nanograss induced a rapid charge separation.

  10. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  11. The radiosensitivity of spermatogonial stem cells in C3H/101 F1 hybrid mice

    International Nuclear Information System (INIS)

    Van der Meer, Yvonne; De Rooij, Dirk G.; Cattanach, Bruce M.

    1993-01-01

    The radiosensitivity of spermatogonial stem cells of C3H/HeHx101/H F 1 hybrid mice was determined by counting undifferentiated spermatogonia at 10 days after X-irradiation. During the spermatogenic cycle, differences in radiosensitivity were found, which were correlated with the proliferative activity of the spermatogonial stem cells. In stage VIII irr , during quiescence, the spermatogonial stem cells were most radiosensitive with a D 0 of 1.4 Gy. In stages XI irr -V irr , when the cells were proliferatively active, the D 0 was about 2.6 Gy. Based on the D 0 values for sensitive and resistant spermatogonia and on the D 0 for the total population, a ratio of 45:55% of sensitive to resistant spermatogonial stem cells was estimated for cell killing. When the present data were compared with data on translocation induction obtained in mice of the same genotype, a close fit was obtained when the translocation yield (Y; in % abnormal cells) after a radiation dose D was described by Y=e τD , with τ=1 for the sensitive and τ=0.1 for the resistant spermatogonial stem cells, with a maximal e τD of 100

  12. DNA repair characteristics of a hybrid cell clone between xeroderma pigmentosum and Potorous tridactilis

    International Nuclear Information System (INIS)

    Ida, Kenji

    1986-01-01

    A hybrid cell clone PX1 was isolated by fusing UV sensitive XP20S(SV)neo, an SV-40-transformed, neomycin-resistant xeroderma pigmentosum (XP) cell line, and Pt K2, a rat kangaroo (Potorous tridactilis) cell line. The UV-survival curve of PX1 cells fell midway between those of Pt K2 and XP20S(SV)neo cells, since mean lethal doses(D 0 ) were 2.5, 4.7 and 0.27 J/m 2 for PX1, Pt K2 and XP20S(SV)neo, respectively. Amounts of unscheduled DNA synthesis (UDS) after UV, relative to normal human cells, were 60.4 % for Pt K2, 37.7 % for PX1 and 0.1 % for XP20S(SV)neo. Such relative UDS capacities for excision repair of Pt K2, PX1 and XP20S(SV)neo were also consistent with the respective relative capacities of host cell reactivation (HCR) of UV-irradiated Herpes simplex virus. Apparently, there was no single Pt K2 chromosome in the PX1 cells. One possibility is that a gene which may account for the partial restoration of the UV resistance has been transferred from Pt K2 to PX1. (author)

  13. Influence of load and reinforcement content on selected tribological properties of Al/SiC/Gr hybrid composites

    Directory of Open Access Journals (Sweden)

    Sandra Veličković

    2018-04-01

    Full Text Available Hybrid materials with the metal matrix are important engineering materials due to their outstanding mechanical and tribological properties. Here are presented selected tribological properties of the hybrid composites with the matrix made of aluminum alloy and reinforced by the silicon carbide and graphite particles. The tribological characteristics of such materials are superior to characteristics of the matrix – the aluminum alloy, as well as to characteristics of the classical metal-matrix composites with a single reinforcing material. Those characteristics depend on the volume fractions of the reinforcing components, sizes of the reinforcing particles, as well as on the fabrication process of the hybrid composites. The considered tribological characteristics are the friction coefficient and the wear rate as functions of the load levels and the volume fractions of the graphite and the SiC particles. The wear rate increases with increase of the load and the Gr particles content and with reduction of the SiC particles content. The friction coefficient increases with the load, as well as with the SiC particles content increase.

  14. Prolonging fuel cell stack lifetime based on Pontryagin's Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation

    Science.gov (United States)

    Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.

    2014-02-01

    The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.

  15. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    Science.gov (United States)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  16. No-Disjunction and loss of anafasica Hamster-human hybrid embryos of two cells

    International Nuclear Information System (INIS)

    Ponsa, I.; Tusell, L.; Alvarez, R.; Genesca, A.; Miro, R.; Egozcue, J.

    1998-01-01

    To investigate the possible effect anafasica the ionizing radiations in masculine germinal cells a new test it has been developed combining two techniques, the fecundation interspecific gives ovocitos hamster without area pellucid with human sperms and the fluorescent in situ hybridization in cells in interface using probes gives DNA specific centrometricas. Analyzing the segregation gives the chromosomes marked in the embryos two cells, you can detect the reciprocal products easily an anomalous segregation. Give this way the recount the fluorescent signs in the nuclei siblings and in the micronucleus it provides an esteem the due aneuploidy to errors meiotic or premiotic, with this way the resulting aneuploidy the errors in the first division mitotic the embryos, as much no-disjunction as lost anafasica

  17. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    Science.gov (United States)

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  18. A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push...... and designed. A 1kW prototype controlled by TMS320F2808 DSP is built in the lab. Simulation and experimental results confirm the feasibility of the proposed two stage dc-dc converter system.......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...

  19. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  20. In Vitro Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells Seeded on Carboxymethyl Cellulose-Hydroxyapatite Hybrid Hydrogel.

    Directory of Open Access Journals (Sweden)

    Gabriella eTeti

    2015-10-01

    Full Text Available Stem cells from human dental pulp have been considered as an alternative source of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages.Recently, polysaccharide based hydrogels have become especially attractive as matrices for the repair and regeneration of a wide variety of tissues and organs. The incorporation of inorganic minerals as hydroxyapatite nanoparticles can modulate the performance of the scaffolds with potential applications in tissue engineering. The aim of this study was to verify the osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs cultured on a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Human DPSCs were seeded on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel and on carboxymethyl cellulose hydrogel for 1, 3, 5, 7, 14 and 21 days. Cell viability assay and ultramorphological analysis were carried out to evaluate biocompatibility and cell adhesion. Real Time PCR was carried out to demonstrate the expression of osteogenic and odontogenic markers. Results showed a good adhesion and viability in cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel, while a low adhesion and viability was observed in cells cultured on carboxymethyl cellulose hydrogel. Real Time PCR data demonstrated a temporal up-regulation of osteogenic and odontogenic markers in dental pulp stem cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. In conclusion, our in vitro data confirms the ability of DPSCs to differentiate toward osteogenic and odontogenic lineages in presence of a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Taken together, our results provide evidence that DPSCs and carboxymethyl cellulose—hydroxyapatite hybrid hydrogel could be considered promising candidates for dental pulp complex and periodontal tissue engineering.

  1. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Jane

    2011-07-13

    Jul 13, 2011 ... 2Wuhan Military Economic Academy, No. 122 Luojiadun, Qiaokou ... The analysis indicated that under Al stress, differences in cell wall .... with a pestle in a mortar in 2 ml of 50 mM acetate buffer (pH 5.5) that contained 6% ...

  2. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Science.gov (United States)

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  3. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  4. Nanostructural optimization of silicon/PEDOT:PSS hybrid solar cells for performance improvement

    International Nuclear Information System (INIS)

    Wang, Yanzhou; Shao, Pengfei; Li, Yali; Li, Junshuai; He, Deyan; Chen, Qiang

    2017-01-01

    In this paper, an inverted silicon (Si) nanopyramid (iSiNP) surface structure with low aspect ratio and remarkable antireflection is developed through sequential treatments of NaOH and HF/CH 3 COOH/HNO 3 solutions to Si nanowire (SiNW)-textured Si wafers, which are prepared by traditional electroless chemical etching. The iSiNP/PEDOT:PSS hybrid solar cell is fabricated through conformally spin-coating poly(3.4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) onto the iSiNPs; it exhibits enhanced device performance owing to the improved junction and contact quality as compared to the SiNW/PEDOT:PSS counterpart. A power conversion efficiency (PCE) of 9.6% mainly contributed from an increased fill factor (FF) of 0.61 and improved open circuit voltage ( V oc ) of 0.53 V is delivered by the iSiNP/PEDOT:PSS solar cell. As a comparison, the SiNW/PEDOT:PSS structure delivers a 7.1% PCE with a FF of 0.45 and V oc of 0.46 V. Considering the submicro-scale characteristic dimensions, iSiNPs are expected to be applicable to highly efficient thin film Si/PEDOT:PSS hybrid solar cells. (paper)

  5. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    International Nuclear Information System (INIS)

    Cao, Fengfeng; Wang, Hao; Xia, Zhouhui; Dai, Xiao; Cong, Shan; Dong, Chao; Sun, Baoquan; Lou, Yanhui; Sun, Yinghui; Zhao, Jie; Zou, Guifu

    2015-01-01

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0 # diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement

  6. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Fengfeng; Wang, Hao [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Xia, Zhouhui [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Dai, Xiao; Cong, Shan [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Dong, Chao [Department of Chemistry and Biology, University of New Mexico, ABQ 87120 (United States); Sun, Baoquan [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Lou, Yanhui, E-mail: yhlou@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Sun, Yinghui; Zhao, Jie [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Zou, Guifu, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2015-01-15

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0{sup #} diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement.

  7. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    Science.gov (United States)

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  8. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.

  9. Braking energy regeneration control of a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Zhang, Junzhi; Lv, Chen; Qiu, Mingzhe; Li, Yutong; Sun, Dongsheng

    2013-01-01

    Highlights: • A braking energy regeneration system has been designed for a fuel cell bus. • Control strategy coordinating energy efficiency and brake safety is proposed. • The system and control strategy proposed are experimentally verified. • Based on test results, energy efficiency of the FCB is improved greatly. - Abstract: This paper presents the braking energy regeneration control of a fuel cell hybrid electric bus. The configuration of the regenerative braking system based on a pneumatic braking system was proposed. To recapture the braking energy and improve the fuel economy, a control strategy coordinating the regenerative brake and the pneumatic brake was designed and applied in the FCHB. Brake safety was also guaranteed by the control strategy when the bus encounters critical driving situations. Fuel economy tests were carried out under China city bus typical driving cycle. And hardware-in-the-loop tests of the brake safety of the FCHB under proposed control strategy were also accomplished. Test results indicate that the present approach provides an improvement in fuel economy of the fuel cell hybrid electric bus and guarantees the brake safety in the meantime

  10. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  11. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    Science.gov (United States)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  12. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications

    Science.gov (United States)

    Arunmetha, S.; Vinoth, M.; Srither, S. R.; Karthik, A.; Sridharpanday, M.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V.

    2018-01-01

    Nano silicon (nano Si) particles were directly prepared from natural mineral quartz sand and thereafter used to fabricate the hybrid silicon solar cells. Here, in this preparation technique, two process stages were involved. In the first stage, the alkaline extraction and acid precipitation processes were applied on quartz sand to fetch silica nanoparticles. In the second stage, magnesiothermic and modified magnesiothermic reduction reactions were applied on nano silica particles to prepare nano Si particles. The effect of two distinct reduction methodologies on nano Si particle preparation was compared. The magnesiothermic and modified magnesiothermic reductions in the silica to silicon conversion process were studied with the help of x-ray diffraction (XRD) with intent to study the phase changes during the reduction reaction as well as its crystalline nature in the pure silicon phase. The particles consist of a combination of fine particles with spherical morphology. In addition to this, the optical study indicated an increase in visible light absorption and also increases the performance of the solar cell. The obtained nano Si particles were used as an active layer to fabricate the hybrid solar cells (HSCs). The obtained results confirmed that the power conversion efficiency (PCE) of the magnesiothermically modified nano Si cells (1.06%) is much higher as compared to the nano Si cells that underwent magnesiothermic reduction (1.02%). Thus, this confirms the increased PCE of the investigated nano Si solar cell up to 1.06%. It also revealed that nano Si behaved as an electron acceptor and transport material. The present study provided valuable insights and direction for the preparation of nano Si particles from quartz sand, including the influence of process methods. The prepared nano Si particles can be utilized for HSCs and an array of portable electronic devices.

  13. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated...... to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes...

  14. Light propagation and transmission in hybrid-aligned nematic liquid crystal cells: Geometrical optics calculations

    Science.gov (United States)

    Mendoza, Carlos I.; Reyes, J. Adrian

    2006-08-01

    The authors present a geometrical approach to calculate the transmission of light in a hybrid-aligned nematic cell under the influence of an applied electric field. Using the framework of geometrical optics they present results for the ray tracing as well as the transmission of light as a function of the applied low frequency voltage. Dispersion effects are included through a wavelength dependent dielectric function. Their results for the transmittance as a function of the applied voltage show oscillations that are in good qualitative agreement with previously obtained experimental measurements.

  15. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung

    2011-12-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  16. Improving Link Robustness in 5G Ultra-Dense Small Cells by Hybrid ARQ

    DEFF Research Database (Denmark)

    Gatnau, Marta; Catania, Davide; Frederiksen, Frank

    2014-01-01

    A new 5th generation (5G) radio access technology is expected to cope with an estimated factor of x1000 growth in mobile data traffic in the upcoming years. Such system will be optimized for a massive uncoordinated deployment of small cells, where autonomous operation of the individual nodes may...... bring unpredictable and fast varying link quality. In this paper, Hybrid Automatic Repeat Request (HARQ) is studied as a solution to cope with such unpredictability. An operational mode of HARQ for our 5G system definition is proposed, and its performance is evaluated for two different scheduling...

  17. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung; Kim, Inho; Gullapalli, Sravani; Wong, Michael S.; Jabbour, Ghassan E.

    2011-01-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  18. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Tribioli, L., E-mail: laura.tribioli@unicusano.it; Cozzolino, R. [Dept. of Industrial Engineering, University of Rome Niccolo’ Cusano (Italy); Barbieri, M. [Engineering Dept., University of Naples Parthenope, Centro Direzionale-Isola C4, 80143 Naples (Italy)

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  19. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    International Nuclear Information System (INIS)

    Tribioli, L.; Cozzolino, R.; Barbieri, M.

    2015-01-01

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared

  20. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  1. Controlling the morphology and efficiency of hybrid ZnO: Polythiophene solar cells via side chain functionalization

    NARCIS (Netherlands)

    Oosterhout, S.D.; Koster, L.J.A.; Bavel, van S.S.; Loos, J.; Stenzel, O.; Thiedmann, R.; Schmidt, V.; Campo, B.J.; Cleij, T.J.; Lutzen, L.; Vanderzande, D.J.M.; Wienk, M.M.; Janssen, R.A.J.

    2011-01-01

    The efficiency of polymer – metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side

  2. Controlling the Morphology and Efficiency of Hybrid ZnO : Polythiophene Solar Cells Via Side Chain Functionalization

    NARCIS (Netherlands)

    Oosterhout, Stefan D.; Koster, L. Jan Anton; van Bavel, Svetlana S.; Loos, Joachim; Stenzel, Ole; Thiedmann, Ralf; Schmidt, Volker; Campo, Bert; Cleij, Thomas J.; Lutzen, Laurence; Vanderzande, Dirk; Wienk, Martijn M.; Janssen, Rene A. J.

    2011-01-01

    The efficiency of polymer - metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side

  3. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  4. HOS cell adhesion on Ti6Al4V ELI texturized by CO2 laser

    Science.gov (United States)

    Sandoval-Amador, A.; Bayona–Alvarez, Y. M.; Carreño Garcia, H.; Escobar-Rivero, P.; Y Peña-Ballesteros, D.

    2017-12-01

    In this work, the response of HOS cells on Ti6Al4V ELI textured surfaces by a CO2 laser was evaluated. The test surfaces were; smooth Ti6Al4V, used as the control, and four textured surfaces with linear geometry. These four surfaces had different separation distances between textured lines, D1 (1000 microns), D2 (750 microns), D3 (500 microns) and D4 (250 microns). Toxicity of textured surfaces was assessed by MTT and the cellular adhesion test was performed using HOS ATCC CRL 1543 line cells. This test was done after 5 days of culture in a RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% antibiotics. The results showed that the linear textures present 23% toxicity after 30 days of incubation, nevertheless, the adhesion tests results are inconclusive in such conditions and therefore the effect of the line separation on the cell adhesion cannot be determined.

  5. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    Science.gov (United States)

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  6. Hybrid-mode interleaved boost converter design for fuel cell electric vehicles

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • A high power interleaved boost converter is designed for a 150 kW high-power fuel cell electric vehicle application. • A hybrid-mode scheme is used: Mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. • Boundary conditions for different modes are determined with respect to switching duty ratio and load conditions. • With the proposed scheme, the power density is improved by 44.2% and 34.3% in terms of the converter volume and weight. - Abstract: For Fuel Cell Electric Vehicles, DC-DC power converters are essential to provide energy storage buffers between fuel cell stacks and the traction system because fuel cells show characteristics of low-voltage high-current output and wide output voltage variation. This paper presents a hybrid-mode two-phase interleaved boost converter for fuel cell electric vehicle application in order to improve the power density, minimize the input current ripple, and enhance the system efficiency. Two operation modes are adopted in the practical design: mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. The operation, design and control of the interleaved boost converter for different operating modes are discussed with their equivalent circuits. The boundary conditions are distinguished with respect to switching duty ratio and load conditions. Transitions between continuous conduction mode and discontinuous conduction mode are illustrated for the whole duty ratio range. The expressions for inductor current ripple, input current ripple and output voltage ripple are derived and verified by simulation and experimental tests. The efficiency and power density improvements are illustrated to verify the effectiveness of the proposed design scheme.

  7. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  8. M(Al,Ni)-TiO2-Based Photoanode for Photoelectrochemical Solar Cells

    Science.gov (United States)

    Navas, Javier; Reyes-Pérez, Fran; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Bernal, Juan Jesús Gallardo; Martín-Calleja, Joaquín

    2018-05-01

    This study presents the incorporation of Al and Ni cations onto the surface of TiO2 nanoparticles used as photoelectrode in dye sensitized solar cells (DSSCs). The incorporation of these cations was performed using the chemical bath deposition (CBD) technique. This process was applied up to three times to evaluate the semiconductors' properties with respect to the amount of Al and Ni. The M(Al,Ni)-TiO2-based semiconductors were widely characterized using techniques such as X-ray fluorescence, X-ray diffraction, Raman spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy. The presence of (hydr)oxide species of Al(III) and Ni(II) was confirmed and anatase was the predominant crystalline phase obtained. Moreover, for both elements, a decrease in the band gap energy was observed, this being more pronounced after the incorporation of Ni. Furthermore, the use of the M(Al,Ni)-TiO2-based semiconductors as photoelectrodes in DSSCs led to an increase in the open-circuit voltage of up to 22% and 10% for the incorporation of Al and Ni, respectively. This increase can be reasonably explained by the negative shift of the flat band potential of the photoelectrodes. EIS measurements were performed to study the electron transport kinetics in the photoelectrode and the internal resistance in the DSSCs to understand the photocurrent density values obtained.

  9. Hybrid proline-rich proteins: novel players in plant cell elongation?

    Science.gov (United States)

    Dvořáková, Lenka; Srba, Miroslav; Opatrny, Zdenek; Fischer, Lukas

    2012-01-01

    Background and Aims Hybrid proline-rich proteins (HyPRPs) represent a large family of putative cell-wall proteins characterized by the presence of a variable N-terminal domain and a conserved C-terminal domain that is related to non-specific lipid transfer proteins. The function of HyPRPs remains unclear, but their widespread occurrence and abundant expression patterns indicate that they may be involved in a basic cellular process. Methods To elucidate the cellular function of HyPRPs, we modulated the expression of three HyPRP genes in tobacco (Nicotiana tabacum) BY-2 cell lines and in potato (Solanum tuberosum) plants. Key Results In BY-2 lines, over-expression of the three HyPRP genes with different types of N-terminal domains resulted in similar phenotypic changes, namely increased cell elongation, both in suspension culture and on solid media where the over-expression resulted in enhanced calli size. The over-expressing cells showed increased plasmolysis in a hypertonic mannitol solution and accelerated rate of protoplast release, suggesting loosening of the cell walls. In contrast to BY-2 lines, no phenotypic changes were observed in potato plants over-expressing the same or analogous HyPRP genes, presumably due to more complex compensatory mechanisms in planta. Conclusions Based on the results from BY-2 lines, we propose that HyPRPs, more specifically their C-terminal domains, represent a novel group of proteins involved in cell expansion. PMID:22028464

  10. Model-based design of RNA hybridization networks implemented in living cells.

    Science.gov (United States)

    Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter; Daròs, José-Antonio; Jaramillo, Alfonso

    2017-09-19

    Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  12. Hybrid finite element method for describing the electrical response of biological cells to applied fields.

    Science.gov (United States)

    Ying, Wenjun; Henriquez, Craig S

    2007-04-01

    A novel hybrid finite element method (FEM) for modeling the response of passive and active biological membranes to external stimuli is presented. The method is based on the differential equations that describe the conservation of electric flux and membrane currents. By introducing the electric flux through the cell membrane as an additional variable, the algorithm decouples the linear partial differential equation part from the nonlinear ordinary differential equation part that defines the membrane dynamics of interest. This conveniently results in two subproblems: a linear interface problem and a nonlinear initial value problem. The linear interface problem is solved with a hybrid FEM. The initial value problem is integrated by a standard ordinary differential equation solver such as the Euler and Runge-Kutta methods. During time integration, these two subproblems are solved alternatively. The algorithm can be used to model the interaction of stimuli with multiple cells of almost arbitrary geometries and complex ion-channel gating at the plasma membrane. Numerical experiments are presented demonstrating the uses of the method for modeling field stimulation and action potential propagation.

  13. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  14. Effect of AlSb quantum dots on efficiency of GaAs solar cell (Conference Presentation)

    Science.gov (United States)

    Mansoori, Ahmad; Addamane, Sadhvikas J.; Renteria, Emma J.; Shima, Darryl M.; Hains, Christopher P.; Balakrishnan, Ganesh

    2016-09-01

    Quantum Dots (QDs) have a broad applications in science and specifically in solar cell. Many research groups show that by adding QDs with lower bandgap respect to host material, the overall absorption of sun spectrum coverage will increase. Here, we propose using QDs with higher band gap respect to host material to improve efficiency of solar cell by improving quantum efficiency. GaAs solar cells have the highest efficiency in single junction solar cells. However, the absorption of GaAs is not good enough in wavelength lower than 550nm. AlSb can absorb shorter wavelength with higher absorption coefficient and also recombination rate should be lower because of higher bandgap of AlSb respect to GaAs. We embed AlSb QDs in GaAs solar cells and results show slight improvement in quantum efficiency and also in overall efficiency. Coverage of AlSb QDs has a direct impact on quality of AlSb QDs and efficiency of cell. In the higher coverage, intermixing between GaAs and AlSb causes to shift bandgap to lower value (having AlGaSb QDs instead of pure AlSb QDs). This intermixing decrease the Voc and overall efficiency of cell. In lower coverage, AlSb can survive from intermixing and overall performance of cell improves. Optimizing growth condition of AlSb QDs is a key point for this work. By using AlSb QDs, we can decrease the thickness of active layer of GaAs solar cells and have a thinner solar cell.

  15. Influence of Hybrid Perovskite Fabrication Methods on Film Formation, Electronic Structure, and Solar Cell Performance

    Science.gov (United States)

    Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus

    2017-01-01

    Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555

  16. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  17. Improved Performance of Uncapped Al2O3 and Local Firing-Through Al-BSF in Bi-facial Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, I.; Mewe, A.A.; Weeber, A.W. [ECN Solar Energy, P.O. Box 1, .1755 ZG Petten (Netherlands); Granneman, E.; Vermont, P. [Levitech BV, Versterkerstraat 10, 1322 AP Almere (Netherlands)

    2012-06-15

    Silicon solar cells that dominate today's market are H-pattern cells based on p-type silicon wafer material with a full Al Back Surface Field (BSF) as rear contact. ECN's rear passivated bi-facial PASHA (Passivated on all sides H- pattern) and ASPIRe (All Sides Passivated and Interconnected at the Rear, MWT) concepts answer the market pressure to decrease the euro/watt price and increase the efficiency. For optimized cells we estimate 0.5-0.8% absolute higher cell efficiencies compared to the industrial standard due to better rear passivation and reflection, while thinner wafers <150{mu}m) can be processed with limited yield loss. In addition, Al paste consumption can be reduced by 50-70% owing to the open rear metallization. Here we report on the improved performance of PASHA cells passivated by an uncapped Al2O3 layer on the rear, through which Al paste is fired for contact and local aluminum BSF formation. The Al2O3 dielectric layer is deposited in the Levitrack, an industrial-type system for high-throughput Atomic Layer Deposition (ALD) developed by Levitech. On Cz and mc material, a gain in J{sub sc} x V{sub oc} of 1% and 2.5% respectively is obtained compared to the reference, at a rear metal fraction of 30%. Localized IQE mapping shows that the passivation quality of the Al2O3 passivation layer is maintained after firing which is a major improvement as compared to our previous report. Furthermore, reliability tests on single cell laminates (Cz cells) suggest that the passivation layer remains stable during the lifetime of a module.

  18. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    David, G.; Van den Berghe, H.

    1985-01-01

    Chondroitin sulfate represents approximately 15% of the 35 SO 4 -labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product

  19. Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: Application of alternative fuels

    International Nuclear Information System (INIS)

    Zabihian, Farshid; Fung, Alan S.

    2013-01-01

    Highlights: • Variation of the stream properties in the syngas-fueled hybrid SOFC–GT cycle. • Detailed analysis of the operation of the methane-fueled SOFC–GT cycle. • Investigate effects of inlet fuel type and composition on performance of cycle. • Comparison of system operation when operated with and without anode recirculation. - Abstract: In this paper, the hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) model was applied to investigate the effects of the inlet fuel type and composition on the performance of the cycle. This type of analysis is vital for the real world utilization of manufactured fuels in the hybrid SOFC–GT system due to the fact that these fuel compositions depends on the type of material that is processed, the fuel production process, and process control parameters. In the first part of this paper, it is shown that the results of a limited number of studies on the utilization of non-conventional fuels have been published in the open literature. However, further studies are required in this area to investigate all aspects of the issue for different configurations and assumptions. Then, the results of the simulation of the syngas-fueled hybrid SOFC–GT cycle are employed to explain the variation of the stream properties throughout the cycle. This analysis can be very helpful in understanding cycle internal working and can provide some interesting insights to the system operation. Then, the detailed information of the operation of the methane-fueled SOFC–GT cycle is presented. For both syngas- and methane-fueled cycles, the operating conditions of the equipment are presented and compared. Moreover, the comparison of the characteristics of the system when it is operated with two different schemes to provide the required steam for the cycle, with anode recirculation and with an external source of water, provides some interesting insights to the system operation. For instance, it was shown that although the physical

  20. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin; Wei, Wan-Rou; Tang, Libin; Chang, Hung Chih; Tai, Shih Hsiang; Yang, Po Kang; Lau, Shu Ping; Chen, Lih Juann; He, Jr-Hau

    2015-01-01

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  1. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots

    KAUST Repository

    Tsai, Meng Lin

    2015-12-18

    By employing graphene quantum dots (GQDs) in PEDOT:PSS, we have achieved an efficiency of 13.22% in Si/PEDOT:PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT:PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT:PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

  2. Short circuit current changes in electron irradiated GaAlAs/GaAs solar cells

    Science.gov (United States)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.

  3. Hybridization and control of a mobile direct methanol fuel cell system; Hybridisierung und Regelung eines mobilen Direktmethanol-Brennstoffzellen-Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Joerg Christoph

    2010-07-01

    Direct methanol fuel cells (DMFCs) are characterized by the fact that they directly convert the chemical energy of the liquid fuel methanol into electrical energy. Methanol has a high energy density and can be stored relatively easily. Due to these advantages, direct methanol fuel cell systems are suitable, for example, as a battery replacement for light-traction applications in the kW class. Since refuelling is much faster than recharging a battery, almost interruption-free operation is possible. The aim of this thesis is therefore to develop a direct methanol fuel cell system for light-traction applications. The systems technology development and characterization of a mobile direct methanol fuel cell system is initially examined in general and then applied to the example of a horizontal order picker, a type of forklift truck. A hybridization and control concept is developed for this type of truck. The procedure is structured into the theoretical characterization of the application, the development of theoretical concepts and a concluding systems analysis using data from the test stand and simulations. The characteristic driving cycle of the application results from the characterization. The concept development is based on key data such as maximum peak power during acceleration and braking as well as average power. The two-stage theoretical development of a hybridization concept is based on a pure fuel cell vehicle. A systems analysis of all possible concepts with respect to the criteria of fuel cell power, total system efficiency and dynamic fuel cell loading eventually leads to the preferred concept of indirect coupling. A cascade controller with map control, the control concept developed for this purpose, keeps the energy storage unit at a constant state of charge and provides for the fuel cell aging protection as well as aging detection. The driving cycle, operational states of the vehicle and the efficiencies of the individual components play a decisive role

  4. Minocycline Loaded Hybrid Composites Nanoparticles for Mesenchymal Stem Cells Differentiation into Osteogenesis

    Directory of Open Access Journals (Sweden)

    Allister Yingwei Tham

    2016-07-01

    Full Text Available Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM and including new biomaterials could produce a better substitute for new bone tissue formation. A purpose of this study is to analyze polycaprolactone/silk fibroin/hyaluronic acid/minocycline hydrochloride (PCL/SF/HA/MH nanoparticles initiate human mesenchymal stem cells (MSCs proliferation and differentiation into osteogenesis. Electrospraying technique was used to develop PCL, PCL/SF, PCL/SF/HA and PCL/SF/HA/MH hybrid biocomposite nanoparticles and characterization was analyzed by field emission scanning electron microscope (FESEM, contact angle and Fourier transform infrared spectroscopy (FT-IR. The obtained results proved that the particle diameter and water contact angle obtained around 0.54 ± 0.12 to 3.2 ± 0.18 µm and 43.93 ± 10.8° to 133.1 ± 12.4° respectively. The cell proliferation and cell-nanoparticle interactions analyzed using (3-(4,5-dimethyl thiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium inner salt MTS assay (Promega, Madison, WI, USA, FESEM for cell morphology and 5-Chloromethylfluorescein diacetate (CMFDA dye for imaging live cells. Osteogenic differentiation was proved by expression of osteocalcin, alkaline phosphatase activity (ALP and mineralization was confirmed by using alizarin red (ARS. The quantity of cells was considerably increased in PCL/SF/HA/MH nanoparticles when compare to all other biocomposite nanoparticles and the cell interaction was observed more on PCL/SF/HA/MH nanoparticles. The electrosprayed PCL/SF/HA/MH biocomposite nanoparticle significantly initiated increased cell proliferation, osteogenic differentiation and mineralization, which provide huge potential for bone tissue engineering.

  5. ZnO Nanorods on a LaAlO 3 -SrTiO 3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties

    KAUST Repository

    Bera, Ashok

    2015-12-28

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. ZnO Nanorods on a LaAlO 3 -SrTiO 3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties

    KAUST Repository

    Bera, Ashok; Lin, Weinan; Yao, Yingbang; Ding, Junfeng; Lourembam, James; Wu, Tao

    2015-01-01

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Processes and procedures for a thin film multilevel hybrid circuit metallization system based on W--Au/SiO2/Al/SiO2

    International Nuclear Information System (INIS)

    Hampy, R.E.; Knauss, G.L.; Komarek, E.E.; Kramer, D.K.; Villanueva, J.

    1976-04-01

    The processes and procedures developed for the deposition and photodefinition of a W-Au/SiO 2 /Al/SiO 2 hybrid circuit metallization system for the SLL Micro Actuator are described. The metallization system affords a high degree of miniaturization and permits effective interconnection of a mixture of semiconductor devices and passive components with both gold and aluminum terminations without creating undesirable gold-aluminum interfaces. Sputtered tungsten-gold is the first level conductor except at crossovers where tungsten only is used and aluminum is the second level conductor. Silicon dioxide serves as an insulator between the tungsten and aluminum for crossovers. Vias in the insulating layer permit tungsten-aluminum interconnections where desired. A second layer of silicon dioxide is deposited over the metallization and opened for all gold and aluminum bonding pads. Substrates used were polished sapphire and fine grained alumina. The metallization is capable of withstanding processing temperatures up to 400 0 C for short times

  8. Experimental Investigation on Mechanical and Turning Behavior of Al 7075/x% wt. TiB2-1% Gr In Situ Hybrid Composite

    Directory of Open Access Journals (Sweden)

    K. R. Ramkumar

    2015-01-01

    Full Text Available The present research work involves the study of AA 7075-TiB2-Gr in situ composite through stir casting route. This in situ method involves formation of reinforcements within the matrix by the chemical reaction of two or more compounds which also produces some changes in the matrix material within the vicinity. Titanium Diboride (TiB2 and graphite were the reinforcement in a matrix of AA 7075 alloy. The composite was prepared with the formation of the reinforcement inside the molten matrix by adding salts of Potassium Tetrafluoroborate (KBF4 and Potassium Hexafluorotitanate (K2TiF6. The samples were taken under casted condition and the properties of the composite were tested by conducting characterization using X-ray diffraction (XRD, hardness test, flexural strength by using three-point bend test, scanning electron microscope (SEM, optical microstructure, grain size analysis, and surface roughness. It was found that good/excellent mechanical properties were obtained in AA 7075-TiB2-Gr reinforced in situ hybrid composite compared to alloy due to particulate strengthening of ceramic particles of TiB2 in the matrix. Further, Al 7075-3% TiB2-1% Gr hybrid in situ composite exhibited improved machinability over the alloy and composites due to self-lubricating property given by the Gr particles in the materials.

  9. National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.

    Science.gov (United States)

    2011-10-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...

  10. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Directory of Open Access Journals (Sweden)

    Quynh T Phan

    2007-03-01

    Full Text Available Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.

  11. Hybrid thin-film solar cells comprising mesoporous titanium dioxide and conjugated polymers; Hybride Duennschicht-Solarzellen aus mesoporoesem Titandioxid und konjugierten Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Schattauer, Sylvia

    2010-12-01

    The main objective of this thesis is to study the active components and their interactions in so called organic hybrid solar cells. These consist of a thin inorganic titanium dioxide layer, combined with a polymer layer. In general, the efficiency of these hybrid solar cells is determined by the light absorption in the donor polymer, the dissociation of excitons at the heterojunction between TiO{sub 2} and polymer, as well as the generation and extraction of free charge carriers. To optimize the solar cells, the physical interactions between the materials are modified and the influences of various preparation parameters are systematically investigated. Among others, important findings regarding the optimal use of materials and preparation conditions as well as detailed investigations of fundamental factors such as film morphology and polymer infiltration are presented in more detail. First, a variety of titanium dioxide layer were produced, from which a selection for use in hybrid solar cells was made. The obtained films show differences in surface structure, film morphology and crystallinity, depending on the way how the TiO{sub 2} layer has been prepared. All these properties of the TiO{sub 2} films may strongly affect the performance of the hybrid solar cells, by influencing e.g. the exciton diffusion length, the efficiency of exciton dissociation at the hybrid interface, and the carrier transport properties. Detailed investigations were made for mesoporous TiO{sub 2} layer following a new nanoparticle synthesis route, which allows to produce crystalline particles during the synthesis. As donor component, conjugated polymers, either derivatives of cyclohexylamino-poly(p-phenylene vinylene) (PPV) or a thiophene are used. The preparation routine also includes a thermal treatment of the TiO{sub 2} layers, revealing a temperature-dependent change in morphology, but not of the crystal structure. The effects on the solar cell properties have been documented and

  12. Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cell and Super-Capacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius

    2012-01-01

    Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements...... by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimizes the number of switches and their associated gate driver components by using two high frequency...

  13. A double labeling technique for performing immunocytochemistry and in situ hybridization in virus infected cell cultures and tissues

    International Nuclear Information System (INIS)

    Gendelman, H.E.; Moench, T.R.; Narayan, O.; Griffin, D.E.; Clements, J.E.

    1985-01-01

    This report describes a combined immunocytochemical and in situ hybridization procedure which allows visualization of cellular or viral antigens and viral RNA in the same cell. Cultures infected with visna or measles virus were fixed in periodate-lysine-paraformaldehyde-glutaraldehyde, stained by the avidin-biotin-peroxidase technique using antibodies to viral or cellular proteins and then incubated with radiolabeled specific DNA probes (in situ hybridization). This technique provides a new approach to the study of viral pathogenesis by: (1) identifying the types of cells which are infected in the host and (2) identifying points of blockade in the virus life cycle during persistent infections. (Auth.)

  14. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    Science.gov (United States)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  15. Autophagy and Neurodegeneration: Insights from a Cultured Cell Model of ALS

    Directory of Open Access Journals (Sweden)

    Francesca Navone

    2015-08-01

    Full Text Available Autophagy plays a major role in the elimination of cellular waste components, the renewal of intracellular proteins and the prevention of the build-up of redundant or defective material. It is fundamental for the maintenance of homeostasis and especially important in post-mitotic neuronal cells, which, without competent autophagy, accumulate protein aggregates and degenerate. Many neurodegenerative diseases are associated with defective autophagy; however, whether altered protein turnover or accumulation of misfolded, aggregate-prone proteins is the primary insult in neurodegeneration has long been a matter of debate. Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by selective degeneration of motor neurons. Most of the ALS cases occur in sporadic forms (SALS, while 10%–15% of the cases have a positive familial history (FALS. The accumulation in the cell of misfolded/abnormal proteins is a hallmark of both SALS and FALS, and altered protein degradation due to autophagy dysregulation has been proposed to contribute to ALS pathogenesis. In this review, we focus on the main molecular features of autophagy to provide a framework for discussion of our recent findings about the role in disease pathogenesis of the ALS-linked form of the VAPB gene product, a mutant protein that drives the generation of unusual cytoplasmic inclusions.

  16. On process model representation and AlF{sub 3} dynamics of aluminium electrolysis cells

    Energy Technology Data Exchange (ETDEWEB)

    Drengstig, Tormod

    1997-12-31

    This thesis develops a formal graphical based process representation scheme for modelling complex, non-standard unit processes. The scheme is based on topological and phenomenological decompositions. The topological decomposition is the modularization of processes into modules representing volumes and boundaries, whereas the phenomenological decomposition focuses on physical phenomena and characteristics inside these topological modules. This defines legal and illegal connections between components at all levels and facilitates a full implementation of the methodology into a computer aided modelling tool that can interpret graphical symbols and guide modelers towards a consistent mathematical model of the process. The thesis also presents new results on the excess AlF{sub 3} and bath temperature dynamics of an aluminium electrolysis cell. A dynamic model of such a cell is developed and validated against known behaviour and real process data. There are dynamics that the model does not capture and this is further discussed. It is hypothesized that long-term prediction of bath temperature and excess AlF{sub 3} is impossible with a current efficiency model considering only bath composition and temperature. A control strategy for excess AlF{sub 3} and bath temperature is proposed based on an almost constant AlF{sub 3} input close to average consumption and energy manipulations to compensate for the disturbances. 96 refs., 135 figs., 22 tabs.

  17. Identification of Fetal Inflammatory Cells in Eosinophilic/T-cell Chorionic Vasculitis Using Fluorescent In Situ Hybridization.

    Science.gov (United States)

    Katzman, Philip J; Li, LiQiong; Wang, Nancy

    2015-01-01

    Eosinophilic/T-cell chorionic vasculitis (ETCV) is an inflammatory lesion of placental fetal vessels. In contrast to acute chorionic vasculitis, inflammation in ETCV is seen in chorionic vessel walls opposite the amnionic surface. It is not known whether inflammation in ETCV consists of maternal cells from the intervillous space or fetal cells migrating from the vessel. We used fluorescent in situ hybridization (FISH) to differentiate fetal versus maternal cells in ETCV. Placentas with ETCV, previously identified for a published study, were used. Infant sex in each case was identified using the electronic medical record. For male infants, 3-μm sections were cut from archived tissue blocks from placentas involving ETCV and stained with fluorescent X- and Y-chromosome centromeric probes. A consecutive hematoxylin/eosin-stained section was used for correlation. FISH analysis was performed on 400 interphase nuclei at the site of ETCV to determine the proportion of XX, XY, X, and Y cells. Of 31 ETCV cases, 20 were female and 10 were male (1 sex not recorded). Six of 10 cases with male infants had recuts with visible ETCV. In these 6 cases the average percentages (ranges) of XY cells, X-only cells, and Y-only cells in the region of inflammation were 81 (70-90), 11 (6-17), and 8 (2-14), respectively. There was a 2:1 female:male infant ratio in ETCV. Similar to acute chorionic vasculitis, the inflammation in ETCV is of fetal origin. It is still unknown, however, whether the stimulus for ETCV is of fetal or maternal origin.

  18. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    Science.gov (United States)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  19. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    International Nuclear Information System (INIS)

    Mihalache, Iuliana; Radoi, Antonio; Mihaila, Mihai; Munteanu, Cornel; Marin, Alexandru; Danila, Mihai; Kusko, Mihaela; Kusko, Cristian

    2015-01-01

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO 2 /electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO 2 /GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs

  20. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  1. [Hybrids of human and monkey adenoviruses (adeno-adeno hybrids) that can reproduce in monkey cells: biological and molecular genetic peculiarities].

    Science.gov (United States)

    Grinenko, N F; Savitskaia, N V; Pashvykina, G V; Al'tshteĭn, A D

    2003-06-01

    A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.

  2. Efficiency Gain For Bi-Facial Multi-Crystalline Solar Cell With Uncapped Al2O3 And Local Firing-Through Al-BSF

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, I.; Manshanden, P.; Janssen, G.; Weeber, A.W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Granneman, E.; Siarheyeva, O. [Levitech BV, Versterkerstraat 10, 1322 AP Almere (Netherlands)

    2013-06-15

    The p-type bi-facial cell concept, p-PASHA (Passivated on all sides H- pattern), is developed at ECN and employs an uncapped AlOx passivation layer on the rear through which a screen printed H-pattern of aluminium contacts is fired. Here we report a net gain in cell efficiency of 0.2% absolute for the p-PASHA cell vs. industrial reference with the addition of a clean and an ALD step. Even higher gains up to 0.5% abs. are expected after optimization of the cell design and process. Apart from the efficiency gain, the bi-facial cell concept allows for 50-80% reduction in Al paste consumption, the use of thinner wafers, and consists of less processing steps compared to prevalent PERC concepts. The Al2O3 dielectric layer is deposited in the Levitrack, an industrial-type system for high-throughput Atomic Layer Deposition (ALD) developed by Levitech. The efficiency gain is obtained on multi-crystalline wafers, at a rear metal fraction of 40%. Localized IQE mapping, cross-sectional SEM investigation, resistance measurements and 2D simulation relate the efficiency improvement compared to our conventional process to better eutectic and BSF formation at the Al contact edges.

  3. Three-dimensional culture and interaction of cancer cells and dendritic cells in an electrospun nano-submicron hybrid fibrous scaffold

    Science.gov (United States)

    Kim, Tae-Eon; Kim, Chang Gun; Kim, Jin Soo; Jin, Songwan; Yoon, Sik; Bae, Hae-Rahn; Kim, Jeong-Hwa; Jeong, Young Hun; Kwak, Jong-Young

    2016-01-01

    An artificial three-dimensional (3D) culture system that mimics the tumor microenvironment in vitro is an essential tool for investigating the cross-talk between immune and cancer cells in tumors. In this study, we developed a 3D culture system using an electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold (NFS). A hybrid NFS containing an uninterrupted network of nano- and submicron-scale fibers (400 nm to 2 µm) was generated by deposition onto a stainless steel mesh instead of an aluminum plate. The hybrid NFS contained multiplanar pores in a 3D structure. Surface-seeded mouse CT26 colon cancer cells and bone marrow-derived dendritic cells (BM-DCs) were able to infiltrate the hybrid NFS within several hours. BM-DCs cultured on PCL nanofibers showed a baseline inactive form, and lipopolysaccharide (LPS)-activated BM-DCs showed increased expression of CD86 and major histocompatibility complex Class II. Actin and phosphorylated FAK were enriched where unstimulated and LPS-stimulated BM-DCs contacted the fibers in the 3D hybrid NFS. When BM-DCs were cocultured with mitoxantrone-treated CT26 cells in a 3D hybrid NFS, BM-DCs sprouted cytoplasm to, migrated to, synapsed with, and engulfed mitoxantrone-treated CT26 cancer cells, which were similar to the naturally occurring cross-talk between these two types of cells. The 3D hybrid NFS developed here provides a 3D structure for coculture of cancer and immune cells. PMID:27042051

  4. A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Hao Sancun [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China); Jiangsu Shuangdeng Group Co. Ltd, Thaizhou, Jiangsu, 225526 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sun Zhonglin [Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China)

    2012-01-01

    Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 {mu}m achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA{center_dot}cm{sup -2} and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW{center_dot}cm{sup -2}.

  5. Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    This work is a preliminary study of using the PBI-based, HTPEM fuel cell technology in automotive applications. This issue was investigated through computational modeling and an experimental investigation. A hybrid fuel cell system, consisting of a 1 kW stack and lead acid batteries, was implemen......This work is a preliminary study of using the PBI-based, HTPEM fuel cell technology in automotive applications. This issue was investigated through computational modeling and an experimental investigation. A hybrid fuel cell system, consisting of a 1 kW stack and lead acid batteries......, was implemented in a small electrical vehicle. A dynamic model was developed using Matlab-Simulink to describe the system characteristics, select operating conditions and to size system components. Preheating of the fuel cell stack with electrical resistors was investigated and found to be an unrealistic approach...

  6. Isolation of RNA for dot hybridization by heparin-DNase I treatment of whole cell lysate.

    Science.gov (United States)

    Krawczyk, Z; Wu, C

    1987-08-15

    We have developed a new procedure for the rapid preparation of undegraded total RNA from cultured cells for specific quantitation by dot blotting analysis. Pelleted cells are resuspended in hypotonic solution containing a ribonuclease inhibitor and heparin and disrupted by freeze-thaw. Heparin is employed as an agent for nuclear lysis, dissociation of chromosomal protein, and release of mRNA from rough endoplasmic reticulum. We eliminate chromosomal DNA by digestion with DNase I and denature the RNA in the lysate with formaldehyde. After centrifugation to remove debris, the supernatant is used directly for dot blotting. All manipulations are performed in the same microfuge tube and recovery of RNA is quantitative. The procedure is especially useful for processing large numbers of samples. We illustrate its versatility by analysis of specific RNAs in Drosophila, rat, and human cell lines. In reconstruction experiments, less than 80 molecules per cell of a small RNA (beta-globin) can be detected under highly stringent hybridization conditions, using only moderately labeled double-stranded plasmid DNA probes and short film exposures.

  7. Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial (CSIC-UPC), C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2009-05-15

    The addition of a fast auxiliary power source like a supercapacitor bank in fuel cell-based vehicles has a great potential because permits a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. The Energy Management Strategies, commanding the power split between the power sources in the hybrid arrangement to fulfil the power requirement, perform a fundamental role to achieve this objective. In this work, three strategies based on the knowledge of the fuel cell efficiency map are proposed. These strategies are attractive due to the relative simplicity of the real time implementation and the good performance. The strategies are tested both in a simulation environment and in an experimental setup using a 1.2-kW PEM fuel cell. The results, in terms of hydrogen consumption, are compared with an optimal case, which is assessed trough an advantageous technique also introduced in this work and with a pure fuel cell vehicle as well. This comparative reveals high efficiency and good performance, allowing to save up to 26% of hydrogen in urban scenarios. (author)

  8. Charge transfer processes in hybrid solar cells composed of amorphous silicon and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sebastian; Neher, Dieter [Universitaet Potsdam, Inst. Physik u. Astronomie, Karl-Liebknecht-Strasse 24/25, 14467 Potsdam-Golm (Germany); Schulze, Tim; Korte, Lars [Helmholtz Zentrum Berlin, Inst. fuer Silizium Photovoltaik, Kekulestrasse 5, 12489 Berlin (Germany)

    2011-07-01

    The efficiency of hybrid solar cells composed of organic materials and amorphous hydrogenated silicon (a-Si:H) strongly depends upon the efficiency of charge transfer processes at the inorganic-organic interface. We investigated the performance of devices comprising an ITO/a-Si:H(n-type)/a-Si:H(intrinsic)/organic/metal multilayer structure and using two different organic components: zinc phthalocyanine (ZnPc) and poly(3-hexylthiophene) (P3HT). The results show higher power conversion- and quantum efficiencies for the P3HT based cells, compared to ZnPc. This can be explained by larger energy-level offset at the interface between the organic layer and a-Si:H, which facilitates hole transfer from occupied states in the valence band tail to the HOMO of the organic material and additionally promotes exciton splitting. The performance of the a-Si:H/P3HT cells can be further improved by treatment of the amorphous silicon surface with hydrofluoric acid (HF) and p-type doping of P3HT with F4TCNQ. The improved cells reached maximum power conversion efficiencies of 1%.

  9. Influence of an Inorganic Interlayer on Exciton Separation in Hybrid Solar Cells

    Science.gov (United States)

    2015-01-01

    It has been shown that in hybrid polymer–inorganic photovoltaic devices not all the photogenerated excitons dissociate at the interface immediately, but can instead exist temporarily as bound charge pairs (BCPs). Many of these BCPs do not contribute to the photocurrent, as their long lifetime as a bound species promotes various charge carrier recombination channels. Fast and efficient dissociation of BCPs is therefore considered a key challenge in improving the performance of polymer–inorganic cells. Here we investigate the influence of an inorganic energy cascading Nb2O5 interlayer on the charge carrier recombination channels in poly(3-hexylthiophene-2,5-diyl) (P3HT)–TiO2 and PbSe colloidal quantum dot–TiO2 photovoltaic devices. We demonstrate that the additional Nb2O5 film leads to a suppression of BCP formation at the heterojunction of the P3HT cells and also a reduction in the nongeminate recombination mechanisms in both types of cells. Furthermore, we provide evidence that the reduction in nongeminate recombination in the P3HT–TiO2 devices is due in part to the passivation of deep midgap trap states in the TiO2, which prevents trap-assisted Shockley–Read–Hall recombination. Consequently a significant increase in both the open-circuit voltage and the short-circuit current was achieved, in particular for P3HT-based solar cells, where the power conversion efficiency increased by 39%. PMID:26548399

  10. Robust adaptive control for a hybrid solid oxide fuel cell system

    Science.gov (United States)

    Snyder, Steven

    2011-12-01

    Solid oxide fuel cells (SOFCs) are electrochemical energy conversion devices. They offer a number of advantages beyond those of most other fuel cells due to their high operating temperature (800-1000°C), such as internal reforming, heat as a byproduct, and faster reaction kinetics without precious metal catalysts. Mitigating fuel starvation and improving load-following capabilities of SOFC systems are conflicting control objectives. However, this can be resolved by the hybridization of the system with an energy storage device, such as an ultra-capacitor. In this thesis, a steady-state property of the SOFC is combined with an input-shaping method in order to address the issue of fuel starvation. Simultaneously, an overall adaptive system control strategy is employed to manage the energy sharing between the elements as well as to maintain the state-of-charge of the energy storage device. The adaptive control method is robust to errors in the fuel cell's fuel supply system and guarantees that the fuel cell current and ultra-capacitor state-of-charge approach their target values and remain uniformly, ultimately bounded about these target values. Parameter saturation is employed to guarantee boundedness of the parameters. The controller is validated through hardware-in-the-loop experiments as well as computer simulations.

  11. Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance.

    Science.gov (United States)

    Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop

    2018-02-21

    Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.

  12. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    Science.gov (United States)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  13. Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells.

    Science.gov (United States)

    Lai, Jian-Jhong; Li, Yu-Hsun; Feng, Bo-Rui; Tang, Shiow-Jing; Jian, Wen-Bin; Fu, Chuan-Min; Chen, Jiun-Tai; Wang, Xu; Lee, Pooi See

    2017-09-27

    Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) have attracted much attention recently. Here, natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors (FETs) but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions, and it also facilitates the investigation of photoelectrons and photovoltaic effects on the nanoscale. As for applications, the heterojunction device shows a simultaneously high on/off ratio of n- and p-type FETs, gatable p-n junction diodes, tristate buffer devices, gatable photodetectors, and gatable solar cells. On the other hand, P3HT nanofibers are taken as a photoactive layer and the role played by the p-n heterojunction in the photoelectric and photovoltaic effects is investigated. It is found that the hybrid P3HT/ZTO p-n heterojunction assists in increasing photocurrents and enhancing photovoltaic effects. Through the controllable gating of the heterojunction, we can discuss the background mechanisms of photocurrent generation and photovoltaic energy harvesting.

  14. Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells

    KAUST Repository

    Masi, Sofia

    2017-03-03

    Low-molecular-weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite-based materials. In situ time-resolved grazing incidence wide-angle X-ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n-i-p heterojunction devices with MAPbI3 (MA = CH3NH3+) that display a performance that not only is enhanced by ≈25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”

  15. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  16. Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering

    KAUST Repository

    Kim, Taesoo

    2018-05-03

    Realization of colloidal quantum dot (CQD)/organic photovoltaic (OPV) tandem solar cells that integrate the strong infrared absorption of CQDs with large photovoltages of OPVs is an attractive option toward high-performing, low-cost thin film solar cells. To date, monolithic hybrid tandem integration of CQD/OPV solar cells has been restricted due to the CQD ink’s catastrophic damage to the organic subcell, thus forcing the low bandgap CQD to be used as front cell. This sub-optimal configuration limits the maximum achievable photocurrent in CQD/OPV hybrid tandem solar cells. In this work, we demonstrate hybrid tandem solar cells employing a low-bandgap CQD back cell on top of an organic front cell thanks to a modified CQD ink formulation and a robust interconnection layer (ICL) which together overcome the long-standing integration challenges for CQD and organic subcells. The resulting tandem architecture surpasses previously reported current densities by ~20-25% and yields a state-of-the-art power conversion efficiency (PCE) of 9.4%.

  17. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    Science.gov (United States)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power

  18. High-Temperature Tensile and Tribological Behavior of Hybrid (ZrB2+Al3Zr)/AA5052 In Situ Composite

    Science.gov (United States)

    Gautam, G.; Kumar, N.; Mohan, A.; Gautam, R. K.; Mohan, S.

    2016-09-01

    During service life, components such as piston, cylinder blocks, brakes, and discs/drums, have to work under high-temperature conditions. In order to have appropriate material for such applications high-temperature studies are important. Hybrid (ZrB2+Al3Zr)/AA5052 in situ composite has been investigated from ambient to 523 K (250 °C) at an interval of 50 deg. (ZrB2+Al3Zr)/AA5052 in situ composite has been fabricated by the direct melt reaction of AA5052 alloy with zirconium and boron salts. Microstructure studies show refinement in the grain size of base alloy on in situ formation of reinforcement particles. Al3Zr particles are observed in rectangular and polyhedron shapes. It is observed from the tensile studies that ultimate tensile strength, yield strength, and percentage elongation decrease with increase in test temperature. Similar kind of behavior is also observed for flow curve properties. The tensile results have also been correlated with fractography. Wear and friction results indicate that the wear rate increases with increase in normal load, whereas coefficient of friction shows decreasing trend. With increasing test temperature, wear rate exhibits a typical phenomenon. After an initial increase, wear rate follows a decreasing trend up to 423 K (150 °C), and finally a rapid increase is observed, whereas coefficient of friction increases continuously with increase in test temperature. The mechanisms responsible for the variation of wear and friction with different temperatures have been discussed in detail with the help of worn surfaces studies under scanning electron microscope (SEM) & 3D-profilometer and debris analysis by XRD.

  19. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    DEFF Research Database (Denmark)

    Ronander, Elena; Bengtsson, Dominique C; Joergensen, Louise

    2012-01-01

    Adhesion of Plasmodium falciparum infected erythrocytes (IE) to human endothelial receptors during malaria infections is mediated by expression of PfEMP1 protein variants encoded by the var genes. The haploid P. falciparum genome harbors approximately 60 different var genes of which only one has...... been believed to be transcribed per cell at a time during the blood stage of the infection. How such mutually exclusive regulation of var gene transcription is achieved is unclear, as is the identification of individual var genes or sub-groups of var genes associated with different receptors...... fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human...

  20. Evaluation of Fuel-Cell Range Extender Impact on Hybrid Electrical Vehicle Performance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Schaltz, Erik; Koustrup, Per Sune

    2013-01-01

    The use of electric vehicles (EVs) is advantageous because of zero emission, but their market penetration is limited by one disadvantage, i.e., energy storage. Battery EVs (BEVs) have a limited range, and their batteries take a long time to charge, compared with the time it takes to refuel the tank...... of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented...... in start/stop city cycles. Simulations with the New European Driving Cycle (NEDC) showed that efficiency fell by at least 15% for the FC hybrid EV (FCHEV) when compared with BEVs....

  1. Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells

    Science.gov (United States)

    Pedesseau, L.; Kepenekian, M.; Sapori, D.; Huang, Y.; Rolland, A.; Beck, A.; Cornet, C.; Durand, O.; Wang, S.; Katan, C.; Even, J.

    2016-03-01

    A method based on DFT is used to obtained dielectric profiles. The high frequency Ɛ∞(z) and the static Ɛs(z) dielectric profiles are compared for 3D, 2D-3D and 2D Hybrid Organic Perovskites (HOP). A dielectric confinement is observed for the 2D materials between the high dielectric constant of the inorganic part and the low dielectric constant of the organic part. The effect of the ionic contribution on the dielectric constant is also shown. The quantum and dielectric confinements of 3D HOP nanoplatelets are then reported. Finally, a numerical simulation based on the SILVACO code of a HOP based solar cell is proposed for various permittivity of MAPbI3.

  2. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Jarvist M.; Butler, Keith T.; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-08-01

    We report a model describing the molecular orientation disorder in CH{sub 3}NH{sub 3}PbI{sub 3}, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current-voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.

  3. Passivity-Based Control applied to DC hybrid power source using fuel cell and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, M.Y.; Wack, M.; Laghrouche, S. [SeT, UTBM, Belfort (cedex) 90010 (France); Becherif, M. [SeT, UTBM, Belfort (cedex) 90010 (France); FC-Lab, UTBM, Belfort (cedex) 90010 (France); Henni, A. [Alstom Power System, Energy Management Business, Alstom (France); Aboubou, A. [LMSE Laboratory, Biskra University, 07000 (Algeria)

    2010-07-15

    Nowadays, energy management becomes an absolute necessity. To reduce systems consumption, the idea is to recover energy when it is possible and to reuse it when the system is in need. Energy can be saved in peak power unit (electric double layer capacitors called supercapacitors). Those latter can absorb or supply power peaks. This paper deals with the conception of hybrid power sources using fuel cell as main source, a DC link and supercapacitors as transient power source. The whole system is modeled in state space equations. The energy management is reached using Passivity-Based Control (PBC). PBC is a very powerful nonlinear technique dealing with important system information like the system's total energy. Stability proof and simulation results are given. In this proposed control laws only few measurement are needed (two or three depending on the presented solutions one or two). (author)

  4. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  5. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects

    International Nuclear Information System (INIS)

    Pollet, Bruno G.; Staffell, Iain; Shang, Jin Lei

    2012-01-01

    Decarbonising transport is proving to be one of today's major challenges for the global automotive industry due to many factors such as the increase in greenhouse gas and particulate emissions affecting not only the climate but also humans, the increase in pollution, rapid oil depletion, issues with energy security and dependency from foreign sources and population growth. For more than a century, our society has been dependent upon oil, and major breakthroughs in low- and ultra-low carbon technologies and vehicles are urgently required. This review paper highlights the current status of hybrid, battery and fuel cell electric vehicles from an electrochemical and market point of view. The review paper also discusses the advantages and disadvantages of using each technology in the automotive industry and the impact of these technologies on consumers.

  6. Effects of Photovoltaic and Fuel Cell Hybrid System on Distribution Network Considering the Voltage Limits

    Directory of Open Access Journals (Sweden)

    ABYANEH, H. A.

    2010-11-01

    Full Text Available Development of distribution network and power consumption growth, increase voltage drop on the line impedance and therefore voltage drop in system buses. In some cases consumption is so high that voltage in some buses exceed from standard. In this paper, effect of the fuel cell and photovoltaic hybrid system on distribution network for solving expressed problem is studied. For determining the capacity of each distributed generation source, voltage limitation on the bus voltages under different conditions is considered. Simulation is done by using DIgSILENT software on the part of the 20 kV real life Sirjan distribution system. In this article, optimum location with regard to system and environmental conditions are studied in two different viewpoints.

  7. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  8. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  9. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass...

  10. Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    NARCIS (Netherlands)

    Stenzel, O.; Hassfeld, H.; Thiedmann, R.; Koster, L. J. A.; Oosterhout, S. D.; van Bavel, S. S.; Wienk, M. M.; Loos, J.; Janssen, R. A. J.; Schmidt, V.

    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas

  11. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices

  12. HER-2 protein concentrations in breast cancer cells increase before immunohistochemical and fluorescence in situ hybridization analysis turn positive

    DEFF Research Database (Denmark)

    Olsen, Dorte A; Østergaard, Birthe; Bokmand, Susanne

    2007-01-01

    BACKGROUND: The level of HER-2/neu in breast cancer cells is normally measured by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH). It determines whether patients should be treated with trastuzumab (Herceptin). In this study, HER-2 protein in breast cancer tissue...

  13. Test methods for evaluating energy consumption and emissions of vehicles with electric, hybrid and fuel cell power trains

    NARCIS (Netherlands)

    Smokers, R.T.M.; Ploumen, S.; Conte, M.; Buning, L.; Meier-Engel, K.

    2000-01-01

    As part of the MATADOR-project measurement methods have been developed for the evaluation of the energy consumption and emissions of vehicles with advanced propulsion systems, such as battery-electric, hybrid electric and fuel cell vehicles. Based on an inventory of existing and prospective standard

  14. Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells

    Science.gov (United States)

    Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger

    2016-04-01

    In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.

  15. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    International Nuclear Information System (INIS)

    Fernandez, Luis M.; Garcia, Pablo; Garcia, Carlos Andres; Jurado, Francisco

    2011-01-01

    Research highlights: → Hybrid electric power system for a real surface tramway. → Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. → New control strategy for the energy management of the tramway. → Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  16. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  17. Requirement of mitoses for the reversal of X-inactivation in cell hybrids between murine embryonal carcinoma cells and normal female thymocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, N. (Hokkaido Univ., Sapporo (Japan))

    1988-04-01

    By means of a 5-bromodeoxyuridine (BrdU) incorporation and acridine orange fluorescence staining method the authors studied reactivation of the inactivated X chromosome (X{sub i}) in newly formed cell hybrids between the near-diploid HPRT-deficient OTF9-63 murine embryonal carcinoma cell (ECC) with an XO sex chromosome constitution and the normal female mouse thymocyte. Synchronization of the late replicating S chromosome in such hybrid cells, indicative of reactivation, was found for the first time on Day 3, and the frequency of reactivation was attained 90% on Day 5. Inhibition of cell cycle progression either by methylglyoxal bis(guanylhydrazone) dihydrochloride, an inhibitor of polyamine metabolism, or by isoleucine-deficient medium after cell fusion delayed reactivation of the X{sub i}, which implied that the number of cell division cycles traversed by individual cells rather than the length of time after cell fusion is critical for the reactivation. Double-labeling experiments using ({sup 3}H)thymidine and BrdU indicated that hybrid cells had undergone three or four mitoses before reactivation of the X{sub i}. Most probably reactivation of the X{sub i} is consequent to reversion of the thymocyte genome to an undifferentiated state under the influence of OTF9 genome. DNA demethylation or dilution of X{sub i}-specific factors by mitoses may be involved in this process.

  18. Requirement of mitoses for the reversal of X-inactivation in cell hybrids between murine embryonal carcinoma cells and normal female thymocytes

    International Nuclear Information System (INIS)

    Takagi, N.

    1988-01-01

    By means of a 5-bromodeoxyuridine (BrdU) incorporation and acridine orange fluorescence staining method the authors studied reactivation of the inactivated X chromosome (X i ) in newly formed cell hybrids between the near-diploid HPRT-deficient OTF9-63 murine embryonal carcinoma cell (ECC) with an XO sex chromosome constitution and the normal female mouse thymocyte. Synchronization of the late replicating S chromosome in such hybrid cells, indicative of reactivation, was found for the first time on Day 3, and the frequency of reactivation was attained 90% on Day 5. Inhibition of cell cycle progression either by methylglyoxal bis(guanylhydrazone) dihydrochloride, an inhibitor of polyamine metabolism, or by isoleucine-deficient medium after cell fusion delayed reactivation of the X i , which implied that the number of cell division cycles traversed by individual cells rather than the length of time after cell fusion is critical for the reactivation. Double-labeling experiments using [ 3 H]thymidine and BrdU indicated that hybrid cells had undergone three or four mitoses before reactivation of the X i . Most probably reactivation of the X i is consequent to reversion of the thymocyte genome to an undifferentiated state under the influence of OTF9 genome. DNA demethylation or dilution of X i -specific factors by mitoses may be involved in this process

  19. Al and Cu Implantation into Silicon Substrate for Ohmic Contact in Solar Cell Fabrication

    International Nuclear Information System (INIS)

    Sri Sulamdari; Sudjatmoko; Wirjoadi; Yunanto; Bambang Siswanto

    2002-01-01

    Research on the implantation of Al and Cu ions into silicon substrate for ohmic contact in solar cell fabrication has been carried using ion accelerator machine. Al and Cu ions are from 98% Al and 99.9% Cu powder ionized in ion source system. provided in ion implantor machine. Before implantation process, (0.5 x 1) cm 2 N type and P type silicon were washed in water and then etched in Cp-4A solution. After that, P type silicon were implanted with Al ions and N type silicon were implanted with Cu ions with the ions dose from 10 13 ion/cm 2 - 10 16 ion/cm 2 and energy 20 keV - 80 keV. Implanted samples were then annealed at temperature 400 o C - 850 o C. Implanted and annealed samples were characterized their resistivities using four point probe FPP-5000. It was found that at full electrically active conditions the ρ s for N type was 1.30 x 10 8 Ω/sq, this was achieved at ion dose 10 13 ion/cm 2 and annealing temperature 500 o C. While for P type, the ρ s was 1.13 x 10 2 Ω/sq, this was achieved at ion dose 10 13 ion/cm 2 and energy 40 keV, and annealing temperature 500 o C. (author)

  20. Silicon Heterojunction Solar Cells Using AlOx and Plasma-Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2014-06-01

    Full Text Available Aluminum oxide (AlOx and plasma immersion ion implantation (PIII were studied in relation to passivated silicon heterojunction solar cells. When aluminum oxide (AlOx was deposited on the surface of a wafer; the electric field near the surface of wafer was enhanced; and the mobility of the carrier was improved; thus reducing carrier traps associated with dangling bonds. Using PIII enabled implanting nitrogen into the device to reduce dangling bonds and achieve the desired passivation effect. Depositing AlOx on the surface of a solar cell increased the short-circuit current density (Jsc; open-circuit voltage (Voc; and conversion efficiency from 27.84 mA/cm2; 0.52 V; and 8.97% to 29.34 mA/cm2; 0.54 V; and 9.68%; respectively. After controlling the depth and concentration of nitrogen by modulating the PIII energy; the ideal PIII condition was determined to be 2 keV and 10 min. As a result; a 15.42% conversion efficiency was thus achieved; and the Jsc; Voc; and fill factor were 37.78 mA/cm2; 0.55 V; and 0.742; respectively.

  1. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells.

    Science.gov (United States)

    Amber Yousaf, S; Ikram, M; Ali, S

    2018-10-01

    The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach

    Science.gov (United States)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo

    2017-10-01

    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  3. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    Science.gov (United States)

    Li, Shuangbin; Jiang, Cairong; Liu, Juan; Tao, Haoliang; Meng, Xie; Connor, Paul; Hui, Jianing; Wang, Shaorong; Ma, Jianjun; Irvine, John T. S.

    2018-04-01

    Biomass is expected to play a significant role in power generation in the near future. With the uprising of carbon fuel cells, hybrid direct carbon fuel cells (HDCFCs) show its intrinsic and incomparable advantages in the generation of clean energy with higher efficiency. In this study, two types of biomass treated by physical sieve and pyrolysis from raw sawdust are investigated on an anode-supported HDCFC. The structure and thermal analysis indicate that raw sawdust has well-formed cellulose I phase with very low ash. Electrochemical performance behaviors for sieved and pyrolyzed sawdust combined with various weight ratios of carbonate are compared in N2 and CO2 purge gas. The results show that the power output of sieved sawdust with 789 mWcm-2 is superior to that of pyrolyzed sawdust in CO2 flowing, as well as in N2 flowing. The anode reaction mechanism for the discrepancy of two fuels is explained and the emphasis is also placed on the modified oxygen-reduction cycle mechanism of catalytic effects of Li2CO3 and K2CO3 salts in promoting cell performance.

  4. Nafion-TiO{sub 2} hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Sacca, A.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Via Salita S. Lucia Sopra Contesse, 98126 Messina (Italy); D' Epifanio, A.; Licoccia, S.; Traversa, E. [Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sala, E.; Traini, F.; Ornelas, R. [Nuvera Fuel Cells, Via Bistolfi 35, 20134 Milan (Italy)

    2005-12-01

    A nanocomposite re-cast Nafion hybrid membrane containing titanium oxide calcined at T=400{sup o}C as an inorganic filler was developed in order to work at medium temperature in polymer electrolyte fuel cells (PEFCs) maintaining a suitable membrane hydration under fuel cell operative critical conditions. Nanometre TiO{sub 2} powder was synthesized via a sol-gel procedure by a rapid hydrolysis of Ti(OiPr){sub 4}. The membrane was prepared by mixing a Nafion-dimethylacetammide (DMAc) dispersion with a 3wt% of TiO{sub 2} powder and casting the mixture by Doctor Blade technique. The resulting film was characterised in terms of water uptake and ion exchange capacity (IEC). The membrane was tested in a single cell from 80 to 130{sup o}C in humidified H{sub 2}/air. The obtained results were compared with the commercial Nafion115 and a home-made recast Nafion membrane. Power density values of 0.514 and 0.256Wcm{sup -2} at 0.56V were obtained at 110 and 130{sup o}C, respectively, for the composite Nafion-Titania membrane. Preliminary tests carried out using steam reforming (SR) synthetic fuel at about 110{sup o}C have highlighted the benefit of the inorganic filler introduction when PEFC operates at medium temperature and with processed hydrogen. (author)

  5. Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural to Electricity and Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Theodore [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-22

    This goal of this project was to develop a new hybrid fuel cell technology that operates directly on natural gas or biogas to generate electrical energy and to produce ethane or ethylene from methane, the main component of natural gas or biogas, which can be converted to a liquid fuel or high-value chemical using existing process technologies. By taking advantage of the modularity and scalability of fuel cell technology, this combined fuel cell/chemical process technology targets the recovery of stranded natural gas available at the well pad or biogas produced at waste water treatment plants and municipal landfills by converting it to a liquid fuel or chemical. By converting the stranded gas to a liquid fuel or chemical, it can be cost-effectively transported to market thus allowing the stranded natural gas or biogas to be monetized instead of flared, producing CO2, a greenhouse gas, because the volumes produced at these locations are too small to be economically recovered using current gas-to-liquids process technologies.

  6. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  7. Radiation damage evaluation on AlGaAs/GaAs solar cells

    International Nuclear Information System (INIS)

    Moreno, E.G.; Alcubilla, R.; Prat, L.; Castaner, L.

    1988-01-01

    A piecewise model to evaluate radiation damage on AlGaAs based solar cells has been developed, which gives complete electrical parameters of the cells in the operating temperature range. Different structures, including graded band gap and double heteroface can be analyzed. The cell structure is sliced into layers of constant parameters, allowing the model to take into account nonuniform damage produced by low energy protons without excess computer time. Proton damage coefficients as well as proton damage ratios can be calculated for energies between 30 and 10/sup 4/ keV with only two adjustable parameters. In addition, coirradiation experiments with different energy protons can be simulated, by improving the conventional method of degradation computering

  8. Barrier effect of AlN film in flexible Cu(In,Ga)Se{sub 2} solar cells on stainless steel foil and solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Li, Jianjun [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Wu, Li [The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071 (China); Liu, Wei; Sun, Yun [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Zhang, Yi, E-mail: yizhang@nankai.edu.cn [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China)

    2015-04-05

    Highlights: • The adhension between AlN film and Mo are verygood. • AlN film can be effectively used as the barrier of flexible CIGS solar cell on SS substrate. • AlN film is suitable as the insulation barrier of flexible CIGS solar cell on SS substrate. - Abstract: The AlN film deposited by DC magnetron sputtering on stainless steel (SS) foils was used as the barrier in flexible Cu(In,Ga)Se{sub 2} (CIGS) solar cells on stainless steel foil and characterized comprehensively by X-ray diffraction (XRD), scanning electron microscopy (SEM), I–V, and QE measurements study. The study of AlN as insulation barrier in the flexible CIGS solar cell showed that the adhesion strength between the SS foil and the deposited AlN film was very strong even after annealing at high temperature at 530 °C. More importantly, a high resistance of over 10 MΩ was remained with the film with thickness of around 200 nm after annealing. This indicates that the AlN film is suitable as an effective insulation barrier in flexible CIGS solar cells based on SS foil. In addition, the XRD and SEM results showed that the AlN film did not influence the crystal structure of the Mo film which was deposited upon the AlN layer and used as the electrical contact in CIGS solar cells. It was found that the AlN film contributed to an improved crystallinity of the Mo contact layer compared to the bare SS foil. The combined results of secondary ion mass spectrometry, I–V and EQE measurements of the corresponding flexible CIGS solar cells confirmed that 1 μm-thick AlN film could be used as an efficient barrier layer in CIGS solar cells on SS foil.

  9. Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Haenel, T.; Lee, K.Y.; Rau, B.; Ruske, F.; Weber, T.; Gall, S.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (formerly Hahn-Meitner-Institut Berlin), Kekulestr. 5, D-12489 Berlin (Germany); Berginski, M.; Huepkes, J. [Institute of Photovoltaics, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2009-06-15

    The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 {omega} after 22 h annealing at 600 C and only slightly increases for a 200 s heat treatment at 900 C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 C. (author)

  10. Comparison of Different Stem Cell Mobilization Regimens in AL Amyloidosis Patients.

    Science.gov (United States)

    Lisenko, Katharina; Wuchter, Patrick; Hansberg, Marion; Mangatter, Anja; Benner, Axel; Ho, Anthony D; Goldschmidt, Hartmut; Hegenbart, Ute; Schönland, Stefan

    2017-11-01

    High-dose melphalan (HDM) and autologous blood stem cell transplantation (ABSCT) is an effective treatment for transplantation-eligible patients with systemic light chain (AL) amyloidosis. Whereas most centers use granulocyte colony-stimulating factor (G-CSF) alone for mobilization of peripheral blood stem cells (PBSC), the application of mobilization chemotherapy might offer specific advantages. We retrospectively analyzed 110 patients with AL amyloidosis who underwent PBSC collection. Major eligibility criteria included age CSF (n = 78, 71%); ifosfamide/G-CSF (n = 14, 13%); or other regimens (n = 8, 7%). AL amyloidosis patients with predominant heart involvement and/or status post heart transplantation were mobilized with G-CSF only (n = 10, 9%). PBSC collection was successful in 101 patients (92%) at first attempt. The median number of CD34 + cells was 8.7 (range, 2.1 to 45.5) × 10 6 CD34 + /kg collected in a median of 1 leukapheresis (LP) session. Compared with G-CSF-only mobilization, a chemo-mobilization with CAD/G-CSF or ifosfamide/G-CSF had a positive impact on the number of collected CD34 + cell number/kg per LP (P CSF mobilization (median CTC: grade 3; range, 1 to 4). Toxicity in patients undergoing ifosfamide/G-CSF mobilization was higher than in with those who received G-CSF-only mobilization. HDM and ABSCT were performed in 100 patients. Compared with >6.5 × 10 6 transplanted CD34 + cells/kg, an ABSCT with 1 × 10 9 /L and a reduced platelet count CSF mobilization alone is also safe and effective. Considering the hematopoietic reconstitution and long-term stem cell function, our results provide a rationale to collect and transplant as many as >6.5 × 10 6 CD34 + cells/kg, if feasible with reasonable effort. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering.

    Science.gov (United States)

    Mellati, Amir; Kiamahalleh, Meisam Valizadeh; Madani, S Hadi; Dai, Sheng; Bi, Jingxiu; Jin, Bo; Zhang, Hu

    2016-11-01

    Providing a controllable and definable three-dimensional (3D) microenvironment for chondrogenic differentiation of mesenchymal stem cells (MSCs) remains a great challenge for cartilage tissue engineering. In this work, poly(N-isopropylacrylamide) (PNIPAAm) polymers with the degrees of polymerization of 100 and 400 (NI100 and NI400) were prepared and the polymer solutions were introduced into the preprepared chitosan porous scaffolds (CS) to form hybrids (CSNI100 and CSNI400, respectively). SEM images indicated that the PNIPAAm gel partially occupied chitosan pores while the interconnected porous structure of chitosan was preserved. MSCs were incorporated within the hybrid and cell proliferation and chondrogenic differentiation were monitored. After 7-day incubation of the cell-laden constructs in a growth medium, the cell viability in CSNI100 and CSNI400 were 54 and 108% higher than that in CS alone, respectively. Glycosaminoglycan and total collagen contents increased 2.6- and 2.5-fold after 28-day culture of cell-laden CSNI400 in the chondrogenic medium. These results suggest that the hybrid structure composed of the chitosan porous scaffold and the well-defined PNIPAAm hydrogel, in particular CSNI400, is suitable for 3D stem cell culture and cartilage tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2764-2774, 2016. © 2016 Wiley Periodicals, Inc.

  12. Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules

    International Nuclear Information System (INIS)

    Chang, Sehoon; Park, Hyesung; Cheng, Jayce J; Rekemeyer, Paul H; Gradečak, Silvija

    2014-01-01

    We demonstrate improved photovoltaic performance of ZnO nanowire/poly(3-hexylthiophene) (P3HT) nanofiber hybrid devices using an interfacial modification of ZnO nanowires. Formation of cascade energy levels between the ZnO nanowire and P3HT nanofiber was achieved by interfacial modification of ZnO nanowires using small molecules tetraphenyldibenzoperiflanthene (DBP) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI). The successful demonstration of improved device performance owing to the cascade energy levels by small molecule modification is a promising approach toward highly efficient organic/inorganic hybrid solar cells. (paper)

  13. Developing a Model Using Homer for a Hybrid Hydrogen Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Fera Annisa

    2013-04-01

    Full Text Available ABSTRACT. Hydrogen is widely considered be the fuel of the near future. Combined wind/PV energy hybrid systems can be used to sources energy to hydrogen production. This paper describes design, simulation and feasibility study of a hybrid energy system for a household in Malaysia. One year recorded wind speed and solar radiation are used for the design of a hybrid energy system. In 2000 was average annual wind speed in Johor Bahru is 3.76 m/s and annual average solar energy resource available is 5.08 kWh/m2/day. National Renewable Energy Laboratory’s HOMER software was used to select an optimum hybrid energy system. In the optimization process, HOMER simulates every system configuration in the search space and displays the feasible ones in a table, sorted by total net present cost (TNPC. The optimization study indicates that sensitivity analysis of the HOMER is shown in the overall winner which shows that the most least cost and optimize hybrid system is combination of 10 kW of PV array, 1 unit of wind turbine, 2 kW of fuel cell, 120 units of batteries and 6 kW converter as well as 1 kW of electrolyzer so as to generate the minimum COE, $2.423 kWh- 1. Although renewable sources (wind and PV involved in the power generation, 1 kg of hydrogen was produced in this system. Pengembangan Model Dengan Menggunakan Homer Untuk Sistem Sel Berbahan bakar Hidrogen Hibrida ABSTRAK. Hidrogen secara luas dianggap sebagai bahan bakar masa depan. Gabungan sistem hibrida energi angin/fotovoltaik dapat digunakan untuk sumber energi produksi hidrogen. Makalah ini menjelaskan desain, simulasi dan studi kelayakan dari sistem energi hibrida untuk rumah tangga di Malaysia. Satu tahun kecepatan angin tercatat dan radiasi matahari digunakan untuk desain sistem energi hibrida. Pada tahun 2000 adalah kecepatan angin rata-rata tahunan di Johor Bahru 3.76 m/det dan rata-rata sumber daya energi surya tahunan yang tersedia adalah 5.08 kWjam/m2/ hari. Software HOMER digunakan

  14. Hybrid processing of Ti-6Al-4V using plasma immersion ion implantation combined with plasma nitriding

    Directory of Open Access Journals (Sweden)

    Silva Maria Margareth da

    2006-01-01

    Full Text Available Based on the fact that the Ti-6Al-4V alloy has good mechanical properties, excellent resistance to corrosion and also excellent biocompatibility, however with low wear resistance, this work aims to test plasma processes or combination of plasma and ion implantation processes to improve these characteristics. Two types of processing were used: two steps PIII (Plasma Immersion Ion Implantation combined with PN (Plasma Nitriding and single step PIII treatment. According to Auger Electron Spectroscopy (AES results, the best solution was obtained by PIII for 150 minutes resulting in ~ 65 nm of nitrogen implanted layer, while the sample treated with PIII (75 minutes and PN (75 minutes reached ~ 35 nm implanted layer. The improvement of surface properties could also be confirmed by the nanoindentation technique, with values of hardness increasing for both processes. AFM (Atomic Force Microscopy characterization showed that the single step PIII process presented greater efficiency than the duplex process (PIII + PN, probably due to the sputtering occurring during the second step (PN removing partially the implanted layer of first step (PIII.

  15. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  16. Control and load management of a fuel cell based hybrid system; Steuerung und Lademanagement eines brennstoffzellen-basierten Hybridsystems

    Energy Technology Data Exchange (ETDEWEB)

    Klausmann, Andreas

    2011-07-01

    Objective of this work is the development of a control for a hybrid electric power train. Initial point is an electric drive powered by a rechargeable battery. This battery shall be recharged during operation by a methanol-driven fuel cell. At this point it is not intended to deploy a direct methanol fuel cell but a combination of a methanol reformer generating hydrogen-rich gas and a high-temperature fuel cell (HTPEM-FC). This work covers the general strategy of operation like load cycles, standby phases etc., the reformer control and the fuel cell operation with a newly developed charge concept. While the basic research is done on a rapid prototyping system this work aims on porting the control system to an embedded platform. Here emphasis is put on the hardware independency of the control. The development of the reformer control contains the strategy for heating up the system with a minimum of electrical energy consumption, since this energy has to be supplied from the battery during the system start-up, increasing the minimum charge level of the battery required for an autarkic recharge. Unlike in common systems the reformer will be modulated according to the electric load and not vice versa, though the fuel cell serves as load sensor. Beside start-up and shutdown strategies the fuel cell control covers particularly the charge control. The electric load is assumed to be unknown, non-influenceable and unsteady. The charge control handles the charging of the battery under optimal utilization of the available hydrogen while avoiding an overload of the fuel cell caused by sudden load changes like powering up the drive. Therefore the common step-down circuit will be advanced so that all huge and heavy electronic components can be minimized or substituted by internal effects of battery and fuel cell. The fuel utilization will be feed back to the reformer control. After coupling of reformer and fuel cell control the system will be ported to an embedded control system

  17. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    Science.gov (United States)

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  18. An electrostatic particle-in-cell model for a lower hybrid grill

    International Nuclear Information System (INIS)

    Rantamaeki, K.

    1998-01-01

    In recent lower hybrid (LH) current drive experiments, generation of hot spots and impurities in the grill region have been observed on Tore Supra and Tokamak de Varennes (TdeV). A possible explanation is the parasitic absorption of the LH power in front of the grill. In parasitic absorption, the short-wavelength part of the lower hybrid spectrum can resonantly interact with the cold edge electrons. In this work, the absorption of the LH waves and the generation of fast electrons near the waveguide mouth is investigated with a new tool in this context: particle-in-cell (PIC) simulations. The advantage of this new method is that the electric field is calculated self-consistently. The PIC simulations also provide the key parameters for the hot spot problem: the absorbed power, the radial deposition profiles and the absorption length. A grill model has been added to the 2d3v PIC code XPDP2. Two sets of simulations were made. The first simulations used a phenomenological grill model. Strong absorption in the edge plasma was obtained. About 5% of the coupled power was absorbed within 1.7 mm in the case with fairly large amount of power in the modes with large parallel refractive index. Consequently, a rapid generation of fast electrons took place in the same region. In order to model experiments with realistic wave spectra, the PIC code was coupled to the slow wave antenna coupling code SWAN. The absorption within 1.7 mm in front of the grill was found to be between 2 and 5%. In the short time of a few wave periods, part of the initially thermal electrons (T e = 100 eV) were accelerated to velocities corresponding to a few keV. (orig.)

  19. An electrostatic particle-in-cell model for a lower hybrid grill

    Energy Technology Data Exchange (ETDEWEB)

    Rantamaeki, K

    1998-07-01

    In recent lower hybrid (LH) current drive experiments, generation of hot spots and impurities in the grill region have been observed on Tore Supra and Tokamak de Varennes (TdeV). A possible explanation is the parasitic absorption of the LH power in front of the grill. In parasitic absorption, the short-wavelength part of the lower hybrid spectrum can resonantly interact with the cold edge electrons. In this work, the absorption of the LH waves and the generation of fast electrons near the waveguide mouth is investigated with a new tool in this context: particle-in-cell (PIC) simulations. The advantage of this new method is that the electric field is calculated self-consistently. The PIC simulations also provide the key parameters for the hot spot problem: the absorbed power, the radial deposition profiles and the absorption length. A grill model has been added to the 2d3v PIC code XPDP2. Two sets of simulations were made. The first simulations used a phenomenological grill model. Strong absorption in the edge plasma was obtained. About 5% of the coupled power was absorbed within 1.7 mm in the case with fairly large amount of power in the modes with large parallel refractive index. Consequently, a rapid generation of fast electrons took place in the same region. In order to model experiments with realistic wave spectra, the PIC code was coupled to the slow wave antenna coupling code SWAN. The absorption within 1.7 mm in front of the grill was found to be between 2 and 5%. In the short time of a few wave periods, part of the initially thermal electrons (T{sub e} = 100 eV) were accelerated to velocities corresponding to a few keV. (orig.)

  20. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.